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ABSTRACT

This thesis studies how Natural Language Processing techniques can be used to

mine multiple perspectives from textual data. The first part of the thesis focuses on

analyzing the text exchanged by people who participate in discussions on social media

sites. We particularly focus on threaded discussions that discuss ideological and

political topics. The goal is to identify the different viewpoints that the discussants

have with respect to the discussion topic. We use subjectivity and sentiment analysis

techniques to identify the attitudes that the participants carry toward one another

and toward the different aspects of the discussion topic. This involves identifying

opinion expressions and their polarities and identifying the targets of opinion. We

use this information to represent discussions in one of two representations: discussant

attitude vectors or signed attitude networks. We use data mining and network analysis

techniques to analyze these representations to detect rifts in discussion groups and

study how the discussants split into subgroups with contrasting opinions.

In the second part of the thesis, we use linguistic analysis to mine scholars’ per-

spectives from scientific literature through the lens of citations. We analyze the text

adjacent to reference anchors in scientific articles as a means to identify researchers’

viewpoints toward previously published work. We propose methods for identifying,

extracting, and cleaning citation text. We analyze this text to identify the pur-

pose (author’s intention) and polarity (author’s sentiment) of citation. Finally, we

present several applications that can benefit from this analysis such as generating

xiv



multi-perspective summaries of scientific articles and predicting future prominence

of publications.
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CHAPTER I

Introduction

”I show two versions of reality and each makes complete sense to the par-

ticipant who sees it. I think that’s how life works.”

- Bill Watterson

A popular old Indian legend tells the story of six blind men who were asked to

determine what an elephant looks like by feeling different parts of its body. Each

man described the elephant from his own perspective and based on his personal

experience. The blind man who feels a leg says the elephant is like a pillar; the one

who feels the tail says the elephant is like a rope; the one who feels the trunk says

the elephant is like a tree branch; etc. This story is not just a wisdom story. It is an

eloquent, concise description of how life works. Reality is multi-faceted and different

people may see it differently when they look from different perspectives. This is

why there are different ideologies, different cultures, different religions, and different

approaches to solving problems and answering research questions. This pluralism

in views, beliefs, and opinions can be observed everywhere: in family and friends

conversations, in professional and business meetings, in parliaments, in conferences,

in publications, in online discussions and dialogs, and everywhere.

The wide spread of the internet and the revolutionary growth of the world wide

1
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web facilitated access to information and increased the interaction among people.

Social media sites are nowadays among the most visited sites on the internet. These

sites allow users to post and share content with others. Examples of such sites in-

clude discussion forums, blogs, social networks, and instant messaging applications.

Today’s technologies gave people more opportunities than ever before to communi-

cate, interact with each others, and express their opinions towards everything. This

resulted in a huge influx of opinion-rich text being available online. Here is where

Natural Language Processing techniques come into play by providing tools to analyze

and mine this text. This analysis allows for a better understanding of how people

see things from different perspectives and how they behave and what language they

use when they communicate with one another.

Scientific research is another domain where the fact that reality is multi-faceted

manifests itself. The same research question may be approached in several different

ways by different scholars. Different scholars may also address different aspects of one

research problem where every scholar focuses on the aspect that looks more impor-

tant or more interesting from his or her perspective. In addition, when researchers

describe a piece of related prior work, they usually focus on different aspects of

it. One researcher may describe the problem it addresses; another researcher may

summarize its methodology; a third researcher may discuss its results or criticize its

limitations, and so on.

Identifying and analyzing the different viewpoints is useful for many applications.

For example, decision makers in governments and political entities need to know how

the public opinion reacts to their decisions; funding agencies need to measure how

successful their funded projects are; companies need to know what their customers

think about their products; hiring committees at universities and research institu-
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tions need to quantitatively and qualitatively evaluate the impact of a researcher’s

work, and so on.

The main focus of this dissertation is on using linguistic analysis techniques to

identify, analyze, and summarize multiple viewpoints from textual data. We apply

our analysis to two different domains: social media and scientific literature. In the

rest of this chapter we give some background about the problem and a brief overview

of the thesis and its contributions.

1.1 Multi-Perspectivism and Language

It is our needs that interpret the world; our drives and their For and

Against. Every drive is a kind of lust to rule; each one has its perspec-

tive that it would like to compel all the other drives to accept as a norm.

Friedrich Nietzsche

A perspective or a viewpoint, in the context of cognition, is a mental view of

situations and facts, and judging their relative importance.1 Friedrich Nietzsche, a

German philosopher, developed the theory of Perspectivism which states that all

idea generation processes take place from particular perspectives. This means that

there are several possible conceptual schemes in which judgment of truth can be

made. This in turn implies that no way of seeing the world can be taken as an

absolute truth. Schacht [169] expanded the ideas of Nietzsche into a revised form

of “objectivity” in relation to “subjectivity”. These theories were the foundations

for many studies about Multi-Perspectivism and subjectivity in the Philosophy and

Psychology literatures [151, 82, 81].

And because language is the medium that humans use to communicate and ex-

1http://www.thefreedictionary.com/perspective
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press their beliefs and opinions, many researchers studied Multi-Perspectivism and

subjectivity from a linguistic point-of-view [50, 192, 59, 46, 171]. For example, Ban-

field [27] studied the sentences that reflect a character’s psychological point of view

(subjective sentences), in contrast to sentences that objectively narrate events or

describe facts. Psycholinguistic is a field of science that studies the impact of cog-

nitive and psychological factors on the use of language. Sociolinguistics is a field

that studies the relationship between social and cultural norms, expectations, and

contexts on the use of language. The research that has been done in these two areas

show that the mental status and the social context affect the way the language is

comprehended and used. This includes the choice of language units such as words

and phrases, the composition of sentences and their grammaticality, the structure of

arguments, etc.

In the Natural Language Processing (NLP) and the Information Retrieval (IR)

fields, subjectivity and sentiment analysis and opinion mining studies are essentially

based on the ideas of Multi-Perspectivism and the findings of the psycholinguistics

and sociolinguistics research. For example, Wiebe [200] used the ideas of Banfield

about subjectivity and the concept of private states, defined by Quirk et al. [158]

as states that are not open to objective observation or verification, to track the

psychological point of view in third-person fictional narrative text. She developed

an algorithm that looks for narrative regularities in the ways that authors manip-

ulate point of view. The algorithm tracks the viewpoints of the characters that

appear in text based on the regularities found. Greene [66] studied text that reveals

perspectives that are not necessarily expressed in overt expressions of opinion. He

conducted psycholinguistic experiments to guide and support his work on identifying

perspectives and implicit sentiment.
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Multi-Perspectivity was also studied in the context of building question answering

systems for opinion-based questions. In 2002, Wiebe and her colleagues held a two

month long workshop about multi-perspective question answering. The participants

in the workshop studied how opinions are expressed in language. They developed

annotation instructions for identifying expressions of opinion in text. They used

this annotation scheme to manually annotate a corpus of news articles for opinion,

the MPQA corpus. This work was the basis for a lot of work in multi-perspective

question answering and other sentiment analysis and opinion mining applications.

Several other studies focused on the language used by scholars to express their

viewpoints toward prior and related work [120, 186, 216, 93, 32]. For example,

Thompson and Ye Yiyun [186] examined academic papers to identify which kinds of

reporting verbs are used in citations as a basis for developing material for teaching

scientific writing skills to non-native-speakers. MacRoberts and MacRoberts [120]

studied the language used in negational references (i.e. negative citations).

This thesis builds on top of these efforts by applying the concepts of Perspectivism

and subjectivity to social media and scientific literature.

1.2 Multiple Perspectives in Social Media

The first part of the thesis focuses on developing NLP and network analysis tech-

niques for mining multiple perspectives from social media. The term Social Media

refers to “a group of Internet-based applications that build on the ideological and

technological foundations of Web 2.0, and that allow the creation and exchange of

user-generated content”[99]. The data published and shared on these sites is huge

in volume, increases at very high rates, and is very diverse. Although the content of

social media sites is in all kinds of formats: text, images, audio, video, animation,
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etc., text is still the most prevalent format and the most common way of communi-

cation and interaction among users. In this part of the thesis, we analyze the text

that the users of social media sites exchange when they communicate online.

We are particularity interested in threaded discussions that discuss controversial

topics. Our research attempts to answer several questions like: How do people use

language to express their viewpoints? What language constructs do they use to

show agreement or disagreement? What makes a group of discussants split into

subgroups and how does this affect the language they use for communication? How

can linguistic analysis be applied to detect or even predict rifts in groups? How

do people influence each others’ opinions? and so on. Answering these questions is

useful for a broad spectrum of applications in marketing, economics, politics, and

social studies.

We start by studying the characteristics of online discussions. We use a large

corpus of labeled discussion threads to analyze the behavior of discussants and the

language they use in online dialogs. We use the knowledge gained from this anal-

ysis to develop methods for detecting subjective text and identifying the explicit

and implicit attitudes expressed in it. We represent the attitude expressed by the

discussants in two formal representations: a signed attitude network and a space of

attitude vectors (attitude profiles). These formal representations are then used for

higher levels of analysis of the discussion such as detecting subgroups, identifying

influential participants, measuring how disputed a topic is, etc.

1.3 Multiple Perspectives in Scientific Literature

In the scientific literature domain, we study the multiple viewpoints of scholars

towards prior work through the lens of citations. We analyze the text that appears
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around citations in scientific articles. This work seeks to answer questions like: for

what purposes do researchers cite previous work? How does the purpose of citing a

publication changes over time? How do researchers express their viewpoints towards

published research? Can we do some form of sentiment analysis of citation text to

distinguish between positive, negative, and neutral citations?

Answering such questions is important for several applications such as summariz-

ing a published article from the viewpoints of expert researchers, generating multi-

perspective surveys of research topics, evaluating the impact of a researcher’s work,

identifying controversial scientific arguments, predicting which papers will have more

impact and receive more citations than others, etc.

In this part of the thesis, we address the problem of identifying and analyzing

citation text. This involves identifying text fragments that contain explicit refer-

ences to other papers and the context and the scope of each reference. We use the

term citation context to refer to the text in a scientific article that appear around

an explicit reference and talk about it. We use the term reference scope to refer to

the fragments of sentences that talk about a reference in citing sentences that cite

multiple references. We analyze citation text to identify the author intention behind

citing another paper and whether the citation is polarized (i.e. carries a non-neutral

sentiment towards the cited work). We use this analysis of citation purpose and po-

larity to predict the future prominence of papers. We also show how this analysis can

lead to more accurate and more informative bibliometric measures. We also present

a method for producing citation-based summaries of scientific articles summarized

from the viewpoints of the other scholars who read the paper and cited it. Although

several methods have been advised for this problem, our method is uniquely char-

acterized by focusing on the coherence and readability of summaries generated from
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citation text.

1.4 Summary of Contributions

The contributions of this thesis are:

1. An analysis of online discussions that focuses on the behavior of discussants and

the language they use when they interact and communicate online. The analysis

uses a dataset of discussion threads comprising 1 million posts in more than

16,000 disputed topics. The dataset was collected from a debating site called

createdebate 2. To our knowledge this is the first time this dataset is analyzed

and used in research. The dataset is different from other similar datasets in

being self-labeled (by the discussants themselves) for agreement, stances, and

influence. This make it a reliable source for understanding the relation between

opinion and language.

2. A framework for processing threaded discussions and mining them for multi-

ple viewpoints. We propose a pipeline of linguistic analysis components for

identifying attitudes, topics, and attitude targets and for building formal rep-

resentations of discussant attitudes.

3. An approach for identifying the polarity of out-of-vocabulary (OOV) words.

OOV words are common in the text used on social media sites. Our method

is an extension of an existing algorithm that uses random walk on a semantic

graph extracted from Wordnet to identify word polarity [76]. Our method uses

co-occurrence statistics computed from a large corpus of social text to augment

the semantic graph with OOV words. We show that restricting the computation

of co-occurrence statistics to social text (e.g. tweets) leads to significantly better

2createdebate.com
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performance than using general text corpora. We also show that combining

corpus-based and random walk based methods lead to better performance in

identifying word polarity than using corpus statistics alone.

4. A method for identifying the targets of attitude in ideological and political

discussions and a method for encoding this information in a formal way. We

propose two representations of discussants’ attitudes: in the form of a signed

attitude network and in the form of a space of attitude vectors (which we term

discussant attitude profiles)

5. An approach for detecting opinion subgroups in discussions. The approach uses

the aforementioned framework to mine attitudes from discussions and build

formal representation of them. Data mining and network analysis methods

are then used to study how the group of discussants split into subgroups with

respect to the discussion topic.

6. An approach for extracting and cleaning citation text from academic articles.

This includes identifying reference anchors and identifying the scope and the

related context of each reference.

7. An approach for identifying the purpose and polarity of citation. Citation pur-

pose refers to the author’s intention behind citing a piece of previous work. For

example, previous work might by cited in the context of comparing it to a new

method or to declare that the new work is based on or inspired by that previous

work, etc. Citation polarity refers to whether the citation indicates positive,

negative, or neutral sentiment from the author towards the cited work.

8. A method for producing multi-perspective, citation-based summaries of scien-

tific papers. This method is different from previous methods in that it focuses
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on producing coherent and readable summaries.

1.5 Thesis Outline

The thesis falls in two parts. The first part studies the problem of mining multiple

perspectives from multi-party discussions that take place on the internet. This part

is based on the work published in [15, 8, 12, 16, 9]. This part is organized as follows:

Chapter II is an introduction to the first part. The aim of this introduction is to

give background about social media analysis and motivate why we are interested in

studying multiple perspectives in discussions. The definitions of the terms used and

the problems addressed in the first part of the thesis are also presented in this chapter.

The introduction chapter also reviews the related work. Chapters III - V present our

approach to analyzing threaded discussions and identifying multiple viewpoints. The

approach involves several tasks such as identifying the opinion expressions [77, 74]

(Chapter III), handling negation [12] (Chapter IV), identifying the candidate targets

of opinion (Chapter V), and associating each opinion expression with its target [15].

In Chapter VI, we show how our framework for identifying opinions in discussions

can be used to detect rifts in discussion groups which lead to their split into smaller

subgroups with contrasting views [15].

The second part studies the problem of mining multiple viewpoints form scientific

literature. This part is based on the work published in [10, 13, 159, 13]. Chapter VII

presents the motivations and defines the research problems. Chapters VIII - IX

present the approach. The approach involves several processing tasks such as refer-

ence tagging [10], reference scope identification [13], and citation purpose and polarity

classification [7]. Chapters X -XI present some useful applications. These applica-

tions include summarizing multiple viewpoints and predicting the future prominence
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of papers [10, 159].

Chapter XII concludes the dissertation and summarizes the contributions. Chap-

ter XIII suggests directions for future work.



Part I. Mining Multiple Perspectives from Social Media

CHAPTER II

Introduction

The revolutionary growth of the world wide web made the communication among

people easier than ever before. Websites that allow people to communicate and talk

about topics of shared interest are common. Social networking sites are nowadays the

most visited and used sites on the internet. These sites allow users to communicate

not only with their personal acquaintances or friends, but also with a vast pool of

random people from different locations and different backgrounds. More and more

people today are making their information and their opinions available publicly on

the internet in the form of blog posts, status updates on social networking sites, posts

on discussion forums, etc. The abundance of opinions and the ease of communication

lead to lots of discussions among the members of social media sites. Members of these

sites discuss all kinds of topics including politics, ideologies, social causes, religions,

and scientific arguments. In such discussions it is quite natural to see instances

of agreement and disagreement among discussants. For example, the following two

snippets are taken from a discussion forum:

12
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(1) The Global Warming theory is nonsense. What we’ve been experiencing

over the past decade or so is part of a natural cycle that will be reversed in

the near future.

(2) I disagree with you. The theory is true and global warming is happening.

According to an estimate, after 10 years from now, people will be using skin

protectors and temperature controller devices in their homes.

The two snippets discuss a controversial topic, Global Warming. The writer of

(1) adopts the viewpoint that rejects the theory of global warming and sees it as a

normal phase of the natural cycle. The writer of (2) adopts an opposing viewpoint

and expresses an explicit disagreement with the writer of (1).

This part of the dissertation is interested in analyzing this kind of discussion where

discussants may have different viewpoints with respect to the discussed topic. We

particularly focus on threaded discussions in which user comments are grouped in a

hierarchy originating from a root post.

In this chapter, we briefly review the previous work that has been done on this

problem. A more detailed review of the previous work related to each subtask will

be presented in the chapter that discusses each task. Next, we define the terms used

and the problems addressed in this part of the thesis. As a case study, we present an

analysis of one large corpus of discussion threads crawled from a discussion forum. We

end this chapter with an example that illustrates the entire approach to identifying

and representing discussants’ viewpoints.

2.1 Related Work

This part of the thesis is related to a large body of research in the areas of

sentiment analysis and opinion mining. Pang & Lee [145] and Liu and Zhang [116]
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wrote two recent comprehensive surveys about sentiment analysis and opinion mining

techniques and applications. As we mentioned in Chapter I, all the work in these

two areas is based on the idea of subjectivity which has been introduced first by

philosophy scholars and then studied by psycholinguistic and sociolinguistic scholars.

The first task in opinion mining is subjectivity analysis. The goal of subjectivity

analysis is to distinguish between text that expresses opinion and objective text that

presents factual information. Previous work proposed methods for identifying cue

words that indicate subjectivity [197, 79, 26]. Other studies focused on context-

aware subjectivity analysis where the subjectivity of the text is determined after

taking the context into account [166, 211, 144, 149]. Wiebe et al. [198] list a number

of applications of subjectivity analysis such as classifying emails and mining product

and movie reviews.

The second task after identifying subjective text is to identify the polarity (or the

semantic orientation) of subjective text. The polarity of a word indicates the direc-

tion the word deviates to from the norm for its semantic group or lexical field [111].

Polarized words can be either positive, to express a desired state; or negative, to ex-

press an undesired state. Several methods have been proposed for building polarity

lexicons. Most of these methods start with a set of seed polarized words and use

them to determine the polarity of other words in a bootstrapping fashion. There

are two main categories of approaches to perform this bootstrapping, dictionary-

based approaches [97, 129, 90, 56, 58, 102, 22, 132, 193, 98, 76] and corpus-based

approaches [78, 190, 193, 98, 181]. Dictionary based methods start with a small set

of seed labeled words and grow this set by searching a thesaurus for the synonyms

and antonyms of the seed words. A synonym to a seed word is assigned the same

polarity as the seed word and an antonym to a seed word is assigned the opposite
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polarity. The newly labeled words then get added to the seed set and the boot-

strapping continues. Corpus-based methods use co-occurrence statistics in a large

corpus of text (e.g. the web) to determine the relatedness of every unlabeled word

to two sets of labeled words, one containing positive words and the other containing

negative words. An unlabeled word is assigned the label of the set it is more related

to.

The next task in opinion mining is to identify sentence level polarities. The objec-

tive here is to determine if a sentence is subjective or objective and if it is subjective

determine whether it expresses positive, negative, or neutral opinion. Previous work

addressed this problem as a supervised classification task in which a classification

model is trained using lexical, syntactic, and dependency features extracted from a

labeled dataset [80, 75, 165, 167].

All the aforementioned work focused on identifying opinion-bearing text. Other

research efforts focused on identifying the holders and the targets of opinion [212,

150, 126, 29]. In most applications, the holder of opinion is often the author of

the text such as the author of a blog post or the author of a product review. The

target of opinion can be a product, a feature of a product, a service, a named entity,

a topic, etc. Most of the methods proposed for opinion target identification start

by finding named entities and frequent noun phrases and treating them as potential

targets of opinion. The relation between a potential target and an opinion expression

that appears close to it is determined based on the syntactic structures and the

dependency relations that connect them.

This analysis of opinion expression, their holder, and their targets is useful for

many applications. One example of such applications is identifying viewpoints and

perspectives [67, 113, 114, 110]. For example, in [114], the authors experiment with



16

several supervised and statistical models to capture how perspectives are expressed

at the document and the sentence levels. Laver et al. [110] proposed a method for

extracting perspectives from political texts. They used their method to estimate the

policy positions of political parties in Britain and Ireland, on both economic and

social policy dimensions. Other research efforts addressed the problem of summariz-

ing viewpoints [214, 187, 179, 172, 148]. For example, Zhuang et al. [214] and Titov

& McDonald [187] addressed the problem of summarizing product reviews. Paul et

al. [148] proposed an extension of the LexRank summarization algorithm to make it

capable of summarizing contrastive viewpoints in opinionated texts.

This was a brief overview of the related work. Each chapter will include a related

work section that presents a more detailed and more specific review of the prior work

done on the task discussed in the chapter.

2.2 Definitions

The beginning of wisdom is the definition of terms

–Socrates

In this section, we define the terms used in the first part of the thesis:

• Social media: the means of interactions among people in which they create,

share, and exchange information and ideas in virtual communities and net-

works [19]. Examples include social networking sites such as Facebook, photo

sharing sites such as Picasa, video sharing sites such as Youtube, etc. In this

thesis we focus on social media sites that allow the users to engage in threaded

discussions.

• Discussion: the consideration of a question in open and usually informal de-
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bate 1. Our focus in this thesis is on discussions that take place on social media

sites and discuss ideological and political topics. Such discussions usually start

by a person asking a question or expressing an opinion on a discussion forum,

or posting a blog post on this personal blog. Those who are interested in the

topic comment on the post and on each others.

• Threaded discussion: a common way of structuring and presenting discussions

in social media sites. A threaded discussion consists of a set of posts grouped in

a tree-like structure. The thread usually originates from a root post posted by

one of the participants. Other participants read that post and add comments

if they are interested in the topic. Other members can also comment on others’

comments. The result is a tree of posts rooted at the first post.

• Post: a piece of text (could also contain other media types) written by one of

the discussants. A discussion thread consists of a hierarchy of posts. The first

post in a discussion thread is termed the root post. We also refer to the post

that is a response to a previous post as comment.

• Attitude: the way a person views something or tends to behave towards it, often

in an evaluative way.2 Participants in discussions express their attitudes explic-

itly or implicitly towards one another and towards aspects of the topic being

discussed. For example, the sentence “I like your brilliant ideas” is expresses

positive attitude from its writer to its recipient. Similarly, the sentence “I hate

school uniforms” expresses negative attitude towards school uniforms.

• Opinion expression: a piece of text (a word, an acronym, a phrase, etc.) that

expresses a subjective belief that is the result of emotions or interpretation of

1http://www.merriam-webster.com/dictionary/discussion
2http://dictionary.reference.com/browse/attitude
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facts. Opinion expressions can be positive, indicating agreement, praise, or ad-

miration (e.g. like, love, agree, good, etc.) or negative indicating disagreement,

insult, or dislike (e.g. hate, disagree, bad, etc.).

• Out-of-Vocabulary word: is a word that cannot be found in the standard dic-

tionaries of the language and is not a proper name. These words could be

colloquial words, acronyms, or misspelled words. OOV words are common in

online discussions and many of them are used in subjective contexts (e.g. using

gr8 to mean great). Handling OOV words is important for opinion mining and

sentiment analysis. This thesis proposes a method for identifying the polarity

of OOV words.

• Attitude/opinion target: the object that the attitude holder is expressing atti-

tude towards. An attitude target can be another discussant, an entity mentioned

in the discussion, or an aspect of the discussed topic. For example, in “illegal

immigration is bad for the economy”, illegal immigration is the target of the

opinion expression bad. Similarity, in “I agree with you”, the recipient of this

sentence (referred to by the pronoun you) is the target of the opinion expression

agree.

• Subgroup: a subdivision of a group of discussants. The members of a subgroup

share similar opinion with respect to the discussion topic. For example, in a

discussion about a topic like the health care reform, the group of discussants

may split into two subgroups, one that argue in support of the proposed reform

and an opposing one that argues against the proposed reform.
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Number of threads 14,308

Number of posts 178,317

Number of sentences 983,800

Number of participants 9,743

Average number posts per thread 12.4

Average number of sentences per post 5.51

Average number of participants per thread 6.5

Average number of subgroups per thread 2.24

Percentage of “dispute” comments 35.5%

Percentage of “support” comments 18.8%

Percentage of “neutral” comments 45.7

Table 2.1: Statistics of the Createdebate corpus

2.3 The Discussion Genre

The goal of this section is to study how the participants of in online discussions

interact and express their opinions from a linguistic and a behavioral points of view.

We use a large corpus of discussions crawled from a discussion forum called Creat-

edebate3. Table 2.1 shows some statistics of the data set. The data set we used

contains all the discussion threads posted on the web site since it started till January

of 2012. Createdebate is a web site that allows its users to start discussions (debates)

about any topic. The discussions cover a broad spectrum of topics such as Abortion,

Elections, Religions, Politics, Human Rights, Economy, etc.

Each discussion thread starts with a question or an argument posted by one of

the site users. The initiator of the discussion suggests two or more viewpoints for the

other users to select from and support. The users can add more viewpoints. Users

who participate in the discussion must explicitly declare their viewpoints by selecting

from the list of viewpoints or add a new item to the list if they have a new viewpoint.

Participants can post in response to the initial post (the root of the thread) or

comment on each others posts. When participants comment on posts written by other

3http://www.createdebate.com
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participants, they can explicitly declare whether they are commenting to dispute or

to support the post they are commenting on. Moreover, the discussants can rate each

others posts for the strength and the degree of persuasiveness. These post ratings

can be viewed as indicators of influence.

So, the data is self-labeled for attitude relations, for viewpoints, and for influence.

We analyzed this data in terms of both the language used in the discussions and the

behavior of the participants. We present our observations from the data in the rest

of this section.

• Discussants tend to comment on others’ posts when they disagree more than

when they agree. The number of dispute (or negative) comments is almost

double the number of negative comments. The percentage of the former is

35.5% versus 18.8% for the later. These numbers are also supported by the

average number of positive and negative comments per thread which are 2.28

and 4.42, respectively.

• Posts that express disagreement are usually longer (in number of sentences)

than posts that express agreement. The average number of sentences in dispute

posts is 7.86 which is significantly greater than the average number of sentences

in support posts: 3.68. Figure 2.1 shows the distribution of sentence count in

both support and dispute posts. To verify that the difference in post length is

significant, we use a two-tailed paired Student’s T-test (with alpha set to 0.05).

The test showed that the difference is significant (p < 0.0001).

• Out-of-Vocabulary (OOV) words are very common in online discussions. We

observed that 27.7% of the sentences in the corpus contain at least one OOV

word. We identify OOV words by looking up all the words in the corpus in two
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Figure 2.1:
Distribution of sentence count support (solid red) and blue (dashed blue) posts. The
average sentence count is 7.86 in support posts and 3.68 in dispute posts

standard English dictionaries. The word is labeled as OOV if it does not appear

in any of the dictionaries. This indicates that any text processing applied to

this corpus should take this issue into account. The consideration of this issue

becomes more important in opinion mining systems because OOV words are

likely to be polarized since people tend to use colloquial words and acronyms

when they express opinion as a way to emphasize their opinions and impress

the audience. In Chapter 3.4, we present a method for handling OOV words

and identifying their polarities.

• Discussants tend to avoid expressing their attitude toward other participants by

addressing them directly and explicitly. The ratio of comments that each has at

least one sentence that contains a first person pronoun (e.g., I) and a mention

(i.e. name or second person pronoun) of the recipient of the comment is 23.2%

only. This means that the majority of comments do not address the recipient
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of the post when the agreement or disagreement is expressed. We also observed

that direct expressions of attitude are significantly more common in dispute

posts than in support posts. The ratios are 26.3% and 17.3%, respectively.

However, we observed that in cases of support posts, explicit direct expressions

of attitude appear more towards the beginning of the post. In about 53.5%

of the support posts that contained explicit direct expression of attitude, the

attitude was expressed in the first sentence. In the case of dispute posts, the

ratio is 30.5%. This can be explained by the discussants trying to be polite

when they express disagreement and not start their comment with an explicit

disagreement expression. Figure 2.2 shows the ratio of comments (y-axis) in

which a direct speech from the post writer to the post recipient appears in the

N th sentence (x-axis) for the first time in the post. The graph shows that direct

explicit expressions appear more towards the beginning and less towards the

end of the post in cases of support. The opposite happens in the case of dispute

posts.

• Emoticons (facial expressions written using punctuation marks) are used signifi-

cantly more in cases of agreement than in cases of disagreement. The percentage

of dispute posts that contain at least one emoticon is 4.3%. In the case of sup-

port posts, the percentage is 15.6%. Surprisingly, the most frequent emoticons

in both cases were smiling and laughing faces. The top three emoticons in both

types are :), ;), and :D. We use the Ark Twitter Tokenizer & Tagger [65] to

identify emoticons. By examining the dispute sentences that contains smiley

faces, we noticed that a significant portion of those sentences are sarcastic.

• Both positive and negative opinion expressions are used in both dispute and
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Figure 2.2:
Distribution of sentence count support (solid red) and blue (dashed blue) posts. The
average sentence count is 7.86 in support posts and 3.68 in dispute posts

support posts. Table 2.2 shows the percentages of positive and negative opinion

expressions in support and dispute comments. These numbers can be explained

by the fact that the participants in discussions usually switch back and forth

between arguing for their opinions and arguing against the opposing opinions.

These numbers show that relying on opinion expression identification only is

not going to be very helpful for identifying the viewpoints of the participants,

because each comment may contain both negative and positive expressions. To

detect participant viewpoints we need not only to identify opinion expressions,

but also their targets. The numbers in the table also show that if only the

sentences that contain both a first person pronoun and a second person pro-

noun are considered, the percentage of support comments that contain positive

expressions is higher than dispute comments that contain positive expressions.

This can be explained by the fact that these sentences usually express direct
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Type Positive Negative

Any Sentence
Dispute 70.0% 68.0%

Support 57.6% 46.6%

1st PP - 2nd PP Sentences
Dispute 55.0% 49.2%

Support 57.0% 33.1%

Table 2.2:
Percentage of posts that contain at least one opinion expression in dispute and support
comments. The top two rows are the numbers when all the sentences are considered.
The bottom two rows are when only sentences that contain a first person pronoun and
a second person pronoun are considered.

attitude from the post author to the post recipient, hence, it is more likely that

the polarity of the opinion expressions used in these sentences match the polar-

ity of the whole comment. The list of opinion cues that we used for this analysis

was taken from OpinionFinder [203].

This study of the createdebate data gave us a clearer picture of the discus-

sion/debate genre and the problem that we are addressing in this part of the thesis. It

also motivates the need for addressing problems such as handling Out-of-Vocabulary

words and identifying opinion targets.

2.4 Overview of the Approach

In this section, we present an overview of the processing steps that we apply

to discussions to identify the different perspectives of the discussants. Figure 2.3

shows a block diagram that illustrates the components of the proposed processing

pipeline. The input is a discussion thread downloaded from an online discussion

forum. The first component parses the thread to identify participants, posts, and

the reply structure of the thread. When a discussion thread is downloaded from the

internet, it gets stored on the disk in HTML format. We use an HTML parser to

extract the needed information from the thread.

The next component analyzes the text of the posts to identify opinion expressions



25

Discussion  
Thread 

Opinion Expression 
 

Identification 

Thread 
 

Parsing 

…disagree…
…….......……
……like………
…………………
……bad……. 

Target  
 

Identification 

..........you……... 
..........................
.....conservatives 

ideologues………. 
………………………..
..…..Immigration 

law………………… 

Opinion-Target 
Pairing 

disagree You 

like 
Conservative  
Ideologues 

bad 
Immigration 

law 

Reply Structure 

Applications 

      

+ 

+ 
– 

 
+ 

- 

+ 
+ 

+ 

+ 

– 

+ 

+ 

+ + 

+ 

Discussant 
Attitude Profile 

Construction 

Signed Network 

Extraction 

Applications 

Figure 2.3:
A block diagram summarizing the different tasks and applications presented in this
part.

and their polarities. As we showed in the previous section, a significant number of

the words used in discussions are out-of-vocabulary (OOV) words that can not be

found in the existing polarity lexicons. We propose a method for identifying the

polarity of OOV words. Our method is an extension to the random walk method

used in [76]. We augment the semantic graph described in [76] by adding the OOV

words to it and connecting them to words that are semantically related to them.

The semantic relatedness is estimated based on co-occurrence statistics computed

from a corpus of social text. The polarity of an opinion expression depends on the

context in which it appears. Negation is probably the most important contextual

feature that affects the polarity of an opinion expression. We propose a method for

identifying negation cues and their scope. Our method uses two CRF models, one

for identifying negation cues, and one for identifying the scope of each negation cue.
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The following component in the pipeline analyzes the text of the posts to identify

candidate targets of attitude. Attitude targets can be other participants, aspects of

the discussion topic, or named entities mentioned in the discussion. We use noun

phrase chunking and named entity recognition techniques to identify candidate tar-

gets. We use co-reference resolution to identify all the anaphoric mentions of the

identified targets.

The next component in the pipeline takes the output of the last two components

and pairs each opinion expression with its target(s). We propose two methods for

addressing this problem, a supervised method and an unsupervised method. The

unsupervised method uses a set of handcrafted dependency-based rules to determine

the target of an opinion expression. The supervised method uses a set of lexical,

syntactic, and dependency features to train a model for identifying attitude targets.

The last component in the pipeline uses the extracted targeted attitudes to build

a formal representation of the discussion. We experiment with two representations.

In the first representation, each participant has an attitude profile that includes

an entry for every attitude target. In the second representation, each discussant is

represented by a node in a network. The edges in this network represent attitude

relations. The sign of the edge is positive if the attitude between the two connected

participants is positive, otherwise the sign is negative.

Finally, we present a method for detecting opinion subgroups. The members of

each subgroup share the same opinion with the respect to the discussion topics. We

experiment with two methods for detecting subgroups. In the first methods, we

use a partitioning algorithm to partition the signed network representation of the

discussion. Each resulting partition forms a subgroup. In the second method, we

use a clustering algorithm to cluster the vector space of all the discussant attitude
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The new Immigration law is good. Illegal immigration is bad. 

Peter 

I totally disagree with you. This law is blatant racism. 

Mary 

Read all what Peter wrote. He is correct. Illegal immigration 
is bad and must be stopped. 

John 

You are clueless, Peter.  Stop supporting racism. 

Alexander 

Peter 

Mary 

John 

Alexander 

Figure 2.4:
An example discussion thread. The figure on right shows the actual posts with opinion
expressions and their candidate targets tagged (positive expressions colored in green;
negative expressions colored in red; candidate opinion targets underlined. The figure
to the left shows the reply structure of the thread.

profiles.

In the following section, we present an example that illustrates the processing

steps in our approach.

2.5 An Illustrative Example

Figure 2.4 shows a sample discussion thread with four participants. The discussion

topic is about a new immigration law enforced by the government of one of the US

states. The right part of the figure shows the reply structure of the thread (i.e.

who replies to whom). The first step after parsing the thread, is to identify opinion

expression. In Figure 2.4, the words in green (italic) are positive while the words in

red (bold) are negative. For example good and correct are positive opinion words

while bad and clueless are negative words. The next step is identifying the candidate

targets of attitudes. The underlined words and phrases in the figure are the candidate
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Peter 

Mary 

John 

Alexander 

Peter Mary John Alexander 

Illegal 
immigration  

immigration  
Law 

1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 

1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 

2 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 

1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

Figure 2.5: The attitude vector representation of the example discussion shown in Figure 2.4

targets that our system identifies in this example. Our method identifies the explicit

and the anaphoric mentions of each target. The grey (dashed) double-sided arrow

connects the phrases/words that refer to the same entity or concept. Next, we

associate each opinion expression with its target. The blue dotted arrows in the

figure point from opinion expressions to their targets. Finally, we build a vector

representation (Figure 2.5) and a signed network representation (Figure 2.6 of the

discussion.

In the vector representation, each discussant has a vector. The vector contains

three entries for every target in the discussion. The first entry is the total number

of mentions of that target by that participant; the second entry is the number of

positive mentions; the third is the number of the negative mentions.
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Peter Mary 

John Alexander 

Figure 2.6: The signed network representation of the example discussion shown in Figure 2.4

In the signed network representation, each participants is represented by a node

in the network. A positive edge connects two discussants if they carry positive

attitude toward one another or if they have similar opinion towards the topics of

shared interest. A negative edge connects two participants if they carry negative

attitude towards each other or if they have different opinion towards the topics of

shared interest. Partitioning the signed network splits the discussant into subgroups

where the members of each subgroup have the same perspective with regard to the

discussion topic. Figure 2.6 shows that Mary and Alexander, who are against the

new law, were put in the same subgroup. Peter and John, who support the new law,

were put in another subgroup.

2.6 Outline of Part I

In Chapter III, we describe our method for identifying opinion expressions. We

present an extension of a random walk algorithm that allows it to handle OOV

terms. In Chapter IV we explain how we handle negation. We propose a supervised

method for identifying negation cues, the scope of negation, and the negated events.
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In Chapter V, we present an approach for identifying attitude targets and pairing

each opinion expression with its target. In chapter VI, we describe an application

that uses attitude predictions to detect opinion subgroups in discussions.



CHAPTER III

Identifying Opinion Expressions

In this chapter, we study the problem of identifying the polarity of words; i.e.

automatically classifying words as either positive, negative, or neutral. Lehrer [112]

defines word polarity as the direction the word deviates to from the norm. For

example, the word beautiful is positive, while the word ugly is negative. Identifying

the polarity of individual words is essential for identifying the polarity of larger pieces

of text. Identifying text polarity has been shown to be useful in many applications

such as analyzing product reviews, building recommendation systems, and identifying

attitude.

Automatic identification of word polarity is not a trivial task because of the

following challenges. First, existing manually created polarity lexicons (e.g., Stone

et al. [178, 177] and Tong [188]) are limited to thousands of words for a limited

number of languages. Second, it is difficult, or even impossible, to build a polarity

lexicon that covers all domains. The reason is that sentiment expressions vary from

one domain to the other. A word can be subjective and positive in one domain but

objective or negative in another domain [156]. For example, the word unpredictable

often expresses positive sentiment in movie reviews (e.g. unpredictable plot), however,

in car reviews, it is more likely to express negative sentiment (e.g. unpredictable

31
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steering). Third, the polarity of a word depends on its context. For example, the

word fine is often a positive word when used as an adjective (e.g. I am doing fine),

but it is a negative word when used as a noun (e.g. I received a parking fine). A

positive word that appears in a negated context becomes negative and vice versa.

Other contextual factors that affect text polarity include hedging, intensification, and

neutralization. Forth, the language used in real life applications (especially in social

media sites) is very dynamic and contains a significant amount of colloquial words

and acronyms (e.g. using gr8 to mean great). Most of these are out-of-vocabulary

words that do not exist in polarity lexicons or dictionaries.

Most of these challenges have been addressed in previous work. Several unsuper-

vised, supervised, and semi-supervised methods have been proposed to build polarity

lexicons or extend existing ones. In our work, we focus on an understudied challenge:

identifying the polarity of out-of-vocabulary (OOV) words in the social media do-

main.

Our analysis of the createdebate data set in Chapter II shows that OOV words are

common in online discussions. Roughly 27.7% of the sentences in the corpus contain

at least one OOV word each. Table III shows some OOV word examples. To show

the importance of OOV word polarity identification, we calculated the proportion of

OOV words in three corpora used for sentiment studies: a set of movie reviews, a set

of online discussions from a political forum, and a set of randomly sampled tweets.

For each word in the data, we look it up in two standard English dictionaries, together

containing 160, 000 unique words. Table 3.1 shows the statistics.

OOV words have a high chance of being polarized because people tend to use

informal language or special acronyms to emphasize their attitudes or impress the

audience. Therefore, being able to automatically identify the polarity of OOV words
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corpus source # of words Percentage of OOV
Movie reviews 3, 411 customer reviews

from IMDB for the movie
The dark knight (2008)

10.7 M (9.5 M) 5.3% (2.7%)

Political forum 23 K sentences from
www.politicalforum.com
on various topics

381 K (348 K) 8% (6%)

Tweets 0.6 M random English
tweets from twitter.com.
(We count a tweet as in
English if at least half of
the words are English dic-
tionary words. Tags and
symbols were removed.)

7.1 M (5.9 M) 30% (27%)

Table 3.1:
OOV words proportion in some corpora used for real world applications. (Numbers in
parenthesis exclude words whose first letters are capitalized since they are likely to refer
to named entities.)

Positive Negative
Word Meaning Word Meaning
beautimous beautiful and fabulous disastrophy a catastrophy and a disaster
gr8 great banjaxed ruined
buffting attractive ijit idiot

Table 3.2: Examples of positive and negative OOV words

will essentially benefit real-world applications.

We first review the previous work on word polarity identification. Then, we

propose an extension of an existing semi-supervised approach that applies a Markov

random walk model to a large semantic graph to determine the polarity of any given

word. Our extension uses co-occurrence statistics computed from a large corpus of

social text to add OOV words to the semantic graph. The random walk method is

then used to label the OOV words. We present several variations of this method and

compare them experimentally.

3.1 Related Work

Classifying the polarity of words has interested researchers for many years. Philip

Stone [178] manually labeled 3,596 words with their polarity and included them in
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the General Inquirer system that he developed for content analysis of textual data.

The full General Inquirer lexicon has 182 categories of word tags and 11,788 words.

Words with multiple senses may have multiple entries in the lexicon. Hatzivassiloglou

and McKeown (1997) proposed the first automatic method for determining adjective

polarities. The method determines the polarity of adjectives by extracting pairs

of adjectives conjoined by conjunctions such as and, or and but in a large corpus.

Based on the conjunction operator used to connect the two adjectives, they classify

the conjoined adjectives as same polarity (e.g. easy and simple interface) or opposite

polarity (e.g. clear but difficult question). The weakness of this method is that it

is limited to adjectives. It is normal to see nouns with opposite polarity conjoined

with and (e.g. peace and war).

Wiebe [201] and Wiebe et al. [199] proposed a semi-supervised approach for clas-

sifying words into subjective and objective. They cluster words based on their dis-

tributional similarity. This method identifies distinguishes between subjective and

objective words; it does not attempt to predict the polarity of subjective words.

Turney and Littman [191] proposed a method for inferring the semantic orienta-

tion of a word from its statistical association with a set of seed positive and negative

paradigm words. They compute the pointwise mutual information (PMI) of each

unlabeled word with each of the seed words. The PMI between two words can be

seen as an indicator of their semantic association. This method requires access to

large corpus of text to perform well. The size of the data set that achieved the best

performance for them contained roughly one hundred billion words.

Kamps et al. [96] proposed a method that utilizes WordNet’s synonymy relations

to construct a network of synonymous words. The polarity of an adjective is decided

by computing its shortest paths to two seed words: good and bad, which are chosen
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as representatives of positive and negative polarities. Hu and Liu [91] and Kim

and Hovy [103] use WordNet synonyms and antonyms to predict the polarity of

words. They start with a small number of labeled words. For each unlabeled word,

they assign it the polarity of its synonym if this synonym is labeled or the opposite

polarity of its antonym if this antonym is labeled. The bootstrapping continues until

all possible words are labeled.

Esuli and Sebastiani [57] proposed a method that determines the polarity of words

by classifying their gloss definitions. They extract gloss definitions from an online

glossary. In another work that exploits glosses, Takamura et al. [182] proposed a

method that regards word polarities as spins of electrons. They construct a lexical

network by linking two words if one appears in the gloss of the other. They deal

with each word in the network as an electron with a directed spin. As inspired by

electrons energy theorems, neighboring spins tend to have the same polarity. They

use the mean field method to greedily find the best solution. This method has two

limitations. First, it assumes that every word has polarity (based on the analogy

with electrons). Second, the greedy optimization step sometimes gets trapped in a

local optimum.

Mohammad et al. [132] utilize the marking theory which states that overtly

marked words such as dishonest, unhappy and impure tend to have negative se-

mantic orientations whereas their unmarked counterparts: honest, happy and pure

tend to have positive semantic orientation. They use a set of 11 antonym-generating

affix patterns to generate overtly marked words and their counterparts from the Mac-

quarie Thesaurus. After obtaining a set of 2,600 seeds by the affix patterns, they

expand the sentiment lexicon using Roget-like Thesaurus. Their method does not

require seed sentiment words or WordNet, but still needs a comprehensive thesaurus.
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The idea of the marking theory is language dependent and cannot be applied from

one language to another.

Rao and Ravichandran [162] proposed a method that treats polarity detection

as a semi-supervised label propagation problem on a semantic network of words.

They experimented with two different networks, one extracted from WordNet and

one extracted from OpenOffice thesaurus. They applied their method to the word

polarity identification problem in three languages: English, Hindi, and French. Has-

san and Radev [77] used a Markov random walk model to estimate the polarity of

words in WordNet. The model is capable of assigning a polarity sign and magnitude

to each word. This work is described in more detail in the next section. In the

rest of the chapter, we present an extension of this method to make it capable of

labeling out-of-vocabulary words. In [73], Hassan et al. proposed an extension of

their random walk model to other languages. They construct a multilingual net-

work in which same-language words are connected based on synonym relations and

co-occurrence statistics, and different-language words are connected using meaning

relations extracted from a Foreign-English dictionary.

Velikovich et al. [193] investigated the viability of learning sentiment lexicons

semi-automatically from the Web. They use label propagation on a word network

extracted from the web. They conclude that label propagation is not suitable when

the whole Web is used as a background corpus, since the constructed graph is very

noisy and contains many dense subgraphs, unlike the lexical graphs constructed

from WordNet. Kanayama and Nasukawa [98] use syntactic features and context

coherency (i.e. the tendency for same polarities to appear successively) to detect

polar clauses.
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3.2 Identifying Word Polarity Using Random Walks

In this section, we summarize the work of Hassan and Radev [77] which we use as a

basis for our work. The method starts by constructing a semantic network G(W,E).

Each node w ∈ W represents a pair comprising a word and its part-of-speech tag (e.g

likes/VBZ ). Two nodes are connected if there is a semantic relation between them.

Semantic relatedness is determined based on WordNet. Two words are considered

semantically related if they appear in the same synset in WordNet. If more than

one relation exists between any two words, the weight of the corresponding edge is

adjusted accordingly.

A small number of nodes in the network are labeled for polarity and used as seed

words. The polarity of unlabeled nodes is determined using a random walk model

applied to the constructed network. To assign a label to an unlabeled node wu, a

random walk is started from wu and continues until the random agent reaches a

labeled node. This process is repeated many times and each time the number of

steps the random agent took from wu to a labeled node is recorded. This number

is refereed to by the term hitting time. To determine the polarity of the unlabeled

node, the average hitting time to positive nodes P (wn|+) and the average hitting

time to negative nodes P (wn|−) are compared. If P (wn|+) is larger than P (wn|−),

then wn labeled positive, otherwise it is labeled negative. Radev and Hassan reported

93.1% cross-validation accuracy on the General Inquirer lexicon [178].

This method works only if the semantic relatedness between words is known and

can be represented by edges in the network. Hassan and Radev used WordNet to

get relatedness relations. In other studies, gloss definitions from dictionaries or co-

occurrence statistics in large text corpora were used to infer relatedness [182, 57, 162].

The algorithm proposed by Hassan and Radev classifies each word as either posi-
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tive or negative. They stated that their algorithm can be configured to abstain from

classifying a word if the difference between the mean hitting time to positive seeds

and the mean hitting time to negative seeds is very small. In the following section, we

show how we modify their algorithm to to do 3-way classification: positive, negative,

and neutral. We also run describe an experiment to evaluate the performance of this

3-way classifier. In section 3.4, we present our method for identifying the polarity of

OOV words.

3.3 3-Ways Word Polarity Classification

Classifying a word as positive or negative assumes that the word is subjective and

polarized. In real applications, the majority of words that appear in the text are

neutral. Classifying all words as positive or negative. This motivates the need for a

general algorithm that can handle the three polarity classes: positive, negative, and

neutral. We modify the algorithm presented in Hassan and Radev [77] such that it

classifies a word as neutral if the polarity magnitude is not big enough to classify the

word as positive or negative with hight confidence. We compute the ratio between

the mean hitting time to positive words and the mean hitting time to negative words.

If this ratio is less than some threshold γ, the word is classified as neutral, otherwise

it is classified as positive or negative. Algorithm 3.3 is a modified version of the

algorithm presented in Hassan and Radev’s paper.

3.4 Out-of-Vocabulary (OOV) Words Polarity Identification

Consider the graph G(W,E) we described in Section 3.2. So far, the only resource

we use to construct the graph is WordNet synsets. The first step in our approach to

determining the polarity of an OOV word is to find the words in WordNet that are

semantically related to it. We add the OOV word to G by creating a new node and
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Algorithm 1 3-Class Word Polarity using Random Walks (parameter γ : 0 < γ < 1)

Require: A word relatedness graph G
1: Given a word w in V
2: Define a random walk on the graph. the transition probability between any two nodes i, and j

is defined as: Pt+1|t(j|i) = Wij/
∑

kWik

3: Start k independent random walks from w with a maximum number of steps m
4: Stop when a positive word is reached
5: Let h∗(w|S+) be the estimated value for h(w|S+)
6: Repeat for negative words computing h∗(w|S−)
7: if h∗(w|S+) ≤ γh∗(w|S−) then
8: Classify w as positive
9: else if h∗(w|S−) ≤ γh∗(w|S+) then

10: Classify w as negative
11: else
12: Classify w as neutral
13: end if

linking it to the words that are semantically related to it. Once we have the extended

network constructed, we use the random walk model described in Section 3.2 to

predict the polarity of each OOV word.

3.4.1 Mining Word Relatedness from the Web

There are several methods that can be used to determine the relatedness of words.

Agirre et al. [18] studied the strengths and weaknesses of the different approaches

used for identifying term similarity and relatedness. They noticed that lexicograph-

ical methods such as the WordNet suffer from the limited coverage of the lexicon,

which is the case here with OOV words. We use a web-based, distributional ap-

proach to find the set of words that are semantically related to an OOV word. We

perform a web search using the OOV word as the search query and retrieve the top

S search results. We extract the textual content of the retrieved results and tokenize

it. After removing all the stop words, we compute the number of times each word

co-occurs with the OOV word in the same document. We rank the words based on

their co-occurrence frequency and return the top R words as the set of related words

to the given OOV word.
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We experimented with three different variants of this approach. In the first vari-

ant, the frequency values of related words are normalized by the lengths of the

documents that contributed to the count of each related word. The intuition here is

that longer documents contain more words and hence the probability that a word in

the that document is related to the OOV word is lower than when the document is

shorter.

In the second variant, we only consider the words that appear near the OOV word

(i.e. within d words to the left and right of the OOV word) when we compute the

co-occurrence frequency. The intuition here is that words that appear near the OOV

word are more likely to be semantically related than the words that appear further

away.

In the third variant, instead of searching the entire web, we limit the search to

social text. In the experiments described below, we search for an OOV word in

twitter1. The intuition here is that searching the entire web is likely to return results

that do not necessarily contain sentimental text. Moreover, the meaning of many

words depends on the context. The same word that is positive in one context may

be neutral in another context. The text written in a social context is more likely to

carry sentiment and express emotions. This helps us find better related words for

our task.

3.4.2 Extending the Semantic Network With OOV Words

We start with the graph G(W,E) constructed from Wordnet synsets. For each

new OOV word that does not exist in G, we create a new node w. We set the part

of speech tag of w to unspecified. Then we use the method described in the previous

subsection to find a set of words that are most related to w. Finally, we create a link

1http://www.twitter.com
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Figure 3.1:
Illustration of the random walk algorithm and the extension we add for OOV words.
Labeled nodes are filled with patterns; horizontal (green) lines for positive and vertical
(red) lines for negative)

between each OOV word and each of its related words. To predict the polarity of an

OOV word, we use the random walk model described above.

3.5 Evaluation

3.5.1 General Purpose Three-Way Classification

The experiments described so far all use the General Inquirer lexicon, which con-

tains a well-established gold standard data set of positive and negative words. How-

ever, in realistic applications, a general purpose list of words will frequently have

neutral words that don’t express sentiment polarity. To evaluate the effectiveness

of the random walk method in distinguishing polarized words from neutral words,

we constructed a data set of 2000 words randomly picked from a standard English

dictionary2 and hand labeled them with three classes: positive, negative and neutral.

Among the 2000 words, 494 were labeled positive, 491 negative, and 1015 neutral.

2Very infrequent words were filtered out by setting a threshold on IDF of the words in a corpus.
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Class Positive Negative Neutral Overall
Accuracy 68.0 82.1 80.6 77.9

Table 3.3: Accuracy for 3 classes on a general purpose list of 2000 words

The distribution among different parts of speech is 532 adjectives, 335 verbs, 1051

nouns and 82 others.

We used the semi-supervised setting with General Inquirer lexicon polarized word

list as training set. Since the 2000 test set has some portion of polarized words

overlapping with the training set, we excluded the words that appear in test set from

the training set. We ran Algorithm 2 in section 3.3 with parameters γ = 0.8,m =

15, k = 1000. The overall accuracy as well as the precision for each class is shown in

table 3.5.1. We can see that the accuracy of the positive class is much lower than the

negative class, due to the many positive words classified as neutral. This means that

the average confidence of negative words is higher than positive words. One factor

that could have caused this is the bias originated from the training set. Since there

are more negative seeds than positive ones, the constructed graph has an overall bias

towards negative class.

3.5.2 OOV Word Polarity

We created a labeled set of 300 positive and negative OOV words. We asked a

native English speaker to examine a large number of threads posted on several online

forums and identify OOV words and determine their polarities. Some examples of

positive/negative OOV words are listed in Table III.

We used the approach described in Section 3.4 to automatically label the words.

We used the words of the General Inquirer lexicon as labeled seeds. We sat the

maximum number of steps m = 15 and the number of samples k = 1000. We
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Figure 3.2:
Comparison of the accuracy of OOV word polarity identification using three variations
of our approach and SO-PMI

experimented with the three variants we proposed for extracting the related words

as described in Section 3.4. We give the experimental setup for each variant here:

1. Search the entire web (WS): We used Yahoo search3 to run the search queries.

For each OOV word, we retrieve the top 500 results and use them to extract

the related words.

2. Search the entire web and limit the extraction of related words to the proximity

of the OOV word (WSP): We fix the proximity of a given OOV word to 15

words before and 15 words after (we experimented with different ranges but no

significant changes were observed).

3. Limit the search to social content (SOC): We limit the search for OOV words

to tweets posted on Twitter. We use the Twitter search API to send the search

queries. For each OOV word, we retrieve the top 10,000 tweets. Each tweet is

maximum 140 characters long.

We also compare these variations to the SO-PMI method with the same 14 seeds

3http://www.yahoo.com
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Figure 3.3: The effect of varying the number of extracted related words on accuracy

used in [190]. The SO-PMI value can be calculated as follows:

(3.1) SO-PMI(w) = log
hitsw,pos × hitsneg
hitsw,neg × hitspos

Figure 3.2 shows the results of the three variations. The results show that ex-

tracting related words from tweets gives the best accuracy. This corroborated our

intuition that using social content is more likely to provide sentimental related words.

The accuracy changes by varying R, the number of related words extracted for

each OOV word. The results shown in the figure correspond to R = 90.

To better understand the impact of varying this parameter, we ran the experiment

that uses Twitter to extract related words several times using different values for R.

Figure 3.3 shows how the accuracy of polarity prediction changes as R changes.



CHAPTER IV

Handling Negation

Negation is a pervasive and intricate linguistic phenomenon present in all lan-

guages [189, 89]. The automatic detection of negation and its scope is a problem

encountered in a wide range of natural language processing applications including,

but not limited to, data mining, relation extraction, question answering, and sen-

timent analysis. Detecting and handling negation is important in opinion mining

and sentiment analysis systems. If a positive word appears in a negated context, it

should actually be treated as negative and vice versa. Handling negation involves

detecting negation cues and the scope of each cue in the sentence. A negation cue is

a word, a phrase, a prefix, or a postfix that triggers negation. The scope of negation

is the part of the meaning that is negated [92]. For example, in the sentence below

never is the negation cue. The negation scope is enclosed in square brackets.

[John] never [liked smart phones].

This example also shows that the polarity of the verb liked becomes negative since

it falls in a negation scope. Cues and scopes may be discontinuous. For example,

the negation cue neither ... nor is discontinuous.

In this chapter, we present a system for automatically detecting negation cues

and their scopes in English text. The system uses a conditional random field (CRF)
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model trained on labeled sentences extracted from two classical English novels. The

CRF model is trained using lexical, structural, and syntactic features. This chapter

is based on the work submitted in [12].

The rest of this chapter is organized as follows. Section 4.1 reviews previous work.

Section 4.2 describes the data and the annotation process. Section 4.3 describes the

CRFs models that we build. Section 4.4 presents the evaluation and the results.

4.1 Related Work

Most research on negation has been done in the biomedical domain [39, 140, 101,

136, 135, 17, 133, 163], mostly on clinical reports. The reason is that most NLP

research in the biomedical domain is interested in automatically extracting factual

relations and information from unstructured data. Negation detection is important

here because information that falls in the scope of a negation cue cannot be dealt

with as factual.

Chapman et al. [39] a rule-based algorithm called NegEx for determining whether

a finding or disease mentioned within narrative medical reports is present or ab-

sent. The algorithm uses regular expression based rules. Mutalik et al. [140] de-

veloped another rule based system called Negfinder that recognizes negation pat-

terns in medical text. It consists of two components: a lexical scanner, lexer that

uses regular expression based rules to generate a finite state machine, and a parser.

Morante [137] proposed a supervised approach for detecting negation cues and their

scopes in biomedical text. Their system consists of two memory-based engines, one

that decides if the tokens in a sentence are negation signals, and another that finds

the full scope of these negation signals.

Negation has been recently studied in the context of sentiment analysis [204, 95,



47

45, 83, 88]. Wiegand et al. [202] surveyed the recent work on negation scope detection

for sentiment analysis. Wilson et al. [204] studied the contextual features that affect

text polarity. They used a machine learning approach in which negation is encoded in

several features. One feature checks whether a negation expression occurs in a fixed

window of four words preceding the polar expression. Another feature accounts for

a polar predicate having a negated subject. They also have disambiguation features

to handle negation words that do not function as negation cues in certain contexts,

e.g. not to mention and not just.

Jia et al. [95] proposed a rule based method to determine the polarity of senti-

ments when one or more occurrences of a negation term such as not appear in a

sentence. The hand-crafted rules are applied to syntactic and dependency parse tree

representations of the sentence.

Hogenboom et al. [88] found that applying a simple rule that considers two words,

following a negation keyword, to be negated by that keyword, to be effective in

improving the accuracy of sentiment analysis in movie reviews. This simple method

yields a significant increase in overall sentiment classification accuracy and macro-

level F1 of 5.5% and 6.2%, respectively, compared to not accounting for negation.

4.2 Data

We use the data set distributed by *sem Shared Task 2012 on resolving the scope

and focus on negation. This data set includes two stories by Conan Doyle, The

Hound of the Baskervilles, The Adventures of Wisteria Lodge for training and devel-

opment. All occurrences of negation are annotated accounting for negation expressed

by nouns, pronouns, verbs, adverbs, determiners, conjunctions and prepositions. For

each negation cue, the negation cue and scope are marked, as well as the negated
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event, if any. Cues and scopes may be discontinuous. The annotation guidelines

follow the proposal of Morante et al. [138]1. The data is split into three sets: a train-

ing set containing 3,644 sentences, a development set containing 787 sentences, and

a testing set containing 1,089 sentences. The data are provided in CoNLL format.

Each line corresponds to a token and each annotation is provided in a column; empty

lines indicate end of sentence. The content of the columns given is:

• Column 1: chapter name

• Column 2: sentence number within chapter

• Column 3: token number within sentence

• Column 4: word

• Column 5: lemma

• Column 6: part-of-speech

• Column 7: syntax

• Columns 8 to last:

– If the sentence has no negations, column 8 has a ”***” value and there are

no more columns.

– If the sentence has negations, the annotation for each negation is provided in

three columns. The first column contains the word or part of the word (e.g.,

morpheme ”un”), that belongs to the negation cue. The second contains

the word or part of the word that belongs to the scope of the negation cue.

The third column contains the word or part of the word that is the negated

event or property. It can be the case that no negated event or property are
1http://www.clips.ua.ac.be/sites/default/files/ctrs-n3.pdf
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Token Lemma POS Syntax Cue 1 Scope 1 Event 1 Cue 2 Scope 2 Event 2

She She PRP (S(NP*) - She - - - -

would would MD (VP* - would - - - -

not not RB * not - - - - -

have have VB (VP* - have - - - -

said say VBD (VP* - said - - - -

‘ ‘ “ (SBAR(S(NP* - ’ - - - -

Godspeed Godspeed NNP * - Godspeed - - - -

’ ’ ” *) - ’ - - - -

had have VBD (VP* - had - - had -

it it PRP (ADVP* - it - - it -

not not RB *) - not - not - -

been be VBN (VP* - been - - been -

so so RB (ADVP*)))))))) - so - - so -

. . . *) - - - - - -

Table 4.1: Example sentence annotated for negation following se* shared task 2012 format

marked as negated. For example, in Example 3 none of the negations has

a negated event annotated because of the conditional construction.

Tokenization and information for columns 4 to 7 has been obtained by processing

the corpus with the Shalmaneser semantic parser [54]. Shalmaneser produces the

xml-format needed to annotate the corpus with negation with the Salto Tool [36].

The xml was converted into CoNLL format. Shalmaneser calls the Collins parser [44]

to produce syntactic parse trees.

Table 4.1 shows an example of an annotated sentence that contains two negation

cues.

4.3 Approach

The problem that we are trying to solve can be split into two tasks. The first

task is to detect negation cues, words that trigger negation. The second task is to

identify the scope of each detected negation cue. We use a machine learning approach

to address both tasks. We train a Conditional Random Field (CRF) [107] model on

lexical, structural, and syntactic features extracted from the training dataset. In

following two subsection, we describe the CRF models we build for each of the two
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tasks.

4.3.1 Negation Cue Detection

Negation cues are lexical elements that indicate the existence of negation in a

sentence. From lexical point of view, negation cues are four types: 1) Prefix (i.e.

in-, un-, im-, il-, dis-). For example, un- in unsuitable) is a prefix negation cue. 2)

Postfix (i.e. -less). for example, -less in careless. 3) Multi-word negation cues such

as neither...nor, rather than, by no means, etc. 4) Single word negation cues such as

not, no, none, nobody, etc.

The goal of this task is to detect negation cues. We pose this problem as a

sequence labeling task. The reason for this choice is that some negation cues may

not indicate negation some contexts. For example, the negation cue not in the phrase

not to mention does not indicate negation. Also, as we saw above, some negation

cues consists of multiple words. We train a CRF model on the sentences included in

the training set. The token level features that we train the model on are:

• Token: The word or the punctuation mark as it appears in the sentence.

• Lemma: The lemmatized version of the token.

• Part-Of-Speech tag : The part of speech tag of the token.

• Part-Of-Speech tag category : Part-of-speech tags reduced into 5 categories: Ad-

jective (ADJ), Verb (VB), Noun (NN), Adverb (ADVB), Pronoun (PRO), and

other (OTH).

• Is punctuation mark : This feature takes the value 1 if the token is a punctuation

mark and 0 otherwise.
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• Starts with negation prefix : This feature takes the value 1 if the token is a word

that starts with un-, in-, im-, il-, or dis- and 0 otherwise.

• Ends with negation postfix : This feature takes the value 1 if the token is a word

that ends with -less and 0 otherwise.

The CRF model that we use considers at each token the features of the current

token, the two preceding tokens, and the two proceeding tokens. The model also

uses token bigrams and trigrams, and part-of-speech tag bigrams and trigrams as

features.

The labels are 5 types: ”O” for tokens that are not part of any negation cue;

”NEG” for single word negation cues; ”PRE-NEG” for prefix negation cue; ”POST-

NEG” for postfix negation cue; and ”MULTI-NEG” for multi-word negation cues.

Table 4.2 shows an example labeled sentence.

4.3.2 Negation Scope Detection

Scope of negation is the sequence of tokens (can be discontinuous) that express

the meaning that is meant to be negated by a negation cue. A sentence may contain

zero or more negation cues. Each negation cue has its own scope. It possible that the

scope of two negation cues overlap. We use each negation instance (i.e. each negation

cue and its scope) as one training example. Therefore, a sentence that contains two

negation cues results in two training examples. We train a CRF model on features

extracted from all negation instances in the training dataset. The features that we

use are:

• Token: The word or the punctuation mark as it appears in the sentence.

• Lemma: The lemmatized version of the token.

• Part-Of-Speech tag : The part of speech tag of the token.
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Token Lemma Is Punc. POS Cat. POS Neg Label

Since Since 0 OTH IN O

we we 0 PRO PRP O

have have 0 VB VBP O

been be 0 VB VBN O

so so 0 ADVB RB O

unfortunate unfortunate 0 ADJ JJ PRE-NEG

as as 0 ADVB RB O

to to 0 OTH TO O

miss miss 0 VB VB O

him him 0 PRO PRP O

and and 0 OTH CC O

have have 0 VB VBP O

no no 0 OTH DT NEG

notion notion 0 NOUN NN O

of of 0 OTH IN O

his his 0 PRO PRP$ O

errand errand 0 NOUN NN O

, , 1 OTH , O

this this 0 OTH DT O

accidental accidental 0 ADJ JJ O

souvenir souvenir 0 NOUN NN O

becomes become 0 VB VBZ O

of of 0 OTH IN O

importance importance 0 NOUN NN O

. . 1 OTH . O

Table 4.2: Example sentence labeled for negation cue detection
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• Part-Of-Speech tag category : Part-of-speech tags reduced into 5 categories: Ad-

jective (ADJ), Verb (VB), Noun (NN), Adverb (ADVB), Pronoun (PRO), and

other (OTH).

• Is punctuation mark : This feature takes the value 1 if the token is a punctuation

mark and 0 otherwise.

• Type of negation cue: Possible types are: ”NEG” for single word negation cues;

”PRE-NEG” for prefix negation cue; ”POST-NEG” for postfix negation cue;

and ”MULTI-NEG” for multi-word negation cues.

• Relative position: This feature take the value 1 if the token position in the

sentence is before the position of the negation cue, 2 if the token position is

after the position of the negation cue, and 3 if the token is the negation cue

itself.

• Distance: The number of tokens between the current token and the negation

cue.

• Same segment : This feature takes the value 1 if this token and the negation cue

fall in the segment in the sentence. The sentence is segmented by punctuation

marks.

• Chunk : This feature takes the value NP-B (VP-B) if this token is the first token

of a noun (verb) phrase, NP-I (VP-I) if it is inside a noun (verb) phrase, NP-E

(VP-E) if it is the last token of a noun (verb) phrase.

• Same chunk : This feature takes the value 1 if this token and the negation cue

fall in the same chunk (noun phrase or verb phrase).
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gold system tp fp fn precision recall F1

Cues 264 250 232 14 32 94.31 87.88 90.98

Scope (tokens) 1805 1716 1456 260 349 84.85 80.66 82.70

Scope (full) 249 227 126 14 123 90.00 50.60 64.78

Table 4.3: Results of negation cue negation scope detection

• Is negation: This feature takes the value 1 if this token is a negation cue, and

0 otherwise.

• Syntactic distance: The number of edges in the shortest path that connects the

token and the negation in the syntactic parse tree.

• Common ancestor node: The type of the node in the syntactic parse tree that

is the least common ancestor of this token and the negation cue token.

The CRF model considers the features of 4 tokens to the left and to the right at

each position. It also uses bigram and trigram combinations of some of the features.

4.4 Evaluation

We use the testing set described in Section 4.2 to evaluate the system. The testing

set contains 1089 sentences 235 of which contains at least one negation.

We use the standard precision, recall, and f-measure metrics to evaluate the sys-

tem. We perform the evaluation on different levels:

• Cues: the metrics are computed only for cue detection.

• Scope (tokens): the metrics are calculated at token level counting as tokens the

total number of scope tokens. If a sentence has 2 scopes, one with 5 tokens and

another with 4, the total number of scope tokens is 9.

• Scope (full): the metrics are calculated at scope level. Both the negation cue
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and the whole scope should be correctly identified. If a sentence contains 2

negation cues, then 2 scopes are checked.

Table 4.3 shows the results of our experiments.



CHAPTER V

Identifying Opinion Targets

In this chapter, we study targets of attitude in discussions. A target of attitude

may be another discussant, an entity mentioned in the discussion, or an aspect of

the discussion topic. When the target of opinion is another discussant, either the

discussant name is mentioned explicitly or a second person pronoun (i.e. you, yours,

yourself, yourselves) is used to indicate that the opinion is targeting the recipient of

the post. For example, in snippet (2) in the conversation below, the second person

pronoun you indicates that the opinion word disagree is targeting Discussant 1, the

recipient of the post.

(1) Discussant 1: The new immigration law is good. Illegal immigration is bad.

(2) Discussant 2: I totally disagree with you. This law is blatant racism, and quite unconstitutional.

The target of opinion can also be a subtopic or an entity mentioned in the dis-

cussion. For example, ”the new immigration law”, ”Illegal Immigration”, and ”This

law” are all targets of attitude, representing two subtopics: a new immigration law

and illegal immigration. In this chapter, we describe how we identify candidate tar-

gets of opinion and how we pair opinion expressions identified using the method

described in Chapter III with their targets. This work is based on the work pub-

lished in [15]. We start by reviewing previous work on this problem followed by a
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description of our approach.

5.1 Related Work

Several methods have been proposed for identifing the target of an opinion ex-

pression. Most of the work has been done in the context of product reviews min-

ing [91, 105, 127, 180]. In this context, opinion targets usually refer to product

features (i.e. product components or attributes, as defined by Liu [115]).

In the work of Hu and Liu [91], they treat frequent nouns and noun phrases as

product feature candidates. In our work, we extract as targets frequent noun phrases

and named entities that are used by two ore more different discussants. Scaffidi et

al. [168] propose a language model approach to product feature extraction. They

assume that product features are mentioned more often in product reviews than

they appear in general English text. However, such statistics may not be reliable

when the corpus size is small. Somasundaran and Wiebe [175] present a rule-based

method for pairing opinion expressions with the features of a product (e.g. screen, os,

etc.). They mine the web to learn associations between products and their features.

Hassan et al. [75] present a method for identifying sentences that carry attitude

from the text writer toward the text recipient. They define attitude as the mental

position of one participant with regard to another participant. A detailed survey that

covers techniques and approaches in sentiment analysis and opinion mining could be

found in [146].

In another related work, Jakob and Gurevych [94] showed that resolving the

anaphoric links in the text significantly improves opinion target extraction. In our

work, we use anaphora resolution to improve opinion-target pairing as shown in

Section 5.2 below.
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5.2 Approach

In this section, we describe a component that takes as input a discussion thread

split into posts and has the reply structure and the opinion expressions in each post

identified, The output is a set of attitude targets and the opinion words associated

with each of them.

5.2.1 Target Identification

The goal of this step is to identify the possible targets of opinion in a discussion.

A target could be another discussant, a subtopic, or an entity mentioned in the

discussion.

Identifying Discussant Targets

We use string matching to identify discussant targets. If a post B is a response to

post A and post B contains a second person pronoun (you, yours, or yourself ), we

infer that the author of B is targeting the author of A. Likewise, if a post C contains

the screen name of anther participant in the discussion, we infer that the author of

C is targeting that participant. We consider a discussant as a candidate target only

if the discussants mention appears in the same sentence with a polarized expression.

Identifying Subtopic Targets

The target of opinion can also be a subtopic. Subtopic targets often appear as

noun groups (e.g. The new immigration law). We use shallow parsing to identify

noun groups (NG). Dealing with all noun groups as subtopics results in a lot of noise.

Therefore, we put two restrictions on noun groups that we consider as targets. First,

the noun group should be mentioned by at least two different discussants. Second,

the length of the noun group should be 2 or more words.
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Named Entities Subtopics
Barack Obama The republican nominee

Middle East The maverick economists
Bush Conservative ideologues

Bob McDonell The Nobel prize
Iraq The federal government

Table 5.1:
Some of the entities identified using NER and NP Chunking in a discussion thread about
the US 2012 elections

Identify Entity Targets

The third type of targets is named entities that are mentioned in the discussion.

The named entities that we consider are persons (e.g. Bill Gates), organizations (e.g.

Microsoft Corporation), and locations (e.g. United States). We impose no length

restriction on named entities that are considered as targets, but we require that an

entity be mentioned by at least two different discussants.

Table 5.1 lists some examples of subtopics and entities identified in a discussion

about the 2012 elections in the United States of America.

Co-reference Resolution

A challenge that always arises when performing text mining tasks at this level

of granularity is that the same subtopic or named entity may be referred to using

different phrases. For example, the noun group, ”the new immigration law” in snip-

pet (1) above and the noun group, ”this law” in snippet (2) both refer to the same

thing. It is also common to refer to topics and entities using anaphorical pronouns.

For example, the following snippet contains an explicit mention of the entity Obama

in the first sentence, and then uses a pronoun to refer to the same entity in the

second sentence. The opinion word unbeatable appears in the second sentence and

is associated with the pronoun He. In the next section, it will become clear why

knowing which entity does the pronoun He refers to is essential for opinion-target

pairing.
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(3) It doesn’t matter whether you vote for Obama. He is unbeatable.

Jakob and Gurevych [94] showed experimentally that resolving anaphoric links in

text significantly improves opinion target extraction. We use the Stanford CoreNLP

API.1 for noun group identification, named entity recognition, and coreference reso-

lution.

5.2.2 Opinion-Target Pairing

At this point, we have all the opinion words and the potential targets identified

separately. The next step is to determine which opinion word is targeting which

target. We propose three approaches for this problem: one unsupervised that uses

dependency rules and two supervised that use classification and sequence labeling

techniques. In the following subsections, we describe the different methods.

5.2.3 Rule-based Opinion-Target Pairing

In this section, we describe a rule based approach for opinion-target pairing. Our

rules are based on the dependency relations that connect the words in a sentence.

We use the Stanford Parser [104] to generate the dependency links of each sentence

in the thread. An opinion word and a target are paired together if they stratify at

least one of our dependency rules. Table 5.2 illustrates some of these rules. The rules

basically examine the types of the dependencies on the shortest path that connect the

opinion word and the head of the target in the dependency parse tree. It has been

shown in previous work on relation extraction that the shortest dependency path

between any two entities captures the information required to assert a relationship

between them [35].

1http://nlp.stanford.edu/software/corenlp.shtml
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ID Rule In Words Example
R1 OP → nsubj → TR The target TR is the nominal

subject of the opinion word
OP

TARGETTR is goodOP .

R2 OP → dobj → TR The target T is a direct ob-
ject of the opinion OP

I hateOP TARGETTR

R3 OP → prep ∗ → TR The target TR is the object
of a preposition that modifies
the opinion word OP

I totally disagreeOP with
youTR.

R4 TR→ amod→ OP The opinion is an adjectival
modifier of the target

The badOP TARGETTR is
spreading lies

R5 OP → nsubjpass→ TR The target TR is the nominal
subject of the passive opinion
word OP

TARGETTR is hatedOP by ev-
erybody.

R6 OP → prep ∗ → poss →
TR

The opinion word OP con-
nected through a prep ∗ re-
lation as in R2 to something
possessed by the target TR

The main flawOP in yourTR

analysis is that it’s based on
wrong assumptions.

R7 OP → dobj → poss →
TR

The target TR possesses
something that is the direct
object of the opinion word
OP

I likeOP TARGETTR’s bril-
liant ideas.

R8 OP → csubj → nsubj →
TR

The opinion word OP is a
causal subject of a phrase
that has the target TR as its
nominal subject

What TARGETTR announced
was misleadingOP .

Table 5.2: Examples of the dependency rules used for opinion-target pairing.
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5.2.4 Classification-based Opinion-Target Pairing

In this approach, we pose the problem as a classification problem. For every

possible opinion-target pair (OPi, TRj) in a sentence, we use a machine learning

classifier to determine if TRj is the target of OPi. We train an SVM model on a set

of sentences with labeled opinion-target pairs. We use a set of syntactic, structural,

and dependency features that capture the relation between the opinion word and the

candidate target. The features are as follows:

• Distance: the number of words between the position of the opinion word and the

position of the head word of the candidate target. For example, in sentence (4)

below, the distance between the opinion word good and the head of the target

law is 8.

(4) The new law, which will be enforced starting next month, is good for our community.

• Relative Position: whether the candidate target occurs in the sentence before

or after the opinion word. In sentence (4) above the target occurs before the

opinion expression.

• Dependency path: all the dependency relations on the shortest path that con-

nects the opinion word to the head word of target. In sentence (4) above the

opinion expression good is directly connected to the head law through the rela-

tion: nsubj(good, law). In this case, this feature take the value OP
nsubj→ TR.

• Dependency path length: the length of the shortest dependency path that con-

nects the opinion word and the head word. For example, in sentence (4) above,

the length of the shortest dependency path between good and law is 1.

• Syntactic path: all the nodes on the shortest path in the syntactic parse tree
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that connects the opinion word and the head of the target. In sentence (4)

above, the path is: NN −NP −NP − S − V P − ADJP − JJ .

• Syntactic path length: the length of the shortest syntactic path described in the

previous feature.

• Opinion word part-of-speech: The part-of-speech tag of the opinion word. In

the example above, the POS tag of good is JJ .

• Least common ancestor: the least common ancestor node of both the opinion

word and the target head in the syntactic parse tree. In the example above, the

common ancestor node for good and law is S.

We extract one feature vector for every possible opinion word and candidate target

pair in the sentence. For example, if a sentence contains 2 opinion words and 3

candidate targets, we extract 6 feature vectors. The feature vector is labeled 1 if it

corresponds to an actual opinion-target pair, and 0 otherwise.

5.2.5 CRF-based Opinion-Target Pairing

In this method, we address the problem as a sequence labeling task. We use

Conditional Random Fields (CRF) as our sequence labeling algorithm. The features

used for training the CRF model are similar to the features used in the classification

approach. We extract the features for every token in the sentence. if the token is the

head of the target, we label it 1, and 0 otherwise. If the sentence contains multiple

opinion words, we produce a training example per opinion word. Table 5.3 shows

the training example that corresponds to the sentence “I agree with you”.
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Token POS Distance Position Dep. Path Dep. Length Syn. Path Syn Length Common Anc.

I PRP 1 BF nsubj 1 PRP-NP-S-VP-VBP 5 S

agree VBP 0 SL - 0 - 0 VBP

with IN 1 AF prep 1 IN-PP-VP-VBP 4 VP

you PRP 2 AF prep-pobj 2 PRP-NP-PP-VP-VBP 5 VP

. . 3 AF - -1 .-S-VP-VBP 4 S

Table 5.3: One of the training examples used to train the opinion-target pairing CRF model

5.3 Representation

If a sentence S in a post written by participant Pi contains an opinion word OPj

and a target TRk, and if the opinion-target pair satisfies one of our dependency rules,

we say that Pi expresses an attitude towards TRk. The polarity of the attitude is

determined by the polarity of OPj. We represent this as Pi
+→ TRk if OPj is positive

and Pi
−→ TRk if OPj is negative. If the opinion word falls inside a negation scope

as determined by the method described in Chapter IV, the polarity is reversed.

It is likely that the same participant Pi express sentiment toward the same target

TRk multiple times in different sentences in different posts. We keep track of the

counts of all the instances of positive/negative attitude that Pi expresses toward

TRk. We represent this as Pi
m+−−→
n−

TRk where m (n) is the number of times Pi

expressed positive (negative) attitude toward TRk.

5.4 Evaluation

5.4.1 Data

For training and testing, we use the J.D. Power and Associates (JDPA) senti-

ment corpus [100]. JDPA consists of 515 blog posts about automobiles and digital

cameras. The data is manually annotated for opinion words and named, nominal,

and pronominal mentions of entities. Opinion-target relations are also annotated in

the data. The data contains 330,762 tokens which make up 19,322 sentences, 87,532

mentions, 15,637 sentiment expressions, and 22,662 relations between entities. We
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Precision Recall F-Measure
Rule-based 0.88 0.44 0.59
CRF 0.75 0.56 0.64
SVM 0.73 0.60 0.66

Table 5.4: Results of opinion-target pairing using the three proposed methods

train our models on data feature examples extracted from this data set.

5.4.2 Results

We compare the three methods: the rule based method, the classification method,

and the sequence labeling method. We used Weka [72] and Libsvm [38] to run the

classification experiments. We used a linear kernel with c=1. We used CRF++ 2

for the sequence labeling experiments. We set all the parameters of CRF++ to

default. Table 5.4 shows the results of 10-fold cross validation on the data. The

results show that the rule-based method achieves a higher precision but lower recall

than the supervised methods. The performance of the CRF model is comparable to

the performance of SVM model. CRF achieves higher precision but lower recall than

SVM. Overall, SVM achieves better F-measure.

2http://crfpp.googlecode.com/svn/trunk/doc/index.html



CHAPTER VI

Application: Subgroup Detection

Online forums discussing ideological and political topics are common1. When

people discuss a disputed topic they usually split into subgroups. The members of

each subgroup carry the same opinion toward the discission topic. The member of

a subgroup is more likely to show positive attitude to the members of the same

subgroup, and negative attitude to the members of opposing subgroups.

For example, let us consider the following two snippets from a debate about school

uniform.

(1) Discussant 1: I believe that the school uniform is a good idea because school uniform improve student

attendance.

(2) Discussant 2: I disagree with you. School uniform is a bad idea because people cannot show their

personality.

In (1), the writer is expressing positive attitude regarding school uniform. The writer

of (2) is expressing negative attitude (disagreement) towards the writer of (1) and

negative attitude regarding the idea of school uniform. It is clear from this short

dialog that the writer of (1) and the writer of (2) are members of two opposing

subgroups. Discussant 1 is supporting school uniform, while Discussant 2 is against

it.
1www.politicalforum.com, www.createdebate.com, www.forandagainst.com, etc

66
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In this chapter, we present two unsupervised approaches for determining the sub-

group membership of each participant in a discussion. We use the techniques pre-

sented in previous chapters to identify the reply structure of of discussion and to

identify opinion expressions and their targets.

In the first approach to subgroups detection, we construct a vector of attitude

features for each participant in the discussion,. We call this vector the discussant

attitude profile. The attitude profile of a discussant contains an entry for every other

discussant and an entry for every subtopic or entity mentioned in the discission. We

use clustering techniques to cluster the attitude vector space. We use the clustering

results to determine the subgroup structure of the discussion group and the subgroup

membership of each participant.

In the second approach, we use attitude predictions to construct a signed network

representation of the discussion thread. In this network nodes represent discussants.

Edges represent attitude relations among discussants. An edge carries a positive sign

if the relation between the two discussants it connects is positive; otherwise, the sign

of the edge is negative. This work is based on the work published in [15].

The rest of this chapter is organized as follows. Section 6.1 reviews previous work.

Section 6.2 presents our approach. Experiments, results and analysis are presented

in Section 6.4. We conclude in Section 6.9.

6.1 Related Work

Previous work has studied community mining in social media sites. Somasundaran

and Wiebe [175] presents an unsupervised opinion analysis method for debate-side

classification. They mine the web to learn associations that are indicative of opinion

stances in debates and combine this knowledge with discourse information. Anand
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et al. [21] present a supervised method for stance classification. They use a number

of linguistic and structural features such as unigrams, bigrams, cue words, repeated

punctuation, and opinion dependencies to build a stance classification model. This

work is limited to dual sided debates and defines the problem as a classification

task where the two debate sides are know beforehand. Our work is characterized by

handling multi-side debates and by regarding the problem as a clustering problem

where the number of sides is not known by the algorithm. This work also utilizes

only discussant-to-topic attitude predictions for debate-side classification. Out work

utilizes both discussant-to-topic and discussant-to-discussant attitude predictions.

In another work, Kim and Hovy [130] predict the results of an election by analyzing

discussion threads in online forums that discuss the elections. They use a supervised

approach that uses unigrams, bigrams, and trigrams as features. In contrast, our

work is unsupervised and uses different types information. Moreover, although this

work is related to ours at the goal level, it does not involve any opinion analysis.

Another related work classifies the speakers side in a corpus of congressional floor

debates, using the speakers final vote on the bill as a labeling for side [185, 28,

209]. This work infers agreement between speakers based on cases where one speaker

mentions another by name, and a simple algorithm for determining the polarity of the

sentence in which the mention occurs. This work shows that even with the resulting

sparsely connected agreement structure, the MinCut algorithm can improve over

stance classification based on textual information alone. This work also requires

that the debate sides be known by the algorithm and it only identifies discussant-

to-discussant attitude. In our experiments below we show that identifying both

discussant-to-discussant and discussant-to-topic attitudes achieves better results.
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Discussion Thread Discussant Attitude Profiles 

Figure 6.1:
A diagram illustrating the subgroup detection approach that constructs vectors repre-
senting discussant attitudes and then cluster them

6.2 Approach

In this section, we describe a system that takes a discussion thread as input and

outputs the subgroup membership of each discussant. The system starts by applying

the methods described in the previous chapters to process the thread. First, it parses

the discussion thread to identify posts, discussants, and the reply structure of the

thread. Next, the system identifies opinion expressions and their targets. Once this

processing is done, the system uses attitude predictions to determine the subgroup

membership of each discussant. We propose two approaches for this task and present

them in the following subsections.

6.2.1 Approach I: Clustering Attitude Vector Space

In this approach, a vector called Discussant Attitude Profile (DAP) is constructed.

This vector represents the attitude the discussant has towards the different targets

of opinion in the discussion. Subgroups are identified by clustering the vector space

of all DAPs. Figure 6.1 illustrates the pipeline of this approach.
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Target1 ……… Targetn 

+ - all + - all + - all 

DAP1 

Figure 6.2: Illustration of the discussant attitude profile

Discussant Attitude Profile

We propose a representation of discussantsáttitudes towards the identified targets

in the discussion thread. As stated above, a target could be another discussant or

an entity mentioned in the discussion. Our representation is a vector containing

numerical values. The values correspond to the counts of positive/negative attitudes

expressed by the discussant toward each of the targets. We call this vector the

discussant attitude profile (DAP). We construct a DAP for every discussant. Given

a discussion thread with d discussants and e entity targets, each attitude profile

vector has n = (d + e) ∗ 3 dimensions (Figure 6.2). In other words, each target

(discussant or entity) has three corresponding values in the DAP: 1) the number of

times the discussant expressed positive attitude toward the target, 2) the number

of times the discussant expressed a negative attitude towards the target, and 3) the

number of times the the discussant interacted with or mentioned the target. It has to

be noted that these values are not symmetric since the discussions explicitly denote

the source and the target of each post.

Clustering

At this point, we have an attitude profile (or vector) constructed for each discus-

sant. Our goal is to use these attitude profiles to determine the subgroup membership

of each discussant. We can achieve this goal by noticing that the attitude profiles of
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discussants who share the same opinion are more likely to be similar to each other

than to the attitude profiles of discussants with opposing opinions. This suggests that

clustering the attitude vector space will achieve the goal and split the discussants

into subgroups according to their opinion.

6.2.2 Approach II: Signed Network Partitioning

In this approach, we construct a signed network representation of the discussion

thread. Figure 6.3 illustrates the pipeline of this approach.

Signed Network Construction

Each participant is represented by a node in the network. A signed edge is created

between two participants A and B in one of these cases:

1. If A and B exchanged 2 or more posts. The edge is assigned a negative sign if

at least one of the posts contained a mention of the post recipient that was a

target of a negative opinion expression; otherwise, a positive sign is assigned to

the edge.

2. If both A and B posted text that contains a mention of a subtopic or an entity

and targeted it with an opinion expression. The sign of the edge is positive if

their opinions have the same polarity. The sign of the edge is negative if their

opinions have opposite polarities.

Signed Network Partitioning

To detect subgroups in a discussion thread, we partition the corresponding signed

network. We experimented with two different partitioning methods. The first one

is a greedy optimization algorithm that is based on the principals of the structural

balance theory [51]. A criterion function for a local optimization partitioning pro-
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Figure 6.3:
A diagram illustrating the subgroup detection approach that constructs a signed net-
work representation of the discussion and then partitions it

cedure is constructed such that positive links are dense within groups and negative

links are dense between groups.

For any potential partition C, we seek to optimize the following function:

(6.1) P (C) = α
∑
n

+(1− α)
∑
p

where
∑

n is the number of negative links between nodes in the same subgroup,∑
p is the number of positive links between nodes in different subgroups, and α is a

trade factor that represents the importance of the two terms. We set α to 0.5 in all

our experiments.

Clusters are selected such that:

(6.2) C∗ = arg minP (C)

A greedy optimization framework is used to minimize P (C). Initially, nodes are

randomly partitioned into t different clusters and the criterion function P is evaluated

for that cluster. Every cluster has a set of neighbors in the cluster space. A neighbor

cluster is obtained by moving one node from one cluster to another, or by exchanging

two nodes in two different clusters. Neighbor partitions are evaluated, and if one with

a lower value for the criterion function is found, it is set as the current partition. This
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greedy procedure is repeated with random restarts until a minimal solution is found.

To determine the number of subgroups t, we select t that minimizes the optimization

function P(C). In all experiments we used an upper limit of t = 5. This technique

was able to identify the correct number of subgroups in 77% of the times. In the rest

of the cases, the number was different from the correct number by at most 1 except

for a single case where it was 2.

The second partitioning method uses a recursive agent-based algorithm [208].

This algorithm partitions a signed network into subnetworks in two phases. In the

first phase, a random agent starts from an arbitrary node s and walks l random

steps before it stops. At each step, the agent selects the next node based on the

transition probability distribution that depends on the degree of connectivity. The

process is repeated many times and at each iteration, the node at which the random

walk stopped is recorded. This information is then used to compute the probability

of reaching each node from the start node in l random steps. The best value for l

was chosen using the development set. In the following experiments, l was set to 5

unless otherwise specified.

Intuitively, the probability of remaining in the same community after a number

of transitions, is greater than that of going out to a different community. Based

on this observation, the nodes in the network are ordered by the probability of

reaching them from the start node. The next step is to pick a cut off point c so

that all the nodes with probability higher than c are extracted and used to form the

community that contains the start node s. The nodes with lower probabilities form

an opposing community. The same process is then applied recursively to the two

extracted communities until no more communities can be extracted. This happens

when all the nodes have a probability above c. The cut off value c is chosen based on
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a criterion function that tries to maximize density of intra-community positive links

and the maximize the density of the inter-community negative links. The details of

how c is computed is described in [208]. FEC does not need to know the number of

clusters in advance because it starts from the big group and recursively split it into

subgroups until no more split is possible.

6.3 Data

In this section, we describe the data sets used in this paper. We use three different

data sets. The first data set (politicalforum, henceforth) consists of 5,743 posts

collected from a political forum2. All the posts are in English. The posts cover 12

disputed political and ideological topics. The discussants of each topic were asked to

participate in a poll. The poll asked them to determine their stance on the discussion

topic by choosing one item from a list of possible arguments. The list of participants

who voted for each argument was published with the poll results. Each poll was

accompanied by a discussion thread. The people who participated in the poll were

allowed to post text to that thread to justify their choices and to argue with other

participants. We collected the votes and the discussion thread of each poll. We used

the votes to identify the subgroup membership of each participant.

The second data set (createdebate, henceforth) comes from an online debating

site 3. It consists of 30 debates containing a total of 2,712 posts. Each debate is about

one topic. The description of each debate states two or more positions regarding the

debate topic. When a new participant enters the discussion, she explicitly picks a

position and posts text to support it, support a post written by another participant

who took the same position, or to dispute a post written by another participant who

2http://www.politicalforum.com
3http://www.createdebate.com
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took an opposing position. We collected the discussion thread and the participant

positions for each debate.

The third data set (wikipedia, henceforth) comes from the Wikipedia4 discussion

section. When a topic on Wikipedia is disputed, the editors of that topic start a

discussion about it. We collected 117 Wikipeida discussion threads. The threads

contains a total of 1,867 posts.

The politicalforum and createdebate data sets are self labeled as described above.

To annotate the Wikipedia data, we asked an expert annotator to read each of

the Wikipedia discussion threads and determine whether the discussants split into

subgroups in which case he was asked to determine the subgroup membership of each

discussant.

Table 6.1 lists few example threads from our three data sets. Table 6.2 shows

a portion of discussion thread between three participants about enforcing a new

immigration law in Arizona. This thread appeared in the polictalforum data set.

The text posted by the three participants indicates that A’s position is with enforcing

the law, that B agrees with A, and that C disagrees with both. This means that A

and B belong to the same opinion subgroup, while belongs to an opposing subgroup.

We randomly selected 6 threads from our data sets (2 from politicalforum, 2 from

createdebate, and 2 from Wikipedia) and used them as development set. This set was

used to develop our approach.

6.4 Evaluation

In this section, we present several levels of evaluation of our system and the two

approaches to subgroup detection. First, we compare our system to baseline systems.

Second, we study how the choice of the clustering (portioning) algorithm impacts

4http://www.wikipedia.com
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Source Topic Question #Sides #Posts #Participants

Politicalforum

Arizona
Immigration
Law

Do you support Arizona in
its decision to enact their
Immigration Enforcement
law?

2 738 59

Airport
Security

Should we pick mus-
lims out of the line
and give additional
scrutiny/screening?

4 735 69

Vote for
Obama

Will you vote for Obama
in the 2012 Presidential
elections?

2 2599 197

Createdebate

Evolution Has evolution been scien-
tifically proved?

2 194 98

Social net-
working
sites

It is easier to maintain
good relationships in so-
cial networking sites such
as Facebook.

2 70 31

Abortion Should abortion be
banned

3 477 70

Wikipedia

Ireland Misleading description of
Irland island partition

3 40 10

South Africa
Goverment

Was the current form of
South African government
born in May 1910?

3 23 5

Oil Spill Obama’s response to gulf
oil spill

3 30 12

Table 6.1: Example threads from our three datasets

Participant A posted: I support Arizona because they have every right to do
so. They are just upholding well-established federal
law. All states should enact such a law.

Participant B commented
on A’s post:

I support the law because the federal government is
either afraid or indifferent to the issue. Arizona has
the right and the responsibility to protect the people
of the State of Arizona. If this requires a possible
slight inconvenience to any citizen so be it.

Participant C commented
on B’s post:

That is such a sad thing to say. You do realize that
under the 14th Amendment, the very interaction of
a police officer asking you to prove your citizenship
is Unconstitutional? As soon as you start trading
Constitutional rights for ”security”, then you’ve lost.

Table 6.2: Example posts from the Arizona Immigration Law thread
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the results. Third, we study the impact of each component in our thread processing

pipeline on the performance. All the results reported in this section that show

difference in performance are statistically significant at the 0.05 level (as indicated

by a 2-tailed paired t-test). Before describing the experiments and presenting the

results, we first describe the evaluation metrics we use.

6.4.1 Evaluation Metrics

We use two evaluation metrics to evaluate subgroups detection accuracy: Purity

and Entropy. To compute Purity [122], each cluster is assigned the class of the major-

ity vote within the cluster, and then the accuracy of this assignment is measured by

dividing the number of correctly assigned members by the total number of instances.

It can be formally defined as:

(6.3) purity(Ω, C) =
1

N

∑
k

max
j
|ωk ∩ cj|

where Ω = {ω1, ω2, ..., ωk} is the set of clusters and C = {c1, c2, ..., cJ} is the set of

classes. ωk is interpreted as the set of documents in ωk and cj as the set of documents

in cj. The purity increases as the quality of clustering improves.

The second metric is Entropy. The Entropy of a cluster reflects how the members

of the k distinct subgroups are distributed within each resulting cluster; the global

quality measure is computed by averaging the entropy of all clusters:

(6.4) Entropy = −
j∑ nj

n

i∑
P (i, j)× log2P (i, j)

where P (i, j) is the probability of finding an element from the category i in the

cluster j, nj is the number of items in cluster j, and n the total number of items
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Method Createdebate Politicalforum Wikipedia

P E P E P E

DAPC - EM 0.63 0.71 0.61 0.82 0.63 0.61

DAPC - FF 0.63 0.70 0.60 0.83 0.64 0.59

DAPC - kmeans 0.64 0.68 0.61 0.80 0.66 0.55

Table 6.3: Comparison of different clustering algorithms

in the distribution. In contrast to purity, the entropy decreases as the quality of

clustering improves.

6.4.2 Evaluation of The Attitude Vectors Clustering Approach

Choice of the clustering algorithm

We experimented with three different clustering algorithms: expectation maxi-

mization (EM), and k-means [119], and FarthestFirst (FF) [86, 47]. As we did in the

previous subsection, we use Eculidean distance to measure the distance between vec-

tors and we set the number of clusters to
√
d/2 where d is the number of discussants.

All the system (DAP) components are included as describe in Section 8.3. The purity

and entropy values using each algorithm are shown in Table 6.3. Although k-means

seems to be performing slightly better than other algorithms, the differences in the

results are not significant. This indicates that the choice of the clustering algorithm

does not have a noticeable impact on the results. We also experimented with using

Manhattan distance and cosine similarity instead of Euclidean distance to measure

the distance between attitude vectors. We noticed that the choice of the distance

does not have significant impact on the results as well.

Component Evaluation

In this subsection, we evaluate the impact of the different components in the

pipeline on the system performance. We do that by removing each component from

the pipeline and measuring the change in performance. We perform the following
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experiments: 1) We run the full system with all its components included (DAPC).

2) We run the system and include only discussant-to-discussant attitude features in

the attitude vectors (DAPC-DD). 3) We include only discussant-to-entity attitude

features in the attitude vectors (DAPC-DE). 4) We include only sentiment features

in the attitude vector; i.e. we exclude the interaction count features (DAPC-SE).

5) We include only interaction count features to the attitude vector; i.e. we ex-

clude sentiment features (DAPC-INT). 6) We skip the anaphora resolution step in

the entity identification component (DAPC-NO AR). 7) We only use named entity

recognition to identify entity targets; i.e. we exclude the entities identified through

noun phrasing chunking (DAPC-NER). 8) Finally, we only noun phrase chunking

to identify entity targets (DAPC-NP). In all these experiments k-means is used for

clustering and the number of clusters is set as explained in the previous subsection.

The results show that all the components in the system contribute to better perfor-

mance of the system. We notice from the results that the performance of the system

drops significantly if sentiment features are not included. This is result corroborates

our hypothesis that interaction features are not sufficient factors for detecting rift in

discussion groups. Including interaction features improve the performance (although

not by a big difference) because they help differentiate between the case where par-

ticipants A and B never interacted with each other and the case where they interact

several time but never posted text that indicate difference in opinion between them.

We also notice that the performance drops significantly in DAPC-DD and DAPC-

DD which also supports our hypotheses that both the sentiment discussants show

toward one another and the sentiment they show toward the aspects of the discussed

topic are important for the task. Although using both named entity recognition

(NER) and noun phrase chunking achieves better results, it can also be noted from
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Method Createdebate Politicalforum Wikipedia

P E P E P E

DAPC 0.64 0.68 0.61 0.80 0.66 0.55

DAPC-DD 0.59 0.77 0.57 0.86 0.62 0.61

DAPC-DE 0.60 0.69 0.58 0.84 0.58 0.78

DAPC-SE 0.62 0.70 0.60 0.83 0.61 0.62

DAPC-INT 0.54 0.88 0.52 0.91 0.57 0.85

DAPC-NO AR 0.62 0.72 0.60 0.84 0.64 0.60

DAPC-NER 0.61 0.71 0.58 0.86 0.63 0.59

DAPC-NP 0.63 0.75 0.59 0.84 0.65 0.62

Table 6.4: Impact of system components on the performance

Precision Recall F1
positive 66.1% 96.2% 78.4%
negative 70.0% 60.1% 64.7%

Table 6.5: Performance of the signed network extraction component

the results that NER contributes more to the system performance. Finally, the re-

sults support Jakob and Gurevych [94] findings that anaphora resolution aids opinion

mining systems.

6.4.3 Evaluation of The Signed Network Partitioning Approach

Signed Network Construction Evaluation

We used the createdebate dataset to evaluate extracting signed networks from

discussions. Table 6.5 shows the average precision, recall, and F1 for predicting the

edge signs in the networks extracted from the createdebate dataset.

Choice of Partitioning Algorithm

We compare the performance of the two signed network partitioning algorithms

described above. We refer to the greedy optimization algorithm of [51] as DM. We

refer to the random walk based algorithm of [208] as FEC. Table 6.6 shows the

average purity P and entropy E values of the method based on signed networks

and the baselines using different partitioning algorithms. The results show that
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Method Createdebate Politicalforum Wikipedia

P E P E P E

Signed Network - DM 0.61 0.74 0.58 0.80 0.65 0.54

Signed Network - FEC 0.59 0.78 0.57 0.87 0.63 0.71

Table 6.6: Comparison of two partitioning algorithms

the greedy partitioning algorithm DM performs slightly better than the random

walk based algorithm FEC. This could be explained by our observation that FEC

performs better on large networks (> 150 nodes). Most of the discussions have less

than 150 participants.

6.4.4 Comparison to Baseline Systems

We evaluate two baseline methods. The first baseline (GC) uses graph clustering

to partition a network based on the interaction frequency between participants. We

build a graph where each node represents a participant. Edges link participants

if they exchange posts, and edge weights are based on the number of interactions.

We tried two methods for clustering the resulting graph: spectral partitioning [118]

and a hierarchical agglomeration algorithm which works by greedily optimizing the

modularity for graphs [42].

The second baseline (TC) is based on the premise that the member of the same

subgroup are more likely to use vocabulary drawn from the same language model.

We collect all the text posted by each participant and create a tf-idf representations

of the text in a high dimensional vector space. We then cluster the vector space

to identify subgroups. We use k-means [119] as our clustering algorithm in this

experiment (comparison of various clustering algorithms is presented later in the

chapter). The distances between vectors are Euclidean distances. K-means needs

the number of clusters as input. We follow the rule of thumb [123] of setting this
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Method Createdebate Politicalforum Wikipedia

P E P E P E

GC - Spectral 0.50 0.85 0.50 0.88 0.49 0.89

GC - Hierarchical 0.48 0.86 0.47 0.89 0.49 0.87

TC - kmeans 0.51 0.84 0.49 0.88 0.52 0.85

Table 6.7: Comparison to baseline systems

number to
√
d/2 where d is the number of discussants. Table 6.7 shows the purity

and entropy results achieved by the baseline systems.

The results show that our system (both approaches) performs significantly better

the baselines on the three datasets in terms of both the purity (P ) and the entropy

(E) (notice that lower entropy values indicate better clustering). The values reported

are the average results of the threads of each dataset. We believe that the baselines

performed poorly because the interaction frequency and the text similarity are not

key factors in identifying subgroup structures. Many people would respond to people

they disagree with more, while others would mainly respond to people they agree

with most of the time. Also, people in opposing subgroups tend to use very similar

text when discussing the same topic and hence text clustering does not work as well.

6.5 Detecting Subgroups in Arabic Discussion

Unfortunately, not much work has been done on Arabic sentiment analysis and

opinion mining. Abbasi et al. [2] applies sentiment analysis techniques to identify and

classify document-level opinions in text crawled from English and Arabic web forums.

Hassan et al. [73] proposed a method for identifying the polarity of non-English words

using multilingual semantic graphs. They applied their method to Arabic and Hindi.

Abdul-Mageed and Diab [3] annotated a corpus of Modern Standard Arabic (MSA)

news text for subjectivity at the sentence level. In a later work [4], they expanded
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their corpus by labeling data from more genres using Amazon Mechanical Turk.

Abdul-Mageed et al. [6] developed SAMAR, a system for subjectivity and Sentiment

Analysis for Arabic social media genres. We use this system as a component in our

proposed system.

In this section, we address the problem of identifying opinion subgroups in Arabic

discussions. We propose a pipeline that consists of five components. The input to

the pipeline is a discussion thread in Arabic crawled from a discussion forum. The

output is the list of participants in the discussion and the subgroup membership

of each discussant. We describe the components of our pipeline in the following

subsections.

6.5.1 Preprocessing

The input to this component is a discussion thread in HTML format. We parse

the HTML file to identify the posts, the discussants, and the thread structure. We

transform the Arabic content of the posts and the discussant names that are written

in Arabic to the Buckwalter encoding [34]. We use AMIRAN [49], a system for

processing Arabic text, to tokenize the text and identify noun phrases.

6.5.2 Identifying Opinionated Text

To identify opinion-bearing text, we start from the word level. We identify po-

larized words that appear in text using a lexicon of Arabic polarized words. In our

experiments, we use Sifat [5], a lexicon of 3982 Arabic adjectives labeled as positive,

negative, or neutral.

The polarity of a word may be dependant on its context [205]. For example, a

positive word that appears in a negated context should be treated as expressing neg-

ative opinion. To identify the polarity of a word given the sentence it appears in, we

use SAMAR [6], a system for subjectivity and sentiment analysis for Arabic social
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media genres. SAMAR labels a sentence that contains an opinion expression as pos-

itive, negative, or neutral taking into account the context of the opinion expression.

The reported accuracy for SAMAR on different data sets ranges between 84% and

95% for subjectivity classification and 65% and 81% for polarity classification.

6.5.3 Identifying Opinion Targets

In this step, we determine the targets that the opinion is expressed towards. We

treat as an opinion target any noun phrase (NP) that appears in a sentence that

SAMAR labeled as subjective (positive or negative). To avoid the noise that may

result from including all noun phrases, we limit what we consider as an opinion target

to the ones that appear in at least two posts written by two different participants.

Since, the sentence may contain multiple possible targets for every opinion expression,

we associate each opinion expression with the target that is closest to it in the

sentence. For each discussant, we keep track of the targets mentioned in his/her

posts and the number of times each target was mentioned in a positive/negative

context.

6.5.4 Textual Similarity

If two participants share the same opinion, they tend to focus on similar aspects

of the discussion topic and emphasize similar points that support their opinion. To

capture this feature, we follow previous work [69, 48] and apply Latent Dirichelet

Allocation (LDA) topic models to the text written by the different participants. We

use an LDA model with 100 topics. Hence, we represent all the text written in the

discussion by a participant as a vector of 100 dimensions.
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6.5.5 Subgroup Detection

At this point, we have for every discussant the targets towards which he/she

expressed explicit opinion and a 100-dimensions vector representing the LDA dis-

tribution of the text written by him/her. We use this information to represent the

discussion in two representations. In the first representation, each discussant is rep-

resented by a vector. For every target identified in step 3 of the pipeline, we add

three entries in the vector. The first entry holds the total number of times the target

was mentioned by the discussant. The second entry holds the number of times the

target was mentioned in a positive context. The third entry holds the number of

target mentions in a negative context. We also add to this vector the 100 topic en-

tries from the LDA vector of that discussant. So, if the number of targets identified

in step 3 of the pipeline is t then the number of entries in the discussant vector is

3 ∗ t+ 100.

To identify opinion subgroups, we cluster the vector space. We experiment with

several clustering algorithms including K-means [119], FarthestFirst (FF) [86, 47],

and Expectation Maximization (EM).

The second representation is a signed network representation. In this represen-

tation, each discussant is represented by a node in a graph. Two discussants are

connected with an edge if they both mention at least one common target in their

posts. If a discussant mentions a target multiple times in different contexts with

different polarities, the majority polarity is assumed as the opinion of this discussant

with respect to this target. A positive sign is assigned to the edge connecting two

discussants if the number of targets that they have similar opinion towards is greater

than the targets that they have opposing opinion towards, otherwise a negative sign

is assigned to the edge. To identify subgroups, we use the DM algorithm to partition
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the network.

6.5.6 Data

We use data from an Arabic discussion forum, www.Naqeshny.com. Naqeshny is

a platform for two-sided debates in various topics (ideological and political). The

debate starts when a person asks a question (e.g. which political party do you

support?) and gives two possible answers or positions. The members of the site who

are interested in the topic participate in the debate by selecting a position and then

posting text to support that position and dispute the opposing position. This means

that the data set is self labeled for subgroup membership. Since the tools used in

our system are trained on Modern Standard Arabic (MSA) text, we selected debates

that are mostly MSA. The data set consists of 36 debates comprising a total of 711

posts written by 326 users. The average number of posts per discussion is 19.75 and

the average number of participants per discussion is 13.08.

6.5.7 Experiments and Results

We use three metrics to evaluate the resulting subgroups: Purity [122], Entropy,

and F-measure. We ran different variations of the system on the data set described

in the previous section. In one variation, we use the signed network partitioning

approach to detect subgroups. In the other variations, we use the vector space clus-

tering approach. We experiment with different clustering algorithms. We also run

two experiments to evaluate the contribution of both opinion-target counts and la-

tent similarity features on the clustering accuracy. In one run, we use target-opinion

counts only and in the other run we use latent similarity only. Table 6.8 shows the

results. The results show that the clustering approach achieves better results than

the signed network partitioning approach. This can be explained by the fact that the

vector representation is a richer representation and encodes all opinion information

www.Naqeshny.com
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System Purity F-Measure Entropy

Signed Network 0.71 0.67 0.68

Clustering - K-means 0.72 0.70 0.67
Clustering - EM 0.77 0.76 0.50
Clustering - FF 0.72 0.69 0.70

Opinion-Target Only 0.67 0.65 0.72
Text Similarity Only 0.64 0.65 0.74

Table 6.8: Comparison of the different variations of the proposed approach

including counts which are not encoded explicitly in the signed network represen-

tation. The results also show that Expectation Maximization achieves significantly

better results than the other clustering algorithms that we experimented with. It

also shows that both text similarity and opinion-target features are important and

contribute to the performance.

6.6 Systems

In this section, we describe two systems that we developed as an implementation of

the methods proposed in this chapter. AttitudeMiner implements the signed network

approach for detecting subgroups, while SubgroupDetector implements the clustering

approach. In the following subsections, we give a description of the two systems.

6.7 AttitudeMiner

AttitudeMiner is an implementation of the signed network approach for subgroup

detection. The system is implemented in Perl. Some of the components in the

processing pipeline use external tools that are implemented in either Perl, Java,

or Python. All the external tools come bundled with the system. The system is

compatible with all the major platforms including windows, Mac OS, and all Linux

distributions. The installation process is very straightforward. There is a single

installation script that will install the system, install all the dependencies, and do

all the required configurations. The installation requires that Java JRE, Perl, and
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Figure 6.4: The web interface for identifying attitudinal sentences and their polarity

Python be installed on the machine.

The system has a command-line interface that provides full access to the system

functionality. The command-line interface can be used to run the whole pipeline or

any portion of it. It can also be used to access any component directly. Each com-

ponent has a corresponding script that can be run separately. The input and output

specifications of each component are described in the accompanying documentation.

All the parameters that control the performance of the system can also be passed

through the command-line interface.

The system can process any discussion thread that is input to it in a specific XML

format. The final output of the system is also in XML format. The XML schema of

the input/output is described in the documentation. It is the user responsibility to

write a parser that converts an online discussion thread to the expected XML format.

The system package comes with three such parsers for three different discussion sites:

www.politicalforum.com, groups.google.com, and www.createdebate.com.

The distribution also comes with three datasets (from three different sources)

comprising a total of 300 discussion threads. The datasets are annotated with the
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Figure 6.5: The web interface for detecting subgroups in discussions

subgroup labels of discussants. Included in the distribution as well, a script for gen-

erating a visualization of the extracted signed network and the identified subgroups.

AttitudeMiner also has a web interface that demonstrates most of its functionality.

The web interface is intended for demonstration purposes only. No webservice is

provided. Figure 6.5 and Figrue 6.4 show two screenshots for the web interface.

6.8 SubgroupDetector

SubgroupDetector is an implementation of the clustering approach for subgroup

detection. The system is fully implemented in Java. Part-of-speech tagging, noun

group identification, named entity recognition, co-reference resolution, and depen-

dency parsing are all computed using the Stanford Core NLP API.5 The clustering

component uses the JavaML library6 which provides implementations to several clus-

tering algorithms such as k-means, EM, FarthestFirst, and OPTICS.

The system requires no installation. It, however, requires that the Java Runtime

5http://nlp.stanford.edu/software/corenlp.shtml
6http://java-ml.sourceforge.net/
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Figure 6.6: A screenshot of the online demo

Environment (JRE) be installed. All the dependencies of the system come bun-

dled with the system in the same package. The system works on all the standard

platforms.

The system has a command-line interface that provides full access to the system

functionality. It can be used to run the whole pipeline to detect subgroups or any

portion of the pipeline. For example, it can be used to tag an input text with polarity

or to identify candidate targets of opinion in a given input. The system behavior

can be controlled by passing arguments through the command line interface. For

example, the user can specify which clustering algorithm should be used.

To facilitate using the system for research purposes, the system comes with a

clustering evaluation component that uses the ClusterEvaluator package.7. If the

input to the system contains subgroup labels, it can be run in the evaluation mode in

which case the system will output the scores of several different clustering evaluation

metrics such as purity, entropy, f-measure, Jaccard, and RandIndex. The system

also has a Java API that can be used by researchers to develop other systems using

7http://eniac.cs.qc.cuny.edu/andrew/v-measure/javadoc/index.html
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our code.

The system can process any discussion thread that is input to it in a specific

format. The format of the input and output is described in the accompanying doc-

umentation. It is the user responsibility to write a parser that converts an on-

line discussion thread to the expected format. However, the system package comes

with two such parsers for two different discussion sites: www.politicalforum.com and

www.createdebate.com.

The distribution also comes with three datasets (from three different sources)

comprising a total of 300 discussion threads. The datasets are annotated with the

subgroup labels of discussants.

Finally, we created a web interface to demonstrate the system functionality. The

web interface is intended for demonstration purposes only. No webservice is provided.

Figure 6.6 shows a screenshots of the web interface. The online demo can be accessed

at http://clair.eecs.umich.edu/SubgroupDetector/

6.9 Conclusions

In this chapter, we presented an approach for subgroup detection in ideological

discussions. Our system uses Natural Language Processing techniques to identify the

attitude the participants of online discussions carry toward each other and toward the

aspects of the discussion topic. Attitude prediction as well as interaction frequency to

construct an attitude vector for each participant. The attitude vectors of discussants

are then clustered to form subgroups. Our experiments showed that our system

outperforms text clustering and interaction graph clustering. We also studied the

contribution of each component in our system to the overall performance.



Part II. Mining Multiple Perspectives from Scientific

Literature

CHAPTER VII

Introduction

Scientific research is a cumulative activity. The work of downstream researchers

depends on access to upstream discoveries. The footnotes, end notes, or reference

lists within research articles make this accumulation possible. Each time a reference

appears in a scientific paper, it is accompanied by a span of text that describes the

work being cited. We use the term citation text to refer to this text. This text

usually summarizes the contribution of the cited paper from the perspective of the

citer. It may also be used to declare the relation between the citing work and the

cited work. For example, the citing paper may be using an algorithm, a tool, or a

corpus described in the cited paper.

In this part of the thesis, we study multiple viewpoints in scientific literature

through the lens of citations. Citation text can be seen as a summary of how the

scholar sees the cited work from his point of view. Citation text usually highlights

the most important aspects of the cited paper such as the research problem the paper

92
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addresses, the method it proposes, the good results it reports, or even its drawbacks

and limitations.

Bibliometrics (or Scientometrics) is the science that develops quantitative methods

and metrics for evaluating the impact of a research field, the impact of a group

of researchers, or the impact of a paper. Citation analysis and content analysis

are the two main techniques used in bibliometrics. In this work, we study how

analyzing citation text can be used to develop more accurate bibliometric measures

that evaluate the impact of research both quantitatively and qualitatively.

7.1 Related Work

Studying citation patterns and referencing practices has interested researchers for

many years [87, 61]. White [196] provides a good survey of the different research di-

rections that study or use citations. Several research efforts have focused on studying

the different purposes for citing a paper [62, 194, 139, 1, 32]. Bonzi [32] studied the

characteristics of citing and cited works that may aid in determining the relatedness

between them. Garfield [62] enumerated several reasons why authors cite other pub-

lications, including “alerting researchers to forthcoming work”, paying homage to

the leading scholars in the area, and citations which provide pointers to background

readings. Weinstock [194] adopted the same scheme that Garfield proposed in her

study of citations.

The text surrounding citations has been studied and used in previous work. Nanba

and Okumura [143] used the term citing area to refer to citation text. They define

the citing area as the succession of sentences that appear around the location of a

given reference in a scientific paper and have connection to it. They proposed a

rule-based algorithm to identify the citing area of a given reference. Several other
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methods have been proposed for identifying citation text [143, 153, 14, 25].

Citation text has been used in several applications. Nakov et al. [141] use the

term citances to refer to sentences that contain explicit reference to other papers.

They explored several different uses of citances including the creation of training

and testing data for semantic analysis, synonym set creation, database curation,

summarization, and information retrieval.

Other examples of applications in which citation text has been used include:

scientific paper summarization [53, 152, 128, 155, 153, 10], automatic survey gener-

ation [142, 131], citation function classification [142, 184, 173, 183], and paraphrase

recognition [170].

7.2 Outline of Part II

In this part of the thesis, we study citation text and present some useful applica-

tions in which it can be used. We first address the problem of identifying citation

text. This involves identifying text fragments that contain explicit references to other

papers and the context and the scope of each reference. We use the term citation

context to refer to the sentences that appear around an explicit reference and talk

about it. We use the term reference scope to refer to the fragments of sentences that

talk about a reference in citing sentences that cite multiple references. We analyze

citation text to identify the author intention behind citing a reference and whether

the citation is polarized (i.e. carries a non-neutral sentiment towards the cited work).

We use this analysis of citation purpose and polarity to predict the future promi-

nence of a paper. We also show how this analysis can be used to build more accurate

and more informative bibliometric measures. We also present a method for produc-

ing citation-based summaries of scientific articles from the viewpoints of the other
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scholars, those who read the paper and cited it. Although several methods have been

advised for this problem, our method is uniquely characterized by focusing on the

coherence and the readability of summaries generated from citation text.

Chapter VIII describes our approach for identifying citation text. This includes

identifying reference anchors, sentences that contain references (citing sentences),

the adjacent sentences that talk about the cited work (the citation context), and the

scope of each reference. Chapter IX presents supervised approaches for identifying

the purpose (author intention) and the polarity (author sentiment) of citation. Chap-

ter X presents an application that utilizes citing sentences to produce citation-based

summaries of scientific articles. Chapter XI presents a number of other applications

in which citation text may be useful. We present the initial work we have done on

those applications and give directions to future work.



CHAPTER VIII

Identifying Citation Scope

Citation plays an important role in science. It makes the accumulation of knowl-

edge possible. When a reference appears in a scientific article, it is usually accom-

panied by a span of text that highlights the important contributions of the cited

article. We call a sentence that contains an explicit reference to previous work a

citing sentence. For example, sentence (1) below is a citation sentence that cites a

paper by Philip Resnik and describes the problem Resnik addressed in his paper.

(1) Resnik (1999) addressed the issue of language identification for finding Web

pages in the languages of interest.

Previous work has studied and used citation sentences in various applications such

as: scientific paper summarization [53, 152, 128, 155, 153, 10], automatic survey gen-

eration [142, 131], citation function classification [142, 184, 173, 183], and paraphrase

recognition [170].

Sentence (1) above contains one reference, and the whole sentence is talking about

that reference. This is not always the case in scientific writing. Sentences that con-

tain references to multiple papers are very common. For example, sentence (2) below

contains three references.

96
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(2) Grefenstette and Nioche (2000) and Jones and Ghani (2000) use the web to gener-

ate corpora for languages where electronic resources are scarce, while Resnik (1999)

describes a method for mining the web for bilingual texts.

The first fragment describes the contribution of Grefenstette and Nioche (2000)

and Jones and Ghani (2000). The second fragment describes the contribution of

Resnik (1999).

This observation should be taken into consideration when using citation sentences

in the aforementioned applications. For example, in citation-based summarization

of scientific papers, a subset of citation sentences that cite a given target paper is

selected and used to form a summary of that paper. It is very likely that one or more

of the selected sentences cite multiple papers besides the target. This means that

some of the text included in the summary might be irrelevant to the summarized

paper. Including irrelevant text in the summary introduces several problems. First,

the summarization task aims at summarizing the contributions of the target paper

using minimal text. Extraneous text takes space in the summary while being irrel-

evant and less important. Second, including irrelevant text in the summary breaks

the context and confuses the reader. Therefore, if sentence (2) above is to be added

to a citation-based summary of Resnikś (1999) paper, only the underlined fragment

should be added to the summary and the rest of the sentence should be excluded.

For another example, consider the task of citation function classification. The

goal of this task is to determine the reason for citing paper B by paper A based on

linguistic and structural features extracted from citation sentences that appear in A

and cite B. If a citation sentence in A cites multiple papers besides B, classification

features should be extracted only from the fragments of the sentence that are rele-
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vant to B. Sentence (3) below shows an examples of this case.

(3) Cohn and Lapata (2008) used the GHKM extraction method (Galley et al., 2004),

which is limited to constituent phrases and thus produces a reasonably small set of

syntactic rules.

If the target reference is Cohn and Lapata (2008), only the underlined segment

should be used for feature extraction. The limitation stated in the second segment

of sentence is referring to Galley et al., (2004).

In this paper, we address the problem of identifying the fragments of a citation

sentence that are related to a given target reference. Henceforth, we use the term

Reference Scope to refer to those fragments. We present and compare three different

approaches to this problem.

In the first approach, we define the problem as a word classification task. We

classify each word in the sentence as inside or outside the scope of the target refer-

ence.

In the second approach, we define the problem as a sequence labeling problem.

This is different from the first approach in that the label assigned to each word is

dependent on the labels of nearby words. In the third approach, instead of classifying

individual words, we split the sentence into segments and classify each segment as

inside or outside the scope of the target reference.

Applying any of the three approaches is preceded by a preprocessing stage. In this

stage, citation sentences are analyzed to tag references, identify groups of references,

and distinguish between syntactic and non-syntactic references. This work is based

on the work published in [13].
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The rest of this chapter is organized as follows. Section 8.1 examines the related

work. We define the problem in Section8.2. Section 8.3 presents our approaches.

Experiments, results and analysis are presented in Section 8.4. We conclude and

provide directions to future work in Section 8.5.

8.1 Related Work

Our work is related to a large body of research on citations [87, 61]. The interest

in studying citations stems from the fact that bibliometric measures are commonly

used to estimate the impact of a researcher’s work [33, 117]. White [196] provides a

good recent survey of the different research lines that use citations. In this section

we review the research lines that are relevant to our work and show how our work is

different.

One line of research that is related to our work has to do with identifying what

Nanba and Okumura [143] call the citing area They define the citing area as the

succession of sentences that appear around the location of a given reference in a

scientific paper and has connection to it. Their algorithm starts by adding the

sentence that contains the target reference as the first member sentence in the citing

area. Then, they use a set of cue words and hand-crafted rules to determine whether

the surrounding sentences should be added to the citing area or not. In [142] they

use their citing area identification algorithm to improve citation type classification

and automatic survey generation.

Qazvinian and Radev [153] addressed a similar problem. They proposed a method

based on probabilistic inference to extract non-explicit citing sentences; i.e., sentences

that appear around the sentence that contains the target reference and are related

to it. They showed experimentally that citation-based survey generation produces
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better results when using both explicit and non-explicit citing sentences rather than

using the explicit ones alone.

Although this work shares the same general goal with ours (i.e identifying the

pieces of text that are relevant to a given target reference), our work is different in

two ways. First, previous work mostly ignored the fact that the citation sentence

itself might be citing multiple references. Second, it defined the citing area [143] or

the citation context [153] as a set of whole contiguous sentences. In our work, we

address the case where one citation sentence cites multiple papers, and define what

we call the reference scope to be the fragments (not necessarily contiguous) of the

citation sentence that are related to the target reference.

In a recent work on citation-based summarization by Abu-Jbara and Radev [10],

the authors noticed the issue of having multiple references in one sentence. They

raised this issue when they discussed the factors that impede the coherence and the

readability of citation-based summaries. They suggested that removing the frag-

ments of a citation sentence that are not relevant to the summarized paper will

significantly improve the quality of the produced summaries. In their work, they

defined the scope of a given reference as the shortest fragment of the citation sen-

tence that contains the reference and could form a grammatical sentence if the rest

of the sentence was removed. They identify the scope by generating the syntactic

parse tree of the sentence and then finding the text that corresponds to the smallest

subtree rooted at an S node and contains the target reference node as one of its leaf

nodes. They admitted that their method was very basic and works only when the

scope forms one grammatical fragment, which is not true in many cases.

Athar [23] noticed the same issue with citation sentences that cite multiple ref-

erences, but this time in the context of sentiment analysis in citations. He showed
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experimentally that identifying what he termed the scope of citation influence im-

proves sentiment classification accuracy. He adapted the same basic method proposed

by Abu-Jbara and Radev [10]. We use this method as a baseline in our evaluation

below.

In addition to this related work, there is a large body of research that used citation

sentences in different applications. For example, citation sentences has been used to

summarize the contributions of a scientific paper [152, 155, 153, 10]. They have been

also used to generate surveys of scientific paradigms [143, 131]. Several other papers

analyzed citation sentences to recognize the citation function; i.e., the author’s reason

for citing a given paper [142, 184, 183]. Schwartz et al. [170] proposed a method for

aligning the words within citation sentences that cite the same paper. The goal of his

work was to aid named entity recognition and paraphrase identification in scientific

papers.

We believe that all the these applications will benefit from the output of our work.

8.2 Problem Definition

The problem that we are trying to solve is to identify which fragments of a given

citation sentence that cites multiple references are semantically related to a given tar-

get reference. As stated above, we call these fragments the reference scope. Formally,

given a citation sentence S = {w1, w2, ..., wn} where w1, w2, ..., wn are the words of

the sentence (when tokenized using a standard English tokenizer); and given that S

contains a set of two or more references R, we want to assign the label 1 to the word

wi if it falls in the scope of a given target reference r ∈ R, and 0 otherwise.

For example, sentences (4) and (5) below are labeled for the target references

Tetreault and Chodorow (2008), and Cutting et al.(1992) respectively. The under-



102

lined words are labeled 1 (i.e., inside the target reference scope), while all others are

labeled 0.

(4) For example, Tetreault and Chodorow (2008) use a maximum entropy classifier

to build a model of correct preposition usage, with 7 million instances in their training set,

and Lee and Knutsson (2008) use memory-based learning, with 10 million sentences

in their training set.

(5) There are many POS taggers developed using different techniques for many major

languages such as transformation-based error-driven learning (Brill, 1995), decision

trees (Black et al., 1992), Markov model (Cutting et al., 1992), maximum en-

tropy methods (Ratnaparkhi, 1996) etc for English.

8.3 Approach

In this section, we present our approach for addressing the problem defined in

the previous section. Our approach involves two stages: 1) preprocessing and 2)

reference scope identification. We present three alternative methods for the second

stage. The following two subsections describe the two stages.

8.3.1 Stage 1: Preprocessing

The goal of the preprocessing stage is to clean and prepare the citation sentence

for the next processing steps. The second stage involves higher level tasks such as

part-of-speech tagging, syntactic parsing, and dependency parsing. The available

tools for these tasks are not trained on citation sentences which contain references

written in a special format. For example, it is very common in scientific writing

to have references (usually written between parentheses) that are not a syntactic
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part of the sentence. It is also common to cite a group of references who share the

same contribution by listing them between parentheses separated by a comma or a

semi-colon. We address these issues to improve the accuracy of the processing done

in the second stage. The preprocessing stage involves three tasks:

Reference Tagging

The first preprocessing task is to find and tag all the references that appear in the

citation sentence. Authors of scientific articles use standard patterns to include ref-

erences in text. We apply a regular expression to find all the references that appear

in a sentence. We replace each reference with a placeholder. The target reference is

replaced by TREF. Each other reference is replaced by REF. We keep track of the

original text of each replaced reference. Sentence (6) below shows an example of a

citation sentence with the references replaced.

(6) These constraints can be lexicalized (REF.1; REF.2), unlexicalized (REF.3; TREF.4)

or automatically learned (REF.5; REF.6).

Reference Grouping

It is common in scientific writing to attribute one contribution to a group of refer-

ences. Sentence (6) above contains three groups of references. Each group constitutes

one entity. Therefore, we replace each group with a placeholder. We use GTREF

to replace a group of references that contains the target reference, and GREF to

replace a group of references that does not contain the target reference. Sentence

(7) below is the same as sentence (6) but with the three groups of references replaced.

(7) These constraints can be lexicalized (GREF.1), unlexicalized (GTREF.2) or

automatically learned (GREF.3).



104

Non-syntactic Reference Removal

A reference (REF or TREF) or a group of references (GREF or GTREF) could ei-

ther be a syntactic constituent and has a semantic role in the sentence (e.g. GTREF.1

in sentence (8) below) or not (e.g. REF.2 in sentence (8)).

(8) (GTREF.1) apply fuzzy techniques for integrating source syntax into hierarchical

phrase-based systems (REF.2).

The task in this step is to determine whether a reference is a syntactic component

in the sentence or not. If yes, we keep it as is. If not, we remove it from the sentence

and keep track of its position. Accordingly, after this step, REF.2 in sentence (8)

will be removed. We use a rule-based algorithm to determine whether a reference

should be removed from the sentence or kept. Our algorithm (Algorithm 2) uses

stylistic and linguistic features such as the style of the reference, the position of the

reference, and the surrounding words to make the decision.

When a reference is removed, we pick a word from the sentence to represent it.

This is needed for feature extraction in the next stage. We use as a representative

the head of the closest noun phrase (NP) that comes before the position of the

removed reference. For example, in sentence (8) above, the closest NP before REF.2

is hierarchical phrase-based systems and the head is the noun systems.

8.3.2 Stage 2: Reference Scope Identification

In this section we present four different methods for identifying the scope of a

given reference within a citation sentence. We compare the performance of four

methods in Section 8.4. The following three subsections describe the methods.
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Algorithm 2 Remove Non-syntactic References

Require: A citation sentence S
1: for all Reference R (REF, TREF, GREF, or GTREF) in S do
2: if R style matches ”Authors (year)” then
3: Keep R // syntactic
4: else if R is the first word in the sentence or in a clause then
5: Keep R // syntactic
6: else if R is preceded by a preposition (in, of, by, etc.) then
7: Keep R // syntactic
8: else
9: Remove R // non-syntactic

10: end if
11: end for

Unsupervised Approach

Many of the citation sentences contain references to multiple papers besides the

target. In other words, some fragments of such sentences describe work other than the

work of the target paper. These fragments are usually irrelevant, or at least mush less

important. Including these fragments in the summary causes several problems. First,

the aim of the summarization task is to summarize the contribution of the target

paper using minimal text. These fragments take space in the summary, while being

irrelevant and less important. Second, including these fragments in the summary

breaks the context and hence degrades the fluency and confuses the reader. Third,

the performance of later processing steps in our approach is negatively affected by

these fragments.

Therefore, it is important to identify the scope of the target reference; i.e. the

fragment of the citation sentence that corresponds to the target paper. We define the

scope of a reference as the shortest fragment of the citation sentence that contains

the reference and could form a grammatical sentence if the rest of the whole sentence

was removed.

To find such a fragment, we use a simple but adequate heuristic. We start by

parsing the sentence using the link grammar parser [174]. Since the parser is not
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trained on citation sentences, we replace the references with placeholders before

passing the sentence to the parser. Figure 8.1 shows the a portion of the parse tree

for Sentence (2) above.

Figure 8.1: An example showing how to extract the scope of the target reference

We extract the scope of the reference from the parse tree as follows. We find

the smallest subtree rooted at an S node (sentence clause node) and contains the

target reference node. we extract the text that corresponds to this subtree if it is

grammatical. Otherwise, we find the second smallest subtree rooted at an S node

and so on. For example, the parse tree shown in the figure 8.1 suggests that the

scope of the reference is:

Resnik (1999) describes a method for mining the web for bilingual texts.
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Feature Description

Distance The distance (in words) between the word and the target reference.

Position This feature takes the value 1 if the word comes before the target refer-
ence, and 0 otherwise.

Segment After splitting the sentence into segments by punctuation and coordina-
tion conjunctions, this feature takes the value 1 if the word occurs in the
same segment with the target reference, and 0 otherwise.

Part of speech tag The part of speech tag of the word, the word before, and the word after.

Dependency Distance Length of the shortest dependency path (in the dependency parse tree)
that connects the word to the target reference or its representative. It
has been shown in previous work on relation extraction that the shortest
path between any two entities captures the information required to assert
a relationship between them [35]

Dependency Relations This item includes a set of features. Each features corresponds to a
dependency relation type. If the relation appears in the dependency
path that connects the word to the target reference or its representative,
its corresponding feature takes the value 1, and 0 otherwise.

Common Ancestor Node The type of the node in the syntactic parse tree that is the least common
ancestor of the word and the target reference.

Syntactic Distance The number of edges in the shortest path that connects the word and
the target reference in the syntactic parse tree.

Table 8.1: The features used for word classification and sequence labeling

Word Classification

In this method we define reference scope identification as a classification task of

the individual words of the citation sentence. Each word is classified as inside or

outside the scope of a given target reference. We use a number of linguistic and

structural features to train a classification model on a set of labeled sentences. The

trained model is then used to label new sentences. The features that we use to train

the model are listed in Table 8.1. We use the Stanford parser [104] for syntactic and

dependency parsing. We experiment with two classification algorithms: Support

Vector Machines (SVM) and logistic regression.
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Sequence Labeling

In the method described in Section 8.3.2 above, we classify each word indepen-

dently from the labels of the nearby words. The nature of our task, however, suggests

that the accuracy of word classification can be improved by considering the labels of

the words surrounding the word being classified. It is very likely that the word takes

the same label as the word before and after it if they all belong to the same clause

in the sentence. In this method we define the problem as a sequence labeling task.

Now, instead of looking for the best label for each word individually, we look for the

globally best sequence of labels for all the words in the sentence at once.

We use Conditional Random Fields (CRF) as our sequence labeling algorithm. In

particular, we use first-order chain-structured CRF. The chain consists of two sets of

nodes: a set of hidden nodes Y which represent the scope labels (0 or 1) in our case,

and a set of observed nodes X which represent the observed features. The task is

to estimate the probability of a sequence of labels Y given the sequence of observed

features X: P (Y|X)

Lafferty et al. [107] define the this probability to be a normalized product of

potential functions ψ:

(8.1) P (y|x) =
∏
t

ψk(yt, yt−1,x)

Where ψk(yt, yt−1,x) is defined as

(8.2) ψk(yt, yt−1,x) = exp(
∑
k

λkf(yt, yt−1,x))

where f(yt, yt−1,x) is a transition feature function of the label at positions i − 1

and i and the observation sequence x; and λj is parameter to be estimated from
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training data. We use, as the observations at each position, the same features that

we used in Section 8.3.2 above (Table 8.1).

Segment Classification

We noticed that the scope of a given reference often consists of units of higher

granularity than words. Therefore, in this method, we split the sentence into seg-

ments of contiguous words and, instead of labeling individual words, we label the

whole segment as inside or outside the scope of the target reference. We experi-

mented with two different segmentation methods. In the first method (method-1),

we segment the sentence at punctuation marks, coordination conjunctions, and a set

of special expressions such as ”for example”, ”for instance”, ”including”, ”includes”,

”such as”, ”like”, etc. Sentence (8) below shows an example of this segmentation

method (Segments are enclosed in square brackets).

(8) [Rerankers have been successfully applied to numerous NLP tasks such as] [parse

selection (GTREF)], [parse reranking (GREF)], [question-answering (REF)].

In the second segmentation method (method-2), we split the sentence into seg-

ments of finer granularity. We use a chunking tool to identify noun groups, verb

groups, preposition groups, adjective groups, and adverb groups. Each such group

(or chunk) forms a segment. If a word does not belong to any chunk, it forms a sin-

gleton segment by itself. Sentence (9) below shows an example of this segmentation

method (Segments are enclosed in square brackets).

(9) [To] [score] [the output] [of ] [the coreference models], [we] [employ] [the commonly-

used MUC scoring program (REF)] [and] [the recently-developed CEAF scoring pro-
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gram (TREF)].

We assign a label to each segment in two steps. In the first step, we use the

sequence labeling method described in Section 8.3.2 to assign labels to all the indi-

vidual words in the sentence. In the second step, we aggregate the labels of all the

words contained in a segment to assign a label to the whole segment. We experi-

mented with three different label aggregation rules: 1) rule-1: assign to the segment

the majority label of the words it contains, and 2) rule-2: assign to the segment the

label 1 (i.e., inside) if at least one of the words contained in the segment is labeled 1,

and assign the label 0 to the segment otherwise, and 3) rule-3: assign the label 0 to

the segment if at least of the words it contains is labeled 0, and assign 1 otherwise.

8.4 Evaluation

8.4.1 Data

We use the ACL Anthology Network corpus (AAN) [160] in our evaluation. AAN

is a publicly available collection of more than 19,000 NLP papers. AAN provides

a manually curated citation network of its papers and the citation sentence(s) as-

sociated with each edge. The current release of AAN contains about 76,000 unique

citation sentences. From this set, we randomly selected 3500 citation sentences,

each containing at least two references (3.75 references on average with a standard

deviation of 2.5). The total number of references in this set of sentences is 19,591. 1

We split the data set into two random subsets: a development set (200 sentences)

and a training/testing set (3300 sentences). We used the development set to study

the data and develop our strategies of addressing the problem. The second set was

used to train and test the system in a cross-validation mode.

1The data and the code will be made public at the time of publication
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8.4.2 Annotation

We asked graduate students with good background in NLP (the area of the an-

notated sentences) to provide three annotations for each sentence in the data set

described above. First, we asked them to determine whether each of the references

in the sentence was correctly tagged or not. Second, we asked them to determine for

each reference whether it is a syntactic constituent in the sentence or not. Third,

we asked them to determine and label the scope of one reference in each sentence

which was marked as a target reference (TREF). We designed a user-friendly tool to

collect the annotations from the students (figure 8.2).

To estimate the inter-annotator agreement, we picked 500 random sentences from

our data set and assigned them to two different annotators. The inter-annotator

agreement was perfect on both the reference tagging annotation and the reference

syntacticality annotation. This is expected since both are objective, clear, and easy

tasks. To measure the inter-annotator agreement on the scope annotation task,

we deal with it as a word classification task. This allows us to use the popular

classification agreement measure, the Kappa coefficient [106]. The Kappa coefficient

is defined as follows:

(8.3) K =
P (A)− P (E)

1− P (E)

where P(A) is the relative observed agreement among raters and P(E) is the hypo-

thetical probability of chance agreement. The agreement between the two annotators

on the scope identification task was K = 0.61. On Landis and Kochs [109] scale, this

value indicates substantial agreement.
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Figure 8.2: A screen shot of the tool used for annotation

8.4.3 Experimental Setup

We use the Edinburgh Language Technology Text Tokenization Toolkit (LT-

TTT) [68] for text tokenization, part-of-speech tagging, chunking, and noun phrase

head identification. We use the Stanford parser [104] for syntactic and dependency

parsing. We use LibSVM [38] for Support Vector Machines (SVM) classification.

Our SVM model uses a linear kernel with all the parameters set to LIBSVM default

configurations. We use Weka [72] for logistic regression classification. We use the

Machine Learning for Language Toolkit (MALLET) [125] for CRF-based sequence

labeling. In all the scope identification experiments and results below, we use 10-fold

cross validation for training/testing.
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8.4.4 Preprocessing Component Evaluation

We ran our three rule-based preprocessing modules on the testing data set and

compared the output to the human annotations. The test set was not used in the

tuning of the system but was done using the development data set as described above.

We report the results for each of the preprocessing modules. Our reference tagging

module achieved 98.3% precision and 93.1% recall. Most of the errors were due to

issues with text extraction from PDF or due to bad references practices by some

authors (i.e., not following scientific referencing standards). Our reference grouping

module achieved perfect accuracy for all the correctly tagged references. This was

expected since this is a straightforward task. The non-syntactic reference removal

module achieved 90.08% precision and 90.1% recall. Again, most of the errors were

the result of bad referencing practices by the authors.

8.4.5 Reference Scope Identification Experiments

We conducted several experiments to compare the methods proposed in Sec-

tion 8.3 and their variants. We ran all the experiments on the training/testing

set (the 3300 sentences) described in Section 8.4.1. The experiments that we ran are

as follows: 1) word classification using a SVM classifier (WC-SVM); 2) word classifi-

cation using a logistic regression classifier(WC-LR); 3) CRF-based sequence labeling

(SL-CRF); 4) segment classification using segmentation method-1 and label aggre-

gation rule-1 (SC-S1-R1); 5,6,7,8,9) same as (4) but using different combinations

of segmentation methods 1 and 2, and label aggregation rules 1,2 and 3: SC-S1-R2,

SC-S1-R3, SC-S2-R1, SC-S2-R2, SC-S2-R3 (where Sx refers to segmentation method

x and Ry refers to label aggregation rule y all as explained in Section 8.3.2); and

finally, 10) the unsupervised approach using parse tree splitting (PT).



114

Method Output

E
x
am

p
le

1 Word Classifica-
tion (WC-SVM)

A wide range of contextual information, such as surrounding words (GREF
), dependency or case structure (GTREF ), and dependency path (GREF ),
has been utilized for similarity calculation, and achieved considerable success.

Sequence Labeling
(SL-CRF)

A wide range of contextual information, such as surrounding words (GREF),
dependency or case structure (GTREF), and dependency path (GREF ),
has been utilized for similarity calculation, and achieved considerable success.

Segment Classifi-
cation (SC-S2-R1)

A wide range of contextual information, such as surrounding words
(GREF ), dependency or case structure (GTREF ), and dependency
path (GREF ), has been utilized for similarity calculation, and achieved
considerable success.

E
x
am

p
le

2 Word Classifica-
tion (WC-SVM)

Some approaches have used WordNet for the generalization step (GTREF),
others EM-based clustering (REF).

Sequence Labeling
(SL-CRF)

Some approaches have used WordNet for the generalization step (GTREF),
others EM-based clustering (REF).

Segment Classifi-
cation (SC-S2-R1)

Some approaches have used WordNet for the generalization step (GTREF),
others EM-based clustering (REF).

Table 8.2: Two example outputs produced by the three methods

To better understand which of the features listed in Table 8.1 are more important

for the task, we use Guyon et al.s [71] method for feature selection using SVM to

rank the features based on their importance. The results of the experiments and the

feature analysis are presented and discussed in the following subsection.

8.4.6 Results and Discussion

Experimental Results

We ran the experiments described in the previous subsection on the testing data

described in Section 8.4.1. Table 8.3 compares the precision, recall, F1, and accuracy

for the three methods described in Section 8.3 and their variations. All the metrics

were computed at the word level. The results show that all our methods outper-

form the baseline method AR-2011 that was proposed by Abu-Jbara and Radev [10].

In the word classification method, we notice no significant difference between the

performance of the SVM vs Logistic Regression classifier. We also notice that the

CRF-based sequence labeling method performs significantly better than the word

classification method. This result corroborates our intuition that the labels of neigh-
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Method Accuracy Precision Recall F-measure

WC-SVM 74.9% 74.5% 93.4% 82.9%

WC-LR 74.3% 76.8% 88.0% 82.0%

SL-CRF 78.2% 80.1% 94.2% 86.6%

SC-S1-R1 73.7% 72.1% 97.8% 83.0%

SC-S1-R2 69.3% 68.4% 98.9% 80.8%

SC-S1-R3 60.0% 61.8% 73.3% 60.9%

SC-S2-R1 81.8% 81.2% 93.8% 87.0%

SC-S2-R2 78.2% 77.3% 94.9% 85.2%

SC-S2-R3 66.1% 67.1% 71.2% 69.1%

PT 54.0% 63.3% 33.1% 41.5%

Table 8.3: Results of scope identification using the different algorithms described in the paper

boring words are dependent. The results also show that segment labeling generally

performs better than word labeling. More specifically, the results indicate that seg-

mentation based on chunking and the label aggregation based on plurality when used

together (i.e., SC-S2-R1) achieve higher precision, accuracy, and F-measure than the

punctuation-based segmentation and the other label aggregation rules.

Table 8.2 shows the output of the three methods on two example sentences. The

underlined words are labeled by the system as scope words.

Feature Analysis

We performed an analysis of our classification features using Guyon et al. [71]

method. The analysis revealed that both structural and syntactic features are im-

portant. Among the syntactic features, the dependency path is the most important.

Among the structural features, the segment feature (as described in Table 8.1) is the

most important.
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8.5 Conclusions

We presented and compared three different methods for reference scope identifica-

tion: word classification, sequence labeling, and segment classification. Our results

indicate that segment classification achieves the best performance. The next direc-

tion in this research is to extract the scope of a given reference as a standalone

grammatical sentence. In many cases, the scope identified by our method can form

a grammatical sentence with no or minimal postprocessing. In other cases, more

advanced text regeneration techniques are needed for scope extraction.



CHAPTER IX

Identifying Citation Purpose and Polarity

An objective and fair evaluation of the impact of published research requires both

quantitative and qualitative assessment. Existing bibliometric measures such as H-

Index [84, 85], G-index [52], and Impact Factor [63] focus on the quantitative aspect

of this evaluation which dose not always correlate with the qualitative aspect.

For example, the number of papers published by a researcher only tells how pro-

ductive she or he is. It does not say anything about the quality or the impact of the

work. Similarly, the number of citations that a paper receives should not be used to

gauge the quality of the work as it really only measures the popularity of the work

and the interest of other researchers in it [60]. Controversial papers or those based on

fabricated data or experiments may receive a large number of citations. A popular

example of fraudulent research that deceived many researchers and caught media

attention was the case of a South Korean research scientist, Hwang Woo-suk, who

was found to have faked his research results in the area of human stem cell cloning.

His research was published in Science and received close to 200 citations after the

fraud was discovered. The vast majority of those citations were negative.

This suggests that the purpose of citation should be taken into consideration when

biblometric measures are computed. Negative citations should be weighted less than

117
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positive or neutral citations. This motivates the need to automatically distinguish

between positive, negative, and neutral citations and to identify the purpose of a

citation; i.e. the author’s intention behind choosing a published article and citing it.

This analysis of citation purpose and polarity can be useful for many applications.

For example, it can be used to build systems that help funding agencies and hiring

committees at universities and research institutions evaluate researchers’ work more

accurately. It can also be used as a preprocessing step in systems that process

scholarly data. For example, citation-based summarization systems [152, 155, 11] and

survey generation systems [131, 154] can benefit from citation purpose and polarity

analysis to improve paper and content selection.

In this chapter, we investigate the use of linguistic analysis techniques to auto-

matically identify the purpose of citing a paper and the polarity of this citation. We

first present a sequence labeling method for extracting the text that cites a given

target reference; i.e. the text that appears in a scientific article and refers to another

article and comments on it. We use the term citation context to refer to this text.

Next, we use supervised classification techniques to analyze this text and identify

the purpose and polarity of citation.

The rest of this chapter is organized as follows. Section 9.1 reviews the related

work. We present our approach in Section 9.2. We then describe the data and

experiments in Section 9.3. Finally, Section XII concludes the chapter.

9.1 Related Work

Our work is related to a large body of research on citations. Studying citation

patterns and referencing practices has interested researchers for many years [87, 61].

White [196] provides a good survey of the different research directions that study or
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use citations. In the following subsections, we review three lines of research that are

closely related to our work.

9.1.1 Citation Context Identification

The first line of related research addresses the problem of identifying citation

context. The context of a citation that cites a given target paper can be a set of

sentences, one sentence, or a fragment of a sentence.

Nanba and Okumura [143] use the term citing area to refer to the same concept.

They define the citing area as the succession of sentences that appear around the

location of a given reference in a scientific paper and have connection to it. Their

algorithm starts by adding the sentence that contains the target reference as the

first member sentence in the citing area. Then, they use a set of cue words and

hand-crafted rules to determine whether the surrounding sentences should be added

to the citing area or not. In [142], they use their algorithm to improve citation type

classification and automatic survey generation.

Qazvinian and Radev [153] addressed a similar problem. They proposed a method

based on probabilistic inference to extract non-explicit citing sentences; i.e., sentences

that appear around the sentence that contains the target reference and are related

to it. They showed experimentally that citation-based survey generation produces

better results when using both explicit and non-explicit citing sentences rather than

using the explicit ones alone.

In previous work, we addressed the issue of identifying the scope of a given target

reference in citing sentences that contain multiple references [14]. Our definition

of reference scope was limited to fragments of the explicit citing sentence (i.e. the

sentence in which actual citation appears). That method does not identify related

text in surrounding sentences.
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In this work, we propose a supervised sequence labeling method for identifying

the citation context of given reference which includes the explicit citing sentence and

the related surrounding sentences.

9.1.2 Citation Purpose Classification

Several research efforts have focused on studying the different purposes for citing

a paper [62, 194, 139, 1, 32]. Bonzi [32] studied the characteristics of citing and

cited works that may aid in determining the relatedness between them. Garfield [62]

enumerated several reasons why authors cite other publications, including “alerting

researchers to forthcoming work”, paying homage to the leading scholars in the

area, and citations which provide pointers to background readings. Weinstock [194]

adopted the same scheme that Garfield proposed in her study of citations.

Spiegel-Rosing [176] proposed 13 categories for citation purpose based on her

analysis of the first four volumes of Science Studies. Some of them are: Cited source

is the specific point of departure for the research question investigated, Cited source

contains the concepts, definitions, interpretations used, Cited source contains the

data used by the citing paper. Nanba and Okumura [143] came up with a simple

schema composed of only three categories: Basis, Comparison, and other Other.

They proposed a rule-based method that uses a set of statistically selected cue words

to determine the category of a citation. They used this classification as a first step

for scientific paper summarization. Teufel et al. [184], in their work on citation

function classification, adopted 12 categories from Spiegel-Rosing’s taxonomy. They

trained an SVM classifier and used it to label each citing sentence with exactly one

category. Further, they mapped the twelve categories to four top level categories

namely: weakness, contrast (4 categories), positive (6 categories) and neutral.

The taxonomy that we use in this work is based on previous work. We adopt a
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scheme that contains six categories. We selected the six categories after studying

all the previously used citation taxonomies. We included the ones we believed are

important for improving bibliometric measures and for the applications that we are

planning to pursue in the future (Section XII).

9.1.3 Citation Polarity Classification

The polarity (or sentiment) of a citation has also been studied previously. Previous

work showed that positive and negative citations are common, although negative ci-

tations might be expressed indirectly or in an implicit way [215, 121, 186]. Athar [23]

addressed the problem of identifying sentiment in citing sentences. He used a set of

structure-based features to train a machine learning classifier using annotated data.

This work uses the citing sentence only to predict sentiment. Context sentences were

ignored. Athar and Teufel [24] observed that taking the context into consideration

when judging sentiment in citations increases the number of negative citations by a

factor of 3. They proposed two methods for utilizing the context. In the first method,

they treat the citing sentence and a fixed context (a window of four sentences around

the citing sentence) as if they were a single sentence. They extract features from the

merged text and train a classifier similar to what they did in their 2011 paper. In

the second method, they use a four-class annotation scheme. Each sentence in a win-

dow of four sentences around the citation is labeled as positive, negative, neutral,

or excluded (unrelated to the cited work). There experiments surprisingly gave neg-

ative results and showed that classifying sentiment without considering the context

achieves better results. They attributed this to the small size of their training data

and to the noise that including the context text introduces to the data. In [25], the

authors present a method for automatically identifying all the mentions of the cited

paper in the citing paper. They show that considering all the mentions improves the
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Feature Description

Demonstrative de-
terminers

Takes a value of 1 if the current sentence contains contains a demon-
strative determiner (this, these, etc.), and 0 otherwise.

Conjunctive ad-
verbs

Takes a value of 1 if the current sentence starts with a conjunctive
adverb (However, Furthermore, Accordingly, etc.), and 0 otherwise.

Position Position of the current sentence with respect to the citing sentence.
This feature takes one of four values: -1, 0, 1, and 2.

Contains Closest
Noun Phrase

Takes a value of 1 if the current sentence contains closest noun
phrase (if any) immediately before the reference position in the cit-
ing sentence, and 0 otherwise. This noun phrase often is the name
of a method, a tool, or corpus originating from the cited reference.

2-3 grams The first bigram and trigram in the sentence (This approach, One
problem with, etc.).

Contains Other ref-
erences

Takes a value of 1 if the current sentence contains references other
than the target, and 0 otherwise.

Contains a Mention
of target reference

Takes a value of 1 if the current sentence contains a mention (explicit
or anaphoric) of the target reference, and 0 otherwise.

Multiple references Takes a value of 1 if the citing sentence contains multiple references,
and 0 otherwise. If the citing sentence contains multiple references,
it becomes less likely that the surrounding sentences are related.

Table 9.1: Features used for citation context identification

performance of detecting sentiment in citations.

In our work, we propose a sequence labeling method for identifying the citation

context first, and then use a supervised approach to determine the polarity of a given

citation.

9.2 Approach

In this section, we describe our approach to three tasks: citation context identi-

fication, citation purpose classification, and citation polarity identification. We also

describe a preprocessing stage that is applied to the citation text before performing

any of the three tasks.

9.2.1 Preprocessing

The goal of the preprocessing stage is to clean and prepare the citation text

for part-of-speech tagging and parsing. The available POS taggers and parsers are

not trained on citation text. Citation text is different from normal text in that it
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contains references written in a special format (e.g., author names and publication

year written in parentheses; or reference indices written in square brackets). Many

citing sentences contain multiple references, some of which might be grouped together

in a pair of parentheses and separated by a comma or a semi-colons. These references

are usually not syntactic nor semantic constituents of the sentences they appear in.

This results in many POS tagging and parsing errors. We address this issue in the

pre-processing stage to improve the performance of the feature extraction component.

We perform three pre-processing steps:

a. Reference Tagging: In the first step, we find and tag all the references that

appear in the text. We use a regular expression to find references and replace each

reference with a placeholder. The reference to the target paper is replaced by the

placeholder TREF. Each other reference is replaced by REF.

b. Reference Grouping: In this step, we identify grouped references (i.e.

multiple references listed between one pair of parentheses separated by semi-colons).

Each such group is replaced by a placeholder, GREF. If the target reference is a

member of the group, we use a different placeholder: GTREF.

c. Non-syntactic Reference Removal: A reference or a group of references

could either be a syntactic constituent and has a semantic role in the sentence or

not [195, 14]. If the reference is not a syntactic component in the sentence, we remove

it to reduce parsing errors. Following our previous work [14], we use a rule-based

algorithm to determine whether a reference should be removed from the sentence

or kept. The algorithm uses stylistic and linguistic features such as the style of

the reference, the position of the reference, and the surrounding words to make the

decision. When a reference is removed, the head of the closest noun phrase (NP)

immediately before the position of the removed reference is used as a representative
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of the reference. This is needed for feature extraction as shown later in the paper.

9.2.2 Citation Context Identification

The task of identifying the citation context of a given target reference can be

formally defined as follows. Given a scientific article A that cites another article B,

find a set of sentences in A that talk about the work done in B such that at least

one of these sentences contains an explicit reference to B.

We treat this problem as a sequence labeling problem. The goal is to find the glob-

ally best sequence of labels for all the sentences that appear within a window around

the citing sentence. The citing sentence is the one that contains an explicit reference

to the cited paper. Each sentence within the window is labeled as INCLUDED or

EXCLUDED from the citation context of the given target paper. To determine the

size of the window, we examined a development set of 300 sentences. We noticed

that the related context almost always falls within a window of four sentences. The

window includes the citing sentence, one sentence before the citing sentence, and two

sentences after the citing sentence.

We use Conditional Random Fields (CRFs) for sequence labeling. In particular,

we use a first-order chain-structured CRF. The chain consists of two sets of nodes: 1)

a set of hidden nodes Y which represent the context labels of sentences (INCLUDED

or EXCLUDED), and 2) a set of observed nodes X which represent the features

extracted from the sentences. The task is to estimate the probability of a sequence

of labels Y given the sequence of observed features X: P (Y|X)

Lafferty et al. [107] define this probability to be a normalized product of potential

functions ψ:
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Category Description Example

Criticizing Criticism can be positive or nega-
tive. A citing sentence is classified
as ”criticizing” when it mentions
the weakness/strengths of the cited
approach, negatively/positively
criticizes the cited approach,
negatively/positively evaluates the
cited source.

Chiang (2005) introduced a con-
stituent feature to reward phrases
that match a syntactic tree but did
not yield significant improvement.

Comparison A citing sentence is classified as
”comparison” when it compares or
contrasts the work in the cited pa-
per to the author’s work. It over-
laps with the first category when
the citing sentence says one ap-
proach is not as good as the other
approach. In this case we use the
first category.

Our approach permits an alterna-
tive to minimum error-rate training
(MERT; Och, 2003);

Use A citing sentence is classified as
”use” when the citing paper uses
the method, idea or tool of the
cited paper.

We perform the MERT training
(Och, 2003) to tune the optimal fea-
ture weights on the development set.

Substantiating A citing sentence is classified as
”substantiating” when the results,
claims of the citing work substanti-
ate, verify the cited paper and sup-
port each other.

It was found to produce automated
scores, which strongly correlate with
human judgements about transla-
tion fluency (Papineni et al. , 2002).

Basis A citing sentence is classified as
”basis” when the author uses the
cited work as starting point or mo-
tivation and extends on the cited
work.

Our model is derived from the
hidden-markov model for word
alignment (Vogel et al., 1996; Och
and Ney, 2000).

Neutral (Other) A citing sentence is classified as
”neutral” when it is a neutral de-
scription of the cited work or if
it doesn’t come under any of the
above categories.

The solutions of these problems
depend heavily on the quality of
the word alignment (Och and Ney,
2000).

Table 9.2: Annotation scheme for citation purpose. Motivated by the work of [176] and [184]
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(9.1) P (y|x) =
∏
t

ψk(yt, yt−1,x)

Where ψk(yt, yt−1,x) is defined as

(9.2) ψk(yt, yt−1,x) = exp(
∑
k

λkf(yt, yt−1,x))

where f(yt, yt−1,x) is a transition feature function of the label at positions i − 1

and i and the observation sequence x; and λj is a parameter that the algorithm

estimates from training data.

The features we use to train the CRF model include structural and lexical features

that attempt to capture indicators of relatedness to the given target reference. The

features that we used and their descriptions are listed in table 9.1.

9.2.3 Citation Purpose Classification

In this section, we describe the citation purpose classification task. Given a target

paper B and its citation context (extracted using the method described above) in a

given article A, we want to determine the purpose of citing B by A. The purpose is

defined as intention behind selecting B and citing it by the author of A [62].

We use a taxonomy that consists of six categories. We designed this taxonomy

based on our study of similar taxonomies proposed in previous work. We selected

the categories that we believe are more important and useful from a bibliometric

point of view, and the ones that can be detected through citation text analysis. We

also tried to limit the number of categories by grouping similar categories proposed

in previous work under one category. The six categories, their descriptions, and an

example for each category are listed in Table 9.2.
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Feature Description

Reference count The number of references that appear in the citation context.

Is Separate Whether the target reference appears within a group of references or
separate (i.e. single reference).

Closest Verb / Ad-
jective / Adverb

The lemmatized form of the closest verb/adjective/adverb to the target
reference or its representative or any mention of it. Distance is measure
based on the shortest path in the dependency tree.

Self Citation Whether the citation from the source paper to the target reference is a
self citation.

Contains 1st/3rd
PP

Whether the citation context contains a first/third person pronoun.

Negation Whether the citation context contains a negation cue. The list of nega-
tion cues is taken from the training data of the *SEM 2012 negation
detection shared task [134].

Speculation Whether the citation context contains a speculation cue. The list is
taken from Quirk et al. [157]

Closest Subjectiv-
ity Cue

The closest subjectivity cue to the target reference or its representa-
tive or any anaphoric mention of it. The list of cues is taken from
OpinionFinder [203]

Contrary Expres-
sions

Whether the citation context contains a contrary expression. The list
is taken from Biber [30]

Section The headline of the section in which the citation appears. We identify
five title categorizes: 1) Introduction, Motivation, etc. 2) Background,
Prior Work, Previous Work, etc. 3) Experiments, Data, Results, Eval-
uation, etc. 4) Discussion, Conclusion, Future work, etc.. 5) All other
section headlines. Headlines are identified using regular expressions.

Dependency Rela-
tions

All the dependency relations that appear in the citation context. For
example, nsubj(outperform, algorithm) is one of the relations ex-
tracted from ”This algorithm outperforms the one proposed by...”. The
arguments of the dependency relation are replaced by their lemmatized
forms. This type of features has been shown to give good results in sim-
ilar tasks [24].

Table 9.3: The features used for citation purpose and polarity classification

We use a supervised approach whereby a classification model is trained on a

number of lexical and structural features extracted from a set of labeled citation

contexts. Some of the features that we use to train the classifier are listed in table 9.3.

9.2.4 Citation Polarity Identification

In this section, we describe the citation polarity identification task. Given a

target paper B and its citation context in a given article A, we want to determine

the polarity of the citation text with respect to B. The polarity can be: positive,
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Figure 9.1: The screen shot of the interface used for annotating the data

negative, or neutral (objective). Positive, negative, and neutral in this context are

defined in a slightly different way than their usual sense. A citation is marked positive

if it either explicitly states a strength of the target paper or indicates that the work

done in the target paper has been used either by the author or a third-party. It is also

marked as positive if it is compared to another paper (possibly by the same authors)

and deemed better in some way. A citation is marked negative if it explicitly points

to a weakness of the target paper. It is also marked as negative if it is compared to

another paper and deemed worse in some way. A citation is marked as neutral if it

is only descriptive.

Similar to citation purpose classification, we use a supervised approach for this

problem. We train a classification model using the same features listed in Table 9.3.

Due to the high skewness in the data (more than half of the citations are neutral), we

use two setups for binary classification. In the first setup, the citation is classified as

Polarized (Subjective) or (Neutral) Objective. In the second one, Subjective citations

are classified as Positive or Negative. We find that this method gives more intuitive
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Category Example

Positive Three approaches are dominating, i.e. knowledge-based approach (REF),
information retrieval-based approach (REF) and machine learning ap-
proach (TREF), in which the last approach is found very popular.

Negative Mining the Web for bilingual text (TREF) is not likely to provide sufficient
quantities of high quality data.

Neutral There has been work on detecting relations within noun phrases (GREF),
clauses (REF) and syntax-based comma resolution (TREF).

Table 9.4:
Examples of positive, negative, and neutral citing sentences. The reference marked as
TREF is the target reference.

results than using a 3-way classifier.

9.3 Evaluation

In this section, we describe the data that we used for evaluation and the experi-

ments that we conducted.

9.3.1 Data

We use the ACL Anthology Network corpus (AAN) [160, 161] in our evaluation.

AAN is a publicly available collection of more than 19,000 NLP papers. It includes a

manually curated citation network of its papers as well as the full text of the papers

and the citing sentences associated with each edge in the citation network. From this

set, we selected 30 papers that have different numbers of incoming citations and that

were consistently cited since they were published. These 30 papers received a total

of about 3,500 citations from within AAN (average = 115 citation/paper, Min = 30,

and Max = 338). These citations come from 1,493 unique papers. For each of these

citations, we extracted a window of 4 sentences around the reference position. This

brings the number of sentences in our dataset to a total of roughly 14,000 sentences.

We refer to this dataset as training/testing dataset.

In addition to this dataset, we created another dataset that contains 300 citations

that cite 5 papers from AAN. We refer to this dataset as the development dataset.
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This dataset was used to determine the size of the citation context window, and to

develop the feature sets used in the three tasks described in Section 9.2 above.

9.3.2 Annotation

In this section, we describe the annotation process. We asked graduate students

with good background in NLP (the topic of the annotated sentences) to provide three

annotations for each citation example (a window of 4 sentences around the reference

anchor) in the training/testing dataset. We asked them to mark the sentences that

are related to a given target reference. In addition, we asked them to determine the

purpose of citing the target reference by choosing from the six purpose categories

that we described earlier. We also asked them to determine whether the citation is

negative, positive, or neutral.

To estimate the inter-annotator agreement, we picked 400 sentences from the

training/testing dataset and assigned them to two different annotators. We use the

Kappa coefficient [43] to measure the agreement. The Kappa coefficient is defined

as follows:

(9.3) K =
P (A)− P (E)

1− P (E)

where P(A) is the relative observed agreement among annotators and P(E) is the

hypothetical probability of chance agreement. The agreement between the two anno-

tators on the context identification task was K = 0.89. On Landis and Kochs [109]

scale, this value indicates almost perfect agreement. The agreement on the purpose

and the polarity classification task were K = 0.61 and K = 0.66, respectively; which

indicates substantial agreement on the same scale.

The annotation shows that in 22% of the citation examples, the citation context
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consists of 2 or more sentences. The distribution of the purpose categories in the

data was: 14.7% criticism, 8.5% comparison, 17.7% use, 7% substantiation, 5% basis,

and 47% other. The distribution of the polarity categories was: 30% positive, 12%

negative, and 58% neutral.

9.3.3 Experimental Setup

We use the CRF++1 toolkit for CRF training and testing. We use the Stanford

parser to parse the citation text and generate the dependency parse trees of sentences.

We use Weka for classification experiments. We experimented with several classifiers

including: SVM, Logistic Regression (LR), and Naive Bayes. All the experiments

that we conducted used the training/testing dataset in a 10-fold cross validation

mode. All the results have been tested for statistical significance using a 2-tailed

paired t-test.

9.3.4 Evaluation of Citation Context Identification

We compare the CRF approach to three baselines. The first baseline (ALL)

labels all the sentences in the citation window of size 4 as INCLUDED in the ci-

tation context. The second baseline (CS-ONLY) labels the citing sentence only as

INCLUDED in the citation context. In the third baseline, we use a supervised clas-

sification method instead of sequence labeling. We use Support Vector Machines

(SVM) to train a model using the same set of features as in the CRF approach.

Table 9.5 shows the precision, recall, and F1 score of the CRF approach and the

baselines. The results show that our CRF approach outperforms all the baselines.

It also asserts our expectation that addressing this problem as a sequence labeling

problem leads to better performance than individual sentence classification, which is

also clear from the nature of the task.
1http://crfpp.googlecode.com/svn/trunk/doc/index.html
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Precision Recall F1

CRFs 98.5% 82.0% 89.5%

ALL 30.7% 100.0% 46.9%

CS-ONLY 88.0% 74.0% 80.4%

SVM 92.0% 76.4% 83.5%

Table 9.5: Results of citation context identification

Criticism Comparison Use Substantiating Basis Other

Precision 53.0% 55.2% 60.0% 50.1% 47.3% 64.0%

Recall 77.4% 43.1% 73.0% 57.3% 39.1% 85.1%

F1 63.0% 48.4% 66.0% 53.5% 42.1% 73.1%

Accuracy: 70.5%

Macro-F: 58.0%

Table 9.6:
Summary of Citation Purpose Classification Results (10-fold cross validation, SVM:
Linear Kernel, c = 1.0)

Feature Analysis: We evaluated the importance of the features listed in Ta-

ble 9.1 by computing the chi-squared statistic for every feature with respect to the

class. We found that the lexical features (such as determiners and conjunction ad-

verbs) are generally more important than the structural features (such as position

and reference count). The features shown in Table 9.1 are listed in the order of their

importance based on this analysis.

9.3.5 Evaluation of Citation Purpose Classification

Our experiments with several classification algorithms showed that the SVM clas-

sifier outperforms Logistic Regression and Naive Bayes classifiers. Due to space

limitations, we only show the results for SVM. Table 9.6 shows the precision, recall,

and F1 for each of the six categories. It also shows the overall accuracy and the

Macro-F measure.

Feature Analysis: The chi-squared evaluation of the features listed in Table 9.3

shows that both lexical and structural features are important. It also shows that

among lexical features, the ones that are limited to the existence of a direct rela-
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tion to the target reference (such as closest verb, adjective, adverb, subjective cue,

etc.) are most useful. This can be explained by the fact that the restricting the

features to having direct dependency relation introduces much less noise than other

features (such as Dependency Triplets). Among the structural features, the number

of references in the citation context showed to be more useful.

9.3.6 Evaluation of Citation Polarity Identification

Similar to the case of citation purpose classification, our experiments showed

that the SVM classifier outperforms the other classifiers that we experimented with.

Table 9.7 shows the precision, recall, and F1 for each of the three categories. It also

shows the overall accuracy and the Macro-F measure. The analysis of the features

used to train this classifier using chi-squared analysis leads to the same conclusions

about the relative importance of the features as described in the previous subsection.

However, we noticed that features that are related to subjectivity (Subjectivity Cues,

Negation, Speculation) are ranked higher which makes sense in the case of polarity

classification.

9.3.7 Impact of Context on Classification Accuracy

To study the impact of using citation context in addition to the citing sentence

on classification performance, we ran two polarity classification experiments. In the

first experiment, we used the citing sentence only to extract the features that are

used to train the classifiers. In the second experiment, we used the gold context

sentences (the ones labeled INCLUDED by human annotators). Table 9.7 shows

the results of the first experiment between rounded parentheses and the results of

the second experiments in square brackets. The results show that adding citation

context improves the classification accuracy especially in the subjective categories,

specially in the negative category if we want to be more specific. This supports our
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Negative % Positive % Neutral %

Precision 68.7 (66.4) [69.8] 54.9 (52.1) [55.4] 83.6 (82.8) [84.2]

Recall 79.2 (71.1) [81.1] 48.1 (45.6) [46.3] 95.5 (95.1) [95.3]

F1 73.6 (68.7) [75.0] 51.3 (48.6) [50.4] 89.1 (88.5) [89.4]

Accuracy: 81.4 (74.2) [84.2] %

Macro-F: 71.3 (62.1) [74.2] %

Table 9.7:
Summary of Citation Polarity Classification Results (10-fold cross validation, SVM: Lin-
ear Kernel, c = 1.0). Numbers between rounded parentheses are when only the explicit
citing sentence is used (i.e. no context). Numbers in square brackets are when the gold
standard context is used.

intuition about polarized citations that authors start their review of the cited work

with an objective (neutral) sentence and then follow it with their criticism if they

have any. We also reached to similar conclusions with purpose classification, but we

are not showing the numbers due to space limitations.

9.3.8 Other Experiments

Can We Do Better?

In this section, we investigate whether it is possible to improve the performance

in the two classification tasks. One factor that we believe could have an impact on

the result is the size of the training data. To examine this hypothesis, we ran the

experiment on different sizes of data. Figure 9.2 shows the learning curve of the two

classifiers for different sizes of training data. The accuracy increases as more training

data is available so we can expect that with even more data, we can do even better.

Relation Between Citation Purpose/Polarity and Citation Count

The main motivation of this work is our hypothetical assumption that using NLP

for analyzing citations gives a clearer picture of the impact of the cited work. As a

way to check the validity of this assumption, we study the correlation between the

counts of the different purpose and polarity categories. We also study the correlation

between these categories and the total number of citations that a paper received since
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it was published. We use the training/testing dataset and the gold annotations for

this study.

We compute the Pearson correlation coefficient between the counts of citations

from the different categories that a paper received per year since its publication. We

found that, on average, the correlation between positive and negative citations is

negative (AVG P = -0.194) and that the correlation between the count of positive

citations and the total number of citations is higher than the correlation between

negative citations and total citations (AVG P = 0.531 for positive vs. AVG P =

0.054 for negative).

Similarly, we noticed that there is a higher positive correlation between Use cita-

tions and total citations than in the case of both Substantiation and Basis. This can

be explained by the intuition that publications that present new algorithms, tools,

or corpora that are used by the research community become more and more popular

with time and thus receive more and more citations.

Figure 9.3 shows the result of running our purpose classifier on all the citations to

Papineni et al.’s [147] paper about Bleu, an automatic metric for evaluating Machine

Translation (MT) systems. The figure shows that this paper receives a high number

of Use citations. This makes sense for a paper that describes an evaluation metric

that has been widely used in the MT area. The figure also shows that in the recent

years, this metric started to receive some Criticizing citations that resulted in a

slight decrease in the number of Use citations. Such a temporal analysis of citation

purpose and polarity is useful for studying the dynamics of research. It can also be

used to detect the emergence or de-emergence of research techniques.
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9.4 Conclusion

In this chapter, we presented methods for three tasks: citation context identifi-

cation, citation purpose classification, and citation polarity classification. This work

is motivated by the need for more accurate bibliometric measures that evaluates the

impact of research both qualitatively and quantitatively. Our experiments showed

that we can classify the purpose and polarity of citation with a good accuracy.

It also showed that using the citation context improves the classification accuracy

and increases the number of polarized citations detected. For future work, we plan

to use the output of this research in several applications such as predicting future

prominence of publications, studying the dynamics of research, and designing more

accurate bibliometric measures.



CHAPTER X

Generating Multi-perspective Summaries of Scientific
Articles

The fact that citing sentences cover different aspects of the cited paper and high-

light its most important contributions from the viewpoints for expert researchers,

motivates the idea of using citing sentences to summarize research. The comparison

that Elkiss et al [53] performed between abstracts and citing sentences suggests that

a summary generated from citing sentences will be different and probably more con-

cise and informative than the paper abstract or a summary generated from the full

text of the paper. For example, Table 10.1 shows the abstract of Resnik (1999) and

5 selected sentences that cite it. We notice that citing sentences contain additional

facts that are not in the abstract, not only ones that summarize the paper contri-

butions, but also those that criticize it (the last citing sentence in Table 10.1, for

example).

Previous work has explored this research direction. Qazvinian and Radev [152]

proposed a method for summarizing scientific articles by building a similarity network

of the sentences that cite it, and then applying network analysis techniques to find

a set of sentences that covers as much of the paper facts as possible. Qazvinian et

al. [155] proposed another summarization method that first extracts a number of

important keyphrases from the set of citing sentences, and then finds the best subset

138
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Research Paper  
(XXX 1999) 

XXX  (1999) describes a 
method …… 

The results reported in  (XXX 
1999) …….. 

XXX (1999) addressed the 
problem of ….. 

One problem with (XXX 1999) 
approach is …. 

………………
………………
………………
………… 

Summary of  
xxx 1999 

 

Citation Based 
Summarizer 

citation 

citation 

citation 

citation 

Figure 10.1:
We use sentences that contain citations to a given paper to produce a summary of the
paper contributions

of sentences that covers as many keyphrases as possible.

Mohammed et al. [131] went beyond single paper summarization. They investi-

gated the usefulness of directly summarizing citation texts in the automatic creation

of technical surveys. They generated surveys from a set of Question Answering (QA)

and Dependency Parsing (DP) papers, their abstracts, and their citation texts. The

evaluation of the generated surveys shows that both citation texts and abstracts have

unique survey-worthy information.

These works focused on analyzing the citing sentences and selecting a represen-

tative subset that covers the different aspects of the summarized article. In our

work, we address the issue of coherence and readability in summaries generated from

citing sentences. We add preprocessing and postprocessing steps to the summariza-

tion pipeline. In the preprocessing step, we use a supervised classification approach

to rule out irrelevant sentences or fragments of sentences that are not suitable for

summarization. In the postprocessing step, we improve the summary coherence and

readability by reordering the sentences, removing extraneous text (e.g. redundant
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Abstract STRAND (Resnik, 1998) is a language-independent system for automatic discovery
of text in parallel translation on the World Wide Web. This paper extends the
preliminary STRAND results by adding automatic language identification, scaling
up by orders of magnitude, and formally evaluating performance. The most recent
end-product is an automatically acquired parallel corpus comprising 2491 English-
French document pairs, approximately 1.5 million words per language.

Selected
Citing
Sen-
tences

Many research ideas have exploited the Web in unsupervised or weakly supervised
algorithms for natural language processing (e.g. , Resnik (1999))
Resnik (1999) addressed the issue of language identification for finding Web pages
in the languages of interest.
In Resnik (1999), the Web is harvested in search of pages that are available in
two languages, with the aim of building parallel corpora for any pair of target
languages.
The STRAND system of (Resnik, 1999), uses structural markup information from
the pages, without looking at their content, to attempt to align them.
Mining the Web for bilingual text (Resnik, 1999) is not likely to provide sufficient
quantities of high quality data.

Table 10.1:
Comparison of the abstract and a selected set of sentences that cite Resnik (1999) work

mentions of author names and publication year). Our experiments show that our

approach produces better summaries than several baseline summarization systems.

This work is based on the work published in [10].

The rest of this chapter is organized as follows. We present the motivation of

our approach in Section 10.1. Section 10.2 describes the three stages of our summa-

rization system. The evaluation process, the experimental setup, and the results are

presented in Section 10.3. Section 10.4 concludes.

10.1 Motivation

The fluency of citation-based summaries is impeded by several factors. First,

many of the citation sentences cite multiple papers besides the target. For example,

the following is a citation sentence that appeared in the NLP literature and talked

about Resnik’s 1999 work.

(1) Grefenstette and Nioche (2000) and Jones and Ghani (2000) use the web to gener-

ate corpora for languages where electronic resources are scarce, while Resnik(1999)
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describes a method for mining the web for bilingual texts.

The first fragment of this sentence describes different work other than Resnik’s.

The contribution of Resnik is mentioned in the underlined fragment. Adding the

whole sentence to the summary breaks the context and confuses the reader. It would

be better to extract the underlined fragment and use it in the summary rather than

the whole sentence.

A second factor is associated with the ordering of the sentences included in the

summary. For example, the following are two other citation sentences for Resnik

1999.

(2) Mining the Web for bilingual text (Resnik, 1999) is not likely to provide suffi-

cient quantities of high quality data.

(3) Resnik (1999) addressed the issue of language identification for finding Web

pages in the languages of interest.

If these two sentences are to be included in the summary, the reasonable ordering

would be to put the second sentence first.

Thirdly, in some instances of citation sentences, the reference is not a syntactic

constituent in the sentence. It is added just to indicate the existence of citation.

For example, in sentence (2) above, the reference could be safely removed from the

sentence without hurting its grammaticality.

In other instances (e.g. sentence (3) above), the reference is a syntactic constituent

of the sentence and removing it makes the sentence ungrammatical. However, in

certain cases, the reference could be replaced with a suitable pronoun (i.e. he, she or

they). This helps avoid the redundancy of repeating the author(s) name(s) in every

sentence.
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Finally, a significant number of citation sentences are not suitable for summariza-

tion [184] and should be filtered out. The following sentences are two examples.

(4) The two algorithms we employed in our dependency parsing model are the Eisner

parsing (Eisner, 1996) and Chu-Lius algorithm (Chu and Liu, 1965).

(5) This type of model has been used by, among others, Eisner (1996), McDonald

et al.

Sentence (5) appeared in a paper by Nguyen et al (2007). It does not describe any

aspect of Eisner’s work, rather it informs the reader that Nguyen et al used Esiner’s

algorithm in their model. There is no value in adding this sentence to the citation

summary of Eisner’s paper. Likewise, the comprehension of sentence (6) depends on

knowing its context (i.e. its surrounding sentences). This sentence alone does not

provide any valuable information about the Eisner’s paper and should not be added

to the summary unless its context is extracted and considered for the summary as

well.

In our approach, we address these issues to achieve the goal of improving the

fluency of citation-based summaries. Our approach is described in the next section.

10.2 Approach

In this section we describe a system that takes a scientific paper and its set of citing

papers as input, and outputs a fluent citation summary of the paper. Our system

produces the summaries in three stages. In the first stage, the citation sentences

are preprocessed to rule out the unsuitable sentences and the irrelevant fragments

of sentences. In the second stage, a number of citation sentences that cover the

various aspects of the paper are selected. In the last stage, the selected sentences

are post-processed to enhance fluency and cohesiveness of the summary. Figure 10.2
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Figure 10.2: Overview of the summarization system

We describe the stages in the following three subsections.

10.2.1 Sentence Preprocessing

The aim of this stage is to determine which pieces of text (sentences or fragments of

sentences) should be considered for selection in the next stage and which ones should

be excluded. This stage involves three tasks: reference tagging, reference scope

detection, and sentence filtering. Reference tagging and reference scope extraction

are done as described in Chapter VIII. In the following subsection, we describe the

filtering task.

Sentence Filtering

Teufel (2007) reported that a significant number of citation sentences (67% of the

sentences in her dataset) are of type OWN ; i.e. describe the own work of their author

not the work of the cited paper. In our dataset (described below in Section 10.3),
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Feature Description

Similarity to the target paper The value of the cosine similarity (using TF-IDF vectors) between
the citation sentence and the target paper.

Headlines The section in which the citation sentence appeared in the citing
paper. We recognize 10 groups of section such as Introduction,
Related Work, Approach, etc.

Relative position The relative positions of the sentence in the section and the para-
graph in which it appears

First person pronouns This feature takes a value of 1 if the sentence contains a first
person pronoun (I, we, our, us, etc.), and 0 otherwise.

Tense of the first verb A sentence that contains a past tense verb near its beginning is
more likely to be describing previous work.

Determiners Demonstrative Determiners (this, that, these, those, and which)
and Alternative Determiners (another, other). The value of this
feature is the relative position of the first determiner (if one exists)
in the sentence.

Table 10.2: The features used for sentence filtering

almost 45% of the citation sentences were of this type. Sentences of this type are

not useful for our summarization task and should not be considered for extraction.

Another type of sentence are the ones that depend on their context. These sen-

tences can be useful if their context (i.e. the relevant surrounding sentences) could be

identified and included. In this work, however, we assume that context information

is not available.

The task in this step is to detect sentences of these types and rule them out.

Formally, we need to classify the citation sentences into two classes: suitable and

unsuitable sentences. We use a machine learning technique for this purpose. We

extract a number of features from each sentence and train a classification model on

these features. The trained model is then used to classify the sentences.

The features that we use in this step and their descriptions are as shown in

table10.2
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10.2.2 Extraction

In the first stage, the sentences and the fragments of sentences that are not useful

for our summarization task are ruled out. The input to this stage is a number of

citation sentences that are believed to be suitable candidates for the summary. From

these sentences, we need to select a representative subset. The selected sentences

should have three main properties:

First, they should cover diverse aspects of the paper. For example, one sentence

can describe the problem the paper addresses. Another sentence should describe the

approach it proposes. A third sentence should discuss the results it reports and so

on.

Second, the sentences that cover one aspect of the paper should not contain re-

dundant information. For example, if two sentences talk about the limitations of the

target paper, one sentence can mention the computation inefficiency, while the other

criticize the assumptions the paper makes.

Third, the sentences should contain the most important information and cover as

much facts of the target paper as possible using minimal text.

In this stage, the summary sentences are selected in three steps. In the first

step, the sentences are classified into five functional categories: Background, Problem

Statement, Method, Results, and Limitations. This classification task is described in

the following subsection.

In the second and the third steps, we follow the work of Qazvinian and Radev

(2008). In the second step, we cluster the sentences within each category into clusters

of similar sentences. In the third step, we compute the LexRank [55] values for the

sentences within each cluster. The summary sentences are selected based on the

classification, the clustering, and the LexRank values. The details follow.
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Example Category 

Sentence simplification systems (Chandrasekar et al. , 1996; Mahesh, 1997; 
Carroll et al. , 1998; Grefenstette, 1998; Jing, 2000; Knight and Marcu, 2000) 
are capable of compressing long sentences by deleting unimportant words and 
phrases. 

Background 

Resnik (1999) addressed the issue of language identification for finding Web 
pages in the languages of interest. 

Problem 

The STRAND system (Resnik, 1999) uses structural markup information from 
the pages, without looking at their content, to attempt to align them. 

Method 

Experiments with syntactically-informed phrases (Koehn et al., 2003) 
produced mostly negative results 

Result 

Mining the Web for bilingual text (Resnik, 1999) is not likely to provide 
sufficient quantities of high quality data. 

Limitation 

Figure 10.3: Example citing sentences of the five citation categories

Classification of Citation Function

We classify the citation sentences into five categories: Background, Problem,

Method, Result, and Weakness. Figure 10.3 shows an example of each category.

A classification model is trained on a number of features extracted from a labeled

set of citation sentences. The features we use for this classifier are listed, along with

their descriptions, in table 10.3.

Clustering

In the previous step we determined the category of each citation sentence. It

is very likely that sentences from the same category contain similar or overlapping

information. For example, Sentences (8), (9), and (10) below appear in the set of
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Feature Description

Similarity to the sections of the target paper The sections of the target paper are categorized into
five categories: 1) Introduction, Motivation, Problem
Statement. 2) Background, Prior Work, Previous
Work, and Related Work. 3) Experiments, Results,
and Evaluation. 4) Discussion, Conclusion, and Fu-
ture work. 5) All other headlines. The value of this
feature is the cosine similarity (using TF-IDF vec-
tors) between the sentence and the text of each of
the five section categories.

Headlines This is the same feature that we used for sentence
filtering in Section 10.2.1.

Number of references in the sentence Sentences that contain multiple references are more
likely to be Background sentences.

Verbs We use all the verbs that their lemmatized form ap-
pears in at least three sentences that belong to the
same category in the training set. Auxiliary verbs
are excluded. In our annotated dataset, for exam-
ple, the verb propose appeared in 67 sentences from
the Methodology category, while the verbs outper-
form and achieve appeared in 33 Result sentences.

Table 10.3: The features used for sentence classification

citation sentences of Goldwater and Griffiths (2007) paper. These sentences belong

to the same category (i.e Method). Both Sentences (8) and (9) convey the same infor-

mation about Goldwater and Griffiths (2007) contribution. Although Sentence (10)

belongs to the same category, it describes a different aspect of the paper methodol-

ogy.

(8) Goldwater and Griffiths (2007) proposed an information-theoretic measure

known as the Variation of Information (VI)

(9) Goldwater and Griffiths (2007) propose using the Variation of Information

(VI) metric

(10) A fully-Bayesian approach to unsupervised POS tagging has been developed by

Goldwater and Griffiths (2007) as a viable alternative to the traditional maxi-

mum likelihood-based HMM approach.

The aim of the clustering step is to group the sentences within each category into
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clusters of similar sentences. To do this we follow the work of [152]. We build a

cosine similarity graph out of the sentences of each category. This is an undirected

graph in which nodes are sentences and edges represent similarity relations. Each

edge is weighted by the value of the cosine similarity between the two sentences the

edge connects. Once we have the similarity network constructed, we partition it

into clusters using community finding technique. We use the Clauset algorithm [41],

a hierarchical agglomerative community finding algorithm. This algorithm runs in

linear time.

Ranking

Although the sentences that belong to the same cluster are similar, they are not

necessarily equally important. Following [152], we rank the sentences within each

cluster by computing their LexRank [55]. Sentences with higher ranks are more

important.

Sentence Selection

At this point we have determined, for each sentence, its category, its cluster, and

its relative importance. Figure 10.4 illustrates this situation. Sentences are added to

the summary in order based on their category, the size of their clusters, their LexRank

values. The categories are ordered as Background, Problem, Method, Results, then

Limitations. Clusters within each category are ordered by size (number of sentences

in the cluster). The sentences of each cluster are ordered by their LexRank Value.

In the example shown in Figure 10.4 we have three categories. If the desired

length of the summary is 3 sentences, the selected sentences will be in order S1, S12,

then S18. If the desired length is 5, the selected sentences will be S1, S5, S12, S15,

then S18.
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Figure 10.4: Example illustrating sentence selection

10.2.3 Postprocessing

In this stage, we refine the sentences that we extracted in the previous stage.

Each citation sentence will have the target reference (the author’s names and the

publication year) mentioned at least once. The reference could be either syntactically

and semantically part of the sentence (e.g. Sentence (3) above) or not (e.g. Sentence

(2)). The aim of this refinement step is to avoid the redundancy of repeating the

author’s names and the publication year in every sentence. We keep the author name

and the publication year only in the first sentence of the summary. In the following

sentences, we either replace the reference with a suitable personal pronoun or remove

it at all. The reference is replaced with a pronoun if it is part of the sentence and this

replacement does not make the sentence non-grammatical. The reference is removed

if it is not part of the sentence. If the sentence contains references for other papers,

they are either removed (if possible) or kept because replacing them with pronouns

will confuse the reader.

To determine whether a reference is part of the sentence or not, we again use a
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Feature Description

Part-of-speech (POS) tag we consider the POS tags of the reference, the word before,
and the word after. Before passing the sentence to the
POS tagger, all the references in the sentence are replaced
by placeholders.

Style of the reference It is common practice in writing scientific papers to put
the whole citation between parenthesis when the authors
are not a constitutive part of the enclosing sentence, and to
enclose just the year between parenthesis when the author’s
name is a syntactic constituent in the sentence.

Relative position of the reference this feature takes one of three values: first, last, and inside.

Grammaticality gramaticality of the sentence if the reference is re-
moved/replaced. Again, we use the Link Grammar
parser [174] to check the grammaticality

Table 10.4: The features used for sentence classification

machine learning approach. We train a model on a set of annotated sentences. The

features used in this step are listed in Table 10.4. The trained model is then used

to classify the references that appear in a sentence into three classes: keep, remove,

replace. If a reference is to be replaced, and the paper has one author, we use he/she

(we do not know if the author is male or female). If the paper has two or more

authors, we use they.

10.3 Evaluation

We provide three levels of evaluation. First, we evaluate each of the subcompo-

nents in our system separately. Then we evaluate the summaries that our system

generate in terms of extraction quality. Finally, we evaluate the coherence of the

summaries.

10.3.1 Data

We use the ACL Anthology Network (AAN) [160] in our evaluation. AAN is a

collection of more than 16000 papers from the Computational Linguistics journal, and

the proceedings of the ACL conferences and workshops. AAN provides all citation
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information from within the network including the citation network, the citation

sentences, and the citation context for each paper.

We used 55 papers from AAN as our data. The papers have variable number of

citation sentences ranging from 15 to 348. The total number of citation sentences

in the dataset is 4335 sentences. We split the data randomly into two different sets;

one for evaluating the subcomponents of the system, and the other for evaluating

the extraction quality and the fluency of the generated summaries. The first set

(dataset1, henceforth) contained 2284 sentences coming from 25 papers. We asked

humans to provide three annotations for each sentence in this set: 1) label the

sentence as suitable or Unsuitable, 2) label each sentence as Background, Problem,

Method, Results or Limitations, and 3) for each reference in the sentence, determine

whether it could be replaced with a pronoun, removed, or should be kept. Each

sentence was given to 3 different annotators. We used the majority vote labels.

We use Kappa coefficient K (Siegel and Castellan 1988) to measure the inter-

annotator agreement. The agreement among the three annotators on distinguishing

unsuitable sentences from the other five categories is 0.85. On Landis and Kochs

(1977) scale, this value indicates an almost perfect agreement. The agreement on

classifying the sentences into the five functional categories is 0.67. On Landis and

Kochs (1977) scale, this value indicates substantial agreement.

The second set (dataset2, henceforth) contained 30 papers (2051 sentences). We

asked humans to generate a fluent summary for each paper in the set using its citation

sentences as the source text. We asked them to fix the length of the summaries to 5

sentences. Each paper was assigned to two humans to summaries.
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- Bkgrnd Prob Method Results Limit.

Precision 64.62% 32.64% 88.66% 76.05% 33.53%

Recall 72.47% 64.75% 75.03% 82.29% 59.36%

F1 68.32% 43.40% 81.27% 79.04% 42.85%

Table 10.5: Precision and recall results achieved by our citation sentence classifier

10.3.2 Component Evaluation

Sentence Filtering Evaluation

We used Support Vector Machines (SVM) as our classifier. We performed 10-

fold cross validation on the labeled sentences (unsuitable vs all other categories) in

dataset1. Our classifier achieved 80.3% accuracy.

Sentence Classification Evaluation

We used SVM in this step as well. We also performed 10-fold cross validation on

the labeled sentences (the five functional categories). This classifier achieved 70.1%

accuracy. The precision and recall for each category are given in Table10.5

Author Name Replacement Evaluation

The classifier used in this task is also SVM. We performed 10-fold cross validation

of the labeled sentences of dataset1. Our classifer achieved 77.41% accuracy.

10.3.3 Extraction Evaluation

To evaluate the extraction quality, we use dataset2 (that has never been used for

training or tuning any of the system subcomponents). We use our system to generate

summaries for each of the 30 papers in dataset2. We also generate summaries for

the papers using a number of baseline systems. All the generated summaries were

5 sentences long. We use the Recall-Oriented Understudy for Gisting Evaluation

(ROUGE) based on the longest common substrings (ROUGE-L) as our evaluation
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metric.

Baselines

We evaluate the extraction quality of our system (FL) against 8 different base-

lines. In the first baseline, the sentences are selected randomly from the set of citation

sentences and added to the summary. The second baseline is the MEAD summa-

rizer (Radev et al. 2004) with all its settings set to default. The third baseline is

LexRank [55] run on the entire set of citation sentences of the target paper. The

forth baseline is Qzvinian and Radev (2008) citation-based summarizer (QR08) in

which the citation sentences are first clustered then the sentences within each cluster

are ranked using LexRank. The remaining baselines are variations of our system

produced by removing one component from the pipeline at a time. In one variation

(FL-1), we remove the sentence filtering component. In another variation (FL-2),

we remove the sentence classification component; so, all the sentences are assumed

coming from one category in the subsequent steps. In a third variation (FL-3), the

clustering component is removed. To make the comparison to those baselines fair,

we remove the author name replacement component from our system and all its

variations.

Results

Table 10.6 shows the average ROUGE-L scores (with 95% confidence interval)

for the summaries of the 30 papers in dataset2 generated using our system and the

different baselines. The two human summaries were used as models for comparison.

Statistical significance was tested using a 2-tailed paired t-test. The results are

statistically significant at the 0.05 level.

The results show that our approach outperforms all the other baseline techniques.

It achieves higher ROUGE-L score for most of the papers in our testing set. Compar-
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ROUGE Human Random MEAD LexRank QR08 FL-1 FL-2 FL-3 FL

ROUGE-L 0.733 0.398 0.410 0.408 0.435 0.475 0.511 0.525 0.539

Table 10.6: Extraction Evaluation

ing the score of FL-1 to the score of FL shows that sentence filtering has a significant

impact on the results. It also shows that the classification and clustering components

both improve the results.

10.3.4 Coherence and Readability Evaluation

We asked human judges (not including ourselves) to rate the coherence of a

number of summaries for each of dataset2 papers. For each paper we evaluated

3 summaries. The summary that our system produced, the human summary, and

a summary produced by Qazvinian and Radev (2008) summarizer (the second best

baseline - after our system and its variations - in terms of extraction quality as

shown in the pervious subsection.) The summaries were randomized and given to

the judges without telling them how each summary was produced. The judges were

not given access to the source text. They were asked to use a five point-scale to rate

how coherent and readable the summaries are, where 1 means that the summary is

totally incoherent and needs significant modifications to improve its readability, and

5 means that the summary is coherent and no modifications needed to improve its

readability. We gave each summary to 5 different judges and took the average of

their ratings for each summary. Table 10.7 shows the number of summaries in each

rating range. The results show that our approach significantly improves the coher-

ence of citation-based summarization. Table 10.8 shows two sample summaries (each

5 sentences long) for Voutilainen (1995) paper in which he describes his rule based

tagger. One summary was produced using our system and the other was produced

using Qzvinian and Radev (2008) system.
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Average Coherence Rating
Number of summaries

Human FL QV08

1≤ coherence <2 0 7 17

2≤ coherence <3 3 4 3

3≤ coherence <4 17 10 1

4≤ coherence ≤5 10 1 0

Table 10.7: Coherence Evaluation

Produced using our system

There has been a large number of studies in tagging and morphological disambiguation us-
ing various techniques such as statistical techniques, e.g. constraint-based techniques and
transformation-based techniques. A thorough removal of ambiguity requires a syntactic pro-
cess. A rule-based tagger described in Voutilainen (1995) was equipped with a set of guessing
rules that had been hand-crafted using knowledge of English morphology and intuitions. The
precision of rule-based taggers may exceed that of the probabilistic ones. The construction of a
linguistic rule-based tagger, however, has been considered a difficult and time-consuming task.

Produced using Qazvinian and Radev (2008) system

Another approach is the rule-based or constraint-based approach, recently most prominently
exemplified by the Constraint Grammar work (Karlsson et al. , 1995; Voutilainen, 1995b;
Voutilainen et al. , 1992; Voutilainen and Tapanainen, 1993), where a large number of hand-
crafted linguistic constraints are used to eliminate impossible tags or morphological parses for
a given word in a given context. Some systems even perform the POS tagging as part of a
syntactic analysis process (Voutilainen, 1995). A rule-based tagger described in (Voutilainen,
1995) is equipped with a set of guessing rules which has been hand-crafted using knowledge of
English morphology and intuition. Older versions of EngCG (using about 1,150 constraints) are
reported ( butilainen et al. 1992; Voutilainen and HeikkiUi 1994; Tapanainen and Voutilainen
1994; Voutilainen 1995) to assign a correct analysis to about 99.7% of all words while each word
in the output retains 1.04-1.09 alternative analyses on an average, i.e. some of the ambiguities
remait unresolved. We evaluate the resulting disambiguated text by a number of metrics defined
as follows (Voutilainen, 1995a).

Table 10.8: Sample Output
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10.4 Conclusion

In this paper, we presented a new method for citation-based summarization of sci-

entific papers that produces fluent summaries. Our approach involves three stages.

The first stage preprocesses the set of citation sentences to determine the irrelevant

sentences or fragments of sentences and rule them out. In the second stage, the

remaining sentences are classified into 5 functional categories. The sentences within

each category are then grouped into clusters of similar sentences. Then, the sen-

tences are ranked within their clusters using LexRank. Sentences are added to the

summary in order based on their category, the size of their cluster, and their ranks.

In the last stage, each sentence is refined to avoid the redundancy caused by repeat-

ing the authors’ names. The results of our experiments confirmed that our system

outperforms other baseline systems.



CHAPTER XI

Other Applications

In this chapter, we hypothesize several uses of citing sentences such as analyzing

the trends of research, understanding the impact of research and how this impact

changes over time, summarizing the contributions of a researcher, summarizing the

discoveries in a certain research field, and providing high quality data for Natural

Language Processing tasks. In the rest of this paper we present some of these ideas

and provide examples to demonstrate their applicability. Some of these ideas have

been explored in previous work, but we believe that they still need further explo-

ration. However, most of the ideas are novel to our knowledge. We present our ideas

in the following sections.

11.1 Predicting Future Prominence of Papers

In any scientific community, certain papers may end up being much more promi-

nent than others. If we look at all the citations received by the papers in the ACL

Anthology till 2012, the top 10% of the papers receive 70% of the total number of

citations. We investigate the possibility of detecting prominent papers within a year

or two of the publication of the paper.

This work is most related to [210], which try to predict the response of a scientific

community to an article. They look at the problem of predicting whether a paper

157
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will receive any citations within the first 3 years given data at publication time. Our

work can be seen as complementary to this work. We want to study how accurately

can we predict the prominence of a paper in the horizon of 10 years given the first

few years of data.

There has been interest in the task of citation prediction in the data mining

community. One of the tasks of the popular KDD Cup competition that was held

in year 2003[64] asked the participants to predict changes in the number of citations

received by well-cited papers over time. The citation network of 30,119 papers and

the full text of each paper was provided to participants. All participating systems

used network based features, time series based features, keyword diffusion features,

and metadata features (such as author prestige, etc.). None of the systems used

NLP-based features of citation relations. We believe that applying our analysis of

citation text can lead to a more accurate citation prediction.

Yan et al.[207] use a variety of features including topic models, diversity and

recency to predict the exact future citation counts of papers and report R2 values

of .75 and .79 for 5-year and 10-year predictions respectively. In later work [206],

they do more comprehensive analysis and report higher R2 values of 0.87 and 0.92

for forecast periods of 5 and 10 years respectively.

Reference lag I-set S-set R-set
0 341 3924 2730
1 194 4341 2460
2 78 4771 2147
3 49 4932 2015
4 15 5142 1839
5 9 5280 1707

Table 11.1: Distribution across I, S and R sets for 5 different values of reference lag

Given the data for a paper after one or two years of its publication, we would
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like to predict the prominence of the paper in a large horizon of the next 10 years.

One way to look at it is as a regression problem where we try to predict the number

of citations the paper will receive. However, the exact counts of citations to papers

are dependent on the rate of new publications and is not comparable from one year

to the other. Therefore, we formulate the problem in such a way that we compare

papers that are published in the same year. The intuition is that if some of these

papers get many more citations than other papers published in the same year, then

they are more prominent. We first introduce a few terms.

We define reference year as the time till which our system is allowed to look at

the data. The forecast year is defined as the year for which we have to make a

prediction for the paper. The idea is that our system takes the data between the

publication year and the reference year and makes a prediction about whether the

paper showed prominence between the reference year and the forecast year. We

compute the percentile rank of the paper at the forecast year with respect to all the

papers published in the same year based on the cumulative citations accumulated by

paper since it was published.

We studied two different problem formulations of predicting the prominence of

papers in the future. In the first formulation, our goal is to detect the papers that

are in the top 10 percentile at the forecast year amongst the papers published in any

given year. We refer to this set as the P-set. We refer to the rest of the papers as

the R-set.

In the second formulation we divide the papers into three sets as follows. Set-I:

represents the set of papers for which the percentile rank increased by more than some

upper threshold Tu between the reference year and forecast year. Set-N: represents

the set of papers for which the percentile rank did not increase more than some lower
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threshold Tl. Set-R: represents the rest of the papers. Set-I represents the papers

that could not be distinguished as prominent papers within at reference year, but

became prominent by the forecast year.

Reference lag Accuracy F-score, label I F-score, label S F-score, label R
0 .80 .45 .86 .72
1 .71 .49 .80 .53
2 .75 .26 .83 .51
3 .79 .20 .86 .57

Table 11.2: Accuracy and per class F-scores for 3-Class classification set up.

For experimentation, we generate data from the ACL Anthology Network [161].

Our publication years vary from 1980 to 2002. We fix the forecast year for a paper to

be 10 years after the publication year of that paper. For the 3-class formulation Tu

is set to 0.4 and Tl is set to 0. The data that we generated comprised 6996 papers.

The task now is to determine the set that the paper will belong to at the forecast

year. We adopt a supervised classification approach.

We use several features derived from the different entities associated with the

paper along with linguistic features derived from the text of the paper. We divide

the features into several groups:

• Author based features: such as the number of publications of the author, the

H-index of the author and the citation count. If the paper has multiple authors,

we use the maximum, minimum and average of these values as features.

• Citation based features: count of cited papers, the pagerank of cited papers

etc. Similarly, we derive features from the papers that cite the current paper

in the reference period, e.g. the average H-index of the authors of papers citing

the current papers.
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• Citation text features: for the papers citing this paper, we look at the sen-

tences used while citing this paper and compute features using the citation

sentiment and citation purpose of these sentences.

• Heterogeneous network features: we use a network that combines authors,

papers, venues, institutions and terms into a single network. For each of the

entities in the network, we compute its pagerank and the slope of the change in

the pagerank over the last 5 years.

We trained a logistic regression classifier for each of the problem formulations.

The results showed that we can predict the accuracy of a paper being in Set-P with

more than 80% F-score by looking at just two years of data. Our results showed that

a paper accumulates enough evidence within the first two years to be able to predict

its forecast for the next 10 years.

The results for the 3-class classification show that it is a much more difficult task

to predict the accuracy of a paper being in Set-I. Additionally, the problem becomes

more difficult as we increase the reference lag. Table 11.2 summarizes the results of

our classification. The maximum F-score we achieve for Set-I in this setup is 0.49,

after a reference lag of 1 year. The F-score decreases consistently as we increase the

reference lag. This is consistent with the results of the 2-class classification. Both

of these results show that the percentile ranks of papers stabilize after 1-2 years of

publication, and do not change after that. This is also reflected in the decreasing

size of Set-I as we increase the reference year in Table 11.1.

11.2 Temporal Analysis of Citations

The interest in studying citations stems from the fact that bibliometric measures

are commonly used to estimate the impact of a researcher’s work [33, 117]. Several
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Comparison Contrast/Comparison in Results, Method, or Goals

Basis Author uses cited work as basis or starting point

Use Author uses tools, algorithms, data, or definitions

Description Neutral description of cited work

Weakness Limitation or weakness of cited work

Table 11.3: Annotation scheme for citation purpose

previous studies have performed temporal analysis of citation links [20, 124, 164]

to see how the impact of research and the relations between research topics evolve

overtime. These studies focused on observing how the number of incoming citations

to a given article or a set of related articles change over time. They overlooked the

fact that the number of incoming citations is often not the only factor that changes

with time. We believe that analyzing the text of citing sentences allows researchers to

observe the change in other dimensions such as the purpose of citation, the polarity

of citations, and the research trends. The following subsections discuss some of these

dimensions.

11.2.1 Temporal Analysis of Citation Purpose

Teufel et al. [184] have shown that the purpose of a citation can be determined by

analyzing the text of citing sentences. We hypothesize that performing a temporal

analysis of the purpose for citing a paper gives a better picture about its impact.

As a proof of concept, we annotated all the citing sentences in the ACL Anthology

Network (AAN) that cite the top 10 cited papers from the 1980’s with citation

purpose labels. The labels we used for annotation are based on Teufel et al. [184]

annotation scheme and are described in Table 11.3. We counted the number of times

the paper was cited for each purpose in each year since its publication date. This

analysis revealed interesting facts about the impact of each paper. We will discuss

our observations in Section 11.2.3. Figure 11.1 shows the change in the ratio of each
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Figure 11.1: Change in the citation purpose of Shieber (1985) paper

purpose with time for Shieber’s (1985) work on parsing.

11.2.2 Temporal Analysis of Citation Polarity

The bibliometric measures that are used to estimate the impact of research are

often computed based on the number of citations it received. This number is taken

as a proxy for the relevance and the quality of the published work. It, however,

ignores the fact that citations do not necessarily always represent positive feedback.

Many of the citations that a publication receives are neutral citations, and citations

that represent negative criticism are not uncommon. To validate this intuition, we

annotated 2000 citing sentences from AAN for citation polarity. We found that only

30% of citations are positive, 4.3% are negative, and the rest are neutral. In another

published study, Athar [23] annotated 8736 citations from AAN with their polarity

and found that only 10% of citations are positive, 3% are negative and the rest were

all neutral. We believe that considering the polarity of citations when conducting

temporal analysis of citations gives more insight about how the way a published

work is perceived by the research community over time. As a proof of concept, we

annotated the polarity of citing sentences for the top 10 cited papers in AAN that

were published in the 1980’s. We split the year range of citations into slots of 2 years
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Figure 11.2: Change in the polarity of the sentences citing Church (1988) paper

and counted the number of positive, negative, and neutral citations that each paper

received during that time slot. We observed how the ratios of each category changed

overtime. Figure 11.2 shows the result of this analysis when applied to the work of

Kenneth Church [40] on part-of-speech tagging.

11.2.3 Predict Emergence of New Techniques or Decline of Impact of Old Techniques.

The ideas discussed in Sections 11.2.1 and 11.2.2 and the results illustrated in

Figures 11.1 and 11.2 suggest that studying the change in citation purpose and

citation polarity allow us to predict the emergence of new techniques or the decline

in impact of old techniques. For example, the analysis illustrated in Figure 11.2

shows that the work of Kenneth Church (1988) on part-of-speech tagging received

significant positive feedback during the 1990s and until early 2000s before it started to

receive more negative feedback. This probably can be explained by the emergence of

better statistical models for part-of-speech (POS) tagging (e.g. Conditional Random

Fields [108]) that outperformed Church’s approach. However, as indicated by the

neutral citation curve, Church’s work continued to be cited as a classical pioneering

research on the POS tagging task, but not as the state-of-the-art approach. A
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similar analysis can be applied to the change in citation purpose of Shieber (1985)

as illustrated in Figure 11.1

11.2.4 Study the Dynamics of Research

In recent research, Gupta and Manning [70] conducted a study that aims at un-

derstanding the dynamics of research in the computational linguistics area. They

analyzed the abstracts of the papers included in the ACL Anthology Reference Cor-

pus. They extracted the contributions, the domain of application, and the techniques

and tools used in each paper. They combined this information with pre-calculated

article-to-community assignments to study the influence of a community on others

in terms of techniques borrowed and the maturing of some communities to solve

problems from other domains. We hypothesize that conducting such an analysis

using the citing sentences of papers instead of (or in combination with) abstracts

leads to a more accurate picture of research dynamics and the interaction between

different research communities. There are several intuitive observations that support

this hypothesis.

First, previous research [53] has shown that the sentences that cite a paper are

more focused and more concise than the paper abstract, and that they consistently

contain additional information that does not appear in abstracts. This means that

additional characteristics of a paper can be extracted from citing sentences that can-

not be extracted from abstracts. To verify this, we compared abstracts vs citations

(within AAN) in terms of the number of occurrences of the trigger words that Gupta

and Manning [70] deemed to be indicative of paper characteristics (Table 11.4).

The numbers clearly show that the trigger words appear more frequently in the set

of citing sentences of papers than they do in the paper abstracts. We also found

that many papers that none of the trigger words appeared in their abstracts, while
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apply propose extend system

Abstracts 1368 2856 425 5065

Citing Sentences 2534 3902 917 6633

Table 11.4: Comparison of trigger word occurrences in abstracts vs citing sentences.

they do appear in their citing sentences. This suggests that more paper properties

(contributions, techniques used, etc.) could be extracted from citations than from

abstracts.

Second, while the contributions included in an abstract are the claims of the paper

author(s), the contributions highlighted in citing sentences are collectively deemed to

be important by peer researchers. This means that the contributions extracted from

citations are more important from the viewpoint of the community and are likely to

reflect research trends more accurately.

We performed another simple experiment that demonstrates the use of citing

sentences to track the changes in the focus of research. We split the set of citing

sentences in AAN into three subsets: the set of citing sentences that cite papers from

1980s, the set of citing sentences that cite papers from 1990s, and the set of citing

sentences that cite papers from 2000s. We counted the frequencies of words in each

of the three sets. Then, we ranked the words in each set by the decreasing order of

their frequencies. We selected a number of keywords and compared their ranks in

the three year ranges. Some of these keywords are listed in Table 11.5. This analysis

shows, for example, that there was more focus on ”grammar” in the computational

linguistics research in the 1980s then this focus declined with time as indicated by

the lower rank of the keyword ”grammar” in the 1990s and 2000s. Similarly, rule

based methods were popular in the 1980s and 1990s but their popularity declined

significantly in the 2000s.
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Rank

word 1980s 1990s 2000s

grammar 22 71 123

model 75 72 26

rules 77 89 148

statistical - 69 74

syntax 257 1018 683

summarization - 880 359

Table 11.5:
Ranks of selected keywords in citing sentences to papers published in 80s, 90s and 2000s

11.3 Controversy Identification

Some arguments and claims made by researchers may get disputed by other re-

searchers. The following are examples of citing sentences that dispute previous work.

(1) Even though prior work (Teufel et al., 2006) argues that citation text is unsuit-

able for summarization, we show that in the framework of multi-document survey

creation, citation texts can play a crucial role.

(2) Mining the Web for bilingual text (Resnik, 1999) is not likely to provide sufficient

quantities of high quality data.

In many cases, it is useful to know which arguments were confirmed and accepted by

the research community and which ones where disputed or even rejected. We believe

that analyzing citation text helps identify these contrasting views automatically.

11.4 Comparison of Different Techniques

Citing sentences that compare different techniques or compare the techniques

proposed by the author to previous work are common. The following sentences are

examples of such comparisons.

In (Zollmann et al., 2008), an interesting comparison between phrase-based, hierar-

chical and syntax-augmented models is carried out, concluding that hierarchical and
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syntax-based models slightly outperform phrase-based models under large data condi-

tions and for sufficiently non-monotonic language pairs.

(4) Brill’s results demonstrate that this approach can outperform the Hidden Markov

Model approaches that are frequently used for part-of-speech tagging (Jelinek, 1985;

Church, 1988; DeRose, 1988; Cutting et al. , 1992; Weischedel et al. , 1993, as well

as showing promise for other applications.

(5) Our highest scores of 90.8% LP and 90.5% LR outperform the scores of the best

previously published parser by Charniak (2000) who obtains 90.1% for both LP and

LR.

Extracting such comparisons from citations can be of a great benefit to researchers.

It will allow them to quickly determine which technique works better for their tasks.

To verify that citation text could be a good source for extracting comparisons, we

created a list of words and phrases that are usually used to express comparisons and

counted their frequency in AAN citing sentences. We found, for example, that the

word compare (at its variations) appears in about 4000 different sentences, and that

the words outperform and contrast each appears in about 1000 citing sentences.

11.5 Ontology Creation

It is useful for researchers to know which tasks and research problems are im-

portant, and what techniques and tools are usually used with them. Citation text

is a good source of such information. For example, sentence (6) below shows three

different techniques (underlined) that were used to extend tools and resources that

were created for English so that they work for other languages. For another example,

sentence (7) shows different tasks in which re-ranking has been successfully applied.

These relations can be easily extracted from citing sentences and can be possibly
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used to build an ontology of tasks, methods, tools, and the relations between them.

(6) Another strain of research has sought to exploit resources and tools in some

languages (especially English) to construct similar resources and tools for other lan-

guages, through heuristic projection (Yarowsky and Ngai, 2001; Xi and Hwa, 2005)

or constraints in learning (Burkett and Klein, 2008; Smith and Eisner, 2009; Das

and Petrov, 2011; McDonald et al., 2011) or inference (Smith and Smith, 2004).

(7) (Re)rankers have been successfully applied to numerous NLP tasks, such as

parse selection (Osborne and Baldridge, 2004; Toutanova et al., 2004), parse reranking

(Collins and Duffy, 2002; Charniak and Johnson, 2005), question-answering (Ravichan-

dran et al., 2003).

11.6 Paraphrase Extraction

It is common that multiple citing sentences highlight the same facts about a cited

paper. Since these sentences were written by different authors, they often use differ-

ent wording to describe the cited paper facts. This motivates the idea of using citing

sentences to create datasets for paraphrase extraction. For example, sentences (8)

and (9) below both cite (Turney, 2002) and highlight the same aspect of Turney’s

work using slightly different wordings. Therefore, sentences (8) and (9) can be con-

sidered paraphrases of each other.

(8) In (Turney, 2002), an unsupervised learning algorithm was proposed to classify

reviews as recommended or not recommended by averaging sentiment annotation of

phrases in reviews that contain adjectives or adverbs.

(9) For example, Turney (2002) proposes a method to classify reviews as recom-

mended/not recommended, based on the average semantic orientation of the review.

The paraphrase annotation of citing sentences consists of manually labeling which
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sentence consists of what facts. Then, if two citing sentences consist of the same set

of facts, they are labeled as paraphrases of each other. For example, if a paper has

50 sentences citing it, this gives us a paraphrasing dataset that consists of 50*49 =

2,450 pairs. As a proof of concept, we annotated 25 papers from AAN using the

annotation method described above. This data set consisted of 33,683 sentence pairs

of which 8,704 are paraphrases.

The idea of using citing sentences to create datasets for paraphrase extraction

was initially suggested by Nakov et al. [141] who proposed an algorithm that ex-

tracts paraphrases from citing sentences using rules based on automatic named entity

annotation and the dependency paths between them.

11.7 Scientific Article Classification

Automatic classification of scientific articles is one of the important tasks for cre-

ating publication databases. A variety of machine learning algorithms have been

proposed for this task. Many of these methods perform the classification based on

the title, the abstract, or the full text of the article. Some other methods used cita-

tion links in addition to content to make classification decisions. Cao and Gao [37]

proposed a two-phase classification system. The system first applies a content-based

statistical classification method which is similar to general text classification. In the

second phase, the system uses an iterative method to update the labels of classi-

fied instances using citation links. A similar approach is also proposed by Zhang

et al. [213]. These approaches use citation links only to improve classification de-

cisions that were made based on content. We hypothesize that using the text of

citing sentences in addition to citation structure and content leads to more accurate

classification than using the content and citation links only.
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11.8 Terminology Translation

Citing sentences can also be used to improve machine translation systems by using

citing sentences from different languages to build parallel corpus of terms and their

translations. This can be done by identifying articles written in different languages

that cite a common target paper, then extracting the citing sentences from each

paper. Word alignment techniques can then be applied to the text surrounding the

reference to the common target paper. The aligned words from each source can then

be extracted and used as translations of the same term. Sentences (10) and (11)

below illustrate how the application of this proposed method can identify that the

underlined terms in sentence 10 (Spanish) and sentence 11 (English) are translations

of each other.

(10) Spanish: Se comprob que la agrupacin por bloques ofreca mejores resultados

que, la introduccin de vocabulario (Hearst, 1997) o las cadenas lxicas (Hearst,

1994) y, por tanto, es la que se ha utilizado en la segunda fase del algoritmo.

(11) English: This can be done either by analyzing the number of overlapping lexical

chains (Hearst, 1994) or by building a short-range and long-range language model

(Beeferman et al. , 1999).

11.9 Other Uses of Citing Sentences

Nakov et al. [141] proposed several other possible uses of citing sentences. First,

they suggested using them as a source for unannotated comparable corpora. Such

comparable corpora can be used in several applications such as paraphrase extracted

as we showed earlier. They also noticed that the scientific literature is rife with
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abbreviations and synonyms, and hence, citing sentences referring to the same article

may allow synonyms to be identified and recorded. They also proposed using citing

sentences to build a model of the different ways used to express a relationship between

two entities. They hypothesized that this model can help improve both relation

extraction and named entity recognition systems. Finally, they proposed improving

the indexing and ranking of publications by considering, in addition to the content

of the publication, the text of citing sentences that cite it and their contexts.

11.10 Conclusion

We have motivated and discussed different uses of citing sentences, the text sur-

rounding citations. We showed that citing sentences can be used to analyze the

dynamics of research and observe how it trends. We also gave examples on how

analyzing the text of citing sentences can give a better understanding of the im-

pact of a researcher’s work and how this impact changes over time. In addition,

we presented several applications that can benefit from citing sentences. These in-

clude scientific literature summarization, identification of controversial arguments,

and relation extraction between techniques, tools and tasks. We also showed how

citing sentences can provide high-quality data for NLP tasks such as information

extraction, paraphrase extraction, and machine translation.

Much work still needs be done before citing sentences can be put to full use. The

ideas that we proposed and motivated in this paper opens several new dimensions for

research in different directions. We presented some simple experiments as proof of

concepts to support our hypotheses. In future work, we plan to thoroughly explore

and publish the proposed ideas.



Part III. Conclusion and Future Work

CHAPTER XII

Conclusion

Language is the medium through which humans express their thoughts and com-

municate them to others. People express happiness in different words than sadness

and use different expressions to show agreement than the expressions they use to

show disagreement. Psycholinguistic and Sociolinguistics studies have shown that

the language used by humans is affected by cognitive, psychological, and social fac-

tors. In this thesis, we attempted to explore this relationship between language on

one side and thoughts, feelings, beliefs, and perspectives on the other side. In partic-

ular, we studied how linguistic analysis techniques can be used to identify, analyze,

and summarize people’s perspectives. We applied our study to two different domains:

social media and scientific literature.

In the social media domain, we focused on threaded discussions that discuss polit-

ical and ideological topics. This type of discussions can be found on social networking

sites, on discussion forums, on image and video sharing sites, on news web sites, etc.

The main research question that we tried to answer is: how natural language anal-

173
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ysis techniques can be used to identify the different opinions and viewpoints of the

participants of online discussions. To answer this question, we first studied the genre

of online discussions. We studied the language used by participants for arguing for

or against an opinion. We studied how participants support other participants who

share the same opinion with them and how they attempt to dispute the opinions of

opposing participants.

We observed that polarized expressions are commonly used in discussions to ex-

press opinion. A significant portion of these polarized expressions are colloquial

words or acronyms that do not exist in the available polarity lexicon. This moti-

vated the need for methods that detect the polarity of out-of-vocabulary words. We

also observed that participants may switch back and forth, in the same post, be-

tween emphasizing their opinions and disputing opposing opinions. This means that

both positive and negative polarities may be used in the same post. This motivated

our need for identifying the targets of opinion and associate each polarity expression

with its target. We also noticed that most discussion groups that discuss controver-

sial topics split into subgroups with contrasting opinions. This motivated us to work

on automatically identifying opinion subgroups by analyzing the text posted by the

discussants.

In the scientific literature domain, we focused on studying citations. We used NLP

techniques to analyze the text that accompanies citations in scientific articles. The

goal of this study is to see how important a researcher’s work is from the viewpoints

of other researchers. This is useful for developing more accurate bibliometric mea-

sures that evaluate both the quantitative and the qualitative aspects of published

research. This is also useful for many applications such as paper summarization,

survey generation, and studying the dynamics of research. We proposed methods for
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identifying, extracting, and cleaning citation text from scientific articles. We used

linguistic analysis techniques to analyze this text and identify the author intention

behind selecting a paper and citing it. We also used citation text to identify the

polarity of citation; i.e. the author sentiment towards the cited work. We use a su-

pervised approach for these problems. We present a number of applications in which

the analysis of citations can be useful such as generating citation-based summaries

of scientific articles, predicting future prominence of scientific articles, and studying

the dynamics of research.

The thesis falls in two parts. The first part consists of 5 chapters (II - VI) and

covers the work we did in the social media domain. The second part consists of 5

chapters (VII - XI) and covers the work we did in the scientific literature domain.

In Chapter III, we addressed the problem of identifying opinion expressions. We

extended an existing random-walk based method [76] to make it capable of identifying

the polarity of out-of-vocabulary (OOV) words. OOV words are ones that do not

exist in the available polarity lexicons and are not defined in the standard dictionaries

of the language. We augment a semantic graph constructed from Wordnet synsets

with the OOV words that we want to identify the polarity of. The relatedness of

the OOV word and the other words that exist in the graph is determined based

on co-occurrence statistics computed from a large corpus of social text. In our

experiments we used a large corpus of tweets. Once the OOV word bercomes part

of the semantic graph, the random-walk method is applied to identify its polarity.

The random walk method that we used identifies the polarity of words in a semi-

supervised classification fashion. The polarity of a given word is computed based on

the mean hitting time to a set of positive and negative seed words. If the difference

between the mean hitting time to positive and the mean hitting time to negative is
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smaller than some threshold (picked experimentally), the word is classified as neutral.

Otherwise, the word is classified as positive if the mean hitting time to the positive

seeds is higher or as negative if the mean hitting time to the negative seeds is higher.

We compared our method to several baselines including ones that use co-occurrence

statistics computed using the whole web as a corpus. We showed that using a corpus

of social text gives better results for this task than using the whole web or a generic

text corpus.

In Chapter IV, we addressed the problem of detecting negation and identifying

its scope. Handling negation is important for sentiment analysis and opinion mining.

The polarity of a word is reversed when it occurs in a negated context. Handling

negation involves two tasks. First, we detect negation cues. A negation cue is a

word, a prefix, or a postfix that triggers negation. Second, we identify the scope of

a negation in the sentence it appears in. The scope of negation is the part of the

sentence that is negated. We proposed a sequence labeling method for the two tasks.

Chapter V addressed the problem of identifying the targets of attitudes in dis-

cussions. Addressing this problem is important in discussions because we observed

that both positive and negative opinion expressions are used by participants. Even

in one post, the same participant may switch back and forth between arguing for

his/her opinion and arguing against the contrasting opinions. This means that we

cannot rely only on the polarity of opinion expressions to identify perspective. It is

important that we take the targets of opinion into account as well. We experimented

with three methods for this task. The first method is unsupervised. It uses a set of

hand-crafted rules to identify the targets of opinion expressions. The rules are based

on the dependency parse tree of the sentence that contains the opinion expression

and the candidate target. The two other methods are supervised. In one of them, we
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addressed the problem as a sequence labeling task. For every opinion expression, we

label every word in the sentence as being part of the target of that opinion word or

not. In the other supervised method, we use a classification setup. We first identify

all candidate targets of opinion and then determine for every possible opinion-target

pair whether the candidate target is actually a target of the opinion word or not. We

use as candidate targets named entities and frequent noun phrases. Our experiments

showed that the classification and the sequence labeling approaches achieve better

results than the rule-based method. The rule based method achieves higher precision

but significantly lower recall.

Chapter VI describes how we encode the opinion and attitude information identi-

fied using the methods presented in the previous chapters in a formal representation.

We describe two representations. A signed network representation and a vector rep-

resentation. In the signed network representation each participant is represented by

a node in a network. Edges connect participants who interact in the discussion. The

sign of the edge is positive if the textual analysis of their posts shows that they share

the same opinion with respect to the discussion topic, otherwise the sign is nega-

tive. In the second representation, each participant is represented by a vector. Each

vector acts as an attitude profile that stores the attitude information of the partic-

ipant towards every other participant and towards the topical targets. The chapter

also describes an application in which we use network partitioning and vector space

clustering techniques to detect subgroups of discussants who share the same opinion.

The second part of the thesis focuses on identifying and analyzing researchers’

viewpoints towards previous work through the lens of citations. Chapter VIII presents

methods for identifying citation text and extracting citing sentences and citation

context. Citation text is the succession of sentences that appear around a reference



178

anchor and comment on the referenced work [143]. The first step to identify citation

text is identifying reference anchors. We used a set of regular expression rules to

identify such anchors. The sentence that contains a reference anchor is termed cit-

ing sentence. The text that comments on a cited work may span multiple sentences

around the citing sentence. We use the term citation context to refer to the sentences

adjacent to the citing sentence and comment on the cited work. We propose a se-

quence labeling method for identifying citation context using a set of structural and

lexical features that capture the semantic relation between the surrounding sentences

and the citing sentence.

We also addressed the problem of identifying the scope of a reference in citing

sentences that cite multiple papers. The scope of a reference is the fragment of the

sentence that talks about a given target reference. We experimented with two su-

pervised methods for addressing this problem. The first method tackles the problem

as a classification task where each word in the sentence is classified as included or

excluded from the scope of a given target reference. The second method tackles the

problem as a sequence labeling problem where the goal is to find the best sequence

of included and excluded labels for all the words in the sentence. Identifying the

scope of a reference is an important preprocessing step for many applications that

use citation text. For example, in citation-based summarization, only the text that

describes the summarized paper should be included in the summary [10].

Chapter X presents a method that uses citation text to generate multi-perspective

summaries of scientific articles. This type of summaries is different from abstracts

or summaries generated from the paper itself. Citation-based summaries summarize

the contributions of the paper from the perspectives of other scholars who read the

paper and identified its strengths and weaknesses and its important contributions.
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Our method is different from previous work in that it focuses on the coherence and the

readability of the produced summaries. Our approach achieved better performance

than previous methods in terms of both content selection and readability.

Chapter XI concludes the second part of the thesis. It presents a set of ap-

plications in which citation text can be used to analyze scientific literature. These

applications include predicating the future prominence of research articles, analyzing

the dynamics of research, identifying controversial scientific topics, and others.



CHAPTER XIII

Future Directions

In this chapter, we present directions for future work that can build on the findings

and the conclusions of this thesis.

13.1 Computational Psycholinguistics and Sociolinguistics

Psycholinguistic and Sociolinguistics are two areas that are underexplored by

computational linguistic researchers [46, 171]. We believe that there exists a large

gap between the progress achieved in sociolinguistics and psycholinguistics and the

efforts made in the NLP and IR communities to build computational models that

verify, utilize, and apply the findings made by sociolinguists and psycholinguists. In

future work, we plan attempt to narrow this gap by spending more time on studying

the literature and basing our computational approaches to mining perspectives on

sociolinguistic and psycholinguistic theories.

13.2 Detecting Influencers in Online Discussions

One interesting research direction we are interested in exploring in the future is

detecting influencers in discussions [31]. This involves studying the behavioral and

linguistic features that could make someone an opinion leader who can influence

others’ opinions. This problem has not been thoroughly explored and there are
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a lot of sociolinguistic theories around influence and its relation to language that

have not been investigated computationally. There are several discussion forums on

the internet that can be good sources of data for studying influence and training

computational model for detection influences.

13.3 Multiple viewpoint summarization of discussions

In this thesis, we showed how we mine opinion and opinion targets from discus-

sions. We also presented two approaches for detecting opinion subgroups in dis-

cussion communities. The output of this work can be used to build systems for

summarizing the different viewpoints that the participants in a discussion have with

respect to the discussion topic. Such a system should be able to identify the most

important points raised by each subgroup and include them in the summary. The

produced summary should list the disputed aspects of the discussed topic and select

sentences that express the different viewpoints for each aspect.

13.4 Studying Discussion Group Dynamics

Another interesting research direction that can build on our work is studying the

dynamics of discussion groups. For example, it is interesting to study how the rift

in a discussion group starts and how it leads to the split of discussants into multiple

subgroups with contrasting opinions, and how these subgroups evolve with time. It

is also interesting see what correlation there is between the evolution of subgroups

and the language used by the members of those subgroups.

13.5 Predicting Future Prominence of Scientific Articles

In chapter XI, we presented initial results on using textual analysis of citations

to predict the number of citations that a paper may receive in the future. We are

planning to continue working on this problem with a focus on indicators that can
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be extracted from citation text. We are specifically interested in studying change in

prominence with a focus on detecting papers that do not attract attention at the

time of publication, but becomes prominent in the future, or those that receive a

lot of attention for a short time after publication and then their prominence drops

quickly. Our hypothesis is that analyzing citation text provides useful indicators of

future prominence. This work has many useful applications such as developing more

accurate bibliometric measures and building systems that aid in funding and hiring

decisions at research funding agencies and research institutions.
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