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CHAPTER I

Introduction

Nanofabrication is the growth of nanometer to micrometer scale structures and

has important applications in electronics and opto-electronic devices. Because of the

short length scale, such structures are grown using atomistic processes that rely on

thermodynamic properties of the materials used. Such processes include surface dif-

fusion, adsorption and desorption. Depending on the relative rates of these processes,

the resulting nanostructures can exhibit a broad range of phenomenology, leading to

a corresponding range in the macroscopically observed electronic and optical prop-

erties of the prepared sample. Understanding the dynamic processes inherent in the

fabrication of nanostructures at an atomistic resolution is therefore important in

the development of materials with desirable properties. As such, the use of atom-

istic modeling and simulation compliments experimental, high resolution microscopy

techniques such as transmission electron and atomic force microscopy. Moreover,

atomistic modeling provides users a method of fine-tuning energetic parameters such

as atomic bond strengths without reference to a specific physical material, allowing

the study of material properties with respect to such parameters.

The difference in time and length scales between the atomistic processes outlined

above and the mesoscales observed in structures of interest poses an inherent problem
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in simulations. For example, atomistic surface diffusion of a single Ga atom has

an associated diffusion length scale on the order of nanometers and a time scale

on the order of microseconds [2]. As we shall see, such a process is important in

the formation of GaAs nanostructures that are of order 100 nm in size and are

grown over periods of minutes. Nanowires often achieve heights on the order of

tens of micrometers over a period of hundreds to thousands of seconds [3–6]. The

separation of scales imply that atomistic techniques must perform a large number

of local events in order to simulate the self-assembly of these mesoscale structures.

As such, it is important that the algorithms and implementations underlying any

atomistic simulation be efficient.

The approach taken in this dissertation is Kinetic Monte Carlo (KMC), a tech-

nique generally regarded as well suited for mesoscale simulations, examples of which

were described above. In the realm of simulation and modeling of physical systems,

it sits between molecular dynamics, which handles small scale systems with a high

degree of accuracy, and continuum methods, which are often used for larger scale

systems at the expense of obscuring atomistic details. One of the first applications

of KMC was in simulating the Ising model [7]. It has since been used to model

a wide range of phenomena including the growth mechanisms of thin films [8–10],

island nucleation and growth [2, 11], chemical vapor deposition [12], and catalytic

oxidation [13]. Much work has been done incorporating elastic strain effects to sim-

ulate strained heteroepitaxial systems [14–18]. Off-lattice simulations include that

of Al(100) crystal growth [19] and the modeling of 2D cluster diffusion [20]. Apart

from applications in materials science, a similar method known as Dynamic Monte

Carlo has been used to study protein folding [21,22].

Because of its ability to simulate the formation of mesoscale structure efficiently,
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KMC is being applied to increasingly complex systems. Examples of such systems

are described in this work, where not only do we attempt to simulate even larger scale

structures, but we introduce multiple species and multiple phases. We also depart

from the traditional Solid-on-Solid (SOS) model, in favor of one that allows for the

formation of more complicated morphologies. The central thesis of this dissertation is

that KMC can be used to model a broad range of large scale structures in an efficient

and flexible manner and as such, is a useful tool in the analysis of nanofabrication

and materials science in general.

This dissertation presents an efficient KMC implementation and its application

to three example systems. It illustrates how the KMC model can be used to analyze

the resulting morphological structure in the context of KMC model parameters. As

our primary example, we consider liquid Ga droplet epitaxy and crystallization by

an As flux. There, Ga atoms are deposited on a GaAs substrate, and nucleate liquid

droplets. The droplets are then exposed to As and crystallize into GaAs nanos-

tructures. We show how parameters are calibrated in order to capture a range of

phenomena, including correct surface termination, droplet size and density, droplet

etching and the parametric dependence on the resulting nanostructure. As an ex-

tension to the KMC model, a unifying analytic model is developed to describe the

critical conditions for the existence of nanostructure.

As further illustration of our implementation’s ability to handle a broad range

of phenomena, we present two more example applications. The second example

describes simulations of nanowire growth by the Vapor-Liquid-Solid (VLS) method.

In VLS, a liquid droplet on a solid substrate is exposed to a vapor. Atoms in the

vapor phase are incorporated into the droplet and undergo a catalyzed vapor to solid

reaction. The resulting solid atom then precipitates onto the liquid-solid interface,
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resulting in nanowire growth. We study the effect of energy parameters that affect

the rates of vapor to solid reactions and atom mobility at the liquid-solid interface.

Simulations show a variety of nanowire morphologies, including broad, tapered bases

and nanowire kinking. Atomic trajectories are also studied to gain insight on the

growth modes leading to the observed morphologies. As a third application, we

present simulations of sintering, by which we mean the evolution of porous granular

material. In this system, grains evolve by atomistic changes in orientation at grain

interfaces and by surface diffusion along grain-pore interfaces. We show how the

KMC treatment of this system is similar to that of other atomistic grain growth

models such as the Monte Carlo Potts model, but incorporates both orientation

changes and surface diffusion within a proper kinetic framework. The amount of

grain coarsening is then studied as a function of temperature and the energy barrier

for orientation changes.

The outline of the dissertation is as follows. Chapter II introduces the underlying

KMC model and algorithms. It details the basic notions of activation energies and

rates underpinning KMC as a continuous time Markov chain (CTMC). Section 2.1.1

motivates and details the alternative to the SOS constraint used throughout the

simulations. Section 2.1.2 details how the liquid phase is identified and treated

in order to capture reasonable behavior with our on-lattice model. Section 2.1.3

describes the principle of detailed balance in the context of CTMC, and describes

how activation energies are selected in order to satisfy this requirement. In section

2.2, we explore the underlying algorithms of KMC and describe efficient methods for

sampling and updating the Markov chain. Section 2.3 details an important aspect

to our specific KMC implementation: using a rate cache to eliminate redundant

rate calculations. We motivate its use, and show how its implementation leads to
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a significant performance gain. Key to the efficiency of such a rate cache is the

selection of a system-specific hash function, In Section 2.3.3, we describe a simulated

annealing search for optimal hash functions.

In Chapter III, we turn our attention to the first application of our KMC im-

plementation – Ga droplet epitaxy and crystallization. We describe the choice of

model parameters in Section 3.2, including simulations of GaAs homoepitaxial thin

film growth in Section 3.2.1. Droplet epitaxy simulation results are presented in

Section 3.3. There, we study the nanostructural dependence on growth conditions.

We present experimental results exhibiting this dependence, along with correspond-

ing simulations (Section 3.3.1). The model can capture the broad range of nanos-

tructures observed in the experiments with the correct qualitative dependence on

growth parameters. Moreover, simulations predict the presence of Ga/GaAs core-

shell structures, which are difficult to observe unambiguously in experiments. This is

described in Section 3.3.3. The existence of both monocrystalline and polycrystalline

shells suggest two independent mechanisms for their formation: a morphological in-

stability of the crystallization front or nucleation at the vapor-liquid interface. We

show by simulation that nucleation-induced shell structures may be recrystallized

into fully crystallized GaAs islands by annealing at high temperature. In the case

of the instability-driven shell formation, we provide simulation evidence to suggest

the presence of a Mullins-Sekerka instability. Lastly, we develop a fully analytical

model (Section 3.4) that describes the existence of the structures observed and their

dependence on growth conditions. The theoretical model agrees well with simulation

and experimental results.

In Chapter IV, we present simulations of the two other example systems we con-

sider in this work: nanowire growth and sintering. Nanowire simulation results are
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presented in Section 4.1, which details a study of the effect of energy parameters on

nanowire growth modes. Lastly, Section 4.2 details the sintering simulations. There,

we measure the effect of energy parameters and temperature on coarsening statistics.

Critical coarsening phenomena is observed in Section 4.2.1.

Sections of this dissertation appear verbatim in [23] and [24].

1.1 A brief overview of atomistic modeling

Before we describe kinetic Monte Carlo, it is instructive to provide a overview

of atomistic modeling in general. Doing so motivates the specific components of

KMC and illustrates why KMC is appropriate for the systems we wish to study.

Among the primary techniques in atomistic modeling is Molecular Dynamics (MD).

In MD, atoms occupy positions in R3 with no preference to specific points in space (as

opposed to lattice-based techniques, which are described below). Atoms interact with

each other via an atomic potential Φ(x1, . . . ,xN) that measures the total potential

energy of atoms occupying positions x1, . . . ,xN ∈ R3 in space. Often the potential

Φ is expressed as the sum of n-body interaction potentials φ(x1, . . . ,xn), where

x1, . . . ,xn are a collection of the n atom positions in the system. Typically, n is a

small number. When n = 2, the potential φ(x1,x2) is called a pair potential, and

the total potential energy is obtained by summing over every pair of atoms in the

system:

(1.1) Φ(x1, . . . ,xN) =
1

2

∑
x1

∑
x2

φ(x1,x2).

An example of a typical pair potential is the Leonard-Jones potential:

(1.2) φ(x1,x2) = ε

[(σ
r

)12

−
(σ
r

)6
]
,

where

r = ‖x1 − x2‖2,
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and ε, σ are parameters. This potential depends only on the distance r between

the two interacting atoms and consists of an repulsive term
(
σ
r

)12
that is dominant

for small r and an attractive term
(
σ
r

)6
dominant when r is large. The values of ε

and σ determine the strength of the repulsion and attraction, and the value of the

equilibrium length that minimizes the potential energy. Using pair or higher order

n-body potentials is computationally expensive a priori, as it costs O(Nn) to sum

over every
(
N
n

)
subsets {x1, . . . , xn} of size n . However, many potentials depend

solely on the distances between atoms, and such dependence may be negligible over

longer length scales. As such, in practice computational speed-ups may be gained

by employing cut-off or nearest-neighbor techniques in which interactions between

atoms sufficiently far apart are neglected. For example, for the Leonard-Jones po-

tential above, auxiliary bookkeeping may be made so that every atom position xi is

associated with a list Ni containing the location of every other atom within a fixed

radius. Then the summation in Equation (1.1), which takes quadratic work, may

be replaced with one in which the inner summation is no longer over every atom in

the system, but over the lists Ni. Assuming the size of such lists are constant with

respect to N , the computation of the potential energy (1.1) would be linear in the

the system size.

Given an initial configuration of atom positions x1, . . . ,xN and atom velocities

v1, . . . ,vN , an MD simulations proceeds by integrating

mv̇i = Fi

vi = ẋi

for force term Fi. The force term is often derived from Newtonian dynamics, in
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which forces arise from gradients of the potential energy:

Fi = −∇xi
Φ,

or Langevin dynamics:

Fi = −∇xi
Φ− γMvi +

√
2γkBTmR(t),

where kB is Boltzmann’s constant, T is temperature, γ is a damping factor, and R(t)

is a Gaussian process. The advantage of the latter is its ability explicitly control

temperature.

The graph of Φ(x1, . . . ,xN) over the high-dimensional configuration space R3N

is called the potential energy surface. For systems with a large number of parti-

cles, the topography of this landscape is quite complicated, and consists of several

local minima separated by saddle points. The trajectories of atoms in R3 lead to a

corresponding trajectory on the potential energy surface

Φ(t) = Φ (x1(t), . . . ,xN(t)) .

An examination of this trajectory during a typical MD simulation illustrates a main

disadvantage of the MD technique. As a simulation progresses the trajectory Φ(t)

vibrates within a basin of a local minimum of the energy surface. Macroscopically,

such vibrations do not qualitatively differ from the configuration described by the

local minimum. Often, we are interested in events in which the trajectory crosses

over a saddle point of the energy surface, indicating a transition from one basin to

another. Such events are rare events in MD, so an MD simulation must expend a

large number of time steps in order to witness a qualitatively significant transition.

Typical MD simulations use a time step of one femtosecond (10−15 s), while the time

scale for a process such as e.g. Ga diffusion on GaAs is on the order of microseconds
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(10−6 s) so that MD simulations would require billions of time steps in order to

simulate the diffusion of an adatom over its characteristic length scales. Because of

the computational burden associated to MD, this technique is usually restricted to

simulating systems with a small number of atoms on the time scale of nanoseconds.

One way to address this disadvantage is to explicitly model the transitions between

basins, viewed now as states in which the corresponding local minimizers are seen

as representative configurations for the basins that they occupy. The correct rate

constants at which these transitions occur is dictated by transition state theory. The

rate constant r(X → Y ) describes the transition from state X to Y and is given by

the equilibrium flux (under the Boltzmann distribution) from state X through the

saddle point connecting X and Y . Such constants are of Arrhenius form:

(1.3) r(X → Y ) = νX,Y exp

[
E(X ∧ Y )− E(X)

kBT

]
,

where νX,Y is a rate pre-exponential factor and X ∧ Y is the intermediate state

described by the saddle point. The energy E(X) is the energy of the local minimizer

corresponding to state X, and can be obtained from any configuration within that

minimizer’s basin by gradient descent. The energy E(X ∧ Y ) represents the energy

of the saddle point.

The state space X identified with the set of local minimizers along with the transi-

tion rates r(X → Y ), for X, Y ∈ X and the assumption that the evolution process is

Markovian results in a continuous time Markov chain (CTMC). A realization of this

CTMC leads to a straight forward simulation of the rare event transitions between

qualitatively different atomic configurations, provided that a list of states accessible

from any particular state or a list of saddle points and their respective energies can be

obtained. This realization of the CTMC is Kinetic Monte Carlo (KMC) in its most

general form. Given a state X, an accessible state Y is sampled according to the
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rates r(X → Y ) and the simulation time is incremented by the expected minimum

waiting time from state X

dtX =
1∑

Y rX,Y
,

assuming exponentially distributed waiting times, which is implied by the Markov

property. This process is iterated until the desired simulation time is achieved.

Enumerating saddle points, and hence allowable transitions, and their respective

energies poses a difficulty that was not present in MD techniques. Saddle point find-

ing methods must be therefore employed. Common techniques to do so include the

nudged elastic band method [25] and the dimer method [26]. Saddle point methods

are computationally expensive. As an alternative to searching for saddle points, ex-

plicit transitions can be instead defined a priori via local, atomistic events. These

local events alter a configuration in a small volume of space, keeping the rest of

the configuration static. For example, in KMC a typical process is the diffusion of

an adatom on the surface of a film. The local, atomistic event that corresponds to

this process is an atom hop, the movement of an atom a small distance in a par-

ticular direction. The intermediate state for this event can be defined by removing

the diffusing adatom. While this approach gives up generality by requiring the a

priori specification of events, the computational speed-up gained by avoiding saddle

point searches makes it attractive in the context of simulating large-scale, complex

problems.

One outstanding problem in this presentation of KMC is that the energies of the

local minimizer and of a saddle point are obtained indirectly by gradient descent.

This too is computationally expensive when performed in the high-dimensional con-

figuration space. One variant that attempts to address this is bond-counting, on-

lattice kinetic Monte Carlo (BC-LKMC). In BC-LKMC, it is assumed that local
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minimizers correspond to configurations in which atom reside on a crystallographic

lattice. Each atom is considered bonded to its neighbors on the lattice, and each

such bond is assigned a bonding energy. The total energy of a configuration is the

sum of the bonding energies within the system. Transitions between configurations

are restricted to local events in which atoms are allowed to move only between neigh-

boring lattice positions or the species of a single position is altered. Intermediate

states are also placed on lattice, and the energy of these states is calculated in an

identical manner. Due to the local nature of events and the direct representation of a

configuration’s energy in terms of atom bonds, the energy difference in the transition

rate (1.3) can be obtained in constant time by identifying the small number of bonds

that are different between an initial and intermediate configuration. This leads to

an reduced computational burden by avoiding the gradient descent computations

necessary if the energy is not so directly calculated. Therefore, the main advantages

of BC-LKMC are:

1. a discretization of state space corresponding to local minimizers of the potential

energy landscape;

2. a modeling of only rare event transitions between these local minimizers;

3. an explicit enumeration of the allowable transitions as local changes of the lattice

occupancy pattern;

4. a local calculation of energy differences;

We have thus presented the development of BC-LKMC as a sequence of steps

taken to provide a computationally efficient simulation that captures the relevant

underlying physics behind its motivation. More can be said about further com-

putational considerations in BC-LKMC, including the choice of appropriate data
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structure used to sample events, as is described in Section 2.2. Indeed, much of the

work in developing an efficient BC-LKMC algorithm is in this choice [27, 28]. Of-

ten overlooked, however, is the calculation of event rates in Equation (1.3). Albeit

constant-time, this calculation must be performed several times each Monte Carlo

step, and contributes a significant portion of floating point operations. As such, rate

calculation is often a considerable bottle neck in a BC-LKMC implementation. A

major focus of this work is in addressing this problem.



CHAPTER II

Kinetic Monte Carlo

2.1 The Kinetic Monte Carlo Model

The underlying model used throughout this work is an example of BC-LKMC

described above and hereafter simply referred to simply as KMC. Most generally,

atoms occupy positions on a graph G = (Λ, E), typically embeddable in S1 × R

for the 1+1 dimensional simulations with periodic boundary conditions presented

in this work. Positions are either unoccupied or occupied with one of S atomic

species, σ1, . . . , σS. For example, in the GaAs system the species represent vacuum

(unoccupied), Ga or As, while in the nanowire simulations, the different species

correspond to vacuum, vapor, liquid and solid phases. In the sintering simulations,

the different species correspond to different orientations of the sintered material.

Edges in the graph represent nearest-neighbor bonds between atoms. A secondary

graph Gnn = (Λ, Enn) may also be specified in which the edges Enn represent next-

nearest neighbor bonds. This naturally extends to tertiary or higher-order bonding

by the further specification of more edges. Throughout this work, shall only consider

those graphs that are crystallographic lattices with periodic boundary conditions.

One of five atomistic events can occur at each step of the simulation. Atoms

may desorb from the surface, adsorb onto vacant positions on the surface, diffuse

13
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along the surface (modeled by the exchange of an atom with a vacant position),

exchange species with a neighboring occupied position (an atom-atom exchange) or

undergo a reaction that modifies an atom’s species. All events alter a configuration

by changing the species of at most two lattice positions, affecting a small number of

local neighborhoods in which the two positions belong.

An energy E(X) is obtained from an atom configuration X by bond counting.

Bonds between neighboring atoms x and y are assigned an energy γ (σ(x), σ(y)) that

depends solely on the species σ(x), σ(y) of the atoms. The pairwise energies γ(·, ·)

are specific to the system to be simulated, and are treated as parameters. The energy

E(X) of an entire configuration X is the sum of all bonds within that configuration

E(X) =
1

2

∑
x∈X

∑
y∈X

y a neighbor of x

γ (σ(x), σ(y)) .

All event transitions X → Y between states X, Y are assigned an activation energy

of the form

(2.1) Ea(X, Y ) = E(X ∧ Y )− E(X) + ε(X, Y ),

where X ∧Y is a well-defined intermediate state and ε(X, Y ) is an additional energy

barrier. As will be discussed momentarily, the additional energy barrier is event and

neighborhood specific. Rates for the transition X → Y are given by

(2.2) r(X → Y ) = R0 exp

[
−Ea(X, Y )

kBT

]
,

which are of the form in Equation (1.3) in which

νX,Y = R0 exp

[
−ε(X, Y )

kBT

]
,

where R0 = 1013 s−1 is a constant prefactor. Each of the five events are assigned a

method for determining an intermediate state as well as an additional energy barrier.
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Figure 2.1: An exchange event, along with the corresponding intermediate state. Atoms of species
σ, τ (colored red and blue, respectively) exchange positions. The intermediate state
is defined by replacing the exchanging atoms with an intermediary species ι = σ ∧ τ ,
colored purple.

For example, when the transition X → Y represents an atom hopping to an

adjacent, vacant position (representing the atomistic analog of surface diffusion), the

additional energy barrier ε(X, Y ) is set to zero, while the intermediate state is the

one obtained by removing the diffusing atom from the system. As such, the difference

in bonding between X and X ∧ Y is precisely the bonds attached to the diffusing

atom. Therefore, the activation energy Ea(X, Y ) = E(X ∧ Y ) − E(X) represents

the bonds broken in order to perform the hop. The case of two exchanging atoms

is depicted in Figure 2.1. There, the two atoms have species σ, τ , respectively. The

intermediate state is defined by replacing the two exchanging atoms with atoms of

an intermediate species, denoted σ ∧ τ . To calculate the energy E(X ∧ Y ) of the

intermediate state, bonding energies between the intermediate species and any other

atom are obtained by averaging:

(2.3) γ(·, ι(σ, τ)) =
1

2
(γ(·, σ) + γ(·, τ))

For this exchange event, the additional energy barrier in the form (2.1) describes the

extra barrier necessary to exchange two atoms and will be denoted εex throughout

this paper.
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In the case of a reaction event in which an atom of species σ changes to one of

species τ , a similar intermediate state can be defined by replacing the reacting atom

with one of intermediate species σ ∧ τ . Bonding energies between this intermediate

species and any other atom is computed as in Equation (2.3). The additional energy

barrier for a reaction is denoted as ρ throughout this paper.

Remark II.1. Stronger bonds are energetically advantageous, and should result in a

lowering of the energy. Therefore, bonding energies γ(·, ·) are regarded as negative

values. However, the energies reported in this dissertation are presented as positive

numbers as a matter of convenience. In order to get the correct positive energy

difference E(X ∧Y )−E(X), this quantity is correspondingly negated in subsequent

calculations. That is, we maintain the convention that γ(·, ·) ≥ 0 and compute an

activation energy

Ea = E(X)− E(X ∧ Y ) + ε(X, Y )

whenever using the bonding positive energies.

2.1.1 Path connectedness

In the systems we consider, many complex morphologies and growth mechanisms

are observed in experiments. For example in nanowire growth, experimentally ob-

served phenomena such as diffusion along the length of the wire and nanowire kinking

(a change in growth direction) must be captured in our model. As such, the SOS

constraint, which dictates that atoms must be positioned directly above other atoms,

is insufficient. An alternative constraint must be made, however, in order to prevent

the unphysical detachment of “molecular satellites” from the main system. This is

illustrated in Figure 2.2, in which an atom hop results in a disconnected configu-

ration. Atom configurations are hence required to be path-connected in the graph
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Figure 2.2: An atom hop that results in a disconnected configuration.

theoretic sense. That is, there must exist a chain of atoms through neighbor bonds

between any pair of atoms in a configuration. Configurations containing overhangs

and vacancies in the bulk are therefore possible, unlike in the SOS model, allowing

our model to capture a broader range of morphologies. Any event resulting in a

disconnected neighborhood is disallowed by assigning the rates of such events to be

zero.

Checking the connectedness property is a non-trivial task, though it is well known

how to do so. For example, it can be verified by a simple breadth-first traversal of

the subgraph Goccupied = (Λoccupied, Eoccupied) consisting of those vertices Λoccupied ⊆ Λ

that are occupied by an atom and the corresponding edges Eoccupied ⊆ E in which

they belong. Alternatively, it can be determined from the zeroth Betti number

b0(Goccupied) of the graph Goccupied, which may be calculated by an eigenvalue com-

putation of the adjacency matrix A(Goccupied).

The above methods for determining connectedness illustrate that the property is

inherently global and is hence infeasible to check efficiently. We approximate it by

instead requiring connectedness on small, local neighborhoods (or subgraphs) about

every atom. This is an approximation of global path-connectedness, though local

connectedness is not a necessary condition for the corresponding global property.

This is illustrated in Figure 2.3. Atoms x and y are globally connected, but are not
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Figure 2.3: A globally path-connected configuration on a hexagonal lattice that violates the local
connectedness property. The gray line indicates a path between atoms x and y. The
local neighborhood of atom B is outlined in red.

locally connected within the neighborhood of x. The size of the local neighborhood

used to check this constraint affects the structures seen in the simulations. This size

should be selected large enough to capture the relevant structures for the specific

application being simulated. In the extreme case, the size of a local neighborhood

approaches the entire domain, capturing global connectedness as a special case. Typ-

ically, the local neighborhood BL(x) about an atom x is taken as the set of atoms

with graph distance less than some small number, L

BL(x) = {y ∈ Λ : d(x, y) ≤ L} ,

where d(x, y) is the graph distance on G.

2.1.2 Liquid phase

As described in the introduction, we wish to simulate systems in which there is a

liquid phase. In both the GaAs and VLS nanowire systems, nanostructural growth

is mediated by the liquid phase, and so modeling reasonable physics in the liquid

is important to obtaining accurate simulations. Therefore, care must be taken in

order to capture the correct behavior in the liquid phase, and a first step in doing

so is in identifying those regions that constitute the liquid. This is especially im-
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portant in the GaAs system. There, Ga plays two roles: first being a constituent

in the GaAs crystal, treated as a solid, and second, Ga atoms make up liquid Ga

droplets. To crystallize the droplet, an As atom must diffuse through it and nucle-

ate at the liquid-solid interface. Atomistically, As diffusion through the droplet is

a sequence of atom-atom exchanges. Such exchanges may also appear during the

attachment/detachment of atoms at the liquid-solid interface, but these events are

physically different from As diffusion through the droplet. At the event level (e.g.

atom-atom exchange), the model cannot distinguish between those events that oc-

cur in the liquid phase and those that do not. Additional, neighborhood-specific

information must be incorporated into the model in order to address this.

The model identifies liquid neighborhoods, and applies different additional energy

barriers for events occurring within such neighborhoods. While it is not difficult to

identify neighborhoods in the bulk of their respective phases – e.g. any neighborhood

of sufficient size consisting of only Ga atoms constitutes the “liquid” phase, while

Ga and As arranged in a crystalline pattern constitute the “solid” phase – it is

not so clear cut when neighborhoods contain a mixture of material, as in the case

of regions near liquid-solid interfaces. At an atomistic level, the geometry of such

interfaces is complex and is often far removed from the idealized sharp interface that

delineates the bulk of solid and liquid phases. The technique for identifying liquid

neighborhoods must be robust with respect to this complication. In the model, we

use a simple population count. Within a neighborhood, the number of atoms that

constitute a liquid phase (e.g. Ga in the GaAs system) are tallied. If the number

of such atoms is more than some threshold of the neighborhood volume, then the

neighborhood is deemed liquid. This method is impartial to the geometry of the

interface and it ensures the preservation of detailed balance in a straight forward
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manner, as described in the next section.

The different physics occurring within a liquid neighborhood as opposed to away

from one is captured by assigning special additional energy barriers for events taking

place within such a neighborhood. That is, each event X → Y can be further sub-

categorized according to neighborhood, and the additional energy barrier ε(X, Y )

may be written as

ε(X, Y ) =


εL(X, Y ) if event occurs in a liquid neighborhood;

εNL(X, Y ) otherwise.

For example, in the nanowire simulation, the vapor to solid reaction has an additional

energy barrier ρ. Depending on whether the reaction is to take place in the liquid

or elsewhere, ρ is assigned a value ρL or ρNL, respectively, such that ρL < ρNL. The

lower energy barrier for a reaction in the liquid phase models the catalytic effect of

the droplet on the vapor to solid reaction, an important feature in VLS growth.

As a matter of simplicity, liquid is modeled on-lattice. Despite this geometric

constraint, the model captures a reasonable set of physics pertinent to a liquid phase.

The steps outlined above imply that liquid phases can be assigned alternative energy

barriers to differentiate those events occurring within that phase. This allows us to

model different diffusivities as well as the role of a liquid catalyst. Moreover, because

our model is a bond-counting one, the simple difference in coordination within a liquid

neighborhood and outside of one induces a chemical potential between phases. Most

importantly, because the model satisfies detailed balance (as described in the next

section), our simulations proceed by the same thermodynamic driving force present

in physical systems. That is, simulations naturally move toward configurations with

lower energy. From this, thermodynamic properties of the liquid phase such as surface

tension forces at the vapor-liquid interface and solubility within liquid droplets are
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emergent properties arising within the simulation.

2.1.3 Detailed balance

As stated above, KMC is the simulation of a CTMC with transition rates r(X →

Y ) between states X, Y ∈ X , a state space corresponding to atom configurations.

For those events that maintain the current canonical ensemble, that is those events

that preserve species counts, we ensure that their rates satisfy detailed balance:

(2.4) π(X)r(X → Y ) = π(Y )r(Y → X),

where π is the canonical Boltzmann distribution

π(X) =
1

Z
exp

[
−E(X)

kBT

]
.

The detailed balance constraint is a sufficient condition to ensure that the equilibrium

distribution of the Markov chain is π. In this distribution, low energy states have

maximum likelihood, and so the Markov chain is driven to minimize energy. This the

thermodynamic driving force behind the simulations. That the rates of the form (2.2)

with activation energies as in (2.1) satisfy detailed balance is a matter of straight

forward calculation, provided we impose a symmetry between intermediate states

and additional energy barriers:

X ∧ Y = Y ∧X

ε(X, Y ) = ε(Y,X).

The constraint that ε(X, Y ) = ε(Y,X) means the additional energy barrier used

in an event must be the same as the one used for its reverse event. This leads to

a subtle complication when specifying alternative additional energy barriers in the

liquid phase. In determining whether to apply εL(X, Y ) or εNL(X, Y ) to an event
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X → Y , we must do so using a property of the affected atoms’ neighborhoods that is

invariant under the event. This ensures that the same categorization will be applied

for the reverse event Y → X. The proposed population count outlined above is an

example of such a property.

2.2 The KMC algorithm

As stated in the introduction, in its most general form KMC is a simulation of a

CTMC and may be implemented as such. Given a discrete state space X , an initial

state X0, and rates r(X → Y ) between states, the CTMC evolves according to three

steps. First, a transition Xi → Y is sampled according to the probability distribution

PXi
(Y ) =

1

Zi
r(Xi → Y ),

where the partition function is the summation

Zi =
∑
Y

r(Xi → Y ),

over all states Y accessible from Xi. Second, the current configuration is altered

Xi+1 = Y according to the sampled transition. Because the transition times Xi → Y

are each exponentially distributed with mean 1
r(Xi→Y )

, the expected minimum waiting

time is given by

dtXi
=

1

Zi
,

and the simulation time is incremented by this amount. Lastly the transition rates

r(Xi+1 → Y ) and partition function Zi+1 are retrieved or calculated in some fashion.

This main loop is summarized in Algorithm 1. With the on-lattice assumption,

transitions X → Y between atom configurations X and Y are the atomistic events

outlined above, and are parameterized by an atom/event pair (x, e), where e describes

a local event of atom x (e.g. x desorbs, exchanges with a specific neighbor, etc). By
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this local property and bond-counting assumption, differences in energies, and hence

rates by Equation (2.2) are local quantities. We shall write r(X;x, e) whenever we

wish to emphasize the local nature of the transition rates and r(X → Y ) when the

general CTMC interpretation of KMC is used.

Algorithm 1: The basic KMC main loop

Initialize configuration X0 and rateTable;1

for i = 0, 1, 2, . . . do2

(e, x) = Sample(rateTable) ;3

(Xi+1, affectedAtomList) = PerformEvent(Xi, e, x) ;4

Update(rateTable, affectedAtomList, Xi+1) ;5

If L is sufficiently large, then the rates of any event involving atom x can be

written as a function the species of atoms in BL(x), collected in an array

Σ(x) = (σ(y1), . . . , σ(yn)) ,

where y1, . . . , yn is some linear ordering of elements in BL(x). The value of L is

selected so that BL(x) contains all atoms used in the calculation of any rates for

events involving x, in addition to the neighborhood used in determining the local

connectedness property. For the simulations in this paper, L = 2. The array Σ(x) is

called the local neighborhood pattern of x.

Because the number of configurations is large, it is infeasible to store the entire set

of rates r(X → Y ) for every pair X, Y ∈ X . Instead , for the current configuration

Xi a subset of rates {r(Xi,→ Y )} = {r(Xi;x, e)} called the rate table is maintained.

Because a transition Xi → Xi+1 occurs in every iteration of the KMC main loop, this

rate table must be updated at each step. Since state transitions correspond to local

atomistic events, changing a configuration affects the species of at most two lattice

positions, and subsequently a small number of local neighborhood patterns Σ(x) for

affected atoms x whose neighborhoods contain the changed lattice positions. Because
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the rates r(Xi;x, e) are a solely a function of Σ(x), the rate tables {r(Xi;x, e)} and

{r(Xi+1;x, e)} are identical for all but a few entries corresponding to those atoms x

whose neighborhood pattern have changed after the event.

There are different methods for sampling from and updating the rate table, de-

pending on how it is maintained. For example, the table may be implemented as

an array, indexed by atom/event pairs (x, e). Updating the table consists solely on

updating the individual entries in the array, and is an O(1) operation. Similarly,

updating the partition function can be done in O(1) time:

Zi+1 = Zi +
∑

affected atoms x

∑
e

r(Xi+1;x, e)− r(Xi;x, e).

Sampling from the array can be done by the rejection algorithm. An atom/event

(x, e) pair is first sampled uniformly. Then a random number p is sampled uniformly

between 0 and 1, and the event is selected if p ≤ r(Xi;x,e)
Zi

. Otherwise it is rejected and

another event pair is sampled. If q(x, e) = r(Xi;x,e)
Zi

, then the probability of accepting

some event is given by

P(Accept) =
∑
(x,e)

q(x, e)

NeN
,

=
1

NeN
,

where Ne = 5 is the number of events and N is the number of atoms. As such,

the expected number of samples that must be made before an atom/event pair is

accepted is O(N).

A more balanced approach in sampling and updating may be taken by using a

binary tree, in which leaves correspond to the rates r(Xi;x, e) for every atom/event

pair (x, e) and each internal node stores the sum of its two children [27]. This

method is an efficient form of inverse transform sampling [29], which in generality
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states that if Y is a uniform random variable between 0 and 1, and FX(x) is the

cumulative distribution function (CDF) of a random variable X, then the random

variable F−1(Y ) and X are identically distributed, giving a way of sampling X by

means of a uniform random variable. The binary tree structure, which encodes the

unnormalized CDF for atom/event pairs, is an efficient way to perform the inversion

by means of binary search. A uniform random variable Y representing a sample

cumulative mass is selected between 0 and Zi. Starting from the root node of the

tree, the algorithm compares the cumulative masses CL and CR stored in the node’s

left and right children, respectively. If Y < CL, then the algorithm recurses on

the left child with sample cumulative mass Y . Otherwise, it recurses on the right

child with sample cumulative mass Y − CL. The recursion is terminated once the

algorithm reaches a leaf node, corresponding to an atom/event pair (x, e) which is

returned as the sampled pair. The running time for sampling is determined by the

height of the tree, which is O(logN). After an event is performed, the leaves for

the affected atoms are updated, invalidating the quantities stored in the internal

nodes for all branches terminating at such leaves. Therefore, the partial sums along

these branches must be updated, which is done by propagating changes upward from

the leaves to the root node. As such, updating the tree is also performed in time

O(logN). Algorithms 2 and 3 summarize the sampling and updating methods using

a binary tree.

2.3 Hash table based caching

Previous work in addressing the efficiency of KMC has been in the proper data

structure choice of the rate table, an example of which was was presented above and

in [27] using a binary tree. Another example of this is the use of inverted linked-list
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Algorithm 2: The KMC algorithm for sampling the rate table by binary search.

input : Binary tree rateTable
output: A sampled atom/event pair (x, e)

currentNode ← rateTable.headNode;1

Sample Y ∼ Unif[0, currentNode.value] ;2

while currentNode is not a leaf node do3

if Y < currentNode.leftChild.value then4

currentNode ← currentNode.leftChild;5

else6

Y ← Y − currentNode.leftChild.V alue ;7

currentNode = currentNode.rightChild;8

return ( currentNode.x, currentNode.e)9

Algorithm 3: The KMC algorithm for updating the rate table by propagating changes in
leaf nodes upwards through their branches

Input: Binary tree rateTable, list of affected atoms affectedAtomList, current state X

forall atoms xi ∈ affectedAtomList do1

forall events e do2

Let currentNode be the leaf node corresponding to the atom/event pair (xi, e) ;3

currentNode.value← r(X;xi, e) ;4

while currentNode 6= rateTable.headNode do5

currentNode← currentNode.rightChild ;6

currentNode.value← currentNode.leftChild.value + currentNode.rightChild.value ;7
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structures to achieve constant time sampling and updating [28]. However, profil-

ing the execution of a KMC implementation shows that the computation of rates

(Algorithm 3, Line 4) contributes a significant amount to the execution time of the

implementation. This is because the calculation consists of several floating point

operations and calls to external libraries to compute rates of the form in Equation

(2.2). Moreover, such rates must be computed several times for every step in simu-

lations that require up to hundreds of billions of such steps. While much work has

been done in reducing the computational complexity of sampling and updating, little

attention has been made in the expensive, albeit constant-time calculation of rates.

One way to address this is by eliminating redundant rate calculations. As de-

scribed in Section 2.1, rates for an atom x are a function of the species pattern Σ(x)

describing the atom’s local neighborhood. Atoms with identical species patterns are

assigned identical rates. We denote the collection of these rates as r(Σ(x)) to em-

phasize its dependence solely on the species pattern, and not expressly on the atom

x itself. If the rates r(Σ) of a pattern Σ have been previously computed during a

simulation run, it is unnecessary to recompute the rates whenever Σ is encountered

again. Instead, the rates of frequently occurring patterns should be cached for reuse.

Such a caching technique would only prove effective if the KMC algorithm revisits

the same neighborhood patterns frequently during a simulation. This is similar to

the principle of data locality studied by computer scientists. In this context, data

locality is exploited by caching; storing recently accessed blocks of memory in a

low-latency cache with the expectation that such blocks will be accessed frequently.

2.3.1 Neighborhood locality

As evidence to show that this repetition does indeed occur, we consider the

nanowire simulations described in Section 4.1, At regular steps throughout the simu-



28

lation, the program determined the number of distinct neighborhood patterns Npattern

within the current configuration. Figure 2.4 plots Npattern as a function of the Monte

Carlo steps t, ensemble averaged over 128 identical trials. The graph shows that

Npattern is slowly growing, and remains less than 400 neighborhoods after 400 million

steps. This suggests that, within a fixed configuration, there is much redundancy

between neighborhood patterns, implying spatial neighborhood locality.

While Npattern measures the number of neighborhood patterns active at some time,

we may also determine the cumulative number Cpattern of distinct neighborhoods seen

up to a particular time. This is shown in Figure 2.5 as the solid blue line. We ob-

serve that the growth is sub-linear, but asymptotically approaches linear growth as

time increases. The dashed red line indicates the linear best fit of this asymptotic

growth. Its slope indicates that in equilibrium, the rate of change dCpattern

dt
is approx-

imately 8.4 × 10−5 new neighborhoods per MC step. That is, a new neighborhood

is encountered once every 12,000 MC steps. Therefore, there is much repetition in

neighborhood pattern between configurations, implying temporal neighborhood lo-

cality. The temporal and spatial locality of neighborhood patterns therefore implies

that the use of caching is indeed advantageous.

2.3.2 Hash table based rate caching

Because the rates of events depend on the occupancy pattern of local neighbor-

hoods, it is desirable to have a precomputed look-up table of all the rates, indexed

by pattern. Naively indexing by the species of atoms in a neighborhood results in a

look-up table that is prohibitively large. In the nanowire simulations, the patterns

Σ(x) describe the occupancy of lattice positions in B2(x), a total of 19 atoms. Given

there are 4 species and 10 events that may occur at each position, this results in a

look-up table with 10 × 419 ≈ 241 floating point entries, though we have seen that
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Figure 2.4: The ensemble average of Npattern, the number of distinct neighborhood patterns within
the atom configuration at time t during a nanowire simulation.
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Figure 2.5: The ensemble average of Cpattern, the cumulative number of distinct neighborhood
patterns seen up to step t during the nanowire simulation. The dashed red line indicates
the linear asymptotic behavior of Cpattern.
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only a small set of such entries are ever used during the simulations. One reason

why the naive indexing results in a large table is that it includes neighborhoods that

do not satisfy the local connectedness property, and hence will never occur in the

simulations. If the number of neighborhood patterns that adhere to this constraint

is sufficiently small, a clever encoding of patterns of could be used as an index to

the precomputed rate table. However, if there are a large number of species or large

local neighborhoods used to check connectedness, then such an encoding method

may also be infeasible. Another source of redundancy in the naive implementation

is that symmetries of the lattice structure are not accounted for by a simple index-

ing. Such symmetries result in patterns associated with identical sets of rates, up to

relabeling. Developing techniques characterizing such symmetries is system specific,

and depends on the number of species and the lattice used. Indeed, much work has

been done in pattern recognition of local neighborhoods to address this problem [30].

We use an alternative method of characterizing commonly occurring patterns

apart from the a priori large set Ω of possible patterns by storing rates of encoun-

tered patterns on-the-fly in a hash table. Previous work along these lines used a

Zobrist hash to encode an atom configuration as a whole, which recovers the entire

rate table associated to the configuration [31]. This method ignores the spatial and

temporal neighborhood locality inherent in simulating systems of a crystalline na-

ture in addition to the observation that due to the local nature of a KMC transition

X → Y , the rate table for Y is identical to that of X except for a small number

of entries. By encoding neighborhood patterns within a configuration rather than

the configuration itself, we take advantage of the locality inherent in KMC. Stored

within the hash table are portions of the rate table associated to particular neigh-

borhood patterns, instead of the entire rate table for a given configuration. Storing
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by local neighborhood implies a smaller number of possible states to encode, leading

to a smaller hash table, faster hash key construction and comparison. This speed

is important when placed in the context of the alternative, the explicit calculation

of rates. The caching technique leads to a performance gain only if it can retrieve

entries from the table faster than computing rates outright. This method is similar

to that used in a KMC variant known as Self-Learning KMC, in which atomistic

events (either specified explicitly or obtained from molecular dynamics simulations)

are placed in a database for use in the KMC algorithm [20,32].

When a configuration is altered, the local neighborhoods of a small number of

atoms are affected, and the rates for the corresponding neighborhood patterns must

be recalculated before the update algorithm is applied to the rate table. When the

rates r(Σ) of a pattern Σ are needed, the hash table is queried to see if r(Σ) has

been previously computed. If not, it must be computed and stored in the hash table,

otherwise the rates are copied to the appropriate entries in the rate table. The hash

table is queried and populated by linear open addressing, using a hash function

h : Ω→ {0, . . . ,M − 1} ,

where M � |Ω| is the size of the table. When the hash table is queried for rates r(Σ),

a hash index i = h(Σ) is generated and the i-th entry in the hash table is checked.

If that entry is empty, then the pair [Σ, r(Σ)] is computed and stored at entry i. If

it is not empty, it contains a pair [Σ′, r(Σ′)]. If Σ = Σ′, then the rate r(Σ′) = r(Σ)

is returned, otherwise, the hash index is incremented i = i+ 1, and the procedure is

iterated until either r(Σ) is found or an empty entry is encountered, in which case

the rates r(Σ) must be calculated and stored in that position. The hash algorithm is

summarized in Algorithm 4. The number of times the index i is incremented directly

impacts the efficiency of the hashing procedure and depends on runs of non-empty
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entries in the table, called chains. The efficiency of Algorithm 4 depends linearly on

the average chain length, so it is important to select a hash function that minimizes

this quantity. In our implementation, a parameterized hash function h = hA was

used, where A is a set of parameters to the hash function. The parameters A were

selected to minimize chain length. The selection of optimal parameters A is discussed

in Section 2.3.3. In the hash table implementation, we employ a simple hash table

eviction policy, clearing the entire table when a user-specified maximum capacity

was reached. As such, the number Cpattern is the relevant quantity in deciding the

size of the table.

Algorithm 4: Querying the rate cache by a linear, open-addressing hash table.

Input : A local neighborhood Σ
Output: The index i into hashtable where the rates r(Σ) are stored
Compute initial hash index, i = h(Σ);1

while index i not returned do2

if hashtable [i] == null then3

Compute r(Σ);4

hashtable [i] = [Σ, r(Σ)];5

return i;6

else7

[Σ′, r(Σ′)] = hashtable[i];8

if Σ′ == Σ then9

return i;10

else11

i = i+ 1 mod M ;12

When implemented with an optimal hash function, the caching procedure leads

to performance gains in practice. Figure 2.6 plots the CPU time against the number

of MC steps for several independent trails of nanowire growth simulations, varying

the number of MC steps performed and the method of caching used. Red squares

indicate those simulations in which no caching was used. There, when rates r(Σ)

were required by the simulation, they were computed explicitly. The figure indicates

a linear trend, and the best-fit slope suggests that without caching, simulations take
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Figure 2.6: CPU time versus the number of MC steps performed during the nanowire simulations.
Simulations without caching implemented are plotted in red squares. Green triangles
show simulations where caching is used with an unoptimized hash function. Blue circles
show simulation times when an optimal hash function is used.

about 14.5 × 10−6 seconds per MC step. Depicted in blue triangles are times for

simulations that implement the caching procedure, but with an unoptimized choice

of parameters A. In this case, each simulation step requires 3.0 × 10−6 seconds per

MC step, a performance gain by a factor of about 4.8 compared to the simulations

without caching. If an optimal hash function is used, the simulations take 0.9×10−6

seconds per MC step, a gain by a factor of 3 compared to the unoptimized case and a

factor of 16 compared to simulations without caching. This is depicted by the green

circles in the figure.

In the 700 million MC steps of a particular simulation run, there were 11.4584

billion queries into the hash table, indicating that about 16 neighborhoods were

updated per MC step, on average. Of those queries, 11.4583 billion neighborhoods

(99.9991%) were previously computed and stored in the hash table, requiring no

extra computation. The average chain length in the hash table was approximately

1.7 nodes for the choice of optimal hash function.
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2.3.3 Finding optimal hash functions by simulated annealing

As described above, neighborhood patterns are hashed by a hash function to pro-

duce an index into the hash table. In this context, neighborhoods Σ ∈ Ω are treated

as bit strings packed into W = log2 S|BL|
64

64-bit words. Figure 2.7 illustrates how this

is done. Each position in a neighborhood is assigned an index that linearly orders the

positions of the neighborhood. The same ordering is used for every neighborhood.

For example, in the figure, the center atom is assigned the index 0, indicating it is

in the first position in the linear ordering. The atom coordinated to the northeast of

this center atom is assigned the next index 1, indicating it is in the second position

of the linear ordering. Each atom in a neighborhood is assigned a log2 S bit identifier

according to that atoms species. These bits are then concatenated together in the

linear ordering, resulting in a bit strings of length |BL| log2 S bits. For example, the

neighborhood in the Figure 2.7 can be represented by the bit string

Σ = 10101010010110011110001010010101010110,

assuming the 0-th atom position corresponds to the leftmost two bits, etc.

The bit string is hashed by a function hA : Ω→ {0, . . . , N − 1} of the form

hA(x) =
W⊕
i=1

(xi � ai,1)⊕ (xi � ai,2)⊕ (xi � ai,3) mod M,

where ⊕ and � are bit-wise XOR and (non-cyclic) right shift, respectively. The

parameters A = (aij) are shift values such that

−64 < aij ≤ 64,

with the convention that aij < 0 is a left-shift.

Optimal shift parameters are selected with respect to a training set T ⊂ Ω of

neighborhoods. The training set T is generated empirically by running the simula-
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Figure 2.7: The indexing of atoms in a neighborhood Σ of radius 2 and two-bit identifiers assigned
to each species.

tions using an unoptimized hash function. At regular steps, the set of neighborhoods

stored in the hash table is sampled uniformly, and a small proportion of this set is

added to T as the simulation progresses. Repeated keys are removed from T . The

size of T is chosen large enough to provide a representative sample of neighborhood

patterns observed during a simulation. For example, in determining the optimal

parameters for the nanowire simulations, a training set of size |T | = 96000 distinct

neighborhoods was used. Each choice of parameters A partitions T into cosets

Ty = {X ∈ T : h(X) = y} ,

of configurations with identical hash value. We define a quantity CT to be the number

of such cosets of size larger than 1. That is, CT is the number of configurations X

for which there is at least one other configuration Y that hashes to the same value,

i.e. a collision in the hash table. Minimizing collisions is an effective heuristic in

reducing chain length, and hence we must choose parameters that minimize CT .

The time to perform a brute force search for optimal parameters over the entire

space is of order O
(
S

21
64
|BL| |T |

)
. For the nanowire simulation, this is approximately

550 million calculations. While this brute-force calculation is feasible, we observe
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that the above running time scales poorly with S and BL. Indeed, increasing r

from 2 to 3 results in a brute-force calculation of approximately 241 ≈ 2 trillion

calculations. For sintering and grain growth simulations, in which the number of

species corresponds to the number of orientations a grain may posses, S can be on

the order of 100,000 [33]. In this case, the brute-force calculation requires 2103 |T |

calculations, which is infeasible to perform.

Rather than using the brute-force calculation, good shift values are found by a

simulated annealing algorithm with Metropolis selection. The simulated annealing

algorithm runs as follows. Starting at a random A = (aij) where each aij is selected

uniformly in {−63, . . . , 64}, a mutation is performed

A′ = A+ ∆,

where ∆ = (δij), δij being independently and uniformly selected integers between

-4 and 4. The mutation is kept according to a Metropolis rule based on the energy

CT (A). That is, the probability p(A→ A′) of keeping the mutation is given by

p(A→ A′) =


1 if CT (A′) < CT (A),

exp [−β (CT (A′)− CT (A))] if CT (A′) ≥ CT (A),

where β = 1
1000

represents inverse temperature (units arbitrary). The above transi-

tion probabilities satisfies detailed balance with respect to a Boltzmann distribution

π(A) ∝ exp [−βCT (A)] .

Therefore, in steady state the simulated annealing algorithm will select parameters

that approximately minimizes CT (A). The algorithm is run for several choices of

initial values.

Figure 2.8 shows three independent simulated annealing trials using the same

training set T of over distinct 96,000 neighborhoods sampled during the nanowire
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simulated annealing. Three independent trials are shown.

simulations. Different, independent initial shift widths A were selected for each trial.

We see that the simulated annealing algorithm converges after 5000 iterations.

The specific choice of optimal hash parameters depends on the system to be sim-

ulated. For each of the three systems studied in this work, the simulated annealing

search was performed off-line, apart from the actual KMC simulation. This results

in three system-specific hash functions. As an alternative, the simulated annealing

search could be made in-line, performed along side the simulation. A random choice

of parameters are selected during the initial stages of the simulation. As the simu-

lation progresses, the training set T is built. A simulated annealing search is then

performed to construct optimal hash functions based on the actual neighborhoods en-

countered for the specific simulation run. When the search is performed periodically

throughout the simulation, we obtain an adaptive hash function responsive to the

changing sets of neighborhood typical in simulations involving several experimental

stages (e.g. droplet epitaxy and crystallization).



CHAPTER III

Application: Liquid Ga droplet epitaxy and crystallization

3.1 Liquid droplet epitaxy and crystallization

In this chapter we detail simulations and analysis of Ga droplet epitaxy (DE)

and crystallization. Specifically, we characterize the nanostructural dependence on

growth conditions. As stated in the introduction, Ga droplet epitaxy and crystal-

lization proceeds in two steps. First, Ga atoms are deposited on a GaAs substrate.

The Ga atoms diffuse along this substrate, and eventually coalesce to form liquid Ga

droplets. The diffusion length scale depends on the Ga deposition rate and tempera-

ture, and determines the size and density of the droplets. During this stage, regions

of GaAs underlying the droplets become dissolved into the droplets, resulting in an

etching of the GaAs substrate. The amount of etching is dictated by the solubility

of GaAs inside liquid Ga, which depends on temperature. After the Ga atoms are

deposited and the system is allowed to re-equilibrate, an As flux is introduced to

induce crystallization of the droplets. Those As atoms that incorporate into the

droplet nucleate along the liquid-solid interface, resulting in a GaAs growth front

advancing into the droplet. Arsenic atoms are also deposited away from the droplet.

As we shall see, this induces a wicking of Ga atoms away from the droplet, and the

competition between these two processes determine the resulting nanostructure in

38
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large part.

As described above, several important processes play a role during DE and crys-

tallization, making its simulation more complicated than previous work in GaAs

systems. Prior work focused on homoepitaxial film growth and studied associated

phenomena such as step density [34] and growth modes of GaAs films [9]. In these

simulations, surface diffusion of adatoms played the central role, and because of the

stoichiometric nature of epitaxial growth, a simple cubic lattice and the SOS con-

straint sufficed in modeling key aspects of this process. Droplet epitaxy however,

poses several issues that cannot be captured by earlier models. During DE, the sys-

tem is inherently non-stoichiometric in that the relative concentrations of Ga and As

atoms on the surface are different from one another. Processes other than surface

diffusion, such as events within liquid and at the liquid-solid interface, play a key role

and cannot be captured by a simple SOS model. Lastly, DE results in nanostruc-

tures on the order of 10s to 100s of nm so that the simulations must be performed

efficiently within large domains.

3.2 KMC model parameters

In reality, GaAs has a zincblende crystal structure [35], which is depicted in the

left panel of Figure 3.1. The zincblende structure is composed of two interwoven face

centered cubic (FCC) lattices, each occupied by either Ga or As. The two lattices

are connected by diagonal Ga-As nearest neighbor bonds. Every atom is bonded to

four nearest neighbors. In the simulations, an analogous 1+1 dimensional lattice is

used, and is illustrated in the right panel of Figure 3.1, with red and green atoms

representing Ga and As respectively. Such a configuration depicted in the figure

could represent the interface between the GaAs substrate and a liquid Ga droplet.
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A
B

Figure 3.1: (Left) The Zincblende crystal structure. Obtained from [1]. (Right) The analogous 1+1
dimensional lattice used in the simulations. Nearest neighbor bonds are indicated by
solid lines. Next-nearest neighbor bonds are shown as dashed lines. Ga and As atoms
are colored red and green, respectively.

Each lattice position has four diagonal nearest neighbor bonds (indicated by solid

lines in the figure) and up to four lateral next-nearest neighbor bonds. The presence

of the lateral next-nearest neighbor bonds mimics the FCC sublattices present in

Zincblende. To encourage the segregation of species to their respective sublattice,

next-nearest neighbor bonds are only assigned between atoms of the same species. In

this way, it is energetically favorable for a Ga atom to be coordinated diagonally by

As atoms and laterally by other Ga atoms, and similarly for As atoms. This results

in a thermodynamically emergent crystalline structure. For example, the As atom

A in Figure 3.1 has four Ga nearest neighbors but only three next-nearest bonds

due to the presence of a Ga atom above it. The Ga atom B has three As nearest

neighbors and one Ga nearest neighbor, illustrating the fact that the model allows

for nearest neighbor bonds between atoms of the same species. This atom is also

fully coordinated laterally with four next-nearest neighbor Ga-Ga bonds.

Due to the multi-species nature of the model, the several bonding energies must

be specified. Nearest neighbor bonding energies are given by three parameters

γ(Ga,Ga), γ(Ga,As) and γ(As,As) representing Ga-Ga, Ga-As and As-As bonds,
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γ(eV) Ga As
Ga 0.3 0.5
As 0.5 0.1

γnn(eV) Ga As
Ga 0.3 -
As - 0.1

Table 3.1: Pairwise nearest and next-nearest neighbor bonding energies used in the GaAs system.

respectively. Next-nearest neighbor bonds are only assigned between atoms of the

same species and are denoted γnn(Ga,Ga) and γnn(As,As). The parameter values

used in the simulations are summarized in Table 3.1. These energy values imply that

the Ga-As bonds are energetically preferred, while weak As-As bonds effectively

eliminate excess As by desorption. The specific values in Table 3.1 were calibrated

using the homoepitaxy (Section 3.2.1) and liquid droplet simulations (Section 3.3)

to match qualitative experimental assumptions and observations. Within the ho-

moepitaxy simulations, the Ga-As bond strengths were tuned in order to observe a

transition from rough island formation in the low temperature regime to a smooth

step-flow growth mechanism in high temperatures [36]. In the case of liquid droplet

simulations, we tune the Ga-Ga bond strength to match liquid droplet statistics such

as droplet width and number density. As-As bonds were selected to be nominally

weak.

3.2.1 Calibration

GaAs homoepitaxy simulations

As an initial application and calibration of the model, we simulated GaAs film

growth at various growth conditions. It is known that the surface reconstruction

of GaAs (i.e. a structure on the surface, which is different from that of the bulk)

depends on both the temperature and the relative deposition rates of Ga and As [37].

In 1+1 dimensions, simulations cannot reproduce surface reconstructions. Instead,

we measured surface termination and its dependence on temperature and incoming

deposition rates. The surface termination describes the species (either Ga or As) of
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the surface, and can be viewed as a coarsening of surface reconstruction information.

That is, each surface reconstruction can be classified as Ga or As terminated. The

simulation results were then compared to experimental data.

To simulate GaAs substrate growth, both Ga and As were deposited simultane-

ously on initially flat, As-terminated substrate. The Ga deposition rate FGa was

fixed at 0.37 ML/s, while the As deposition rate FAs was varied so that the deposi-

tion ratio FAs/FGa ranged between .5 and 10. Rates (reported in ML/s) describe the

rate at which atoms are added to the system. The observed stoichiometric growth of

the film is an emergent property of the model rather than explicitly enforced through

deposition rates. This is manifest in the stoichiometry observed over a broad range

of deposition ratios.

The temperature was varied between 427◦C and 727◦C. Five monolayers of to-

tal material were deposited, and surface Ga concentration was measured at regular

intervals during the deposition of the last two monolayers. Figure 3.2 is a surface

termination phase diagram as a function of deposition rate and temperature for both

experimental and simulation results. Red squares indicate the conditions where sim-

ulations show a predominantly Ga-terminated surface, while green circles are con-

ditions yielding a predominantly As-terminated surface. Experimentally determined

transition from the As-terminated 2× 4 to the Ga-terminated 4× 2 reconstructions

are shown as blue diamonds and indicate a good agreement between simulation and

experimental data.

Along with the Ga-As bonding energy, another relevant parameter that controls

surface termination is the additional energy barrier for an As desorption event, de-

noted µAs. Varying this parameter effectively shifts the above phase diagram hori-

zontally. The value µAs = 1.1 eV is fitted to experiments. This value, combined with
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the energy values in Table 3.1 yield a total activation energy of

Ea = 2γ(Ga,As) + γnn(As,As) + µAs(3.1)

= 2.2 eV,(3.2)

for the desorption of an As adatom from a Ga terminated substrate, comparing

favorably to experimental results [38, 39]. Moreover, the specific parameter value

does not significantly impact the qualitative shape of the phase diagram. That

is, independent of µAs, the simulations capture a constant critical deposition ratio

in the low temperature regime and its transition to an increasing critical ratio as

temperature increases.

Analytic expressions for critical boundaries

Here we illustrate how the KMC model can be analyzed to derive expressions

for critical phenomena, in this case the boundary between Ga and As terminated

surfaces. This “model of a model” approach occurs frequently throughout this dis-

sertation. During homoepitaxial growth, several processes occur, including surface

diffusion and As desorption, but to first order we may approximate the system in

a quasi-static deposition/ desorption-limited regime. In this regime, the transition

between the As and Ga-terminated surface occurs when the amount of Ga on the im-

pinging upon the surface (given by FGa) is equal to the net rate of As growth (given

by FAs−Rdesorb), where Rdesorb is the desorption rate of As on a Ga terminated sur-

face. Because this rate depends on the atomistic neighborhood of the desorbing As

atom, we define Rdesorb as the harmonic average of desorption rates of an As adatom

and an As atom coordinated with an additional nearest or next-nearest As atom

(representing the desorption at a step-edge site). The desorption of an As atom that

is more fully coordinated than these two cases is considered unlikely, and is hence
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not included in the harmonic average. The activation energy for the desorption of

an As adatom is given by Equation (3.1), while the activation energy for the second

case is similarly obtained as

2γ(Ga,As) + 2γnn(As,As) + µAs = 2.3 eV.

Then, Rdesorb is given by the harmonic average

Rdesorb = 2R0 exp

[
−2γ(Ga,As) + γnn(As,As) + µAs

kBT

](
exp

[
γnn(As,As)

kBT

]
+ 1

)−1

The critical criterion given by a balance between the rates of incoming Ga and As

growth, is given by

(3.3)
FAs

FGa

= 1 +
Rdesorb

FGa

,

and is depicted in Figure 3.2 by the dashed blue line. We see that this boundary

agrees well with both simulation and experiments.

3.3 Simulation results

The main thrust of the work in the GaAs system was to accurately capture the

processes relevant to liquid droplet formation and crystallization. Experimentally,

a range of nanostructures are observed depending on As flux and temperature [40–

45]. The goal of the corresponding simulation work was therefore twofold: first

was to simulate the range of structures observed experimentally and second, use the

simulations to describe the macroscopically observed dependences at an atomistic

level. The experiment and simulations proceed in two main steps, which are at the

basis of the droplet fabrication of GaAs quantum nanostructures [40]. First, Ga is

deposited onto the substrate by MBE, forming liquid Ga droplets. Next the droplets

are crystallized by the introduction of an As flux. The resulting nanostructures may
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Figure 3.2: Substrate termination phase diagram as a function of deposition ratio and temperature,
obtained from simulations and experiments. Those growth conditions resulting in a
mostly Ga-terminated substrate are in indicated by red squares, while green circles
label As-terminated ones. The blue points above indicate the conditions where the
transition from Ga to As termination occurred experimentally. The blue curve indicates
the boundary between Ga and As-terminated given by equation 3.3.
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Figure 3.3: Droplet epitaxy experimental results showing typical nanostructures observed over a
range of substrate temperatures and As4 BEP.

range from fully crystallized compact quantum dots, to nanorings and even etched

holes. Figure 3.3 shows experimentally obtained GaAs structures over a range of

temperature and As flux (reported here as As4 beam equivalent pressure (BEP)).

The simulations were performed in a similar manner to the experiments outlined

above. However, in order to simplify the analysis, the temperature was maintained

constant throughout each simulation. This is justified by the observation that the

Ga deposition temperature affects droplet density but does not play a relevant role

in determining droplet crystallization dynamics. Simulations proceed as follows:

1. Ga atoms are deposited on a flat, As-terminated GaAs substrate at a rate of

0.1 ML/s at temperature T until 4.0 monolayers are deposited;

2. The system is then annealed for 60 seconds in the absence of deposition;

3. After annealing, an As flux is introduced by the deposition of As at a rate of
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FAs ML/s until the system attains equilibrium.

The growth parameters T and FAs were varied in order to study their effect on

the resulting morphology. The temperature T ranged between 150◦C and 350◦C,

while the As deposition rate FAs ranged between 0.1 ML/s and 4 ML/s Within this

range of growth parameters, we are able to simulate the formation of a variety of

nanostructures similar to those observed experimentally.

3.3.1 Droplet epitaxy

During the first phase, Ga atoms are deposited, which in turn form liquid droplets.

As Ga atoms wet the surface, Ga-on-Ga diffusion is the relevant process. The rate

of this diffusion is determined by the atomistic hopping of a Ga atom on a Ga-

terminated surface, and is given by

RGa = R0 exp

[
−EGa

kBT

]
,

where EGa ≈ 0.90 eV is the implied average energy barrier taken by considering the

harmonic average RGa of the hopping rates of a Ga adatom and a Ga atom that

is singly coordinated by another Ga atom. As is evident in the above form for the

hopping rate, statistics such as droplet size and density depend on temperature. As

temperature is increased, average droplet diameters increase, while the density of

droplets correspondingly decrease, phenomena captured in simulations. This is also

shown in experiments [46]. Figure 3.4 is an Arrhenius plot of simulated average

droplet diameters and linear density as a function inverse temperature. Statistics

are ensemble averages over 64 trials for each choice of temperature after 2.9 ML of

Ga deposition. Droplet diameters are obtained by considering the autocorrelation

function

A(t) =

∫ W

0

h(x+ t)h(t)dx,
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Figure 3.4: Liquid Ga droplet diameter and linear density as a function of temperature.

where h(x) is the centered height profile of the final configuration of a trial and W is

the width of the domain. The droplet radius r ∈ [0,W ] was obtained as the smallest

value such that A(r) < e−1. Droplet densities were determined by the number of

local maxima in the h(x) divided by W . We observe the correct trends in these

statistics with respect to temperature – increasing temperature leads to an increase

in droplet diameter and a decrease in droplet densities. The radius of a Ga droplet

obtained from the deposition of 4.0 ML of Ga atoms at temperature T and flux

FGa was found empirically from simulations to follow the power law involving the

temperature and flux dependent dimensionless parameter DGa

`2FGa
, where DGa is the

diffusion coefficient for Ga-on-Ga diffusion,

DGa = `2RGa,

and ` is the lattice spacing. That power law is given by

(3.4) r = `r0

(
DGa

`2FGa

)α
,
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Figure 3.5: The power law dependence of Ga droplet radius vs. DGa

`2FGa
.

where r0 = 11.34 (# atoms) and α = 0.182 are empirically obtained values. Fig-

ure 3.5 shows the radius statistics obtained by simulation (blue circles) along with

Equation (3.4) (dashed red line).

During droplet formation, simulations show that liquid Ga etches into GaAs,

and the amount of etching is regulated by temperature, as illustrated in Figure 3.7.

Higher temperatures result in more significant etching. This is in agreement with

experimental observations [41, 47]. As the droplet etches into the substrate liquid

Ga atoms displace substrate As atoms, which subsequently attach near the triple

junction. In addition, some of the displaced substrate material is wicked out of the

droplet in a step-flow growth mode. The relevant model parameter controlling the

effect of etching is the additional barrier for atom-atom exchanges at the liquid-solid

interface εNL
ex . The value εNL

ex = 0.7 eV was selected to fit qualitative experimental

observations on the amount of etching occurring at various temperatures.
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The amount of etching present during this phase is determined by the equilibrium

concentration of As in liquid Ga. The As concentration cAs satisfies the reaction law

∂cAs

∂t
= `−2Rdetach − cAsRattach,

where Rdetach and Rattach are the atomistic rates for the detachment and attachment

processes, respectively. The equilibrium concentration c0 is then given by

c0 = `−2Rdetach

Rattach

(3.5)

= `−2 exp

[
Eattach − Edetach

kBT

]
,(3.6)

where Eattach and Edetach are the energy barriers for the attachment and detach-

ment events, respectively. To determine the values of these barriers, we consider

the attachment and detachment of an As atom onto a flat liquid-solid interface, as

illustrated in Figure 3.6. We denote the states before and after the detachment as

X, Y , respectively. The change in energy E(X) − E(X ∧ Y ) between states X and

intermediate state X ∧ Y , describing the energy barrier for attachment can be com-

puted from a small number of relevant bonds, indicated by black lines in the figure.

The total activation energy for attachment Eattach = εNL
ex +E(X)−E(X ∧Y ) is then

given by

Eattach = εNL
ex + 4γ(Ga,As) + 4γ(Ga,Ga) + 2γnn(Ga,Ga)

− 8γ(Ga,H)− 5γnn(Ga,H)− γnn(As,H),

(3.7)

= εNL
ex −

1

2
γnn(Ga,Ga)− 1

2
γnn(As,As),(3.8)

= 0.5 eV,(3.9)

where H = Ga ∧ As is the intermediate species used in a Ga/As exchange. We may

calculate the activation energy for detachment ED = εNL
ex + E(Y ) − E(X ∧ Y ) in a
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Attachment Detachment

Figure 3.6: Attachment and detachment events at the liquid-solid interface. This figure illustrates
the attachment and detachment of an As atom in liquid Ga onto and from a perfectly
flat liquid-solid interface, along with the intermediate state for the transitions. The
intermediate species H = Ga ∧As is colored blue. The black lines indicate the relevant
bonds that contribute to the change in energy between the initial and intermediate
state.

similar manner:

Edetach = εNL
ex + 4γ(Ga,As) + 4γ(Ga,Ga) + 3γnn(Ga,Ga) + γnn(As,As)

− 8γ(Ga,H)− 5γnn(Ga,H)− γnn(As,H),

(3.10)

= εNL
ex +

1

2
γnn(Ga,Ga) +

1

2
γnn(As,As),(3.11)

= 0.9 eV.(3.12)

The forms of the attachment and detachment barriers Eattach and Edetach indicate

what physically occurs during the transitions, namely the formation/removal of one

next-nearest neighbor Ga-Ga bond and one next-nearest neighbor As-As bond. The

equilibrium concentration c0 is therefore given by

c0 = `−2 exp

[
−γnn(Ga,Ga) + γnn(As,As)

kBT

]
.

This concentration, and hence the amount of etching, increases with increasing tem-

perature.
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A T = 200°C

B T = 300°C

C T = 350°C

10 nm

Figure 3.7: Liquid droplets grown at T = 200, 300, 350◦C and FGa = 0.1 ML/s. Here and through-
out the paper, Ga and As atoms initially belonging to the substrate are colored red and
green, respectively. Ga and As atoms deposited throughout the simulation are colored
purple and blue, respectively.
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3.3.2 Droplet crystallization

Once the liquid droplet has formed and come to equilibrium, an As flux is in-

troduced to initiate crystallization. Arsenic atoms deposited near or on the droplet

diffuse through the liquid quickly [48] and attach most typically near the triple-

junction. Such crystallization results in a growing GaAs front and the droplet is

crystallized inward. If no nucleation occurs at the vapor-liquid interface and the

GaAs fronts coalesce, a fully crystallized quantum dot forms in place of the liquid

droplet. Such is the case for moderate temperatures and deposition rate.

Figure 3.8 is a sequence of simulation snapshots illustrating the crystallization

of a liquid droplet resulting in a quantum dot (left panel), along with analogous

atomic force microscopy images of the GaAs fronts obtained experimentally (right

panel). The simulation images in the figure illustrate a typical quantum dot grown

at T = 275◦C and FAs = 0.06 ML/s. The general trend is that a Ga drop forms once

enough Ga has been deposited on the surface (Figure 3.8A), followed by crystalliza-

tion near the vapor-liquid-solid triple junction upon exposure to As flux (B,C). As

crystallization progresses, the liquid Ga is consumed, resulting in a fully crystallized

quantum dot (D). Experimental images (Figure 3.8, right panel) were obtained from

individual samples prepared according to the procedure outlined above, varying As

exposure time. The unreacted liquid Ga was removed from the samples before imag-

ing by selective wet etching [42], thus showing GaAs fronts at various stages during

crystallization. The experimental images confirm the growth mechanism observed in

the simulations during crystallization.

Besides compact quantum dots, other nanostructures are predicted by the simu-

lation by considering a broad range of temperatures and As fluxes. For example, if

FAs is sufficiently low or T is sufficiently large, the simulations show the formation of



54

t = 65.5 secsD

10 nm

t = 45.5 secsC

t = 32.5 secsB

t = 6.5 secsA

Figure 3.8: Left panel: model snapshots of liquid droplet crystallization at various times for
T = 275◦C and FAs = 0.06 ML/s resulting in a compact quantum dot. Ga and As
atoms from the original substrate are colored red and green, respectively. Ga atoms
deposited to form liquid droplets are colored purple, while As atoms deposited during
crystallization are blue. Right panel: AFM images of the GaAs growth fronts in par-
tially crystallized droplets after 10 seconds (top), 40 seconds (middle) and 90 seconds
(bottom). Crystallization was obtained at T = 150◦C and 5× 10−7 Torr As pressure.
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A FAs = 0.1 ML/sec

B FAs = 0.2 ML/sec

C

10 nm

FAs = 0.4 ML/sec

Figure 3.9: Nanorings formed at T = 375◦C and FAs = 0.10, 0.20 and 0.40 ML/s.

nanorings upon crystallization. The exact morphology of the nanorings is sensitive

to the growth conditions. Figure 3.9 shows the morphological dependence of the

rings on FAs, fixing T = 375◦C. At low As deposition rate (FAs = 0.1 ML/s), broad

and short nanorings form. As FAs is increased the nanorings become more compact

and taller so that at FAs = 0.4 ML/s the resulting structure resembles a “pitted”

quantum dot. This compares well to the experimental results in Figure 3.3, e.g. the

transition in structure between Figure 3.3c and Figure 3.3f as As4 BEP is lowered.

Figure 3.3c resembles the pitted quantum dot structure of Figure 3.9c. If the BEP is

lowered, the resulting nanostructure in Figure 3.3f is a broad and shallow disk sur-

rounding a pit, resembling Figure 3.9a. Similar structures and their dependence on

both As deposition rate and temperature have been reported in the literature [49,50].

3.3.3 Core-shell structures

In addition to quantum dots and nanorings, simulations show the existence of

Ga/GaAs core-shell structures. These structures consist of liquid Ga being com-

pletely surrounded by GaAs. In the low temperature/high deposition rate regime,

the GaAs shells are polycrystalline. However, in a higher temperature/lower flux

regime, the simulations show the formation of a shell in registry with substrate. It
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will be shown below that the first case is the result of nucleation of GaAs at the

vapor-liquid interface whereas the second case results from a Mullins-Sekerka insta-

bility of the crystallization growth front.

Nucleation

In the low temperature and high As deposition rate regime nucleation of GaAs

clusters near the vapor-liquid is significant. This results in the formation of a poly-

crystalline GaAs shell surrounding a liquid Ga core, as illustrated in Figure 3.10. In

the figure, a liquid droplet grown at T = 150◦C is crystallized by an As flux, de-

posited at a rate of 0.8 ML/s. Nucleation at the vapor-liquid interface occurs within

seconds upon crystallization (Figure 3.10B). The liquid core in the final configura-

tion (C) is completely surrounded by a GaAs shell after 2.4 seconds, preventing any

further crystallization of the liquid.

The presence of polycrystalline GaAs, with a high number of grain boundaries and

stacking faults that this implies, reduces the optical qualities of the grown sample

and is hence is undesirable. Annealing at higher temperature may remove such

defects because grain boundaries and stacking faults provide fast diffusion paths

for the liquid Ga trapped within the shell. Such paths are accessible at higher

temperatures. Moreover, thermal fluctuations of the nuclei can effectively serve to

dissolve the shell, which are characteristically thin in this regime. Therefore such

configurations may be annealed at a high temperature to remove defects. Indeed,

the simulations bear this out. Figure 3.11 shows a quantum dot with polycrystalline

shell resulting from the crystallization of a liquid droplet at an As deposition rate of

FAs = 0.80 ML/s and temperature T = 150◦C . The dot is then annealed at a higher

temperature T = 350◦C. The initial configuration (3.11A) shows the droplet prior

to recrystallization. Temperature is then increased, maintaining the same As flux.
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C t = 2.4 secs

5 nm

B t = 1.8 secs

A t = 0 secs

Figure 3.10: Simulation snapshots at times t = 0, 1.8, 2.4 seconds after crystallization, T = 150◦C
and FAs = 0.8 ML/s.
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Ga atoms move along grain boundaries toward the surface, resulting in a broadening

of the dot. The thin shell dissolves, resulting in liquid Ga exposed to As (B, C).

Within two seconds, the droplet becomes fully crystallized (D) into a shallow GaAs

island, absent of any defects.

The simulations suggest that low-quality polycrystalline structures can be an-

nealed at high temperatures to improve their crystalline quality. Indeed, this has

been observed experimentally [51,52], where high temperature annealing was shown

to increase the optical properties of the grown samples. As a consequence, experi-

ments and simulations suggest that high quality nanostructures can be grown and

crystallized at lower temperatures, provided an in-situ annealing phase is also per-

formed after growth.

Mullins-Sekerka instability

As described above, simulations show that crystallization performed at low tem-

perature and high As flux result in nucleation of polycrystalline GaAs shells sur-

rounding a liquid Ga core, resulting from nucleation of GaAs at the vapor-liquid

interface. In the high temperature regime, such surface nucleation does not occur.

However, for crystallization at sufficiently high fluxes and high temperature, simu-

lations show the existence of liquid Ga core structures surrounded by GaAs shells

in registry with the substrate. As a consequence, such shells are monocrystalline

and result from a mechanism separate from surface nucleation. Such structures have

been verified experimentally.

By examining the formation of such structures in the simulations, we propose

that these shells are driven by an instability at the liquid-solid growth front. Simu-

lation snapshots in Figure 3.12 illustrate the growth mechanism behind this. When

this phenomenon occurs no surface nucleation is observed; instead, the growth of
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A t = 0.0 secs

D t = 2.0 secs

5 nm

C t = 0.2 secs

B t = 0.1 secs

Figure 3.11: Simulation snapshots of a quantum dot annealed at high temperature at time t after
temperature was increased. (A) The dot after exposure to As deposition at FAs =
0.80 ML/s and temperature T = 150◦C. This results in a polycrystalline GaAs shell
trapping a liquid Ga core. (B)-(D) Temperature is increased to T = 350◦C and the
atoms rearrange in order to fully crystallize the liquid core.
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B t = 1.8 secs

C t=2.0 secs

10 nm

A t = 1.4 secs

Figure 3.12: Snapshots of liquid core formation at times t = 1.4, 1.8 and 2.0 seconds after crystal-
lization at temperature T = 350◦C and deposition rate FAs = 1.0 ML/s.

the GaAs front undergoes an instability at the liquid-solid interface characterized

by unstable undulations of the solid growth front. Such instabilities grow along the

droplet-vapor surface until they have completely surrounded the liquid Ga subse-

quently preventing further crystallization.

This behavior suggests the presence of a Mullins-Sekerka (MS) instability during

crystallization [53, 54], which implies that only perturbations of sufficiently large

wavelength experience unstable growth. Therefore, droplets must be sufficiently large

to accommodate perturbations of appropriate wavelength in order for the instability

to manifest. The effect of temperature, As flux and droplet radius have on the

presence of the MS instability is given in Section 3.4.

It is important to note that simulations suggest that, unlike those formed by

surface nucleation, the core-shell structure formed due to the MS instability cannot



61

readily be annealed and recrystallized into an epitaxial nanodot. In this case, shell

is in registry with respect to the substrate. Therefore, there are no defects along

which liquid Ga can move so that they may crystallize upon exposure to the As

vapor. Crystallization of such liquid cores may still occur, however, if the shell is

thin enough to dissolve upon annealing thus exposing the liquid Ga to the As flux,

however instability-induced shells are characteristically thicker than those resulting

from surface nucleation according to simulations.

3.4 Morphological dependence on temperature and flux

Both simulations and experiments have shown that droplet epitaxy can result in

a wide range of morphologies depending on the growth conditions. By varying FAs

and T , we have established their effect on the resulting nanostructures observed in

simulations. From this data, it is clear that compact islands form at low temperature

and, as the As overpressure is reduced or the temperature is increased the nanos-

tructures become rings. In cases of large FAs, core-shell structures are observed. The

simulation results are summarized in the structural map given in Figure 3.13. In this

section, we will appeal to physical and mathematical arguments to further explain

the simulation results. In particular, the solid lines in Figure 3.13 that delineate the

morphological structure will be derived in this section.

3.4.1 Three fundamental processes in droplet crystallization

We argue that various morphologies observed both in experiments and simulations

can be explained in the context of three key processes active during nanostructure

formation. In the first Ga atoms in the liquid drop will be “wicked” out of the droplet

onto the substrate by capillary-type forces when exposed to an As overpressure.

These forces arise as it is energetically favorable for As atoms on the surface to
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Figure 3.13: Morphological Dependence on Growth Conditions. This nanostructural phase map
summarizes simulation results of droplet epitaxy and crystallization at various As de-
position rates and temperatures. The three boundary curves indicate theoretically
derived critical conditions delineating the simulation results and obtained in this sec-
tion. The left-most, black line is given by Equation (3.18). The middle, red curve
corresponds to Equation (3.35). The right-most, blue curve is given by Equation
(3.23).
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Nucleation

Wicking

Figure 3.14: Schematic of kinetic processes that determine nanostructural development.

become fully coordinated with Ga atoms. Next, As atoms deposited near or on the

droplet diffuse rapidly [48] through the liquid and attach on a growing GaAs front

at the liquid-solid interface, crystallizing the droplet epitaxially. Finally, As atoms

may also nucleate near the vapor-liquid interface. These three processes: wicking,

crystallization and nucleation are illustrated in Figure 3.14. The relative rates at

which these processes occur depend on growth conditions and will determine the

resulting morphology.

3.4.2 Quantum dots and nanorings

The formation of nanorings is a competition between the wicking and crystalliza-

tion processes. The crystallization process results in GaAs fronts that grow until

the liquid Ga is consumed. If the fronts coalesce before this occurs, the resulting

nanostructure is a compact quantum dot. If however, the liquid Ga is consumed

before the fronts come together, nanorings result.

To compare the rates of the two processes, we establish expressions for the velocity

of the GaAs front as well as the rate at which Ga atoms are wicked out of the droplet.

Assuming quasi-static deposition, the velocity vn of the GaAs front under an As

deposition rate FAs scales according to that rate:

(3.13) vn = g`FAs,

where ` is the atomic spacing of the lattice and g is factor that depends shape of the
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liquid region and possible difference in the As adsorption probability between the

droplet itself and its surroundings. For simplicity, g = 1. In the wicking process, Ga

atoms are driven from the droplet by the deposition of As on the surface away from

the droplet. The time scale of the wicking process is determined by the deposition

rate of As

(3.14) τ =
1

FAs

,

while the diffusion length scale is given by

(3.15) λ =

√
D′Ga

FAs

,

where D′Ga is the diffusion coefficient of Ga diffusing on a mostly Ga terminated

surface, in the presence of As deposition:

D′Ga = `2R0 exp

[
−E

′
Ga

kBT

]
.

The energy barrier E ′Ga = 1.26 eV describing the diffusion of Ga on surface not

purely Ga terminated is obtained from the harmonic average of the diffusion rates

of Ga-on-Ga diffusion and Ga-on-As diffusion. By prescribing a constant value E ′Ga

that describes the effective energetic barrier for diffusion on a mostly Ga-terminated

surface, we have assumed that the diffusivity throughout the domain is constant. In

reality, diffusivity is spatially dependent due to differences in surface reconstruction

near and away from the liquid [55]. This dependence is exaggerated in extreme

conditions for temperatures less than 150◦C and high As overpressure, but away from

such growth conditions, a constant effective diffusivity is a reasonable approximation

Equations (3.14) and (3.15) yield a velocity vw for the wicking of Ga atom from

the liquid droplet

(3.16) vw =
λ

τ
= `
√
R0FAs exp

[
− E ′Ga

2kBT

]
.
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A fully crystallized quantum dot forms under conditions where the crystallization

process is dominant (vn � vw). However, if the wicking process is sufficiently fast

(vn ∼ vw), then as described above, the fronts may fail to coalesce, resulting in a

nanoring. The critical configuration separating these two scenarios occurs when the

crystallization fronts are tangent to each other. To express this critical condition

quantitatively, consider the volume of unconsumed liquid Ga at time t:

(3.17) V (t) = V0 − 2`vwt− 2ρ1(vnt)
2,

where ρ1 = π
4

is a shape constant describing the geometry of the crystallization front

(which we model as a quarter-circle) and

V0 = ρ2r
2,

is the initial volume of the liquid droplet of radius r, ρ2 = 3π
4

being the shape

constant that describes the geometry of the droplet. As a first-order approximation,

the value of ρ2 is selected as the average of the shape constant describing a circular

and half-circular droplet.

The positive root tf of equation (3.17) describes the time when all Ga has been

consumed. The length of the crystallized front is then given by vntf , and the critical

condition may be expressed as

vntf = r

Using equations (3.4), (3.13), and (3.16) , this critical configuration can be written

in terms of the growth conditions as

(3.18) F r
As =

(
2Fα

Ga

(ρ2 − 2ρ1) gr0

)2

R1−2α
0 exp

[
2αEGa − E ′Ga

kBT

]
.

If FAs > F r
As then compact structures will result on other hand if FAs < F r

As nanorings

will result. Figure 3.9 illustrates the transition from nanorings to compact quantum
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dots with increasing FAs. The black line in Figure 3.13 shows a plot of F r
As vs.

1/T . The agreement with the simulation data is quite good – it separates compact

structures (black dots in the figure) from nanorings (black circles).

A crucial assumption has been made in the argument presented here, namely that

no nucleation takes place within the Ga droplet and the crystallizing front moves in

a stable fashion (i.e. no Mullins-Sekerka instability occurs). In what follows we shall

examine in what regimes in parameter space these factors play an important role.

3.4.3 Nucleation of polycrystalline shells

Here we will demonstrate that when the As deposition rate is sufficiently large and

temperature is low enough, the dominant process will be nucleation at the vapor-

liquid interface. As a consequence, the wicking process makes a negligible contri-

bution to the morphology. The rate of the nucleation process at the vapor-liquid

interface may be estimated by considering the As concentration cAs(x, y, t) within a

domain of liquid Ga in contact with a GaAs substrate and As flux. For simplicity

we will consider the domain to be rectangular of height H with periodic boundary

conditions in the horizontal direction. Assuming quasi-static deposition at a rate FAs

ML/s and temperature T , the concentration satisfies

(3.19)

∇2cAs = 0,

`DAs
∂cAs

∂y

∣∣∣∣
y=H

= FAs,

cAs|y=0 = c0

where c0 is the equilibrium As concentration above a flat liquid-solid interface given

in Equation (3.6) and the diffusion coefficient

DAs = `2R0 exp

[
− εLex

kBT

]
,
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describes the diffusion of As through liquid Ga, εLex = 0.7 eV being the energy barrier

for diffusion throughout the liquid droplet. The system has a linear solution

(3.20) cst = νy + c0,

where ν = FAs

`DAs
. Substituting the expressions for DAs and c0 above we obtain the

equilibrium concentration csurf at the surface of the domain

(3.21) csurf =
FAsH

`3R0

exp

[
εLex

kBT

]
+ `−2 exp

[
Eattach − Edetach

kBT

]
.

Nucleation is most likely to occur where the As concentration is the largest, near

the vapor-liquid interface. This means that nucleation will occur when csurf is larger

than some critical concentration:

(3.22) csurf ≥ c0 exp

[
Enuc

kBT

]
,

where Enuc = 0.01 eV is the nucleation barrier of GaAs in liquid Ga, treated as a

fitting parameter. Replacing H in Equation (3.21) with the expression for the droplet

radius in Equation (3.4), the critical condition (3.22) for surface nucleation can be

expressed in terms of T and FAs as:

(3.23) F n
As =

R1−α
0 Fα

Ga

r0

exp

[
Eattach − Edetach − εLex + αEGa

kBT

](
exp

[
Enuc
kBT

]
− 1

)
.

If the As deposition rate exceeds F n
As then GaAs crystallites will form at the vapor-

liquid interface, as illustrated in Figure 3.10. The blue line in Figure 3.13 is a plot

F n
As as function of 1/T . It accurately predicts the presence of nucleation in simulation

results (blue triangles).

3.4.4 Monocrystalline shells and a Mullins-Sekerka instability

In the case where the rates of both the wicking and nucleation processes are negli-

gible, the crystallization process dominates, resulting in the growth of crystallization
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fronts at the triple point and in registry with the substrate. As observed in Section

3.3.3, this growth can be unstable due to a Mullins-Sekerka instability leading to

GaAs shells epitaxial to the substrate surrounding a liquid Ga core. Perturbations

to the planar growth front of sufficiently long wavelength experience this instability.

We show the existence of this instability by a linear perturbation analysis of the

system (3.19). The normal velocity of the planar growth front is given by

(3.24) vn = `2DAs (∇c · n)|y=0 .

Using the expression (3.20), along with the above expression for the normal velocity,

we may write vn = ην, where η = `2DAs.

We consider a perturbation of the interface at y = 0 of the form

h(x, t) = h0 sin(kx)eωt.

For convenience, we describe the concentration as c(x, y, t) = cst(y)+u(x, y, t), where

u(x, y, t) = uk(y) sin(kx)eωt.

Then, from the system (3.19), we conclude that

(3.25) ∇2u = 0,

with boundary condition

(3.26) uy|y=H = 0.

We may linearize the boundary conditions at the perturbed interface near y = 0. By

the Gibbs-Thomson relation [53], we may write

c|y=h(x) = c0 exp

[
`2γκ(x, t)

kBT

]
(3.27)

≈ c0 + σκ(x, t)(3.28)

≈ c0 + σ |hxx|(3.29)
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where γ is the interface energy per unit length, κ(x, t) is the curvature of the height

profile and

σ = c0
`2γ

kBT
.

The value γ = 0.1 can be obtained directly from the model by considering the

energy difference per unit length between an infinite GaAs crystal and a configuration

obtained by introducing a Ga liquid interface through the crystal. Specifically, it is

the value of an As-As next-nearest neighbor bond that is lost when the liquid interface

is introduced. The left hand side of the boundary condition at y = 0 in (3.19) may

by linearized as

c|y=h(x) = cst(h(x)) + u(x, h(x), t),(3.30)

≈ cst(0) +
dcst
dy

∣∣∣∣
y=0

h(x) + u(x, 0, t) +
∂u

∂y

∣∣∣∣
y=0

h(x)(3.31)

= c0 + νh(x) + u(x, 0, t),(3.32)

where we have ignored the higher order term ∂u
∂y

∣∣∣
y=0

h(x). The linearized version of

the boundary condition is obtained by equating (3.29) and (3.32):

(3.33) u(x, 0, t) = σ |hxx| − νh.

The normal velocity of the perturbed profile consists of the planar velocity term

ην and the normal velocity ht of the perturbation, yielding the boundary condition

η (∇c · n)|y=h(x) = ην + ht,

from which we may remove the planar growth terms to write the boundary condition

solely in terms of u:

η (∇u · n)|y=h(x) = ht.
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A similar linearization may be performed for this boundary condition near y = 0.

To first order, n = (−hx, 1), so that ∇u · n ≈ uy, ignoring the uxhx term. Then

η (∇u · n)|y=h(x) = η uy|y=h(x)

= η uy|y=0

where the last terms comes from expansion about y = 0, ignoring higher order terms.

Hence the boundary condition describing the normal velocity may be linearized as

(3.34) η uy|y=0 = ht.

Together, equations (3.25), (3.26), (3.33), and (3.34) may be solved, resulting in the

following relationship between ω and k:

ω = `4R0 exp

[
− εLex

kBT

]
k tanh(kH)

×
(
FAs

`3R0

exp

[
εLex

kBT

]
− γ

kBT
exp

[
Eattach − Edetach

kBT

]
k2

)
.

Solving for the critical wave number kc, occuring when ω = 0, and setting Λc = 2π
kc

,

the critical wavelength for the MS instability is given by

Λc = 2π`3/2

√
R0γ

FAskBT
exp

[
Eattach − Edetach − εLex

2kBT

]
,

In order to accommodate perturbations that experience the MS instability, droplets

necessarily must have radius on the order of Λc, i.e. r ≥ CΛc, for some constant

C. This critical condition may be expressed in terms of FAs and T using the above

equation along with the model for droplet radius (3.4):

(3.35) FMS
As = C2`

(
2πFα

Ga`

r0

)2
γ

kBT
R1−2α

0 exp

[
Eattach − Edetach − εLex + 2αEGa

kBT

]
.

If FMS
As < FAs < F n

As then liquid cores will form via a Mullins-Sekerka instability.

Figure 3.13 shows a plot of FMS
As vs 1/T . The scaling constant C = 1

8
was selected to
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best match simulation results, though its specific value do not affect the qualitative

shape of the boundary curve, and in particular its slope. The simulation results

when a liquid core was observed are plotted as red triangles. We observe that the

theoretical curve slightly underestimates the instability within the simulations. This

underestimation is inherent to our model and can be attributed to discrete effects.

Such effects on nucleation and hence instabilities of the type outlined above are

indeed well-studied in the context of diffusion limited aggregation [56,57].



CHAPTER IV

Further applications: nanowire growth by the
Vapor-Liquid-Solid method and sintering of granular

material

4.1 The Vapor-Liquid-Solid method for nanowire growth

As another application of the model and implementation, we have simulated

nanowire growth by the Vapor-Liquid-Solid (VLS) method. In VLS growth, a liquid

catalyst droplet is placed on a solid substrate. Vapor material is then introduced

and is subsequently adsorbed onto the vapor-liquid interface. As the vapor is incor-

porated into the droplet, the liquid serves to catalyze the reaction in which vapor

is converted to solid material. This solid material then nucleates at the liquid-solid

interface, resulting in one-dimensional growth underneath the droplet. Common ma-

terials used in nanowire growth are silicon and liquid gold droplet as a catalyst [58].

A combination of Silane (SiCl4) and hydrogen gas composes the vapor material.

Within the gold material, the catalyzed reaction

(4.1) SiCl4 + 2H2 → Si + 4HCl,

results in the precipitation of Si, leading to its nucleation at the liquid-solid interface.

Experimental work in nanowires grown by the VLS method was introduced in

[59]. Since then, the characterization of nanowire formation and morphology has

72
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been studied in experiments, and a wide range of phenomena have been observed.

Examples of such phenomena include nanowire tapering and a change in growth

direction, called kinking. For example, the phenomenon of nanowire tapering in Si

nanowires grown by the VLS method was studied in [60]. There, it was observed

that suppressing the diffusion of the liquid catalyst by the introduction of oxygen gas

resulted in a negligible amount of tapering. In another study, the appearance and

magnitude of tapering was shown to be controlled by vapor flux and temperature

[61] in the case of self-catalyzed nanowires. Kinking in GaAs nanowires can also

be controlled by a consideration of the deposition ratio between Ga and As [62].

Experiments have also exhibited an explicit control of nanowire kinking by vapor

pressure to produce multiple kink sites on Si nanowires [63].

Some previous work regarding the simulation and modeling of nanowire growth

used continuum models [64,65]. In [64], the phenomena of nanowire kinking, wherein

the nanowire is observed to change growth directions, was studied in the context of

faceting at the liquid-solid interface and liquid droplet statics. There, external per-

turbations are added to the growth of the nanowire to drive such kinking. In the KMC

model, such perturbations are built-in, and we show that vulnerability to unstable

growth as a result of these perturbations is governed by certain energetic parameters.

Such unstable growth results in nanowire kinking, consistent with the theory in the

continuum model. There has also been previous work in the Monte Carlo simulation

of nanowires [66], which focused on the effect of experimental parameters such as

temperature and deposition rate. Here we take a complimentary approach, studying

the effect of energetic parameters on growth kinetics and mechanisms.

In our simulations, we consider a system on a hexagonal lattice initially consist-

ing of a liquid droplet of material L on a solid substrate of material S exposed to
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γ (eV) V L S
V 0.10 0.10 0.10
L 0.10 0.35 0.40
S 0.10 0.40 0.50

Table 4.1: Pairwise bonding energies between the vapor, liquid and solid species used in the
nanowire simulations.

a vapor of material V. While not tuned to a specific physical system, the pairwise

bonding energies in Table 4.1 and used in the simulations exhibit reasonable quali-

tative properties. Namely the model specifies strong bonds (0.5 eV) within the solid

material, relatively weaker bonds (0.40 eV) between liquid material and even weaker

bonds (0.35 eV) bonds between the solid and liquid materials to encourage phase

segregation. The vapor phase is considered weakly interacting will other phases, and

all bonds involving a vapor atom are assigned a bonding energy of 0.10 eV. Only

vapor atoms are allowed to desorb, and the additional energy barrier for desorption

of vapor atoms was set to µV = 0.50 eV.

The transition X → Y between configurations X, Y representing a vapor to solid

reaction of a single atom is assigned an activation energy barrier

(4.2) Ea(X, Y ) = E(X)− E(X ∧ Y ) + ρ(V, S),

where X∧Y is defined by replacing the reacting vapor atom with one of intermediate

species V ∧ S and ρ(V, S) is the additional barrier for a reaction event. As with the

exchange barrier εNL
ex , we may assign different values ρL and ρNL to ρ depending

on whether the reaction occurs within either a liquid neighborhood or otherwise,

respectively. In the former case, the total activation energy barrier is

Ea = E(X)− E(X ∧ Y ) + ρL

= 6γ(V, L)− 6γ(V ∧ S, L) + ρL

= 3(γ(V, L)− γ(L, S)) + ρL.
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The energy barriers ρL and ρNL describe the additional energy barrier for reactions

contributing to vapor-liquid-solid and vapor-solid growth, respectively. The case

when ρNL > ρL therefore models the catalytic effect of the liquid droplet on the

vapor-solid reaction, which is essential in VLS growth. Detailed modeling of the

different reaction pre-cursors and resultants (e.g. Cl and H in the reaction (4.1)) are

not included in the model.

As an illustrative study of nanowire formation mechanisms, we examine the role

of ρL and εNL
ex , the additional energy barrier for atom exchanges at the liquid-solid

interface. Two sets of simulations were performed. First, growth simulations were

run to study the long-term growth and macroscopic properties of nanowires over

several values of ρL and εNL
ex . The initial profile consisted of a hemispherical liquid

droplet of diameter 64 atoms placed on a flat solid substrate. The domain itself was

512 atoms wide, with periodic boundary conditions. Vapor material was deposited

uniformly throughout the domain until 512 ML of atoms were deposited, though

much of the material desorbs before the vapor-solid reaction occurs. The second

set of simulations were performed to study the trajectory of individual solid atoms

resulting from a vapor-solid reaction and yield microscopic insight on the mechanisms

leading to the macroscopic properties observed in the first set of simulations. Here,

the initial configuration is a nanowire grown as described above. Vapor atoms are

then deposited as in the growth simulations, and the trajectory of the first solid atom

resulting from a vapor-solid reaction is maintained until that atom becomes static,

signifying its incorporation onto the wire. These trajectory simulations were run over

several values of ρL and εNL
ex , and for each choice of parameters, 512 independent and

identical trials were run in order to get meaningful statistics by ensemble averaging.

All simulations occurred at fixed temperature T = 350◦C and vapor deposition rate
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Figure 4.1: Simulation results of VLS nanowire growth, varying ρL between 0.75 and 1.25 eV. Liquid
material is colored green, original solid substrate materials is purple. Material that was
deposited from the vapor and subsequently reacted to solid phase is blue.

FV = 0.25.

4.1.1 Catalytic reaction rate

The parameter ρL determines the energy barrier for, and hence the rate of a

catalyzed vapor to solid reaction. Figure 4.1 shows growth simulation results for

various values of ρL. In the case of low ρL (0.75 eV), a large, broad nanowire results

in contrast with the high ρL (1.25 eV) case, in which no growth is observed. Hence

the parameter ρL affects the growth rate and width of the nanowire. Additionally,

significant tapering is observed when ρL is small. Such tapering has been reported in

experimental literature [67,68]. Axial and radial growth is present in the case where

ρL = 0.75 eV. When ρL = 1.00 eV, axial growth is present, but not as significant

as the previous case, and radial growth is negligible. The presence and control of

tapering is in qualitative agreement with what is seen in experiments, as described

above.
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4.1.2 Liquid-solid interface mobility

The parameter εNL
ex affects events that occur at the liquid-solid interface, and hence

describes the mobility of that interface. Among the processes that depend on εNL
ex

are attachment onto, detachment from and diffusion along the liquid-solid interface.

Assuming a perfectly flat interface, the associated barriers for these events are

Eattachment = εNL
ex + 2γ(L, S)− γ(L,L)− γ(S, S)

= εNL
ex − 0.2eV;

Edetachment = εNL
ex − 2γ(L, S) + γ(L,L) + γ(S, S)

= εNL
ex + 0.2eV;

Ediffusion = εNL
ex .

Changing εNL
ex therefore scales the rates for these three processes by the same amount.

In the context of other processes, however, the effect of εNL
ex can be seen to alter the

resulting nanowire growth modes. In particular the presence of nanowire kinking,

which is observed experimentally as described above, is governed in part by this pa-

rameter. Figure 4.2 shows simulation results for various values of εNL
ex , the parameter

that controls atom-atom exchanges at the liquid-solid interface. For a small value

εNL
ex = 0.90 eV, the wire grows perpendicular to the substrate and the liquid-solid in-

terface is flat. There is more significant nanowire kinking in the case when εNL
ex = 1.10

eV . In this case, the liquid-solid interface is not flat asymmetrically faceted. When

εNL
ex = 1.40 eV there is once again little nanowire kinking, but the interface is faceted.

In this case, the faceting is symmetric.
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Figure 4.2: Simulation results of nanowire growth, for εNL
ex = 0.9, 1.10 and 1.40 eV.

Diffusion-length scale and interface geometry

The growth simulations suggest that the geometry of the liquid-solid interface

affects the growth direction of a nanowire. By examining the trajectory statistics,

we may gain some insight on this role. Figure 4.3 show typical trajectories for εNL
ex =

0.90, 1.10 and 1.40 eV, respectively. In the case of low εNL
ex , we observe that a solid

atom diffuses through the liquid droplet and upon initial attachment to the liquid-

solid interface, may diffuse along that interface. When εNL
ex is increased however,

the diffusion along the interface is limited. When a solid atom attaches onto the

liquid-solid interface, it is static, indicating its incorporation into the droplet. As

such, the growth of the interface tends toward diffusion-limited behavior as εNL
ex is

increased. For large values of εNL
ex (e.g. εNL

ex = 1.40 eV) the attachment rate is

small, so that a solid atom spends most of its time diffusing and such trajectories

are characteristically long. Indeed, the figure suggests that the solid atom visits the

entirety of the liquid droplet before becoming static, avoiding the interface due to a

large attachment barrier.
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Figure 4.3: Snapshots of trajectories for solid atoms inside the liquid droplet for εNL
ex = 0.9, 1.1

and 1.4 eV, over an interval of 0.1 seconds. Each straight line segment corresponds to
9.5× 10−8 seconds.

Nanowire kinking

The simulation snapshots in Figure 4.2 suggests that the geometry of the liquid-

solid interface plays a role in nanowire growth direction. In the case of a flat interface

or growth along the vapor-liquid-solid triple junction, the resulting nanowire grows

perpendicular to the substrate, while nanowire kinking is observed in the presence

of asymmetric faceting. Figure 4.4 shows another example of nanowire kinking. By

examining this nanowire simulation, we can observe the evolution of its configuration

during the change in growth direction. Simulation snapshots of this process are

illustrated in Figure 4.5, along with enlarged images of the liquid-solid interface.

There, we see the nucleation of a horizontal facet (left most panel) and its growth.

In the third panel, the horizontal facet has become the largest along the interface,

and at that stage the nanowire has changed growth directions.

We can view the kinking phenomenon as originating from the inability of the diffu-

sion and detachment/attachment processes at the liquid-solid interface to effectively

relax and flatten nucleation along that interface within a reasonable time-scale. This

results in the nucleation and growth of new facets. The roughness of this interface is

characterized by the diffusion length scale along the interface, which we have seen to

be affected by εNL
ex . When εNL

ex is small (e.g 0.9 eV), the interface remains flat, and no

kinking is observed. When this is increased however, the the growth of new facets
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Figure 4.4: An example of nanowire kinking.

Figure 4.5: Snapshots of nanowire kinking and facet nucleation. From left to right: (1) Start of
nanowire kinking, with flat liquid-solid interface. (2) The nucleation of a new facet. (3)
Growth of the facet and droplet motion. (4) Nucleation of another facet.
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becomes accessible, and kinking is observed.

4.1.3 Computational statistics

Over the entire set of growth simulations presented in this section, the average

number of Monte Carlo steps required for a full simulation was 28 billion steps,

while the maximum number was 117 billion steps. The corresponding average and

maximum CPU times were 10 and 45 hours respectively.

4.2 Sintering of granular material

As another application of and illustration of the flexibility of the KMC model,

we simulate sintering, a process in which a powder of material is heated below its

melting point, allowing the powder to coalesce. This process may be modeled as

the evolution of porous granular material; the grains signifying regions of identical

crystallographic orientation. As such, the model is not unlike atomistic grain growth

ones such as the Monte-Carlo Potts model [69]. The fundamental difference is in

the presence of vacancies within the material, resulting in the contribution of surface

diffusion along the interface of such vacancies toward the evolution of the system.

Previous work in simulating sintering and growth models span a broad range

of length and time scales. Molecular dynamics simulations of sintering often involve

small number of nanoclusters of specific materials such as tungsten and TiO2 [70,71].

In [72], a kinetic Monte Carlo simulation of sintering involving only the surface dif-

fusion of atoms between nanoclusters was studied. Larger scale simulations that

include surface diffusion and grain growth were studied in [73]. There the simula-

tions were done using Metropolis dynamics. Atomistic grain growth models that do

not incorporate surface diffusion has been simulated using the Monte-Carlo Potts

model and can be performed in a domain larger than the previous examples. Two
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dimensional simulations in a domain consisting of 200 × 200 lattice sites have been

performed [74, 75], over a time scale of up to 7000 Monte Carlo steps. More recent

work simulated the model in three dimensions, within a domain of size 250×250×250

lattice sites, over a time scale of 1000 steps. In comparison, continuum models of

grain growth reach even larger time scales. There, systems with up to 670,000 initial

grains can be simulated over a time scale in which only 4000 grains remain [33,76,77].

In this dissertation, we simulate porous granular material in a 512 × 512 atom

domain, with over 8000 initial grains over a period of one hundred to ten thousand

simulated seconds, corresponding to billions of Monte Carlo steps. In the simulations,

each atom is assigned one of S species, indicating a particular orientation of the atom.

Pairwise bonding energies between atoms of species σi and σj, are given by

γ(σi, σj) =


γ0 i 6= j,

γ1 i = j.

Throughout this section, we fix γ0 = 0.25 eV and γ1 = 0.50 eV, encouraging atoms to

phase segregate. Only surface diffusion and reaction events (here seen as changes in

orientation) are allowed. Unlike the other two example systems we have previously

considered, no special neighborhood is assigned to signify a liquid phase. As such,

only one reaction energy barrier ρ is specified. As before, the intermediate state for

a reaction event in which an atom changes from orientation σi to σj is obtained by

replacing that atom with one of intermediate species σi ∧ σj and bonding energies

involving this intermediate species are calculated according to Equation (2.3).

As an example, we consider the event X → Y where an atom of species σ changes

orientation to species τ . Suppose that atom has n neighbors of species σ and the

remaining (assuming a hexagonal lattice) 6 − n neighbors are of species τ . Such a

reaction would occur on the boundary between two grains of orientation σ and τ , and
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signifies an attempted advance of the τ grain into the σ grain. Then the activation

energy of this reaction event is

Ea = E(X)− E(X ∧ Y ) + ρ

= nγ(σ, σ) + (6− n)γ(σ, τ)− nγ(σ ∧ τ, σ)− (6− n)γ(σ ∧ τ, τ) + ρ

= (n− 3)(γ1 − γ0) + ρ,

and the corresponding rate may be written as

R(X, Y ) = ω exp

[
− nγ̃

kBT

]
,

where γ̃ = γ1 − γ0 and

ω = R0 exp

[
3γ − ρ
kBT

]
.

This rate is similar to that given in the Monte Carlo Potts model for grain growth,

with interfacial energy γ̃ and pre-exponential factor ω. One key difference is in the

probability of selecting such an event. Typical Monte Carlo Potts models use the

Metropolis selection criterion based on the energy difference between states X and

Y . In that model, an atom is selected uniformly to change orientation, and this

change is accepted with probability 1 if it results in a decrease of energy. Otherwise,

it is kept with probability proportional to that of R(X, Y ) above. In doing so, the

Monte Carlo Potts model ignores kinetic time scales, which is acceptable in the case

where only one type of event may occur, namely orientation changes. With the KMC

model, the rate of such orientation changes can be put in the context of the rates of

other kinetic processes, such as surface diffusion.

4.2.1 Simulation Results

The simulations were performed on a 512 × 512 hexagonal lattice with periodic

boundary conditions in both directions. The initial conditions were obtained by
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Figure 4.6: The initial configuration of the sintering simulations presented in this paper, obtained
by a random sphere packing algorithm. The material density is 80%. Different colors
correspond to different orientations.

a random sphere packing algorithm with material density specified at 80%, and is

depicted in Figure 4.6. Each color in the figure represents one of S = 7 orienta-

tions an atom may posses. Simulations were performed to study the effect of ρ and

temperature T on the coarsening time scale of the system.

The effect of ρ

In the first series of simulations, the temperature T was fixed at 327◦C, while the

parameter ρ was allowed to vary between 1.25 eV and 2.00 eV. The system was then

annealed for a total of 100 simulated seconds. In the high ρ regime, surface diffusion

was the dominant process, consisting of 99.9% of the events when ρ = 2.00 eV. This

percentage drops to 70.8% when ρ = 1.25 eV. The final configuration for each choice

of ρ is depicted in Figure 4.7. The figure suggests that the time scale for coarsening
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Figure 4.7: Final configurations of sintering simulations after 100 seconds at T = 327◦C, for ρ =
1.25, 1.50, 1.75 and 2.00 eV. Different colors correspond to different orientations.

increases along with increasing ρ. Qualitatively, the amount of coarsening is more

significant in the cases when ρ = 1.25 and 1.50 eV than for the remaining two cases.

The utility of sintering is in recrystallizing material from a powder in order to grow

material with a small amount of grains, minimizing the effects of grain boundary

defects. As such, much experimental and analytical work on sintering and grain

growth have focused on coarsening statistics, and in particular mean grain radius

〈R〉. Such works have demonstrated the fact that the growth of this radius with

respect to time scales according to a power law 〈R〉 ∼ tb. For grain growth models

that do not model the presence of pores in the material, and hence do not incorporate

surface diffusion, analysis predicts an exponent value b = 1
2

[74]. However, several
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experimental results yields a power law in which b is between 1
4

and 1
2
. For example,

in [78], the recrystallization of lead yielded an exponent of b = 0.4. In [79], the

sintering of cadmium oxide powder results in an exponent of b = 1
3
.

The plots in Figures 4.8 show two statistics of interest with respect to coarsening.

The left panel presents the number of grains within a configuration as a function of

simulation time, over the values of ρ considered above. The plot shows a decay in this

number for all values of ρ, though the rate of decay is more significant for ρ ≤ 1.50.

For such values of ρ, the number of grains quickly decay from 8600 to under 2000

within the first ten seconds of the simulations, and for these values of ρ, we observed

qualitatively from the snapshots in Figure 4.7 that the amount of coarsening is more

substantial than the case when ρ > 1.50. The right panel plots the mean equivalent

disc radius 〈R〉 of the grains within a configuration. That is, 〈R〉 is the empirical

mean value of the quantity
√

A
π

, where A is the area of a grain, averaged over the

entire set of grains within a configuration. The radius behaves according to a power

law with respect to time. Along with this empirical average radius are the best fit

power law functions of the form

〈R〉 = atb + 〈R0〉 ,

obtained by the non-linear least squares method. The value 〈R0〉 = 2.25 unit lengths

is the mean radius for the initial condition. For ρ = 1.25 and 1.50, the mean radius

scales as 〈R〉 ∼ t0.25±0.02. When ρ = 1.75 eV, the best-fit power law yields a value of

b = 0.52, while b = 0.21 for ρ = 2.00.

As the number of grains decreases, the system approaches a meta-stable config-

uration. For example, consider the case where ρ = 1.25 eV (blue circles in Figure

4.8), left panel. Within the first 10 seconds of simulation time, the number of grains

decreases from over 8000 to under 1000. After 100 seconds, the number of grains
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Figure 4.8: Grain coarsening statistics vs ρ. (Left) The number of grains vs. time. (Right) The
mean disc-equivalent radius 〈R〉 vs. time. Best-fit power law models 〈R〉 = atb + 〈R0〉
are shown in dashed lines, and the fitted value b is indicated for each plot. Each plot
corresponds to a different value of ρ
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Figure 4.9: Long-term grain coarsening statistics after 10,000 simulated seconds for ρ = 1.25 eV
and T = 327◦C. (Left) Final configuration. (Right) Number of grains vs. time, in the
interval between 100 and 10,000 seconds.

decreases to under 500. We may examine the long-term behavior in this case to

understand the system’s approach to meta-stability. Figure 4.9 depicts the behavior

of the system over a duration of 10,000 simulated seconds. The left panel shows the

final configuration, characterized by larger grains than the system possessed after

100 seconds The number of grains within the system over the interval between 100

and 10,000 seconds is shown in the right panel. This graph shows that the number

of grains decreases to under 13 grains during this time.
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Grain radius and critical phenomena

The utility of sintering is in recrystallizing a powder in order to grow material with

a small amount of grains, minimizing the effects of grain boundary defects. As such,

much experimental and analytical work on sintering and grain growth have focused

on coarsening statistics which describe the rate at which this recrystallization occurs.

Of particular interest is in the mean grain radius 〈R〉. Such work have demonstrated

the fact that the growth of this radius with respect to time scales according to a

power law 〈R〉 ∼ tb. For grain growth models that do not consider the presence

of pores in the material, and hence do not incorporate surface diffusion, analysis

predicts an exponent value b = 1
2

[74]. However, several experimental results yields a

power law in which b is between 1
4

and 1
2
. For example, in [78], the recrystallization of

lead yielded an exponent of b = 0.4. In [79], the sintering of cadmium oxide powder

results in an exponent of b = 1
3
. We observe that the above simulations yield an

exponent consistent with the range outlined above and suggest that the presence of

pores and surface diffusion along their interfaces provides some explanation regarding

the discrepancy between analytic results and experiments.

The plots in Figures 4.8 suggest that the coarsening behavior for ρ = 1.75 is

different from the other cases. For that case, the average grain radius scales like t1/2

while the other cases scale like t1/4. We performed further simulations over a larger

set of ρ, each time calculating the mean power law exponent b over an ensemble of

16 trials for each choice of ρ. The dependence of b on ρ is plotted in Figure 4.10. We

see that for all but a small interval of ρ values, the power law scales with exponent

b ≈ 1
4
. However, within the interval 1.6 ≤ ρ ≤ 1.8 eV, the growth rate increases to

near or above b = 1
2
. That is, for this critical interval, grain growth proceeds much

faster than for other values of ρ.
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Figure 4.10: Power law b vs ρ.

Effect of temperature

In the second series of simulations, the effect of temperature on coarsening was

studied in an analogous way to the study above. The energy parameter ρ was fixed

at 1.25 eV, and the temperature was varied between 277◦C and 427◦C. Figure

4.11 shows the configuration after 100 seconds for each choice of temperature. As

the temperature is increased, the amount of coarsening is increased, resulting in

larger and fewer grains, though a significant amount of coarsening is observed at

all temperatures. In the high temperature case T = 427◦C, only a few dominant

grains remain after 100 seconds. Coarsening statistics can be similarly obtained for

these simulations, as is shown in Figure 4.12. We observe that the decay in the

number of grains (left panel) is qualitatively similar over all choices of T . In the

high temperature case T = 427◦C, the number of grains decreases from an initial

value of 8600 (not shown in the plot) to under 500 within the first few seconds of

the simulation. In the right panel, the mean grain radius is plotted, along with the

best-fit power law for each choice of temperature. The power law varies from b = 0.18
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when T = 277◦C to b = 0.34 when T = 427◦C. The apparent periodicity observed

in high temperatures is a result of the advance of a large grain into a smaller one.

For two conjoined grains, the rate at which either grain’s radius changes behaves

according to the law

dR

dt
=

1

2πR
vnL,

where L is the interface length between the two grains and vn is the normal velocity

of that interface. As a result, as the smaller grain is consumed by the larger one, the

radius of the smaller grain decreases much faster than the increase in the larger grain’s

radius. This implies that the expectation 〈R〉 is lowered as the advance occurs. When

the smaller grain disappears, its contribution to the lower mean radius is removed,

resulting in a jump in its value.

4.2.2 Computational statistics

The simulation depicted in 4.9, in which 10,000 seconds were simulated, required

42 billion Monte Carlo steps and 19 hours CPU time. For the other sintering sim-

ulations, the average number of Monte Carlo steps was 4.4 billion steps while the

maximum was 30 billion steps. The corresponding average and maximum CPU time

was 4.6 and 15.4 hours
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Figure 4.11: Final configurations of sintering simulations after 100 seconds with ρ = 1.25 eV, for
T = 227, 327, 377 and 427◦C. Different colors correspond to different orientations.
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Figure 4.12: Grain coarsening statistics vs temperature. (Left) The number of grains vs. time
(initial configuration when t = 0 is not shown). (Right) Mean disc equivalent radius
〈R〉 vs. time. Best fit power-law models 〈R〉 = atb + 〈R0〉 are shown in dashed lines,
and the fitted value b is indicated for each plot. Each plot corresponds to a different
value of T .



CHAPTER V

Conclusion

Kinetic Monte Carlo offers an attractive alternative to other atomistic modeling

and simulation techniques such as molecular dynamics. It is capable of simulating

larger scale processes and is therefore applicable to a broad range of systems of

interest to materials scientists. As KMC is being applied to more complex systems,

a careful study of efficient implementations must be made. While much work has

been done in the certain algorithmic components of KMC, little attention has been

focused on the constant time calculation of rates. This calculation however, is a

significant portion of the floating point operations in KMC and is repeated hundreds

of billions of times during simulation. As such, it is an often over-looked bottleneck.

We addressed this by presenting a hash table based caching procedure designed to

eliminate the redundant calculation of transition rates for neighborhood patterns

frequently seen in a simulation. In order for this procedure to be effective, a “good”

hash function must be specified. Instead of explicitly constructing one, we used a

parameterized form of a hash function and designed a simulated annealing algorithm

to search for optimal parameters. When implemented, the hash table based caching

procedure leads a significant performance speed-up, allowing us to to perform large

scale simulations in a reasonable amount of time.

92
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With an efficient and flexible implementation in hand, we are able to simulate

several example systems. As first example, we used KMC to model a GaAs system

and are able to simulate the relevant processes in GaAs homoepitaxial film growth,

droplet epitaxy and crystallization. As calibration and an initial validation of the

model, we presented simulation results in GaAs homoepitaxy, exhibiting a good

match with experimental data for surface termination experiments. As our main

focus, we also modeled the formation and crystallization of Ga droplets resulting in

GaAs nanostructures. Experimentally, such structures depend on growth conditions

such as As flux temperature. Our simulation results are in good qualitative agree-

ment with these experimental observations. We are able to reproduce the different

nanostructures observed in experiments with the correct trends in flux and tem-

perature – exhibiting a continuum of structures ranging between compact nanodots

to broad nanorings. Simulations also suggest the existence of Ga/GaAs core/shell

structures and yield insight in their formation. We observed two mechanisms behind

the formation of core/shell structures. First is a simple nucleation of GaAs clusters

at the liquid solid interface. Such nucleation results in a polycrystalline shell, which

upon further high temperature annealing can be recrystallized into an epitaxial dot.

This is confirmed by both simulations and experiments. The second method for

core/shell structures is by a Mullins-Sekerka instability of the GaAs crystallization

front. Shells formed via this instability are necessarily monocrystalline and epitaxial

to the substrate. We developed a unifying model on top of the KMC model that

encapsulates all the phenomena outlined above. The model identifies three processes

active during crystallization. By specifying the critical conditions for the phenomena

above, the model is able to delineate the existence of particular morphological struc-

ture in good agreement with simulations. With this model, we are able to precisely
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state the dependence of structure on our KMC model parameters.

As further illustration of the KMC model, we simulated two more example sys-

tems. We presented simulation results of nanowire growth that capture a wide range

of observed phenomena, including tapered bases, faceting of the liquid-solid interface

and nanowire kinking. The amount and type of faceting was shown to be controlled

by the parameter εNL
ex , and a simple model for the diffusion length scale was developed

to explain this influence. The simulations suggest that facet nucleation at the liquid-

solid interface provides a mechanism for such growth modes, in agreement with past

results from continuum models. We lastly presented simulation results of sintering,

over several values of temperature and ρ, the additional energy barrier for changing

orientations. The coarsening statistics of the grains show that the disc equivalent

mean radius behaved as a power law with respect to time. That is 〈R〉 = atb + 〈R0〉

and that depending on the choice of parameters ρ and T . For most values of ρL,

the mean radius scaled as t
1
4 , however for values in a critical interval, we observed

accelerated coarsening that scaled like t
1
2 .

5.1 Future work

Given the ability of our KMC implementation to model a broad range of systems,

we have been applying our work to even more systems, not described in this disser-

tation. Indeed, simulations have or are currently being run to model catalyst-free

GaAs nanowires on a Si substrate, Ga droplet epitaxy on grooved Si substrates, and

GaAs quantum dots capped overgrowth layers of GaAs. Future work in this regard

are to produce physical scale simulations in a reasonable amount of time and per-

form an analogous study on parameters that was done on the basic GaAs system.

One problem in the systems with Si is the low energy barrier for diffusion on a Si
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substrate, leading to a dominance in surface diffusion in the events performed. The

small barrier problem is ubiquitous in all atomistic simulations and our simulations

are no different in this regard. The rate caching technique developed here some-

what mitigates the dominance of the diffusion process because of the repetition in

neighborhoods implied by atom hopping. However, much work needs to be done

regarding this in order to provide simulations that run quickly. Continuum/atomic

coupling methods could prove advantageous here. Indeed work has already been done

in modeling surface diffusion probabilistically in the context of KMC [80]. Future

work would involve coupling such quasi-continuum models within our specific KMC

framework through a proper utilization of the rate cache.

Even with the rate caching technique, there is much work that may be done to

improve the performance and memory requirements of our KMC implementation.

Specifically, the rate cache can be used as the main data structure for sampling

and updating in a method similar to that proposed in [81]. There it is proposed

that through that by organization rates by similar value, sampling and updating

can be done in constant time. The cache, however sorts rates by neighborhood,

but an analogous technique can be implemented for constant-time execution of a

Monte Carlo step. In this way, the cache is no longer treated as an auxiliary data

structure, but as the main one used to sample and update in KMC. As future work,

this technique could be incorporated into the implementation, leading to even further

performance gains.

Apart from the GaAs system, the two other examples presented here were pre-

sented as an illustration of the flexibility and efficiency of our model. More analysis

should be done on the observed phenomena presented in the above parameter studies

done for the nanowire and sintering examples. This is especially important in the
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nanowire case, as experimentalists are starting to grow a variety of nanowire struc-

tures such as self-catalyzed GaAs nanowires. Understanding the precise relationship

between parameters and wire growth modes is therefore important in complimenting

experimental work, and providing a theoretical justification for the structures and

growth mechanisms seen and proposed by experimentalists
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