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ABSTRACT

Particle methods for geophysical flow on the sphere

by
Peter A. Bosler

Co-Chairs: Jablonowski & Krasny

We present a Lagrangian Particle-Panel Method (LPPM) for geophysical fluid flow on a

rotating sphere motivated by problems in atmosphere and ocean dynamics. We focus here

on the barotropic vorticity equation and 2D passive scalar advection, as a step towards the

development of a new dynamical core for global circulation models.

The LPPM method employs the Lagrangian form of the equations of motion. The flow

map is discretized as a set of Lagrangian particles and panels. Particle velocity is computed

by applying a midpoint rule/point vortex approximation to the Biot-Savart integral with

quadrature weights determined by the panel areas. We consider several discretizations of

the sphere including the cubed sphere mesh, icosahedral triangles, and spherical Voronoi

tesselations. The ordinary differential equations for particle motion are integrated by the

fourth order Runge-Kutta method. Mesh distortion is addressed using a combination of

adaptive mesh refinement (AMR) and a new Lagrangian remeshing procedure. In contrast

with Eulerian schemes, the LPPM method avoids explicit discretization of the advective

derivative. In the case of passive scalar advection, LPPM preserves tracer ranges and both

linear and nonlinear tracer correlations exactly.

We present results for the barotropic vorticity equation applied to several test cases

xii



including solid body rotation, Rossby-Haurwitz waves, Gaussian vortices, jet streams, and

a model for the breakdown of the polar vortex during sudden stratospheric warming events.

The combination of AMR and remeshing enables the LPPM scheme to efficiently resolve

thin fronts and filaments that develop in the vorticity distribution. We validate the accuracy

of LPPM by comparing with results obtained using the Eulerian based Lin-Rood advection

scheme. We examine how energy and enstrophy conservation in the LPPM scheme are

affected by the time step and spatial discretization. We conclude with a discussion of how

the method may be extended to the shallow water equations.
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CHAPTER I

Introduction

This thesis adapts the mathematical and numerical technique known as vortex methods

to solve problems of geophysical fluid dynamics (fluid flow of the atmosphere and ocean).

We represent the Earth as a sphere, and solve the equations of motion on the spherical

surface as a model of the global circulation. From a weather and climate modeling per-

spective, we take the first steps toward using vortex methods as the basis of a dynamical

core.

A dynamical core is the foundation of every weather and climate model. It encompasses

the model equations that must be solved, their related spatial and temporal discretizations,

and the numerical method employed to solve the equations [108]. In proposing vortex

methods as an approach for discretizing and solving model equations, we develop an algo-

rithm with four key features that could provide a new dynamical core to the weather and

climate modeling communities.

The first and most notable feature of our method is that it is based on the Lagrangian

form of the equations of motion. This implies that the equations are solved in a reference

frame that is moving with the flow, or “flow-following.” Numerically this means that our

computational elements move as computations evolve in time. Dynamical cores have tra-

ditionally used an Eulerian form for the fluid equations, which solves the equations from

1



2

the point of view of a stationary reference frame. Lagrangian formulations are thought to

require less numerical viscosity [83], may be better at maintaining sharp interfaces such

as frontal systems [97], and may have better conservation properties than their Eulerian

counterparts [114]. We investigate these claims for geophysical applications throughout

this work. Lagrangian methods must contend with the fact that, by definition, the arrange-

ment of their computational elements will deform and distort over time which can lead to

a loss of accuracy.

We address the challenge of distortion with the second key feature of our method: a

combination of adaptive refinement and a new remeshing procedure. Adaptive refinement

has been an area of active research in geophysical modeling in recent years [15]. This

research is driven by the fact that models are solved by computers with finite resources.

An adaptive refinement strategy that uses more resources in regions of the fluid that are

most computationally challenging, while saving resources where they are not needed can

make efficient use of expensive computer time. For a Lagrangian method like the one

proposed by this thesis, adaptive refinement also helps to preserve accuracy [101]. As par-

ticles move, some regions of the domain may become depleted of computational elements;

adaptively refining these regions as they occur can prevent computational accuracy from

degrading. The new remeshing strategy we develop to maintain the Lagrangian flow map

and preserve many of the beneficial properties of the Lagrangian representation of the fluid

equations works in conjunction with our adaptive refinement procedures.

The third key feature of our method is that velocity is computed from vorticity with

the Biot-Savart law [38, 30, 120]. From a mathematical perspective, this means that we

solve the partial differential equations of motion with Green’s function, rather than using

spectral transforms, finite element methods, finite difference methods, or finite volume

methods. Such an approach is new to the dynamical core community. The combination
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of a Lagrangian formulation and the Biot-Savart law is responsible for the success of

vortex methods. It enables the spatial discretization to provide a quadrature rule instead of

discrete derivatives, and is more tolerant to non-uniform resolutions as a result.

Lastly, we represent the sphere in 3D Cartesian coordinates, rather than 2D spherical

coordinates. Cartesian coordinates do not have the polar singularities of the spherical co-

ordinate system [188], and Green’s function is simpler to evaluate in Cartesian coordinates

[136].

The rest of this introductory chapter is devoted to background. First the background of

numerical weather prediction and its relation to mathematics and scientific computation is

presented in section 1.1. We discuss decisions modelers must make during the beginning

stages of dynamical core development, including fundamental decisions like using the

Lagrangian or Eulerian representation of the fluid equations in section 1.2. Section 1.3

focuses on the primary differences between the Lagrangian and Eulerian formulations,

which are introduced from both physical and mathematical perspectives. The basis of

our numerical techniques are vortex methods, which are introduced in section 1.4. The

last section of this chapter reviews spherical geometry and the coordinate systems we use

throughout this thesis.

The remainder of the thesis is divided into six chapters and an appendix. Chapter II

introduces the flow map, which is the basis of all Lagrangian methods, and the specific

algorithms we use to discretize it. Chapter II develops the key features of our algorithm,

and distinguishes our approach from current dynamical cores and related works in vortex

methods. We combine the flow map and the barotropic vorticity equation to derive our

numerical method in chapter III. Chapter IV presents several test cases for barotropic

vorticity problems and numerical solutions produced by our model as well as results from

methods derived from an operational Eulerian dynamical core. The method we develop
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in chapters II and III can also be applied to the advection equation, which is done in

chapter V for a suite of deformational flow test problems. The shallow water equations

are more complex than the barotropic vorticity equation, and are frequently used as the

proving ground for developing dynamical cores [187]. Chapter VI derives the Lagrangian

form of the shallow water equations and introduces the strategies we intend to apply to

that equation set. We present conclusions from our investigation of vortex methods for

dynamical core applications in chapter VII, and identify several strategies for improving

our method. The appendix provides a brief introduction to the problem of interpolating

scattered data, which we confront in our remeshing procedures.

1.1 Background

Like most of fluid dynamics, the mathematics that underlies modern weather and cli-

mate models owes a great deal to the theorems of the late nineteenth century due to Kelvin

and Helmholtz; Batchelor [12] provides a modern reference. Vilhem Bjerknes’ 1898 pa-

per adapted the fundamental results of Kelvin and Helmholtz to the specific application of

geophysical fluid dynamics by considering variable density, rotating fluids. He used his

primary result, now known as Bjerknes’ Circulation Theorem, to explain land/sea breezes,

cyclones, and monsoons [174]. In 1904 another paper by Bjerknes posed the forecasting

problem as the solution of a set of nonlinear partial differential equations that could be

calculated [18]. This paper is credited as the beginning of numerical meteorology [134].

Lewis Fry Richardson was the first to make a serious attempt at Bjerknes’ goal [149,

134]. Richardson estimated that a workforce of 64,000 (human) computers, each working

simultaneously in parallel could create a daily global forecast [149, 80]. Richardson’s

ideas were limited by poor observational data to serve as initial conditions and a set of

equations that allowed noisy features such as high-speed gravity waves to undermine the
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accuracy of his numerical methods [80]. Today many are astounded at the similarities

between Richardson’s vision of human computers and the parallel supercomputers that

run weather and climate models. At the time, however, the poor accuracy of his result and

the fact that it took him 6 weeks to compute a 6 hour forecast stalled the development of

numerical weather models [134].

The decades following Richardson’s work, roughly 1915-1945, included the devel-

opment of aircraft, two world wars with battles whose outcomes were significantly af-

fected by weather, and the development of the first electronic computers. As the world’s

skies filled with aircraft, meteorologists suddenly had access to a vast source of observa-

tional data both from the planes themselves and from the growing number of airfields that

launched weather balloons to write their own local forecasts. Governments were eager to

minimize casualties due to weather like tropical cyclones and cold, and thus also eager to

have accurate forecasts to accompany their operational plans. Computers made it possible

to complete calculations with one machine that Richardson imagined would take 64,000

people.

At the same time, Jule Charney provided the mathematical approximations that allowed

the filtering of noisy features such as high-speed waves from weather forecasting models’

equations [28, 80]. Charney’s approximations are now known as quasi-geostrophic theory.

Strategically applying simplifying approximations to the equations of motion continues in

today’s models [177]. The physics and dynamics of global circulations (both atmosphere

and ocean), as well as the most useful approximations, are described in the texts of Gill

[68], Holton [80], and Vallis [183].

John von Neumann developed the modern computer in the early postwar period and,

along with Charney, used it to forecast weather as early as 1950 using the barotropic

vorticity equation [29]. Mathematics, meteorology, and computers have been linked ever
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since, with significant advances in one of these areas frequently having profound impact on

the others. For example, in 1963 meteorologist Edward Lorenz discovered the beginnings

of chaos theory by examining large differences between computations that began with very

similar initial conditions in a model of atmospheric convection [119, 69].

Early models used finite difference schemes and spectral transform methods [80], but

finite volume and finite element methods soon followed [111, 22, 108]. Each of these

models were based on Eulerian (fixed grid) discretizations. Newer models use differ-

ent horizontal discretizations of the sphere, to avoid the pole problem associated with

latitude-longitude grids [188]. Lagrangian techniques such as vortex methods were rela-

tively isolated from geophysical fluid dynamics applications until recently.

Modern scientists inhabit a world with supercomputers capable of running many fore-

casts concurrently (a technique known as “ensemble forecasting”) and are able to compare

the forecasts from a variety of different models that employ different approximations and

numerical methods [86, 181]. These inter-comparison projects, and the continuous pro-

cess of verifying a model’s past forecasts with current observations, have led to a vast

improvement in forecast accuracy of today’s models over the original efforts of Richard-

son, Charney, and von Neumann. However, these projects have also identified some areas

where contemporary models still fall short of desired capabilities. The two areas for po-

tential improvement most relevant to this work, numerical conservation and multi-scale

flow features, are discussed in the next section.

1.2 Modeling the ocean and atmosphere : Dynamical core development

As a starting point, a modeler must know what goal their model will help to achieve,

and how to efficiently achieve it. For example, if the goal is to better understand local

winds, a global simulation is unnecessary. If the goal is to forecast only a short time (7 to
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10 days) ahead, the modeler may be able to treat sea surface temperatures as constant (and

thereby avoid having to simulate the ocean circulation), since oceanic temperatures vary

at a much slower rate than air temperatures. If the goal is to simulate the climate for many

decades, these choices are less clear.

Over long periods of time oceanic currents will have significant impact on the atmo-

sphere (and vice versa), and local effects in one area could potentially alter the weather

hundreds or thousands of kilometers downstream. In such cases, modelers often choose

the dominant features they wish their model to capture with a potential sacrifice in other

areas. For example, modelers seeking to investigate the effect of the El Niño Southern

Oscillation on precipitation in the Maritime Continent may choose to use a coarse rep-

resentation of the upper atmosphere, in order to reserve computational resources for the

troposphere where precipitation occurs. Each of these decisions leads to a different set of

equations for the model regardless of the choice of numerical method.

The choice of equations almost always involves some approximations applied to the

full set of Navier-Stokes equations [68, 80, 183]. It is very important to know the conse-

quences of these approximations, to know what fluid flow features they exclude, and the

significance of those exclusions relative to the validity of the model’s results. It is com-

mon, for example, for global circulation models to employ mathematical approximations

that prevent models from producing acoustic waves. These waves are prohibitively ex-

pensive to compute and have little effect on weather, so little is lost by excluding them.

Another common approximation in global models is the hydrostatic approximation, which

enforces a balance between the vertical pressure gradient and gravity. This approximation

excludes the vertical propagation of acoustic waves, and a modifies the dynamics of grav-

ity waves, which have relatively small impact on motion with scales greater than about

10 km [177]. If the goal of the model is to resolve flow features larger than that scale,
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Figure 1.1: Hierarchy of equations for global circulations models, adapted from [186, 177].

this may be acceptable; if not, this approximation is an oversimplification of the equations

and it should not be used. Atmospheric and oceanic modelers have developed a hierarchy

of equations [186, 177] that concisely illustrates the relative complexity (or simplicity) of

the various equations commonly used by dynamical cores. This hierarchy is presented in

figure 1.1.

At the top of the model equation hierarchy are the Euler equations, which are the in-

viscid approximation of the Navier-Stokes equations. Combining the effect of gravity and

centrifugal force into one potential function is a common technique that yields geopoten-

tial surfaces; treating these slightly ellipsoidal surfaces as though they were spheres results

in the spherical geopotential approximation [68, 80, 183]. Applying the spherical geopo-

tential approximation to the Euler equations gives the non-hydrostatic deep-atmosphere

equations. In these equation sets, all types of motion including acoustic waves and gravity

waves can exist. High-frequency waves require small time steps and high spatial resolu-

tion to resolve, but may have little effect on the meteorologic or oceanographic phenomena



9

of interest; neglecting such motions in a physically appropriate manner is the goal of each

of the subsequent approximations. A quasi-hydrostatic equation set can be derived by re-

placing the prognostic vertical momentum equation with a diagnostic balance equation that

assumes vertical velocities are much smaller than horizontal velocities. This assumption

prevents the vertical propagation of acoustic waves [186]. The shallow atmosphere ap-

proximation neglects metric terms from the momentum equation that are justified when the

ratio< of planetary rotation frequency to the buoyancy frequency is small< � 1, which

is typical of Earth’s current climate [186]. Applying the shallow atmosphere approxima-

tion in conjunction with the hydrostatic approximation removes acoustic waves entirely

and results in a hydrostatic shallow atmosphere model, and an equation set also referred to

as the primitive equations [177]. Anelastic and Boussinesq approximations also filter out

acoustic wave modes, without requiring hydrostatic balance [80, 183]. Quasi-geostrophic

approximations use the assumption that horizontal pressure gradients are nearly balanced

by the Coriolis force; this assumption is valid for large scale motions and filters out an-

other type of fast wave, inertio-gravity waves, in addition to acoustic waves [177]. The

planetary geostrophic and semi-geostrophic approximations rely on assumptions more ap-

plicable to the ocean than the atmosphere, where density variations in the horizontal are

more significant [183].

The atmosphere may also be approximated as a single, two-dimensional layer of fluid

on a sphere. The fluid layer is assumed to have uniform density, and thus acoustic waves

are not possible. The shallow water equations arise from this approximation and include

2D gravity waves; neglecting divergence by assuming the fluid also has a uniform depth

results in the barotropic vorticity equation and removes gravity waves from the model

[183]. Notably absent from the hierarchy presented in figure 1.1 is the advection equation.

The advection equation is of such fundamental importance that it applies to each equation
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set, in both 2D and 3D. Some models treat the advection equation separately, because it

must be solved no matter what equation set is used.

In this thesis our goal is to develop Lagrangian particle methods for global fluid dynam-

ics problems. We examine their accuracy and efficiency with specific focus on multi-scale

motion and conservation. For the investigatory purpose of this thesis, we start at the base

of the equation hierarchy in figure 1.1, with the barotropic vorticity equation and the 2D

advection equation. These equation sets are sufficiently complex for our purposes, but sim-

ple enough that fluid motions not relevant to our primary purpose are excluded. Despite

their relative simplicity compared to operational forecast model equations, the advection

equation and the barotropic vorticity equation are commonly used to investigate numerical

methods for dynamical cores, e.g. [105, 113, 95]. These equations are also where Charney

and von Neumann began their pioneering work [29].

The need for computational conservation is often framed from the point of view of

conservation of mass. Recent examples of the need for accurate mass (or tracer) advection

schemes in weather models are found in the forecasts of the distribution of ash from the

eruption of Iceland’s volcano Eyjafjallajökull in 2010 [59] and the forecast of radioactive

particle dispersion following the tsunami damage to Japan’s Fukushima Daiichi nuclear

power plant in 2011 [171]. Climate models advect passive tracers that are used as input

to chemistry parameterizations running in conjunction with the dynamical core. Errors

caused by the advection scheme can amplify errors in chemical models or even cause

them to crash if the advection scheme produces nonphysical negative values [109].

But the need for conservation applies to less obvious quantities than mass, like energy

and potential vorticity, that are also conserved in the continuous equations [120]. In fact,

energy and potential vorticity are perhaps more important to conserve than mass because

these quantities affect the advecting velocity itself. In the barotropic vorticity equation,
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potential vorticity is equivalent to the absolute vorticity, and we examine its conservation

in detail for various test cases in chapter IV.

Thuburn [175, 176] argues that some conserved quantities of the continuous equations

should not be conserved in the discrete equations because quantities like enstrophy have

a downscale cascade toward the model’s unresolved scales. This cascade will create mo-

tion that the model is incapable of resolving which will then become a source of error;

Thuburn’s argument is that numerical dissipation avoids this source of error by preventing

the development of motions too small for the model to handle. Numerical dissipation in a

model is not necessarily similar to physical dissipation in the environment, however, and

it is not clear how to discern which of the many dissipation techniques available to mod-

elers are the best to use [95]. These techniques are the subject of active study in Eulerian

dynamical cores, and their effects are documented in [95] and [88]. Analogous numerical

dissipation strategies for vortex methods are addressed by Cottet and Koumoutsakos [38,

chapter 5] but are beyond the scope of this work. Instead we attempt to resolve even the

small scales that develop and document the conservation of enstrophy by our model. We

leave the subject of dissipation as an item for future study in chapter VII.

To discuss the challenge that multi-scale motions pose for every dynamical core, we

first make the obvious remark that the Earth is big: its mean radius is 6371 km [80]. But

atmospheric motions can be significant even if they are relatively small. Consider the

recent example of Hurricane Sandy. A satellite image of its beginning stages is shown in

figure 1.2(a). At this point it is small in the sense that its diameter is on the order of 100

km and the Earth’s circumference at 15N latitude is approximately 38600 km. Five days

later, the storm has intensified to hurricane strength but more importantly, it has begun to

interact with the trough of a planetary scale wave over the eastern United States, as shown

in figure 1.2(b). The scale of the storm itself is bigger, as shown by the scale marker on
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(a) (b)

Figure 1.2: NASA satellite images of Hurricane Sandy. (a) Tropical Storm Sandy on October 23, 2012, off

the coast of Colombia in the Caribbean Sea [160]. (b) Hurricane Sandy 575 miles south of New
York City, October 28, 2012 [4].

the image, and the beginnings of the interaction with the mid-latitude trough are evidenced

by the large cloud shield to the west of the storm. Two days after that, the interaction of

the tropical cyclone with the planetary wave trough created “Super Storm Sandy”, which

affected the majority of eastern North America (figure 1.3).

Hurricane Sandy is an example of nonlinear interactions between features at different

scales. In actuality, Hurricane Sandy intensified as a result of thermodynamic motions

that are excluded from the barotropic vorticity equation, which has no mention of tem-

perature. In our study of the barotropic vorticity equation in chapters III and IV we will

confront situations where vortices of different scales interact with each other. Dynamic

interactions of vorticity were also important to the development of Sandy; the midlatitude

trough had a vorticity maximum along its axis, and the tropical cyclone was its own vor-

ticity maximum. Despite the simplicity of the barotropic vorticity equation compared to

the physical environment, it contains enough dynamics to still be relevant as a model of

important atmospheric flow features at varying scales [52, 80, 95].

Current research in dynamical core development is aimed at creating models with vari-

able spatial resolutions to handle the variety of spatial scales in geophysical problems [15].
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Figure 1.3: NASA satellite image of “Super Storm” Sandy over eastern North America, October 30, 2012.
The point of view looks southward; Canada is at the bottom of the image and Florida can be seen
near the top [103].

Some regions of a model’s computational space will have very fine resolution, while other

regions deemed less important by some criteria will have coarser resolution. This allows

modelers to use finite computational resources where they are most needed, but the choice

of where to put the higher resolution is not trivial. Some models statically place higher

resolution over regions where conditions are most apt to change rapidly, for example, over

the Gulf Stream [151]. Others choose regions where accuracy is most crucial, for example,

over the continental United States or Europe which have high concentrations of airports

[162].

Another approach is to let the flow dictate, dynamically, where resolution is needed

by having the grid adapt to regions where the flow is changing rapidly. This technique

is known as Adaptive Mesh Refinement (AMR) [16, 173, 15, 87]. We use the dynamic,

or adaptive, approach in this study. The difference between these two approaches, one

static, one dynamic, are analogous to the differences between the Eulerian form and the

Lagrangian form of the equations of motion, discussed in the next section.
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1.3 Lagrangian vs. Eulerian methods

Eulerian methods are the predominant numerical technique used in dynamical cores

today [80, 108]. They use a fixed grid for the spatial discretization and numerical methods

such as finite differences, finite volume methods, spectral transforms, and finite element

methods to solve the fluid equations. An Eulerian model measures and evolves the fluid

at its fixed grid points. It is analogous to measuring the flow of a river or basin with an

array of anchored buoys. These buoys would measure the properties of the fluid, such as its

temperature, pressure and velocity, etc., as it flows past their locations. In this way Eulerian

methods can be described as modeling the fluid as it flows over or past a fixed mesh. A

modeler could then build a picture of the fluid’s behavior from the discrete measurements

of each individual buoy, using the knowledge of each buoy’s fixed (anchored) position

to give the spatial dependence of the measured quantities. A physical example of such a

system are the buoys of the Deep-Ocean Assessment and Reporting of Tsunamis (DART R©)

project [70] (see figure 1.4).

To continue the buoy analogy, a Lagrangian model would correspond to an array of

drifting buoys. The spatial discretization is known at t = 0, but is allowed to evolve with

the fluid velocity so that the positions of each buoy at t > 0 depend on the flow. Velocity

is determined by measuring the changes in the position of the buoys themselves. The

drifting buoys still measure state variables of the fluid, but since they are moving with the

fluid, the buoys’ meters record no change in variables that are conserved materially. Each

Lagrangian buoy can be thought of as a tag for a particular parcel of fluid which can be

identified by its invariant properties as it moves with the current. Lagrangian models are

often described as flow-following because of this analogy. A physical example is the Argo

project [170], which monitors thousands of drifting floats across the Earth’s oceans (figure
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Figure 1.4: The locations of DART R© buoys used for tsunami monitoring [70].

1.5).

In the computational space of a model, buoys are replaced by locations where the fluid’s

properties are defined – the computational elements of the model’s spatial discretization.

These are grid points in an Eulerian model, and particles in a Lagrangian model.

Let the vector x(t) represent the position of the computational elements of the model

fluid. Let the vector Φ(t) represent the state variables of the fluid, such as its vorticity, for

example. Knowledge of both Φ and x are required to solve the equations of motion. At

any one time step t = t0 in a calculation, bothΦ and x are known. A dynamical core’s task

is to use that information to evolve the model fluid to the next time step, t = t0 + ∆t.

To keep things simple we imagine a fluid whose state variables are preserved exactly in

motion following the flow (this is precisely the case with the barotropic vorticity equation).

Then these quantities (which comprise the vector Φ) are “stationary” in the Lagrangian

frame so thatΦ(t0+∆t) = Φ(t0), but the position of the computational elements at t = t0+∆t
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Figure 1.5: Global locations of 3264 Argo Float drifting buoys on Janurary 14, 2013 [170].

must be determined,

(1.1) x(t0 + ∆t) = LL (x(t0),Φ(t0 + ∆t)) .

By contrast, the computational elements x are stationary in an Eulerian frame, i.e., x(t0 +

∆t) = x(t0), and the fluid’s physical quantities Φ must be computed,

(1.2) Φ(t0 + ∆t) = LE (x(t0 + ∆t),Φ(t0)) .

where LL and LE represent the differential operators appropriate to the model equations

in their Lagrangian and Eulerian forms, respectively.

This conceptual model is summarized in table 1.1. Although this idea holds for the

case of the barotropic vorticity equation, in the more complex shallow water equations

there are several terms that are not stationary in either representation. This discussion is

therefore not meant as an absolute principle but rather as an illustration of the fundamental

differences between the Eulerian and Lagrangian forms of the fluid equations.

Eulerian and semi-Lagrangian methods have been successful for many years, and are

used in all operational weather and climate models today [80]. Lagrangian methods are
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Eulerian t0 t0 + ∆t
Φ known computed
x known known

Lagrangian t0 t0 + ∆t
Φ known known
x known computed

Table 1.1: Conceptual schematic of Eulerian and Lagrangian solution techniques. Φ represents the fluid’s
state vector. x represents the positions of the computational elements.

Form Advantages Disadvantages
Eulerian Straightforward Advective derivative must be calculated

Lagrangian Implicit advection Distortion of fluid particles

Table 1.2: Advantages and disadvantages of Eulerian and Lagrangian numerical methods.

relatively rare by comparison, due in large part to the difficulty of implementing them in

a computationally robust manner across the whole globe [80, 150]. This thesis addresses

those difficulties by leveraging techniques from the field of vortex methods [30, 38, 120] to

solve for fluid velocity and developing an adaptive refinement strategy and a new remesh-

ing algorithm that preserves the beneficial properties of Lagrangian methods.

Existence and uniqueness theorems guarantee that Lagrangian and Eulerian formula-

tions are mathematically equivalent [12, 30], but computational implementations of them

are very different. There are practical advantages and disadvantages to both forms of the

equations (table 1.2).

All dynamical cores are dependent upon the supercomputers that run their software.

Eulerian methods take advantage of their fixed spatial discretizations by predetermining

memory layouts within a computer. Additionally, because of their fixed spatial discretiza-

tions, discrete versions of spatial derivatives are much more straightforward to compute in

Eulerian methods than in Lagrangian methods.

Unfortunately Eulerian schemes are subject to truncation error in the fundamentally

important advective derivative. This derivative is part of all model equations, including
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the advection equation. The advection equation states that a materially invariant quantity,

say Q(x, t), is conserved in the absence of sources or sinks.

(1.3)
d
dt

Q(x, t) =
∂

∂t
Q(x, t) + u · ∇Q(x, t) = 0

In modern models, Q may represent dynamic quantities like potential vorticity and ther-

modynamic variables, suspended particles (such as pollutants or volcanic ash), or carbon

species used by chemistry parameterizations within a climate model. From a stationary

(Eulerian) reference frame, equation (1.3) states that the partial time derivative ∂Q/∂t is

balanced by the advective derivative, u · ∇Q.

The advective derivative is a nonlinear operator that causes many Eulerian models to

have difficulty achieving both high accuracy and conservation within their computations

[109]. Discrete versions of the advective derivative may introduce high frequency nu-

merical noise into a model’s solutions, which must be filtered out in order for Eulerian

models to remain stable. Typically, this is done with dissipative numerical viscosity or

hyper-viscosity [88], but these numerical necessities may bear little resemblance to the

physically dissipative processes that operate in the environment [95].

In a Lagrangian method fluid particles are advected by the flow so there is no need

to discretize the advective derivative explicitly. The total derivative in (1.3), d/dt =

∂/∂t + u · ∇, becomes an ordinary time derivative. The advection equation in a Lagrangian

reference frame simply states that Q is constant following the flow: dQ/dt = 0. By avoid-

ing the advective derivative, Lagrangian methods can use less artificial numerical viscosity

than their Eulerian counterparts [114]. Lagrangian models may have better conservation

properties than Eulerian models as a consequence. In this thesis, for example, we avoid

the use of numerical diffusion altogether.

Some model developers seek to incorporate the advantages of both techniques by com-

bining aspects of each into semi-Lagrangian methods that interpolate Lagrangian particle
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data to and from an Eulerian grid at each time step [166, 132, 104, 107]. Fully Lagrangian

methods have been avoided in the geophysical fluid dynamics community because collec-

tions of moving fluid particles develop regions of non-uniform spatial resolution as com-

putations evolve in time [80, 150]. However, Eulerian and semi-Lagrangian techniques do

not yet satisfy all of the accuracy and conservation requirements that modelers desire in a

dynamical core [109]. A Lagrangian method that is able to overcome the challenge of non-

uniform spatial resolution would therefore be a significant contribution to the atmospheric

modeling community.

Alam and Lin [2] use a Lagrangian particle method to solve a two-dimensional (vertical

cross section) model of a land-sea breeze system. They propose that Lagrangian models

may not suffer as much from spurious oscillations or physically unrealistic negative con-

centrations, which can occur in Eulerian advection schemes. Based on their results, which

show similar accuracy as semi-Lagrangian and Eulerian models with smaller computa-

tional cost for their test problem, they advocate the development of a fully Lagrangian

atmosphere model.

Mesinger [130] attempted such a model in 1971, solving the shallow water equations

on the sphere, but was unable to overcome errors caused by the irregular distribution of

particles as his computations evolved [6]. In 1985 Augenbaum [6, 7] solved the shallow

water equations on the sphere using a moving Voronoi mesh. Augenbaum used the prop-

erties of Voronoi diagrams to give an optimal discretization of irregularly spaced particles,

and a local remeshing algorithm to handle particles that moved too close to each other. The

accuracy of Augenbaum’s study was limited by low-order spatial derivative calculations

that were less accurate than competing Eulerian methods [6].

Although they each attempted a Lagrangian method, neither Mesinger nor Augenbaum

used vorticity as a prognostic variable. Vortex methods, which provide the basis of this
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work, are based on the vorticity-stream form of the fluid equations, and rely on an integral

formulation of velocity rather than a differential form. It is possible, therefore, to achieve

higher-order accuracy by improving the quadrature scheme of the discretization [5, 14],

which may prove to be simpler than calculating high order derivatives on collections of

irregularly spaced fluid particles.

1.4 Vortex methods

Vortex methods are summarized in the texts of Cottet & Koumoutsakos [38], and Majda

& Bertozzi [120]. Leonard [110] and Koumoutsakos [97] provide review articles. Con-

ceptually vortex methods rely on the idea of vortices as material fluid entities; each vortex

moves in a velocity field induced by the other vortices. Likewise, each vortex contributes

to the motion of the others with its own vorticity. Fujiwhara’s experiments [63] in the

1920’s approached this idea from a meteorological perspective.

Mathematically, vortex methods are founded upon the fluid dynamics theorems of

Kelvin and Helmholtz [38, 30, 120], like the model equations discussed in section 1.1.

As a technique for solving fluid dynamics problems, they were first studied by Rosenhead

in the 1930s [154, 38]. They are based on the Helmholtz decomposition of the fluid ve-

locity and consequences of Kelvin’s circulation theorem which will be discussed in more

detail in chapter III.

Vortex methods represent the fluid’s vorticity field with a collection of singular or reg-

ularized point vortices [145, 97]. These point vortices are the fluid particles in a vortex

method computation, and each particle is affected by interactions with every other point

vortex through the singular or regularized integral kernel of the Biot-Savart law [120].

Vortex methods are an attractive alternative to contemporary fluid dynamics solvers be-

cause of their Lagrangian formulation. Conservation of fundamental fluid properties like
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circulation and vorticity is built into their algorithms [38, 120]. However, their singular

integral kernels caused skepticism about their numerical accuracy through the 1970s.

Vortex blobs (smooth approximations of point vortices) were introduced by Chorin in

1973 [31, 32] as a means of smoothing the singular integral kernels and restoring accu-

racy. Analysis of numerical convergence of vortex blob methods to solutions of the Euler

equations were provided by Hald [74] in 1979 and Beale & Majda [14] in 1985 for smooth

vorticity fields. These studies quantitatively related the magnitude of smoothing required

to the initial particle spacing. A small study of this relationship is given in the appendix,

section A.1. The convergence studies from Hald and Beale & Majda provided a theoretical

foundation for the analysis of vortex blob methods [38].

Perlman [142] performed a numerical study in 1985 that verified the results predicted

by Hald and Beale & Majda for three test problems in planar Cartesian geometry without

boundaries. Krasny [99] provided a numerical study of vortex blob methods for vortex

sheets in 1986 that showed the methods’ convergence as both inter-particle spacing con-

verged to zero and as the smoothing parameter converged to zero. These numerical results

validated the practical use of the vortex blob approximation.

While vortex blobs gained acceptance, some controversy still surrounded the use of

point vortices. Leonard [110] reported the use of point vortices in some studies even

though convergence proofs only existed for vortex blobs [71]. In particular, Christiansen

[33] used point vortices for hydrodynamics problems similar to the problems we consider

in this thesis. However, Beale & Majda [14] reported growing errors with time for simula-

tions that used point vortices, and Perlman [142] showed that the rate of error growth with

time increased as the amount of smoothing decreased. As smoothing decreases, vortex

blobs become closer approximations of point vortices. Based on these results, Beale &

Majda [14] and Majda & Bertozzi [120] advocate for vortex blobs and discourage the use
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of point vortices for flow simulations.

The argument for using point vortices was reinforced by a separate study from Krasny

[100] that reported numerical convergence of calculations using point vortices for non-

singular vortex sheets. By the 1990s, convergence of numerical methods using point

vortices to solutions of the Euler equations was proven for smooth vorticity distributions

[71, 81, 37] and for vortex sheets [82]. Despite this advance, point vortices are still not as

widely used in numerical simulations as vortex blobs [38, 120]. Some analysis suggests

that methods using point vortices may have slower convergence rates than a similar treat-

ment with vortex blobs [14, 120], but there are few numerical studies comparing the two

approaches. With a smooth vorticity field, the proof given by [71] and the numerical stud-

ies in [33, 100] show that point vortices are capable of providing the basis of a convergent

numerical method.

Vorticity distributions for the geophysical fluid dynamics problems in this study do

not form singularities. Each calculation begins with a smooth vorticity distribution; the

two-dimensional character of the fluid guarantees that the vorticity will remain smooth

throughout, as a consequence of Kelvin’s circulation theorem. In this investigation, one

of our guiding principles is to keep our algorithms as simple as possible. We use point

vortices in this work in order to avoid introducing an additional parameter (the vortex blob

smoothing parameter) into our algorithms. However, we have designed our code with the

capability of using vortex blobs as well; a comparison of the results of calculations using

point vortices to the results of vortex blob computations is planned for a future study.

1.5 Spherical Geometry

We use a sphere to represent the Earth. For simplicity, we choose the unit sphere. While

it is true that the Earth’s mean sea level surface is an ellipsoid because of its rotation and
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the centrifugal force, its departure from a spherical shape is negligible for this study (its

equatorial radius is approximately 21 km larger than its polar radius; this difference is

two orders of magnitude smaller than its mean radius of 6371 km [80]). Further analysis

and justification for the spherical approximation can be found in most geophysical fluid

dynamics texts, e.g., [80, 183].

Definition I.1. The domain S ⊂ R3 is the set of all x ∈ R3 such that |x| = 1.

S =
{
x ∈ R3 : |x| = 1

}
We use both Cartesian and spherical coordinate systems to represent S; depending on

the context, one is often more convenient than the other. Unlike most mathematical texts

which use co-latitude as a spherical coordinate, we use a latitudinal coordinate system

which is more aligned with our application of atmospheric modeling. Unfortunately this

choice is somewhat arbitrary, even in the literature. For example, [168] and [96] use co-

latitude while [187] and [183] use latitude. Choosing the latitude coordinate allows a more

direct comparison with the x and y directions of the typical tangent plane approximations

of geophysical problems.

Thus we represent a vector x ∈ R3 as either x = [x, y, z]T or as x = [ρ, λ, θ]T , where

ρ ≥ 0 is the radial distance from the origin, λ ∈ [0, 2π) is longitude, and θ ∈ [−π/2, π/2] is

latitude; the superscript T denotes the transpose. If x is in S, its Cartesian representation

will satisfy x2 + y2 + z2 = 1 and its spherical coordinate representation will have ρ = 1.
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The two coordinate systems are related by the equations

x =


x

y

z


=


ρ cos θ cos λ

ρ cos θ sin λ

ρ sin θ


,(1.4a)

ρ =
√

x2 + y2 + z2,(1.4b)

λ = arctan
(y

x

)
,(1.4c)

θ = arctan

 z√
x2 + y2

 .(1.4d)

When a vector x ∈ S has longitude λ, latitude θ, and Cartesian coordinates given by

equation (1.4a), we write x 7→ (λ, θ) to convey this correspondence.

The Cartesian unit vectors ı̂, ̂, and k̂ are related to the spherical unit vectors êr, êλ, and

êθ by

(1.5)


êλ

êθ

êr


= Q


ı̂

̂

k̂


,

where Q is an orthogonal coordinate change matrix from Cartesian to spherical coordinates

[168, 187],

(1.6) Q =


− sin λ cos λ 0

− sin θ cos λ − sin θ sin λ cos θ

cos θ cos λ cos θ sin λ sin θ


.

If v0 is represented in Cartesian coordinates, then Qv0 is the same vector in spherical

coordinates. Since Q is orthogonal, its inverse is simply QT .

This matrix is particularly useful with velocity vectors which are tangent to S in R3. Let

u ∈ R3 be a vector tangent to the sphere at x ∈ S where x 7→ (λ, θ). If uC is the represen-

tation of u in Cartesian coordinates, and uS is its representation in spherical coordinates,
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then

uS = QuC(1.7a)

uC = QT uS ,(1.7b)

where Q is evaluated at x. In the work that follows, we will use u to represent a velocity

vector, typically in Cartesian coordinates. Scalar variables u and v will be used to denote

the zonal (longitudinal) and meridional (latitudinal) components of u, respectively.

1.5.1 Differential operators

Equations (1.4) and (1.5) provide the necessary relations to derive spherical coordinate

representations of differential operators. Let f (x, y, z) and F(ρ, λ, θ) be scalar functions

such that F = f (ρ cos λ cos θ, ρ sin λ cos θ, ρ sin θ). Then

∇ f =
∂ f
∂x
ı̂ +

∂ f
∂y
̂ +

∂ f
∂z

k̂,(1.8a)

∇ f = ∇F =
∂F
∂ρ

êr +
1

ρ cos θ
∂F
∂λ

êλ +
1
ρ

∂F
∂θ

êθ.(1.8b)

Similarly, let v = [v1(x, y, z), v2(x, y, z), v3(x, y, z)]T = [V1(ρ, λ, θ),V2(ρ, λ, θ),V3(ρ, λ, θ)]T .

Then

∇ · v =
∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z
(1.9a)

∇ · v =
∂V1

∂ρ
+

2
ρ

V1 +
1

ρ cos θ
∂V2

∂λ
+

1
ρ

∂V3

∂θ
−

tan θ
ρ

V3(1.9b)

and

∇ × v =

(
∂v3

∂y
−
∂v2

∂z

)
ı̂ +

(
∂v1

∂z
−
∂v3

∂x

)
̂ +

(
∂v2

∂x
−
∂v1

∂y

)
k̂(1.10a)

∇ × v =

(
1
ρ

∂V2

∂θ
−

tan θ
ρ

V2 −
1

ρ cos θ
∂V3

∂λ

)
êr+(1.10b) (

1
ρ

V3 +
∂V3

∂ρ
−

1
ρ

∂V1

∂θ

)
êλ+(

1
cos θ

∂V1

∂λ
−

1
ρ

∂V2

∂ρ
−

1
ρ

V2

)
êθ.
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The Laplacian operator is found through a composition of the above operators, ∇2( ) =

∇ · ∇( ).

∇2 f =
∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2(1.11a)

∇2F =
1

ρ2 cos θ

(
1

cos θ
∂2F
∂λ2 +

∂

∂θ

(
cos θ

∂F
∂θ

)
+ cos θ

∂

∂ρ

(
ρ2∂F
∂ρ

))
(1.11b)

The above differential operators are valid on the whole space R3. To find the form of

the operators for S, we note that on the sphere there is no dependence on the radial direc-

tion because the radius is unity. It is trivial to implement this restriction to the spherical

coordinate representations of the differential operators; all radial derivatives simply vanish

and ρ is replaced by its value, ρ = 1. To find the Cartesian form of the above differential

operators restricted to S we note that

(1.12) P0(x) = xxT

is a projection matrix whose image is the span of the radial unit vector at the point x ∈ S

[179]. Its complementary projector,

(1.13) P(x) = I − xxT =


1 − x2 −xy −xz

−xy 1 − y2 −yz

−xz −yz 1 − z2


is therefore is a projector onto the plane tangent to the sphere at x. If v is tangent to S at

x, then v · x = 0, since the position vector x is also the unit normal on the unit sphere; in

this case, Pv = v.

The matrix P helps to represent the tangential derivatives’ Cartesian forms on S [50,
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189]. Let the subscript S denote a differential operator on S.

∇S f = P(x)(∇ f ) = ∇ f − (∇ f · x)x(1.14a)

=
1

cos θ
∂ f
∂λ

êλ +
∂ f
∂θ

êθ(1.14b)

∇S · v = [P(x)∇] · v = ∇ · v − x · ∇(v · x) + x · v(1.14c)

=
1

cos θ
∂V1

∂λ
+
∂V2

∂θ
− V3 tan θ(1.14d)

(∇S × v) · n̂ = (∇ × v) · x(1.14e)

∇2
S f =

1
cos2 θ

∂2 f
∂λ2 − tan θ

∂ f
∂θ

+
∂2 f
∂θ2(1.14f)

Equations (1.14a) and (1.14b) define the tangential gradient operator; equations (1.14c)

and (1.14d) define the divergence operator on S, and equation (1.14e) extracts the scalar

component of the curl. Note that the curl of a vector on the sphere will have only a

radial component because of orthogonality. Equation (1.14f) is the horizontal Laplacian

operator, also called the Laplace-Beltrami operator, which will appear in our work with

the barotropic vorticity equation (chapter III) and the shallow water equations (chapter

VI). Derivations and symbolic calculations are much simpler to carry out in spherical

coordinates. Results may be translated back into an equivalent Cartesian representation

if necessary. The Cartesian forms of the gradient and divergence operators (1.14) are

presented to illustrate the nonlinearities inherent to the spherical domain (as seen in the

matrix P) and the effect of the curved domain on the form of the differential operators.

The entirety of this work takes place on S, so for convenience in the following chapters

we drop the subscript S from the horizontal differential operators. Unless specifically

stated otherwise, equations (1.14) are implied.

In chapters IV and V we will confront problems that are posed in spherical coordinates

and need to translate them into Cartesian coordinates, or vice versa. It is helpful to note
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that the following relations hold on the unit sphere.

x = êr = [x, y, z]T(1.15a)

êλ =
1

√
1 − z2

[−y, x, 0]T(1.15b)

êθ =
1

√
1 − z2

[−xz,−yz, 1 − z2]T(1.15c)

cos λ =
x√

x2 + y2
(1.15d)

sin λ =
y√

x2 + y2
(1.15e)

cos θ =
√

x2 + y2 =
√

1 − z2(1.15f)

sin θ = z(1.15g)

|x − x̃|2 = 2(1 − x · x̃)(1.15h)

Equation (1.15a) is the unit normal vector and equations (1.15b) and (1.15c) are the unit

tangent vectors to the sphere. The norm in equation (1.15h) is the Euclidean chord distance

between two vectors x, x̃ ∈ S. Each of these equations can be derived easily from the

geometry of the sphere and equations (1.4) and (1.5).

Mathematically, the spherical coordinate system is very convenient for computing an-

alytical results and exact solutions to equations, when it is possible to do so. However,

spherical coordinate representations of the sphere, whether they use latitude or co-latitude,

have singularities at the poles. This problem can be seen in (1.14) by noting the cosine

terms in the denominators (or, equivalently, the tangent terms in the numerators). These

singularities lead to indeterminate terms in the fluid equations’ spherical coordinate forms.

Of course, the are no physical singularities in the spherical surface; it is smooth every-

where. Instead of using spherical coordinates, we perform numerical computations in

Cartesian space with position vectors x represented in x, y, z coordinates. We therefore

need to be able to calculate basic geometric quantities such as distance and area in Carte-
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Figure 1.6: Two particles x and x̃ with latitudes θ, θ̃ and longitudes λ, λ̃, respectively. The central angle γ is
shown between the two position vectors.

sian coordinates.

1.5.2 Distance and area calculations

Let γ denote the central angle between two points on the sphere, x 7→ (λ, θ) and x̃ 7→

(λ̃, θ̃), as shown in figure 1.6.

The cosine of γ is given by

(1.16) cos γ = x · x̃ = cos θ cos θ̃ cos(λ − λ̃) + sin θ sin θ̃.

Therefore the angle γ could be obtained by applying the inverse cosine function to equation

(1.16),

(1.17) γ = arccos(x · x̃) = arccos
(
cos θ cos θ̃ cos(λ − λ̃) + sin θ sin θ̃

)
.

However, the inverse cosine function is ill-conditioned for small angles, and will not give

sufficient numerical accuracy when x and x̃ are close to each other. We note that sin γ =



30

|x × x̃|, and use the numerically stable formula for arc length,

(1.18) γ = arctan
(
|x × x̃|
x · x̃

)
,

instead [66].

On the unit sphere, geodesic distance is equivalent to arc length in magnitude, but has

units of length,

(1.19) dist(x, x̃) = arctan
(
|x × x̃|
x · x̃

)
.

We also note that, with equation (1.16), we can recast the Euclidean distance relation

(1.15h) in spherical coordinates. Let x 7→ (λ, θ) and x̃ 7→ (λ̃, θ̃); the square of the chord

distance between x and x̃ is

(1.20) |x − x̃|2 = 2(1 − x · x̃) = 2
(
1 − cos θ cos θ̃ cos(λ − λ̃) − sin θ sin θ̃

)
.

To find the area of an arbitrary spherical polygon, we first decompose the polygon into

spherical triangles. Let pn be a spherical polygon with n vertices and one interior point, as

in figure 1.7. Then pn can be decomposed into a union of n sub triangles, Ti, i = 1, . . . , n,

and its area is the sum of the areas of those sub triangles.

(1.21) Apn =

n∑
i=1

ATi

To find the area of each spherical triangle, ATi , we use a formula that relates the area

of a spherical triangle to the arc lengths of its sides [191]. Let the triangle’s vertices be
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Figure 1.7: Triangular decomposition of arbitrary spherical polygons with one interior particle and particles
at each vertex. Examples: (a) triangle, (b) quadrilateral, (c) hexagon.

xA, xB, xC ∈ S. Its area, ATi , is given by

a = dist(xA, xB)(1.22a)

b = dist(xB, xC)(1.22b)

c = dist(xC, xA)(1.22c)

s =
a + b + c

2
(1.22d)

z = tan
( s
2

)
tan

( s − a
2

)
tan

(
s − b

2

)
tan

( s − c
2

)
(1.22e)

ATi = Area(xA, xB, xC) = 4 arctan
√

z.(1.22f)

1.5.3 Measuring error

We adopt the standard measures of error from the suite of dynamical core tests intro-

duced by Williamson et al. [187]. Let φ = φ(x, t) represent a quantity of interest in a

calculation. Let φE = φ(x, t) represent its “true” value; this may be exact if an analytical

solution is known, or it may be a reference value from a high-resolution computation. We
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use three error measures, l1, l2, and l∞ to quantify the accuracy of our solutions.

l1(φ, t) =

∫
S
|φ(x, t) − φE(x, t)| dA∫
S
|φE(x, t)| dA

(1.23a)

l2(φ, t) =

(∫
S
(φ(x, t) − φE(x, t))2dA

)1/2(∫
S
φ2

E(x, t)dA
)1/2(1.23b)

l∞(φ, t) =
maxx∈S |φ(x, t) − φE(x, t)|

maxx∈S |φE(x, t)|
(1.23c)

In chapter V, we complete a test case with additional error measures that apply to those

specific problems; they will be described in that chapter, and can be found in the test case

description [105].



CHAPTER II

The Flow Map

2.1 Definition of the flow map

The flow map is the mathematical object that defines the flow-following trait of La-

grangian fluid particles [30, 120]. The flow map is commonly applied in the field of

differential equations [72], and is related to the method of characteristics [73, 111, 122].

The flow map relates the position of each fluid particle, x, to the fluid velocity, u.

Definition II.1. The flow map x(α, t) is defined by the equations

dx
dt

(α, t) = u
(
x(α, t), t

)
(2.1a)

x(α, 0) = x0(α)(2.1b)

where α is a Lagrangian parameter which is independent of time.

Equation (2.1a) defines the Lagrangian reference frame, where particles travel along

trajectories defined by the fluid velocity. Equation (2.1b) defines the initial conditions for

the ODE in (2.1a). Via the flow map, particle positions x are a function of both time t and

a Lagrangian parameter α.

The Lagrangian parameter serves as a tag for each fluid particle. It provides a means

of identifying each particle from the others in the fluid. The choice of what to use as the

Lagrangian parameter is up to the modeler. Vortex methods may use circulation [99, 101]

33
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or potential vorticity [47] as the Lagrangian parameter, for example. Particles’ initial

positions are also a common choice (e.g. [57]). In this study we use the latter option, and

define α as each particle’s initial position

(2.2) α = x0(α) = x(α, 0).

Equations (2.1) are responsible for the simplified statement of the continuity equation’s

Lagrangian form (1.3). When all particles travel with the fluid velocity, there is no flux

across particle boundaries due to fluid motion. Hence, with a collection of particles satis-

fying (2.1), the advective derivative is accounted for implicitly, and need not be calculated.

The flow map (2.1) is the fundamental equation we solve throughout this study. As the

context changes, the methods for finding the terms of (2.1) may change, but in all cases

the objective is to integrate the flow map forward in time. For example, when solving the

barotropic vorticity equation, we use a Biot-Savart law to give the velocity for the right-

hand side of (2.1); with the advection equation, the velocity is prescribed; the shallow

water equations require two Biot-Savart type integrals to find u. In each case, we use

the right hand side of (2.1) to advance the fluid particles to their physical positions at the

next time step. This process is described symbolically by equation (1.1). The details of

this process are governed by the discretization of (2.1) and the numerical methods that

accompany that discretization.

2.2 Discretizing the flow map

Solving (2.1) numerically requires a discrete representation of both space and time.

Space in this case refers to the spherical domain S and time is the interval t ∈ [0,T ],

where T > 0 is the calculation’s final time.

We use fourth order Runge-Kutta to integrate the flow map forward in time. A high-

order time-integration scheme is necessary when using Cartesian coordinates to represent



35

S. Numerical experiments confirm that a simple forward Euler time stepping scheme

causes fluid particles to rapidly develop |x| > 1. Low order methods, like the forward

Euler time discretization used by [6], have to re-project fluid particles back to the sphere

after each time step so that they satisfy |x| = 1. In order to avoid having to apply this

correction, we instead use a high-order time stepping method. We show numerical results

in chapters IV and V that confirm that our particles satisfy ||x| − 1| ∼ O
(
∆t4

)
as ∆t → 0

without any re-projection back to the sphere.

Additionally, choosing a high order time stepping scheme ensures that error due to the

time discretization will be much smaller than error due to the spatial discretization. This

allows us to focus our efforts on the primary challenge facing a Lagrangian method, the

moving spatial discretization.

To begin the discussion of our spatial discretization, we note that since vortex methods

rely on a Biot-Savart integral to calculate fluid velocity, the discretization must enable a

straightforward quadrature scheme.

Spectral methods (e.g. [169]) also rely on quadrature schemes for their discrete analogs

of integral transforms, and many use grids made up of specially chosen Gaussian quadra-

ture points to enable high accuracy integration [5, 62]. A Lagrangian method cannot

take advantage of such a discretization, because the positions of Lagrangian particles will

change at each time step, which would destroy the error-canceling nature of the original

point distribution. A quadrature scheme for a Lagrangian method therefore cannot rely on

fixed (Eulerian) quadrature points.

A simple midpoint rule Riemann sum may not be as sophisticated as a high-order

Gaussian quadrature scheme, but has been shown to give comparable accuracy for quasi-

uniform spatial distributions on S [5]. The midpoint rule is easy to implement on moving

sets of particles using a particle-panel method [57, 184], can handle non-uniform reso-
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lutions, and has already been applied to many problems in vortex methods (e.g. [102,

57, 184]). The choice of a midpoint rule quadrature scheme provides the basis for a dis-

cretization of S derived from the particle-panel discretizations from studies of vortex sheet

dynamics (e.g. [101, 57]) and spherical fluid flow problems [184].

In this particle-panel method, the sphere is represented as a union of disjoint panels,

S = ∪N
j=1P j, which initially corresponds to a discretization of the Lagrangian parameter α.

These panels are built upon two sets of fluid particles. One set are active particles located

at panel centers, denoted by x j(t) = x(α j, t), j = 1, . . . ,N. The other set are passive

particles located at panel vertices, denoted yi(t) = y(αi, t), i = 1, . . . ,M. Both sets of

particles x j(t) and yi(t) are advected by numerical approximations of the flow map (2.1).

In the numerical method developed in the following chapters, active and passive particles

must sometimes be treated slightly differently; the use of different variable names will help

illustrate those differences when they occur.

Each panel is a polygon on S with exactly one interior point (its active particle). Both

active and passive particles track their Lagrangian coordinate and any physical data rele-

vant to the problem, such as tracer mass or vorticity. Active particles also track the area

of their associated panel, and use this area to approximate integrals. Let φ be a quantity

defined on S whose integral we wish to compute.∫
S

φ(x) dA =

N∑
j=1

∫
P j

φ(x) dA(2.3a) ∫
P j

φ(x) dA ≈ φ(x j)A j as N → ∞(2.3b)

=⇒

∫
S

φ(x) dA ≈
N∑

j=1

φ jA j as N → ∞(2.3c)

where x j is the interior active particle of panel P j, and A j is the panel’s area calculated

with formula (1.22) and the triangular decomposition of the panel shown in figure 1.7.

φ j = φ(x j) is the value of φ defined on active particle x j.
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The particle-panel discretization provides a helpful interpretation of the flow map dis-

cretization, in addition to the basic quadrature scheme. In many applications particle meth-

ods can be mesh-free, collections of moving particles only [38, 120]. This approach is

attractive for simulations of vortex sheet dynamics, where vorticity is concentrated on a

small subset of the spatial domain (e.g. [158]). On the sphere, however, a mesh-free ap-

proach makes it difficult to answer a fundamental question: How much fluid does each

particle represent? In several studies of moving vortices on the sphere [158, 137, 136]

circulations are arbitrarily assigned to each particle at the beginning of a computation in a

manner that is helpful at illustrating the dynamics of vorticity, but is not directly related to

a specific observed phenomenon of the atmosphere or ocean. Panels provide a notion of

area and an answer to the question of how much fluid each particle represents; this allows

a more direct association of individual particles’ vorticity with observed global vorticity

distributions via Stokes’ theorem.

Circulation on a panel Γ j is defined as the line integral of velocity around the boundary

of panel P j. Let the differential dr represent an increment of arc length along the perimeter

of P j; then circulation is defined as

(2.4) Γ j =

∮
C

u · dr,

where C is the closed boundary of P j. Stokes’ theorem allows us to represent Γ j in terms of

relative vorticity, ζ = n̂ · (∇ × u). Similarly to equation (2.3), as more and more panels are

used to represent the sphere, midpoint rule quadrature becomes a better approximation.

Let ζ j denote the vorticity at the active particle associated with panel P j, and A j be the

panel’s area.

Γ j =

∫
P j

ζ(x) dA(2.5a)

Γ j ≈ ζ jA j as N → ∞(2.5b)
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Equation (2.5a) is the result of applying Stokes’ theorem to (2.4). Equation (2.5b) provides

a means of interpreting the flow map discretization. As our polygonal panels become

smaller and smaller, each panel becomes a better approximation of the circulation around

that panel’s active particle.

An important consequence of this interpretation for dynamical core applications is the

fact that vorticity is commonly used as a prognostic variable in atmospheric dynamics.

Many problems and test cases are defined in terms of vorticity, and it is more intuitive for

modelers to analyze than circulation. We can assign each active particle a vorticity value

by sampling a vorticity distribution, and recover the circulation Γ j of each active particle

by finding the area of each polygonal panel and multiplying with the formula given by

equation (2.5b).

The choice of what variety of polygon to use for the Lagrangian panels is similar to

the question of what variety of grid is best for an Eulerian model. Global models began

with latitude-longitude grids [188]. Latitude-longitude grids are locally orthogonal and

a natural choice because of their correspondence to the latitude-longitude coordinates of

geography. Despite those advantages, latitude-longitude grids are hampered by problems

of anisotropy and converging grid lines at the poles. Longitude lines converge to a single

point at both poles; as a result, grid boxes (panels) are much smaller near the poles than at

the equator. This effect intensifies as grids are refined and polar grid boxes have longitu-

dinal separations that converge toward zero. The singularity of the latitude-longitude grid

is known as the pole problem and many other tilings of the sphere have been developed

to avoid it; these alternatives are summarized in [188, 108, 167]. A common approach is

to use regular polyhedra whose faces have constant angular separation regardless of grid

resolution.

The idea of using regular polyhedrons to approximate the sphere was proposed by
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Cubed sphere quadrilaterals
N 1536 6144 24576 98304 393216
∆λ 5.2 2.6 1.4 0.7 0.35
∆x (km) 578 289 155 77 39

Icosahedral triangles
N 1280 5120 20480 81920 327680
∆λ 8.6 4.3 2.2 1.1 0.59
∆x (km) 956 478 244 122 65

Table 2.1: Mesh size ∆λ (in degrees) as a function the number of panels N in a uniform mesh. Arc lengths
∆x (in kilometers) correspond to approximate panel edge lengths on the Earth (mean radius 6371
km).

Sadourny [157]. Other choices, such as overset grids, are possible [188], but are less

applicable to this work. Two common choices for discretizing the sphere using polyhedra

are based on the icosahedron [13] and the cube [153]. We use these two polyhedra as the

basis for two different kinds of Lagrangian panels. The icosahedron leads to triangular

panels while the cube produces quadrilateral panels; examples are shown in figure 2.1

(a) and (b). It is common in the dynamical core community to use mesh size to discuss

the resolution used by a computation. While is it more natural for our method to use the

number of panels N, in order to compare our results to other dynamical cores, we define

mesh size ∆λ as the average length of a panel edge at t = 0. The correspondence of ∆λ to

N for uniform meshes, as well as the approximate length of a panel edge on an Earth-sized

sphere, are shown in table 2.1.

The dual of the icosahedral triangle mesh is a grid of primarily hexagonal panels, with

a few pentagonal panels at the vertices of the original icosahedron [152]. Such a mesh

on its own adds little to a discussion that already includes triangles and quadrilaterals; the

midpoint rule has straightforward implementations on any type of polygon (see figure 1.7).

However, when combined with algorithms for computing Voronoi diagrams of arbitrary

point distributions on S, hexagonal grids can be quite useful to our Lagrangian method.

Voronoi grids are discussed in section 2.2.2. A set of hexagonal Voronoi panels is shown

in figure 2.1 (c).
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(a) (b) (c)

Figure 2.1: Examples of particle-panel discretizations of the sphere. Active particles are shown as filled
circles. Passive particles are hollow circles. (a) Icosahedral triangle mesh with N = 96 panels.
(b) Cubed sphere mesh, N = 80. (c) Voronoi mesh, N = 92. Passive particles are not shown in
(c) because they are not stored separately for Voronoi grids.

Having decided on a quadrature rule and a discretization strategy, we next need a com-

putational data structure that is capable of implementing these discretizations on moving

sets of fluid particles.

2.2.1 Computational implementation and data structures

The primary purpose of the particle-panel discretization is to facilitate quadrature com-

putations over the discrete domain. Consequently, we need a data structure that is capable

of quickly calculating integrals over S such as (2.3). Passive particles may belong to two

or more panels, and for the sake of conserving memory, their data should not be duplicated

at each active particle whose panel happens to connect to them. As a first guess, we may

decide that we only need a means of identifying which passive particles define the vertices

of the panel associated with each active particle. This would lead to a data structure that

maintains the two sets of particles, with active particles also tracking pointers to the pas-

sive particles that define the vertices of their associated panel. In the field of computational

geometry, this is known as a face-vertex relation [159]. Our Lagrangian panels correspond

to topological faces, and our passive particles are the vertices of those faces.
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A face-vertex relation would provide a means of quickly calculating quadrature, but

not much else. A review of data structures and algorithms for computational geometry

[159, 39] reveals several fundamental procedures that good data structures should be able

to complete quickly. Point query methods are a primary example. In this work, a point

query procedure would output a pointer to the panel that contains an arbitrary input point

x0 ∈ S. A simple face-vertex relation does not provide a means of solving this problem

quickly, and would have to rely on a brute-force search algorithm that looped over the

entire panel array to find the closest active particle to x0.

Point query procedures are not necessary for computing the Biot-Savart integrals we

will use to calculate velocity, but are vital for the remeshing algorithm introduced in sec-

tion 2.4, which relies on local interpolation methods. Additionally, point query methods

are essential for representing data from Lagrangian particles and panels on other grids,

such as a latitude-longitude grid for contour plotting, or for coupling with other models

or data sets. Fortunately, computational geometry texts provide a means of accelerating

point query procedures: the introduction of edges [159, 39]. A recent paper [41] provides

an interactive JavaScript that illustrates several different point query algorithm designs that

rely on edges. Several data structures provide face-edge-vertex relations, but we adopt a

variant of the winged-edge data structure due to its simultaneous representation of both a

primary mesh and its dual [159, 140].

Each winged edge has pointers to the passive particles at its starting vertex xA and its

ending vertex xB, in an edge-vertex relation (figure 2.2). This induces a direction on the

edge, which enables it to also point to its left and right panels, PL and PR, in an edge-face

relation.

We enforce a strict counter-clockwise ordering of panel edges and panel vertices rela-

tive to each active particle. By relying on the fact that our panels are either always triangu-



42

xA

xB

PR

PL

xA
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PR

CP2

CP1
E

E1

E2

xm

Figure 2.2: Dividing edge E while refining panel PL. Child edges E1 and E2 inherit their orientation from
parent edge E and connect to new passive particle xm at the parent edge’s midpoint. Child edges
E1,2 connect to new child sub-panels CP1 and CP2 as well as original panel PR. Dashed line
represents a new interior edge.

lar or always quadrilateral, we are able to quickly return pointers to the edges and vertices

around a particular panel and that panel’s adjacent panels. These methods are simplified

versions of the algorithms described by [140, chapter 4] and [159, section 2.2.1.2] which

do not assume a fixed polygon type.

For additional simplicity in coding, we combine active particles and their associated

panels into one structure. Our algorithms are implemented using three primary data struc-

tures: Particles, Edges, and Panels. Passive particles are kept in the Particles data struc-

ture, and active particles are kept in the Panels data structure. The topology and connec-

tivity of the mesh are maintained with Edges, which connect two passive particles and

track left and right panels, and Panels which maintain area and track edges. We vectorize

data structures for passive particles, edges, and panels with Fortran 90/95’s column-major

memory striping in mind. Our basic data structures for triangular or quadrilateral panel

sets are presented in tables 2.2, 2.3 and 2.4.

Grids on S are generated by initializing particles, edges, and panels with either the

icosahedron (figure 2.3) or the cubed sphere (figure 2.4). Vertices of the polyhedron and

the centroids of its faces are normalized so that each satisfies |x| = 1. The initial data

structures are then recursively divided to a desired resolution as illustrated in figures 2.5

and 2.6.
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Particles Data Structure
Variable Kind Size Description
N integer scalar current number of passive particles
N max integer scalar maximum number of passive particles allowed in memory
x double precision 3 × Nmax Physical position, y
x0 double precision 3 × Nmax Lagrangian parameter, α

tracer double precision Nmax × NT tracers, φ
absVort double precision Nmax absolute vorticity, ω
relVort double precision Nmax relative vorticity, ζ
edges integer p × Nmax Pointers to edges incident to each passive particle

Table 2.2: Passive particles data structure. NT is the number of tracers (set by user). p is the type of panel:
p = 3 for triangular panels, p = 4 for quadrilateral panels.

Edges Data Structure
Variable Kind Size Description
N integer scalar current number of edges
N max integer scalar maximum number of edges allowed in memory
verts integer 2 × Nmax edge vertices (pointers to particles)

leftPanel integer Nmax pointers to panels
rightPanel integer Nmax pointers to panels
hasChildren logical Nmax true if edge has been divided
children integer 2 × Nmax pointers to child edges

Table 2.3: Edges data structure.

Panels Data Structure
Variable Kind Size Description
N integer scalar current number of panels

N active integer scalar current number of undivided panels
N max integer scalar maximum number of panels allowed in memory
x double precision 3 × Nmax Physical position of active particles, x
x0 double precision 3 × Nmax Lagrangian parameter of active particles, α

tracer double precision Nmax × NT tracers at active particles, φ
absVort double precision Nmax absolute vorticity at active particles, ω
relVort double precision Nmax relative vorticity at active particles, ζ
area double precision Nmax area of panels, A
edges integer p × Nmax Pointers to edges around each panel
vertices integer p × Nmax Pointers to particles at panel vertices
hasChildren logical Nmax true if panel has been divided
children integer 4 × Nmax pointers to child sub-panels
nest integer Nmax recursion level of each panel

Table 2.4: Combined data structure for active particles and panels. NT is the number of tracers (set by user).
p is the type of panel: p = 3 for triangular panels, p = 4 for quadrilateral panels.
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Figure 2.3: Initial data structures for icosahedral triangulations. Passive particles (black numbers, blue
filled circles) are the vertices of each triangular panel. Active particles (black numbers,
blue square outlines) are initially at the centroid of each panel. Edges (red) connect pas-
sive particles while separating panels. Numbering corresponds to the output of Mathematica’s
PolyhedronData["Icosahedron"] functions.
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Figure 2.4: Initial data structures for the cubed sphere. Passive particles, edges, and active particles are as
indicated in figure 2.3
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C1

C2 C3

C4

Figure 2.5: Refining a triangular panel. White open circles are existing passive particles. Blue filled circles
indicate new passive particles. Ci denotes the ith child of the parent panel. Active particles are
shown as solid black circles. The parent panel’s active particle becomes the active particle of the
4th child panel (green circle).

Dividing triangular panels is nearly the same process as dividing quadrilateral pan-

els. Each edge of the parent panel is divided, and a new passive particle is created at

its midpoint. New edges retain the orientation of their parent edge (figure 2.2). New

interior edges connect the new particles with arbitrarily determined orientation that is con-

sistent across the entire panel set. New active particles are created at the centroids of the

child sub-panels. The only significant difference between dividing a triangular panel and

a quadrilateral panel lies in how the parent panel’s active particle is handled. These points

are indicated by the green circles in figures 2.5 and 2.6. For triangular panels, the par-

ent panel’s active particle is simply relocated to the centroid of the inner child panel, and

becomes that panel’s active particle as well. In quadrilateral panels, the parent’s active

particle becomes a passive particle in each of the child panels.

It is possible that an adjacent panel has already been divided and a new passive particle

already exists at the midpoint of the edge shared by the two panels. In this case, the panel

division procedure simply connects the sub panels to that existing particle and to the two

child edges that had been previously created.

Each set of panels has a natural tree structure due to this recursive refinement procedure.

The tree structure can be used to accelerate a point query algorithm, but a tree search is

insufficient on its own because the Lagrangian particles may move outside the boundaries
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C1

C2 C3

C4

Figure 2.6: Refining a quadrilateral panel. Passive particles are as indicated in figure 2.5. The parent panel’s
active particle becomes a passive particle of all 4 child panels (green circle).

t = 0 t > 0

Figure 2.7: A situation where a tree search point query would give an incorrect result due to particle motion.
Parent panel is outlined in blue. A query point located in the stippled area would be incorrectly
located within one of the four child panels shown.

of their parent panels (see figure 2.7). Consequently, we use the tree structure to provide

an initial guess to an adjacent panel search algorithm. This method is similar to the “jump

and walk” strategy described in [41]. It assumes panels are convex polygons on S. A

schematic of the algorithm is presented in figure 2.8.

The point query procedure takes as input an existing set of Particles, Edges, and

Panels, and the coordinates of the query point x0. To initialize a tree search, the panel

of the original polyhedron (either the cubed sphere or the icosahedron) that contains x0 is

found by finding the minimum distance between x0 and the centroids of the root polyhe-

dron’s faces. This is the root of the tree search, and its index is stored as P in figure 2.8.

The tree search is a recursive search beginning at the root panel and returning the index P

of the panel at the leaf of tree whose centroid is closest to the query point. Since this leaf

panel may not contain the query point, the walk search commences at this panel. For each

edge of P, the panel on the other side of the edge, P∗, is adjacent to P. If an adjacent panel
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Figure 2.8: Diagram of point location query algorithm. The closest panel is defined to be the panel whose
centroid is the minimum distance from the query point x0. The first loop is a tree search; the
second loop is a walk search.
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has a centroid that is closer to x0 than the centroid of P, the walk search restarts at that

panel; otherwise, the search has converged and returns the index of panel P.

Asymptotically, the worst-case timing of a tree search is O
(
log N

)
and worst-case tim-

ing of a walk search is O
(√

N
)
. Walk search performance is entirely dependent on the

initial guess; using the tree search to provide a good initial guess accelerates the walk

search portion of our search algorithm. Additionally, since the tree depth is relatively

short, we find that in practice the timing of the point query algorithm shown in figure

2.8 is O (1), which is a significant improvement over an O (N) brute force approach. The

remeshing algorithm introduced in section 2.4 will need to locate N new active particles

and M new passive particles within an existing mesh of N distorted panels. Thus we ex-

pect the overall search time for the remeshing algorithm would scale as O
(
(N + M)2

)
for

a brute force search and as O (N + M) for the fast search. Empirical timing results that

verify these expectations for both the “fast” algorithm (figure 2.8) using the winged edges

and a brute force “slow” search are shown in figure 2.9.

The winged edges that connect passive particles and enable the fast search are also

a common data structure for Delaunay Triangulation and Voronoi Diagram algorithms

[140, 159]. Voronoi diagrams have recently been used as horizontal discretizations in

some Eulerian dynamical cores (e.g. [151, 162]). In the context of this study, Voronoi

diagrams yield a collection of polygons onS centered on each active particle, similar to the

triangular and quadrilateral panels we have just described. Voronoi diagrams have several

geometric properties that may be advantageous in Lagrangian particle-panel methods [7,

140]. We discuss their properties and potential use for our algorithms in the following

section.
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Figure 2.9: Time required to locate N new active particles and M new passive particles within a set of N
distorted panels. Brute force search time (blue dashed line) scales as O

(
(N + M)2

)
as N → ∞.

Fast search time (solid blue line) using the algorithm from figure 2.8 scales as O (N + M).

2.2.2 Delaunay triangulations and Voronoi diagrams

Okabe et al. [140] provides a thorough review of the properties, definitions and ap-

plications of Voronoi diagrams for applications ranging from coding theory to stochastic

processes. The fundamental importance of Voronoi diagrams and their dual, the Delaunay

triangulation, is evidenced by their prominent inclusion in most introductory texts in com-

putational geometry (e.g. [39, 159]). These texts introduce a terminology that is a mixture

of combinatorics, topology, and graph theory; we present the definition in the context of

particles and panels.

Definition II.2. The Voronoi polygon V j surrounding active particle x j is the set of all

x ∈ S closer to x j than any other active particle,

(2.6) V j =
{
x ∈ S : dist(x − x j) ≤ dist(x − xk, j)

}
,
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(a) (b)

Figure 2.10: Example of a Voronoi diagram. A set of active particles (a) and their Voronoi polygons (b).

where we assume that

S = ∪N
j=1V j.

Equality in (2.6) holds only on the edge between two neighboring polygons. Thus each

Voronoi polygon overlaps by at most one edge with any other Voronoi polygon [140]. An

illustration is shown in figure 2.10.

If the Voronoi polygons for an arbitrary set of active particles can be calculated effi-

ciently at each time step, the set of Voronoi polygons provides a tiling of the sphere which

can be used for quadrature calculations. Such an algorithm would have no need to track

passive particles separately; their locations would be implicitly calculated as the vertices

of each Voronoi polygon at each time step.

Geometric properties of both the Voronoi diagram and its dual, the Delaunay triangula-

tion, are given in [140, chapter 2], [159, section 2.2.1.4], and [39, chapters 7 and 9]. These

properties define a locally optimal discretization of S for a given set of active particles. By

definition the Voronoi polygon that defines each active particle’s panel provides the answer

to the question of how much fluid each active particle represents. As the active particles

move, we may simply recalculate their Voronoi diagram on S and avoid maintaining a
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separate set of passive particles.

To generate Voronoi grids, such as the one shown in figure 2.1 (c), we initialize an

icosahedron as if we were going to use a triangular panel set. Instead of using the trian-

gles, we use their dual; the vertices of each triangle, which would be the passive particles

in a triangular panel set, become the active particles of the Voronoi panels. This collection

of triangular vertices from the icosahedral mesh becomes the input to the Voronoi diagram

algorithm. That algorithm outputs the vertices of the Voronoi polygons, which are the

passive particles for a Voronoi mesh, and panel areas are assigned as usual. Time integra-

tion for each active particle is handled the same way as the cubed sphere and icosahedral

triangle meshes. However, since the passive particles of a Voronoi grid are defined as the

vertices of the Voronoi polygons, they need not be stored (or advected) separately; they

are determined at each time step.

This idea of recalculating the Voronoi diagram at each time step for a set of Lagrangian

fluid particles was proposed for spherical geophysical fluid dynamics problems by Au-

genbaum and Peskin [7] in 1985. Their paper also provides an algorithm that computes

a Voronoi diagram on S for N active particles in O (N) time; it is a spherical implemen-

tation of the planar incremental algorithm presented in Okabe et al. [140, section 4.3]

and the Voronoi algorithm for periodic domains described by [20]. Voronoi diagrams may

also be computed by first finding the Delaunay triangulation of a set of active particles.

Algorithms that find Delaunay triangulations in O (N) time are given by [159, 39]. The

circumcenter of each Delaunay triangle corresponds to the vertex of a Voronoi polygon;

this correspondence can be used to generate a Voronoi diagram from a Delaunay triangula-

tion. Renka [146] provides an ACM TOMS Fortran 77 software library called STRIPACK

that implements this algorithm on the sphere. STRIPACK is the predominant software

used for spherical Delaunay triangulations today [25, 90].
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The locally optimal set of panels defined by the Voronoi diagram for a set of active par-

ticles provides an attractive basis for a Lagrangian method, as introduced by [7]; however,

such techniques are limited by the difficulty of computing Voronoi diagrams accurately.

Even in the planar case, Okabe et al. report that double precision arithmetic may be in-

sufficient to represent a Voronoi diagram with topologically consistent properties [140,

section 4.6]. Problems of finite numerical accuracy are amplified on the sphere, where

geometric calculations are complicated by metric terms that involve transcendental func-

tions. Augenbaum and Peskin [7, 6] showed that their algorithm worked for a relatively

small number of active particles, N ∼ O
(
103

)
. But as the number of particles increases,

the difficulty of computing both the Voronoi diagram and the Delaunay triangulation also

increases [25]. Algorithms that rely on software capable of arbitrary precision arithmetic

are currently being developed [25, 90].

For this work we rely on STRIPACK [146], whose Delauany triangulation algorithms

have proven capable for use in existing dynamical cores [151, 162]. STRIPACK’s focus is

on the Delaunay triangulation, which will be used as part of the remeshing algorithm (sec-

tion 2.4). Although we have had no problems with STRIPACK’s Delaunay triangulations,

we find that STRIPACK’s Voronoi algorithm occasionally outputs an error or freezes; this

behavior has also been noted by [25]. Consequently, while we introduce the capability to

use Voronoi panels in this chapter, and discuss some of their results in sections 2.4, 4.2,

and 4.4, the majority of our work will use the triangular and quadrilateral panels of the

icosahedron and cubed sphere instead.

2.3 Mesh distortion and adaptive refinement

The problem of computing motion at a variety of interacting scales has been a topic

of research since the beginning of atmospheric modeling. Behrens [15, section 1.1] cites
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the example of a mid-latitude cyclone, whose vortex filaments are on the order of 5-10km

wide, but whose dynamics are driven by planetary Rossby waves with characteristic length

scales on the order of 1000-10000 km as evidence of the inherent challenge. Such filamen-

tary features require closely spaced computational elements to resolve, but these features

are often small relative to the surface area of the sphere. Consequently, uniformly high-

resolution computations can be inefficient; away from the cyclone, the fluid may not have

such small-scale features. Flow away from the cyclone may therefore be resolved with

a much coarser spacing of computational elements at a much lower cost. An adaptive

method that is able to increase resolution where it is needed, and decrease resolution where

it is able, could make much more efficient use of computational resources. Behrens’s work

is focused on adaptive finite element methods; other Eulerian techniques (e.g. finite vol-

ume methods [85]) are also developing adaptive methods to efficiently resolve small-scale

features without having to resort to uniformly high resolution computations.

In a Lagrangian setting, the need for adaptivity is increased by the fact that the com-

putational elements are moving. Adaptivity is not only necessary to resolve small scales

that may develop, but also to maintain accuracy as particles may move away from some

areas of the domain. Regions of the domain that become depleted of fluid particles rapidly

lose accuracy in a Lagrangian computation. An algorithm that detects these regions as

they develop, then adaptively refines the region to add resolution before accuracy is lost is

a natural strategy. This strategy was employed with vortex methods by Krasny [101] and

Feng et al. [57] for vortex sheet dynamics, and by Wang [184] for the barotropic vorticity

equation on the sphere.

Our adaptive refinement goals, therefore, are based on two principles. We want to

resolve small scales of motion that develop in geophysical flows and to maintain the spatial

accuracy of our Lagrangian method. In order to do so, we must decide on what criteria to
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use to trigger adaptive panel refinement.

Behrens [15, section 2.6] suggests several different refinement criteria that are based

on either estimates of numerical error or the physics of the developing model fluid. In a

Lagrangian simulation, there is a third option: the state of the mesh itself. Krasny and his

collaborators [101, 57, 184] develop refinement criteria based on the amount panels (in 1D)

or panel edges (2D) have been stretched, or how much curvature a panel has developed.

In this thesis, we focus on physics-based criteria. The use of either error estimates

or measurements of the Lagrangian mesh for refinement criteria are topics for possible

future research. We have developed two physics-based criteria to use for adaptive panel

refinement, based on our experience with uniform-mesh simulations.

The first criterion measures either the total amount of mass in a panel for advection and

transport problems,

(2.7) M j = φ jA j < ε1

or the magnitude of circulation on a panel for barotropic vorticity problems,

(2.8)
∣∣∣Γ j

∣∣∣ =
∣∣∣ζ j

∣∣∣ A j < ε1,

where ε1 is a user-specified tolerance. If either M j or
∣∣∣Γ j

∣∣∣ exceed ε1, then panel j is refined.

This criterion refines regions of high tracer mass density in advection problems and vortex

cores in barotropic vorticity problems.

The second criterion measures the total variation of key physical quantities on each

panel. The total variation in vorticity is defined as

(2.9) Vζ = max
P j

ζ −min
P j

ζ < ε2,

where maxP j and minP j give the maximum or minimum value on panel j across all of

its particles (active and passive), and ε2 is a separate user-specified tolerance. The total
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(a) (b) (c)

Figure 2.11: Refining a stretched quadrilateral panel. t = 0, (a). Panels may stretch due to particle motion
(b). By refining stretched panels (c), particles are inserted into the sparse area of domain and a
quasi-regular mesh is maintained.

variation in the Lagrangian parameter α = [α1, α2, α3]T is defined as

(2.10) Vα =

3∑
i=1

(
max

P j
αi −min

P j
αi

)
< ε2.

Either Vζ or Vα is used as criterion 2; if it exceeds ε2, then panel j is refined. Criterion 2

refines developing filaments as the flow evolves.

The variation of the Lagrangian parameter Vα is a generalization of the variation of

the vorticity Vζ . Using Vα returns the focus to the flow map, rather than to the specific

problem, and can therefore be used in all applications (advection, barotropic vorticity,

shallow water, etc.).

Unfortunately, for problems such as a vortex sheet in three-dimensional space [57] or

geophysical problems on the surface of a sphere [184], adaptive refinement alone is not

enough to maintain accuracy in Lagrangian simulations. Adaptive refinement is very good

at maintaining accuracy on stretched panels (figure 2.11) by inserting particles and panels

into regions that have become depleted of computational elements. But adaptive refine-

ment does not do as well when the problem is shearing, not stretching. In extreme cases,

sheared panel’s interior angles may approach 0 or π; this distortion degrades computations

of panel area and introduces error. More frequently, shearing causes error by creating

asymmetric interactions between nearby particles. Simply refining a sheared panel does

not alleviate these problems (figures 2.12 and 2.13). Sheared panels are common near

vorticity gradients, such as the periphery of a jet or along a vorticity front. Examples of
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(a) (b) (c)

Figure 2.12: Refining a sheared quadrilateral panel. t = 0, (a). Panels may shear due to particle motion
(b). Inserting particles by refining a sheared panel (c) does not improve the problem of small
interior angles or the asymmetric arrangement of particles (see figure 2.13).

Figure 2.13: Asymmetric interaction of particles caused by shear. The green passive particle should receive
similar influence from each of its adjacent active particles (black circles); instead it receives too
much influence from its northwest and southeast neighbors (connected by the short red arrows)
and not enough from its southwest and northeast neighbors (connected by long red arrows).

mesh distortion in Rossby-Haurwitz wave computations (section 4.2) are shown in figure

2.14 .

One of the optimal properties of a Delaunay triangulation is that it maximizes each

triangle’s minimum angle [159, 140, 39], which is an ideal property to have for flows

that develop sheared panels. A possible strategy to mitigate shearing error would rely on

Voronoi diagrams and Delaunay triangulations to optimally reconnect active particles to

passive particles as the flow evolves. This approach is similar to the untangling algorithm

proposed by [182] and is examined in figure 2.15 and section 4.4. Figure 2.15 shows

the evolution of a set of N = 2562 Voronoi panels in the same Rossby-Haurwitz wave

simulation as figure 2.14. Comparing t = 0.3 results from the Voronoi mesh of figure 2.15

(c) to the quadrilateral and triangular meshes in figure 2.14 (b) and (d), we see that while it

is still distorted from its initial configuration, the Voronoi mesh appears to have maintained

better uniformity than the triangular and quadrilateral panels. However, we find that even

these strategies are not sufficient to maintain accuracy in regions of high shear, particularly
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(a) (b)

(c) (d)

Figure 2.14: Mesh distortion due to a Rossby-Haurwitz wave. Quadrilateral panels (a) and (b) with N =

1536. Triangular panels (c) and (d) with N = 5120. Color scale shows relative vorticity; red
indicates positive vorticity and counterclockwise rotation; blue shows negative vorticity and
clockwise rotation.
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along Lagrangian manifolds of the flow.

For example, these manifolds are drawn on the sphere in figure 2.15 (a) for the case

of a stationary Rossby-Haurwitz wave. In figure 2.15 (d), region A lies along an unstable

manifold and has become depleted of fluid particles. Accuracy could be restored to this

region using adaptive refinement approaches similar to those employed by [101, 57, 184].

However, region B, which lies along a stable manifold, will also lose accuracy due to the

extreme shearing of panels as they approach the saddle point. A close-up view of the

saddle point and the Voronoi mesh is shown in figure 2.16. As an additional difficulty

associated with shear, as particles approach each other the local mesh spacing approaches

zero, which will cause instability with a fixed time step.

Rossby-Haurwitz waves are highly idealized models, but their similarity to realistic

flows is precisely the point of Haurwitz’s paper [77]. Indeed, saddle points can be observed

in the actual atmosphere with regularity; an example is shown in figure 2.17. Although

Voronoi grids reduce the effects of shearing distortion compared to panel sets of fixed

polygonal types, they do not remove it entirely. Thus, we conclude that we will need to

restore regularity to the spatial distribution of fluid particles with a remeshing procedure.

2.4 Remeshing procedures

Particle distortion is an inherent challenge in all Lagrangian methods, and many tech-

niques have been developed to mitigate the spatial accuracy problems that result from

distortion. In section 2.3, two such techniques were presented: adaptive refinement, e.g.,

[101, 57, 184], and reconnecting particles in a way that minimizes panel shearing, e.g.,

[140, 182]. However, when confronted with the many varieties of distortion error (stretch-

ing, shearing, and convergence), we found that these two techniques were inadequate to

maintain accuracy in long time calculations. Other Lagrangian methods have confronted
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(a) (b)

(c) (d)

Figure 2.15: Voronoi mesh (N = 2562) distortion due to a steady Rossby-Haurwitz wave. Color scale is
same as figure 2.14. (a) t = 0, Initial mesh. Active particles are black dots; passive particles are
panel vertices. Lagrangian manifolds are drawn as thick black curves; saddle points are open
circles. (b) t = 0.2. Manifolds not drawn to show mesh. (c) t = 0.3. (d) t = 0.4. Region A has
become depleted of particles; region B shows sheared panels approaching a saddle. A close-up
view of regions A and B at t = 0.4 is shown in figure 2.16.

Figure 2.16: Close-up view of saddle point showing regions A and B from figure 2.15 (d).
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Figure 2.17: MODIS satellite image showing two cyclones south of Iceland (top middle) from November
20, 2006 [3]. Air flows into the pair from the northeast along the cloud band from the upper-
right corner toward the center of the image. A nonlinear saddle exists near the center; as the
inflowing air approaches it, the flow diverges toward one cyclone or the other.

these difficulties and also concluded that remeshing is necessary to maintain both com-

putational accuracy and efficiency [98, 9, 156]. We adopt the same point of view in this

thesis, and develop a new remeshing procedure in this section.

Remeshing is the process of transferring flow information from a distorted set of parti-

cles to a new, more regularly distributed set of particles. All remeshing procedures involve

interpolation. The method’s success depends on the quality of the interpolation scheme,

which generally involves scattered source data since the locations of the distorted particles

are not known in advance. A brief discussion of scattered data interpolation methods is

provided in the appendix. Piecewise polynomials [98, 147], radial basis functions [9, 10],

and general interpolation kernels [156] have all been successfully used as interpolation

schemes for remeshing Lagrangian computations.

Typically, the interpolated quantities are the problem data– the tracers φ in advection

problems or vorticity ζ in a barotropic vorticity problem. We refer to this strategy as direct

remeshing; the data is interpolated directly from a distorted set of particles to a new set.
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Depending on the specific details of the interpolation source and destination points,

and how often the remeshing procedure is applied during a calculation, the distinction

between Lagrangian methods and semi-Lagrangian methods may become blurred. Semi-

Lagrangian methods (discussed briefly in section 1.3) perform interpolation at every time

step, and do not store Lagrangian quantities separately [166]. Hybrid Eulerian-Lagrangian

methods tend to rely more directly on Lagrangian data; for example, the scheme in [75]

uses Lagrangian parcels to interpolate a correction term to an Eulerian forecast at each grid

point at each time step. Arbitrary Lagrangian-Eulerian (ALE) methods may use moving

meshes but frequently do not use the fluid velocity as the mesh velocity [125, 79, 83] and

are therefore a different variety of algorithm.

We seek to maintain the Lagrangian nature of our computations by focusing again

on the flow map, equation (2.1). For incompressible fluids, the flow map is invertible

[71, 120]. In the shallow water equations, which do not have an incompressible horizon-

tal velocity field, it is possible that the flow map may become non-invertible, but such

situations correspond either to shock formation or a violation of the shallow water approx-

imation [111, 129]. These conditions do not develop in the context of global circulation

models, so we do not expect to face this problem for the types of flows solved by dynami-

cal cores. The flow map’s invertibility is the foundation of our remeshing procedure.

The flow map tracks the evolution in time of the correspondence between particles’

physical positions x and their Lagrangian parameter α. It is the solution of the primary

equations we solve, regardless of the specific problem, whether barotropic vorticity, ad-

vection, or shallow water. Thus, a remeshing procedure based on preserving the flow

map would be versatile enough to apply to each of these equation sets. To begin the de-

velopment of such a procedure, we reemphasize that the flow map provides a stationary

reference frame for materially invariant quantities. This implies that material invariant



62
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(a) (b)

Figure 2.18: Lagrangian remeshing. (a) A set of active particles (x j,α j) and passive particles (yi,αi) have
evolved in a flow, and their panels have deformed. (b) A new, regularly distributed mesh of
particles (x̂k, α̂k) & (ŷl, α̂l) and panels (blue) is overlaid on the old mesh. The Lagrangian
parameter α is interpolated from the old mesh to assign values α̂ to the new particles.

quantities, like tracers φ in advection problems, absolute vorticity ω in the barotropic vor-

ticity equation, and potential vorticity q in the shallow water equations, are functions only

of the Lagrangian parameter and independent of time.

Suppose that a set of fluid particles x j(t) with Lagrangian parameters α j have evolved

from t = 0 to t = trm, where trm is a remeshing time step, as illustrated by figure 2.18 (a).

At t = trm the time stepping portion of our algorithm is paused, and a new set of particles

x̂k are created, shown in blue in figure 2.18 (b). A direct remeshing algorithm would

simply interpolate all problem data from the distorted particles x j to the new particles

x̂k. Instead, we interpolate the Lagrangian parameter α j from the old mesh to assign new

values α̂k to the new particles. The interpolation scheme uses the old mesh (x j,α j) and

the physical positions of the new mesh x̂k to interpolate the Lagrangian parameter α̂k from

the old mesh to the new mesh. Following the interpolation, we renormalize all α̂k so that

each particle satisfies |α̂k| = 1. This procedure preserves, within interpolation error, the

numerical representation of the flow map (2.1); we refer to it as Lagrangian remeshing.

Lagrangian remeshing inverts the flow map at trm; each new particle x̂k now has La-
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grangian information α̂k that relates its current position x̂k(trm) to the position it would

have had at t = 0,

(2.11) x̂k(0) ≈ α̂k,

where α̂k are the interpolated values of the Lagrangian parameter. These data can then be

used to assign values of any materially invariant quantities to the new set of particles. For

example, in an advection problem, new particles’ tracer values φ̂k would be assigned in the

following manner:

d
dt
φ(x, t) = 0 =⇒ φ

(
x̂k(trm)

)
= φ

(
x̂k(0)

)
(2.12a)

x̂k(0) ≈ α̂k(2.12b)

φ̂k = φ
(
α̂k

)
.(2.12c)

Assignment of other material invariants proceeds in the same way. At this point the old

particles x j are discarded, and the new set x̂k are evolved forward in time until the next

remeshing step, when this process is repeated.

The interval between remeshing time steps RI = trm − trm−1 must be selected carefully.

Choosing too large an RI will lead to more distortion in the interpolation scheme’s source

data, which can cause higher error; choosing too small an RI will result in unnecessary

remeshing which can also introduce more interpolation error. Currently we select RI for a

specific problem based on experiments; we hope to develop a more quantitative approach

in the future.

The choice of α = x(α, 0) also has implications. This choice of Lagrangian parameter

has the advantage of providing analytic formulas for the assignment of materially invariant

quantities to particles in equation (2.12c). However, as computations evolve, the distribu-

tion of each particle’s initial position becomes more complex and develops finer scales.
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These fine scales become more difficult to interpolate as computational time increases,

particularly on uniform panel sets that are not adaptively refined. A better approach would

be to reset the Lagrangian parameter at intermittent times, perhaps at every remeshing

step, so that the source data for each interpolation is smoother and easier to use for inter-

polation. This requires maintaining a numerical approximation of the materially invariant

data to use instead of the analytic formula from the initial time in equation (2.12c). We

revisit this idea as a topic for future development in chapter VII.

Lagrangian remeshing has several advantages over the direct remeshing procedures typ-

ically used in particle methods. The definition of the Lagrangian parameter α guarantees

that the source data for the interpolation is smooth, which helps minimize interpolation

error (tracer distributions may be discontinuous, which adversely affects direct remesh-

ing procedures). Additionally, interpolation error is not transferred to the flow data; it is

kept in the flow map. The result is that there are no overshoots, undershoots, oscillations,

or smoothing errors introduced into the flow. Tracer quantities and vorticity distributions

therefore develop no new extrema, and current maxima and minima are not dissipated.

Chapters IV and V present comparisons of Lagrangian and direct remeshing procedures

for a variety of test cases. The Lagrangian remeshing procedure is the last piece we need

to build a fluid dynamics solver for the sphere. Our main algorithms are outlined in the

next section.

2.5 Dynamical core algorithms

In the previous sections we described the flow map and the discretizations we use for

the sphere, the challenge of mesh distortion, and the adaptive refinement and remeshing

strategies we use to maintain accuracy. In this section we put those pieces together to

develop a dynamical core algorithm, which we refer to as a Lagrangian Particle-Panel
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Method, LPPM. The general discrete equations we solve are the particle-panel discretiza-

tion of the flow map (2.1).

d
dt

x j(t) = u
(
x j(t), t

)
, j = 1, . . . ,N(2.13a)

x j(0) = α j(2.13b)

d
dt

yi(t) = u
(
yi(t), t

)
, i = 1, . . . ,M(2.13c)

yi(0) = αi(2.13d)

where x j(t) are active particles, N is the number of panels, yi(t) are passive particles and

M is the number of panel vertices. The initial representation of S, icosahedral triangles or

the cubed sphere, gives the initial discretization of α, which provide the initial conditions

(2.13b), (2.13d) for the ODEs (2.13a), (2.13c).

The procedure for solving fluid equations on the sphere with particle-panel discretiza-

tion and adaptive remeshing is summarized in pseudocode by algorithm II.1. As input,

our programs require the desired panel kind (icosahedral triangles or cubed sphere), an

initial uniform resolution, the remesh interval RI , the time step ∆t and the final time T . If

adaptive refinement is to be used, users must also specify the values of ε1 and ε2 for the

refinement criteria (section 2.3). The software takes this input and generates the initial

particle-panel sets, and time stepping follows.

Particles and panels are advanced one time step at a time until a remeshing point is

reached, that is, until t = trm. At a remeshing step, the remeshing procedure is called and

a new mesh is returned. In an adaptive computation, the adaptive refinement subroutines

are called again for the new sets of particles and panels. When the remeshing is complete,

the program returns to the time stepping loop and continues. Time-dependent data and

plotting data can be output at each time step. At the final time, t = T , any final data are

output and the data structures are deleted to free memory and end the program.
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Algorithm II.1: Main Algorithm for LPPM
Input : ni =initial resolution, pk =panel kind, ε1, ε2, ∆t, T , RI

Output : Flow simulation (plots and data files)

// Initialize panel set to initial resolution and desired panel kind

[Particles, Edges, Panels ] = GridInit(pk, ni)
if AMR then

[Particles, Edges, Panels ] = AdaptiveRefine(ε1,ε2)
end
// Output initial data

[DataFile,PlotFile ]=Output(Particles,Edges,Panels)

// Time stepping

t = 0
while t ≤ T − ∆t do

if t = trm then
[Particles, Edges, Panels ] = Remesh( )
if AMR then

[Particles, Edges, Panels ] = AdaptiveRefine(ε1,ε2)
end

end
[Particles, Edges, Panels ] = AdvanceOneTimestep(t,∆t)
t = t + ∆t
// Output intermediate data

[DataFile,PlotFile ]=Output(Particles,Edges,Panels)
end

// Output final data

[DataFile,PlotFile ]=Output(Particles,Edges,Panels)

// Finalize and clear memory

[Particles, Edges, Panels ] = Delete()
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The discrete flow map equations (2.13) are integrated in time with fourth order Runge-

Kutta in parallel computations using a simple copy algorithm [121] for distributed memory

machines. We assume a computing environment with p processors. Each processor main-

tains a complete copy of the entire system in local memory: all passive particles, edges,

and panels. For each stage of Runge-Kutta integration, each process only computes the

evolution of N/p active particles and M/p passive particles, then broadcasts their results to

the other p − 1 processes. This approach is also known as data replication, as all problem

data is replicated on each process.

Parallel speed up and efficiency results for the barotropic vorticity equation solver are

presented in table section 4.1. The copy algorithm is limited by each process’s local mem-

ory, but even for very high resolution panel sets with N ∼ O
(
106

)
panels, we have not

approached this memory limit. Even at that resolution, our data structures occupy less

than 1 GB of memory, which is much lower than today’s CPUs have available in DRAM.

Other approaches described in [121] can be used when the problem size grows too large

to hold in one process’s local memory.

Algorithm II.1 and its subroutines were developed with Matlab [126] and are currently

implemented in Fortran 90/95 [1, 127] with OpenMPI [141] for parallelization. The source

code is compiled with both Intel and GNU compiler suites. Graphs of data are plotted in

Matlab. 3D spherical plots are made with the Visualization Toolkit C++ library (VTK)

[84]; 2D contour plots are done with NCAR’s Command Language (NCL) [180].

2.6 Sources of error

Analyzing error in a Lagrangian method is somewhat different than in an Eulerian

method because the solutions of a Lagrangian method also involve the particle positions,

not just the tracer concentrations or vorticity. A steady Eulerian solution, for example,
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a stationary Rossby-Haurwitz wave (section 4.2), is not a steady Lagrangian solution.

Error measures typically used to judge accuracy in a dynamical core such as (1.23) do not

account for particle position error. To begin a discussion of error associated with algorithm

II.1, we list the sources of error that we will encounter:

• Spatial discretization error

• Time discretization error

• Distortion error

• Remeshing error

Spatial discretization error and time discretization error are part of any numerical solu-

tion of a partial differential equation, regardless of numerical method. In our case, spatial

discretization error refers to errors due to quadrature. This error can be reduced with the

use of higher resolution panel sets, and error convergence as N → ∞ is demonstrated for

a variety of test problems in the following chapters. Theoretical analysis of the midpoint

rule suggests that this error should decay asO (1/N) as N → ∞, or equivalently, asO
(
∆λ2

)
as ∆λ → 0, where ∆λ is the average initial edge length of our Lagrangian panels. Time

stepping error is error from the time integration, which here is fourth order Runge-Kutta.

Time stepping error can be reduced by using smaller ∆t; analysis suggests that time step-

ping error will decay as O
(
∆t4

)
as ∆t → 0. Numerical convergence with respect to N

and ∆t for both the barotropic vorticity equation and the advection equation are shown in

chapters IV and V, respectively.

Distortion error refers to the distortion that will occur due to particle motion between

remeshing steps. This distortion error is due to the approximation of panel edges by great

circles (straight lines on the sphere), as shown in figure 2.19. Informally, this error arises

from the dA portion of a surface integral
∫
S
φ(x) dA, rather than the integrand.
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t = 0 t > 0

(a) (b)

Figure 2.19: Distortion error due to approximating panel edges as great circles. (a) At t = 0 the panel edges
are great circles. (b) For t > 0 continuous edges (blue) do not necessarily lie along the great
circles connecting two passive particles (black) which are used for panel area calculations.

In actuality, passive particles are connected by continuous material curves, but our area

calculations assume that passive particles are connected by great circles. This approxima-

tion is exact at t = 0 and each remeshing step, but as particles move the edges connecting

them no longer lie along a great circle arc. Great circle edge approximation error is re-

lated to the spatial discretization error but is unique to Lagrangian methods. It can be

reduced by increasing spatial resolution to shorten panel edges, but it can also be reduced

by increasing the number of passive particles per edge, which we discuss later, in chapter

V. While adding additional particles to panel edges can decrease distortion error, it also

introduces the possibility that panels may become non-convex, which would violate an

assumption of our point location query algorithm, figure 2.8. Increasing edge resolution

would require a new point query procedure that does not assume convex panels. We have

therefore kept the great circle arc approximation and use edges with passive particles only

at edge endpoints.

Remeshing error is the most significant source of error in our algorithm, and it is en-

tirely dependent on the quality of the interpolation method used to carry out the remeshing

for both direct and Lagrangian remeshing procedures. Initially we used a piecewise lin-

ear interpolation scheme on each panel. In this procedure each new particle x̂k is located
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within the distorted panel set x j using the fast point location algorithm, figure 2.8. New

Lagrangian parameter data α̂k were then assigned to particle x̂k with linear interpolation in

barycentric coordinates using data from three points in the distorted panel that contained

x̂k. Details are presented in the appendix, section A.2.

We have since upgraded to a cubic Hermite interpolation method provided by the SS-

RFPACK software library [147]. Remeshing with SSRFPACK begins by building a Delau-

nay triangulation of the active and passive particles using STRIPACK [146]. SSRFPACK

takes the triangulation as input, along with the data to be interpolated. Each new particle

x̂k is located within that triangulation using software provided by the STRIPACK library.

Lagrangian data α̂k are assigned to each new particle using SSRFPACK’s cubic Hermite

splines on the Delaunay triangulation. Details are presented in [147, 148].

In chapter V we document the improvement in both l2 and l∞ error norms due to switch-

ing from piecewise linear interpolation to cubic Hermite interpolation for an advection

test problem. Other interpolation methods may be used, and some are discussed in the

appendix. Although remeshing error is dominated by the interpolation scheme, it is also

affected by the remesh interval RI . Too long an interval will cause a distorted interpolation

source data set, while too short an interval will lead to unnecessary interpolation.

In chapters IV and V, we present solutions to a variety of test problems for the barotropic

vorticity equation and the advection equation. The four sources of error just listed will be

used to interpret our results relative to exact solutions, when they are available. We also

use these categories of error to discuss comparisons between our results and results from

an Eulerian scheme for the same test problems. Lastly, we also use these categories of

error to identify issues that could be changed to improve the accuracy to our fluid equation

solver.



CHAPTER III

Barotropic Vorticity Equation

In this chapter we derive the barotropic vorticity equation (BVE) for a rotating sphere

and present our numerical method. The solution of the barotropic vorticity equation pro-

vides the fluid velocity which we use to integrate the flow map (2.1) from one time step

to the next using algorithm II.1. The derivation begins with a discussion of two reference

frames which we may use to observe fluid motion: the inertial frame and the rotating

frame. The BVE itself is derived by assuming that a thin incompressible fluid of uniform

depth lies over a sphere and applying Kelvin’s circulation theorem.

We solve the BVE with a stream function in its vorticity-stream formulation [120] using

Green’s function. When differentiated, Green’s function provides the Biot-Savart law for

the fluid velocity [19, 96]. Coupling the Biot-Savart law for velocity to the flow map and

its discretization from chapter II provides the basis of our numerical method.

At the end of this chapter we describe an Eulerian BVE solver based on the National

Center for Atmospheric Research’s (NCAR) Community Atmosphere Model Finite Vol-

ume (CAM-FV) dynamical core. Results for several test cases from this Eulerian scheme

and our algorithm are presented in chapter IV for comparison.

71
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3.1 Background

The point vortex equations for a system of N point vortices on the rotating sphere were

originally derived by Bogomolov in 1977 [19]. More recently, Dritschel and Polvani [46]

studied these equations using contour dynamics to model roll up of vorticity strips on the

sphere. Sakajo [158] uses these equations to model interacting vortex sheets on the sphere.

Wang [184] studied the BVE’s point vortex approximation in a very similar context to this

thesis, but was limited by the increasing effects of mesh distortion at large t. Newton

[136, chapter 4], and Newton and Shokraneh [137] use point vortex equations to study

the integrability of systems of N point vortices on the sphere from the dynamical systems

perspective for the case where N is small, N ∼ O (10), and study the effects of a constant

background rotation given by the vector Ω on arrangements of N point vortices. They

refer to the constant background rotation’s effects on the N vortices as one-way coupling;

Ω affects the vortices, but is unaffected by them. Newton and Sakajo [138] couple a

small number, N ∼ O (10), of point vortices to a background vorticity field represented by

contours using Dritschel’s contour dynamics [47, 46] as a model two-way coupling. In a

two-way coupled model, the background rotation of the sphere changes due to the point

vortices on the spherical surface, and the sphere’s rotation vector is no longer constant.

In this thesis, we assume only one-way coupling between the sphere’s rotation vector

and the fluid; the sphere’s rotation rate remains constant, which is a common simplification

in dynamical core applications [80, 183, 68, 108, 123]. We use large N ∼ O
(
104 − 106

)
,

typically (larger numbers are possible), to represent the full 2D vorticity distribution as

a collection of panels, rather than decomposing it into a collection of 1D contours as in

[46, 138]. The panel discretization provides a direct means of assigning vortex strengths

(section 2.2) that correspond to geophysical dynamics problems of interest. Specific, pre-
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determined arrangements of point vortices [136, 137] or vortex sheets [158] on the sphere

are more difficult to correlate with observed global fluid flows. Wang [184] showed that

vortex methods using a particle-panel discretization are capable of solving the BVE on

the sphere; this thesis extends her work to dynamical core applications using an improved

adaptive refinement strategy (section 2.3) and adding the remeshing procedure from sec-

tion 2.4.

3.2 Inertial vs. rotating reference frame

The general concept that an Eulerian method corresponds to fixed observer and a La-

grangian method corresponds to an observer moving with the fluid velocity was introduced

in section 1.3. In this section we introduce another set of reference frames more specific

to geophysical fluid dynamics applications: the inertial reference frame and the rotating

reference frame. Like the previous choice of Lagrangian vs. Eulerian formulations, the

choice of an inertial frame or a rotating frame will have an effect on the form of the fluid

equations, despite the fact that they represent the exact same physics.

Mathematically it is perhaps more natural to use the inertial frame, which refers to

a frame of reference centered on an observer at a stationary point in space, away from

the Earth’s surface. This observation point is fixed relative to the center of the Earth,

so the planetary orbit around the sun is not seen, but the Earth’s spin is. An inertial

observer can see the Earth rotate and fluid flow over the planet surface. In this reference

frame, Newton’s second law applies directly, and the equations of motion are derived in a

straightforward manner [30, 12, 183].

From a practical point of view however, it is often more convenient to use a rotating

frame, which is a frame of reference centered at a specific point on the Earth’s equator,

rotating in unison with the planet itself. Geostationary weather satellites and television
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meteorologists display data in a rotating frame; they show clouds and weather patterns

traveling over fixed geography. In the rotating frame we do not directly observe the fact

that the planet is spinning, but the effects of that spin on fluid motion are of course still

present. These effects show up as source terms in the rotating frame equations of motion.

The derivations below follow the presentation of Vallis [183, section 2.1.2]; for additional

discussion, see [123, 80, 12, 68].

Suppose we view R3 from an inertial reference frame, and that the vectors b ∈ R3

we observe are subject to a background rotation of constant angular velocity given by the

vector Ω. Let us choose a coordinate system whose z-axis is aligned with the axis of

rotation. Then Ω = [0, 0,Ω]t, where Ω is the angular velocity of the background rotation.

We can decompose the rate of change of b into two components,(
db
dt

)
I

=

(
db
dt

)
R

+Ω × b,(3.1)

where the subscript I denotes the rate of change of b in the inertial frame, and the subscript

R denotes the rate of change in the rotating frame; the cross product Ω × b is the change

in b due to the background rotation. Let the vector r represent position; its derivative is

velocity. Let vI represent velocity measured in the inertial frame and vR represent velocity

measured in the rotating frame. Then (3.1) becomes(
dr
dt

)
I

=

(
dr
dt

)
R

+Ω × r(3.2a)

vI = vR +Ω × r.(3.2b)

To discuss vorticity, we find the curl of (3.2), which leads to two definitions.

Definition III.1. Absolute vorticity, ω, is the curl of the inertial velocity.

(3.3) ω = ∇ × vI
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Definition III.2. Relative vorticity, ζ, is the curl of the velocity in the rotating frame.

(3.4) ζ = ∇ × vR

The absolute and relative vorticities are related by the following equation,

ω = ∇ × [vR +Ω × r](3.5a)

ω = ζ + 2Ω,(3.5b)

where we have used the fact that ∇ × (Ω × r) = 2Ω. The vector 2Ω is often referred

to as planetary vorticity, as it is the vorticity imparted to a particle due to the Earth’s

rotation. Equation (3.5b) states that absolute vorticity ω is the sum of relative vorticity ζ

and planetary vorticity 2Ω.

In 2D models of a thin layer of fluid, the vorticity vector is orthogonal to the velocity

vector, and the vectors given by equations (3.3) and (3.4) have nonzero components only

in the normal direction. For notational convenience, let the scalars ω = ω · n̂ and ζ =

ζ · n̂ denote the radial (normal) components of the absolute and relative vorticity vectors,

respectively. These scalars vorticity variables will feature prominently throughout the rest

of this thesis, and this scalar definition of relative vorticity is common in much of the

meteorological and oceanographic literature.

Equations (3.2) and (3.5) relate the inertial and rotating frames mathematically. This

relation is fundamental to the equations of motion that follow, for, even as we choose the

rotating frame of reference where the Earth’s rotation is not directly apparent, we must

still account for the effects of that rotation.

3.3 Barotropic fluids

We consider a thin layer of fluid of constant density and uniform depth characterized

by incompressible, non-divergent flow, and derive the equations of motion following from
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these assumptions [183, section 4.3.4]. In such a fluid, Kelvin’s circulation theorem tells

us that the circulation about any material element is constant, [12, 183, 30, 120]

(3.6)
d
dt

∮
C

vI · dr =
d
dt

∮
C

(vR +Ω × r) · dr = 0,

where C is a closed curve following the flow so that no particles cross C as the flow

evolves. Next we apply Stokes’ theorem to the region D enclosed by C,

d
dt

∫
D
ω · n̂dA =

d
dt

∫
D

(ζ + 2Ω) · n̂dA = 0.(3.7)

Since this must hold for all D ⊆ S, upon bringing the derivative into the integral using

Reynolds’s transport theorem [30, chapter 1], we find that

(3.8)
d
dt

(ω · n̂) =
d
dt

((ζ + 2Ω) · n̂) = 0.

The unit normal n̂ is equivalent to the position vector on S, and in spherical coordinates

is

n̂(λ, θ) = [cos θ cos λ, cos θ sin λ, sin θ]t,

where θ and λ are latitude and longitude. For a coordinate system rotating about its z-axis,

2Ω · n̂ = 2Ω sin θ, since Ω = [0, 0,Ω]t, which allows us to write (3.8) as

(3.9)
d
dt

(ω · n̂) =
d
dt

(ζ · n̂ + 2Ω sin θ) = 0.

Equation (3.9) states that the normal component of absolute vorticity is conserved mate-

rially. The quantity f = 2Ω sin θ is known as the Coriolis parameter. The significance

of (3.9) is that the absolute vorticity ω = ζ + f is constant with respect to time in the

Lagrangian frame.

In fact, equation (3.9) is the barotropic vorticity equation; it simply states that a thin

layer of incompressible fluid with constant density conserves vorticity materially:

(3.10)
dω
dt

=
d
dt

(ζ + f ) = 0.
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Properties of barotropic fluids and their relation to global atmospheric circulation are

summarized in [52, section 5.2]. As a model of the atmosphere, a barotropic fluid captures

many characteristics of realistic large-scale flow and performs well as an introductory

model. As discussed in section 1.1, it was also the equation used for the first successful

computational weather forecasts [29]. In a Lagrangian setting, equation (3.10) by itself

is not enough to allow us solve for the motion of fluid particles in a computational envi-

ronment. It has no mention of particle positions x, which are the solutions of a PDE in

Lagrangian form. To find the Lagrangian form of the BVE, we couple (3.10) to the flow

map (2.1).

3.4 Lagrangian form

Beginning with the flow map (2.1), which is the foundation of any Lagrangian method,

we assume that a particle in the fluid at x = x(α, t) has velocity given by the fluid’s velocity

vector at that position, dx/dt = u
(
x(α, t), t

)
. To find the velocity u for an incompressible

fluid, we use the stream function for the flow.

Definition III.3. A stream function ψ = ψ(x, t) = ψ(λ, θ, t) is a scalar function defined on

S such that the velocity u satisfies

(3.11a) u(x, t) = ∇ψ(x, t) × x,

where∇ is the gradient operator onS given by (1.14). In spherical coordinates, the velocity

vector is

(3.11b) u =
∂ψ

∂θ
êλ −

1
cos θ

∂ψ

∂λ
êθ.

Applying the curl operator to (3.11b),

(3.12) ∇ × u =

(
1

cos2 θ

∂2ψ

∂λ2 +
∂2ψ

∂θ2 − tan θ
∂ψ

∂θ

)
êr,
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we find an equation that relates the stream function to vorticity,

(∇ × u) · êr = −∇2ψ.(3.13)

Note that the quantity (∇×u) · êr is the normal component of either absolute vorticity, ω, or

the normal component of relative vorticity, ζ, depending on whether u represents velocity

in the inertial or rotating frame. Let ψI and ψR denote the stream function for the inertial

and rotating frames. Then (3.13) becomes either one of the following equations

−∇2ψI = ω(3.14a)

−∇2ψR = ζ(3.14b)

Unfortunately there is some ambiguity about the precise definition of the stream func-

tion. The above definition corresponds to the typical presentation in mathematical texts,

even those that relate to geophysical applications i.e., [30, 136, 123], but most textbooks

that primarily focus on meteorology or oceanography i.e., [68, 80, 183], define the stream

function with the equation

(3.15) u(x, t) = x × ∇ψ(x, t)

instead of (3.11a). This alternative definition has the effect of placing the negative sign

on the longitudinal êλ component of (3.11b) instead the latitudinal êθ component and re-

moves the negative signs from (3.13) and (3.14) altogether. We have elected to use the

mathematical definition (3.11) in this thesis.

For incompressible fluids, such as those represented by the barotropic vorticity equa-

tion, the stream function completely describes the flow through the above equations [30].

Given a vorticity distribution ω or ζ, we can determine the stream function ψI or ψR by

solving the Poisson problem (3.14) and subsequently recover the velocity from the stream

function using (3.11a).
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We solve the Poisson problem using Green’s function for the Laplace-Beltrami operator

on the unit sphere S. The Green’s function for S was derived by Bogomolov in 1977

[19] from the Green’s function for the 3D Laplacian on the Euclidean space R3 and the

method of images [165]. Bogomolov considered a barotropic fluid contained between two

concentric spherical boundaries, one with radius a and the other with radius a + ε in the

limit ε → 0. Ten years later, Kimura & Okamoto [96] derived the Green’s function for

the sphere by considering the 2D free space Green’s function on the periodic latitude-

longitude plane, and showed that their result is equivalent to Bogomolov’s. We state the

results of Bogomolov and Kimura & Okamoto as a definition.

Definition III.4. The Poisson problem on the unit sphere S

(3.16) ∇2u(x) = − f (x)

with
∫
S

f (x) = 0 has the Green’s function, or fundamental solution,

G(x, x̃) = −
1

4π
log(1 − x · x̃)(3.17a)

G(λ, θ, λ̃, θ̃) = −
1

4π
log

(
1 − cos γ(λ, θ, λ̃, θ̃)

)
(3.17b)

where cos γ is the cosine of the central angle between x and x̃ given by (1.16). Green’s

function represents the response at x 7→ (λ, θ) due to a unit source located at x̃ 7→ (λ̃, θ̃); it

satisfies the following equation on S in the sense of distributions [96, 184].

−∇2G(x, x̃) = δ(x − x̃) −
1

4π
(3.18)

The constant in (3.18) is due to the periodicity of the sphere, and ensures that

(3.19)
∫
S

G(x, x̃) dA = 0,

which is necessary for a solution of Poisson problem (3.18) to exist.
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The stream function, which is the solution of (3.14), is

ψI(x) =

∫
S

G(x, x̃)ω(x̃) dA(x̃)(3.20a)

ψR(x) =

∫
S

G(x, x̃)ζ(x̃) dA(x̃).(3.20b)

We find the velocity field given by a Biot-Savart law,

uI(x) =

∫
S

K(x, x̃)ω(x̃) dA(x̃)(3.21a)

uR(x) =

∫
S

K(x, x̃)ζ(x̃) dA(x̃),(3.21b)

where the integral kernel

(3.22) K(x, x̃) =
−x × x̃

4π(1 − x · x̃)

is the result of applying the ∇( · ) × x operator (3.11a) to (3.20). The derivatives act with

respect to x on the kernel G(x, x̃) to give K(x, x̃).

3.4.1 Inertial frame

In the inertial frame we use (3.21a) to solve for the velocity in terms of the absolute

vorticity ω to solve the barotropic vorticity equation,

∇2ψI = −ω(3.23a)

ψI(x, t) = −
1

4π

∫
S

log(1 − x · x̃)ω(x̃) dA(x̃)(3.23b)

uI(x, t) = −
1

4π

∫
S2

x × x̃
1 − x · x̃

ω(x̃) dA(x̃)(3.23c)

dω
dt

= 0.(3.23d)

A Lagrangian method for (3.23) would couple the flow map (2.1) to (3.23c). Equation

(3.23d) is satisfied implicitly in the Lagrangian formulation. The inertial frame and the

above equations are similar to the equations studied by [137]. Our method uses the rotat-

ing reference frame, however, in order to more closely align with atmospheric modeling

applications and existing dynamical cores.
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3.4.2 Rotating frame

In the rotating frame, the equations are represented in terms of the relative vorticity, ζ,

and we use (3.21b) for the velocity,

∇2ψR = −ζ(3.24a)

ψR(x, t) = −
1

4π

∫
S

log(1 − x · x̃)ζ(x̃) dA(x̃)(3.24b)

uR(x, t) = −
1

4π

∫
S

x × x̃
1 − x · x̃

ζ(x̃) dA(x̃)(3.24c)

dζ(x)
dt

= −2Ω
dz
dt
.(3.24d)

Equation (3.24d) is simply the equation d/dt(ζ + f ) = 0; the right-hand side of (3.24d) is

the material derivative of the Coriolis parameter f . Since the coordinate system’s z-axis

is aligned with the axis of rotation, only the z component of particle motion contributes to

the Coriolis parameter’s derivative. Equation (3.24d) shows the effect of the background

rotation: relative vorticity is modified by the advection of planetary vorticity.

To derive a Lagrangian method for the barotropic vorticity equation, we couple the flow

map (2.1) to (3.24). Except for the special case of the solid body rotation test, all of our

work is done in the rotating frame; for convenience in the remainder of this thesis we drop

the subscript R. The equations we solve numerically with (2.13) are

d
dt

x(α, t) = −
1

4π

∫
S

x(α, t) × x(α̃, t)
1 − x(α, t) · x(α̃, t)

ζ
(
x(α̃, t)

)
dA

(
x(α̃, t)

)
(3.25a)

x(α, 0) = α(3.25b)

d
dt
ζ
(
x(α, t)

)
= −2Ω

d
dt

z(α, t).(3.25c)

Equations (3.25) are the Lagrangian form of the BVE on a rotating sphere in the rotating

reference frame.
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3.5 Numerical method

We use a collection of particles and panels to discretize S, as discussed in chapter II.

We use Cartesian coordinates to avoid problems with the pole singularities in spherical

coordinates; as noted by [136], this choice of coordinates also makes the Green’s function

simpler to compute.

At t = 0, we initialize a grid of N panels and M vertices using either the cubed sphere

or icosahedral triangles. To discretize the flow map x(α, t), as in section 2.2, we let x j(t) =

x(α j, t) represent the active particles at panel centers, and yi(t) = x(αi, t) represent the

passive particles at panel vertices. Each particle is assigned a value of relative vorticity,

ζ(x) = ω(x) − 2Ωz, where ω : S 7→ R is an absolute vorticity distribution associated with

a specific test problem. In more advanced work, vorticity distributions could be derived

from measured data. Active particles are also assigned an area A j that represents the area

of their associated panels using the procedures described in section 2.2.

For t > 0, the equations we solve are

dx j

dt
= −

1
4π

N∑
k=1
k, j

x j × xk

1 − x j · xk
ζkAk, j = 1, . . . ,N(3.26a)

dyi

dt
= −

1
4π

N∑
k=1

yi × xk

1 − yi · xk
ζkAk, i = 1, . . . ,M(3.26b)

dζi, j

dt
= −2Ω

dzi, j

dt
(3.26c)

These sums represent midpoint rule quadrature applied to the Biot-Savart integral in (3.25).

For active particles we skip the singular panel which gives the k , j term in the active

particles’ index. Passive particles stay well-separated from active particles due to the

fluid’s incompressibility, so there is no need to skip any panels in the passive particles’

sum.

Equations (3.26) are integrated with fourth order Runge-Kutta. A high order time inte-
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gration method ensures that time discretization error will be much smaller than the other

sources of error discussed in section 2.6.

3.5.1 Interpretation

The discrete equations for the barotropic vorticity equation (3.26) are also the equations

for a system of N point vortices on a rotating sphere, and identical to the equations consid-

ered by Bogomolov [19, section 3]. Finite collections of point vortices are the subject of

vortex methods, and the interpretation and theoretical results from that field apply to this

thesis. Point vortices derive their name from an interpretation of equation (3.18). Without

regularization the Green’s function’s logarithmic singularity becomes a delta function after

the Laplace-Beltrami operator is applied, and we may view the vorticity due to a source at

x̃ as a singular, concentrated source of vorticity, or point vortex. The process of assigning

vorticity strengths by sampling vorticity distributions amounts to an approximation of that

distribution by a superposition of N point vortices [145, 136, 38, 97].

(3.27) ζ(x) ≈
N∑

k=1

Γkδ(x − xk)

where the weights Γk = ζkAk are defined by (2.5b).

While this is a useful interpretation, we cannot use equation (3.27) numerically; δ(0) is

infinite and skipping the singular panel at x = xk would completely remove the kth point

vortex from the calculation. It is possible to use mollifiers, or smooth approximations

of delta functions, in order to calculate an approximation of equation (3.27); this idea

leads to vortex blob methods [38, 97, 120]. We investigate regularized delta kernels as an

interpolation scheme in the appendix, section A.1, but smoothed integral kernels are not

necessary to solve the barotropic vorticity equation since we do not need to compute the

vorticity field directly to solve the BVE. We only need the fluid velocity. The singularity

in the Biot-Savart integral (3.25) is not as strong as a delta function, and we can compute
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velocity from an approximation of it by simply skipping singular panels in (3.26). Thus,

our method can be interpreted as a point vortex method as it does not regularize the Green’s

function or the Biot-Savart integral.

Aside from the interpretation of representing a vorticity field with singular fluid par-

ticles, vortex methods also offer insight into the conservation properties of the numerical

method. In particular, we note that finite collections of N point vortices like (3.26) are

Hamiltonian systems. Newton [136] explores the consequences of this fact in detail for

the planar geometries. Bogomolov [19] finds the Hamiltonian and other integral invariants

for the spherical case, and relates them to their planar analogues.

The existence of integral invariants in the discrete equations are a primary feature of

vortex methods, and is responsible for their conservation properties as a numerical method.

Majda and Bertozzi [120, corollary 1.4] list several integral invariants of a barotropic

fluid’s continuous equations. We focus on three.

V =

∫
S

ζ(x) dA(3.28a)

KE =
1
2

∫
S

|u(x)|2 dA(3.28b)

Z =
1
2

∫
S

ζ(x)2 dA(3.28c)

V in equation (3.28a) defines the total vorticity. For the periodic domain S, it should be

identically zero. Equation (3.28b) defines KE as the total kinetic energy of the flow, and Z

in equation (3.28c) is the total enstrophy. Each of these equations define conserved quan-

tities of the continuous barotropic vorticity equation; these quantities are derived from the

physics of a barotropic fluid and do not depend on the method used to solve the equation.

In addition to the error norms introduced in section 1.5.3, we also evaluate the success of

our method by measuring how well the quantities defined by (3.28) are maintained dur-

ing a computation. The Hamiltonian properties of the discrete system (3.26) suggest that
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our numerical method should conserve integral invariants (3.28) well; we investigate this

hypothesis in the test cases in chapter IV.

3.6 For comparison: An Eulerian model

We present an Eulerian method for solving the BVE in this section, based on techniques

used by the NCAR CAM-FV dynamical core. The Eulerian form of the BVE is

∇2ψ(λ, θ, t) = −ζ(λ, θ, t)(3.29a)

u(λ, θ, t) =
∂ψ

∂θ
êλ −

1
cos θ

∂ψ

∂λ
êθ(3.29b)

∂ω

∂t
+ u · ∇ω = 0(3.29c)

An Eulerian BVE solver has two components: an advection scheme and a Poisson solver.

The Poisson solver finds the stream function from the current vorticity field. The stream

function is differentiated to give velocity u, and the advection scheme uses that velocity to

advect the vorticity to the next time step, for input to the next Poisson problem. This cycle

repeats until the computation is finished.

For the Poisson solver, the stream function is stored on a uniform latitude-longitude

grid in a 2D array so that ψi, j corresponds to the value at longitude λi and latitude θ j,

where

(3.30) λi = (i − 1)∆λ, i = 1, . . . , 2N θ j = −
π

2
+ ( j − 1)∆θ, j = 1, . . . ,N + 1

and ∆λ = ∆θ = π/N. We use a simple 5-point stencil for the Laplacian operator (figure 3.1

(a)), and solve the system of equations given by that discretization for the stream function

ψ,

(3.31)
1

∆θ2

(
ψi, j+1 − 2ψi, j + ψi, j−1

)
−

tan θ j

2∆θ

(
ψi, j+1 − ψi, j−1

)
+

1
cos2 θ j∆λ2

(
ψi−1, j − 2ψi, j + ψi+1, j

)
= −ζi, j.
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Figure 3.1: (a) 5 point stencil for the Laplacian on a latitude-longitude grid. (b) Flux velocities (blue) are
interpolated from the Poisson solver to a C-grid for the advection scheme.

Both values of absolute vorticity ω and the stream function ψ are maintained at the cell

centers (black circles). Relative vorticity is the difference between the absolute vorticity

and the Coriolis parameter at each grid point,

(3.32) ζi, j = ωi, j − fi, j, fi, j = 2Ω sin θ j.

Equation (3.31) is solved for ψ using the Gauss-Seidel iterative method [112, chapter 4].

The k + 1 iterate ψ(k+1) is found from the previous iterate ψ(k) using

(3.33) ψ(k+1)
i, j =

∆λ2ζi, j

2(2 + tan2 θ j)
−

tan θ j∆λ

4(2 + tan2 θ j)

(
ψ(k)

i, j+1 − ψ
(k+1)
i, j−1

)
+ (2 + tan2 θ j)

(
ψ(k)

i, j+1 + ψ(k+1)
i, j−1

)
+

1
1 + cos2 θ j

(
ψ(k)

i+1, j + ψ(k+1)
i−1, j

)
.

Once (3.33) has converged to a user specified accuracy tolerance, the computed stream

function values ψi, j are differentiated with centered finite differences applied to equation

(3.11b) to give the zonal and meridional components of fluid velocity, u and v, respectively.
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Velocity values are stored at cell interfaces, so that

ui, j+1/2 =
1

∆θ

(
ψi, j+1 − ψi, j

)
(3.34a)

vi+1/1, j =
−1

cos θ j∆λ

(
ψi+1, j − ψi, j

)
.(3.34b)

For a finite volume flux-form advection scheme on a C-grid like Lin-Rood, zonal ve-

locity values are needed along meridional cell edges, and meridional velocity values are

needed along zonal cell edges. These velocity values are computed by averaging the near-

est four data values. For example, in figure 3.1 (b), the zonal flux velocity ui+1/2, j will be

used for flux calculations; it is defined as

(3.35) ui+1/2, j =
1
4

(
ui, j+1/2 + ui, j−1/2 + ui+1, j−1/2 + ui+1, j+1/2

)
.

Meridional flux velocities averaged to zonal cell edges are computed similarly.

We use the Lin-Rood advection scheme [116] with these flux velocities to advect vortic-

ity to the next time step [117, equations 13 and 15]. This scheme uses a dimension splitting

technique to solve the advection equation as a combination of two 1D advection problems,

one for zonal flux and one for meridional flux. Numerical fluxes from [116, equation 2.24]

are evaluated using the piece-wise parabolic method of Colella & Woodward [35].

The Lin-Rood scheme applies a semi-Lagrangian time step in the zonal direction to

address the pole problem of the latitude-longitude grid [116, section 3]. Time stepping for

zonal advection is divided into an integer part and a fractional part, where integer refers to

the integer part of the CFL number. Integer CFL numbers imply exact advection, as tracers

or vorticity are advected over an integer number of grid cells. This allows a longer time

step to be used, with a correction applied later for the fractional part of the CFL number.

Applying this semi-Lagrangian technique in the zonal direction prevents the polar grid

cells from restricting the global time step. Semi-implicit time stepping for the advection

scheme uses an average of two intermediate time steps so that error terms due to the long
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semi-Lagrangian time step cancel [117, equation 20]. This method is slightly different

than the implementation of Lin-Rood advection used by CAM-FV, since here we advect

vorticity directly, rather than computing it from velocity.

To summarize the Eulerian model, the Poisson solver (3.33) gives velocity derivatives

(3.34) which are averaged to cell interfaces by (3.35). The averaged velocities become

the input to the advection scheme, which uses a dimension-split flux form solver and a

semi-Lagrangian time step. Further details can be found in [116, 117].

We also note that this advection scheme was used in a shallow water equation solver

[117], which was then applied to a vertically Lagrangian discretization of the 3D primitive

equations of a hydrostatic atmosphere in [115]. This became the CAM-FV dynamical

core, which was the default NCAR atmospheric model through November, 2012. CAM-

FV was then replaced by a spectral element method, CAM-SE, which uses a cubed sphere

grid and has much better parallel computing scalability [43].



CHAPTER IV

Barotropic Vorticity Equation: Test Cases and Results

In this chapter we solve several test cases and model problems with the Lagrangian

Particle-Panel Method (LPPM) that we developed in the previous chapters. The test cases

begin with problems that have analytic solutions for either particle positions or vorticity as

a way to measure error and verify our numerical methods. Moving on, we find solutions to

problems that may not have analytic solutions but are applicable to the geophysical fluid

dynamics modeling community. Finally, we apply LPPM to a model of breaking Rossby

waves in the stratosphere in a computation designed to simulate the vorticity dynamics

associated with sudden stratospheric warming events. For brevity, we assign each test

case an abbreviation; these are presented in table 4.1.

In all of the cases except for the first (solid body rotation) the sphere has a background

rotation and the equations are solved in the rotating frame. The dimensionless Rossby

number Ro is a ratio that expresses the significance of relative accelerations to accelera-

Abbreviation Test problem
SB Solid body rotation
RH4 Rossby-Haurwitz wave
GV Single Gaussian vortex
SJ Steady jet
PJ Perturbed jet
StratModel Stratosphere model

Table 4.1: List of the test cases and models whose solutions are presented in this chapter.

89
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tions due to the background rotation of the sphere, or Coriolis accelerations [183, section

2.8.1]. The Rossby number can be derived from scale analysis of the horizontal momen-

tum equation and is defined as

(4.1) Ro =
U
f L
,

where U is a typical velocity magnitude, L is a typical length scale, and f is the magnitude

of the Coriolis parameter. Typical values for the planetary scale motions modeled well

by the barotropic vorticity equation are U ∼ 10 m/s, L ∼ 106 km, and f ∼ 10−4 s−1 give

a Rossby number of Ro = 0.1 [80]. It is more convenient, for this work, to express the

Rossby number in terms of vorticity; noting that relative vorticity has units of U/L, we

express the Rossby number as

(4.2) Ro =
ζ

f
=

maxS |ζ |
2Ω

.

Problems with larger values of Ro will be less affected by the background rotation of the

sphere given by the vector Ω. In this chapter we solve problems with 0.1 ≤ Ro ≤ 1, to

stay close to values near that of large scale fluid motion on the Earth.

4.1 Solid body rotation

Rigid rotation is a standard test case for developing global circulation models, and is

frequently combined with the addition of a passive tracer to examine a method’s ability to

conserve mass as well as its ability to resolve a simple fluid flow [187]. Solid body rotation

tests are usually conducted in the context of solving the advection equation, but Lagrangian

methods satisfy the advection equation exactly for such a simple flow, so we adapt the

test case to the BVE instead. Unlike most test cases, this problem has exact solutions

for particle positions which makes it a particularly good test problem for a Lagrangian

method.
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The test case corresponds to a fluid rotating in unison with the underlying sphere, which

is summarized succinctly by stating that there is zero relative vorticity,

ω = f .(4.3)

The stream function is ψi = Ω sin θ in the inertial frame and ψr = 0 in the rotating frame.

We choose Ω = 2π to normalize the period of rotation.

Setting vR = 0 in (3.2b), and applying the flow map equation dx/dt = vI , we find the

exact solution for the particle positions is the solution of the following ODE [137],

d
dt

x(t) = Ω × x.(4.4)

In the rotating frame the exact solution is the initial position, and is constant,

(4.5) xE
R(α, t) = α.

The fluid simply rotates with angular velocity Ω, and has zero velocity in the rotating

frame. This solution is a steady state of the Lagrangian equations of motion and our

method maintains it exactly.

In order to test our software and numerical method then, for this test case only, we

use the inertial frame based on (3.23). In the inertial frame with Ω = [0, 0,Ω], the exact

solution in spherical coordinates only involves longitude: λ(t) = λ0 +Ωt. Latitude remains

constant. If α = [α1, α2, α3]T , the Cartesian coordinate solution is

(4.6) xE
I (α, t) =


α1 cos Ωt − α2 sin Ωt

α2 cos Ωt + α1 sin Ωt

α3


.

The superscript E denotes that these are the exact solutions. Error measures (1.23) for this

test case are calculated with respect to particle position. For example, the l2 error is

(4.7) Ex(t) =

(∑N
j=1

∣∣∣x j(t) − xE(x0 j, t)
∣∣∣2 A j

)1/2

(∑N
j=1

∣∣∣xE(x0 j, t)
∣∣∣2 A j

)1/2 .
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(a) (b)

Figure 4.1: SB, no remeshing: Position error vs. time using (a) triangular panels and (b) quadrilateral panels
for various values of ∆t. From t = 0 to t = 1 the sphere completes one full revolution.

We examine particle position errors for different values of N and several values of ∆t

in figure 4.1. We do not use remeshing in these calculations in order to verify the validity

of the Biot-Savart law for velocity and that the time integration scheme is behaving as we

expect from theoretical predictions. Remeshing will be investigated with Rossby-Haurwitz

wave test problems in section 4.2. The plots in figure 4.1 verify that higher resolution panel

sets have both lower errors and lower rates of error growth. Improvement in error from

decreasing ∆t is not evident on this plot; it will be addressed next.

Figure 4.1 suggests that the dominant sources of error are related to the spatial dis-

cretization, rather than the time step. When ∆t is small, it is difficult to identify time

discretization error when comparing computed solutions to exact solutions. Instead, we

compute a reference solution for a given N using a very small time step ∆t∗, and measure
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Figure 4.2: Solid body rotation, one revolution: Convergence to reference solutions as ∆t → 0 verifies fourth
order Runge-Kutta accuracy.

convergence to that reference solution as ∆t decreases to ∆t∗. Particle position differences

from the computed reference solutions are plotted against ∆t in figure 4.2 for two panel

sets. The blue curve shows the relative l2 position error as ∆t → 0 for a set of N = 1280

triangular panels, and the red curve shows the same results for a set of N = 1536 quadri-

lateral panels. Both curves verify fourth order convergence as ∆t → 0, which we expect

from the Runge-Kutta time integration scheme.

We also use this test case to investigate whether or not particles depart from the sphere,

as they do with lower order time stepping schemes, or when the time step is too large.

Figure 4.3 shows the maximum particle departure from the sphere after one full revolution

for one set of N = 1280 triangular panels and one set of N = 1536 quadrilateral panels.

Both plots show that particles stay within O
(
∆t4

)
of the sphere which allows us to avoid

re-projecting particles back to |x| = 1.
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Figure 4.3: Solidy body rotation: Max distance from sphere after one revolution vs. time step for two panel
sets. Triangular panels, N = 1280 (blue); quadrilateral panels, N = 1536 (red).

Finally, we use the solid body rotation test case to time the parallel implementation dis-

cussed in section 2.5. Noting that our current method (3.26) for solving the BVE requires

O
(
N2

)
operations per time step, we expect that communication time will be asymptoti-

cally smaller than computation time as N → ∞, and that parallel speedup and efficiency

should scale well, with improving results for larger N. These expectations are verified in

table 4.2, which presents timing data from computations on the University of Michigan’s

Linux-based parallel computing cluster, Flux. Flux uses Intel processors and our code

was compiled with the Intel compiler suite using the OpenMPI distributed memory library

with -O2 optimization. Without parallelizing anything except the velocity computation we

find nearly linear speedup up to 48 processors, and parallel efficiency greater than 70% for

even a coarse N = 24576 panel set.
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Parallel Speedup
processors 2 4 8 16 24 48
N = 24576 2.00 3.97 7.70 13.69 20.27 35.47
N = 98304 1.98 3.98 7.73 14.66 21.84 42.04

Parallel Efficiency
processors 2 4 8 16 24 48
N = 24576 1.00 0.99 0.96 0.86 0.84 0.74
N = 98304 0.99 0.99 0.97 0.92 0.91 0.88

Table 4.2: Parallel speedup and parallel efficiency of algorithm II.1 for the barotropic vorticity equation.
Timing results from code running on UM’s Flux cluster, Intel compilers with OpenMPI, -O2
optimization.

4.2 Rossby-Haurwitz waves

Rossby-Haurwitz waves are an important test case for several reasons. A Rossby-

Haurwitz wave is a circulation pattern whose stream function is given by a spherical har-

monic [52, section 5.4]. Haurwitz [77] demonstrated the similarity of several spherical

harmonic modes to observations of global circulation. They are also analytic solutions

of the barotropic vorticity equation, which provide easy measures of error. The stream

function of a generic Rossby-Haurwitz wave has the form

ψ(λ, θ) = cos(mλ)Pm
n (sin θ),(4.8)

where Pm
n is the associated Legendre polynomial from spherical harmonic Ym

n (λ, θ) =

eimλPm
n (sin θ). We choose the real part of Ym

n for the stream function which results in

the cosine term in (4.8). Many texts provide introductions to spherical harmonic func-

tions; we have used [185, section 43] and [22, section 18.11]. Spherical harmonics are

eigenfunctions of the Laplace-Beltrami operator (1.14) on S, with eigenvalues n(n + 1),

(4.9) ∇2Ym
n (λ, θ) = n(n + 1)Ym

n (λ, θ)

Thus, the vorticity associated with a Rossby-Haurwitz wave is simply a multiple of the

stream function ψ,

(4.10) ζ(λ, θ) = −∇2Ym
n (λ, θ) = −n(n + 1)Ym

n (λ, θ).
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We may also derive the phase speed of a Rossby-Haurwitz wave that follows from (4.9).

To begin, we expand the material derivative in the BVE into its components

(4.11)
dω
dt

=
∂ζ

∂t
+ u · ∇(ζ + f ) = 0,

where we have used the fact that ∂ f /∂t = 0. Next we write velocity and vorticity in terms

of the stream function, using (3.11b) and (3.14b), and replace the gradient with (1.14),

−
∂∇2ψ

∂t
−
∂ψ

∂θ

1
cos θ

∂

∂λ
(−∇2ψ + f ) +

1
cos θ

∂ψ

∂λ

∂

∂θ
(−∇2ψ + f ) = 0.(4.12)

Using the eigenfunction relation specific to this test case, (4.9), we find that

−n(n + 1)
∂ψ

∂t
+ 2Ω

∂ψ

∂λ
= 0(4.13a)

=⇒
∂ψ

∂t
−

2Ω

n(n + 1)
∂ψ

∂λ
= 0(4.13b)

since ∂ f /∂λ = 0. Note that (4.13b) is the linear advection equation in the longitudinal

direction [52, chapter 5]. Hence, the stream function and vorticity pattern of a Rossby-

Haurwitz wave propagate toward the west without changing shape with angular phase

speed c = 2Ω/(n(n + 1)).

In the tests that follow, we add a zonal wind to the vorticity profile, so that the stream

functions and relative vorticity for this test case have the form

ψ(λ, θ) = α sin θ + C cos(mλ)Pm
n (sin θ)(4.14a)

ζ(λ, θ) = 2α sin θ + n(n + 1)C cos(mλ)Pm
n (sin θ)(4.14b)

The parameter α defines the strength of the background wind, and C is a parameter that

defines the maximum amplitude of the Rossby-Haurwitz wave [77].

The waves described by stream function (4.14) have phase speeds with angular velocity

(4.15) cRH =
2Ω

n(n + 1)
−
α

Ω
+

2α
Ωn(n + 1)
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in the rotating frame [77, equation 18].

Using (4.15), we may choose α so that the phase speed of the Rossby-Haurwitz wave

is zero. We denote this choice of α as αS to indicate its association with a stationary wave,

(4.16) αS =
2Ω

n(n + 1) − 2
.

A stationary Rossby-Haurwitz wave is a steady solution of the barotropic vorticity

equation’s Eulerian form; the vorticity pattern and the stream function do not move. How-

ever, in the Lagrangian formulation, particle velocities are nonzero and this test case is not

a steady state [184]. The static wave pattern does provide an additional means for measur-

ing error, even in the Lagrangian frame. With a stationary phase speed α = αS in (4.14),

the exact value of relative vorticity ζE(x) at any point in space is given by equation (4.14b)

for all time. Using equation (1.23b) the l2 relative vorticity error is calculated by

(4.17) Eζ(t) =

(∑N
j=1

(
ζ j − ζE

(
x j(t)

))2
A j

)1/2

(∑N
j=1 ζE(x j(t))2A j

)1/2 ,

where ζ j is the calculated value of relative vorticity at the jth active particle given by

equation (3.26).

Due to its inclusion in the dynamical core test cases for the shallow water equations

from Williamson et al. [187], the m = 4, n = 5 Rossby-Haurwitz wave is now a standard

problem for atmospheric models. We change the phase speed of the wave from [187] to

the stationary speed given by Haurwitz [77]. This allows for a simple way to measure

error in the computed vorticity. Our test case is defined by the following functions.

ψ(λ, θ) = α sin θ + C cos4 θ sin θ cos(4λ)(4.18a)

ζ(λ, θ) = 2α sin θ + 30C cos4 θ sin θ cos(4λ)(4.18b)

ω(λ, θ) = 2(α + Ω) sin θ + 30C cos4 θ sin θ cos(4λ)(4.18c)
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Figure 4.4: Rossby-Haurwitz wave (RH4 test case) relative vorticity from equation (4.18b).

with Ω = 2π, α = π/7 and C = 1. Ω = 2π normalizes the rotational period of the sphere.

Setting C = 1 ensures that the Rossby number for this problem is similar to observed

values at Ro = 0.71. We refer to this test case as RH4 for brevity; its relative vorticity

pattern is shown in figure 4.4.

Similar to how we began the solid body rotation tests, we plot error Eζ(t) as a function

of time in figure 4.5 for calculations without remeshing to gain an understanding of how

the method defined by equations (3.26) behaves on its own. Results for the three different

varieties of panel sets introduced in section 2.2 are shown; cubed sphere quadrilaterals are

plotted in red, icosahedral triangles in blue, and Voronoi panels in black. Looking at each

color individually, we see error decreasing as the panel sets are refined. Error appears to

grow at a slow linear rate at early times, then jumps in a manner that suggests instability.

In fact the jump is caused by mesh distortion, which we can see by looking at plots of

particles, panels, and edges at the corresponding times (figures 2.14 and 2.15).
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Figure 4.5: RH4: l2 relative vorticity error percentages vs. time for Rossby-Haurwitz wave Y4
5 without

remeshing. Number of panels are indicated by N in the legend. Quadrilateral panel sets are
shown in red; triangular panel sets, blue; Voronoi panel sets, black. All calculations used
∆t = 0.01.

In figure 4.6 we plot total kinetic energy and total enstrophy data from calculations

without remeshing. Total kinetic energy and total enstrophy are calculated by applying the

particle-panel discretization to (3.28),

KE(t) =
1
2

N∑
j=1

∣∣∣u(
x j(t)

)∣∣∣2 A j(4.19a)

Z(t) =
1
2

N∑
j=1

ζ j(t)2A j(4.19b)

where u
(
x j(t)

)
is given by (3.26a) and ζ j(t) is the relative vorticity carried by active particle

x j(t) computed with (3.26c). Figure 4.6 shows that our method works very well prior to

the point where distortion becomes too great. Panel sets with higher resolution (greater

N) delay the onset of distortion error, as shown in the top plot. At early times, the method

performs very well; vorticity errors are less than 0.1%. From the middle plot we see

that total kinetic energy depends on N, and for each calculation individually, is conserved
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Figure 4.6: RH4 wave, no remesh: vorticity error (top), kinetic energy (middle), and enstrophy (bottom).
Triangular panels, N = 20480 (blue). Quadrilateral panels, N = 24576 (red). Voronoi panels,
N = 40962 (black).

well while the calculation is stable. Voronoi panel sets do not exactly preserve enstrophy

since their passive particles (and hence their panel areas) are determined at each time step.

We attribute the differences in vorticity error between each calculation in figure 4.6 as

being primarily due to the different values of N, rather than the different polygonal types

represented by each color.

To allow our calculations to proceed to longer times, beyond the point where the non-

remeshed calculations have failed due to distortion, we apply remeshing. For illustra-

tive purposes, we take the example of a triangular panel set with N = 20480 panels and

∆t = 0.01. Figure 4.7 shows the test case results for a panel set without remeshing (black),

with direct remeshing (red), and Lagrangian remeshing (blue). Remeshing time steps are

trm = {0.1, 0.2, 0.3, . . . }. Both methods use the cubic interpolation scheme provided by
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Figure 4.7: RH4 wave, direct vs. Lagrangian remeshing: Vorticity error (top), kinetic energy (middle), and
enstrophy (bottom). All calculations used triangular panels with N = 20480. Calculation without
remeshing shown in black, direct remeshing, red;, Lagrangian remeshing, blue.

SSRFPACK [147]. In the top plot, we see no visually distinguishable difference between

direct remeshing and Lagrangian remeshing; both succeed at continuing the calculation to

the final time T = 1. Differences between the two methods are visible in the plots of ki-

netic energy (middle) and enstrophy (bottom). The direct remeshing procedure introduces

dissipation into the computation and neither kinetic energy nor enstrophy are consserved

as well as they are by the Lagrangian remeshing procedure.

Figure 4.8 plots vorticity error at T = 1 for the Rossby-Haurwitz wave number 4 test

case using different values of N. The convergence rates for both methods are higher than

we would expect of the midpoint rule, which indicates that these calculations are domi-

nated by remeshing error. Differences in vorticity error between the two remeshing proce-

dures are visually indistinguishable in figure 4.7, but on the logarithmic scale of figure 4.8

we see that although the Lagrangian remeshing procedure has a faster convergence rate,
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Figure 4.8: RH4: Vorticity error at t = 1 is plotted for calculations that used direct remeshing (red) and
Lagrangian remeshing (blue) vs. N.

it also has higher values of l2 vorticity error on coarse panel sets (small N). The differ-

ence in vorticity error between remeshing procedures is reduced as panel sets are refined

(as N → ∞). The slopes in figure 4.8 suggest that for sets with N > 100000, the La-

grangian remeshing procedure may overtake the direct remeshing procedure and become

more accurate.

We conclude from figures 4.7 and 4.8 that Lagrangian remeshing achieves better con-

servation properties than a direct remeshing procedure, which introduces smoothing error

into the interpolated quantities. This smoothing is likely responsible for the better accu-

racy of the direct remeshing procedure for coarse meshes. As computations proceed, a

fluid flow may develop features that are too small for a coarse panel to resolve, causing

discretization error that a direct remeshing procedure may mitigate by smoothing.

To illustrate this idea, suppose a panel straddles a steep gradient. The combination of
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the Lagrangian remeshing procedure and midpoint rule quadrature assigns one value of

vorticity to the entire panel, regardless of the gradient whose spatial scale is the same or

smaller than the panel size. Direct remeshing smooths the gradient somewhat, possibly

increasing its spatial scale to a point where the panel set is able to resolve it. We will con-

front this situation in other test cases, and examine the effectiveness of adaptive refinement

for handling small scale features. Although the vorticity pattern is fixed, steep gradients

develop in the Lagrangian parameter α as particles are transported by the Rossby-Haurwitz

wave. Eventually, these gradients will develop scales smaller than a fixed panel size. Our

adaptive refinement strategies address this problem; we also suggest other strategies for

future study in chapter VII.

As a final computation for this test case, table 4.3 compares the results from our La-

grangian Particle-Panel Method (LPPM) to the Lin-Rood BVE solver introduced in section

3.6. The LPPM calculations used ∆t = 0.01 for all resolutions and were remeshed with

cubic interpolation every 20th time step trm = {0.2, 0.4, . . . }. At coarse resolutions, direct

remeshing is more accurate than Lagrange remeshing, as explained above. This difference

between remeshing procedures disappears as N increases (figure 4.8). Rather than com-

paring remeshing algorithms, we present table 4.3 to show a side-by-side comparison of

LPPM to methods used by an operational dynamical core. The Lin-Rood calculations for

3◦ and 2◦ mesh sizes also used ∆t = 0.01, while the 1◦ computation used ∆t = 0.005.

LPPM has less vorticity error by 2-3 orders of magnitude, but Lin-Rood has slightly better

l∞ errors.

Kinetic energy and enstrophy for LPPM using direct remesh (d-Remesh) and Lagrangian

remesh (L-remesh) are shown for N = 20480 triangular panels (which have panel edges

lengths of ≈ 2◦) alongside the Lin-Rood 2◦ × 2◦ results in figure 4.9. The Lin-Rood

scheme has nearly perfect conservation of both total kinetic energy and total enstrophy,
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l2 vorticity error at t = 2
∆λ = 3◦,∆t = 0.01 ∆λ = 2◦,∆t = 0.01 ∆λ = 1◦,∆t = 0.005

Lin-Rood 4.53E-02 1.23E-02 5.00E-03
N = 6144,∆t = 0.01 N = 20480,∆t = 0.01 N = 81920,∆t = 0.01

LPPM, L-remesh 3.39E-02 3.03E-05 1.29E-06
LPPM, d-remesh 1.17E-03 4.41E-06 6.60E-07

l∞ vorticity error at t = 2
∆λ = 3◦,∆t = 0.01 ∆λ = 2◦,∆t = 0.01 ∆λ = 1◦,∆t = 0.005

Lin-Rood 4.85E-02 2.24E-02 5.40E-03
N = 6144,∆t = 0.01 N = 20480,∆t = 0.01 N = 81920,∆t = 0.01

LPPM, L-remesh 6.73E-01 5.43E-02 7.59E-03
LPPM, d-remesh 1.59E-02 5.53E-03 2.72E-03

Table 4.3: Comparision of l2 and l∞ vorticity error measures for the Lin-Rood BVE solver from section 3.6
and our Lagrangian Particle-Panel Method (LPPM) with Lagrangian remeshing (L-remesh) and
direct remeshing (d-remesh). Uniform panel sets (constant N) are chosen to approximately match
the resolution of the Lin-Rood lat-long grid spacing.

for this test case, despite the implicit diffusion of its advection scheme [88]. This is due to

the fact that this test case is a steady state test problem for an Eulerian method; we would

expect the Lin-Rood solver to perform admirably in such a test case. Further comparison

of LPPM and Lin-Rood using Rossby-Haurwitz waves with non-stationary phase speeds

is an ongoing project.

4.3 Gaussian vortices

Gaussian vortices on the sphere were studied by Wang [184] as an example of vortex

dynamics on the sphere. Boyd and Zhou also present analytical solutions for the special

case of a Gaussian vortex centered at the north pole of a spherical coordinate system [23].

They note that since the north pole of a spherical coordinate system can be placed at an

arbitrary point on S by applying a sequence of rotational transformations, their results

apply to arbitrarily positioned vortices as well.

A general Gaussian distribution on the sphere is given by

(4.20) ζ∗(x) = Ae−2B2(1−x·x0).
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Figure 4.9: RH4 Wave: Kinetic energy and enstrophy comparison of LPPM with each remeshing procedure
and the Lin-Rood BVE solver. All calculations used ∆t = 0.01. Since the RH4 test case is a
steady state Eulerian solution, Lin-Rood does very well.

where B is the shape parameter of the Gaussian, A is its maximum value, and x0 ∈ S is

the location of its center. We recognize the square of the Euclidean distance between an

arbitrary point x ∈ S and the center of the Gaussian x0 in the exponent as (1.15h). In order

to satisfy the necessary condition
∫
S
ζ(x) dA = 0, we subtract from ζ∗ its average value ζ̄,

which is computed as

ζ̄ =
1

4π

N∑
j=1

ζ∗
(
x j(0)

)
A j.(4.21)

at the beginning of the computation. ζ̄ is also known as the Gauss constant [184, 23]. This

gives initial relative and absolute vorticity distributions of

ζ0(x) = Ae−2B2(1−x·x0) − ζ̄(4.22a)

ω0(x) = 2Ωz + Ae−2B2(1−x·x0) − ζ̄.(4.22b)
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Figure 4.10: Relative vorticity of a Gaussian vortex for two sets of triangular panels. Top row, N = 5120.
Bottom row, N = 81920.

In spherical coordinates, using (1.20), the vorticity distributions are

ζ0(λ, θ) = Ae−2B2
(

1−cos γ(λ,θ,λ0,θ0)
)
− ζ̄(4.23a)

ω0(λ, θ) = 2Ω sin θ + Ae−2B2
(

1−cos γ(λ,θ,λ0,θ0)
)
− ζ̄.(4.23b)

To define our specific test case, we choose B = 4, A = 4π, and x0 7→ (λ0, θ0) with λ0 = 0,

θ0 = π/20. The amplitude A = 4π of the Gaussian gives a relative vorticity maximum

that is equal to the planetary vorticity maximum; the Rossby number for this test case is

Ro = 1.

The starting center of the Gaussian is 9◦ north of the equator, and we expect the vortex

to travel to the northwest due to β-drift induced by the background rotation of the sphere

[80]. Additionally, the vorticity over the majority of the sphere away from the vortex is

nearly zero, which means that this problem is ideal for testing the efficiency of our adaptive

refinement strategies from section 2.3. We establish a baseline with some uniform mesh

computations. Example results are plotted in figure 4.10 and a comparison with results

from the Lin-Rood solver (section 3.6) is shown in figure 4.11.
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LPPM N = 20480

Figure 4.11: GV: Comparison of Lin-Rood BVE solver to LPPM for Gaussian vortex test case. At 2◦, there
are 16200 grid cells on the Lin-Rood lat-long grid (top row); 20480 triangular panels are a
comparable resolution (bottom row).

Figure 4.10 shows the results from two computations using triangular panels. The top

row shows a relatively coarse resolution with N = 5120, which gives an average initial

panel edge length of approximately 4◦. The bottom row used N = 81920, which corre-

sponds to an approximate resolution of 1◦. The time step for the N = 5120 computation

was ∆t = 0.01 and the time step for N = 81920 was ∆t = 0.005; both computations used

cubic Lagrangian remeshing at intervals of twenty time steps.

Three times are plotted in figure 4.10; the initial time t = 0 is shown in the left col-

umn, t = 1 in the middle, and t = 2 on the right. At t = 1, both computations appear

well-resolved with similar solutions. β-drift is evident as t increases; the vortex moves

northwest and becomes asymmetric due to the meridional planetary vorticity gradient. As

the vortex rotates and travels away from its initial position, fluid that began at the equator

gets entrained into the vortex and transported poleward. Absolute vorticity is conserved

following fluid motion, so as equatorial fluid particles move northward into regions with

larger Coriolis force, their relative vorticity decreases. This results in the dark blue patch
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of negative vorticity along the north and east periphery of the vortex. We also see an east-

ward propagating equatorial wave in all calculations; as suggested by [21], such waves are

unique to spherical geometry and not present in equatorial β-plane models.

Additionally, at t = 3 in figure 4.12 we see the development of a secondary vortex along

the filament left behind by the original vortex, especially in the coarse resolution compu-

tations. The N = 5120 computation is clearly unresolved at t = 3, and a checker-board

effect has appeared in the relative vorticity field. The loss of resolution as t increases is

not due to distortion; our remeshing procedure has addressed that issue. Rather, resolution

is lost as the developing filament width becomes smaller than the edge lengths of the uni-

form panels. By t ≈ 1.5 in the N = 5120 calculation, the filament shed by the vortex has

decreased in width to the point that it is smaller than the roughly 4◦ panels used to com-

pute the flow. Some panels straddle the filament and are unable to resolve its associated

sub-grid scale vorticity gradient. The checker-boarding is due to the combination of our

Lagrangian remeshing scheme, which does not smooth flow features, and midpoint rule

quadrature which assigns one constant value of vorticity to the entire panel regardless of

the gradient. This error leads to an erroneously strong secondary vortex at t = 3 in the

N = 5120 computation. The higher resolution N = 81920 computation is more capable of

resolving the filament that develops, and its secondary vortex is much weaker.

The filament represents fluid that began at the equator and has since moved poleward;

this transport is the means of generating the vorticity gradient along the north and east pe-

riphery of the vortex. The Lagrangian parameter α provides a way of visualizing filament

development and fluid transport. Figures 4.13 and 4.14 plot the development of the vortex

in two ways: left column plots show relative vorticity, while the plots in the right column

show the latitudinal component of the Lagrangian parameter α. Since we have set α equal

to particles’ initial positions, the latitudinal component of α is equivalent to particles’ ini-
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(a) (b)

Figure 4.12: GV: A checkerboard effect shows up in relative vorticity plots when resolution is lost (a); com-
paring with figure 4.15, we see that this corresponds to a loss of conservation of both kinetic
energy and total enstrophy. Increasing resolution (b) indicates that the strength of the secondary
vortex that develops along the filament is sensitive to this type of error.

tial latitudes. The color scale for the initial latitude plots is chosen so that particles that

begin near the equator are colored black, particles that begin in the northern hemisphere

are colored red, orange, and yellow, and particles in the southern hemisphere at t = 0 are

colored shades of blue. The vortex transports equatorial fluid toward the northwest in a

filament that gets stretched to finer spatial scales as t increases. This filament is the feature

that the N = 5120 panel set fails to resolve for t > 1.5. The N = 81920 panel set is capable

of resolving the filament until t ≈ 2.5, at which point it has stretched to scales finer than

1◦.

Figure 4.15 shows the computed total kinetic energy (top) and total enstrophy (bottom)

for four different N. Dashed vertical lines are twenty time steps apart and indicate remesh-

ing times. The green lines in figure 4.15 correspond to the N = 5120 computation in the

top row of figure 4.10; the red line shows the N = 20480 computation from the bottom

row of figure 4.11, and the royal blue lines in figure 4.15 correspond to the N = 81920

computation shown in the bottom row of figure 4.10 and figures 4.13 and 4.14. It is easy

to pick out on energy and enstrophy plots the times at which each N can no longer resolve
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Relative vorticity Initial latitude

t = 0

t = 1

t = 2

Figure 4.13: Time evolution of relative vorticity and initial latitude due to a Gaussian vortex; N = 81920
triangular panels and ∆t = 0.005, Lagrangian remeshing every 20th time step.
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t = 2.5

t = 3

t = 3.5

Relative vorticity Initial latitude

Figure 4.14: Continued from figure 4.13, with the view re-centered on the vortex.
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Figure 4.15: GV: Total kinetic energy and enstrophy vs. time. Triangular panels. Vertical dashed lines are
20 time steps apart and indicate remeshing steps.

the filament, as these times coincide with a loss of conservation. Shortly after t = 2.5,

even the N = 81920 computation is no longer able to resolve the filament; after this time

the blue lines depart from their initial values of both total kinetic energy and enstrophy.

Checker-boarding effect begins to appear in the relative vorticity plots for t > 2.5 as well

(figure 4.14).

Aside from providing a visualization of fluid transport, the plots of the Lagrangian

parameter’s latitudinal component provide a means of viewing the flow map. The La-

grangian remeshing procedure interpolates the Lagrangian parameter; the plots of initial

latitude provide a glimpse of that interpolation problem. Considering the N = 81290 com-

putation of figures 4.13 and 4.14 along with the blue line from figure 4.15, we see that

while the flow is resolved, our method conserves both energy and enstrophy very well.
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Conservation is lost when the flow becomes unresolved. Comparing figures 4.14 and 4.15

we associate the appearance of checker-board paneling in relative vorticity plots with a

loss of conservation of both energy and enstrophy. Indications that the flow has become

unresolved are thus provided by the appearance of checker-boarding along filaments in

vorticity plots, or equivalently, a loss of conservation of energy or enstrophy.

The onset of error caused by a loss of resolution may be deferred using adaptive refine-

ment. We set up a computation with the adaptive refinement criteria of section 2.3, starting

with a background mesh of approximately 8◦, and let the adaptive refinement criteria put

higher resolution where it is needed.

Figures 4.16 and 4.17 show an adaptive computation that used ∆t = 0.005 and refine-

ment tolerance values of ε1 = 0.005, ε2 = 0.001 applied to an initial background mesh of

N = 1280 triangular panels. Adaptive Lagrangian remeshing was applied at intervals of

20 time steps. Plot formats are the same as figures 4.13 and 4.14, with relative vorticity

plotted in the left column and the initial latitude in the right column. Also plotted in the

right column are the panel edges, shown in green, to illustrate the effects of the adaptive

refinement criteria. At t = 0, we only applied the circulation criterion (2.8) which yielded

a mesh with N = 2966 panels, with the highest resolutions focused at the vortex. By t = 1

the combination of both the circulation criterion and the total variation of the Lagrangian

parameter criterion (2.10) generate a mesh with N = 11012 panels. The vortex core has

remained highly resolved, and the filament is beginning to develop its own regions of

higher resolution. Through t = 2 and t = 2.5 the vortex core and its filament are still well

resolved, showing no evidence of the checker boarding that would indicate conservation

has been lost.

Side-by-side plots of relative vorticity at t = 2.5 for the two computations are shown in

figure 4.18. The adaptive criteria resulted in a mesh of N = 12377 panels at t = 2.5, and
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t = 0

t = 1

Relative vorticity Initial latitude

N = 2966

N =11012

Figure 4.16: Time evolution of a Gaussian vortex with triangular panels and ∆t = 0.005, adaptive Lagrangian
remeshing every 20th time step. Coloring of left column shows relative vorticity, right column
coloring indicates initial latitude. Panel edges are shown in green.
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t = 2

t = 2.5

Relative vorticity Initial latitude

N = 12341

N = 12377

Figure 4.17: Continued from figure 4.16.
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Figure 4.18: Comparison of adaptive (left) vs. uniform (right) mesh for Gaussian vortex test case at t = 2.5.

comparable results to the much higher N = 81920 uniform mesh computation, with less

than 1/6 the number of panels.

4.4 Jet dynamics

Since the barotropic vorticity equation does not include effects of divergence, which

are associated with gravity waves, and does not consider thermodynamic effects either, it

is not suitable as a model for the atmospheric flow near the planetary boundary layer. It is,

however, a fair approximation of higher levels of the atmosphere, where gravity waves are

less prevalent and the thermal gradient is low. At pressures of 300 hPa or less, atmospheric

flow is dominated by planetary-scale features [52] that can be represented well by the

barotropic model. We have already considered the special case of a Rossby-Haurwitz wave

whose vorticity distribution is given by a spherical harmonic in section 4.2. Meteorologists

use the more general term Rossby wave to refer to planetary-scale waves that arise due to

the planetary vorticity gradient – the variation of the Coriolis parameter with latitude.
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Rossby waves are characterized by large-scale motion that conserves absolute vorticity in

a barotropic model or potential vorticity in a baroclinic model [80, section 7.7].

The 300 hPa pressure level is approximately the level of the polar front jet stream,

which is a primary forcing mechanism for weather patterns at the surface [15, 52, 80]. In

addition to the jet stream’s practical importance, it also presents a mathematically inter-

esting problem. A zonal jet along a latitude circle is an unstable steady solution of the

barotropic vorticity equation. This instability is known as barotropic instability [80]. Left

unaltered, a steady zonal jet will persist indefinitely, but if small perturbations develop

due to numerical error, they will be amplified by the instability and the initially steady jet

will develop into a Rossby wave pattern [80, section 7.7], [52, section 6.5.1]. We develop

two test cases based on this idea: a steady zonal jet which we use to examine how well

our model maintains a steady state, and a perturbed zonal jet which we use as a model of

developing Rossby waves. We model the jet’s zonal velocity as a Gaussian function of

latitude, and define the test case as

θ′(λ) = θ0 + εP cos(mλ)(4.24a)

u(λ, θ) =
π

2
exp

[
−2β2 (

1 − cos θ cos
(
θ′(λ)

)
− sin θ sin(θ′

(
λ)

))]
(4.24b)

v(λ, θ) = 0(4.24c)

ζ(λ, θ) =
(
cos θ

(
2β2(cos(θ′(λ)) sin θ − sin(θ′(λ)) cos θ)

)
+ sin θ

)
u(λ, θ).(4.24d)

These equations represent a zonal jet whose center lies at latitude θ′(λ); θ0 is the jet’s mean

latitude and we introduce a perturbation in latitude with amplitude εP and longitudinal

wave number m. Setting the parameter εP = 0 defines the steady state test case. β in (4.24b)

is a shape parameter; larger values lead to a narrower jet. We set the jet’s meridional

velocity v = 0. Applying the curl operator to equations (4.24b) and (4.24c) gives relative

vorticity (4.24d). Latitude profiles of u and ζ for the steady state are shown in figure 4.19.
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Figure 4.19: Latitude profiles of (a) zonal velocity and (b) relative vorticity of a jet from equations (4.24)
with θ0 = π/4, β = 12, and εP = 0.

Velocity and vorticity for a wave number 4 perturbation are shown in figure 4.20.

The velocity and vorticity functions in (4.24) are designed to model the midlatitude po-

lar front jet, which has a typical latitude of 45N. Particles in a jet with maximum velocity

of π/2 from (4.24b) traverse a latitude circle in 4 units of time on the unit sphere. For

orientation, we note that the circumference of the 45N latitude circle on the Earth is ap-

proximately 28000 km. A four-day circuit at that latitude on the Earth would correspond

to a speed of approximately 290 kilometers per hour (kph). Observed jet stream speeds

are typically around 100-160 kph, so this test case has the correct order of magnitude for

a model on the unit sphere.

4.4.1 Steady zonal jet

Plots of the steady zonal jet on a set of quadrilateral panels with N = 24576 are shown

in figure 4.21 for t = 0, 1, 2. This calculation used ∆t = 0.005 and Lagrangian remeshing

every 10 time steps trm = {0.05, 0.01, 0.015, . . . }. The jet core shows up as the thin white

line separating the positive vorticity (red) from the negative vorticity (blue), and is aligned
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Figure 4.20: (a) and (b) as in figure 4.19 with εP = 0.025 and m = 4.

with the 45N parallel through t = 2, which was the final time for this computation. Very

small perturbations are beginning to appear at t = 2, and appear to have a wave number 4

signal, which is indicative of grid imprinting due to the cubed sphere.

The relative changes in total kinetic energy and total enstrophy plotted in figure 4.22

are defined as

RKE(t) =
|KE(t) − KE(0)|

KE(0)
(4.25a)

RZ(t) =
|Z(t) − Z(0)|

Z(0)
(4.25b)

where KE(t) and Z(t) are given by (4.19a) and (4.19b). Total kinetic energy is maintained

within ±2% of its initial value and total enstrophy is maintained within ±4% of its ini-

tial value over the duration of the computation. The slight growth in kinetic energy and

enstrophy at the early times are similar to the RH4 results (figure 4.9). A new pattern

of error develops shortly after t = 1.5, when both kinetic energy and enstrophy begin to

change more rapidly; this is due to stretching of the Lagrangian parameter α, which is

being interpolated by the Lagrangian remeshing procedure.

Figure 4.23 shows plots of the longitudinal component of the Lagrangian parameter
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Figure 4.21: Steady zonal jet at t = 0, 1, 2 on a uniform set of N = 24576 quadrilateral panels, Lagrangian
remeshing at intervals of 10 time steps.
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Figure 4.22: Relative changes in total kinetic energy (top) and total enstrophy (bottom) vs. time for a steady
zonal jet with N = 24576 quadrilateral panels, Lagrangian remeshing at intervals of 10 time
steps.

α at t = 0, 1, 2. Like the plots of initial latitude shown in the Gaussian vortex test case,

the plots of initial longitude provide insight into the interpolation part of the Lagrangian

remeshing procedure. At t = 0, each interval of 15◦ degrees longitude has its own color.

As t increases, stretching in the Lagrangian parameter due to transport by the jet is ap-

parent along 45N latitude. The jagged, high frequency features near the poles are plotting

artifacts not related to our numerical solution. The gradient of α becomes too steep to be

interpolated accurately after a certain amount of time has passed, approximately t = 1.5

for this computation, based on figure 4.22. At this point in the computation, for this reso-

lution, it is no longer feasible to interpolate the flow map all the way back to t = 0 during

each remeshing. Changing the remeshing procedure to interpolate to a new Lagrangian

parameter defined at intermediate times is a feature that will be implemented in the next

version of the LPPM software.
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Figure 4.23: Stretching of Lagrangian parameter by steady zonal jet. Colors depict the longitudinal compo-
nent of α and indicate the initial longitude of each fluid particle. By t = 2 fluid in the jet core
has traveled halfway around the 45N latitude circle.
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Despite the difficulty of interpolating highly stretched α during each remeshing, and

the increasing changes beginning to show up in kinetic energy and enstrophy after t = 1.5,

the t = 2 calculation is still an accurate solution of the problem. Recalling that the test case

is defined so that fluid particles complete a circumnavigation of the globe along the jet’s

central latitude in four units of time, we expect to see that particles have traveled through

an arc length of 180◦ from t = 0 to t = 2. Figure 4.23 shows that this is indeed the case

for our solution. The light purple color marks particles that originate in λ0 ∈ [0◦, 15◦) and

pink marks particles that began in λ0 ∈ [345◦, 360◦). At t = 0 this boundary lies along 0◦

and at t = 2 this boundary lies at 180◦ longitude in the jet core at 45N.

The steady zonal jet test case can be thought of as parallel shear flow on the sphere. It is

therefore a good test case to examine Voronoi grids’ ability to handle shearing, as discussed

in section 2.3. While the properties of Voronoi diagrams suggest that a Voronoi grid may

do well in such a problem by preventing strongly sheared panels, similar to the untangling

method described by [182], in actuality this test case provides further justification for

remeshing, as shown next.

Figure 4.24 shows the steady jet test case at t = 0.1, 0.2, 0.5, and 1 for a calculation on

a Voronoi mesh with N = 10242 panels, ∆t = 0.01, and no remeshing. Coloring shows

relative vorticity, with red indicating positive (counterclockwise) vorticity and blue indi-

cating negative (clockwise) vorticity. Maximum velocity is in the jet core, which lies along

white panels with nearly zero vorticity between the red and blue regions. Active particles

are plotted as black dots, and the left column shows the whole sphere’s relative vorticity.

The right column is a zoomed-in view of the jet core. Voronoi panel edges are plotted as

black lines; passive particles lie at their vertices. From t = 0 to approximately t = 0.2

the Voronoi algorithm maintains a nearly uniform mesh but by t = 0.2 the flow’s instabil-

ity is beginning to cause spurious roll-up (indicated by the curved arrows). These roll-up
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features are caused by numerical errors in particle positions that have been amplified by

the flow instability. In this steady state problem, meridional velocity should be zero and

roll-up should not occur. Yet by t = 0.5 some spiral features caused by amplified error are

evident, and by t = 1 the jet is hardly recognizable.

It is possible that adaptive refinement combined with a Voronoi mesh might perform

better on this problem, and that using a centroidal-Voronoi mesh as in [151, 162, 91] in-

stead of a basic Voronoi diagram might offer another improvement. However, we have

already had success using our remeshing algorithm (figure 4.21), so we apply the same

approach here. The remeshing procedure for a Voronoi panel set is identical to a quadri-

lateral or triangular panel set; the new particles are simply particles from a Voronoi mesh

instead of a cubed sphere or set of icosahedral triangles. Figure 4.25 shows t = 1 for a

Voronoi mesh with N = 10242 panels that was remeshed with Lagrangian remeshing at

trm = {0.2, 0.4, 0.6, 0.8, 1.0}. The remeshing procedure has maintained the structure of the

steady zonal jet to t = 1 much better than the Voronoi grid shown in figure 4.24 which did

not use remeshing.

The need to remesh a Voronoi grid, as shown by this test case, makes the Voronoi panels

merely another variety of our basic algorithm II.1. Development of a recursive procedure

for panel refinement similar to those shown in figures 2.5 and 2.6 is still an ongoing project

for Voronoi grids, which must accommodate arbitrary varieties of polygons within the

same mesh. As a consequence, we have not yet developed adaptive Voronoi algorithms

and the remainder of this thesis uses quadrilateral and triangular panels.

4.4.2 Perturbed zonal jet

The perturbed jet test case provides an opportunity to study the effects of barotropic

instability. We test two wave numbers, m = 4 and m = 12 in (4.24) and examine the

development of barotropic Rossby waves on the sphere. Holton [80, section 7.7.1] pro-
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t = 0

t = 0.1

t = 0.2

t = 0.5

t = 1

Figure 4.24: Relative vorticity time evolution of a steady zonal jet, N = 10242 Voronoi panels, no remeshing.
Right column is a close up view centered at latitude θ0 = π/4. Arrows in the t = 0.2 frame
indicate the direction of spurious roll-up caused by numerical error.
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t = 1

Figure 4.25: Relative vorticity at t = 1 for a steady zonal jet on N = 10242 Voronoi panels, remeshed at
trm = {0.2, 0.4, 0.6, 0.8, 1.0}. Compare with t = 1 frame from figure 4.24.

vides analysis on the Cartesian β-plane that includes a derivation of the dispersion relation

and group velocity for planetary waves. This dispersion relation was also investigated by

Haurwitz [77], as it relates to the stationary wave speed (4.16) of a Rossby-Haurwitz wave.

Aside from providing an interesting meteorological example of dispersion, this test case

provides another good problem for adaptive refinement. The test case definition (4.24)

concentrates most of the vorticity near the jet’s central latitude. The majority of the sphere

has nearly zero velocity and vorticity, as shown in figure 4.20. Consequently, we are able

to represent those areas of the sphere with large panels to save computational resources

for the vicinity of the jet where they are most needed.

The first perturbed jet test we perform has initial conditions given by (4.24) with εP =

0.025 and m = 4, figure 4.20. Adaptive refinement was applied to a base uniform mesh

with 6144 quadrilateral panels using refinement criteria ε1 = 0.002 and ε2 = 0.045 to

give an initial panel set with N = 15036 panels. A maximum of four levels of refinement

beyond the base mesh was allowed in this calculation. The time step was ∆t = 0.00125,

chosen to keep the computation stable for the smallest panels that could possibly be created

by the adaptive refinement procedure. Lagrangian remeshing was applied at intervals of

20 time steps.
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Figure 4.26 shows four snapshots of this computation, t = 0, 0.75, 1.5, and t = 2.

Coloring in both columns depicts relative vorticity; the left column provides a global view

and the right column shows a zoomed-in view with the panel edges plotted as thin black

lines. At t = 0.75 not much has changed visually from t = 0, but the adaptive refinement

criteria are beginning to pick up changes, particularly along the equatorial half of the jet.

The developing Rossby wave kicked off by the unstable environment and perturbed initial

conditions is clearly evident at t = 1.5. The adaptive refinement criteria are triggered

by a developing anticyclone at the base of the deepening trough. At t = 2 the wave has

steepened further and developed strong vorticity gradients, particularly in its troughs. We

note that between t = 1.5 and t = 2, the refinement criteria have actually coarsened the

mesh in the core of the anticyclone, but retained the highest degree of refinement along

its southern extent in a feature that resembles frontogenesis but with negative, rather than

positive vorticity.

The smallest panels in figure 4.26 have approximate edge lengths of 0.3◦. A uniform

mesh at this resolution would require N = 393216 panels, while the adaptive refinement

criteria (2.8) and (2.10) have enabled a solution with N ≤ 46824: less than 1/8 the cost of

a uniform mesh computation at this resolution.

The next test uses (4.24) with εP = 0.025 and m = 12. Adaptive refinement criteria

ε1 = 0.008 and ε2 = 0.09 were applied to a base mesh of 1536 quadrilateral panels at

intervals of twenty time steps with ∆t = 0.0025. The short wavelength of this perturbation

feels the effects of barotropic instability almost immediately, and the jet begins to roll-up

into twelve pairs of vortices as early as t = 0.25, shown in figure 4.27. The adaptive

refinement criteria resolve the thin filaments that stretch between the developing vortices

as t increases. Some finer structures inside the vortex cores are also suggested in the

t = 0.75 frame. These choices of refinement tolerances and initial resolution have resulted
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Relative vorticity

N = 20916

t = 0

t = 0.75

t = 1.5

t = 2

N = 15036

N = 41568

N = 46284

Figure 4.26: Zonal jet with wave number 4 perturbation. Quadrilateral panels with adaptive Lagrangian
remeshing at intervals of 20 time steps. Coloring in both columns shows relative vorticity.
Right column has a closer viewpoint to show quadrilateral panel edges.
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in a very small value of N = 10596, given the spatial scales shown in the solution by

t = 0.75.

4.5 Stratospheric model of breaking Rossby waves

In this section we change the focus to our application: modeling the global circulation

of the atmosphere. As noted in the previous section, a barotropic fluid is a suitable model

of geophysical motion dominated by vorticity rather than divergence, with negligible ther-

modynamic effects. Regions of the atmosphere that are typically near these conditions are

the upper troposphere and the stratosphere [80, 78]. Stratospheric dynamics are introduced

in [80, chapter 12] and a review article is provided by Haynes [78]. In weather forecasting

applications, it is typical to consider the troposphere (the near-surface atmosphere, where

weather occurs) as decoupled from the stratosphere. The stratosphere tends to vary on a

longer time scale than the troposphere and its effects can be incorporated with data input

to a weather model instead of having to be simulated directly. But in climate simulations,

which by definition seek to simulate long-time weather, stratospheric motion cannot be

neglected.

Events known as sudden stratospheric warmings dramatically influence winter weather

patterns by disrupting the stratospheric polar vortex that normally persists throughout the

winter hemisphere [124, 34]. In its normal state, without a sudden stratospheric warming,

flow in the stratosphere over the Earth’s winter hemisphere is dominated by a cyclonic

polar vortex [78]. This vortex influences the position of the troposphere’s polar front jet,

which separates cold polar air from more temperate latitudes. During a sudden strato-

spheric warming event, the stratospheric polar vortex breaks down, and the troposphere’s

polar front jet develops large amplitude Rossby waves that have wide ranging effects on

weather patterns at the surface. Areas within a high amplitude trough of the polar front
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Relative vorticity

N = 3996

t = 0

t = 0.25

t = 0.5

t = 0.75

N = 3888

N = 5772

N = 10596

Figure 4.27: Zonal jet a wave number 12 perturbation applied to its central latitude, computed with adaptive
Lagrangian remeshing at intervals of 20 time steps. Coloring shows relative vorticity; zoomed-
in plots in right column show quadrilateral panel edges.
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jet will experience very cold temperatures, while areas within a ridge will experience ab-

normally warm weather. Historically, sudden stratospheric warmings happened almost

periodically, every two years [80]. Within the last decade they have been occurring more

frequently, at an annual rate or faster [34]. This increase in frequency is attributed to

the effects of climate change, specifically the increase in global average temperature and

changes in stratospheric ozone levels [124, 34].

Despite their name, sudden stratospheric warmings can be modeled without thermody-

namics using a barotropic model [93, 78]. The stratosphere, unlike the troposphere, has

a positive vertical thermal gradient; temperature increases with height in the stratosphere.

As a consequence, stratospheric motions are strongly stratified in the vertical. Although

sudden stratospheric warmings cause a rapid rise in stratospheric temperatures, due to the

strong vertical stratification of this layer of the atmosphere, the resultant motions can still

be described well by a barotropic model [78].

Sudden stratospheric warming events are caused by Rossby wave breaking in the tro-

posphere. Breaking planetary waves cause vertical momentum transfer between the tropo-

sphere and the stratosphere. From the perspective of the stratosphere, the upper boundary

of the troposphere (the tropopause) acts like a lower boundary condition. Rossby wave

breaking in the troposphere can be modeled from the stratospheric perspective as a change

in the height the tropopause [93, 78]. From a mathematical modeling perspective, the

tropopause can be viewed as the stratosphere’s bottom topography.

Dynamic models of sudden stratospheric warmings and the breakdown of the winter

polar vortex focus on the appearance of a surf zone along the periphery of the main vortex

[128, 93, 78]. The surf zone is formed by the intrusion of low vorticity fluid into the region

originally occupied by the polar vortex, and results in the development of strong vorticity

gradients along the periphery of the main vortex and thin filaments of high vorticity similar
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to the filament that developed in the Gaussian vortex test case (section 4.3). Filaments

provide a mechanism for the generation of secondary vortices, depending on how they

are perturbed by their surrounding flow. Forcing or shearing may excite the generation

of a secondary vortex from a vortex filament. At the same time, the planetary vorticity

gradient has a stabilizing effect on the motion and acts to suppress or delay the generation

of secondary vortices [78, 80]. Numerical models of stratospheric motion in the presence

of a breaking Rossby wave must be able to resolve both the large scale vortices and the

small scale filaments without introducing numerical error that could be amplified by the

instability inherent to the fluid equations.

The methods developed in this thesis are ideally suited to model this type of flow.

A one-layer model based on the barotropic vorticity equation is provided by Juckes &

McIntyre [93]. Potential vorticity Q is conserved materially in this model, where

(4.26) Q = ω + F

is the sum of absolute vorticity and a forcing function F designed to simulate the effect of

a breaking tropospheric Rossby wave incident to the tropopause. We apply LPPM (3.26)

to this problem by recovering the relative vorticity from Q

(4.27) ζ = Q − f − F

where f , as before, is the Coriolis parameter. The model is defined by the equations

dQ
dt

= 0(4.28a)

f (x, t) = 2Ωz(t)(4.28b)

F(λ, θ, t) = F0A(t)B(θ) cos λ(4.28c)

d
dt

x(t) = −
1

4π

∫
S

x × x̃
1 − x · x̃

(
Q(x̃, 0) − f (x̃, t) − F(x̃, t)

)
dA(x̃),(4.28d)



133

which is simply (3.26) with ζ replaced by (4.27) in the Biot-Savart integral. The forcing

of stratospheric motion caused by breaking Rossby waves tend to be geographically sta-

tionary, which guides the form of the model forcing function [78]; F(λ, θ, t) is a stationary,

quasi-topographic function with longitudinal wave number 1. It is made up of a constant,

F0 = 0.6Ω which keeps the maximum forcing amplitude at 0.3 times the maximum plan-

etary vorticity, which represents a minor warming event [93]. The functions A(t) and B(θ)

are plotted in figure 4.28 and defined as

A(t) =



1
2

(
1 − cos πt

Tp

)
t ∈ [0,Tp)

1 t ∈ [Tp,T f − Tp)

1
2

(
1 − cos

(
π(t−(T f−Tp))

Tp
+ π

))
t ∈ [T f − Tp,T f )

(4.29a)

B(θ) =


tan2 θ1
tan2 θ

exp
(
1 − tan2 θ1

tan2 θ

)
θ ∈ (0, π/2]

0 θ ∈ [−π/2, 0]

(4.29b)

where the parameter Tp defines the beginning of the Rossby wave breaking event’s max-

imum intensity and T f is the final time [93, 92]. The function B(θ) has a parameter θ1

which represents the latitude where the breaking Rossby wave is centered. This choice of

B(θ) corresponds to the dashed curves in figure 2 (b) of [93], not the function the authors

actually used to produce the plots shown in that paper [92]. Therefore we do not expect

our results to exactly reproduce the plots shown in [93]; however, we do expect that our

results will be qualitatively similar to those presented by Juckes & McIntyre. A plot of the

forcing function F(λ, θ, t) at its maximum amplitude (in time) is shown in figure 4.29.

We model the polar vortex with the relative vorticity for the steady zonal jet (4.24) with

a slightly different amplitude, which has two parameters θ0 and β.

(4.29c)

ζ0(λ, θ) = π
(
cos θ

(
2β2(cos θ0 sin θ − sin θ0 cos θ)

)
+ sin θ

)
e−2β2(1−cos θ cos θ0−sin θ sin θ0)
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Figure 4.28: Forcing functions for the stratosphere model [93, 92]. (a) Time component of F: A(t). (b)
Latitude component of F: B(θ).
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Figure 4.29: The forcing function F(λ, θ, t) at t = 4 with Tp = 4, θ1 = π/3. This quasi-topographic function
models the vertical transfer of momentum from the troposphere to the stratosphere due to a
breaking Rossby wave incident on the tropopause from below [93].
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The amplitude of ζ0 is chosen so that the maximum absolute vorticity is approximately 1.5

times the maximum planetary vorticity [93].

The initial value for the material invariant Q is simply the absolute vorticity, since

F(λ, θ, 0) = 0,

(4.30) Q(λ, θ, 0) = ζ0(λ, θ) + 2Ω sin θ.

The statement of this problem is completed by defining parameters in a similar manner as

[93].

θ0 =
15π
32

(4.31a)

θ1 =
π

3
(4.31b)

β =
3
2

(4.31c)

Tp = 4(4.31d)

T f = 15(4.31e)

These parameters yield an initial vorticity distribution similar to the one used in [93],

which was not defined analytically and therefore is not exactly reproducible [92].

The authors of [93] note that although Q is a material invariant in this model, the

Eulerian spectral method they employed to solve the equations required the addition of

a hyper-diffusion operator to maintain stability, so the equation they actually solve instead

of (4.28a) is

(4.32)
d
dt

Q(x, t) = ν∇6(Q(x, t) − Q(x, 0)
)

where the diffusion coefficient ν is chosen to be as small as possible while still producing

smooth numerical results. With vortex methods and the algorithms we have developed

in this thesis, we can solve (4.28) directly, without having to add a diffusion or hyper-

diffusion operator.
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We run the problem with an initial mesh of 6144 quadrilateral panels and adaptive re-

finement tolerances ε1 = 0.00004 and ε2 = 0.023, with ∆t = 0.005. Absolute vorticity

ω = Q − F is plotted in figure 4.30 along with two material contours of potential vortic-

ity, Q = 8 and Q = 12 from a point of view looking down at the north pole for times

t ∈ {1, 2, . . . , 9}. These Q contours approximately correspond to the material particles

advected during the computations by [93]. Relative vorticity is plotted in figure 4.31.

Adaptive meshes associated with this calculation are shown in figure 4.32.

The surf zone is evident as a small bend in both Q contours in the t = 3 frame of

figure 4.30. Vorticity gradients surrounding this feature steepen and develop into stretching

filaments particularly evident at t ≥ 6. The main vortex wraps around the surf zone and

sheds a small secondary vortex at t = 8 and t = 9.

Viewing the relative vorticity plots in figure 4.31, we associate the surf zone with an

intensifying anticyclone that covers the pole at t = 4 and t = 5. What appears as the

development of a secondary vortex in plots of absolute or potential vorticity, appears in

plots of relative vorticity to be a developing vorticity tripole [8], especially at t = 5, 6, 7.

Based on the simplifications inherent to a barotropic model, and the form of the forcing

function which was guided more by a desire for convenience in modeling rather than

exact realism [93], we should not expect that this model or our results would serve as

a forecasting tool. However, we do expect that this model and the LPPM solutions will

accurately capture the qualitative behavior of the polar vortex breakdown associated with

sudden stratospheric warnings. Haynes emphasizes that as a winter stratospheric polar

vortex breaks down, it often forms two smaller cyclonic vortices along the periphery of

the original polar vortex [78], which suggests a tripole structure similar to the one that

develops in our model.

A study of an actual sudden stratospheric warming event in the southern hemisphere
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(a) (b)

Figure 4.30: Stratospheric model of a breaking Rossby wave. Colors show absolute vorticity ω; contours of
potential vorticity Q = 8 and Q = 12 are shown in white.
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Figure 4.31: Relative vorticity plots from the stratosphere model (4.28). The polar vortex is initially dis-
placed, from t = 0 to t = 3.0, then breaks down into two smaller cyclonic vortices and an
anticylonic vortex to form a tripole structure.
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Figure 4.32: Adaptive meshes associated with the computations shown in figure 4.31.
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Figure 4.33: Potential vorticity on the 850K isentropic surface over Antarctica shows breakdown of the
southern hemisphere’s winter stratospheric polar vortex during a sudden stratospheric warming
event in September 2002. From [161].

winter 2002 shows the polar vortex break down into a tripole vortex similar to the results

of the computation in figure 4.31. Plots of potential vorticity along the 850K isentropic

surface from ECMWF reanalysis data are provided by [161] and reproduced in figure 4.33.

Data from the 2009 northern hemisphere stratospheric warming are shown in figure 4.34

[135]. The observed data correspond nicely to our results; the potential vorticity depicts

the polar vortex breaking down into a tripole structure, with two small cyclonic vortices

and one central anticyclone.

A tripole vortex is a particularly interesting structure, and it is somewhat surprising that

one should have shown up in this model. Tripole vortices were once thought to be unstable

states; it was suggested that a perturbed monopole vortex (such as the polar vortex in the

stratosphere model) quickly relaxes back to an axisymmetric state [17, 11]. The hypothesis

that a perturbed monopole quickly returns to axisymmetry was based on analysis of a linear

model, and other studies of the full nonlinear equations showed that it was not true for large

perturbations [48, 155]. For a more detailed summary of the discussion regarding tripole

vortices, see the more recent paper by Barba & Leonard [8]. Barba & Leonard cite several

numerical studies that have exhibited tripole vortices, as well as rotating tank experiments
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Figure 4.34: NASA presentation of stratospheric vorticity data from January and February 2009 [135]. Ab-
normally cold weather and large amounts of snow fell across continental Europe due to the
perturbed polar vortex that year.

that have observed them. The existence of tripole vortices in rotating tank experiments

suggests that tripole vortices should be common features of geophysical fluids, which

are also rotating. However, Barba & Leonard cite only one study from 1992 [143] as

documented evidence of a naturally occurring tripole vortex; that study found one in the

oceanic currents of the Bay of Biscay. The appearance of tripole vortices in our model

of a perturbed polar vortex, as well as in observations of sudden stratospheric warmings

[161, 135] suggests that tripole vortices may be prominent features of sudden stratospheric

warming events. Clearly, more data are needed to verify such a conjecture; the similarities

between observations and the simple barotropic model solved here invite further study.



CHAPTER V

Advection Equation

The advection equation is of such fundamental importance to the dynamical core com-

munity that despite is seeming simplicity, it still warrants detailed study [52, 109]. Tracers

to the dynamical core community are any quantity that is transported by the fluid flow;

examples are suspended particles of air pollutants such as radioactive particles or volcanic

ash, moisture variables such as water vapor and suspended liquid water, particulate cloud

nuclei, and carbon or other chemical species important to atmospheric or oceanic chem-

ical processes. Advected tracers can also be dynamic quantities like absolute vorticity

in the barotropic vorticity equation, potential vorticity in the shallow water and primitive

equations, or thermodynamic quantities in more complex equation sets. Tracer transport

is important to the short time scales of weather forecasts, where moisture variables di-

rectly impact cloud physics. Accurate tracer advection is perhaps even more important to

climate models which include more coupling between ocean, atmosphere, land, ice, chem-

istry and vegetative models as they develop. Each component of a climate model has its

own collection of tracers that must be advanced in time.

The 2D advection equation may be thought of as a special case of the numerical meth-

ods we have already derived. From the perspective of the flow map discretizations de-

veloped in chapter II, the only difference lies in where the velocity comes from; for the

142



143

barotropic vorticity equation, we calculated u using the Biot-Savart integral. For advection

equation problems, fluid velocity u is prescribed from an external source.

Advection is often the first test conducted by a developing dynamical core; it is listed

as test case 1 in the dynamical core test cases introduced by Williamson et al. [187]. Their

test case 1 advects a tracer distribution in the shape of a cosine bell once around the sphere

using the velocity field that corresponds to solid body rotation. The test is designed to

challenge Eulerian models, which must discretize the advective derivative, by altering the

axis of rotation to force the tracer field over the most problematic regions of their spatial

discretizations. For example, models that use a latitude-longitude grid run the test case so

that it transports the cosine bell over both poles and cubed sphere grids must transport the

bell over the cube’s vertices.

In a Lagrangian model, advection due to such a simple velocity field can be satisfied

exactly, hence this is not a fair measure of a numerical method’s success. As a conse-

quence, we presented the solid body advection problem as a test case for the barotropic

vorticity equation in section 4.1, rather than the advection equation. A better series of

advection tests for a Lagrangian method like the one we develop in this thesis are the de-

formational flow tests presented in [131] and [105]. We use these tests to evaluate our

method as an advection scheme, and to understand the effects of remeshing in an envi-

ronment isolated from the computation of velocity. In particular, we compare the results

of Lagrangian remeshing with low-order piecewise linear interpolation to the cubic in-

terpolation provided by SSRFPACK, and we compare the results of direct remeshing to

Lagrangian remeshing with the same interpolation method.
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5.1 Lagrangian form

The advection equation is very simply stated in Lagrangian form; it is given by the flow

map (2.1),

d
dt

x(α, t) = u
(
x(α, t), t

)
(5.1a)

x(α, 0) = α(5.1b)

d
dt
φ
(
x(α, t)

)
= 0,(5.1c)

where mixing ratio of the φ is the tracer being transported.

The particle-panel discretization applied to (5.1) results in our numerical method for

the advection equation

d
dt

x j(t) = u
(
x j(t), t

)
j = 1, . . . ,N(5.2a)

x j(0) = α j(5.2b)

φ j = φ(α j)(5.2c)

d
dt

yi(t) = u
(
yi(t), t

)
i = 1, . . . ,M(5.2d)

yi(0) = αi(5.2e)

φi = φ(αi)(5.2f)

where x j are active particles, yi are passive particles, and φi, j are the tracer quantities

carried by their corresponding particles.

5.2 Test cases and results

The tests defined by [131] and [105] use three tracer fields for φ. The first is a C∞ pair

of Gaussian hills used to determine the order of convergence for numerical error as spatial

resolution is refined. The second is a C1 set of cosine bells, used to provide a more realistic
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Figure 5.1: Three tracer fields used for deformational flow tests of advection schemes from [131, 105].

test of the advection scheme. A set of C0 slotted cylinders provide the third tracer field.

The slotted cylinders are used to measure advection schemes’ abilities to preserve shapes

and non-smooth data. These three tracer fields are shown in figure 5.1.

Results from a variety of modeling groups using the tests from [131] were presented

at the NCAR Tracer Transport Workshop in March, 2011. Discussions at that workshop

led to the updated test cases in [105]. Results from the updated test cases for a diverse

collection of advection schemes including LPPM will appear in [106]. In this section we

summarize the points most relevant to the development of our Lagrangian Particle-Panel

Method (LPPM); the full results from all test cases in [105] are included in the forthcoming

results paper [106].

The tests define two deformational velocity fields: one with zero divergence and one

with nonzero divergence. The non-divergent wind field has zonal and meridional velocity

components given by [105, equations 18,19], which we restate here,

u(λ, θ, t) =
10
T

sin2
(
λ −

2πt
T

)
sin(2θ) cos

(
πt
T

)
+

2π
T

cos θ,(5.3a)

v(λ, θ, t) =
10
T

sin
(
2
(
λ −

2πt
T

))
cos θ cos

(
πt
T

)
.(5.3b)

Both velocity fields are reversible with period T , so that the tracer distribution at t = 0 is

identical to t = T , for straightforward error computations. In each test case, the final tracer

distribution’s exact solution is identical to its initial condition. Additionally, the form
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Figure 5.2: Test case 1 from [105]. The Gaussian hills tracer is advected by the non-divergent wind field
(5.3). The tracer is deformed and stretched into filaments from t = 0 to t = T/2, then the flow
reverses and the tracer returns to its initial configuration by t = T . Plots shown use LPPM,
N = 20480 triangular panels, ∆t = 0.0125, Lagrangian remeshing with RI = 20.

of each wind field is designed to compress and deform the tracers’ initial configurations

into smaller scale filaments, with the maximum deformation occurring at t = T/2. After

t = T/2 the flow reverses itself and returns to the initial conditions by t = T , as shown in

figure 5.2.

As an initial test, we verify that our algorithm is working by turning off remeshing and

integrating equation (5.2) with the non-divergent velocity field from t = 0 to the final time,

T = 5. The reversible velocity field implies that particle positions x(α,T ) should be equal

to their initial position α = x(α, 0). Maximum position error is plotted at the final time

against ∆t in figure 5.3, and is computed as

(5.4) Ex = max
j

∣∣∣α j − x j(T )
∣∣∣ .

This figure shows the importance of carrying out even simple tests like this one. The

red curve shows error saturating near 10−6, which suggested that there may be a single-

precision bug in code that was meant to compute in double-precision. The blue curve

shows the improvement after identifying and fixing the bug. Both curves verify fourth or-

der convergence as ∆t → 0, which we expect from the Runge-Kutta time stepping scheme.

All computations in this chapter used uniform (constant N) meshes without adaptive re-

finement, in order to compare with the other modeling groups participating in the transport
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workshop. At the beginning stages of LPPM’s development, piecewise linear interpolation

provided the new values of α at Lagrangian remeshing steps. We present results comparing

remeshing with piecewise linear interpolation method to the current remeshing procedure

which relies on the cubic interpolation provided by SSRFPACK below.

In order to accommodate the divergent velocity field, panel areas are recalculated at

each time step. Thus, while particle tracer values φi, j are constant between remeshing

steps, panel areas A j are not; this implies that mass will not be exactly conserved. The

total mass

(5.5) M(t) =

N∑
j=1

φ jA j(t)

varies slightly in time. The magnitude of these changes decreases as the number of panels

N is increased. Relative change in total mass M(t) is calculated as

(5.6) RM(t) =
|M(t) − M(0)|

M(0)
.
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We plot max0≤t≤T RM(t) in figure 5.4 for various N. The plot shows that changes in total

mass converge to zero at a rate proportional to ∆λ2, where ∆λ is the average arc length

of panel edges. This is equivalent to a convergence rate proportional to 1/N, and verifies

theoretical expectations of midpoint rule quadrature.

Changes in the total mass integral are due to remeshing and to approximating panel

edges as great circles during the calculation of panel areas (figure 2.19). This interpretation

suggests that this error could be reduced by adding resolution to panel edges. Adding a

passive particle to each edge’s midpoint is one method of accomplishing this. Instead

of one great circle from origin to endpoint, each edge is computed as two great circles;

this doubles the number of sub-triangles in the triangular decomposition of each panel

(figure 1.7). The improvement in relative change in total mass due to the addition of

passive particles at edge midpoints is shown in figure 5.5. These computations did not use

remeshing, in order to isolate the effect of adding resolution to panel edges. While using

3 passive particles per edge is a definite improvement over edges with only endpoints, it

would require changing the data structures and point query algorithm presented in chapter

II. Adaptive refinement has not yet been applied to this suite of test problems and may

produce a similar gain in accuracy, so we have not pursued increased resolution of panel

edges further.

Since submitting our results to [106], we upgraded the interpolation scheme in the

remeshing procedure from a piecewise linear method to the cubic Hermite interpolation

scheme provided by the SSRFPACK software library [147]. Rerunning test case 1 from

[105], which measures tracer error for the Gaussian hills distribution and the non-divergent

wind field, showed a large improvement due to the more accurate interpolation method.

This comparison is presented in figure 5.6, which shows error convergence in both the l2

and l∞ norms for the Gaussian hills tracer at t = T as the number of panels N is increased.
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Figure 5.6: Comparison of Lagrangian remeshing with piecewise linear vs. cubic interpolation at t = T for
the non-divergent wind field and Gaussian hills tracer.

Lagrangian remeshing with the cubic interpolation method is more accurate and converges

at a faster rate than the same remeshing procedure with piecewise linear interpolation.

Relative error measures l2 and l∞ for the Gaussian hills tracer field advected by (5.3) as

∆λ → 0 are shown in figure 5.7. These computations used ∆t = 0.0125 and Lagrangian

remeshing with cubic interpolation at intervals of 20 time steps for all N. Data from

quadrilateral panel computations are shown in blue, triangular panels in red. For reference,

two lines with slope ∆λ4 are plotted as thin black lines. Both types of panels show similar

rates of convergence in both l2 and l∞ norms. The computed rate of convergence K2 of l2

error and the rate of convergence K∞ of l∞ error [105, equation 26] are given in table 5.1,

along with the same values for the Lin-Rood advection scheme for comparison. Figure

5.6 and table 5.1 document a significant improvement in error convergence rates due to

higher-order interpolation during Lagrangian remeshing.
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We also compare direct remeshing using SSRFPACK to Lagrangian remeshing with

SSRFPACK for the Gaussian hills tracer advected by the non-divergent wind. This com-

parison was also performed for the BVE in the Rossby-Haurwitz wave test in figure 4.8.

Results from the advection test case are presented in figure 5.8. In the Rossby-Haurwitz

wave test, Lagrangian remeshing had a faster convergence rate than direct remeshing,

but also had higher error for coarse panel sets (small N). In contrast, for this advection

test case, both remeshing procedures have the same rate of convergence, but Lagrangian

remeshing has better accuracy by nearly two orders of magnitude in both l2 and l∞ error

measures. We attribute this difference to the fact that remeshing error in vorticity during a

BVE computation feeds back into the velocity computations via the Biot-Savart integral.

This feedback will affect error calculations especially in a test case designed around the

stationary phase speed of the vorticity pattern like the Rossby-Haurwitz wave test from
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K2 K∞

L-remesh, linear interp. 1.8566 1.2938
L-remesh, cubic interp. 3.5238 3.0225
Lin-Rood 1.9 1.3

Table 5.1: Convergence rates of l2 error, K2, and l∞ error, K∞, as mesh size ∆λ→ 0, defined by [105].
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Figure 5.8: l2 and l∞ relative error for the Gaussian hills tracer advected by the non-divergent wind (5.3).
All computations used ∆t = 0.0125 and were remeshed every 20 time steps. Direct remeshing
results are shown in red; Lagrangian remeshing in blue. Black lines have slopes of 1/N2.

section 4.2. In the advection test cases, velocity is simply prescribed from a function (5.3)

regardless of tracer values, so the effects of remeshing error are confined to the tracer field.

Both direct and Lagrangian remeshing curves in table 5.1 and figure 5.8 show conver-

gence rates higher than the O (1/N) ∼ O
(
∆λ2

)
rate expected from midpoint rule quadra-

ture. The high rate of convergence matches the degree of the interpolation scheme, not the

quadrature scheme. This indicates that errors due to remeshing are more significant than

discretization error due to quadrature and justifies the use of a high-order interpolation

method.

The different effects of direct remeshing and Lagrangian remeshing are most visible
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in the discontinuous slotted cylinder test case, which again uses the non-divergent veloc-

ity field (5.3). Many advection schemes apply filters or limiters to preserve positivity or

monotonicity of advected tracer values, and this test is designed to challenge schemes

with a shape that is difficult to preserve due to the jump discontinuity at the boundary of

each cylinder [105]. The goal for schemes in this test case is to produce monotone (non-

oscillatory) results at t = T . We also use this test case as a way to expose smoothing

introduced by the numerical advection scheme, which results in spurious mixing of the

tracer.

In figure 5.9 we show results associated with test case 5 from [105], which advects

the slotted cylinders tracer field with velocity field (5.3). The top row shows the results

from applying direct remeshing, where φ was interpolated from a deformed set of panels

to a new set of panels using SSRFPACK at each remeshing step. The bottom row shows

the results from interpolating α instead, using the Lagrangian remeshing procedure. Both

calculations used N = 20480 triangular panels (∆λ ≈ 2◦), ∆t = 0.0125, and were remeshed

every 20th time step.

It is evident that the effects of the interpolation scheme cause errors in the tracer field

in the direct remeshing case. Overshoots and oscillations are apparent in both the t =

T/2 and t = T plots. Of course, interpolation errors are still present in the Lagrangian

remeshing procedure, but they reside in the components of α, not φ. Each interpolated

Lagrangian parameter α j will have some interpolation error in each of its radial, latitudinal,

and longitudinal components. Renormalizing α j to
∣∣∣α j

∣∣∣ = 1 after the interpolation removes

the radial error. The latitudinal and longitudinal interpolation errors that are still present

now reside in the flow map, rather than the advected tracer. This means that some particles

will be slightly out of position relative to their Lagrangian parameter, but the gains in tracer

accuracy shown in figures 5.8 and 5.9 show that this effect is minimal. Visually, the slotted
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Figure 5.9: Advection of slotted cylinders by velocity field (5.3), N = 20480 triangular panels, ∆t = 0.0125,
RI = 20. Direct remeshing (top row) causes overshoots and oscillations in the tracer field.
Lagrangian remeshing (bottom row) introduces no oscillations and preserves the exact tracer
range.

cylinders at t = T look identical to their original distribution when Lagrangian remeshing

is used.

As a final comparison for the slotted cylinders test case, we compare Lin-Rood and

LPPM in figure 5.10. Despite its success as a dynamical core in CAM-FV and at solving

the BVE, the Lin-Rood advection scheme struggles with the non-smooth slotted cylinders.

The cosine bells tracer field provide several data points for comparing advection schemes

in [105]. The first is a measure of how well filaments are preserved. Filaments were a

main focus of our work with the barotropic vorticity equation, and guided our selection of

adaptive refinement criteria. In these test cases we use uniform (non-adaptive) panel sets

and measure the preservation of tracer filaments at t = T/2, when the velocity field has

deformed the tracer by the greatest amount. Filament preservation is measured with the

function AF(τ, t),

(5.7a) AF(τ, t) =
∑
j∈G

A j,
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Figure 5.10: Advection of the slotted cylinders tracer by (5.3). Lin-Rood advection scheme from section
3.6 at 2◦ × 2◦ resolution, top row; Lagrangian Particle-Panel Method (LPPM) with N = 20480
triangular panels, bottom row.

where G is the set of panel indices whose active particles have tracer values that exceed τ,

(5.7b) G = { j ∈ [1,N] : φ j > τ}.

Thus the filament measure AF represents the area of the sphere at time t with tracer values

larger than τ. The filament error norm is defined as

(5.8) lF(τ, t) =


100 × AF (τ,t)

AF (τ,0) if AF(τ, 0) , 0

0 otherwise

A perfect scheme in this norm would exactly match the function

(5.9) lE
F(τ, t) =


100 0 ≤ τ < 1

0 τ = 1

.

at any time t. Diffusive schemes will have larger lF for small τ due to smearing and smaller

lF for large τ due to dissipation of the tracer’s maxima.

Figure 5.11 shows results from some of the participating models in [106]. Each model

is plotted as a separate color and its corresponding acronym is shown in the legend. LPPM
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(a) (b)

Figure 5.11: Filament diagnostic l f at t = T/2. Each color corresponds to a different advection scheme
from [106]. LPPM is listed as LPM-CN in this figure, and plotted as the gray curve. LPPM
computations used triangular panels with (a) N = 20480 and (b) N = 81920 .

is listed as LPM-CN in this plot according to the naming convention determined by the

transport workshop, and plotted as the gray curve. The results from LPPM in this figure

used triangular panels, N = 20480 (a) and N = 81920 (b), ∆t = 0.0125 and Lagrangian

remeshing using piecewise linear interpolation at intervals of twenty time steps. In this

error measure there is not a visible difference between Lagrangian remeshing based on

piecewise linear interpolation and cubic interpolation. Of the models shown in this figure,

only LPPM and TTS-I-CN (pink curve) perform well at this diagnostic. Both are La-

grangian advection schemes, as TTS stands for trajectory-tracking scheme, and both are

very close to the exact function (5.9). Details of each scheme are provided in [106].

The last important measure of LPPM as an advection scheme we mention in this chap-

ter is its ability to preserve functional relations between correlated tracers. The ability to

preserve relationships between correlated tracers is vital to chemistry models attached to a

dynamical core. In an ideal dynamical core with exact tracer transport, only the chemistry

parameterizations would alter the concentrations of chemical species. Errors in tracer val-

ues from the advection scheme can have adverse effects on chemistry parameterizations by

introducing nonphysical states or unrealistic mixing [116, 105]. One of the main design
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goals of the Lin-Rood scheme was to provide a transport algorithm that preserves linear

correlations between different tracers [116]. As models have become more complex, it is

now desirable to preserve nonlinear correlations as well. A key feature of the LPPM advec-

tion scheme with Lagrangian remeshing is that, through the definition of the Lagrangian

parameter and the flow map, it preserves linear and nonlinear correlations between tracers

exactly. Preserving nonlinear correlations between tracers is a significant benefit of using

LPPM as an advection scheme; comparisons with other advection schemes’ performance

on a correlated tracer test problem are presented in [106].



CHAPTER VI

Shallow Water Equations

The shallow water equations provide the next equation set for proving dynamical cores

[187]. They include all the effects of vorticity that the barotropic vorticity equation cap-

tures, and by including effects of divergence, they also capture gravity waves. Several

existing operational models, e.g. CAM-FV [115], use the shallow water equations in

a 3D environment; the atmosphere is represented as a collection of vertical levels, and

the shallow water equations are solved on each level. Adjacent levels are coupled with

methods determined by the vertical discretization. Numerical models that do well in the

shallow water environment are potentially well-suited for further development into a fully

three-dimensional dynamical core that solves the primitive equations, with or without the

hydrostatic approximation.

Derivations of the shallow water equations in a rotating frame are provided by [12]

and [183]. Numerous different forms of the shallow water equations are given in [187]

and [15]. Augenbaum [6] and Mesinger [130] provide Lagrangian representations of the

spherical shallow water equations based on their advective form, with the two components

of velocity and the fluid depth as prognostic variables. The Lagrangian form we propose

here uses vorticity, divergence, and fluid depth as the prognostic variables, and we will

again use Green’s function and the Poisson problem to calculate fluid velocity.

158
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The advective form of the shallow water equations has a momentum equation and a

continuity equation,

du
dt

= − f n̂× u − g∇h(6.1a)

dh
dt

= −h(∇ · u),(6.1b)

where the velocity, u, and the Coriolis parameter, f , are the same as in our previous work

with the barotropic vorticity equation. The fluid thickness, h = hS − hB, is the difference

between the height of the fluid’s free surface hS and the height of the bottom topography,

hB. The constant g represents acceleration due to gravity.

We again use Green’s function as the basis of our velocity calculation. The shallow

water equations introduce an additional Poisson problem that results from the Helmholz-

Hodge decomposition of the velocity [30],

(6.2) u = ∇ψ × n̂ + ∇Φ

where ψ is the stream function, related to vorticity by equation (3.13). The velocity poten-

tial function Φ is defined as the solution of another Poisson problem, this one in terms of

the divergence. Let δ denote the divergence of u, then Φ satisfies

δ = ∇ · u(6.3a)

∇2Φ = δ.(6.3b)

We have used the symbol δ before to denote the Dirac delta function, but rely on the

context to differentiate the two disparate uses of the same symbol.

We need to change equations (6.1) into a set of equations in terms of the variables ζ

and δ so that we may use the Biot-Savart integral to solve them. For simplicity we assume

planar flow in Cartesian geometry for the following derivation. Let u = [u, v, 0]T be the

velocity in the plane; the unit normal vector is n̂ = k̂ = [0, 0, 1]T . Note that u· n̂ = u· k̂ = 0.
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6.1 Shallow water vorticity equation

Starting with the momentum equation (6.1a) we apply a vector identity

(u · ∇)u = ∇

(
1
2
|u|2

)
− u × (∇ × u)

= ∇

(
1
2
|u|2

)
− u × ζ(6.4)

where ζ is the relative vorticity, ζ = ∇×u. Expanding the material derivative and replacing

the advective derivative with (6.4), we have

∂u
∂t
− u × ζ = − f k̂ × u − ∇

(
gh +

1
2
|u|2

)
.(6.5)

Next we apply the curl operator to (6.5), and the far right term vanishes,

∂ζ

∂t
− ∇ × (u × ζ) = −∇ × ( f k̂ × u).(6.6)

Two applications of a vector identity give

∇ × (u × ζ) = ����u(∇ · ζ) − ζ(∇ · u) + ����(ζ · ∇)u − (u · ∇)ζ

= −ζ(∇ · u) − (u · ∇)ζ(6.7a)

∇ × ( f k̂ × u) = f k̂(∇ · u) −�����u(∇ · f k̂) + (u · ∇) f k̂ −�����
( f k̂ · ∇)u

= f k̂(∇ · u) + (u · ∇) f k̂.(6.7b)

The cancellations in the above equations are due to orthogonality and to the fact that the

divergence of a curl is zero. Using (6.7) in (6.6) yields the vorticity equation for rotating

shallow water flow,

∂ζ

∂t
+ (u · ∇)(ζ + f k̂) = −(ζ + f k̂)(∇ · u).(6.8)

Applying the dot product with the vector k̂ to both sides of (6.8) gives the scalar vorticity

equation

(6.9)
∂ζ

∂t
+ (u · ∇)(ζ + f ) = −(ζ + f )δ.
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By combining the continuity equation (6.1b) and the vorticity equation (6.9) we find

the potential vorticity q = (ζ + f )/h, which is a material invariant,

(6.10)
dq
dt

=
d
dt

(
ζ + f

h

)
= 0.

Potential vorticity in the shallow water equations is similar to absolute vorticity in the

barotropic vorticity equation, with one important addition. Like the BVE’s absolute vor-

ticity, meridional motion in the SWE changes a particle’s relative vorticity due to changes

in the Coriolis parameter, f . SWE potential vorticity is also affected by changes in fluid

thickness, h. If a particle has decreasing fluid thickness and does not change latitude,

then its relative vorticity also decreases, in order to conserve q. Similarly, if a particle is

stretched vertically and h increases along a constant latitude circle, then its relative vortic-

ity also increases. A helpful image to guide this interpretation is that of a spinning figure

skater on ice. As the skater retracts her arms and stretches them above her head, her rate

of spin (vorticity) increases due to conservation of angular momentum; the same concept

acts in the shallow water equations through the effects of changing h on potential vorticity

q.

6.2 Shallow water divergence equation

To derive the divergence equation we apply the divergence operator to equation (6.5).

∂δ

∂t
− ∇ · (u × ζ) = −∇ · ( f k̂ × u) − ∇2

(
gh +

1
2
|u|2

)
.(6.11)

We apply two vector identities to the ∇ · (u × ζ) term,

∇ · (u × ζ) = ζ · (∇ × u) − u · (∇ × ζ)(6.12a)

u · (∇ × ζ) = u · (∇ × ∇ × u) = u ·
(
∇δ − ∇2u

)
(6.12b)

=⇒ ∇ · (u × ζ) = |ζ |2 − (u · ∇)δ + u · ∇2u,(6.12c)
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where the vector Laplacian ∇2u is defined as the Laplacian operator applied to each com-

ponent of u, so that ∇2u = [∇2u,∇2v, 0]T . It is helpful to expand some terms of (6.11) and

(6.12c) into their components:

|ζ |2 =

(
∂v
∂x
−
∂u
∂y

)2

(6.13a)

∇2 1
2
|u|2 =

(
∂u
∂x

)2

+ u
∂2u
∂x2 +

(
∂u
∂y

)2

+ u
∂2u
∂y2 +

(
∂v
∂x

)2

+ v
∂2v
∂x2 +

(
∂v
∂y

)2

+ v
∂2v
∂y2(6.13b)

u · ∇2u = u
(
∂2u
∂x2 +

∂2u
∂y2

)
+ v

(
∂2v
∂x2 +

∂2v
∂y2

)
.(6.13c)

These terms combine and cancel in equation (6.11) to give the shallow water divergence

equation

(6.14)
∂δ

∂t
+ (u · ∇)δ = 2J(u) − δ2 − 2u · ∇2u − (u · ∇) f k̂ + f k̂ · ζ − ∇2gh,

where J(u) is the Jacobian determinant of u,

(6.15) J(u) =
∂u
∂x
∂v
∂y
−
∂u
∂y
∂v
∂x
.

In equation (6.14) we see that the divergence of fluid particles is affected by advection of

both relative and planetary vorticity, which should be expected given that divergence also

affects particles’ relative vorticity via equation (6.9). The curvature of the height field also

affects fluid particles’ divergence via the term ∇2gh, which is analogous to the divergence

of the pressure gradient in the Euler equations. The Jacobian J(u) and the vector Laplacian

u · ∇2u measure the stretching and strain encountered by a fluid particle due to the fluid

velocity, which also affect divergence.

6.3 Lagrangian form

To represent the shallow water equations on the sphere, we use the above derivation

which is written in vector form and independent of a coordinate system. The unit normal
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vector on the sphere n̂ is orthogonal to the tangential velocity and parallel to the vorticity

vector (section 1.5), so u · n = 0 as in the planar case.

Since ∂ f
∂t = 0, the material derivative of the Coriolis parameter f has only the advective

derivative,

(6.16)
d f
dt

= (u · ∇) f = 2Ω
dz
dt
.

This allows us to simplify equations (6.9) and (6.14) and write the Lagrangian form of the

rotating shallow water equations in terms of vorticity and divergence,

dζ
dt

+ ζδ = −2Ω
dz
dt
− f δ(6.17a)

dδ
dt

+ δ2 = −2Ω
dz
dt

+ f ζ + 2J(u) − 2u · ∇2u − ∇2gh(6.17b)

dh
dt

+ hδ = 0(6.17c)

u(x) = −
1

4π

∫
S

x × x̃
1 − x · x̃

ζ(x̃)dÃ +
1

4π

∫
S

x × x̃
1 − x · x̃

δ(x̃)dÃ(6.17d)

dx
dt

= u(x).(6.17e)

In the above equations, the prognostic variables are ζ, δ, h and x. Equations (6.17a)

– (6.17c) are the shallow water equations; equation (6.17d) is the Biot-Savart law and

(6.17e) is the flow map.

Note that if h is constant and δ is zero in (6.17), the barotropic vorticity equation (3.25)

is recovered. Apart from the forcing terms on the right hand side of (6.17b), the shal-

low water system looks like they could be solved with a straightforward extension of the

methods developed and presented in chapters III and IV for the barotropic vorticity equa-

tion. Unfortunately, the forcing terms in (6.17b) involve spatial derivatives of the velocity,

which are challenging to compute on nonuniform, possibly distorted meshes.

Applying the spatial derivative operators in (6.17b) to the integrals in (6.17d) increases

the singularities in the integral kernels. The divergence of the Biot-Savart vector kernel is
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a delta function; its vector Laplacian is another derivative that must be understood in the

sense of distributions [190], and cannot be computed directly.

We have already seen how topography becomes a forcing term in the stratospheric

model of breaking Rossby waves in section 4.5. The forcing terms in (6.17b) are more

complex, but are the main obstacle between algorithm II.1 and a shallow water equation

solver.

6.4 Proposed numerical methods

Our existing algorithms are currently capable of solving the shallow water equations

assuming we can evaluate the spatial derivatives of velocity, J(u) and ∇2u, and height ∇2gh

on our particles and panels. These terms are challenging to evaluate in the Lagrangian

frame; finite difference stencils are difficult to implement on moving, unstructured meshes.

Several techniques have been introduced that we may apply to our methods.

Strategy 1: Separate grids. The first strategy we may use would maintain two separate

grids. One is our set of particles and panels, and the other would be a latitude-longitude

grid where finite differences are easily computed. In this approach, at each time incre-

ment the output from the Biot-Savart integral would be mapped to the latitude-longitude

grid by an interpolation scheme. The forcing terms J(u) and u · ∇2u would be evaluated

using finite differences on the latitude-longitude grid and then mapped back to the La-

grangian particles and panels. This method is closely related to the Hamiltonian Particle

Mesh method introduced in [60, 61] and similar to the shallow water equation solvers by

Dritschel [49, 45, 163].

In Dritschel’s methods, vorticity is maintained on a set of Lagrangian contours whose

Lagrangian parameter α are the materially invariant potential vorticity q. Velocity is com-

puted on an Eulerian mesh using a combination of spectral methods and finite differences
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and used to advect the Lagrangian contours, whose vorticity is mapped to the Eulerian grid

and used in the next velocity computation. This approach can be interpreted as keeping the

vorticity defined on one grid, the Lagrangian contours, and the divergence on the Eulerian

grid. Since it is the divergence of the velocity field that is responsible for gravity waves,

these methods have been described as a wave-vortex decomposition of the shallow water

equations [45].

This strategy is a step away from the flow map which we have sought to maintain

throughout the entirety of this thesis. The need for remapping the forcing terms to and

from the fixed mesh at each time step is heavily reliant on interpolation, which we would

like to avoid outside of the isolated remeshing steps.

Strategy 2: Local derivatives on Lagrangian panels. In their Lagrangian methods for

solving the shallow water equations on the sphere, Augenbaum [6] and Mesinger [130]

evaluated the necessary spatial derivatives in local neighborhoods centered at each fluid

particle. Their discretizations were based on the advective form of the shallow water

equations (6.1) and therefore did not require the same derivatives we require to solve the

shallow water equations’ vorticity-divergence form. However, their techniques are general

enough to provide a method that we could use.

Mesinger used polynomial interpolation around each particle. Nearby particles were

used to provide a least-squares fit to a quadratic interpolating polynomial centered at the

location of the particle whose velocity was currently being computed. Assuming it is of

high enough degree to have the correct number of derivatives, the polynomial can be dif-

ferentiated to approximate the required forcing terms. As we would need to approximate

the Laplacian, we would need at least a quadratic interpolating polynomial about each

particle. We have already developed methods for building piecewise linear interpolating

polynomials on each panel, using the point-location query algorithm and barycentric co-
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ordinates (section A.2). Extending this method to a higher-order approximation would be

fairly straightforward, and similar to the compressible flow particle method introduced by

[139].

Augenbaum’s approach computed finite difference stencils on a Lagrangian Voronoi

mesh. He was unable to produce high-order accurate spatial derivatives [6], but recent

advances from other dynamical cores that use Voronoi grids may provide more accurate

methods of computing derivatives. Thuburn et al. [178] provide a method for computing

higher order derivatives of velocity to get vorticity and divergence on arbitrarily structured

staggered grids for geophysical applications. This method has become the foundation

of the Model for Prediction Across Scales (MPAS) dynamical core which uses variable

resolution spherical centroidal Voronoi tessellations as its horizontal discretization [151,

162]. It may be possible to use a similar technique to find J(u) and ∇2u on our moving

sets of particles and panels.

Strategy 3: Differentiating the regularized Biot-Savart kernel. Forcing terms can be

computed by applying a regularization to the Biot-Savart kernel K. The smooth kernel

(6.18) Kε(x, x̃) =
x × x̃

1 − x · x̃ + ε2

can be differentiated to provide approximations of J(u) and ∇2u. As these integral kernels

must be summed over the whole sphere, this idea can be thought of as a global derivative

calculation. To begin, we would only use the smoothed kernel to evaluate the forcing terms

of (6.17b); the singular kernel K(x, x̃) given by (3.22) would still be used to calculate fluid

velocity in (6.17d).

The divergence of (6.18) yields an approximate delta function; it is investigated in the

appendix, section A.1.

Another, similar, option would use high-order accurate interpolation using radial basis

functions that could be differentiated to evaluate the forcing terms without having to re-
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sort to a separate grid. Radial basis functions have been used to solve the shallow water

equations in an Eulerian context in [58]. To use radial basis functions for interpolation re-

quires the solution of a dense, possibly ill-conditioned interpolating matrix, however, and

this method may therefore be prohibitively expensive for large N [56]. Partition of unity

methods [189, 27] may reduce the cost of using radial basis functions.

Strategy 4: Particle Strength Exchange (PSE). Particle strength exchange is a method

that originated in viscous vortex methods, and was designed specifically to compute the

Laplacian of the fluid velocity on sets of Lagrangian particles [42, 36, 38, 97]. It replaces

the Laplacian derivative with an interpolating kernel that approximates the action of the

Laplacian operator on testing functions in the sense of distributions. Particle Strength

Exchange techniques have been extended to compute arbitrary spatial derivatives in vortex

methods by [53] and adapted to the 2D compressible Euler equations in [54]. PSE provides

global integrals that approximate derivatives similar to the smoothed Biot-Savart kernel,

but PSE kernels can be high-order accurate [144].



CHAPTER VII

Conclusions and Ongoing Work

7.1 Summary

We have presented a Lagrangian Particle-Panel Method (LPPM) for solving geophysi-

cal fluid dynamics equations on the sphere for applications related to the dynamical cores

of weather and climate models. Green’s function is used to solve the underlying PDEs, in

contrast to most current dynamical cores which rely on spectral transforms, finite element

methods, and finite volume methods. Green’s function and the Biot-Savart law provide so-

lutions comparable to today’s operational models even with a simple midpoint quadrature

rule.

Our algorithms are based on vortex methods, and their computational elements are

Lagrangian point vortices. Point vortices can resolve multiple spatial scales, but the La-

grangian formulation of the equations of motion that the point vortices follow are subject

to problems of mesh distortion. While mesh distortion difficulties have prevented previous

Lagrangian methods for spherical geophysical fluid dynamics solvers from achieving high

accuracy or solutions at long times, we find that by using adaptive refinement and a new

Lagrangian remeshing procedure we are able to overcome this challenge.

The Lagrangian remeshing procedure preserves the flow map and the Lagrangian fea-

tures of the flow by interpolating the Lagrangian parameter rather than the problem data.

168
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This approach is applicable to any equation set that can be represented in a Lagrangian

frame via the flow map (2.1). Lagrangian remeshing is better than direct remeshing at

conserving integral invariants such as kinetic energy and total enstrophy using the same

interpolation methods. As an advection scheme, LPPM is a monotonic, positivity pre-

serving tracer transport algorithm that introduces no overshoots or oscillations to advected

tracer data. It preserves linear and nonlinear tracer correlations exactly.

Although the barotropic vorticity equation is too simple to provide practical forecasts,

we have found that it is capable of modeling the stratosphere, and the dynamics of sudden

stratospheric warmings in particular. Our model solutions have shown a tripole vortex

emerge from the breakdown of a monopole vortex situated over the winter hemisphere’s

pole. Like [8], this result suggests that although tripole vortices have only rarely been

noted in observational data, they may be a fundamental feature of geophysical fluids. More

studies involving experimentation, modeling, and observational data analysis are needed

to investigate this conjecture further.

7.2 Additional test cases

The test cases presented in chapter IV are designed to either provide insight into the

numerical behavior of our techniques or to represent characteristics of geophysical fluid

flow that can be captured in a barotropic model. In this section we present additional test

problems that are aligned with these two goals.

7.2.1 Merging vortices

Kent et al. [95] use the planar barotropic vorticity equation to examine the effects of

numerical dissipation on kinetic energy and enstrophy spectra of model solutions. They

compare the effects of a variety of different numerical schemes and different coefficients

for diffusion or hyper-diffusion operators within each scheme. Different models’ solutions,
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vorticity error, kinetic energy, and total enstrophy are examined. These measures are the

same as we used to evaluate our results in chapter IV.

Their first test case is a vortex merger problem where two vortices of the same sign

are initialized close to each other; a large vortex stretches a smaller vortex and eventually

the two vortices merge. This test could be implemented using our methods by initializing

two Gaussian vortices of the same sign in close proximity to each other on the sphere.

Modifying the equations from section 4.3, this test would have initial vorticity distributions

given by

ζ0(x) = ζ∗(x) − ζ̄(7.1a)

ω0(x) = ζ∗(x) − ζ̄ + 2Ωz(7.1b)

where ζ∗ is the sum of two Gaussian distributions,

(7.1c) ζ∗(x) = A0e−2β2
0(1−x·x0) + A1e−2β2

1(1−x·x1).

A0 is the maximum value of the first vortex, whose shape parameter is β0 and whose center

is at x0 ∈ S. The second vortex is defined by parameters A1, β1 and x1 ∈ S in a similar

manner. The Gaussian constant used to ensure that total vorticity is zero is the same as in

section 4.3,

ζ̄ =
1

4π

N∑
j=1

ζ∗
(
x j(0)

)
A j.(7.1d)

The choice of maximum values for each vortex A0 and A1 should be scaled relative to Ω

so that

(7.2) O (0.1) .
maxS |ζ0|

2Ω
. O (10).

Higher values of this ratio will provide flows dominated by local velocities, less affected

by the background rotation of the sphere. This would model smaller scale vortices such
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Figure 7.1: Initial relative vorticity for freely decaying turbulence test case.

as tropical cyclones. Consequently, higher values of A0 and A1 should be accompanied by

larger values of β0 and β1 to produce smaller scale vortices. Flows with lower ratios (7.2)

are more representative of planetary scale motion and will be more affected by the Coriolis

force. The majority of test cases presented in chapter IV used ratios of maxS |ζ | /2Ω ∼

O (1) or less.

The most challenging test introduced by [95] is a freely decaying turbulence problem

defined by an initial condition with many vortices. We adapt [95, test 4.3] by adding

a shape parameter e−θ
8/2 to the to their initial vorticity distribution. This ensures that

|ζ | → 0 as θ → ±π/2 which maintains numerical stability on the Lin-Rood solver’s latitude

longitude grid. The initial vorticity distribution for this test case is given by

(7.3) ζ(λ, θ) =

(
4π sin(4λ) sin(8θ) + 1.6π cos(3λ) cos(6θ)+

1.2π cos(5λ) cos(10θ) + 0.08π(sin λ + sin(2θ))
)
e−θ

8/2.

A plot of these initial conditions is shown in figure 7.1.

An interesting feature of this test case is that as t increases vortices merge and coalesce
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Figure 7.2: Relative vorticity for the freely decaying turbulence test case at t = 2. Lin-Rood solver, 2◦

resolution, ∆t = 0.0004.

into a smaller number of larger scale vortices than existed at t = 0. The Lin-Rood BVE

solver t = 2 solution using 2◦ resolution and ∆t = 0.0004 is shown in figure 7.2.

The challenge for our method is that the initial conditions (7.3) cause immediate gen-

eration of small scales in the Lagrangian parameter α that quickly become too fine for a

uniform set of panels to resolve. An example solution from a set of N = 24576 quadri-

lateral panels that used ∆t = 0.01 and Lagrangian remeshing at intervals of 10 time steps

is shown in figure 7.3. The checkerboard pattern of relative vorticity error along filaments

between vortices will soon cause the computed solution to diverge from the correct solu-

tion.

Using adaptive Lagrangian remeshing restores accuracy but leads to a large increase

in N as t increases. Results from a computation using ε1 = 0.006 and ε2 = 0.15 applied

to a base mesh of N = 6144 quadrilateral panels are shown in figure 7.4. This compu-

tation used ∆t = 0.00125 and adaptive Lagrangian remeshing every 20th time step. The

figure shows both relative vorticity and the latitudinal component of the Lagrangian pa-
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Figure 7.3: Relative vorticity at t = 1 computed by N = 24576 quadrilateral panels using ∆t = 0.01 and
Lagrangian remeshing at intervals of 10 time steps.

rameter, which shows many fine-scale filaments stretching between vortices. At t = 0

these tolerances return a mesh with N = 22632 panels, but by t = 1 they result in a mesh

with N = 229067 panels. A plot of the mesh from this computation is shown in figure 7.5.

Looking at the adaptive mesh, it is clear that a majority of the computational effort is being

used to resolve the small scale filaments and the Lagrangian structures in the flow. Clearly

such growth in N results in computations that become expensive at large t. Changing the

Lagrangian remeshing procedure to interpolate to intermediate times instead of interpo-

lating to t = 0 will begin to address this problem. We discuss this idea and several other

strategies in various stages of development in section 7.3.

7.2.2 Modeling the upper troposphere

In section 4.5 we saw that our methods and the barotropic approximation of the strato-

sphere provide a realistic model of the dynamics associated with sudden stratospheric

warmings. This suggests that our model, which can be thought of as a barotropic dynami-

cal core, can be used to study other phenomena in the atmosphere which can be represented
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(a) (b)

Figure 7.4: Freely decaying turbulence test case computed on quadrilateral panels with adaptive Lagrangian
remeshing. (a) Relative vorticity. (b) Particles’ initial latitude, αθ.

Figure 7.5: Adaptive mesh for computation shown in figure 7.4.
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Figure 7.6: Annual-mean zonal-mean zonal wind profile from ECMWF ERA-40 reanalysis data. Vertical
axis is pressure (hPa), horizontal axis is latitude, north to south, left to right.

with the barotropic vorticity equation. In this section, we introduce a technique for build-

ing general test cases that represent the upper troposphere (300 hPa). Users of the LPPM

software may adapt this general technique to build test cases related to simulate specific

events or flow features of their choosing.

The annual-mean zonal-mean zonal wind profile gives the meridionally- and time-

averaged zonal wind u as a function of height. An example from European Center for

Medium-range Weather Forecasting’s (ECMWF) climate reanalysis data is shown in fig-

ure 7.6. These data are from the ERA-40 dataset, which includes data from the roughly 40

years spanning 1957-2002 [51]. If we take a cross section of the 300 hPa level of this plot,

we see a mean zonal wind velocity profile that has an easterly maximum in the midlati-

tudes of each hemisphere, and a smaller magnitude westerly maximum near the equator.

These features can be qualitatively approximated by Legendre polynomial P2
4(sin θ), fig-

ure 7.7. This function, scaled for velocities appropriate to the unit sphere, and its resulting
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Figure 7.7: Model profiles of 300 mb annual-mean zonal-mean zonal wind (a) and its associated relative
vorticity (b) from equation (7.4).

vorticity are

u(λ, θ) =
15
6

(
cos2 θ(7 sin2 θ − 1)

)
(7.4a)

ζ(λ, θ) =
15
24

cos θ(37 sin θ − 35 sin(3θ)).(7.4b)

Like the steady zonal jet test problem from section 4.4, this purely zonal flow is an unstable

steady solution of the barotropic vorticity equation that can be thought of as parallel shear

flow on the sphere. Longitudinal perturbations can be added to (7.4) to simulate Rossby

waves. Individual Gaussian vortices can be superposed on the mean zonal background

wind to simulate interacting vortices in a realistic global circulation using the formulas

from section 4.3. The vorticity in (7.4) satisfies
∫
S
ζ(x) dA = 0 identically, so any per-

turbation vorticity ζ′ added to (7.4) must satisfy
∫
S
ζ′(x) dA = 0 to satisfy the Gaussian

constraint on the Poisson problem. This can be done a posteriori using the ζ̄ formulas
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given in sections 4.3 and 7.2.1.

Other background profiles can be used as well. The ERA-40 dataset contains zonal

mean wind profiles of each season, in addition to the annual profile. Also, any general ini-

tial condition may be approximated as a linear combination of spherical harmonics using

spectral transform methods. So long as the fluid features can be reasonably characterized

as incompressible and isothermal, all that is needed is an initial vorticity distribution to

define the problem.

7.2.3 Tripole vortices

In section 4.5 we saw a tripole vortex emerge from a model of Rossby wave breaking

near the stratospheric winter polar vortex. Many studies of stratospheric dynamics (i.e.,

[78, 93, 128, 124, 161]) use potential vorticity or temperature to measure and observe the

polar vortex. A typical sudden stratospheric warming event has relative vorticity maxima

that are only approximately 30% of the planetary vorticity [93], so it is possible that the

emergence of tripole vortices have gone unnoticed against the background of planetary

vorticity. The fact that a tripole has appeared in our results and in observations [161, 135]

suggests that these vortices may play a more prominent role in geophysical fluid dynamics

than previously thought.

In [8], tripole vortices are shown to emerge from a perturbation vorticity applied to

a monopole vortex. In planar simulations, a Gaussian vortex is perturbed with a vortex

quadrupole and tripoles are observed to emerge once the perturbation amplitude exceeds

a critical value that depends on the Reynolds number [8]. Repeating these experiments

in spherical geometry with rotation could shed light on the seemingly rare tripole vortex

structures in geophysical applications, and pose a new way to view the behavior of the

winter hemisphere polar vortex during increasingly frequent sudden stratospheric warming

events.
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7.3 Next steps

Our immediate plans for LPPM involve improving its efficiency and its accuracy during

long time simulations. LPPM provides accurate solutions, comparable to today’s existing

dynamical cores, so long as the flow is resolved. If the flow develops features too small

for the Lagrangian panels to resolve, our current algorithms lose conservation of energy

and develop a checkerboard pattern in their relative vorticity distributions due to the com-

bination of midpoint rule quadrature and the Lagrangian remeshing procedure. Thus, our

first two tasks for improving LPPM are aimed at the quadrature scheme and the remeshing

procedure.

7.3.1 Improved quadrature

The choice of the midpoint rule as our discretization method for the Biot-Savart inte-

gral was guided by its simplicity and the success it has had in other algorithms based on

vortex methods. Although our data structures were built to compute midpoint rule approx-

imations of integrals, we can implement an upgraded quadrature scheme without having to

change the existing data structures. Currently, our software assigns the value of a variable

φ or vorticity ζ at the active particle to the entire panel, as illustrated by figure 7.8 (a). This

technique results in the integral approximation at each panel of

(7.5)
∫

P j

φ(x) dA ≈ φ jA j

where φ j is the data value carried by panel P j’s active particle and A j is the panel area.

The improved method, which is similar to the isoparametric method from [5], would use

passive particle data as well as active particle data to build a piecewise linear sub grid

reconstruction on each panel. As a first attempt, we may choose a straightforward imple-
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mentation of barycentric weights on each triangular panel.∫
P j

φ(x) dA ≈ φ1A1 + φ2A2 + φ3A3(7.6)

where A1,2,3 are the areas of the sub triangles opposite vertex y1,2,3, shaded in colors in

figure 7.8 (b). Tracer values φ1,2,3 are the values carried by panel P j’s passive particles

y1,2,3. This method does not use the data carried by the active particle, and thus does not

take advantage of all of the available data.

A better method that would generalize to polygons of any type would be to compute the

midpoint rule on each sub triangle. For simplicity, assume panel P j is triangular. Let Ai

be the area of the panel’s sub triangles, listed in counterclockwise order as shown in figure

1.7 (a), and let φ1 correspond to the vertex incident to sub triangle T1 and sub triangle T3.

Thus, in figure 7.8 (b), T1 is colored green, T2 is blue, and T3 is orange. A quadrature

scheme for a triangular panel using sub triangles with this ordering is

(7.7)
∫

P j

φ(x) dA ≈
1
3

(
φ1 + φ2 + φ j

)
A1 +

1
3

(
φ2 + φ3 + φ j

)
A2 +

1
3

(
φ3 + φ1 + φ j

)
A3.

For an n−sided polygon we define

(7.8) φi =
1
3

(
φi + φi+1 + φ j

)
as the average value of φ on each sub triangle of panel P j, where i + 1 is cyclic in n, so that

if i = n, then i + 1 = 1. Then (7.7) generalizes to∫
P j

φ(x) dA ≈
n∑

i=1

φiAi.(7.9)

The sub grid reconstruction quadrature scheme uses all of the data we currently carry in

our data structures, which means it can be implemented quickly without having to change

our fundamental code. The checkerboard error we have seen in relative vorticity, which is

caused when a panel straddles a filament at the same or smaller scale than its edge length,
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Figure 7.8: Triangular panel with active particle x j and passive particles yi for i = 1, 2, 3. Tracer values φi, j

are shown as heights above their associated particle. Midpoint rule (a) assigns φ j to the entire
panel; tracer values at passive particles φi are not used in the quadrature rule. Improved method
(b) uses all particle data in a piecewise linear sub-grid reconstruction.

will be reduced. Panels will now be able to resolve features at scales on the order of the

distance between their active particle and their passive vertices. In chapter IV, we saw

that checker boarding error in relative vorticity is associated with a loss of conservation

of energy and enstrophy, so we expect that improving the quadrature scheme to use (7.9)

instead of (7.5) will also improve the conservation properties of our model.

7.3.2 Lagrangian remeshing to intermediate times

We have shown that adaptive Lagrangian remeshing is capable of removing the error

due to small scales developing, but this procedure comes with the high cost of rapidly

increasing N, especially if the Lagrangian parameter is mapped all the way back to t = 0

at each remeshing. A new option for our remeshing procedure will redefine the Lagrangian

parameter at each remeshing step, to avoid the accumulation of difficult to resolve small

scale features in the flow map.

To illustrate the new procedure, we assume a set of particles
(
x j(t), yi(t)

)
has reached

the first remeshing step t = trm. As before, a new set of particles
(
x̂k(trm), ŷl(trm)

)
are built.
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The old particles have Lagrangian parameters defined at t = 0, so that

x j(0) = α j(7.10a)

yi(0) = αi.(7.10b)

A tracer φ is associated via the flow map to x j and yi by

φ j = φ(x j(t)) = φ(α j)(7.11)

φi = φ(yi(t)) = φ(αi).(7.12)

In the intermediate stage of the new remeshing procedure, these Lagrangian parameters

are assigned to the new particles using inverse interpolation, preserving the flow map as

before. If particles x̂ and ŷ had been in the calculation at t = 0, they would satisfy (to

within interpolation error), the same relationship as (7.10),

x̂k(0) = αk(7.13a)

ŷl(0) = αl(7.13b)

where αk and αi are the interpolated Lagrangian parameter.

New data are then assigned to particles x̂ and ŷ using the material invariant quantities of

the current problem. For example, new values of an advected tracer φ would be assigned

as

φ̂k = φ(αk)(7.14a)

φ̂l = φ(αl).(7.14b)

Since this is the first remeshing, the original distribution φ can be used in (7.14). In the

current remeshing procedure, the Lagrangian parameter associated with t = 0 is kept

with the new particles, and the original distribution functions are used throughout the

computation to assign new data at each remeshing.
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In the new procedure, the interpolated Lagrangian parameter is replaced with particles’

current positions. This creates a new Lagrangian parameter α(1) associated with t = trm

instead of t = 0,

α(1)
k = x̂k(trm)(7.15a)

α(1)
l = ŷl(trm).(7.15b)

The original set of particles x j(t) and yi(t) are discarded, and particles x̂k(t) and ŷl(t) are

advanced in time until the next remeshing, t = trm+1. At the next remeshing, another set

of particles is created. The Lagrangian parameter α(1) is interpolated to the new particles

from x̂k(trm+1) and ŷl(trm+1). Materially invariant data are assigned to the new particles

using x̂k, ŷl, and α(1). The interpolated Lagrangian parameter α(1) provides a link from the

current time t = trm+1 to the previous remeshing, t = trm.

The new particles create α(2) by overwriting the interpolated α(1) with their current

positions, which now provides a correspondence between the new particles and x̂k(trm+1)

and ŷl(trm+1).

This procedure preserves the flow map over equal increments of time, whereas our

original remeshing procedure preserved the flow map over increasingly large increments

of time. Most importantly, the equal increments of time don’t allow small scale features to

accumulate in the flow map as they have, for example, in figure 7.5. At each remeshing the

Lagrangian parameter is refreshed, and small-scale information held within it is erased, but

through the assignment of materially invariant data via the flow map, small scale features

in tracers and vorticity are maintained. We anticipate that implementing this change in the

Lagrangian remeshing procedure may dramatically reduce the number of panels required

to resolve flow features as t increases.

Redefining the Lagrangian parameter incrementally throughout the calculation would
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be better classified as a semi-Lagrangian method, rather than a fully Lagrangian method.

It may allow us to continue to avoid the use of numerical diffusion, but maintaining the

conservation properties of our Lagrangian remeshing procedure will be a more difficult

challenge as the t = 0 Lagrangian data are discarded. We plan to include both the current

Lagrangian remeshing procedure and this new semi-Lagrangian option in the next version

of the LPPM software.

7.3.3 Treecode algorithms

Our current implementation of the Biot-Savart law integral (3.26) uses direct summa-

tion to calculate velocity. As N grows, the cost of the velocity computation scales as

O
(
N2

)
because direct summation calculates the interaction of every fluid particle with ev-

ery active particle. However, the effect of each active particle on a particular location’s

velocity diminishes with distance; far away active particles have much less impact on a

location’s velocity than active particles in its immediate vicinity.

Decomposing the active particles into a quad tree can reduce the time required to com-

pute the velocity at one location from an O (N) direct summation to an O
(
log N

)
tree code

sum by replacing computations of far-away interactions with more rapidly computed ap-

proximations. This would result in reducing the overall cost of each time step from O
(
N2

)
to O

(
N log N

)
, a considerable savings.

Tree code algorithms are commonly applied in N−body problems for the sake of com-

putational efficiency. They have been used for vortex sheet dynamics in 3D [118, 57, 94]

as well as computations of interacting vortex sheets on a sphere [158]. Applying them to

LPPM is essential in order to provide an efficient dynamical core at high-resolution and

large N.
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7.4 Future research

7.4.1 Shallow water test cases

Chapter VI presents the shallow water equations using a Lagrangian formulation of

their vorticity-divergence form. While we are implementing the software improvements

identified in section 7.3 we will also be experimenting with the strategies for evaluating

spatial derivatives in Lagrangian particle methods which were introduced in chapter VI.

Once we have chosen a suitable strategy for evaluating J(u) and ∇2u when u is given by

a Biot-Savart law, we will perform the shallow water dynamical core test cases in a very

similar manner to the way we have evaluated the barotropic dynamical core produced in

this thesis.

The majority of the shallow water test cases are due to Williamson et al. [187]. We

have already completed an evaluation of our advection scheme in chapter V. The next test

cases, like the ones presented in chapter IV, increase in complexity and include unstable

steady states of the nonlinear shallow water equations.

Several test cases used to simulate realistic flows such as transitory low pressure sys-

tems and flow over topography are included, and high-resolution solutions from a proven

spectral transform dynamical core are provided for comparison. Also included in these

tests are a shallow water version of the RH4 test case from section 4.2. A Rossby-Haurwitz

wave is not an analytic solution of the shallow water equations, so there is no exact solution

to compare computed solutions to; instead, this test case looks for physically appropriate

correlations between the fluid height h and the vorticity ζ. Cyclonic vorticity should cor-

respond to smaller fluid thickness, while anticyclones should have larger fluid thickness.

Similar to our work with the stratosphere model (section 4.5), the authors of [187]

suggest using past observations of 500 hPa flow to initialize a shallow water model, and

to compare the resulting forecasts to observed data at corresponding times as a way to
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comment on the physical realism of the model solutions.

Galewsky et al. [67] provide an additional test case that is defined with balanced an-

alytic initial conditions, and develops many realistic flow characteristics due to nonlinear

interactions between vorticity and divergence as t increases. This test case is set up as

a steady midlatitude zonal jet, like section 4.4, with a perturbation added to the height

field. This perturbation causes growing oscillations in the jet due to the flow’s barotropic

instability, and like the later test cases in [187], computed solutions should be compared

to high-resolution reference solutions for evaluation.

Once we are satisfied with our method’s solutions of the standard shallow water dynam-

ical core test cases, new test cases can be produced to examine flow features captured by

the shallow water approximation. Significantly, these include interactions between waves

and vorticity [164] and shallow water gravity waves, which can be used to model tsunamis

[76].

7.4.2 Voronoi diagrams and Delaunay triangulations

We have mentioned the properties of Voronoi diagrams and Delaunay triangulations

that make them attractive as the basis of a moving unstructured horizontal discretization

of the unit sphere. However, we have also not yet had the success we had anticipated

while using them. This is due to the challenge of performing adaptive refinement on a

native Voronoi grid, and difficulties with the STRIPACK [146] software library’s Voronoi

algorithm [25].

Despite these difficulties, we also acknowledge that the success of our Lagrangian

remeshing procedure is partially based on the Delaunay triangulation of our fluid particles.

The interpolation library SSRFPACK [147] uses the Delaunay triangulation produced by

STRIPACK to perform its cubic interpolation procedure.

We have begun developing our own implementation of the incremental Voronoi algo-
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rithm provided by [7] in Fortran, in order to experiment with adaptive refinement proce-

dures that do not rely on recursive division of fixed-type polygons. Additional Voronoi

diagram software is being developed for parallel computing environments by [90] and the

Computational Geometry Algorithms Library (CGAL) [172, 40]. Both of these software

packages are written in C++, which would require a major change to our existing software

to use.
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APPENDIX

Interpolation of Scattered Data on a Sphere

The remeshing procedures introduced in chapter II are dependent upon accurate inter-

polation of the Lagrangain parameter from scattered data on the surface of a sphere. A

review of many such interpolation methods is provided by [55], and several methods are

investigated on spherical geodesic grids in [24].

The interpolation problem may be stated as follows: Given a set of scattered points

{xi}
n
i=1 lying on S ⊂ R3, and real numbers {φi}

n
i=1 that represent data defined on {xi}, we

seek a function g defined on S that either interpolates the data {φi} in the sense that

( A.1a) g(xi) = φi, i = 1, . . . , n

or approximates the data {φi} in the sense that

( A.1b) g(xi) ≈ φi, i = 1, . . . , n.

Typically, we want the function g to be continuous, g ∈ C0, but in many cases it may be

desirable for g to possess at least a finite number of continuous derivatives g ∈ Cr where

r ≥ 1 so that the surface

( A.2) F =
{(

x, g(x)
)

: x ∈ S
}

is tangent plane continuous or differentiable [55].
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A.1 δ-convolution approximation

One of our initial attempts at solving ( A.1) was an infinitely smooth approximating

function based on Green’s function (3.17) and its definition as the solution of (3.18), which

involves a delta function. A delta function δS (x) = δS (λ, θ) on S is a distribution that

satisfies the equations

δS (x) = 0 for x , 0,( A.3a)

lim
ε→0

∫ ε

−ε

∫ ε

−ε

δS (λ, θ) cos θ dθdλ = 1,( A.3b) ∫ 2π

0

∫ π/2

−π/2
δS (λ − λ̃, θ − θ̃)φ(λ̃, θ̃) cos θ̃ dθ̃dλ̃ = φ(λ, θ),( A.3c)

where φ : S 7→ R is a scalar function.

Zemanian [190] provides a discussion that includes periodic test functions applicable to

spherical domains, and Jackson [89] illustrates a formal change of variables transformation

to derive delta functions on non-Euclidean spaces.

Definition A.1. The delta function on S, δS (x) = δS (λ, θ), is

( A.4) δS (λ, θ) =
1

cos θ
δ(λ)δ(θ),

where δ(λ) and δ(θ) are Dirac delta functions on R.

Stakgold [165] defines a delta-sequence as a family of smooth functions δε(x) with a

parameter ε that converge in the sense of distributions to a delta function as the parameter

ε converges to zero,

( A.5) lim
ε→0

δε(x) = δ(x).

Computationally we may use delta sequences to approximate the action of a delta func-

tion by choosing small positive numbers for the parameter ε. A delta sequence can be gen-
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erated on S by applying the Laplace-Beltrami operator to the regularized Green’s function

( A.6) Gε(x, x̃) =
1

4π
log(1 − x · x̃ + ε2).

This implies that the smoothing parameter ε has units of arc length, as the quantity 1− x · x̃

is half the square of the chord distance between x and x̃ (1.15h). We also note that using the

regularized Green’s function in chapter III would lead to a vortex blob method. Applying

the Laplace-Beltrami operator to ( A.6), we arrive at the following definition [184].

Definition A.2. The function

δε(x, x̃) =
−(1 − x · x̃)2 + 2ε2x · x̃

4π(1 − x · x̃ + ε2)2 −
1

4π
( A.7a)

δε(λ, θ, λ̃, θ̃) =
−(1 − cos γ)2 + 2ε2 cos γ

4π(1 − cos γ + ε2)2 −
1

4π
( A.7b)

is a delta sequence on S as ε → 0, where cos γ is the cosine of the central angle between

the vectors x and x̃ given by (1.16). It represents a source at x̃ 7→ (λ̃, θ̃). Figure A.1 shows

cross sections of this function for several values of the smoothing parameter ε. As ε → 0

the width of δε(x, x̃) decreases and its height increases to converge toward a function that

satisfies ( A.3).

Equations ( A.7) and ( A.3c) provide the basis for an approximation method for ( A.1)

via the identity

( A.8) φ(x) = lim
ε→0

∫
S

δε(x, x̃)φ(x̃)dÃ.

We may approximate the integral ( A.8) with particles and panels using ( A.7) by con-

sidering the active particles as the sources x̃ for some quantity φ(x) defined at each active

particle. Let x j(t) denote the active particle positions at time t and φ j be the function’s

values defined on the active particles at time t. Quadrature weights are given by the panel

areas A j and the data values φ j. We choose an ε > 0. Let x0 ∈ S be a location where we
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Figure A.1: Plots of δε(λ, θ, λ0, θ0) for λ0 = π, θ0 = π/4 for various smoothing parameters ε. (a) A longitu-
dinal cross section along θ = θ0. (b) A latitudinal cross section along λ = λ0.

desire an approximation using g, then

( A.9) φ(x0) ≈ g(x0) =
1

4π

N∑
j=1

−(1 − x0 · x j(t))2 + 2ε2x0 · x j(t)
(1 − x0 · x j(t) + ε2)2 φ jA j −

1
4π

N∑
j=1

φ jA j.

Approximations using equation ( A.9) are subject to two types of error: discretization

error due to quadrature and smoothing error due to the parameter ε. We apply this approx-

imation to the problem of interpolating a cosine bell considered by [24]. The cosine bell

is defined on the unit sphere by scaling the cosine bell tracer from [187],

φCB(x) =


h0
2

(
1 + cos

(
π dist(x,x0)

R

))
if dist(x, x0) < R

0 otherwise

,( A.10)

where dist(x, x0) is the geodesic distance (1.19) between x and the center of the cosine

bell x0 7→ (λ0, θ0). The parameters are h0 = 0.0016, R = 1/3, λ0 = θ0 = 0.

Figure A.2 shows error convergence as N increases for various values of the smoothing
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Figure A.2: Approximating a cosine bell on S with δ-convolution using uniform meshes: l2 relative approx-
imation error vs. N for various smoothing pameters ε.

parameter ε. The smallest smoothing parameters (black and magenta curves) require the

largest N to resolve, because the smooth delta functions are finer than coarse grids’ panels.

This is an example of discretization error, as it is caused by unresolved features. As N

increases, error converges to zero at a rate proportional to 1/N, which is consistent with

midpoint rule quadrature. In contrast, the blue and red curves show error decreasing as N

increases until a saturation point is reached. The saturated error is smoothing error. For

a fixed ε, smoothing error does not decrease as N increases because the approximating

functions do not exactly satisfy ( A.8).

The same data are shown in figure A.3, which plots the interpolation error as a function

of the smoothing parameter ε for various grid sizes. Each curve has a minimum error

which indicates the optimum choice of smoothing parameter for that grid size. To the

right of the minimum for a particular curve, we see error due to smoothing because ε is
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Figure A.3: Approximation error of a cosine bell with δ-convolution on quadrilateral panels for various N
vs. smoothing parameter ε.

too large for that grid size. To the left of the minimum, the increased error is discretization

error – the grid is not capable of resolving the increasingly fine peaks of the approximate

delta functions. From right-to-left toward the minimum, error convergence as ε → 0, is

O
(
ε3/2

)
, as indicated by the slope of the thin black line.

These results suggest that an optimal value for the ratio of mesh size ∆λ to smoothing

parameter ε is approximately

( A.11)
∆λ

ε
∈ [0.75, 1).

For the computations shown in figure A.3, the optimal ratio is ∆λ/ε = 0.782.

In vortex blob methods, convergence proofs are based on an assumption that the smooth-

ing parameter ε varies as a fractional power of the mesh size [74, 142, 14], and in practice

numerical accuracy is lost when smoothed particles cease to overlap [38, 97]. This loss

of accuracy is depicted in figure A.3 by the increase in error as ε → 0. The ratio ( A.11)



194

is another verification of these results. It is important to distinguish this approximation

error due to particles not overlapping at small values of the smoothing parameter from the

velocity error discussed in chapter IV.

Point vortices do not overlap at all, and correspond to the limit ε → 0 of a vortex blob

method. We saw that point vortices were capable of accurately approximating velocity

fields via the Biot-Savart law in chapter IV, which at first seems contrary to the results

shown in figure A.3. However, the Biot-Savart kernel (3.22) has a weaker singularity than

the approximate δ-kernel ( A.7) and point vortices are therefore capable of converging to

the correct velocity field solution without smoothing. Point vortices would require smooth-

ing to approximate the vorticity field, but this was not the objective of our work with the

barotropic vorticity equation in chapters III and IV.

Approximation with δ-convolution is similar to interpolation with radial basis functions

(RBF). In both methods, the influence of each source data point is a function of the radial

distance from that point. As an approximation method, in δ-convolution there is no need

to solve a dense N × N linear system for the interpolation weights, as there is in an RBF

method. This avoids an expensive and ill-conditioned calculation [56], but at the same

time the lack of an interpolation matrix is likely responsible for the lower accuracy of δ-

convolution approximations on this cosine bell interpolation problem compared to results

from collocation methods using RBF [24].

The advantages of δ-convolution approximation are that it provides an infinitely smooth

approximating surface, and, as a quadrature based method, it is easily implemented on the

particle-panel data structures we have already developed. It is inexpensive relative to an

interpolating method that would require the solution of a dense N × N interpolating linear

system. It also provides a first step toward a means of approximating the forcing terms of

the shallow water equations, as discussed in the regularized Biot-Savart kernel strategy of
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chapter VI.

The disadvantage of approximating surfaces with δ-convolution is its accuracy. The

errors shown in figures A.2 and A.3 for delta-convolution approximation are much larger

than both piecewise linear interpolation and cubic polynomial interpolation methods at

the same grid resolutions [24]. Improving the quadrature scheme (chapter VII) and apply-

ing our adaptive refinement algorithms to δ-convolution approximation problems could

improve the accuracy. These items are marked for future study.

A.2 Piecewise linear interpolation and Shepard’s method

The first local interpolation algorithm we discuss uses barycentric coordinates on a

triangle to perform linear interpolation. Linear interpolation requires three source data

points to define a local plane. We describe an interpolation procedure that will work on

polygons of arbitrary type, using the sub triangles from the triangular decomposition of

our Lagrangian panels (figure 1.7).

Let x0 represent a point where we need an interpolated value. First, x0 is located within

the panel set using the point-query algorithm shown in figure 2.8. Within that panel, the

sub triangle that contains x0 is located. This sub triangle provides the source data for the

linear interpolation procedure illustrated in figure A.4.

One of the sub triangle’s vertices is the panel’s active particle x j; the other two vertices

yA and yB are passive particles. Let AT denote the area of the entire sub triangle. The in-

terpolation point x0 introduces three smaller triangles within the panel sub triangle shown

in figure A.4.

Each of these three smaller triangles provide the interpolation weights wi for i = 1, 2, 3,
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Figure A.4: Linear interpolation on a panel sub-triangle with barycentric weights.

w1 =
Area(x0, yA, yB)

AT
( A.12a)

w2 =
Area(x0, yB, x j)

AT
( A.12b)

w3 =
Area(x0, x j, yA)

AT
,( A.12c)

where the area function Area(xA, xB, xC) is given by (1.22). Note that
∑3

i=1 wi = AT .

The weights ( A.12) provide the interpolating function

( A.13) φ(x0) ≈ g(x0) = φ jw1 + φAw2 + φBw3.

The definition of the interpolating weights ensures that condition ( A.1a) is met at each

vertex of the sub triangle.

Another first-order accurate local interpolation scheme is given by Shepard’s method

[26, 24]. If the destination point x0 is equal to any of the particles in the panel, then the data

associated with that particle is assigned to x0 to satisfy ( A.1a); otherwise interpolation

weights are computed as inverse powers of distance between the destination point and each

source data point. The weight associated with the active particle is w0 = dist(x0, x j)−p, and



197

each passive particle has a weight given by wi = dist(x0, yi)−p for i = 1, . . . , 4. The

parameter p is a positive real number; typically p = 2, but we have found better accuracy

with p = 3, which was suggested by [26]. Shepard’s interpolation method is given by

g(x0) =



g0 if x0 = x j

gi if x0 = yi 1 ≤ i ≤ 4

1∑4
i=0 wi

(∑4
i=0 φiwi

)
otherwise

.( A.14)

As it is a local method, it begins by first locating the panel that contains x0 using our point

query algorithm (figure 2.8). Shepard’s method uses all particles (both active and passive)

from the panel containing x0.

This method is subject to possible ill conditioning when x0 is very close to one of the

particle locations; in this case the weight associated with that particle approaches infinity.

A variation that avoids having to compare equivalence of finite precision real numbers

adds a smoothing parameter to the weight,

( A.15) wi =
(
dist(x0, yi) + ε

)−p .

This variation makes the method an approximation scheme, rather than an interpolation

scheme.

The addition of a smoothing parameter makes this version of Shepard’s method sim-

ilar to the global approximation using δ-convolution introduced in the previous section.

Numerical experiments with each of the methods introduced so far, δ-convolution, piece-

wise linear interpolation, Shepard’s interpolation, and the smoothed variation of Shepard’s

method shows that they are only first-order accurate in N as N → ∞. Used as part of the

Lagrangian remeshing procedure introduced in this thesis, they give similar results in both

accuracy and convergence rates to the piecewise linear data shown in figure 5.6.
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As established in the barotropic vorticity equation and advection equation results, the

accuracy of our algorithm is most affected by the accuracy of the interpolation method

used to perform the Lagrangian remeshing. We conclude that higher order interpolation

methods are necessary, which is why we chose the cubic Hermite interpolation method

provided by the SSRFPACK software mentioned in chapter II.

A.3 High-order interpolation

Developing high order accurate methods on our current data structures could begin

with the interpolation and approximation schemes discussed in the previous section. The

global δ-convolution approximation could be made more accurate with a higher order

quadrature scheme, or more accurate interpolation kernels [53]. The local piecewise linear

interpolation scheme could be modified to use higher degree interpolating polynomials.

This may require adding source data to the interpolation from panels adjacent to the panel

that contains the destination point, but the data structures introduced in chapter II are

capable of quickly providing adjacency information. Similar to methods used by [130], a

polynomial of the desired degree could be obtained by least-squares fitting of data from

active and passive particles from any number of adjacent panels.

As discussed in previous chapters, we have so far relied on the SSRFPACK software

library [147] for remeshing interpolation. It provides a cubic Hermite interpolation of

scattered data using the Delaunay triangulation of the source point locations. We chose

SSRFPACK because it is accurate, convenient, and efficient for geophysical applications

(it is included in distributions of the NCAR Command Language [180]). It is written in

Fortran 77 and was therefore easy to link with our code. In addition, its use of Delaunay

triangulations provided a quick introduction to their associated algorithms and Voronoi di-

agrams, which we had wanted to investigate. Perhaps most significantly, these algorithms
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complete in O (N) time, which means that a remeshing procedure using SSRFPACK will

run in asymptotically smaller time than the time required to compute one time step, which

currently is O
(
N2

)
, due to the direct summation used to compute the Biot-Savart integral.

This will still be an advantage of using SSRFPACK even after the addition of tree code

algorithms, which will reduce time step computations to O
(
N log N

)
.

Of course, other interpolation methods are possible; the review provided by [55] con-

tains 206 references and is already fifteen years old. SSRFPACK is familiar to the dy-

namical core community, but Radial Basis Functions (RBF) are becoming more com-

mon in vortex methods [9, 10], and increasingly found in geophysical applications as

well [184, 189, 24]. Additionally, recent efforts have produced RBF methods that provide

interpolating functions that possess useful properties in addition to a specified number of

continuous derivatives. A procedure for using RBF interpolation of scattered data that pro-

vides a divergence-free interpolating vector function was presented by [133, 65]; methods

that provide irrotational vector interpolations are possible using the same technique [64].

Partition of unity methods, when combined with RBF, may reduce the computational cost

of inverting the dense, ill-conditioned interpolation matrix typically associated with RBF

methods [27, 189].

The data structures we use, face-edge-vertex relations and winged-edges specifically,

originated in the fields of computer graphics and computational geometry. Methods of

interpolating scattered data developed for those fields may provide a suitable method for

remeshing interpolations in our algorithms. An example of a possible method from those

fields that may be of use is the plate-fitting method for approximating surfaces defined by

point clouds [44].
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