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CHAPTER 1

Introduction

Characterizing variations in system parameters is essential in a variety of sensing and

diagnostic applications. Many of these applications have traditionally belonged to the

field of structural health monitoring, where parameter variations can indicate that a

structure, such as a bridge or an airframe, has been damaged or otherwise modified.

However, with the increasing ubiquity of micro-electro-mechanical systems (MEMS),

characterizing variations is important not only on the macro-scale but the micro-

scale as well. Tapping-mode atomic force microscopes may immediately spring to

mind, but particular classes of micro-sensors, such as those designed to measure

trace amounts of chemical or biological material, also require precise measurement of

parameter variations in order to be effective. These kinds of sensors are employed in

a diverse array of applications, ranging from the diagnosis of bacterial infections to

the characterization of substances for counter-terrorism screenings. Thus, the ability

to determine in what way and to what extent system parameters have changed is an

important task.

Active, vibration-based methods are one of the most common means of identify-

ing and quantifying system parameter variations. For a system subjected to a given

excitation, a particular change in the system parameters will result in some corre-

sponding change in the dynamic response. Monitoring the system response is thus

sufficient to capture any variations in the system parameters so long as the changes

in the response are measurable and can be mapped to specific parameter variations.

Within the purview of vibration-based methods, the most commonly used tech-

niques involve the measurement of changes in modal parameters, such as resonant

frequency shifts. Frequency-shift or other modal methods are generally effective, and

have served as the basis for many successful sensors and devices. However, modal

methods can be ineffective under several circumstances: when a system has a low

quality factor, when a system is insensitive to the parameters of interest, when a
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system is significantly nonlinear, or when multiple simultaneous parameter changes

need to be distinguished.

Sensitivity vector fields (SVFs) are one alternative to modal-based methods. SVFs

are composed of sets of vectors that quantify how a system attractor deforms due

to parametric variations. Individual fields are first constructed by sampling system

trajectories that are diverging under known parametric variations. The resulting

snapshots of known deformation are then stored and can be used as a reference

to characterize any unprescribed variations in system parameters that occur at a

later time. The SVF approach has several advantages. In many cases, using SVF

analysis allows nonlinear features of a system to be enhanced and exploited to increase

sensitivity rather than hindering the interrogation (as is the case for modal methods).

Moreover, the simultaneous sensing of multiple parameter variations with a single

sensor is possible since vector, rather than scalar, quantities are measured.

A second approach to dealing with system nonlinearities that cause the failure of

traditional modal methods is to cast a given nonlinear system model within a larger,

linear system model. In this process of system augmentation, each nonlinearity in the

original system model is replaced by a new linear variable. Differential equations that

describe the evolution of these new variables are added to the model, but the added

equations are forced in such a way that the new variables evolve identically to the

original nonlinearities. The augmented linear system can then be used in conjunc-

tion with traditional modal analysis techniques in order to determine any parameter

variations that have occurred. Although there are many options for determining pa-

rameter variations from modal data, one choice is a process known as generalized

minimum rank perturbation theory (GMRPT).

This dissertation further develops the SVF and system augmentation methodolo-

gies so that they can be effectively applied to real, physical systems.

1.1 Background

Many vibration-based methods have been developed to detect and quantify variations

in system parameters. A fairly comprehensive review of these methods in the con-

text of structural health monitoring and damage detection can be found in works by

Doebling [1, 2]. Uniting these diverse methods is their reliance on the measurement

of changes in modal parameters (e.g. frequencies, mode shapes, or modal damping)

as the means of detecting variations in system parameters. Thus, almost all of these

methods are inherently limited to linear models and cannot account for nonlinear
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effects. In addition, usually only one parameter variation can be reliably detected

at a time and it may be difficult to discriminate between variations in parameters

of interest and variations in other parameters, such as might be caused by a drift in

environmental conditions. More exotic methods that make use of subspace identifi-

cation and updating [3], neural networks [4, 5], or wavelet analysis [6, 7, 8] are also

possible. However, these again primarily focus on linear systems.

When a system has significant damping, the reduced quality factor can cause

problems in trying to characterize parameter variations via modal methods. This is

primarily because resonance peaks are attenuated and it becomes increasingly difficult

to identify frequency shifts clearly. For micro-scale systems, the need for a high quality

factor is of particular interest because it may often be necessary for these systems

to operate in highly damped liquid environments [9, 10, 11, 12]. For instance, many

different micro-scale mass sensors have been successfully designed that operate in

low damping environments of vacuum or air [13, 14]. However, it took a creative

approach by Burg and collaborators, who constructed a resonator that has the flow

channeled within the vibrating structure itself, to arrive at an effective micro-sensor

for measuring micro-particles in liquids [15, 16].

For over a decade, different methods for quantifying variations in systems where

modal methods can fail have been in development. These include a diverse range of

techniques for nonlinear systems. One such technique is chaotic interrogation [17, 18,

19, 20], where a system is excited by a chaotic signal and then analyzed based on its

performance as a filter for that signal. Another technique is state space interrogation

and reconstruction [21, 22, 23, 24] where errors in making predictions are tied to the

identification of parameter variations. Further techniques, including those that make

use of Lyapunov exponents [25], those that consider bifurcation morphing [26, 27],

and others [28, 29] have also been proposed. However, each of these methods is also

limited in some significant way; for instance, state space reconstruction can detect

variations in only a single parameter and chaotic interrogation requires a chaotic input

or forcing.

Sensitivity vector fields (SVFs) [30, 31], which quantify changes in the morphology

of system attractors, are an attractive alternative identification method. SVFs have

proven to be a reliable means of identifying parameter variations and remain effective

even in cases where other vibration-based methods fail. Originally developed for

structural health monitoring in mechanical systems [32], SVF techniques have since

been used to detect parameter variations in a variety of simulated dynamical systems,

including tapping-mode atomic force microscopes [33, 34]. Limited work has also
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been performed to show that sensitivity vector fields can be generated in experimental

systems [35]. However, fundamental questions about what kind of dynamics should be

generated to maximize SVFs were never answered and are explored in this dissertation.

Additionally, based on indications [36] that carefully designed feedback could further

enhance SVF sensitivity, the design of feedback for SVFs is another topic presented

in this dissertation.

For SVFs to be practical in real, physical systems, an approach to their construc-

tion that does not involve the entire state is required. Thankfully, a large body of

work on representing systems in state space starting from time-series data is available

[37, 38, 39, 40, 41, 42]. Constructing SVFs in time-delay coordinate embeddings is an

additional topic developed in this dissertation.

When system nonlinearities are an impediment to established techniques, a com-

pletely different approach to identifying parameter variations is to cast the nonlinear

system in a linear form via system augmentation so that modal methods are appli-

cable. This approach was pioneered and developed by D’Souza et al. [43, 44] and

has been applied to a wide range of simulated dynamical systems in many variations,

such as with feedback [45, 46] and with multiple augmentations [47, 48]. It makes

use of techniques such as direct system parameter identification (DSPI) [49, 50] and

smooth orthogonal decomposition (SOD) [51, 52] to extract eigenvalue information

from time series data and then uses this data in a process, such as GMRPT, to predict

parameter variations. A method to reduce the noise content of the modal methods

typically associated with system augmentation (DSPI and SOD) was also proposed by

the same author [53]. The system augmentation framework is extended and further

developed as one of the topics of this dissertation.

1.2 Research Aims

The aim of this research is to further develop the SVF and system augmentation

methods for identifying parameter variations so they can be effectively applied to

physical dynamical systems. Within this goal are four main research foci:

1. Improving Fundamental Understanding of SVFs

Fundamental questions can be asked about the best way to go about producing

a set of SVFs for a particular purpose. For instance, do chaotic or non-chaotic

regimes produce more sensitive SVFs? Is there an optimal evolution time to

allow trajectories to develop before sampling in order to maximize the sensitivity

of a SVF? If a system is harmonically excited, should a particular phase be used
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to generate the SVFs or should all phases be included equally? These types of

basic questions are explored in this focus.

2. Designing Feedback to Enhance SVF Performance

The key to effectively utilizing SVFs is the design of nonlinear feedback control

to enhance system behavior. This feedback needs to provide system excitation

that maximizes attractor deformations caused by changes in parameters of in-

terest (thereby enhancing sensitivity) while minimizing attractor deformations

caused by changes in other system parameters (thereby improving selectivity).

We explore how to design such nonlinear feedback for simple linear and non-

linear systems in two ways: using feedback based on polynomial functions and

using feedback based on spline surfaces.

3. Constructing SVFs in Time-Delay Coordinate Embeddings

In all but the simplest physical systems, knowledge of the entire state is not

possible; as the dimensionality of the system increases it can become increas-

ingly difficult and expensive to measure the full state. Often, we may have

access to only a single time-series: a sequence of scalar data points measured

at successive times. If the system dynamics are low-dimensional, it is still pos-

sible to reconstruct the state space of the dynamical system using time-delay

coordinate embeddings. How to implement SVFs in coordinate embeddings is

demonstrated in this focus.

4. Applying System Augmentation to Physical Systems

Past research into system augmentation has shown it to be a effective method

for identifying parameter variations in simulated structural dynamics problems.

In this focus, using system augmentation to analyze more general nonlinear

systems having a state space form is investigated. Along with the development

of additional techniques which make using GMRPT easier, system augmentation

is successfully applied to physical systems in the form of analog circuits for the

first time.

1.3 Dissertation Outline

With the exception of Chapter 6, each of the additional chapters of this thesis present

detailed information related to the aims outlined in Section 1.2. These chapters are

based on conference or journal papers and, as a result, there may be some repetition in
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the presented background and methodology. A brief summary of each of the chapters

is provided below:

• Chapter 2 presents a parametric study of SVFs to further develop fundamental

understanding of the role the evolution time ∆T and the system dynamics play

in the properties of constructed SVFs. It also proposes two different forms of

feedback, one of fixed polynomial form and the other based on a spline surface,

to enhance sensitivity vector field (SVF) performance. Optimizing this feedback

tends to select for dynamics near bifurcation or stability boundaries.

• In Chapter 3, a complete method for constructing SVFs in time-delay embedded

coordinates is presented. This method makes use of local modeling techniques

and weighs neighborhood points in a unique way referred to as embedded point

cloud averaging (ePCA). Data from simulations and experiments is generated

and used to demonstrate the effectiveness of this method.

• Chapter 4 details work towards the design of an immersed, vibrating sensor

that would harvest flow energy and effectively detect micro-scale particles in

liquids. Although these design efforts were only partially successful, the forms

of feedback proposed in Chapter 2 can be applied to simple models derived from

the fluid-structure interaction simulation, with results suggesting feedback could

be used to improve sensor performance.

• In Chapter 5, system augmentation methodology is extended to non-structural

systems. A new method for extracting left eigenvector information from time

series data using SOD is presented and system augmentation is performed ex-

perimentally for the first time. Discussion of finer points regarding sampling

considerations and the filtering of noise is also included.
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CHAPTER 2

Maximizing Sensitivity Vector Fields: A

Parametric Study

2.1 Introduction

Changing the parameters of a dynamical system can sometimes result in significant

changes in its qualitative behavior. Period-doubling and other types of bifurcations

come to mind as examples of this type of phenomena. However, more often than

not, parametric variations only change the quantitative behavior of a system. In such

cases, after a parameter has been changed the attractor appears much as it did before,

its structure undergoing only a subtle deformation. Determining whether or not pa-

rameters have changed in such cases and, if so, by how much, is important - arguably

sometimes more important than if a qualitative change had occurred. As one exam-

ple, consider systems prone to damage or degradation. In such systems, a parametric

variation could indicate damage and a set amount of variation could indicate that

maintenance is required or that it is no longer safe to continue operation. Being able

to accurately monitor the level of parametric variations despite obvious qualitative

changes in the dynamics is valuable in these cases and can inform decision-making

regarding system intervention and its scheduling (adaptation, repair, replacement,

etc.). As a second example, consider sensors. Many dynamics-based sensing devices,

including MEMS mass sensors and tapping-mode atomic force microscopes (AFMs),

rely on the detection of changes in the parameters of resonant microstructures. Al-

though the variations are application specific (added mass in the case of MEMS mass

sensors and substrate topology in the case of AFMs), they can all be classified as

subtle parametric changes requiring detection and quantification.

The most common way of determining parametric variations has traditionally been

via modal methods, in which changes in a dynamical system’s resonant frequencies,

mode shapes, or other modal parameters serve as indicators of parametric changes
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[2, 54]. These methods are effective for linear systems with a high quality factor,

but may not be as effective for highly damped or strongly nonlinear systems. When

only one mode or resonant frequency is monitored, they are also limited to detecting

only a single variation. This has spurred the development of alternate techniques

for detecting parametric variations [55], including techniques designed specifically for

nonlinear systems that look at attractor changes. Some examples include methods

based on what is known as phase space warping [21, 22, 56] or other local features such

as attractor variance [57] or cross-prediction error [17, 18]. Recently hyperchaotic

excitation was suggested for use with such techniques [19]. One specific alternate

method of detecting parametric variations within this broader family is based on

sensitivity vector fields (SVFs) [58, 31]. SVFs are a measure of how the morphology of

a system attractor changes when system parameters change. An individual sensitivity

vector (SV) is constructed by sampling pairs of diverging trajectories, one from the

nominal system and the other from the varied system. The collection of these vectors

across the entire attractor forms a SVF. A set of SVFs, collected for known variations,

can be used as a basis for identifying and quantifying future, unknown parametric

variations of the system.

Because SVFs are composed of vector rather than scalar quantities, they can

often be used to detect several different parametric variations simultaneously. This is

because SVs generated as a result of multiple parametric variations can be resolved

along different SVFs using, for example, proper orthogonal decomposition. SVFs

are also effective for systems with strong nonlinearities. These two advantages make

them well suited for detecting variations in a variety of systems including aeroelastic

systems [32], vibrating cantilevers [35], and tapping-mode AFMs [34].

SVFs are most effective when selectively sensitive: that is, when they are sensitive

to changes in parameters of interest and insensitive to changes in other parameters.

To improve selective sensitivity, either the system dynamics need to be altered in

some way to improve performance or only the most sensitive regions of the nominal

attractor should be included. This paper considers both options as potential means of

improving SVF performance. First, how widely sensitivity can vary across different

regions of an attractor is demonstrated along with an indication of how selecting

these regions for analysis could improve outcomes. Second, adding nonlinear terms

to a system in the form of feedback and attempting to optimize this feedback for

better results is considered.
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2.2 SVF Theory

A SVF is made up of a collection of SVs distributed across the attractor of a dynamical

system. Each SV is a vector quantifying the separation of two trajectories that have

diverged over an evolution time ∆T having begun at a coincident initial state. One of

the trajectories belongs to the dynamical system having its nominal parameters, while

the other belongs to the dynamical system under some parametric variation. Taken

together, the SVs in a SVF indicate how the nominal attractor will deform under

a specific parametric variation. If SVFs are known for several different parametric

variations, they can be used to quantify any future variations that occur.

Mathematically, consider the dynamical system described by the flow

ẋ = f(x, p, t), (2.1)

where x is the state vector and p is the parameter to be varied. A Taylor series can be

used to describe the evolution of the variation about the nominal system trajectory

having x(t) = x0(t) and p = p0 via the variational equation

d

dt
δx = A(t)δx + b(t)δp, (2.2)

where A(t) =
δf

δx

∣

∣

∣

∣

∣

x=xo

p=po

, (2.3)

and b(t) =
δf

δp

∣

∣

∣

∣

∣

x=xo

p=po

. (2.4)

Here δx is the state variation and δp is the parametric variation of the varied system.

The expansion is truncated to include only linear terms, which makes it exact for

linear systems. For nonlinear systems, the approximation is valid so long as all higher

order terms remain much smaller than the first order terms. This will occur if both

the state variation and the parameter variation remain small, although the state itself

need not be small. Thus, for nonlinear systems there is a limit on the evolution time

for which Eq. (2.2) will remain a valid approximation and this limit depends on the

system, the initial state, and the size of the parametric variation(s).

If integrated over the evolution time, Eq. (2.2) can be expressed in the form of a

map given by

δx(to + ∆T ) = Φ(to + ∆T, to)δx(to) + qδp, (2.5)

where Φ is the state transition matrix from time t0 to time t0 + ∆T and qδp is
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the sensitivity vector. Φ depends only on A(t) given in Eq. (2.3) while the SV qδp

depends on both A(t) in Eq. (2.3) and b(t) in Eq. (2.4).

If the trajectories used in constructing a SV are truly initially coincident so that

δx(t0) = 0, then the separation of these two trajectories after evolution time ∆T is the

sensitivity vector qδp. As long as the evolution time remains short enough that the

Taylor series truncation remains valid, the SV is linearly dependent on the parameter

variation δp. This proportionality between the parameter variation and the SV forms

the basis for using SVs to ascertain parametric variations. However, it can oftentimes

be advantageous to consider the normalized SV given by q. Here q represents the

sensitivity per unit of parametric variation, which makes it a convenient measure

when comparing SVs generated by variations of differing magnitudes because it is

independent of the size of the parametric variation under consideration.

2.3 Analytical Investigations

Although the variational equation given by Eq. (2.2) cannot be solved analytically in

general, in some cases it is amenable to closed-form solution. This section presents two

specific cases where Eq. (2.2) can be solved exactly, highlighting important features

generally present in SVFs.

The first example is a damped, driven linear harmonic oscillator, whose equation

(non-dimensionalized) is expressed:

ẍ+ bẋ+ kx = sin(t). (2.6)

Once the system has settled onto the attractor, the dynamics are given by

x =
1

√

(k − 1) + b
sin(t+ ψ), (2.7)

where ψ is a phase shift given by

ψ = tan−1(
b

k − 1
). (2.8)

The variational equation given by Eq. (2.2) in this specific case is

d

dt
δx =





0 1

k b



 δx +





0

s(t)



 δp, (2.9)
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where s(t) depends on which parameter is varied. For example s(t) = x if k is the

varied parameter, while s(t) = ẋ if b is the varied parameter. The general solution

for a linear system in the form of Eq. (2.2) (if δx(0) = 0) is

δx(t) =
∫ t

t0

eA(t−τ)b(τ)δpdτ. (2.10)

Using this formula in conjunction with Eq. (2.9) provides an exact solution to the

problem if we specify t − t0 as the evolution time ∆T . The explicit expressions for

the case of s(t) = k or s(t) = b are too unwieldy to be provided in full here, but some

important features should be mentioned. First, solutions consist of two parts: an

exponentially decaying transient component and a long-term steady-state component.

If the evolution time ∆T is long enough, only the steady-state component will remain.

This is because the varied system is being forced (due to its initial condition being on

the nominal system’s limit cycle) to trace a path transitioning from one limit cycle

to another. Second, solutions to Eq. (2.10) for a variation in k or b will be similar

but out of phase by π
4

just as the position and velocity given by Eq. (2.7) and its

derivative will be out of phase by π
4
. Finally, damping plays the role one would expect:

underdamped systems will show a great deal of oscillatory behavior in their SVs over

a range of evolution times, while overdamped systems will show very little.
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Figure 2.1: How SV magnitude varies with evolution time and initial phase for the
damped, driven harmonic oscillator (k = 4, b = 1). Variation is in k.

Figure (2.1) illustrates typical variations in SV magnitude that occur as a function
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Figure 2.2: How average SV magnitude varies with number of samples around the
attractor for the damped, driven harmonic oscillator (k = 4, b = 1). Variation is in k.

of initial phase ψ and evolution time ∆T . The phase ψ plays a critical role for

short evolution times (here less than approximately π); for very short times there is

nearly an order of magnitude difference between the lowest and highest sensitivity

magnitudes based solely on initial phase. This is not an isolated case as similar

results are seen for a range of different system parameters. If one wants to consider

an average SV magnitude that is independent of the phase, sufficient sampling is

necessary. Figure (2.2) shows average normalized SV magnitude as a function of

initial phase for an evolution time that corresponds to 20% of the excitation period

with different numbers of samples in the average. Here, six evenly spaced samples per

cycle significantly reduce the phase dependent variation in average SV magnitude.

Examining this figure and also turning back to Fig. (2.1), it is apparent that for

optimal sensitivity a specific initial phase ψ and a specific evolution time ∆T will

maximize the SV magnitude. This is typical of many systems.

As a second example of a dynamical system that can be solved exactly, consider

the hybrid system recently proposed by Corron et al. [59]. This system combines

a continuous dynamical system described by a differential equation with a map-like

switching variable. The system’s overall response is a hybrid of continuous and map-

like dynamics. The system is described by

ü− 2βu̇+ (ω2 + β2)(u− s) = 0, (2.11)
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when u(τ) = 0 then s(τ) = sgn(u(τ)). (2.12)

The solution of the system is given by

u(t) = sn + (un − sn)eβ(t−n)(cos(ωt) −
β

ω
sin(ωt)), (2.13)

where un+1 = eβun − (eβ − 1)sn (2.14)

is the map that describes how un is transformed to un+1. Here the un correspond

to the times when u̇(τ) = 0. Typically ω = 2π and β < log 2. Again, the closed-

form expressions that solve the variational equations are unwieldy, but can be used

to obtain results such as those shown in Fig. (2.3). This system is chaotic, but

it is apparent that, as in the case of the harmonic oscillator, there is an optimal

initial state and evolution time which maximize the SV magnitude. Moreover, for the

ensemble considered, there is a preferred evolution time for maximum SV magnitude

that is independent of the exact initial condition within the ensemble. The average

SV magnitude across the ensemble will be maximized for this evolution time of about

0.75s.
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Figure 2.3: SV magnitude varies with evolution time for an ensemble of initial con-
ditions u̇ = 0, u > 0 on the Corron system attractor.
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2.4 Numerical Investigations

The analytical results above indicate there may be preferred combinations of system,

initial condition, and evolution time for generating large magnitude SVs. This idea

will be explored further in the context of systems that can only be integrated nu-

merically. Specifically, the average SV magnitude generated over a large collection

of initial states for a given attractor will be examined in an attempt to understand

what occurs when the role of the initial condition is minimized. Towards these ends,

consider the Duffing oscillator, a well known nonlinear dynamical system, which can

be represented in non-dimensional form by the set of equations

ẋ = y,

ẏ = −x3
− kx− by + A sin z,

ż = 1.

(2.15)

Obviously, other non-dimensional forms are possible, but they will also be 3-dimensional

dynamical systems with 3-dimensional parameter spaces and no generality is lost by

selecting this form in particular. Integrating Eq. (2.15) in conjunction with the vari-

ational equation that corresponds to the parameter whose variation we would like

to quantify allows SVFs to be constructed. For example, for the Duffing oscillator,

if one considers k as the parameter to be varied in generating SVFs with A and b

as controllable parameters that can be adjusted to change the dynamic regime but

are otherwise treated as fixed with respect to any variations, we obtain the following

variational equation

˙δx = δy,

δ̇y = −3x2δx− kδx− bδy + A cos zδz − x,

δ̇z = 0.

(2.16)

Integrating the combined system of Eq. (2.15) and Eq. (2.16) for 500 cycles while

generating SVs for 20 initial conditions within each cycle allows enough data to be

gathered to arrive at a reasonable estimate of how SV magnitudes vary across the

attractor, and for an estimate of the average SV magnitude for the attractor as a

whole. For each initial condition, SVs are generated for evolution times ranging from

1% to 100% of a 2π period cycle, in increments of 1%.

As shown in the series of images in Fig. (2.4), which regions of the parameter

space have the highest average SV magnitude is dependent on the selected evolution
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Figure 2.4: How average SV magnitude varies with the evolution time for different
regions within the parameter space of the Duffing oscillator of Eq. (2.15). The subfig-
ures are largest Lyapunov exponent (a Lyapunov exponent greater than zero indicates
chaos) (a), average SV magnitude for 50% of a period (b), average SV magnitude for
75% of a period (c), and average SV magnitude for 100% of a period (d).
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time ∆T . For short evolution times (times shorter than 50% of a period) both chaotic

and non-chaotic regimes display very similar average SV magnitudes. However, for

longer evolution times (times greater than 75% of a period) chaotic regimes, in general,

generate higher average SV magnitudes. This suggests that if the linearity assumption

inherent in the variational equation of Eq. (2.16) remains valid for evolution times

greater than 75% of a period, it is likely to be advantageous to be in a chaotic regime

in order to generate large magnitude (and therefore sensitive) SVs. Chaotic regimes

have other advantages as well, such as sampling more of the state space and providing

more opportunities for coincident initial conditions, as discussed in sections 2.5 and

2.6.

The SV magnitudes generated via the variational equation are, by definition, possi-

ble when the parameter variation is infinitesimal. However, whether those magnitudes

remain possible when the variation is finite is a question that needs to be addressed.

This question can be explored by comparing SVs generated in two different ways: via

the system equations with varied parameters, and via the variational equations. One

can assume that the validity of the variational equations has broken down if the SVs

generated in each way disagree by a certain amount. This is done for Eq. (2.15) and

Eq. (2.16), assuming that a 5% difference in their predicted SV endpoints indicates a

breakdown of the assumed linearity of the variational equations. Examining the same

regions of the parameter space for which SVs were generated previously, Fig. (2.5)

shows the length of the evolution time for which the linear assumption remains valid

for a 1% difference in k. The variational equations are valid for close to an entire

period or more for most of the parameter space, although somewhat less where the

dynamic regime is chaotic (refer to Fig. (2.4)).

For larger variations, the time the variational equations remain valid is shorter

than for smaller variations, but for variations of equal magnitude chaotic regions will

generally have shorter times of validity than non-chaotic regions.

Examining the distribution of SVs within a generated SVF for a given set of system

parameters can also be insightful. Figure (2.6) shows the distribution for a chaotic

regime of the Duffing oscillator when the evolution time is 50% of a period, and when

it is 100% of a period. Figure (2.7) shows how such SVs are spatially distributed

for ten Poincaré sections in the attractor at an evolution time of 100% of a period.

Together, these figures show that in chaotic regimes, there are a small number of

highly sensitivity SVs within a given SVF. This suggests that using some form of

targeting control [60, 61] to stabilize orbits near these highly sensitive regions of the

attractor might be an effective strategy for increasing SVF sensitivity.
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Figure 2.6: How SV magnitudes are distributed for 10, 000 SVs in a SVF belonging
to the Duffing oscillator of Eq. (2.15) with variation in k (A = 0.4, b = 0.25). The
subfigures are for an ∆T of 50% of a period (a), and an ∆T of 100% of a period (b).
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Figure 2.7: How SV magnitudes are distributed within state space for a SVF belonging
to the Duffing oscillator of Eq. (2.15) with variation in k (A = 0.4, b = 0.25). The
subfigures are for an ∆T of 50% of a period (a), and an ∆T of 100% of a period (b).

2.5 Feedback Design

Sections 2.3 and 2.4 demonstrate that the nature of the dynamical system and the

choices involved in how sensitivity vectors are sampled, including the evolution time

∆T and the chosen initial conditions, impact the average SV magnitude of a SVF.

This naturally leads to the question: if one has the capability to modify a dynamical

system, can the average SV magnitude be maximized through modification? In this

section, it is shown that by changing a system through feedback, it is possible to aug-

ment a system’s natural sensitivity. Consider again the damped, harmonic oscillator

of Eq. (2.6). Choosing an appropriate feedback excitation N(x, ẋ, t) in the equation

ẍ+ bẋ+ kx = N(x, ẋ, t) , (2.17)

has the effect of changing the system and thereby the sensitivity of any generated

SVs.

Feedback such as N(x, ẋ, t) is typically subject to some constraints in a real physi-

cal system. Such constraints may include restrictions on the range of allowable system

states (e.g. position or velocity) or limits on the magnitude of the inputs (e.g. the

amount of force the feedback controller can output). In this work, such constraints

are taken into account by considering a limit on the size of the attractor by penaliz-

ing attractors that are too big, or too small (SV magnitude is somewhat correlated

with attractor size) and by limiting the magnitude of the applied forcing. With these
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Table 2.1: High sensitivity parameter combinations for polynomial control

Set kc αc A bc Average SV Magnitude
1 -2.3 0.2 0.2 0 7.03
2 0 0 0.5 0 7.01
3 -1.3 0.05 0.4 0 6.95
4 0.35 -0.05 0.5 0 6.78
5 -2.1 0.15 0.2 0 6.61
6 -1.7 0.1 0.35 0 6.00

constraints, a question can be posed: what is the best form of feedback to generate a

maximized SVF magnitude?

To establish a basis for answering this question, first consider an N(x, ẋ, t) having

the fixed form

N(x, ẋ, t) = bcẋ− kcx− αcx
3 + A sin t , (2.18)

where the parameters having subscripts c are considered control parameters.

A pattern search method, where each of the control parameters is tuned sequen-

tially while the others are regarded as fixed, can be used to seek dynamic regimes

that will maximize average SV magnitude. The reason for adopting such an ap-

proach is to avoid discontinuities in the parameter space caused by bifurcations that

gradient-based algorithms have difficulty handling. Consider one instance of these

optimizations as an illustration. For a system having b = 0.1 and k = 1, a maximum

force constraint of 3, and no size penalty for attractors with position and velocity

between 1 and 5, the controller in Eq. (2.18) is optimized by adjusting the param-

eters (A, bc, kc, αc) in increments of either 0.05 or 0.025. Possible initial values of A

belong to the set [0.1, 0.5], those of bc to the set [0, 1], and those of αc to the set [0, 1].

The value of kc is left un-initialized because it will always be adjusted first by this

particular algorithm. One hundred and fifty different initial parameter combinations

were considered. After several cycles of parameter adjustment, the parameter sets

resulting in the highest magnitude SV average are as given in Table 2.1. Limit cycles

dominate the results for this controller, and particularly prominent among the results

are parameter combinations that have kc = −2.1 or kc = −1.7.

Having a controller of fixed polynomial form, especially one with a relatively

low number of terms, greatly reduces the possible distributions of feedback force

across the state space. For this reason, feedback based on control points distributed

19



throughout the state space and that can be interpolated with splines to arrive at an

overall feedback law was also considered. This arrangement allows a feedback force

distribution that can take on a much wider variety of configurations than one based

on a small number of polynomial terms alone. Consider the case where

N(x, ẋ, t) = R(x, ẋ) + A sinωt , (2.19)

with R(x, ẋ) given by a spline surface of forces distributed over the state space.

Here the form of R(x, ẋ) can be optimized by adjusting the force values at certain

control points. The number and position of the control points will thus play an

important role in the feedback description. For this investigation, a force surface

which is required to be symmetric about the origin and which has a total of twelve

equally-spaced control points is considered. The harmonic excitation is taken to have

fixed parameters. SVs are sampled four times each excitation period, each SV taken

after an evolution time of 50% of a period. These conditions match those for the

earlier optimization using the controller that has polynomial terms in Eq. (2.18).

For the system having the same constraints as for the pattern search but with

its feedback of the form given by Eq. (2.19), greater SV magnitudes are observed.

By initializing the spline surface over many different random initial surfaces that are

symmetric about the x − ẋ line and optimizing, an average SV magnitude of 11.06

can be arrived at for the system shown in Figures 2.8 and 2.9. Here the attractor is

shown as the thickened black line superimposed on the spline surface.
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Figure 2.8: High sensitivity spline force surface generated using 12 control points and
symmetry: angled view.
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ẋ

Figure 2.9: High sensitivity spline force surface generated using 12 control points and
symmetry: top view.

This specific example is not an isolated case of higher sensitivity. When using

spline force surfaces for feedback, almost all the initial parameter sets that were

optimized resulted in higher sensitivities than in the case of the polynomial-based

controller. Part of this comparison is skewed since the polynomial-based controller has

fewer adjustable parameters to begin with. Nonetheless, in examining the topology

of the optimized spline force surfaces, it seems clear that this type of feedback surface

would be difficult to construct with a small number of polynomial terms. When

the constraint requiring the symmetry of the force surface is removed, even larger

magnitude SVs can be generated. Table 2.2 shows the values of the three highest

sensitivity regimes for a non-symmetric controller.

Table 2.2: High sensitivity results for non-symmetric spline surfaces

Set Average SV Magnitude
1 17.31
2 15.71
3 15.32

The results in Table 2.2 are somewhat expected, since giving the optimizer more

freedom in the parameter space should result in improved solutions. However, they do

highlight how significantly the assumed form of the controller can impact the ability

to arrive at high sensitivity regimes. Using a larger number of control points was
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also considered to determine whether increasing the number of points could lead to

improvements in sensitivity. When the number of points was doubled for the case of

the symmetric controller, this did not always lead to significantly improved average

SV magnitudes; however, in the case of greatest improvement the sensitivity roughly

doubled. Thus, a more varied or “wavy” surface can sometimes yield higher average

SV magnitudes.

Now, let us revisit controllers of fixed form when more freedom is allowed in the

values of the parameters. Consider an N(x, ẋ, t) having the form

N(x, ẋ, t) = bcẋ− kcx− βcx
2 + αcx

3 + A sin t , (2.20)

where, again, the parameters having the subscripts c are considered control parame-

ters. This time, however, the search methodology is a genetic search and the control

parameters are not restricted to a certain set of values but can range over all of the

real numbers within the constraints. Here one hundred different genetic searches for

b = 0.1 and k = 0.8, were performed, beginning with randomized initial parameters.

The solutions were allowed to evolve over 100 generations using the standard parame-

ter settings within MATLAB’s genetic search algorithm. This kind of search resulted

in even higher average SV magnitude SVFs as Table 2.3 indicates.

Table 2.3: High sensitivity results for a fixed-form genetic search

Set Average SV Magnitude
1 56.2
2 55.7
3 53.4

What is most interesting about the genetic search results is that they indicate that

fragile attractors are oftentimes the most sensitive. Here fragile is used to denote

attractors that are close to a bifurcation, either because they exist in a periodic

window, at the edge of chaos [62], or near some other type of bifurcation. A small

fluctuation in the kc value (and sometimes in other parameter values as well) will result

in the attractor changing form. Figure 2.10 shows an example of this phenomenon.

That SVFs should be most sensitive near bifurcations makes sense; obviously an

attractor that deforms a great deal should provide a sensitive SVF. How closely a

system should be positioned with respect to the bifurcation boundary then depends
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on the levels of the parameter variations expected and the level of noise or hysteresis

that could impact the attractor’s structural stability.
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Figure 2.10: Bifurcations of a fixed-form feedback control found using a ge-
netic search algorithm. The nominal control parameters are [A bc kc βc αc] =
[0.6716 0.0902 0.2660 0.6847 0.1076]. The subfigures are kc = 0.2560 (a), kc = 0.2660
(b), and kc = 0.2760 (c).

2.6 Feedback When Coincidence is Required

The results in Section 2.5 show that implementing a controller of fixed form and

then optimizing its parameters or creating a synthetic force surface by controlling

the values of a set points on a grid throughout the state space can both be used to

alter a dynamical system to increase average SV magnitude. However, performing

this type of optimization in a completely theoretical sense can be misleading because

we still need to enforce δx(t0) = 0 in Eq. (2.2) in any real system in order to generate

SVs. One way to do this is to generate discrete data for a dynamical system under

its nominal parameters along with data for some set of variations and then construct

SVs using local modeling such as point cloud averaging (PCA) [31]. By examining

what regions of the attractor are accessible for SV generation, one can determine if

and when feedback control will be effective.

Reconsider the Duffing system given by Eq. (2.15). If one makes use of the pa-

rameter space used in the previous numerical analysis (see Section 2.4), where A

and b are considered adjustable, but is now concerned with whether or not nearly

coincident initial conditions can be generated, the results in Fig. (2.11) are obtained

in comparison to those of Fig. (2.4). Here a 1% variation in the value of k is being

captured using an embedded coordinate system (see Chapter 3), where x is embedded

3-dimensionally.
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Figure 2.11: Average SV magnitude over the parameter space for the Duffing oscillator
of Eq. (2.15) reconstructed using discrete data sets and local modeling.

−1

0

1

−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

xt
xt−τ

x
t
−

2
τ

Figure 2.12: Initial conditions used in generating SVs via PCA for variations in k
(A = 0.4, b = 0.25). Darker points indicate initial conditions from which SVs could
be constructed.
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Apart from the average SV values being somewhat different, this figure illustrates

that in many cases limit cycles may not be accessible via a PCA approach because

there may be no or few initial conditions on the nominal and varied attractors that

are close enough to being coincident to generate meaningful results. Attempts at

local modeling in these cases will produce unreasonably large model coefficients and

estimated parametric variations will be prone to error. Many of the zero or near

zero SV magnitudes in Fig. (2.11) result from an inability to construct SVs using

local modeling because the nominal attractor is a limit cycle. However, inability to

generate SVs can also occur when the system undergoes a bifurcation from a chaotic

attractor to a limit cycle over the range of the parametric variations of interest. Thus,

it is advantageous to be in a chaotic regime when using discrete data to construct

SVs, as chaos ensures that more of the state space is sampled, despite attractor

deformations. Any sensitivity optimization in a physical system should therefore be

initialized in a chaotic regime. Figure (2.12) shows an example of which of the discrete

initial conditions can be used to successfully generate SVs via local modeling for the

Duffing system when the dynamics are chaotic.

2.7 Conclusions

This paper has presented analytic and numerical investigations into factors that influ-

ence the generation of SVFs, specifically considering the roles the dynamic regime and

evolution time play in influencing SVF sensitivity. It also presented two methods for

altering a system via feedback to increase sensitivity: an optimized controller of fixed

form, and a feedback force surface generated using control points and interpolation.

The results suggest that attractors near bifurcation points generate the most sensitive

SVFs, but that it may be difficult to realize this high sensitivity in physical systems

if the nominal and deformed attractors do not overlap. For this reason, beginning in

a chaotic regime and using feedback to position a system near the edge of chaos is

likely to provide optimal sensitivity.
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CHAPTER 3

Sensitivity Vector Fields in Embedded

Coordinates

3.1 Introduction

Change in the dynamic response of a system indicates that its parameters have

changed in some way. Thus, by monitoring a system’s dynamic response it is often

possible to identify and characterize any parametric variations the system undergoes.

Knowing about parametric variations can be valuable in diagnostic or sensing appli-

cations, particularly when identifying incipient changes is paramount, as it is in cases

of damage detection.

Vibration-based modal methods [2] have been the traditional means of identify-

ing parametric variations via the dynamic response. These methods rely on relat-

ing measured changes in modal parameters, such as resonant frequencies or mode

shapes, to underlying variations in the parameters. Frequently employed in mechan-

ical systems, modal methods are the basis of both dynamic atomic force microscopy

(dAFM) and micro-cantilever based sensing. For these systems, accurate measure-

ments of frequency shifts of vibrating microcantilevers are the basis of successful de-

vices [63, 64, 15]. Continued efforts to improve these and related technologies attest

to the general effectiveness of modal methods.

Under certain circumstances, however, modal methods can be less effective. For

example, when a system is significantly nonlinear, when it has a low quality factor,

or when multiple simultaneous parametric variations need to be distinguished from

one another, other methods may be preferable. A specific alternative championed

here is based on sensitivity vector fields (SVFs) [32, 58, 31], which quantify how

dynamical system attractors deform under parametric variations. Because a SVF

consists of a field of vectors distributed in state space, it can be successful even when

a frequency-shift method would fail. To date, SVFs have been used in conjunction
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with a variety of dynamical systems [34] and proven to be an effective method of

identifying parametric variations. Carefully designed nonlinear feedback can further

adjust a system’s sensitivity to the parametric variations of interest.

Although SVFs have been successfully employed in conjunction with data from

both simulations and experiments [35], previous SVF research has been limited to

systems where a full set of state variables is accessible. In all but the simplest real

systems, this kind of complete access is impossible. For some systems, measuring

certain dynamical variables may be difficult. For others, it may be cost prohibitive to

measure the full state because the system has a large dimension. For these kinds of

systems, it is typical to have records of only a few state variables in the form of one or

more time series, a time series being a sequence of scalar data points measured at suc-

cessive times. So long as the system has a low-dimensional attractor, further analysis

is feasible. Previous research concerned with methods of reconstructing dynamical

system attractors when only time series data are available has shown reconstruction

is possible using an embedding. The most common form is a time-delay coordinate

embedding, in which the embedded vectors are composed of individual time series

observations separated by a fixed delay time. The mathematical basis of time-delay

coordinate embedding has been rigorously established [37, 38, 39, 40] and several

texts [41, 42] illustrate methods for performing such reconstructions.

The focus of this work is creating SVFs within the reconstructed state space

established by a time-delay coordinate embedding of time series data. Specifically,

for an initial condition in the reconstructed space, it is necessary to determine two

future embedded states: one for the system retaining the nominal set of parameters,

and a second for the system having some parametric variation(s). The difference

between these two future states is defined as an embedded sensitivity vector (eSV).

A collection of eSVs across the entire attractor is an embedded sensitivity vector

field (eSVF). Thus, the fundamental problem involved in constructing eSVFs is one of

prediction. Making predictions using embedded nonlinear time series is an established

research area, and we draw on the previous body of work [65, 66, 67, 68]. Typically,

we choose initial conditions that are on the nominal attractor so that only the future

state of the varied system needs to be predicted. Making a good prediction then

requires gathering neighborhoods of states for the varied system surrounding a given

initial condition belonging to the nominal system and constructing local models to

fit these neighborhoods. Once an eSV is estimated, it must be validated to ensure

its accuracy. This is accomplished by requiring accurate predictions of near-neighbor

surrogates, checking local modeling coefficients, and ensuring the correct linearity and
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proportionality of eSVs that are generated by known parametric variations of different

magnitudes. A method of quantifying the error in eSV predictions based on local

modeling is outlined for cases where the equations of motion for the system are known.

Applications of the methodology to various simulated time series, including series for

a Duffing oscillator and for the Lorenz attractor demonstrate the effectiveness of

the technique. These systems are also used to explore how additive noise influences

the results. Further application to experimental time series generated by a Chua’s

oscillator and a cantilever beam demonstrate how the methodology can be applied to

real, physical systems.

3.2 Embedded Sensitivity Vector Fields

3.2.1 SVF Definition

A SVF is a collection of vectors that capture how a dynamical system attractor de-

forms as a result of a given parametric variation. The individual SVs making up a

SVF are constructed by sampling trajectories of nominal and varied systems as they

diverge over time. Two trajectories that are initially coincident in state space but

differ by some parametric variation will evolve differently. By sampling these trajec-

tories a time ∆T after their coincidence, a SV is generated that connects the sampled

point on the nominal attractor to the sampled point on the varied attractor. This

vector quantifies the divergence of the two trajectories. It depends on the underly-

ing dynamical system, the nature of the parametric variation, and the evolution time

∆T . For short ∆T , the SV will be proportional to the parametric variation. Thus, by

obtaining SVFs corresponding to several known parametric variations, a set of basis

vectors can be constructed against which further unknown parametric variations can

be compared, allowing them to be identified.

More mathematically, consider a dynamical system described by the flow ẋ =

f(x, p, t), where x is the state vector, and p is a system parameter that can vary.

Using a Taylor series to develop a variational equation about the nominal trajectory

x(t) = xo(t) and nominal parameter value p = po and retaining only the linear terms

results in
˙δx(t) = A(t)δx(t) + b(t)δp , (3.1)

where A(t) =
∂f

∂x
(t)

∣

∣

∣

∣

∣

x=xo

p=po

, (3.2)
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and b(t) =
∂f

∂p
(t)

∣

∣

∣

∣

∣

x=xo

p=po

. (3.3)

Here, the state variation (from the nominal trajectory) is represented by δx and the

parameter variation (from the nominal parameter value) is represented by δp. If

Eq. (3.1) is integrated over the evolution time ∆T , the result is an equivalent map

δx(t+ ∆T ) = Φ(t+ ∆T, t)δx(t) + q(t+ ∆T )δp, (3.4)

where the state transition matrix for the dynamical system Φ, depends only on A(t).

Trajectory divergence, expressed in the state variation δx(t+ ∆T ) that develops over

the evolution time ∆t, can be interpreted as the sensitivity vector q(t+ ∆T )δp when

δx(t) = 0 at the initial time (that is, if the trajectories are truly initially coincident

at time t). In general, q will depend on both A(t) and b(t). The linearity of Eq. (3.4)

highlights the fact that a specific parametric variation will elicit a proportional change

in the generated SVF. This proportionality is what enables quantification of paramet-

ric variations through the comparison of newly generated SVFs to known, reference

SVFs.

3.2.2 eSVF Definition

Consider again the flow ẋ = f(x, p, t), where the state is given by x = [x1 x2 . . . xn]T ,

with n being the dimension of the system. In its simplest form, performing a time-

delay coordinate embedding of the flow involves sampling a single state component

and then constructing time-delay coordinate vectors having the form

s(t) = [x∗(t) x∗(t− τ) . . . x∗(t−mτ)]T , (3.5)

where ∗ indicates a single state of the system (from the total of n states), τ is the delay

time, and m is the number of time-delay coordinates. It has been proven [40] that

m ≥ 2dA is a sufficient condition to reconstruct an attractor of dimension dA, although

the necessary dimension may be less. In this time-delay coordinate embedding space,

the definition of an eSVF is similar to that of a SVF in ordinary state space, but

what is measured is time-delay coordinate variation δs rather than state variation

δx. Time-delay coordinate variation is variation solely in the component of the state

x∗ selected for constructing the time-delay coordinate vectors. Figure 3.1 shows the

flow and its variation for a two dimensional embedding in x∗, illustrating graphically
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Figure 3.1: Consider a flow with two state variables x1 and x2 embedded two dimen-
sionally in x∗. This figure illustrates the required initial coincidence of the nominal
and varied trajectories, and the variations δx∗ at later times which comprise an eSV.

how the time-delay coordinate variation has the general form

δs(t+ ∆T ) = [δx∗(t+ ∆T )δx∗(t− τ + ∆T ) . . . δx∗(t−mτ + ∆T )]T . (3.6)

In the embedding space, time-delay coordinate vectors are guaranteed to have a

map of the form s(t+ ∆T ) = H(s(t)), where H depends on ∆T (which we assume is

some multiple of τ) and p. This means we can define an eSV q∗δp as

δs(t+ ∆T ) =
∂H

∂s
(t+ ∆T, t)

∣

∣

∣

∣

∣

s=so

p=po

δs(t) + q∗(t+ ∆T )δp, (3.7)

where q∗(t+ ∆T ) =
∂H

∂p
(t+ ∆T, t)

∣

∣

∣

∣

∣

s=so

p=po

. (3.8)

Note that one can numerically compute the eSVs using Eq. (3.4) when the state

space and the time-delay embedding space have the same dimension and the equations

for the original flow ẋ = f(x, p, t) are available. This idea is further developed in

Section 3.3.5 in the context of eSV validation.

In practical cases, one is unlikely to know the function H, and must rely on some

form of modeling to generate eSVs. The natural choice is to use local modeling, where

neighborhoods of states are collected that serve as analogues for the initial conditions

of interest. The future images of these states, used in conjunction with the local
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modeling, allow unknown trajectories to be predicted.

3.3 Methodology

There are four steps to generate an eSV for a given initial condition drawn from the

nominal system’s data set, namely:

1. Gather a neighborhood of nearby states from the varied system’s data set.

2. Adjust the size of the neighborhood to optimize its accuracy in making predic-

tions.

3. Use local modeling in conjunction with the resized neighborhood to make a pre-

diction of the varied system’s trajectory beginning at the given initial condition.

4. Take the difference between the varied trajectory (predicted by local modeling)

and the nominal trajectory (known) in order to construct an eSV.

This process of eSV construction is illustrated in Fig. 3.2.

Once eSVs have been constructed, they are validated. There are three steps in

this validation, namely:

1. Rank eSV neighborhoods based on the distance between the initial condition

and the nearest state of the varied system along with the error in predicting

that state’s future trajectory.

2. Examine the coefficients resulting from the local modeling used to generate a

given eSV and discard those eSVs whose coefficients are poor. For example,

discard all neighborhoods when any coefficients are larger than 1.

3. If the eSVs are being used to build up basis vectors for future testing (and hence

have known parametric variations), check their colinearity and proportionality

in conjunction with the eSVs of other calibration sets.

This process of eSV validation is also illustrated in Fig. 3.2.

Below some important details regarding both the eSV construction process and

the eSV validation process are provided.
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Figure 3.2: The process of generating and validating eSVs that are suitable for
analyzing parametric variations.
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3.3.1 Local Modeling using ePCA

The question of how to effectively predict nonlinear time series using local models

has been studied by several authors [65, 67, 68]. Global approaches for nonlinear

time series prediction have also been proposed, including methods based on radial

basis functions [66]. However, global methods are more difficult to implement and

less likely to give accurate results. Thus, our focus is constructing eSVs using local

models exclusively, specifically using embedded point cloud averaging (ePCA) (similar

to the original PCA [31]).

For an initial condition on the nominal attractor, ePCA involves solving an un-

derdetermined problem involving the neighboring embedded states from the varied

data set given by




1

xt
k,center





m+1×1

= Xt
kα , (3.9)

with α =
[

α1 . . . αn

]T
, (3.10)

and Xt
k =





1 1 . . . 1

xt
1 xt

2 . . . xt
n





m+1×n

. (3.11)

Here xt
k,center is an initial condition of interest on the nominal attractor (i.e. the

center of neighborhood k at time t), and α is a vector of unknowns. Xt
k holds the n

embedded states from the varied data set in neighborhood k, and m is the embedding

dimension. This is the original PCA formulation [31]. For ePCA, we enforce the

additional condition that

n
∑

i=1

αix
t
i,rx

t
i,s = xt

center,rx
t
center,s, ∀ r, s = 1, . . . , m (3.12)

where xt
i,s refers to the s-th component of the measured embedded state xt

i. Solving

Eqs. (3.9) and (3.12) together in the least-norm sense determines the weights each

measured embedded state should be given so that their weighted average matches the

initial condition as closely as possible while also minimizing quadratic cross terms.

Minimizing the terms in Eq. (3.12) minimizes the second order terms in the Taylor

series expansion Eq. (3.7). This is important and can improve eSV accuracy. A

(future) prediction at time t+∆T can then be made using the previously determined

α by calculating

xt+∆T
k,center = Xt+∆T

k α, (3.13)

with Xt+∆T
k =

[

xt+∆T
1 xt+∆T

2 . . . xt+∆T
n

]

. (3.14)
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Here Xt+∆T
k holds (future) states that correspond to the embedded states in the

initial neighborhood k at time t+ ∆T . The eSV q is given by the difference between

future points on the nominal and varied trajectories, i.e. the known nominal system

trajectory known and the varied system trajectory predicted by the model. That is

q = δx = yt+∆T
k,center − xt+∆T

k,center (3.15)

where yt+∆T
k,center is the predicted embedded future state of the varied system and xt+∆T

k,center

is the known embedded future state of the nominal system.

More typical linear (first-order) approximations found in the literature [68] have

the form

[Xt+∆T
k ]T = [Xt

k]Tβ + ǫ, (3.16)

with β =











β1,1 . . . β1,m

...
...

...

βm,1 . . . βm,n











. (3.17)

Here, β is, in general, a collection of vectors of unknowns, and ǫ represents error terms.

Solving this overdetermined system for β in the least-squares sense, and then using

the β vector in conjunction with an initial state allows computation of a predicted

(future) state at t+∆T . Using this general framework, more accurate predictions may

be possible by using higher-order models [69], but these quickly require a large number

of neighborhood points, as the required coefficients increase as m(s+m)!/s!m!, where

m is the embedding dimension and s is the order of the model. Related methods with

additional complexities such as filtering [70] or methods which avoid a least-squares

solution [71] have also been proposed.

The primary advantage of ePCA over these other methods is that the α vector

provides a metric that can be used to judge the relative contribution of each neighbor-

hood point in constructing eSVs. Different magnitudes in the α entries can indicate

a poor neighborhood that will generate an inaccurate eSV.

3.3.2 Neighborhood Sizing

Once a neighborhood of nearby states from the varied system’s data set have been

gathered, the closest of these states is sequestered as a surrogate for the initial con-

dition. Predictions are made for this surrogate using local modeling in conjunction

with neighborhoods of various sizes to determine what neighborhood size to use when

making a prediction from the actual initial condition. Because we know the future
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(embedded) state of the surrogate, it is easy to determine what neighborhood size

results in the most accurate prediction of its future trajectory.

This optimal neighborhood sizing capability is incorporated into the algorithm

in two different ways. The first is suitable for cases where there are a large number

of measured embedded states. Using the points closest to the initial condition, one

can set up a series of increasing radii around the initial condition and consider the

accuracy of predictions based on the neighborhood of embedded states contained

within each radii. The radius with the lowest prediction error is selected for making

predictions from the actual initial condition. The second way, appropriate when data

are sparser, eschews the need for radii and simply drops the embedded state furthest

from the initial condition in making consecutive predictions. One again chooses the

neighborhood that results in the minimum prediction error.

3.3.3 Validation

To avoid regions of the state space giving poor eSVs, one can calculate the distance

between the surrogate embedded states and the initial condition of interest. Then,

one can rank eSV generating neighborhoods according to the product of this distance

and the prediction error. Thus, close surrogate embedded states with good predictions

are highly ranked whereas neighborhoods with surrogates that are distant or poorly

predicted are not. This helps to avoid neighborhoods with especially bad predictions

or disparate state space structure.

When the state space is highly structured, as is the case for many chaotic attrac-

tors, an initial condition that lies on the attractor of the nominal data set likely will

not lie on the attractor of the varied data set. This occurs, for instance, when the

parametric variation is large enough to significantly deform the varied attractor with

respect to the nominal attractor. Simply using the neighborhood of embedded states

in the varied set that is closest to the initial condition could lead to an incorrect eSV

in this case because the selected neighborhood does not provide reasonable analogues

for the initial condition.

In general, the ranking methodology places the worst performing neighborhoods

near the bottom of the ranking. However, there is still considerable variability in

eSVF accuracy for highly ranked neighborhoods so it is not sufficient in and of itself.

The method’s value lies in the fact that it quickly provides a list of reasonably good

neighborhoods, and thus can be used to save time when checking for proportionality

(discussed next) by providing a basis for limiting the number of neighborhoods that
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need to be checked in this subsequent stage.

The second validation of constructed eSVs is ensuring reasonable neighborhood

coefficients. The α coefficients for successful eSVs must all be less than 1 for the

eSV to meet the requirements of this test. This ensures that all of the states in the

neighborhood are contributing relatively equally in predicting the future trajectory.

The third validation of constructed eSVs is a proportionality check (in conjunction

with a colinearity check). It only applies to eSVs for which we know the corresponding

parametric variations, such as those generated to serve as part of a basis set. The

proportionality check requires eSVs meet the linearity requirement of Eq. (3.7). That

is, any change in a given parameter perturbation δp should elicit a proportional

change in the magnitude of the eSV. Checking proportionality requires having at

least two different parameter perturbations for each parameter of interest available

when generating SVFs belonging to the basis sets. The proportionality check can be

used to reduce the error in the acceptable eSVs to very low levels for noiseless data.

3.3.4 Combination

Once a collection of validated eSVs is obtained, one can combine them into an eSVF

in the form of a column vector of individual eSVs. If one is concerned with iden-

tifying only a single parameter, simply examining a test vector’s proportionality to

this eSVF can determine the unknown variation. However, to identify linearly inde-

pendent changes in the attractor that occur under multiple simultaneous parameter

variations, proper orthogonal decomposition (POD) is required [32, 58, 31, 34, 35].

When different eSVFs corresponding to several different parameter variations are col-

lected as column vectors, they can be used to form a matrix Q. The correlation

matrix C = QQT can then be constructed. The dominant eigenvalues of the correla-

tion matrix indicate the number of linearly independent parameter changes that can

be identified and the corresponding eigenvectors provide the basis for doing so.

3.3.5 Measuring Prediction Error

To determine the accuracy of eSVs, it is necessary to have some means of determining

eSV error. When predictions are made for a single time series, it is typical to report

the root mean square (rms) prediction error for out-of-sample data. This means that

while most of the time series is used as a training set to determine the parameters

to be used in the local modeling, the remainder of the series is sequestered to serve

as a test set. This provides an independent repository of states for which predictions
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can be made using local models, but for which one also knows future states exactly.

To determine the modeling error, one simply compares model predictions to known

future states.

However, in constructing eSVs, we are making predictions for initial conditions

on the nominal attractor using data from the varied attractor. This means that we

have no test set to sequester. Thus, for cases when time series data alone is available,

it seems that estimates of an eSVF’s efficacy must be based solely on its ability to

identify parameter variations accurately. However, when generating time series data

from flow equations, there is an advantage in that the variables of the dynamical state

that are not being embedded (and that would normally be unknown) can be retained.

Having knowledge of these normally hidden state variables allows eSVs to be checked

analytically.

An example serves to illustrate the methodology. Consider a two dimensional

dynamical system with a state x = [x1 x2]T that is also embedded in two dimensions

using the x1 variable. One can rewrite Eq. (3.1) as





˙δx1

˙δx2



 =





∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2









δx1

δx2



 +





∂f1

∂p
∂f2

∂p



 δp. (3.18)

The equivalent of Eq. (3.4), the map involving the state transition matrix, is then

given by





δx1(t+ τ)

δx2(t+ τ)



 =





φx1x1
φx1x2

φx2x1
φx2x2









δx1(t)

δx2(t)



 +





bx1

bx2



 δp. (3.19)

Here, the time t corresponds to the initial condition in the embedded state, and the

time t + τ corresponds to a future state, which occurs at a time lag τ later. Since

both the nominal and the varied trajectories are required to have the same initial

embedded state, one has a boundary value problem, as δx1(t) = δx1(t + τ) = 0, in

Eq. (3.19). One obtains two equations for variations in the variable x2 as

δx2(t) =
−bx1

δp

φx1x2

, (3.20)

and δx2(t+ τ) = φx2x2
δx2(t) + bx2

δp. (3.21)

Integrating Eq. (3.18) between t and t + τ in conjunction with the original flow

ẋ = f(x, p, t), allows one to obtain the unknown entries of Eqs. (3.20) and (3.21). One

integrates once with the initial conditions [δx1 δx2]T = [0 1]T and δp = 0 to obtain
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δx1(τ) = φx1x2
and δx2(τ) = φx2x2

, and again with initial conditions [δx1 δx2]
T =

[0 0]T and δp = 1 to obtain δx1(τ) = bx1
and δx2(τ) = bx2

. Using these to solve

Eqs. (3.20) and (3.21), one finds the δx2 values for δx1 = 0 at t and t+ τ . Integrating

from either of these states with the known δx2 values and a specified δp allows the

calculation of δx1A and δx1B at t+∆T and t+τ+∆T . These quantities, δx1 and δx2,

are the two components of the eSV. Figure 3.1 illustrates this when x∗ = x1. Note

that this technique for validating eSV predictions only works when the dimensions of

the original state space and the embedded state space are equal and is susceptible to

singularities if the parametric variation is large or the evolution time is long.

3.4 Time Series Sources

3.4.1 Simulated Time Series Sources

Two familiar dynamic systems are used to generate simulated time series for analysis.

The first system is the well-known Lorenz attractor whose equations are given by

ẋ = σ(y − x),

ẏ = −xz + rx− y,

ż = xy − bz,

(3.22)

where x, y, and z are state variables, and σ, r, and b are system parameters. For

these parameters, the standard nominal values σ = 10, r = 28, and b = 8/3 were

chosen. The system was sampled every ∆t = 0.05. Collected data consisted of 105

samples for each data set with 104 samples on the nominal attractor serving as initial

conditions.

The second system for demonstrating the approach is a Duffing oscillator whose

representation is

ẋ = y,

ẏ = −x3 + x− by + A sin z,

ż = ω,

(3.23)

where x, y, and z are state variables, and A, b, and ω are system parameters. The

nominal parameter values were A = 0.4, b = 0.25, and ω = 1. The system was sam-

pled 100 times each driving period, and 105 samples for each data set were collected

with 104 samples on the nominal attractor serving as initial conditions.

The data sets generated computationally were also corrupted by having various
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Figure 3.3: Layout of the Chua’s circuit used to acquire experimental data.

levels of Gaussian white noise added to them. This additive noise has the form

xn = sn + ηn, (3.24)

where xn is the noisy signal, sn is the clean signal, and ηn is the additive white noise

included at each time instant indicated by subscript n. The relative noise level can

then be expressed as
< η2 >

< (s− < s >)2 >
, (3.25)

with <> representing the mean.

3.4.2 Experimental Time Series Sources

One source of experimental time series is a variant on the well-known Chua’s circuit

where the inductor is replaced by an op-amp realization of a gyrator [72]. Fig. 3.3

shows the layout of the circuit. The relevant component values are given in Tab. 3.1.

These are identical to those in [72] except the capacitors are adjusted to 10 nF and 100

nF respectively. Within the gyrator is a variable resistance RL. One of the resistors

within the realization of Chua’s diode is also replaced with a variable resistor RN .

Thus, the circuit has three parameters (R, RL, and RN ) which can be varied (to

construct eSVFs) and also be identified.

During each test, the system was sampled for approximately 106 data points using

a digital to analogue converter having a 16-bit resolution over a ±10V range. A set
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Table 3.1: Chua’s circuit properties

Component Value

R1 220 Ω
R2 220 Ω
R3 2.2 kΩ
R4 220 kΩ
R5 220 kΩ
R7 100 Ω
R8 1 kΩ
R9 1 kΩ
R 2 kΩ pot
RL 2 kΩ pot
RN 5 kΩ pot
C 100 nF
C1 10 nF
C1 100 nF

of 104 samples was drawn from the nominal system to serve as the set of initial

conditions.

Another source of experimental time series is a smart sensing beam consisting

of an aluminum body with two PZT patches in a bimorph configuration providing

actuation. The relevant dimensions and properties of the beam and PZT patches are

given in Tab. 3.2.

This beam is also equipped with a capacitive sensor at its tip, which measures

beam deflection. This signal is amplified and conditioned by a B&K NEXUS four

channel charge conditioning amplifier and fed to a National Instruments field pro-

grammable gate array (FPGA) PCI-7833R which, in conjunction with custom LAB-

VIEW programs, allows it to be recorded and processed. The FPGA modifies the

signal according to a control law before feeding it back to the beam as an excitation

through a Krohn-Hite amplifier, as shown in Fig. 3.4. For all of the experiments, the

conditioning amplifier was set to a gain of 10 mV/ms2, and the feedback amplifier

had a gain of approximately 144 dB. The feedback law specified in the FPGA was of

the form

F = αx+ βx2 + γx3 + A sinωt, (3.26)

where F is the feedback signal prior to amplification, x is the input signal, and α,

β, γ, A, and ω are controller parameters. All signals are measured in volts. The
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Table 3.2: Smart sensing beam properties

Property Aluminum Beam PZT Patch

Length (mm) 280 60
Width (mm) 15 15
Thickness (mm) 1.27 1
Young’s Modulus (GPa) 68.9 62
Density (kg/m3) 2660 7800
Poisson’s Ratio 0.33 0.31
Piezoelectric Constant (10−9 mm/V) – -300

Aluminum Beam

Labview Data

Aquisition and

Feedback

Ampli!er

Ampli!er

PZT Patches Sensor

xF

Figure 3.4: Layout of the experimental data acquisition set-up for a smart sensing
beam.

parameters were set to α = −2, β = 0 V−1, γ = 1 V−2, A = 3 V, and ω = 670 Hz. A

spatially distributed attractor was produced in the embedded state space. Feedback

was supplied to the system at a frequency of 100 kHz, and data was recorded at a

frequency of 10 kS/s. During each test, the system was sampled for approximately

107 data points. A set of 104 samples was drawn from the nominal system to serve

as the set of initial conditions. Parametric variations were generated by adding small

amounts of mass at various positions along the beam.

3.4.3 Initial Data Processing

Before any eSVFs can be constructed in an embedded state space, an appropriate

dimension [73, 74] and time-delay [75, 76] with which to construct time-delay co-
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ordinate vectors need to be determined. These two quantities depend on both the

dynamical system being studied and the way in which the system is sampled. Both

factors can be determined using available software, such as the TISEAN package [77]

or other specialized programs, such as those for determining dimension based on false

strands [74]. The TISEAN package is also useful for determining whether or not given

dynamics are chaotic via a calculation of the largest Lyapunov exponent (a system is

chaotic when this exponent is positive).

3.5 Results and Discussion

3.5.1 Simulated Time Series

For the simulated time series, using the data processing techniques in Section 3.4.3,

we found that an embedding dimension m = 3 appears sufficient for the Lorenz

system, and the best time-lag based on mutual information is approximately τ = 3

(∆t = 0.15). For the Duffing oscillator, we choose either to embed x and y in an

m = 2 embedding, treating the phase information (z) as known, or to separately fully

embed in a m = 3 dimension embedding. For the Duffing system, the appropriate

time delay is approximately τ = 10.

The choice of time-delay is a critical factor in constructing eSVs. If the time-

delay selected in the case of the Lorenz attractor is not optimal according to the

first minimum of the mutual information, the error in eSV magnitudes increases

significantly, in some cases doubling versus the error at the optimal time-delay.

With embedding and time-delay determined, one can apply the proposed methods

to construct embedded eSVs. An example of such a construction is shown in Fig. 3.5.

The states indicated by small o’s represent varied trajectory points while the nominal

trajectory is indicated by the large O. The semi-analytical prediction of the varied

trajectory based on the state transition matrix formulation is indicated by the �,

while the prediction of the local model is indicated by ×. A coincident � and ×

indicate an accurate prediction. A 1% variation in σ is being captured by this eSV

for the Lorenz attractor.

The Lorenz system affords one the opportunity to compare the locations of initial

conditions which are appropriate for constructing eSVs (as determined by the pro-

cess outlined in Section 3.3) with the locations of initial conditions generating low

error eSVs (as determined via the analytical methodology outlined in Section 3.3.5).

Figure 3.6 illustrates one way to make this comparison. On the left, validated eSV
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Figure 3.5: An example of a good eSV prediction for the Lorenz attractor. The
large O represents the nominal trajectory; small o’s indicate the varied data in the
neighborhood nearby. The × represents a prediction of the varied trajectory via
local modelling and the � via semi-analytical methods. Coincidence of the × and �

indicate a good prediction.

initial conditions for 1% and 2% variations in σ are indicated by the darker points; the

remainder of the initial conditions are shown by the lighter points. We consider the

eSV validated if its proportionality is within 5% of the expectation. On the right, the

same sets of initial conditions are shown, but in this case they are darker if the error in

constructing a vector corresponding to 1% variation in σ is less than 10% and lighter

otherwise. Here we are making predictions for ∆T = 9. The similarity between the

two plots confirms the methodology we have outlined for validating eSVs does select

the eSVs with the lowest error. Moreover, these plots show that the distribution of

low error / successfully validated eSVs is non-uniform across the attractor, often be-

ing concentrated in bands or clusters based on the deformation. Careful tightening

of the proportionality requirement in the validation step will reduce the number of

acceptable initial conditions but those that remain will generally produce eSVs with

less error. Similar results hold for the Duffing oscillator, and when one only embeds

two of the state vectors and retains the phase as additional information, the average

eSV magnitude prediction error is generally lower.

With both surrogate ranking and proportionality validation one can consistently

generate eSVFs with low error in low noise environments. These accurate eSVFs

allow for excellent parameter reconstructions. For example, in the case of the Lorenz
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Figure 3.6: Initial conditions used in generating eSVs for the Lorenz data; darker
points indicate valid eSVs (left). The same set of initial conditions; darker points
indicate eSVs having less than 10% error (right).

Table 3.3: Simulated time series parameter reconstruction

Case Parameter Variation (%) eSVF Prediction (%)

1
σ 1.50 1.47
r 0.00 0.01

2
σ 0.00 0.04
r 1.50 1.65

3
σ 1.50 1.46
r 1.50 1.62

4
σ 3.00 2.97
r 3.00 3.18

attractor after having collected initial eSVFs for changes in σ, r, and b of 1% and 2%

one can perform the reconstructions shown in Tab. 3.3. These required the calibration

eSVs to have a proportionality within 5% of the expectation based on the specified

parameter variations. The eSVs were recorded for an evolution time of one time step

(∆T = 1).

These results demonstrate the ability to make good predictions of parameter vari-

ations in this system, even when they occur simultaneously. The case where both

parameters are changed by 3% also shows that even in cases where one extrapolates

beyond the eSVFs collected initially (here validations were performed only up to 2%)

one can still generate good results.

The accuracy of these types of parameter variation predictions is affected by sev-

eral factors. The first of these is the level of proportionality required to validate
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Figure 3.7: Number of initial conditions validated for eSV construction (out of 103)
(left). Predictions of the parameter variations (right). Solid line corresponds to 5%
proportionality, dashed line corresponds to 2% proportionality, dashed-dotted line
corresponds to 1% proportionality.

calibration vectors. Figure 3.7 illustrates how tightening the proportionality require-

ment influences the predictions over a range of different evolution times. Here the

actual values of the variations are −0.15 in σ, −0.2 in b and 0 in r. It is obvious that

as the proportionality requirement is tightened, the predictions generally improve,

markedly from 5% to 2% and only slightly from 2% to 1%. The number of initial

conditions that are considered valid also declines.

Figure 3.7 also demonstrates that the length of the evolution time ∆T can have

a large effect on eSV accuracy. If this time is too short, the eSVs will have small

magnitude and will be prone to large error for any small errors in the individual

time series predictions. For large times, a dynamic system that is chaotic will lose

predictability and the error will again be large. Our predictions of b with a 5%

proportionality requirement become inaccurate for ∆T > 10 because a few of the

initial conditions that pass the proportionality test generate eSVs that are in error.

This suggests that it is prudent to make variation predictions over several different

∆T values and look for a consistent result before drawing any conclusions about how

parameters may have changed.

A third factor affecting the accuracy of parameter predictions is quantity and

density of the time series themselves. Having more data from which to construct

a local model about a given initial condition can lead to an improvement in the

predictions. The results are more subtle, but Fig. 3.8 shows how increasing the

number of points in the time series from 105 to 106 can slightly reduce some of the
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Figure 3.8: Number of initial conditions validated for eSV construction (out of 103)
(left). Predictions of the parameter variations (right). Solid line corresponds to 105

points in time series, dashed line corresponds to 106 points.

variability in the variation predictions. The proportionality enforced for this plot was

2%.

The error in embedded eSVs is also significantly influenced by noise. To investi-

gate this, noise was added to the simulated time series as described in Eq. (3.24).

The levels added ranged from 0.0001 to 0.1. For levels of noise 0.0001 and below,

errors in eSV magnitude were not significantly influenced. However, for noise around

0.001 the variation prediction began to be degraded. For higher levels of noise it was

often impossible to find any initial conditions that generated eSVs meeting the pro-

portionality requirements. This suggests that minimizing noise in any experimental

system is very important in order to be able to construct eSVs. It is possible that by

predicting both the future points on the nominal trajectory as well as on the varied

trajectory (rather than just accepting the nominal trajectory data at face value) the

impact of noise could be further reduced through the effects of neighborhood averag-

ing, but this has not been explored here. Table (3.4) shows the impact of noise on

eSV parametric variation reconstruction for ∆T = 3.

3.5.2 Experimental Time Series

The investigation of eSVs using time series data generated by simulated systems shows

that the methodology laid out for eSV construction is reliable. However, it is also

important to be able to achieve similar results with experimental data to confirm that

embedded SVF construction is applicable to real systems. For this reason, we first

46



Table 3.4: Simulated time series parameter reconstruction with noise

Noise Level Parameter Variation eSVF Prediction

0
σ -0.15 -0.149
b -0.20 -0.191
r 0.00 0.001

0.0001
σ -0.15 -0.144
b -0.20 -0.194
r 0.00 -0.001

0.001
σ -0.15 -0.132
b -0.20 -0.127
r 0.00 -0.008

Table 3.5: Chua’s circuit time series parameter reconstruction

Case Parameter Variation (δΩ) eSVF Prediction (δΩ)

1
R 32 34.3
RL 0 0.3

2
R 0 3.9
RL -47 -44.2

3
R -33 -27.2
RL 48 49.8

examine the effects of parametric variation by adjusting R and RL in Chua’s circuit.

Applying the techniques for determining state dimension and time-delay, we found

that the experimental data should be embedded in a state space having m = 3 and

a time-delay of τ = 9. The reconstructed attractor using these parameter values is

shown in Fig. (3.9).

Once initial calibration eSVFs are taken about the nominal parameter values one

can perform the reconstructions shown in Table 3.5. The fact that the data has low

noise (the noise to signal ratio could be as low as 10−10 based on the resolution of the

analog to digital converter) no doubt contributes to the predictions being accurate.

Using a similar process, the cantilever beam time series are required to be em-

bedded in a state space having m = 4 and a time-delay of τ = 16 (0.16 ms). When

5 mg and 15 mg additions to the beam are used to generate initial eSVFs one can

perform the reconstructions shown in Table 3.6.
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Figure 3.9: A 3-dimensional projection of the Chua’s oscillator attractor.

Table 3.6: Cantilever beam time series parameter reconstruction

Case Location Mass (mg) eSVF Prediction (mg)

1
Tip 10 9.71
Middle 0 -0.11

2
Tip 0 -0.27
Middle 10 10.21

3
Tip 10 10.13
Middle 10 10.54

3.6 Conclusions

This paper presents a methodology for the construction of SVFs in time-delay em-

bedding coordinates based on local linear modeling of time series. A specific method

for weighting neighborhood states in local modeling called ePCA was introduced.

This method minimizes quadratic cross terms in an effort to improve eSV accuracy.

Local modeling proved to be a reliable means of constructing eSVFs and identifying

parametric variations for both simulated and experimental time series. A technique

for checking the accuracy of these SVF predictions was also presented for cases where

the system equations are known and the dimension of the non-embedded state and

the embedded state are equal. Being able to construct SVFs in embedded coordinates

will make the application of SVFs to a wide variety of physical systems feasible, even
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when it is not possible to measure the complete state.
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CHAPTER 4

Rotating Fluid Microsensors with

Nonlinear Feedback

4.1 Introduction

Detecting and characterizing small amounts of chemical and biological agents is im-

portant in many health and defense related applications. Fast and reliable identifica-

tion of trace amounts of materials can be crucial for correct assessment and response

in scenarios ranging from diagnosis of bacterial infections to counter-terrorism screen-

ing.

One way of providing chemical and biological detection is through the use of active,

vibration-based micro-sensors. Typical vibration-based sensing methods apply a sys-

tem excitation to the sensor and then monitor the dynamic response, which changes

when the substance of interest is present. Frequency-shift methods based on changes

in resonant frequencies caused by particles binding to a vibrating microstructure are

examples of this approach [64, 78]. Unfortunately, when sensors exhibit nonlinearity,

significant damping, or when sensor properties are liable to change over time (due to,

for example, environmental changes or sensor damage), these frequency-shift based

methods can lead to unsatisfactory results.

The case of vibration-based sensing in highly damped environments is of particular

interest because detecting and quantifying particles in liquids is often necessary. For

instance, being able to quantify different types of particles in a lab-on-a-chip environ-

ment could improve medical diagnosis. Resonant-frequency based detection is often

poor in such damped environments because the quality factor is diminished and the

resonant peak is no longer sharp. Burg and collaborators [15] constructed a resonator

where flow is channeled within the resonating structure itself as one possible solution

to this problem.
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An alternate approach, taken here, is to minimize the effective damping by de-

signing an immersed sensor which takes advantage of the flow to recover some of the

energy lost to damping. This is challenging because only low Reynolds number flows

are practical in liquid MEMS [79, 80]. Work on rotational galloping of prismatic

structures is of particular interest, as we would like our system to be as near to this

type of behavior as possible [81, 82].

In order to measure changes in system properties, such as added mass, we make

use of an alternate metric known as sensitivity vector fields (SVFs) which quantify

how attractors deform [58, 31]. SVFs are constructed by sampling system trajectories

that diverge due to parametric variations and using the resulting snapshots of the

deformation as references when the system changes under operating conditions. The

SVF approach has several advantages. In many cases, using SVF analysis means

that nonlinear features of the system can be enhanced and exploited to increase

sensitivity rather than hindering the interrogation. As well, simultaneous sensing of

multiple analyte properties with a single sensor is sometimes possible since we are

dealing with vector, rather than scalar, features/quantities. Originally developed for

structural health monitoring [35, 32, 26] in mechanical systems, SVF techniques have

since been used to detect parameter variations in a variety of dynamical systems,

including tapping mode atomic force microscopes [34].

The key to effectively utilizing SVF techniques is the design of nonlinear feedback

controllers. These controllers need to provide system excitation which maximizes at-

tractor deformations caused by changes in parameters of interest (thereby enhancing

sensitivity) while minimizing attractor deformations caused by changes in other sys-

tem parameters (thereby improving selectivity). We demonstrate how to design such

controllers for a sensor using spline surfaces of feedback force optimized to enhance

sensitivity.

4.2 Sensor Design Strategy

The primary challenge in designing an effective vibration-based micro-sensor for a

liquid environment is overcoming, as much as possible, the high level of damping due

to the viscosity of the liquid. Unlike in a near-vacuum or gas environments where

damping can often be neglected, in liquids damping effects are not negligible and

make frequency-shift based measurement difficult. In order to combat damping, the

sensor must be designed in such a way that the effects of damping are reduced or

measurements must be made using an alternate method that is more sensitive to the

51



desired analyte. Here we explore both of these options.

One strategy to try and overcome the high level of damping in a liquid is to

harvest some energy from the oncoming flow to make up for the energy lost to damp-

ing. Examples of this type of energy gain include vibration-based energy harvesters

[83, 84]. In some of these systems, the energy harvested from the flow reduces the

effective damping experienced by the harvester until it is negative, and sustained

motion ensues.

It is unclear if this type of energy harvesting is possible in an enclosed channel

on the micro-scale. Simulations of rotational galloping found in the literature do not

deal with high blockage ratios [81]. Additionally, inertial forces are small relative to

viscous forces, and thus flows are restricted to low Reynolds numbers. If we consider

a sensor in a square cross-section channel with dimensions on the order of tens of

micrometers, we can expect pressure losses to be calculated similarly to a macro-

scale system [79]. Using relevant micropump data [80] we can estimate the range of

practical Reynolds numbers and pressure losses for channels of different cross-sections

and lengths. For example, Figure 4.1 shows a plot of uniform velocity and pressure

drop over a 1 mm length channel for a micropump with a maximum flow rate of

4.4 mL/min [80]. The acceptable pressure drop in this case is 21 kPa, so we would

consider cross-sections larger than 100 µm by 100 µm. For these sorts of dimensions,

Reynolds numbers based on a 10 µm face dimension will only be on the order of

hundreds.
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Figure 4.1: Uniform velocity and pressure drop for a 1 mm channel
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4.3 Fluid System Simulations

To investigate the potential for energy harvesting, we consider two different sensor

geometries. The first geometry consists of a flat plate that pivots about its geometric

center with the pivot centered in the channel flow. Its largest face is parallel to the

upper and lower channel walls when there is no flow as shown in profile in Figure 4.2.

The channel considered is this case has H = 100 µm and W = 100 µm. The other

relevant dimensions are D = 10 µm and L = 40 µm. The second geometry is also a

flat plate, but its largest face is nominally at an angle of α to the upper and lower

walls. Its pivot point is offset far from the geometric center of the plate and is also

away from the center of the channel as shown in profile in Figure 4.3. The channel

considered has H = 75 µm and W = 150 µm. Here D = 10 µm, L = 90 µm, and the

angle α is 12◦. The surrounding channels are 600 µm long. These geometries were

selected as test cases because they are known to produce galloping-type instabilities

under certain flow conditions [85].

D

L

H

Figure 4.2: First system flow geometry

D

L

H

θ

Figure 4.3: Second system flow geometry

The plates were considered to be made of silicon with nominal properties of E =

150 GPa, G = 64 GPa, and ρs = 2330 kg/m3. The liquid was treated as water with

ρ = 998.2 kg/m3. The geometries of these sensors were generated in two forms for

simulation in ANSYS CFX. One version was essentially two dimensional, consisting
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of a mesh a single element thick, while the other contained the full system geometry,

including the plates meshed as solid bodies, and took advantage of the symmetry at

the channel midline. These systems were primarily meshed with tetrahedral elements.

A close-up view of the mesh around one of the bodies is shown in Figure 4.4.

Figure 4.4: Computational domain for FSI simulation

Initial solutions of this FSI problem were carried out by examining the system

in a quasi-static manner, evaluating the moments the fluid flow applied to the cross-

sections at various angles from their nominal positions. Later, using the built in

fluid-structure coupling in CFX, the models were simulated transiently with various

inlet flow velocities in order to ascertain the effect of increased flow speed on the

effective damping. The simulation was allowed to establish a steady-state condition,

and then the section was perturbed by an applied moment to a position between

5◦ and 10◦ away from the nominal position. Some time later the moment was then

removed. The recorded time series of the angular displacement θ (shown in Figure

4.3) for such cycles was then used to determine approximate values of the damping

and the damped-vibration frequency of the system, using either fractional overshoot

or logarithmic decrement techniques. Figure 4.5 shows a times series taken just after

a moment has been applied to the cross-section, demonstrating its underdamped

nature. Notice the decay envelope is not perfectly symmetric due to the fluid forces

involved.

The transient analyses conducted using our 3D models showed displacements that

are quickly damped in our two systems, with nominal damping coefficients ζ of ap-

proximately 0.2 and 0.18, respectively. As the flow rate is increased from zero flow

rate to a large (and likely unrealistic value) of 5 m/s, the reduction in these damping

coefficients is only about 10%.
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Figure 4.5: System response after a moment perturbation

4.4 Parameter Extraction

Whether the damping can truly be reduced via careful sensor design in order to take

advantage of the oncoming flow, the second part of our strategy remains the same:

measuring sensor changes using an alternate method, not based on frequency-shifts,

that is more sensitive. In order to explore this further, the fluid-structure models

previously discussed are recast as one degree of freedom (DOF) systems by making

use of the damping properties calculated from simulations. With damping coefficient

determined, each sensor can be modeled approximately as

ẍ+ bẋ+ ωn
2x = N(x, ẋ, t) , (4.1)

where ωn =

√

k

I
, (4.2)

and b = 2ζωn . (4.3)

The natural frequency is calculated by summing the moment of inertia of the section

I and some ‘added mass’ based on the entrained fluid. Details on ‘added mass’ can

be found in many hydrodynamics references [86]. N(x, ẋ, t) represents the overall

non-linear feedback force used to excite the system. By considering states of the form

x =





x1

x2



 =





x

ẋ/ω



 , (4.4)
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this system can be converted to a standard state space form ẋ = f(x, t) in order to

apply SVF methods.

4.5 SVF Theory

SVFs are a way to quantify attractor deformations. If two different systems with

initially coincident state space trajectories are compared, one system having a nominal

set of parameters and the other having some parametric variations, the trajectories

of these two systems will diverge over time. By sampling the diverged trajectories a

specified period of time ∆T after coincidence, a vector can be generated connecting

the sampled point on the nominal trajectory with the sampled point on the varied

trajectory. This is a sensitivity vector (SV). An SVF is a collection of SVs computed

over a system attractor for some parameter variation. This field characterizes how

the varied attractor deforms with respect to the nominal attractor.

This can be formalized mathematically by considering a state space flow described

by ẋ = f(x, p, t) where x is the state vector and p is the sensor readout, i.e. the

parameter of interest that can be perturbed. Using a Taylor series to expand this

flow about the nominal trajectory x(t) = xo(t) and a nominal parameter po one

obtains

δẋ = A(t)δx + B(t)δp , (4.5)

where A(t) =
δf

δx

∣

∣

∣

∣

∣

x=xo

p=po

, (4.6)

and B(t) =
δf

δp

∣

∣

∣

∣

∣

x=xo

p=po

, (4.7)

where only the linear terms are retained. Here δx is the state variation from the

nominal trajectory, and δp is the parameter variation from the nominal parameter.

Eq. (4.5) is valid as long as the discarded higher order terms remain small compared

to the first order terms. For linear systems, this is always true since Eq. (4.5) is exact,

and has no higher order terms. However, for nonlinear systems, both the parameter

variation and the state variation must remain much less than one for Eq. (4.5) to

hold. Thus, for nonlinear systems with specified initial variations there is a limit on

the evolution time for which Eq. (4.5) is appropriate. Integrating Eq. (4.5) over the

evolution time results in the equivalent map

δx(to + ∆T ) = Φ(to + ∆T, to)δx(to) + qδp, (4.8)
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where Φ, the state transition matrix for the dynamical system (sensor), depends only

on A(t), while q depends on both A(t) and B(t). For two trajectories which are truly

initially coincident, δx(to) = 0. Thus, any separation of the trajectories that develops

over the evolution time is equal to the sensitivity vector qδp. As long as the evolution

time is short (in order to ensure the resulting changes to system behavior are locally

linear with respect to the parameter variations) the sensitivity vectors will be linearly

dependent on the parameter variation. Consequently, a change in a given system

parameter will elicit a proportional change in the measured attractor deformation.

When examining attractor deformations, this proportionality serves as the basis for

quantifying parameter changes. Often, we refer to the normalized sensitivity vector

q, which is the sensitivity vector divided by the parameter variation. As normalized

sensitivity vectors are independent of the level of parameter variation, they can be

helpful in comparing results.

4.6 Feedback Design

The next question is how to maximize a system’s SVs. The overall sensitivity will

be effected by factors like the evolution time ∆T and the dynamics of the system.

However, by changing the system through feedback, it is also possible to augment

or amplify a system’s natural sensitivity. Choosing an appropriate N(x, ẋ, t) in Eq.

(4.1) has the effect of changing the system and thereby the sensitivity.

N(x, ẋ, t) in a real, physical system will be subject to some constraints. These

constraints might include limits on the range of motion or the amount of force the

controller can output. In this work, a limit is also placed on the attractor size since

SV magnitude is closely related to attractor size. Within such constraints, we would

like to design feedback to maximize a SVF.

Previous work by the authors helped to establish some basis for designing such

feedback by considering an N(x, ẋ, t) of the form

N(x, ẋ, t) = bcẋ− kcx− αcx
3 + A sinωt . (4.9)

With N(x, ẋ, t) specified, Eqs. (4.1) and (4.5) can be integrated simultaneously to find

SVs. Using this method, the advantages and disadvantages of chaotic and non-chaotic

regimes for generating SVFs with respect to parameter ωn for different evolution times

∆T and phases of the harmonic excitation were demonstrated in Chapter 2. We were

also able to optimize the control parameters in the fixed controller form given by Eq.
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(4.9).

However, having a controller of fixed form, especially one with a relatively low

number of polynomial terms, greatly reduces the possible distributions of feedback

force across the state space. For this reason, we examine feedback that is based on

control points distributed over the state space which can be interpolated with splines

to arrive at an overall feedback law. This arrangement allows for a feedback force

distribution that can take on a different variety of surface shapes than one based on

polynomials alone. We specifically consider the case where

N(x, ẋ, t) = R(x, ẋ) + A sinωt (4.10)

and R(x, ẋ) is given by a spline surface of forces distributed over the state space.

The form of R(x, ẋ) can be optimized by adjusting the force values at certain

control points. This form of feedback has been used in the past and proved a very

effective approach to maximizing average SV magnitude. When using spline force

surfaces for state feedback, almost all the initial parameter sets that we optimized

resulted in higher sensitivities than in the case of a polynomial force controller. Part

of this comparison is undoubtedly unfair since the polynomial controller has fewer

adjustable parameters with which to begin. Nonetheless, it seems clear in examining

the topology of optimized spline force surfaces, that this type of feedback surface

would be difficult to construct with a low number of polynomial terms. When the

constraint on the symmetry of the force surface is removed, even higher sensitivities

can be generated when all the other constraints remain fixed. This is somewhat

expected, since giving the optimizer more freedom in the parameter space should

result in improved solutions, but it does highlight how significantly the assumed

form of the controller function can effect its ability to provide the highest sensitivity

regimes. We also attempted to optimize sensitivity using a larger number of control

points to determine whether increasing the number of points could lead to large

improvements in sensitivity. When the number of points was doubled for the case

of the symmetric controller, this sometimes did not lead to significantly improved

sensitivities; however, in the case of greatest improvement the sensitivity roughly

doubled. Thus, we believe a more varied or "wavy" surface can sometimes yield

significantly higher sensitivity regimes.
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4.7 Application to Fluid Sensor Systems

The techniques in the section above are directly applicable to fluid sensor systems

once they have been reduced to 1 DOF, first-order state space systems as previously

outlined. As a specific example, consider the inclined plate geometry and x = θ. The

suitably transformed system will have values of b = 2.5 · 104s−2 and ωn = 6.4 · 104s−1.

Bounding the spline surface between ±1 · 108s−2 while considering several different

combinations of A and ω allows for the calculation of various optimal controllers.

Initial conditions for the spline surface were generated by dividing the total possible

range by five and assigning a certain level of feedback for each of nine control points

in a specified pattern or at random. One example of a specific pattern has all of the

inner points closest to the origin assigned one value (either positive or negative) and

all of the outer points farther from the origin assigned another value (again, either

positive or negative). The parameter of interest, to which we want to increase the

sensitivity, can be either I or ωn.

Results obtained while specifying ωn as the parameter of interest have shown

that, in some cases, the optimization can result in SV magnitudes improving several

times over the initial, pseudo-random feedback surface. In the best cases, we were

able to improve sensitivity tenfold. Almost all of the returned results are limit cycle

attractors; this is expected based on our previous work. However, these limit cycles

sometimes do not have the same period as the forcing harmonic due to the influence

of the spline surface feedback.

A larger set of optimizations was also conducted for the same system with com-

pletely random initial conditions selected on an interval centered on zero. Various

combinations of surface constraints and harmonic forcing magnitudes and frequencies

were explored. One hundred trials were carried out for each specific combination.

Depending on the case, the individual initial values were constrained to be between

ten and fifty percent of the allowable range. We saw much more diversity in the

resulting optimal attractors for this larger set of simulations, including some chaotic

attractors. Again, we found that sensitivity could be improved over the base value

by about ten times for cases which were already quite sensitive due to the forcing

frequency approaching the natural frequency.

Even greater sensitivity improvements are possible when either the spline surface

magnitude constraint is relaxed or a larger number of points are used to define the

surface. When the allowable magnitude is doubled, and for a driving frequency of

ωd = 6.0 · 104s−1, Table 4.1 lists the three greatest improvements in sensitivity over
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the initial values.

Table 4.1: Sensitivity improvements due to changes in surface constraints

Set Sensitivity Improvement Multiplier
1 21.7
2 11.6
3 11.3

Both chaotic and limit cycle cases are included in these attractors. Figures 4.6

and 4.7 show plots of two of the locally optimal surfaces and their attractors. If

instead of increasing the allowable moment, the number of points used to define the

surface is increased, sensitivity can also be greatly improved. In these cases, most

of the high sensitivities are generated by chaotic attractors. Table 4.2 lists the three

surfaces showing the greatest improvement in sensitivity over the initial conditions

and Figure 4.8 shows one of these high sensitivity surfaces and its attractor.
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xẋ

S
ca

le
d

 M
o

m
en

t

(a)

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

ẋ
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Figure 4.6: High sensitivity limit cycle attractor for the angled plate sensor

If we instead consider the parallel plate geometry, the suitably transformed system

will have values of b = 3.9 · 105s−2 and ωn = 9.8 · 104s−1. We bound the spline

surface as before and then consider simulations, again choosing completely random

initial conditions selected from an interval centered on zero and constrained to be

between ten and fifty percent of the overall constraint range. We can again generate

improvements in sensitivity that are several tens of times what was seen in the base

case.
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Figure 4.7: High sensitivity chaotic attractor for the angled plate sensor

Table 4.2: Sensitivity improvements due to a higher number of interpolation points

Set Sensitivity Improvement Multiplier
1 28
2 24.8
3 19.4
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ẋ

(b)

Figure 4.8: High sensitivity chaotic attractor based on a finer surface mesh
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4.8 Conclusions

We have demonstrated that for the low Reynolds number and high blockage ratio

regimes involved in enclosed micro-system channel flow, it is difficult to design a

geometry which will harvest energy from the oncoming flow and thereby reduce the

effective damping ratio. Work involving a fluctuating incoming flow shows that we

can generate motion in this case.

Using spline surfaces to define feedback forces over the state space and then opti-

mizing these surfaces in order to maximize SV magnitude was shown to be an effective

technique. We have illustrated how SVF techniques in conjunction with spline sur-

faces can be applied to our immersed sensors if they are modeled as simple 1 DOF

systems. We have also shown how this feedback can be optimized, leading to large

improvements in sensitivity. Thus, we have demonstrated that SVF techniques are

effective in improving sensitivity, and may allow sensing in highly damped environ-

ments where traditional frequency-shift methods are not an alternative.
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CHAPTER 5

System Augmentation and Modal

Analysis Techniques

5.1 Introduction

Identifying parameter variations in nonlinear systems is increasingly important. This

is true in traditional areas, such as structural health monitoring [1, 2], where the need

for reliable and easy to understand damage detection techniques only grows as engi-

neering systems become more and more complex. It is also true in non-traditional ar-

eas, such as in nonlinear micro-scale systems designed for microscopy or other sensing

tasks [87], where improved identification of parameter variations can result in better

device performance. Several different methods of identifying parameter variations

specific to nonlinear systems have been proposed recently, including auto-regressive

time series modeling [6], chaotic interrogation [17], and phase space warping [56].

However, these methods can have a high computational burden, require specialized

interrogation, or be difficult to interpret. Thus, the ability to use more traditional

modal analysis, which is well-established and easily understood, is desirable even for

nonlinear systems.

System augmentation [43, 47, 44, 45, 48, 88, 46] is one way of casting a nonlinear

system into a linear form so that modal analysis is applicable. For system augmen-

tation to be successful, a system model that includes the forms of any nonlinearities

must be available. Each nonlinearity in the system model can then be replaced with

a new, corresponding linear variable, and additional differential equations involving

the newly created variables can be added to the original system equations. The new

differential equations are forced in such a way that the evolution of each new variable

matches that of the respective nonlinearity being replaced in the original system. The

advantage in this new, augmented system is that it is linear, making modal analysis

applicable.
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Starting from time series of the states of the original system and any inputs, the

augmented variables and the augmented forcing can be computed via the equations

describing the augmentation. The state and forcing data of the entire augmented

system are then amenable to being analyzed using modal identification techniques,

such as direct system parameter identification (DSPI) [49, 50] and smooth orthogonal

decomposition (SOD) [51, 52]. Using the eigenvector information from the modal

analysis, system parameter variations can be computed via a number of different

techniques. In this work, generalized minimum rank perturbation theory (GMRPT)

[43, 48], which originated out of minimum rank perturbation theory (MRPT) [89], is

used to identify parameter variations.

Previous work on system augmentation and GMRPT is extended by showing that

system augmentation techniques are applicable to systems having a general, state

space form. In the past, system augmentation and GMRPT have only been applied

to systems that can be formulated as second-order structural systems having mass

and stiffness matrices. A particular formulation of SOD is also developed that can

be used to compute a system’s left-eigenvectors directly from its time series data.

This is an advantage because it simplifies the process of performing GMRPT. This

formulation of SOD also accounts for non-random excitations, which has not been

done before. Finally, this work considers a system where the nonlinearity takes the

form of a piecewise linear function. To deal with this type of nonlinearity, an alternate

form of augmentation is proposed that may be beneficial when system nonlinearities

are difficult or impossible to differentiate. All techniques are demonstrated using

both simulation and physical systems in the form of analog circuits. This allows the

reliability and effectiveness of system augmentation to be demonstrated in the context

of real, physical systems.

5.2 Methodology

This section outlines the procedure for determining parametric variations in a dy-

namical system cast in a state space form using system augmentation and GMRPT.

First, the general methodology of system augmentation is outlined. Second, the proce-

dure for generating eigenvalues and right eigenvectors using DSPI is briefly reviewed.

Third, the new procedure for generating left eigenvectors using SOD is presented. Fi-

nally, the basic steps involved in performing GMRPT to determine actual parameter

variations, along with methods to improve accuracy and reduce noise, are reviewed.
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5.2.1 System Augmentation

Certain types of nonlinear systems can be expressed in a state space form as

ẏ(t) = Asysy(t) + Asys∗f(y(t)) + Bsysv(t), (5.1)

where any system nonlinearities are contained within the f(y(t)) term. If each of the

nonlinearities is instead represented by a new state variable in the vector z(t), then

the system can be rewritten in augmented linear form as

ẏ(t) = Asysy(t) + Asys∗z(t) + Bsysv(t),

ż(t) = Aaugy(t) + Aaug∗z(t) + Baugw(t),
(5.2)

where Aaug and Aaug∗ are chosen by the user in forming the augmented system, and

w(t) is prescribed to ensure that z(t) = f(y(t)) for all t. Combining the states and

inputs so that

x(t) =





y(t)

z(t)



 , A =





Asys Asys∗

Aaug Aaug∗



 ,

u(t) =





v(t)

w(t)



 , B =





Bsys

Baug



 ,

(5.3)

the overall augmented system can then be written in the standard state space form

ẋ(t) = Ax(t) + Bu(t). (5.4)

This augmented system model is linear in the extended state x(t) and hence amenable

to modal analysis. A further example of the system augmentation process in the

context of a specific dynamical system is presented in Section 5.4.1.

5.2.2 DSPI: Right Eigenvectors

DSPI makes use of a discrete-time autoregressive moving average (ARMA) model of

a linear system to determine that system’s right eigenvectors. The ARMA model is
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given by

ẋ(t) = A1x(t− 1) + · · · + Apx(t− p)

+ B0u(t) + B1u(t− 1) + · · · + Bp−1u(t− p+ 1)

+ e(t).

(5.5)

Vector x(t) contains the measured states of the system, vector u(t) contains the

measured inputs to the system, and A1,A2, . . .Ap and B0,B1, . . .Bp−1 are sets of

discrete time correlation matrices with respect to the states and inputs, respectively.

Here p must be selected so that p times the number of measured states is greater

than or equal to the total number of states in the system. When all of the L sampled

time intervals for which equations having the form of Eq. (5.5) can be constructed

are considered, they can be grouped in the compact form

[

x(p+ 1) . . . x(p+ L)
]

= θΓ

+
[

e(p+ 1) . . . e(p+ L)
]

,
(5.6)

where θ is given by

θ =
[

A1 . . . Ap B0 . . . Bp−1

]

, (5.7)

and Γ is given by

Γ =











x(p) . . . x(p+ L− 1)
...

...

x(1) . . . x(L)











. (5.8)

Thus, using only the time series data in x(t) and u(t), the sets [A1,A2, . . .Ap] and

[B0,B1, . . .Bp−1] in θ can be computed by using the pseudo-inverse in the expression

θ =
[

x(p+ 1) . . . x(p+ L)
]

ΓT (ΓΓT )−1. (5.9)

From the set [A1,A2, . . .Ap] contained in θ it is then possible to compute the right
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eigenvectors of the system using the matrix

Θ =























A1 A2 . . . Ap−1 Ap

I 0 . . . 0 0

0 I . . . 0 0
...

...
...

...

0 0 . . . I 0























(5.10)

as is shown in detail in the literature [49, 50].

5.2.3 SOD: Left Eigenvectors

In the past, it has been difficult to calculate the left eigenvectors of a system for

use in GMRPT. Here we formulate a procedure by which a system’s left eigenvectors

can be computed using SOD. This procedure is new in that it allows for a known,

non-random input to the system. Such a non-random input is always present in

an augmented system due to the augmented forcing. The procedure is shown for a

system in state space form due to our focus on non-structural systems. However,

it is equally applicable to systems having the second order form more common to

structural dynamics. SOD considers the generalized eigenvalue problem

RΨΛT = SΨ, (5.11)

where Ψ is a square matrix containing eigenvectors as its columns, and Λ is a diagonal

matrix of eigenvalues. If the matrices R and S are chosen so that

R = xxT , (5.12)

S = x[DxT − uT BT ], (5.13)

where x is the extended state as given in Section 5.2.1 and D is a difference operator,

so that ẋ can be represented approximately by xDT , then the eigenvalue problem of

Eq. (5.11) can be rewritten as

xxT ΨΛT = x[DxT − uT BT ]Ψ (5.14)
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Since [DxT −uT BT ] = xT AT (compare with Eq. (5.4)), one can show that Eq. (5.11)

is equivalent to

ΨΛ = AT Ψ (5.15)

for this choice of R and S when xxT is invertible and well-conditioned. Since

Eq. (5.15) has the form of a standard left eigenvalue problem, this demonstrates

that by using the time series data of the states and the inputs to compute the expres-

sions in Eq. (5.12) and Eq. (5.13) and then solving the generalized eigenvalue problem

given by Eq. (5.11), the left eigenvectors of the system matrix A can be found.

5.2.4 GMRPT: Parameter Variations

To identify the locations and extent of any parameter variations that occur in a

system, GMRPT [43, 48] is utilized. For a system having the form of Eq. (5.4) and

no variations, the right and left eigenvalue problems can be stated as

VΛ − AV = 0, (5.16)

UΛ − AT U = 0, (5.17)

where Λ is the diagonal matrix of eigenvalues, and V and U are the right and left

eigenvector matrices, respectively. If one is able to generate a complete set of either

right or left eigenvectors and accompanying eigenvalues, then Eq. (5.16) or Eq. (5.17),

respectively, can be used to estimate A directly and identify any parameter varia-

tions that may occur. However, for many systems obtaining this type of complete

information is impossible and GMRPT or some other update method is necessary. If

the system parameters change so that the varied system matrix can be represented

as the original matrix A minus some variation δA, then the new eigenvalue problems

for the system are defined by

VdΛd − (A − δA)Vd = 0, (5.18)

UdΛd − (A − δA)T Ud = 0, (5.19)

where the subscript d implies that the eigenvalues and eigenvectors are associated

with the varied system. These equations can be rearranged to separate the variation

matrices δA so that

D = δAVd = VdΛd − AVd, (5.20)
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C = δAT Ud = UdΛd − AT Ud, (5.21)

where D and C are defined as the right and left variation matrices, respectively. As

Eq. (5.20) and Eq. (5.21) indicate, these variation matrices can be computed so long

as the parameters in the original system model A are known and some of the right

and left eigenvectors of the varied system are accessible. The number of right and

left eigenvectors that must be determined is equal to the rank of δA. Sections 5.2.2

and 5.2.3 demonstrate how this eigenvector information can be determined using the

state and input time series. The variation matrices D and C can then be used in the

equation

δA = D(CT Vd)−1CT (5.22)

to determine the system parameter variations, where the number of vectors included in

D and C is again equal to the rank of δA. Performance can sometimes be improved

by slightly modifying the procedure and including additional modes in D and C.

Subspace selection can then be employed, whereby only select parts of the eigenvector

space are used in estimating parameter changes; this is presented in more detail by

D’Souza et al. [48]. Noise reduction is also possible [53], although in this work we

found it to only be reliable with SOD; DSPI seemed to be less effective when paired

with the noise reduction algorithm.

5.3 Systems

To demonstrate the applicability of system augmentation techniques to general, non-

linear dynamical systems in state space form, three familiar systems that can be

physically represented by analog circuits were selected. The first of these systems is

the well-known Duffing oscillator, which is given by the equations

ẋ = y,

ẏ = −by − k1x− k3x
3 + γ sinωt,

(5.23)

where x and y are state variables, and γ, b, k1, k3, and ω are system parameters. This

system can be physically realized through the analog circuit [90] shown schematically

in Fig. 5.1 and as constructed in Fig. 5.2. The value of the components in this figure

are given in Table 5.1. The potentiometers labelled P1–P3 allow control of b, k1, and

k3, while γ and ω can be varied through the function generator responsible for the

input signal. In all of the circuits presented, the operational amplifiers (op-amps) are
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model TL082 and the multipliers are model AD633.

Figure 5.1: Schematic for an analog circuit realization of the Duffing oscillator.

The Rossler system is another familiar nonlinear dynamical system. Its equations

are given by

Ẋ = −Y − Z,

Ẏ = X + ARY,

Ż = BR +XZ − CRY.

(5.24)

This system can also be realized as an analog circuit, as shown schematically in

Fig. 5.3 and as constructed in Fig. 5.4. In this circuit, the system variables of

Eq. (5.24) have been halved (i.e. x = X/2, etc.) so that the voltages will lie within

±10V. The resulting equations are

ẋ = −y − z,

ẏ = x+ aRy,

ż = bR + 2z(x− cR),

(5.25)

where aR = AR, bR = BR/2, and cR = CR/2. The component values for this circuit

are shown in Table 5.2. The potentiometer Pa allows for adjustment of the parameter

aR, while bR and cR are controlled by adjusting input voltages. This is accomplished

through the use of potentiometers not shown in the circuit diagram.

The final system of interest is a jerk circuit proposed by Sprott [91, 92] and fully

developed in the form used in this work by Kiers et al. [93, 94]. This circuit has the
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Figure 5.2: The Duffing circuit as constructed in the laboratory.

Table 5.1: Duffing circuit component values

Component Value

R 10 kΩ
R1 100 kΩ
R2 10 kΩ
R3 100 kΩ
R4 100 kΩ
R5 100 kΩ
R6 10 kΩ
R7 100 kΩ
P1 1 kΩ pot
P2 1 kΩ pot
P3 1 kΩ pot
C1 10 nF
C2 10 nF
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Figure 5.3: Schematic for an analog circuit realization of the Rossler system.

Table 5.2: Rossler circuit component values

Component Value

R 10 kΩ
Pa 100 kΩ pot
C 100 nF
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Figure 5.4: The Rossler circuit as constructed in the laboratory.
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Figure 5.5: Schematic for an analog circuit realization of the general jerk system.

Table 5.3: Jerk circuit component values

Component Value

R 1 kΩ
R1 560 Ω
R2 5 kΩ pot
Rv 5 kΩ pot
C 1 µF

general state space form

ẋ = y,

ẏ = z,

ż = −AJz + y +DJ(x) − CJ ,

(5.26)

where x, y, and z are states representing the system position, velocity, and accelera-

tion, respectively, and AJ and CJ are parameters. DJ(x) is the system nonlinearity,

which can take on several forms depending on the kind of system in which one is

interested. For this work, the nonlinearity given by DJ(x) = BJmin(x, 0) [94] is con-

sidered, where BJ is a parameter. The general circuit can be constructed as shown

in the schematic of Fig. 5.5. The specific piecewise nonlinearity we have chosen to

use is shown in Fig. 5.6. The component listing for the circuit as a whole is given in

Table 5.3. Images of the physical circuit and its enclosure are presented in Fig. 5.7.
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Figure 5.6: An analog realization of the specific piecewise nonlinearity D(x) =
BJmin(x, 0).

(a) (b)

Figure 5.7: The jerk circuit and its enclosure as constructed in the laboratory.
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5.4 Results and Discussion

In this section, results generated using both simulation and experimental data are

discussed. An emphasis is placed on analyzing when good results can be expected

from GMRPT, and possible options to pursue when having difficulty with a given

system.

5.4.1 Example of the System Augmentation Process

To provide additional clarity regarding the system augmentation process outlined

in Section 5.2.1 a specific example of system augmentation is provided here for the

Rossler system. In the original system given by Eq. (5.24) the system nonlinearity

has the form xz. One can choose to replace this nonlinearity with the new variable s

given by

s , xz,

ṡ , ẋz + zż.
(5.27)

An equation that describes the evolution of s will then take the form

ṡ = a1x+ a2y + a3z + a4s+ g(t), (5.28)

where a1...4 are constants of the user’s choosing. For instance, a1 = −1, a2 = 10,a3 =

20, and a4 = −1 might be chosen. Equation (5.28) can be rearranged to read

g(t) = ṡ− a1x− a2y − a3z − a4s (5.29)

for use in calculating the prescribed forcing. Thus, as data is collected, it will be used

first in Eq. (5.27) to calculate the augmented variable s and its derivative ṡ. Then

it, in conjunction with the augmented variable, will be used in Eq. (5.28) to find the

augmented forcing g(t). All of this information can then be passed on for further

processing by an algorithm such as DSPI or SOD.

5.4.2 Simulation Data

In general, system augmentation in combination with GMRPT will work extremely

well for simulated systems, particularly when those simulations lack any noise. For

instance, in the Duffing system, where the nominal system parameters are given as

γ = 0.4, b = 0.5, k1 = −1, k3 = 1, and ω = 1, if k1 and k3 are allowed to independently

vary over some range, we can achieve results using GMRPT as shown in Table 5.4
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Table 5.4: Duffing simulation results for ∆k1

Actual ∆k1 ∆k1 via GMRPT

0 -0.005
0.05 0.058
0.10 0.110
0.15 0.158
0.20 0.209
0.25 0.273
0.30 0.329

and Table 5.5. Any system parameters which were not varied, with the exception of

the augmented ones (which are known to be zero), showed estimated changes of less

than 0.01. The one exception to this was in the case when ∆k1 = 0.3, when an error

of just less than 0.04 occurred. Here the data was collected for a time step of 0.01 and

5,000 samples were obtained. The augmentation is selected, without any particular

attempt at optimization, to have the form

s̈ = x− 5s+ g(t), (5.30)

with the augmented variable given by s = x3. Here g(t) is the augmented forcing,

which must be calculated at each time step. This calculation makes use of the sub-

space selection process for a single parameter variation. The reconstruction of the

parameter variations is very successful because one can find the left and right eigen-

vectors of the augmented system very accurately in the absence of noise. Note that

the accuracy in the absence of noise can be improved even further by reducing the

time step and increasing the number of samples.

Similar successful results are possible for all three of the systems, but here we

will dwell only on the jerk system because it offers the opportunity to present a

new methodology for augmenting a system. Typically, a system is augmented as

in Eq. (5.30), where the nonlinearity is replaced by a new variable (i.e., s). The

variable s and some differentiation of it (i.e., ṡ) are combined with components of

the extended state to construct the augmented equations. This works well, but poses

a problem if the system nonlinearities are difficult to differentiate. In the case of

the jerk system, where the nonlinearity is given by DJ(x) = BJmin(x, 0), we can

only differentiate once with respect to time in closed form. With other forms of

77



Table 5.5: Duffing simulation results for ∆k3

Actual ∆k3 ∆k3 via GMRPT

0 -0.005
-0.05 -0.050
-0.10 -0.094
-0.15 -0.145
-0.20 -0.194
-0.25 -0.243
-0.30 -0.290

nonlinearity, even a first differentiation may be impossible [48]. In the context of

the jerk system we therefore propose a new way of forming the augmentation that

is amenable to nonlinearities that are difficult to differentiate. Previously, the jerk

system may have been augmented using a set of equations such as the one given below

s , min(x, 0),

ṡ , ẋ/2 − sign(x1)ẋ/2,

ṡ = −x− y − z − s+ g(t).

(5.31)

However, the system can also be augmented by using a form such as

ṡ , min(x, 0) − αs,

s ,
∫

ṡdt,

ṡ = −x− y − z − s+ g(t),

(5.32)

where α is a parameter carefully chosen to ensure stability of the integration. The αs

term is included to keep the integration bounded in cases where the nonlinearity does

not switch signs, as is true here. There is little difference in results produced by these

two different augmentations in this case, but the idea is useful for nonlinearities that

are not differentiable. In the jerk system, the nominal system parameters are chosen

as AJ = 0.5, BJ = 6, and CJ = 0.5. If AJ and BJ are allowed to vary simultaneously

over some range, using GMRPT we can achieve the results shown in Table 5.6. Here

the data was collected for a time step of 0.01 and 5,000 samples were obtained as in

the previous cases.

These results show that two simultaneous parameter changes of somewhat different
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Table 5.6: Jerk simulation results for ∆A and ∆B

Actual ∆A Actual∆B ∆A via GMRPT ∆B via GMRPT

0 0 -0.011 0.026
0 0.25 0.002 0.259
0 0.5 0.000 0.500
0.1 0 0.058 0.031
0.1 0.25 0.071 0.245
0.1 0.5 0.142 0.516

magnitudes may be difficult to distinguish accurately using GMRPT, but overall the

method still works well. The accuracy of the results is primarily dependent on DSPI

and SOD computing the right and left eigenvectors of the system accurately, and,

secondarily, with the DSPI and SOD estimates agreeing with each other. This can be

compromised significantly by noise. In these investigations, if Gaussian white noise

was added to the systems with a signal to noise ratio of 1,000 or less, it became very

difficult to recover the parameter variations successfully.

5.4.3 Experimental Data

The Duffing circuit considered has the same nominal parameters and augmentation

as in the simulations (Section 5.4.2). For the circuit presented in Fig. 5.1, 160 Hz

is equivalent to ω = 1. Data is sampled at 100 kHz and over a million time points

are collected per set. This data is also low-pass filtered using a filter with a corner

frequency of 2000 Hz to remove the effects of high frequency noise. An example of

the time series data collected is shown in Fig. 5.8. As in the simulations, one of the

parameters is selected for variation and results such as those shown in Table 5.7 can

be generated. Here, the noise reduction technique [53] has been applied to the SOD

data in addition to using the appropriate subspace selection techniques.

Although these results are less accurate than the comparable values generated

using simulations, the trend of the changes is well captured by the estimates and the

individual estimates themselves are reasonable. The maximum error made in esti-

mating changes to other parameters that did not actually occur was 0.028, although

in most cases this value was much lower. In these results, as with most of the ex-

perimental work performed, GMRPT tended to perform poorly when the parameter

variations were small and improved when they were larger. This is expected, since
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Figure 5.8: An example of time series data collected from the Duffing circuit.

Table 5.7: Duffing circuit experimental results for ∆k3

Actual ∆k3 ∆k3 via GMRPT

0 -0.056
-0.05 -0.092
-0.10 -0.078
-0.125 -0.123
-0.15 -0.157
-0.175 -0.195
-0.20 -0.231
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Figure 5.9: Rossler circuit eigenvalues versus the parameter cR.

changes in the modal properties of the system for small changes in in the system itself

are of the order of the accuracy of determining the modal properties of the system.

The Rossler circuit presented challenges in generating good results experimentally.

The parameter ranges where we tried to predict parameter changes saw many bifurca-

tions between limit cycle and chaotic behavior. It also seemed difficult to accurately

capture all of the eigenvalues of the augmented system due to large differences in

the time scales involved in the system. Figure 5.9 shows that DSPI in particular can

struggle with making accurate eigenvalue predictions. In the figure, the � symbols

are used to represent the analytically calculated eigenvalues, the • symbols are used

to represent DSPI’s estimates, and the ∗ symbols are used to represent SOD’s esti-

mates. Due to these difficulties, we were unable to generate reliable results for this

system.

The jerk system, however, produced good results. An example of the time series

data collected is shown in Fig. 5.10. Some results are given in Table 5.8. Again,

most of the parameter values which were not changed showed relatively low error

in the form of false change predictions. Also, estimation generally improved as the

parameter change grew larger.
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Figure 5.10: An example of time series data collected from the jerk circuit.

Table 5.8: Jerk circuit experimental results for ∆AJ

Actual ∆AJ ∆AJ via GMRPT

0 -0.013
-0.041 -0.055
-0.071 -0.063
-0.106 -0.181
-0.125 -0.126
-0.167 -0.159
-0.190 -0.182
-0.214 -0.207
-0.241 -0.225
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5.5 Conclusions

We have shown that system augmentation in conjunction with GMRPT can be ap-

plied to general dynamical systems in state space form for the purpose of detecting

parameter variations. We have presented an alternate way of performing the actual

system augmentation that allows systems with non-differentiable nonlinearities that,

if integrated directly, would case drift, to be treated within the system augmentation

framework. We have also shown how SOD can be used to extract left-eigenvector

information from system time series data, which makes localization of parameter vari-

ations using GMRPT much easier. Our application of these methods to real physical

systems shows that these techniques are practical. System augmentation itself is a

reliable method for treating nonlinearities within a linear framework. In fact, when

all of the eigenvalues and eigenvectors in Eq. (5.16) or Eq. (5.17) are available, a full

reconstruction of A is often more accurate than GMRPT. This suggests that alter-

native methods of identifying the parameter variations may be desirable. GMRPT

seems sensitive to small disagreements between the left and right eigen-information

as generated by the two methods employed herein. Thus, if alternate techniques for

eigenvalue and eigenvector estimation or some way to reconcile the right and left

information could be developed, GMRPT would be that much more robust.
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CHAPTER 6

Conclusions and Future Work

This dissertation further develops several techniques for identifying parameter varia-

tions in nonlinear dynamical systems. Two overarching methodologies are presented:

SVFs in Chapters 2–4 and system augmentation in Chapter 5. In some ways, these

two methodologies approach the same problem from opposite tacks. Using SVFs, the

investigator seeks to exploit existing system nonlinearities (or perhaps introduce new

nonlinearities via feedback) in order to better examine changes in attractor geometry

and thereby determine any parameter variations. Using system augmentation, on the

other hand, the investigator seeks to recast a system having nonlinearities within a

larger, linear framework so that familiar tools from modal analysis are applicable and

any parameter variations are reflected in changes to the augmented system’s eigenval-

ues and eigenvectors. Rather than recapitulate some of the more specific conclusions

stated in the preceding chapters, the contributions of this dissertation are summarized

in Section 6.1. Section 6.2 outlines directions for future work.

6.1 Contributions

In general, the work presented in this dissertation develops the ideas of SVFs and

system augmentation into tools that can be used in real, physical systems. It does so

via the following contributions:

• In Chapter 2, a parametric study is presented which determines factors critical

to making the best use of SVFs in identifying parameter variations. Specif-

ically, it examines the impact the system dynamics, attractor characteristics,

and choices made in SVF construction (such as the length of time allowed for

trajectory divergence when generating SVs), have on the resulting SVF. The

simulation-based findings suggest that having chaotic dynamics is only helpful
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for generating optimal SVFs when the evolution time is long; for short evo-

lution times, limit cycle behavior can actually produce larger magnitude SVs.

However, these limit cycle SVs may be difficult to realize in a physical system

because of a lack of coincident states between data sets. This chapter also

explores the use of nonlinear feedback to alter a dynamical system in order

to maximize SVF sensitivity. Two forms of feedback, one of fixed polynomial

form and the other based on an interpolated spline surface, are implemented to

generate the feedback. They are both shown to be effective in improving SVF

sensitivity. However, the system attractors selected through feedback optimiza-

tion are often near bifurcation points or stability boundaries, where SVFs may

also be difficult to realize in physical systems.

• Chapter 3 presents a methodology for constructing SVFs in embedded coordi-

nates, which is important for using SVFs in physical systems. Previously, it

has only been possible to construct SVFs for a given dynamical system when

a full set of state variables is available. This severely restricts SVF applica-

bility because it may be cost prohibitive, or even impossible, to measure the

entire state of high-dimensional systems. Thus, Chapter 3 presents a method

for constructing SVFs with only partial state information by using time-delay

coordinate embeddings. Local models are employed in which the embedded

states of a neighborhood are weighted in a novel way referred to as embedded

point cloud averaging. Application of the methodology to both simulated and

experimental time series prove its utility and reliability.

• The ultimate goal in developing SVFs is that they would find use in practical

systems and devices. In Chapter 4, initial steps towards realizing this goal using

a fluidic micro-sensor are outlined. Two designs for an immersed micro-plate

that would vibrate rotationally about an axis as fluid flows past it in a micro-

channel are presented. Fluid-structure interaction simulations established that

these architectures would not experience sustained vibration from the excitation

provided by the fluid flow alone. However, despite the fact that the system as

designed would have limited effectiveness as a sensor, it provided a test case to

which the feedback optimization techniques of Chapter 2 could be applied.

• Chapter 5 extends past work on system augmentation by demonstrating how

left eigenvectors can be extracted from time series data using smooth orthogo-

nal decomposition (SOD). This enables generalized minimum rank perturbation
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theory (GMRPT) to be more easily applied to non-symmetric systems. Addi-

tionally, a new approach to generating the augmented variables is proposed

that may be advantageous when dealing with systems whose nonlinearities are

non-differentiable. For the first time, system augmentation is performed ex-

perimentally by using a variety of nonlinear circuits. Experimental results,

along with results from simulations, demonstrate that the system augmenta-

tion methodology is effective.

6.2 Future Work

The following are suggested areas for continuing research into SVFs and system aug-

mentation:

• One of the drawbacks of current SVF techniques is their requirement of co-

incident states between data sets that can serve as the initial conditions for

diverging trajectories. In many instances, there are no such states. This draw-

back can, to some extent, be alleviated by local modeling (such as was carried

out in constructing SVFs in coordinate embeddings). However, even in the

case of chaotic dynamics, the power of local modeling is limited and as a re-

sult some portion of the attractor will remain unsuitable for generating SVs.

This problem is exacerbated for other types of attractors, such as limit cycles,

where, depending on the parameter variation of interest, it may be impossible

to construct any SVs at all. For this reason, a method that examines attractor

deformation geometrically, independent of the precise states of the nominal and

varied data sets, would be beneficial. Only one prior work [95] has taken this

approach by looking at how the moments of groups of data points belonging to

a Poincaré section change with system parameter variations. It seems plausible

that by coupling image processing and pattern recognition techniques [96] with

small numbers of representative points from the dynamical system’s trajecto-

ries, it may be possible to divorce measurements of attractor deformation from

any requirement on the existence of matched states between the data sets of

interest.

• Another characteristic of SVFs, which is undoubtedly a strength when detecting

multiple simultaneous variations, is that they are fields composed of many vec-

tors. However, this characteristic can also be a weakness because it means that

a choice must be made when adjusting feedback or available system parameters
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to optimize SVFs. Is the optimization designed to maximize the sensitivity of

the SVs on average? Some fraction of the best performing SVs? Only the best

SV? In many circumstances, not all of the information the SVF provides may be

needed. Instead, more frequent updates of the best performing SVs might be of

interest. Acquiring this type of information may be possible by using targeting

control [60, 61] in conjunction with SVFs to repeatedly visit only the regions of

state space critical for generating the selected SVs.

• System augmentation as presented herein is an effective methodology. However,

it relies on having knowledge of the entire state. If there were a way to achieve

system augmentation with limited knowledge of the state, either through some

type of state estimation or via time-delay embedded coordinates, this method-

ology could be applied to even more systems. Determining how best to work

with limited state data in the context of system augmentation is an area of

potential exploration.

• System augmentation has been successfully used with circuits to experimen-

tally determine parameter changes. It is an open question how well this success

translates to electro-mechanical systems, such as vibrating beams instrumented

with piezoelectric devices, where noise levels may be higher and multiple modes

of vibration may interact. Further investigation in this vein could extend to

other coupled systems involving multi-physics, such as those with fluid or elec-

tromagnetic forces.
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