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Chapter 1 Introduction 
 

The cell has various biological clocks that generate rhythms with periods from seconds to 

weeks. These rhythms control important aspects of cell physiology including cell 

division, embryogenesis, DNA damage repair and metabolism (1-4), which are essential 

functions for the survival of organisms. For instance, circadian (~24hr) rhythms control 

daily events, such as the sleep/wake cycle, blood pressure, body temperature and 

hormone (e.g. melatonin) secretion, which allow organisms to adapt to the appropriate 

time of day (5). Another interesting cellular rhythm is the oscillation of p53 (a tumor 

suppressor), which is essential to repair DNA damage (6). The oscillations of cell cycle 

also control cell growth and division (7).  

 

These cellular rhythms can be disrupted in various ways including mutation of genes, 

which has a profound effect on the function of the cell. The importance of maintaining 

cellular rhythms has led to considerable research interest in mechanisms that generate and 

maintain these rhythms (2, 4, 8). In particular, since the molecular biology revolution of 

the 1980s, many genes and proteins that constitute biochemical networks involving 

cellular rhythms have been identified (9-12). The identification of these biochemical 

networks has provided a fundamental framework to study cellular rhythms (13) and has 

significantly improved our understanding of cellular rhythms (4). However, despite a 

tremendous amount of experimental work since the 1980s, our understanding of these 

biochemical networks is still far from complete due to limitations of current experimental 

techniques (13-17).  
 

In chapter 2, we proposed a new approach to reveal biochemical networks underlying 

biological clocks. While detecting biochemical interactions and measuring their 

biochemical rate constants requires a tremendous amount of experimental work, 

measuring the timecourse of these components is relatively easy with advanced 
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techniques, such as luciferase assay and microarray analysis (18, 19). Given the amount 

of timecourse data, we sought to answer the following question: “If we can accurately 

record the timecourses of genes and proteins in a biological clock, what can we infer 

about the biochemical network generating the rhythms?” We formulated this question as 

an existence and uniqueness problem and proved that the network interactions, and even 

biochemical rates, can sometimes uniquely be determined from only gene and protein 

timecourses. This theory provides a simple algorithm that determines whether two given 

species have a biochemical interaction based on their timecourses. We also showed that 

the repetitive application of this algorithm to all pairs of species in the network can reveal 

the global structure of biochemical networks. 

 

While revealing biochemical networks is an important step towards the understanding of 

biological clock functions, having complete knowledge of the biochemical network 

structure does not give a complete understanding of biological clock function. That is, 

even with the knowledge of all the components and interactions that constitute biological 

clocks, further studies are needed to understand the following questions: Why does the 

loss of some components completely disrupt rhythms, while the loss of other components 

cause little effect on them? Why does the loss of some components increase period or 

amplitude, but the loss of other components decrease period or amplitude? To answer 

these fundamental questions regarding cellular rhythms, biochemical interactions 

underlying biological clocks should be studied systemically (4, 8, 20). In this systematic 

approach, mathematical modeling has been an important tool (2, 8). That is, simulation 

and analysis of mathematical models of biological clocks allow for a integrative 

interpretation of data, illumination core dynamics, and explanation of the role of each 

component underlying biological clocks (2, 4, 7, 8, 21-23). For instance, mathematical 

models have found core mechanisms for rhythm generation in various cellular rhythms, 

such as circadian rhythms, cell cycle and p53 rhythms (2, 4, 8, 20). Furthermore, 

mathematical modeling found that the positive feedback loop that is commonly observed 

in various biological clocks is essential to maintain rhythms over a wide range of 

conditions and tune periods (3).  
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In chapter 3, we studied how molecular circadian clocks generate rhythms and maintain a 

24-hour period over a wide range of conditions by developing the most detailed and 

accurate mathematical model of this system to date. This model was developed by 

piecing together data from accumulated experimental studies published in the last two 

decades. In particular, the model accurately reproduces the phenotype of known 

mutations of genes in the circadian clock, which was not achieved by previous models. 

By analyzing the simulations of various mutant phenotypes, we found an essential 

condition for rhythm generation and period regulation: a 1-1 stoichiometric balance 

between activators and repressors of a core negative feedback loop in the circadian clocks 

(i.e. a similar ratio between the amount of activators and repressors). Furthermore, we 

found that an additional negative feedback loop in the circadian clock helps maintain a 1-

1 stoichiometric balance, leading to rhythm generation and tight regulation of period over 

a wide range of conditions. We also verified that these properties are sufficient to 

generate rhythms whose period shows little change over a wide range of conditions by 

developing and analyzing a simple model based on these properties. Finally, by using the 

detailed mathematical model, we explored how the phases of circadian rhythms can be 

manipulated pharmacologically. This pharmacological modulation of circadian phase 

points to a novel way to treat the misalignment of circadian clocks, which increase the 

risk of various diseases including depression, insomnia, jet lag, coronary heart disease, 

neurodegenerative disorders, and cancer (24).  

 

In Chapter 4, we explored another type of cellular rhythm, namely p53 rhythms. p53 

protein is one of the most important tumor suppressors, which regulates key functions to 

prevent tumorigenesis in response to cellular stress (e.g. DNA damage and genomic 

instability), such as DNA repair, cell cycle arrest and apoptosis (25). While a low p53 

level is maintained in the normal condition, the level of p53 becomes rhythmic in 

response to cellular stresses, such as γ-irradiation that induces DNA damage (26). Recent 

study found that sustaining p53 pulses is essential to repair DNA damage and to prevent 

tumorigenesis (6). However, little research has investigated how cells can sustain p53 

pulses even with genetic heterogeneity, intrinsic noise and different environmental 

conditions. We investigated mechanisms that enhance the sustainability of p53 pulses by 
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developing a mathematical model of the p53 rhythm regulatory system. First, we found 

that an additional intracellular positive feedback loop is important for sustaining p53 

rhythms. That is, when the recently identified positive feedback loop between p53 and 

Rorα is included in the currently known p53 rhythm regulatory system, the sustainability 

of p53 rhythms is significantly improved over a wide range of conditions. We also found 

that DNA damaged cells behave like type II neurons, which act as resonators. The fact 

that type II neurons easily synchronize their rhythms when they are coupled led to the 

question of whether neighboring cells also synchronize p53 rhythms. We found that 

Cytochrome-c, which is known to induce a radiation induced bystander effect (27),  can 

be a potential coupling signal and can synchronize p53 rhythms among neighboring cells 

after DNA damage. Interestingly, the coupling also significantly reduces the chance of 

failure in sustaining p53 pulses in the presence of heterogeneity among cells. In 

summary, this work points to the importance of both intra and inter cellular positive 

feedback loops via Roaα and Cytochrome-c in sustaining p53.  

 

In Chapter 5, we review these studies and highlight the importance of our mathematical 

approaches on solving fundamental problems of cellular rhythms. Furthermore, we also 

propose future directions to expand these studies.  
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Chapter 2 On the Existence and Uniqueness of Biological Clock 
Models Matching Experimental Data 

 

 

2.1 Introduction 
 

A tremendous amount of data has become available on biological clocks during the past 

15 years. Most of this data comes in the form of timecourses, i.e. measurements over time 

of the concentrations of chemical species with GFP (green fluorescent protein), 

luciferase, or microarray techniques. Many mathematical modeling studies have used 

timecourse data to estimate the parameters of their models (e.g. (28, 29)). This raises the 

question of whether timecourses can do more than the parameter estimation. That is, can 

timecourses reveal information about network structure? 

 

We answer this question with a common form of ordinary differential equation (ODE) 

models for biological clocks (30-32): 

 

(1.1)             dr
dt
= f (s)− g(r)  

 

in which  represents the production of a species  (e.g. protein or gene) based on 

some other species,  in the network and  is the rate of clearance of r. Here, we 

consider the following questions: given precise measurements of two oscillating 

timecourses  and with the same period,  

 

Question 1. (existence) Can we find  and  such that the solution of (1.1) matches the 

given timecourses  and ?  

f (s) r

s g(r)

r(t) s(t)

f g

r(t) s(t)
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Question 2. (uniqueness) If we can find and , are they unique? 

 

The existence of  and  implies that the production of r is controlled by s. The 

uniqueness of  and  implies that the timecourses are enough to determine the 

quantitative relationships (i.e. biochemical rates).  

 

The questions we ask here are related to several other well-studied problems.  

 

1) Control theorists consider a related problem called “identifiability” (33, 34). This 

problem usually focuses on the identification of parameters of a given ODE with control 

of inputs and measurable outputs (e.g. timecourses). Here, we look for functions of ODEs 

rather than parameters of ODEs matching timecourses without control of input.  

 

2) Symbolic dynamics and reverse engineering techniques have been used to determine 

the qualitative functional relationships between species (i.e. whether activation or 

repression occurred) (35-38). Here, we pursue more detailed information. For instance, 

we ask whether the timecourses contains information for the quantitative relationship 

(e.g. determining  and ) as well as qualitative relationships. 

 

3) Recently, harmonic balance techniques have been proposed to select an ODE model 

from a class of models based on the best match to given oscillating timecourses (39, 40). 

However, here we search for the models matching timecourses exactly, instead of 

selecting an ODE matching timecourses better than the other candidates.  

 

4) One of the classical results in the theory of ODEs is that, given a sufficiently smooth 

ODE and an initial condition, a unique solution exists (41). Here, we ask the opposite 

question: Given the oscillating solution of an ODE, can we find an ODE matching this 

solution, and is this ODE unique? 

 

f g

f g

f g

f g
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5) Chemical reaction network theory has shown that the same ODE system may result 

from different reaction network diagrams (42). Here, we study the relationship between 

the ODE model and timecourses rather than that between the ODE model and reaction 

network. A previous study often equates dynamics (i.e. timecourses of key chemical 

species) with an ODE model (42). However, in practical applications, an ODE model is 

rarely known, and almost never known fully. Thus, it is important to know how the 

timecourses determine ODE dynamics. 

 

Our main finding is a necessary condition for Question 1 that provides a tool for 

detecting the relationship among the species solely from their timecourses. We also find 

necessary and sufficient conditions for Question 2, when timecourse data is enough to 

determine an ODE model of the form (1.1) uniquely. Finally, we show that another class 

of models of the form (1.2) (previously proposed in (17)), as well as the class of models 

of the form (1.3) have uniqueness and existence over a broad class of timecourses: 

 

(1.2)             df (r)
dt

= s+ g(r) ,  

 

(1.3)             dr
dt
= f (r)s− g(r) . 

 

This chapter is organized in the following way. In section 2.2, we outline our results. In 

section 2.3, we present the necessary conditions for existence of (1.1) and examples to 

show how it can reveal the structure from timecourse data. In section 2.4, we present the 

necessary and sufficient conditions for uniqueness of (1.1). Section 2.5 demonstrates that 

existence and uniqueness hold for (1.2) and (1.3). 

  

2.2 Overview of existence and uniqueness of models 
 

Definition 2.1.  and  are smooth oscillating timecourses with period τ (τ-

periodic) and with one maximum and one minimum per period.  

r(t) s(t)



 8 

 

In this paper, we consider only smooth ( ) functions because most biological problems 

are smooth. However, most of the results still hold when this assumption is relaxed.  

 

Definition 2.2. If  is a smooth timecourse with period τ and with one maximum and 

one minimum over a period, then  is a one to one 

function such that and unless t is a maximum or minimum of . 

 

For example, 

 

 

 

and 
  

 

 

Definition 2.3. Given and , . 

 

Our results are described in Figure 2-1. The fixed points of  and its iteration  

play a pivotal role in determining the existence and uniqueness of models given 

timecourses r(t) and . Theorem 3.1 shows that the existence of fixed points satisfying 

(3.2) implies the non-existence of (1.1). Theorem 4.3 shows that a model of the form 

(1.1) is unique as long as the set of fixed points is of measure zero. Theorem 5.2 shows 

the existence and uniqueness of (1.2) for a broad class of timecourses. Theorem 5.3 

shows that (1.2) can be converted into a more canonical form (1.3) if  does not have 

a fixed point.  

 

C∞

k(t)

k̂(t) :[−τ / 2,τ / 2)→ [−τ / 2,τ / 2)

k(k̂(t)) = k(t) k̂(t) ≠ t k(t)

côs(2π t / τ ) = −t −τ / 2 < t < τ / 2
−τ / 2 t = −τ / 2

"
#
$

sîn(2π t / τ ) = −t +τ / 2 0 < t < τ / 2
−t −τ / 2 −τ / 2 ≤ t ≤ 0

#
$
%

r(t) s(t) φ(t) := ŝ(r̂(t))

φ(t) φ n (t)

s(t)

φ(t)
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Figure 2-1. Existence and uniqueness of f and g of forms (1.1), (1.2) and (1.3) matching 
timecourses r(t) and s(t) .   
 

2.3 A Necessary condition for the existence of form (1.1) 
 

THEOREM 3.1. If there exist a  and an  for  and  such 

that  

 

(3.1)  

(3.2) , 

 

 then functions  and  of form (1.1) do not exist.  

 

Proof. This can be proved by showing that if there exist  and  satisfying (1.1), then 

(3.1) implies the equality in (3.2).  

 

Equation (3.1) implies that 

 

(3.3) . 
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2. Overview of existence and uniqueness of models.
Definition 2.1. r(t) and s(t) are smooth oscillating timecourses with period τ

(τ-periodic) and with one maximum and one minimum per period.
In this paper, we consider only smooth (C∞) functions because most biological

problems are smooth. However, most of the results still hold when this assumption is
relaxed.

Definition 2.2. If k(t) is a smooth timecourse with period τ and with one
maximum and one minimum over a period, then k̂(t) : [−τ/2, τ/2) → [−τ/2, τ/2) is
a one to one function such that k(k̂(t)) = k(t) and k̂(t) #= t unless t is a maximum or
minimum of k(t).

For example,

ĉos(2πt/τ) =

{
−t if −τ/2 < t < τ/2,
−τ/2 if t = −τ/2

and

ŝin(2πt/τ) =

{
−t+ τ/2 if 0 < t < τ/2,
−t− τ/2 if −τ/2 ≤ t ≤ 0.

Definition 2.3. Given r(t) and s(t), φ(t) := ŝ(r̂(t)).
Our results are described in Figure 2.1. The fixed points of φ(t) and its iteration

φn(t) play a pivotal role in determining the existence and uniqueness of models given
timecourses r(t) and s(t). Theorem 3.1 shows that the existence of fixed points
satisfying (3.2) implies the nonexistence of (1.1). Theorem 4.3 shows that a model of
the form (1.1) is unique as long as the set of fixed points is of measure zero. Theorem
5.2 shows the existence and uniqueness of (1.2) for a broad class of timecourses.
Theorem 5.3 shows that (1.2) can be converted into a more canonical form (1.3) if
φ(t) does not have a fixed point.

Fig. 2.1. Existence and uniqueness of f and g of forms (1.1), (1.2), and (1.3) matching time-
courses r(t) and s(t).

t̂ ∈ [−τ / 2,τ / 2) n ∈ N r(t) s(t)

φ n (t̂ ) = t̂

dr
dt t=t̂

+
dr
dt t=φ ( t̂ )

+....+ dr
dt t=φn−1( t̂ )

≠
dr
dt t=r̂ ( t̂ )

+
dr
dt t=r̂ (φ ( t̂ ))

+....+ dr
dt t=r̂ (φn−1( t̂ ))

f g

f g

t̂ = t0→
r̂
t1→

ŝ
t2→

r̂
t3....→

ŝ
t2n−2→

r̂
t2n−1→

ŝ
t0 = t̂
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Since and ,  

 

(3.4)  

 

Let us show that (3.1) implies the equality in (3.2). If we assume that there exist  and  

satisfying (1.1), then 

 

(3.5) 

dr
dt t=t̂

+
dr
dt t=φ ( t̂ )

+....+ dr
dt t=φn−1( t̂ )

= f (s(t̂ ))− g(r(t̂ ))+ f (s(φ(t̂ )))− g(r(φ(t̂ )))+....+ f (s(φ n−1(t̂ ))− g(r(φ n−1(t̂ ))
= f (s(t0 ))− g(r(t0 ))+ f (s(t2 ))− g(r(t2 ))+....+ f (s(t2n−2 ))− g(r(t2n−2 ))
= ( f (s(t0 ))+ f (s(t2 ))+....+ f (s(t2n−2 )))− (g(r(t0 ))+ g(r(t2 ))+....+ g(r(t2n−2 )))  

 

Since , , and (3.4),  

 

(3.6) 

. 

 

Equations (3.5) and (3.6) imply that if there exist  and  satisfying (1.1), then (3.1) 

contradicts (3.2). Therefore, conditions (3.1) and (3.2) imply that  and  of (1.1) do not 

exist.   ☐ 
 

A simple example to illustrate Theorem 3.1 is provided in Figure 2-2. Since 

, both r(t) and s(t) have the same value at t0  and t1, so both 

r̂−1(t) = r̂(t) ŝ−1(t) = ŝ(t)

t̂ = t0←
r̂
t1←

ŝ
t2←

r̂
t3....←

ŝ
t2n−2←

r̂
t2n−1←

ŝ
t0 = t̂

f g

r(r̂(t)) = r(t) s(ŝ(t)) = s(t)

( f (s(t0 ))+ f (s(t2 ))+....+ f (s(t2n−2 )))− (g(r(t0 ))+ g(r(t2 ))+....+ g(r(t2n−2 )))
= ( f (s(ŝ(t0 )))+ f (s(ŝ(t2 )))+....+ f (s(ŝ(t2n−2 ))))− (g(r(r̂(t0 )))+ g(r(r̂(t2 )))+....+ g(r(r̂(t2n−2 )))
= ( f (s(t2n−1))+ f (s(t1))+....+ f (s(t2n−3)))− (g(r(t1))+ g(r(t3))+....+ g(r(t2n−1)))
= f (s(t1))− g(r(t1))+ f (s(t3))− g(r(t3))+....+ f (s(t2n−1))− g(r(t2n−1))
= r '(t1)+ r '(t3)+....+ r '(t2n−1)

=
dr
dt t=r̂ ( t̂ )

+
dr
dt t=r̂ (φ ( t̂ ))

+....+ dr
dt t=r̂ (φn−1( t̂ ))

f g

f g

φ(t0 ) = ŝ(r̂(t0 )) = ŝ(t1) = t0
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g(r(t)) and f(s(t)) do as well. This implies the equality of (3.2) or  if there 

exists a model (1.1). However,  unless  and  since the signs 

of  and  are opposite (Figure 2-2). Therefore, the condition (3.1) implies the 

non-existence of the model (1.1) unless  and .   

 

 
Figure 2-2.  Fixed point of  φ(t) implies the non-existence of the model (1.1).  
 

Theorem 3.1 provides a way to determine the structure of the molecular network by 

showing the non-existence of (1.1) among unrelated species. Let us apply this to reveal 

the structure of biological clock model (3.7) based on the Goodwin oscillator (30-32).   

 

(3.7)        

Simulating this model generates 5 timecourses, which are interrelated in a single negative 

feedback loop. From these timecourses, we seek to reconstruct the model’s structure, 

without knowledge of (3.7).  Given the 5 timecourses, 10 interactions are possible of the 

r '(t0 ) = r '(t1)

r '(t0 ) ≠ r '(t1) r '(t0 ) = 0 r '(t1) = 0

r '(t0 ) r '(t1)

r '(t0 ) = 0 r '(t1) = 0

r(t0 ) = r(t1) s(t0 ) = s(t1)&

g(r(t0 )) = g(r(t1)) f (s(t0 )) = f (s(t1))&

r '(t0 ) = r '(t1)

if dr
dt
= f (s(t))! g(r(t))

!(t0 ) = ŝ(r̂(t0 )) = t0
! r̂(t0 ) = t1 & ŝ(t1) = t0

0 1 2 3
0

0.5

0 5 10 15 20 250

5

10

15

20

25

t

�2 (t)

 

 

r(t)
s(t)

t0 t1

r̂

ŝ

dm
dt

=
1

1+ p4
10 − 0.4m

dp1
dt

=m− 0.4p1

dp2
dt

= p1 − 0.4p2

dp3
dt

= p2 − 0.4p3

dp4
dt

= p3 − 0.4p4
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form given in (1.1) (see Figure 2-3C). Can Theorem 3.1 be used to find the relevant 

interactions? To determine whether two components of the system are related via (1.1) 

with Theorem 3.1, we check whether there exist some t obeying (3.1) and at that t, (3.2) 

is also satisfied. As shown in Figure 2-3A, we find that there exists t such that φ 2 (t) = t  
as well as (3.2) are satisfied between the pair  and , and the pair  and 

. Thus, we can rule out these interactions. In a similar way, by checking φ 3(t) = t  

and (3.2), three more interactions are excluded:  and ,  and , and 

 and  (Figure 2-3B). The only remaining interactions now match the original 

feedback loop structure  (Figure 2-3C). Thus from the timecourse data and Theorem 3.1, 

we were able to reconstruct the original feedback loop.   

 

   

A.       B.  

 
C. Reconstruction of (3.7) 

Figure 2-3. Theorem 3.1 excludes unrelated pair of signals of (3.7), so the original feedback 
loop structure is identified from the timecourses. 
 

We also apply Theorem 3.1 to another problem to determine whether it can be used to 

distinguish between two independent Goodwin oscillators. For this, we construct two 

m(t) p3(t) p1(t)

p4 (t)

m(t) p2 (t) p1(t) p3(t)

p2 (t) p4 (t)

0 5 10 15 20 250

5

10

15

20

25

t

�2
(t)

0 5 10 15 20 250

5

10

15

20

25

t

�2 (t)

 

 

m(t) & p3(t)
p1(t) & p4(t)

0 5 10 15 20 250

5

10

15

20

25

t

�3
(t)

0 5 10 15 20 250

5
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15

20

25

t

�3 (t)

 

 

m(t) & p2(t)
p1(t) & p3(t)
p2(t) & p4(t)

ϕ 2 (t) = t ϕ 3(t) = t

P1 

P2 P3 

P4 

M 

P1 

P2 P3 

P4 

M 

! 2 (t̂ ) = t̂ ! 3(t̂ ) = t̂
P1 

P2 P3 

P4 

M 
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Goodwin oscillators with different Hill-coefficients, (3.8) and (3.9). By choosing ts 

=1.356 in all the reactions of (3.9), we can match the periods of (3.8) and (3.9).  

 

(3.8)       

 

(3.9)       

 

There are 15 possible interacting pairs between the 6 variables of (3.8) and (3.9) (e.g. Q1 

and M, and P1 and P2) (see Figure 2-4). For 2 pairs of variables, there exists a t such that  

φ(t) = t  as well as (3.2), which means they are not related. By checking φ 2 (t) = t , 4 more 

pairs are excluded.  φ 3(t) = t  excludes 1 more pair. Now, 7 pairs among the original 15 

pairs are excluded. By comparing them with (3.8) and (3.9), we see that 7 of the 9 

unrelated pairs are correctly excluded. This shows how Theorem 3.1 can be used to 

identify incorrect functional relationships between variables and reveal the structure. 

 

 
Figure 2-4. Theorem 3.1 excludes most of unrelated two components of two independent 
Goodwin oscillators, (3.8) and (3.9). (Initial condition used: M(0)=0.0227, P1(0)=0.1472, 
P2(0)=1.7531, N(0)=0.0034, Q1(0)=0.1269, and Q2(0)=2.4147). 

dM
dt

=
1

1+P2
9 − 0.1M

dP1
dt

=M − 0.1P1

dP2
dt

= P1 − 0.1P2

dN
dt

= ts( 1
1+Q2

20 − 0.1N )

dQ1
dt

= ts(N − 0.1Q1)

dQ2

dt
= ts(Q1 − 0.1Q2 )

P1 

P2 

M 

Q1 

Q2 

N 

!(t̂ ) = t̂ ! 2 (t̂ ) = t̂

P1 

P2 

M 

Q1 

Q2 

N 

P1 

P2 

M 

Q1 

Q2 

N 

! 3(t̂ ) = t̂

P1 

P2 

M 

Q1 

Q2 

N 
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Theorem 3.1 considers a simple model (1.1), in which each component is regulated by 

only one other component. However, in real biological systems, this assumption may be 

too simplistic. If more than one component, s1, s2, …, sn controls the production of a 

chemical species, we have the following form: 

 

dr
dt
= f (s1, s2...., sn )− g(r)  

 

One particular case of this is 

 

,
 

 

where we have more freedom to choose f1 and f2  than if we can choose only one f as in 

(1.1). Therefore, we can expect that the existence is more likely to occur as more species 

or variables are included in the model. Since  plays the key role in the study 

of (1.1), similar techniques could be used to study the generalized models by finding a 

new version of , which describes the relationship of more than two 

timecourses. It may also be helpful to experimentally keep some of the signals, (e.g. s2, 

s3, …) constant, which would reduce the problem to that of the form (1.1). 

 

2.4 Necessary and sufficient conditions for uniqueness of form (1.1)   
 

Given two timecourses, for which an appropriate  and  of (1.1) can be found, we next 

consider whether the functions  and  are unique?  One trivial way to achieve non-

uniqueness is to add the same constant to both  and  since we are concerned only 

with their difference in the ODE. To avoid this, we assume that . However, as 

shown by the following theorem, this alone does not guarantee uniqueness.  

 

dr
dt
= f1(s1)+ f2 (s2 )− g(r)

φ(t) = ŝ(r̂(t))

φ(t) = ŝ(r̂(t))

f g

f g

f g

f (0) = 0
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THEOREM 4.1. Given two timecourses  and , for which  and  of (1.1) exist, 

smooth functions  and  are unique if and only if there are no smooth functions m and 

n such that  

 

(4.1)      and . 

 

Proof. (only if). Let us assume that there are f1, g1, f2 and g2 such that  

 

. 

 

By defining,  

 

, 

, 

 

we show that m(s)=n(r) and m(0)=f1(0) - f2(0) = 0 – 0 =0. 

 

(If). Now, let us assume there exist m and n such that  and  and show 

that  and  of (1.1) are not unique. Then,  

 

.
 

 

Let 

(4.2)     
f (s) := f (s)+m(s),
g(r) := g(r)+ n(r).  

 

Then,  and  become solutions of (1.1) with these new functions and 

. ☐ 

r(t) s(t) f g

f g

m(s(t)) = n(r(t)) m(0) = 0

dr
dt
= f1(s)− g1(r) = f2 (s)− g2 (r)

m(s) := f1(s)− f2 (s)

n(r) := g1(r)− g2 (r)

m(s) = n(r) m(0) = 0

f g

dr
dt
= f (s)− g(r) = f (s)+m(s)− n(r)− g(r)

r(t) s(t)

f (0) = f (0)+m(0) = 0+ 0 = 0
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The class of functions  and , which do not have uniqueness is not apparent 

immediately since determining the existence of m and n such that  is difficult, 

especially when non-monotonic m and n are allowed. The following corollary is useful in 

seeing how large the space of  and  with non-unique  and g  is. 

 

COROLLARY 4.2 Given two timecourses  and , for which  and  of (1.1) 

exist, smooth functions  and  are unique if and only if there is no smooth function m 

such that  

 

(4.3)     and  

  

for the scaling of time , with which  is an even function.  

 

Proof. We can shift time so that  has a maximum at t=0. Then, we can always find 

the scaling of time , with which  becomes an even function (see [3] for details). 

Then, of (4.1) also becomes an even function. This causes the non-uniqueness 

condition (4.1) with respect to the scaling of time  to be that is an even 

function.  ☐ 

 

This corollary shows that if f and g of (1.1) exist given  and , then f and g are not 

unique when  is in the preimage of an oscillating even function with time scaled so 

that  becomes an even function. The preimage of oscillating even functions is broad 

and contains even functions, odd functions, simple harmonic functions , 

and so on. At first glance, non-uniqueness seems to frequently occur because, regardless 

of what  is, there always exists a large space (the preimage of oscillating even 

functions in the new scaling of time) of , in which nonunique f and g of (1.1) exist. 

However, the following theorem shows that non-uniqueness is less likely to occur by 

s(t) r(t)

m(s) = n(r)

s(t) r(t) f

r(t) s(t) f g

f g

m(s(−t ')) =m(s(t ')) m(0) = 0

t '(t) r(t ')

r(t)

t '(t) r(t ')

n(r(t '))

t '(t) m(s(t '))

r(t) s(t)

s(t)

r(t)

sin(t +mπ / n)

r(t)

s(t)
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showing that an  which is the preimage of oscillating even function cannot be a 

solution of (1.1) in most cases.   

 

THEOREM 4.3. Given timecourses  and , for which  and  of (1.1) exist,  

and  of form (1.1) are unique if and only if  for almost every t and for all 

. 

 

Proof (If). Let us assume that there exist non-unique  and  of (1.1) or that  is 

an even function for the scaling of time  for which  is an even function by 

Corollary 4.2. Since  is an even function and  on ,  

 

(4.4)     . 

 

Since by definition of , 

 

(4.5)     . 

 

Therefore, (4.4) and (4.5) imply that has the same value for  and . By 

applying the same argument for instead of , we can show that has the 

same value for the following set:  

 

. 

 

By scaling back to the original time scale, has the same value for   

 

(4.6)      

 

s(t)

r(t) s(t) f g f

g φ n (t) ≠ t

n ∈ N

f g m(s(t '))

t '(t) r(t ')

m(s(t ')) r̂(t ') = −t ' (−τ / 2,τ / 2)

m(s(t ')) =m(s(−t ')) =m(s(r̂(t '))

s(r̂(t ')) = s(ŝ(r̂(t '))) ŝ(t)

m(s(r̂(t ')) =m(s(ŝ(r̂(t '))) =m(s(φ(t ')))

m(s(t ')) t ' φ(t ')

φ(t ') t ' m(s(t '))

{t ',φ(t '),φ 2 (t '),....,φ n (t '),....}

m(s(t))

{t,φ(t),φ 2 (t),....,φ n (t),....}
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Since  for almost every t and for all , (4.6) is an infinite set for almost 

every t. Therefore, if , the set of (4.6) has at least one limit point, where  

is a locally recurrent function. If we define L as a set of points where  is locally 

recurrent, m(s(L)) is of measure zero since  has finite derivative (43). 

Furthermore, if we define K as a set of points such that  for some , 

 is of measure zero since K is of measure zero. Since the range of  is the 

same with , the range of  is also of measure zero or  is 

a constant function (zero function since ). Therefore,  for almost every t 

and for all  implies that a non-trivial function m cannot satisfy (4.1) and (4.3).  

 

(Only if). If the measure of fixed points is not zero or , and assuming 

that n ∈ N  is the minimal value for which the measure of the set is nonzero, we can find 

a closed interval  since  is smooth except at a finite 

number of points. We now show that this implies the existence of m and n as in (4.1). 

Since ,  

 

(4.7)  

 

We can always make  and  monotone over  by reducing the size of  (see 

Figure 2-5). Similarly, we can always reduce the size of  to ensure that there is no 

intersection between the images of r(t) over  and  unless i=j. Similarly, we can also 

ensure that the images of s(t) over  and  do not intersect unless i=j.  We now show 

that over these regions , we can find m(s(t)) and n(r(t)) satisfying (4.1) or 

m(s(t))=n(r(t)). Choose any nonzero smooth function n(r(t)) over  such that 

dkn(r(t))
dtk

= 0  for all k  at the boundary of  (Figure 2-5). This function can be extended 

over  as below:  

φ n (t) ≠ t n ∈ N

φ n (t) ≠ t m(s(t))

m(s(t))

m(s(t))

φ n (t) = t n ∈ N

m(s(K )) m(s(t))
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m(0) = 0 φ n (t) ≠ t
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A1
Ai Aj

Ai Aj
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(4.8)     

 

m(s(t)) can also be chosen to match n(r(t)):  

 

(4.9)     

 

Thus m(s(t))=n(r(t)) and f and g are not unique by Theorem 4.1.       ☐ 

 

 
Figure 2-5. Description of the construction of n(r(t)) and m(s(t)) such that n(r(t))=m(s(t)).  
 

Theorem 4.3 and Theorem 3.1 indicate that nonuniqueness rarely occurs since the 

equality of (3.2) must hold over a non-measure zero set, . Moreover, 

Theorem 4.3 provides a way to test whether f and g of (1.1) are unique. If there exists a 

non-measure zero set where  for some ,  f and g will not be unique if they 

exist (Figure 2-1). If the measure of all fixed points is zero, and f and g of (1.1) exist, f 

and g will be unique (Figure 2-1). 
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r̂

m(s(t))

t φ n (t) = t{ }

φ n (t) = t n ∈ N



 20 

 

2.5 Sufficient conditions for existence and uniqueness of (1.2) and (1.3). 
 

Here, we show that existence and uniqueness can be achieved in the broader class of 

timecourses by considering another form of ODE models (1.2). Our previous study found 

that for smooth timecourses  and , (1.2) could be constructed if 

 (17). That is, for this class of functions ,  and  of form 

(1.2) exist. Here, we show that  and  of form (1.2) are also unique. To show 

uniqueness, we need a different proof for the existence of (1.2) from the original proof 

(17), which is described in Theorem 5.2.  

 

LEMMA 5.1. Given smooth τ-periodic even timecourse and odd timecourse , 

unique smooth functions p and q exist such that1 

 

(5.1)      , 

(5.2)             . 

 

THEOREM 5.2. Given smooth τ-periodic timecourses  and , unique smooth 

functions  and  of (1.2) exist . 

 

Proof. Without loss of generality, let us assume that  has a maximum at t=0. A 

vertical shift and scaling of  can make its range [-1,1]. Then, by scaling time we can 

make . This scale is smooth because both  and are well 

defined:  

 

(5.3)               .
 

 

                                                
1	  This	  follows	  from	  arguments	  presented	  in	  [3].	  

r(t) s(t)

dr / dt = 0⇒ d 2r / dt2 ≠ 0 r(t) f g

f g

a(t) b(t)

q(cos(2π t / τ )) = a(t)

dp(cos(2π t / τ )) / dt = b(t)

r(t) s(t)

f g dr / dt = 0⇒ d 2r / dt2 ≠ 0

r(t)

r(t)

r(t ') = cos(2π t '/ τ ) dt / dt ' dt '/ dt

dt
dt '

=
dr / dt '
dr / dt

=
−(2π / τ )sin(2π t '/ τ )

dr / dt
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If , then  and . Therefore, (5.3) is well defined by 

l’Hopital’s rule. In the same way,  is also well defined. Furthermore, 

and imply 

 

(5.4)              and . 

 

Decomposition of  into its odd and even parts such that  

 

(5.5)                

 

allows the form 

 

(5.6)            

 

because we can find smooth functions q and p such that and 

 by Lemma 5.1. Now by scaling back to the original time, we can 

get 

 

(5.7)            

 

But we need  instead of . For this, let us consider the ratio of 

and .  

 

. 

 

Since  is an odd function,  

 

€ 

dr /dt = 0 sin(2π t '/ τ ) = 0

€ 

d2r /dt 2 ≠ 0

dt '/ dt dt / dt ' ≠ 0

dt '/ dt ≠ 0

dt / dt ' > 0 dt '/ dt > 0

s(t ')

s(t ') = s(t ')odd + s(t ')even

s(t ') = dp(r(t ')) / dt '+ q(r(t '))

s(t ')even = q(r(t '))

s(t ')odd = dp(r(t ')) / dt '

s(t) = dp(r(t)) / dt '+ q(r(t))

dr(t) / dt dr(t) / dt '

dr(t ') / dt ' (dr(t ') / dt)odd

dr / dt '
(dr / dt)odd

=
2dr(t ') / dt '

dr(t ') / dt − dr(−t ') / dt
=

2
(dr(t ') / dt) / (dr(t ') / dt ')− (dr(−t ') / dt) / (dr(t ') / dt ')

dr(t ') / dt '
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(5.8)            .
 

 

The denominator of (5.8) is never zero due to (5.4b). Therefore, (5.8) is well defined and 

smooth. Furthermore, (5.8) is an even function because it is the ratio of two odd 

functions. Therefore, with Lemma 5.1, we can find smooth function fa such that  

 

(5.9)      
.
 

 

 We can also find a smooth function fb such that  

 

(5.10)      
,
 

 

(5.11)           
.
 

 

From this, 

 

(5.12)           ,

 

 

where  and −q(r) .  

 

Now, let us show the uniqueness of f and g. Let   

 

dr / dt '
(dr / dt)odd

=
2

dt '(t ') / dt + dt '(−t ') / dt

dr / dt '
(dr / dt)odd

= fa (r)

dr(t ')
dt even

= fb(r(t '))

dr
dt '

= fa (r)
dr
dt odd

= fa (r)(
dr
dt
−
dr
dt even

) = fa (r)(
dr
dt
− fb(r))

s(t) = dp(r(t))
dt '

+ q(r(t)) = dp
dr

dr
dt '

+ q(r) = dp
dr

fa (r)(
dr
dt
− fb(r))+ q(r)

=
dp
dr

fa (r)
dr
dt
−
dp
dr

fa (r) fb(r)+ q(r) =
df (r)
dr

dr
dt
− g(r) = df (r) / dt − g(r)

df (r) / dr = (dp / dr) fa (r) g(r) = fa (r) fb(r)(dp / dr)

s(t) = df1(r) / dt − g1(r) = df2 (r) / dt − g2 (r)
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(5.13)    . 

 

Note that since (5.9) is nonzero,  is well defined. With the time scale , is 

an even function and  is an odd function. Let us take the odd part of  (5.13):  

 

(5.14)              . 

 

Equation (5.14) implies , which means . Then, 

follows.  ☐ 

 

Unfortunately, it is difficult to interpret the biological meaning of f and g of (1.2). Now, 

we propose a way to convert (1.2) into a more common form of the model so that f and g 

of (1.2) can be interpreted as production and degradation rates.   

 

THEOREM 5.3. Given smooth τ-periodic timecourses  and , smooth functions  

and of (1.3) exist uniquely if , , and  

 

(5.15)               for all t. 

 

Proof. Let us show that  of (5.6) is well defined and not zero for all t. From (5.5) 

and (5.6),  

 

(5.16)  , 

 

df1
dt
− g1(r) =

df2
dt

− g2 (r)

df1
dr

dr
dt
− g1(r) =

df2
dr

dr
dt
− g2 (r)

df1
dr
( dr
dt '

1
fa (r)

+ fb(r))− g1(r) =
df2
dr
( dr
dt '

1
fa (r)

+ fb(r))− g2 (r)

1/ fa (r) t ' r(t ')

dr(t ') / dt '

df1
dr

dr
dt '

1
fa (r)

=
df2
dr

dr
dt '

1
fa (r)

df1 / dt ' = df2 / dt ' df1 / dt = df2 / dt

g1(r) = g2 (r)

r(t) s(t) f

g dr / dt = 0⇒ d 2r / dt2 ≠ 0 ds / dt = 0⇒ d 2s / dt2 ≠ 0

φ(t) = ŝ(r̂(t)) ≠ t

dp / dr

s(t ') = s(t ')odd + s(t ')even = dp(r(t ')) / dt '+ q(r(t ')) = (dp / dr)(dr / dt ')+ q(r(t '))
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(5.17)     
.
 

 

Since  except for extrema (  and  on ) and 

from (5.4),  is well defined for and . If  has zero except for 

t ' = 0  and t ' = −τ / 2 , then or  because is an even 

function, which contradicts (5.15). Therefore,  is not zero except for t ' = 0  and 

t ' = −τ / 2  on . Therefore,  except for t ' = 0  and t ' = −τ / 2 . 

Furthermore, for  and , 

 

(5.18) 
 

 

The second equality comes from l’Hopital’s rule and the fourth equality comes from 

at  and . Since from (5.4) and at 

 and , is well defined. Furthermore, at  and 

because  does not have an extremum at  and by (5.15). This implies that 

 at  and . Therefore,  is well defined and nonzero for all  

or t.  

 

From (5.8) and (5.9),  is well defined and not zero for all t. Therefore, (5.12) can be 

modified to  

 

 
 

, where and .  ☐ 

 

dp
dr

=
s(t ')odd
dr / dt '

=
s(t ')odd

(dr / dt)(dt / dt ')

dr / dt ≠ 0 t ' = 0 −τ / 2 [−τ / 2,τ / 2) dt / dt ' ≠ 0

dp / dr t ' ≠ 0 t ' ≠ −τ / 2 s(t ')odd

s(t ') = s(t ')even φ(t ') = ŝ(r̂(t ')) = t r(t ')

s(t ')odd

[−τ / 2,τ / 2) dp / dr ≠ 0

t ' = 0 −τ / 2

dp
dr t '=0,−τ /2

=
sodd (t ')

dr(t ') / dt '
=
(dsodd (t ') / dt ')
(dr2 (t ') / dt '2 )

=
(dsodd (t ') / dt ')

(dr2 (t ') / dt2 )(dt / dt ')2
=

(ds(t ') / dt ')
(dr2 (t ') / dt2 )(dt / dt ')2

dseven (t ') / dt ' = 0 t ' = 0 −τ / 2 dt / dt ' ≠ 0 dr2 / dt2 ≠ 0

t ' = 0 −τ / 2 dp / dr ds(t ') / dt ' ≠ 0 t ' = 0 −τ / 2

s(t ') t ' = 0 −τ / 2

dp / dr ≠ 0 t ' = 0 −τ / 2 dp / dr t '

fa (r)

s(t) = dp
dr

fa (r)
dr
dt
−
dp
dr

fa (r) fb(r)+ q(r) =
dp
dr

fa (r)
dr
dt
− h(r)

dr
dt
= f (r)s(t)− g(r)

f (r) =1/ ( fa (r)dp / dr) g(r) = −h(r) / ( fa (r)dp / dr)
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Note that (1.3) is a canonical type of model with a production rate and degradation rate. 

The difference between (1.3) and (1.1) is that the production rate depends on both  

and .  

 

2.6 Conclusion 
 

Our results show how mathematical models could be constructed given two oscillating 

timecourses, and  from a biochemical system. Models of the form (1.1) have 

perhaps the greatest biological intuition, but also lack existence and uniqueness.  Models 

of form (1.2) can be broadly constructed, and are also unique, but their biological 

interpretation is limited.  Models of form (1.3) contain properties in between models of 

forms (1.1) and (1.2). Interestingly, most results were obtained by studying the fixed 

points of an iterating map . Future work should study these iterative maps to more 

easily determine their fixed points. Additionally, our assumption about complete 

knowledge of the timecourse data is unrealistic. Given the noisy nature of all biological 

data, statistical methods should be incorporated with our methods to estimate f and g or 

rule them out. We hope our results will encourage consideration of well-posedness in the 

construction of models of biological timekeeping. 

 

r(t)

s(t)

r(t) s(t)

φ n (t)
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Chapter 3 A Mechanism for Robust Circadian Timekeeping and 
Chronic Pharmacological Manipulation of Circadian Rhythms 

 

3.1 Introduction 
 

Circadian rhythms are endogenous self-sustained oscillations with a period of about 

24hrs that are seen in diverse physiological and metabolic processes, such as sleep/wake 

behavior, heart pressure, body temperature and hormone secretion (44). These rhythms 

are regulated by the circadian clocks, intrinsic time-tracking systems with which 

organisms can anticipate environmental changes and adapt to these changes such as daily 

rhythms of light and temperature (45, 46). With this intrinsic time measuring device, 

organisms can control their physiology in an active rather than a passive manner (46). For 

instance, for seasonal day length changes, animals change their sleep/wake cycles; flies 

change their hatching timing, and plants change their organ positions (47). The 

importance of circadian clocks for organizing the physiology of organisms can be seen 

from the profound influence of disrupted circadian clocks on health. The disrupted 

circadian rhythms of human involving irregular daily life, has been known to increase the 

risk of severe diseases, such as depression, insomnia, jet lag, coronary heart disease, 

neurodegenerative disorders, and cancer (24). 

 

When circadian clocks were first discovered, three basic properties were identified (48).  

1) Rhythms need to be autonomous.  2) Rhythms need to be capable of adjusting in 

response to external signals. 3) Rhythms need to persist over a wide range of 

temperatures. More recently, the biochemical mechanisms of circadian timekeeping have 

been identified (49). In particular, interlocked transcription-translation feedback loops 

(TTFLs) have been discovered as the basic mechanism of rhythm generation in many 

organisms (2). With this discovery, recent experimentation has identified another 
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property of circadian rhythms in higher organisms.  Circadian rhythms persist with a 24-

hour period even in the presence of large changes in the expression of the components of 

these TTFLs (49, 50). While mechanisms for rhythm generation with a flexible period 

have been identified (3, 51, 52), mechanisms for this robustness of period to gene dosage 

remain unexplained, even by mathematical models (49, 50). 

 

Two interlocked negative feedback loops have been identified in the TTFL networks 

generating circadian rhythms in higher organisms (Figure 3-1) (53-56). A “core” negative 

feedback loop consists of repressors (PERIOD and TIMELESS in Drosophila or 

PERIOD1-3 and CRYPTOCHROME1-2 in mammals), which inactivate activators 

(CYCLE and CLOCK in Drosophila and BMAL1-2 and CLOCK in mammals) of their 

own transcription. An additional negative feedback loop controls the expression of the 

activators, which inactivate their own transcription through Vrille (Drosophila) or the 

Rev-erbs genes (Mammals) (53, 57). While other feedback loops have also been 

identified, these two negative feedback loops seem to predominate for the regulation of 

circadian rhythms (53-56, 58, 59). 

 

Near 24-hour oscillations persist even when the components of the TTFLs of the 

circadian clock are over or under expressed. Heterozygous mutations of clock genes 

never abolish rhythmicity, and their period phenotypes are either indistinguishable from 

the wild-type phenotypes or are much smaller than mutations that affect post-translational 

modifications (18, 60, 61). Abolishing rhythmicity through single gene knockout is 

surprisingly difficult (18, 23). Moreover, the mammalian circadian clock is also resistant 

to global changes in transcription rates (50). These results all suggest that gene dosage 

may not be important for circadian timekeeping in higher organisms. 

 

Gene dosage, however, is not completely unimportant for timekeeping. Knockdown of 

clock genes causes increased expression in similar components (paralog compensation), 

which may help restore gene dosage and indicates that gene dosage needs to be tightly 

regulated (18). Population rhythmicity in mouse embryonic fibroblasts shows much 

lower amplitude than in liver (62). The ratio of repressors to activators is significantly 
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lower in fibroblasts than that found in liver (62, 63). A 1-1 stoichiometric binding occurs 

between the activators and repressors driving rhythms in Drosophila (64), although not in 

Neurospora (65, 66). 

 

In this chapter, we propose a mechanistic explanation for the robustness to gene dosage 

in the circadian clock of higher organisms through mathematical modeling. We develop 

the most detailed mathematical model of the mammalian circadian clock available, which 

should be useful in many future studies. Our model reproduces a surprising amount of 

experimental data on the mammalian circadian clock including the time courses and 

relative concentrations of key transcripts and proteins, the effects of mutations of key 

clock genes, and the effects of changes in gene dosage. With this model, we show that 

proper stoichiometric balance between activators (BMAL-CLOCK/NPAS2) and 

repressors (PER1-2/CRY1-2) is key to sustained oscillations. Furthermore, we find that 

an additional slow negative feedback loop, in which activators indirectly inactivate 

themselves, improves the regulation of the stoichiometric balance and sustains 

oscillations with a nearly constant period over a large change in gene expression level. 

Tight binding between activators and repressors is also predicted to be crucial for rhythm 

generation. These mechanisms are also validated by mathematical analysis of a simplified 

mathematical model of the mammalian circadian clock, and simulations of a previously 

published Drosophila model. We here propose a novel design for biological oscillators 

where maintaining period is crucial: a core negative feedback loop with repression by 

protein sequestration, with an additional negative feedback loop, which controls a 

relatively stable activator.  

 

Interestingly, circadian clocks also have flexibility regarding phase entrainment. That is, 

this endogenous timekeeping system can be synchronized to the earth’s 24-hour periodic 

environment through external cues, known as zeitgebers (e.g. light/dark (LD) cycle and 

temperature cycle) (48, 67). To maintain clock-environment synchrony, zeitgebers induce 

changes in the concentrations of the molecular components of the clock to levels 

consistent with the appropriate stage in the 24-hour cycle. Misalignments of circadian 

timing with the external environment can cause significant physiological problems, such 
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as jet lag, depression, insomnia, coronary heart disease, neurodegenerative disorders, and 

cancer (24). In particular, mood disorders and bipolar disorders appear to be tightly 

related to disrupted circadian rhythms (68-71). To treat the misalignment of circadian 

clocks with the external environment, pharmacological manipulation of circadian clocks 

has received much attention (72-75). Previous studies have shown that acute dosing of 

PF-670462 (CK1δ/ε inhibitor) can delay circadian behavior, as well as reestablish a 

circadian rhythm in Vipr2-/- mice that are arrhythmic under dark-dark (DD) cycle or 

light-light (LL) cycle (76-78). To extend this work to real life situations that proceed 

under LD cycles with seasonal variation, we need to study the effect of CK1δ/ε inhibition 

on circadian rhythms under different LD cycles. 

 

In this chapter, we study how light stimuli and CK1δ/ε inhibition affect mammalian 

circadian timekeeping with a combination of experiments and simulations using a 

mathematical model of intracellular mammalian circadian clocks (79). We find that the 

opposing actions of pharmacological delay and light can yield a constant stable delay of 

circadian behavior when CK1δ/ε is inhibited chronically under LD cycles. The 

occurrence and magnitude of a stable phase delay depends on the dosing amount, dosing 

timing, intrinsic period and day lengths. This work provides a way to determine a dosing 

strategy of chronic CK1δ/ε inhibition to treat the misalignment of circadian clocks by 

modulating the phase of circadian rhythms.  

 

3.2 Mathematical modeling of the mammalian circadian clock  
 

3.2.1 Description of the detailed model of mammalian circadian clock  
 

We developed a new mathematical model of the intracellular mammalian circadian clock. 

This model contains key genes, mRNAs and proteins (PER1, PER2, CRY1, CRY2, 

BMAL1/2, NPAS2, CLOCK, CKIε/δ, GSK3β, Rev-erbα/β) that have been found to be 

central to mammalian circadian timekeeping (Figure 3-1A). While greatly expanded, the 

model is largely based on our previous model, which has made surprising predictions 
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about mammalian timekeeping that have been subsequently verified experimentally (8, 

23, 28, 80). The modification and extension of the detailed model from the original 

model (28) are listed. 

 

(1) Detailed modeling of additional feedback loops: The new model includes secondary 

feedback loops, which regulate the transcription of genes with a RORE in their 

promoters, including Bmals (Bmal1 and Bmal2) and Npas2. The RORE is repressed by 

binding of REV-ERBs (REV-ERBα and REV-ERBβ) (55, 57). Binding to the RORE is 

modeled with the same formalism used for E-box binding in the original model. While 

Bmals and Npas2 mRNA are produced proportional to the activity of RORE, Clock 

mRNA is assumed to be produced at a constant rate, matching experimental data (44). 

After transcription, Bmals, Clock and Npas2 mRNA are exported to the cytoplasm and 

then translated. BMALs can bind with CLOCK or NPAS2, which promote 

phosphorylation of the complex. The phosphorylated dimer can enter the nucleus, 

activate transcription of promoters with an E-box and is less stable than the 

unphosphorylated dimer (81). 

 

(2) Updated mechanisms of BMALs-CLOCK/NPAS2 repression: Matching recent 

findings, we updated the mechanisms by which the repressors (PER/CRY) inhibit the 

activators (BMALs-CLOCK/NPAS2) (82-85). CRY1, 2 bind with BMALs-

CLOCK/NPAS2 and make the dimer transcriptionally inactive as in the original model. 

Furthermore, CRY1, 2 binding stabilize the dimer (82, 83, 85). With higher affinity, 

PER1, 2 also bind with BMALs-CLOCK/NPAS2 and interfere with the binding of the 

dimer with E-box (84, 85). 

 

(3) Accounting for the heterogeneity of different genes with E-boxes: The Per1/2, Cry1/2, 

and Rev-erbs genes have E-boxes on their promoters and their transcription occurs 

proportional to the activity of the E-box. Experimental studies found that the behavior of 

E-boxes on these genes is different. For example, when the activators (BMAL1-CLOCK) 

are overexpressed, expression of Per1, 2/Cry1, 2 shows little change while that of Rev-

erbs significantly increases (62), which implies that the activators are saturated on the E-
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boxes of Per/Cry genes, but not Rev-erbs. Furthermore, the time profile of Cry2 in SCN 

is almost flat unlike the other mRNAs (44). Therefore, we introduced the three different 

types of E-boxes for Per1/Per2/Cry1, Cry2 and Rev-erbs.   

 

(4) Inclusion of the kinase GSK3β: The new model includes another important kinase 

GSK3β for post-translational modification of the circadian clock as well as CKIε/δ. 

GSK3β phosphorylates PER2 and promotes its binding with CRY and nucleus 

translocation (63, 86-88). GSK3β also phosphorylates the REV-ERBs and stabilizes them 

(89). Because GSK3β is expressed constitutively, we assume that its concentration is 

constant in our model (88). Although the GSK3β concentration is constant, its activity 

shows a circadian rhythm with a peak around ZT12 matching data from SCN (88). For 

this reason, we modeled the activity of GSK3β with a phase similar to Cry1 mRNA 

because the Cry1 mRNA time profile has a peak around ZT12. We allow CKIε/δ and 

GSK3β to enter the nucleus only when they bind with their substrates (63). 

  

(5) Precise description of the effect of light on the circadian clocks: We included a 

previous model of the effect of light on the circadian clocks (90), which quantified the 

human circadian pacemaker response to the light successfully. In this model, the light 

increases on the transcription rate of Per1-2 decreases as more light is presented. This 

matches experiment data (91). In addition, we include a higher increase in Per2 

transcription by light than the increase in Per1 transcription to match experimental data 

(92). That is, the amplitude of per1 and per2 gene expression are higher about 16% and 

30%, respectively, under 12:12 LD cycle with 100 lux than 12:12 DD cycle. Because 

light is known to increase the transcription rate of Per1/2 regardless of the E-box state 

(93, 94), we assumed that the light effect was independent of the E-box state as occurred 

in the original Forger and Peskin model.  

 

(6) Processes not explicitly modeled: First, we do not distinguish between BMAL1 and 

BMAL2, REV-ERBα and REV-ERBβ, CKIε and CKIδ, or CLOCK and NPAS2 because 

specific functional differences between these proteins or homologs have not been found. 

Second, we do not model the D-box, which is one of the clock-controlled elements (44). 



 32 

Third, we removed the Rorc from the model because the existence of the Rorc did not 

change the model behavior due to its constant mRNA level (55). Fourth, we did not 

model the dimerization of the REV-ERBs. Finally, we did not model the phosphorylation 

of GSK3β on the CRY2 and BMAL1, which affects their degradation rate because the 

modest change of the amount of those proteins did not affect the model’s behavior (95, 

96).  

 

 
Figure 3-1. Schematic of the detailed mammalian circadian clock model.  
(A) Only some of the relevant species are shown. Circles refer to transcripts and squares are 
proteins, possibly in complex. Small circles refer to phosphorylation states that are color coded by 
the kinases that perform the phosphorylation. (B) The detailed model consists of a core negative 
feedback loop and an additional negative feedback loop (the NNF structure). The repressors 
(PER1-2 and CRY1-2) inactivate the activators (BMALs and CLOCK/NPAS2) of their own 
transcription expression through the core negative feedback loop. The activators inactivate their 
own transcription expression by inducing the Rev-erbs through the secondary negative feedback 
loop.  
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3.2.2 Variables and equations of the detailed model 
 

The monomer proteins considered in our model are PER1/2, CRY1/2, BMALs, 

CLOCK/NPAS2, REV-ERBs, CKI, and GSK3β. Although only 10 monomers are 

considered in the model, they can produce many complexes depending on the state of 

binding, phosphorylation and subcellular locations. To describe these all complexes, 181 

variables are needed (Table A-1 and Table A-2): 159 variables are for protein complexes, 

12 variables are for mRNAs, 8 variables are indicator of the promoter activity, and 2 

variables are for light effect and GSK3β activity. The model variables are listed in Table 

A-1 and Table A-2. To simply describe the approximately two hundred complexes 

included in our model, which can result from bindings of PER1/2, CRY1/2, BMALs-

CLOCK/NPAS2, and kinase, we use the following shorthand x[j][k][l][m][n] (23) (Table 

A-2). The variable j, k, l and n represents the binding state of PER, CRY, kinase, and 

phosphorylated BMALs-CLOCK/NPAS2, respectively. The variable m represents the 

subcellular location. For example, x[4][0][0][0][0] represents phosphorylated PER2 by 

CKI in the cytoplasm. x[3][1][1][1][1] represents the PER2-CRY1-CKI-BMALs-

CLOCK/NPAS2P complex in the nucleus, where P indicates phosphorylation. Some of 

these variables do not exist in our model due to the restrictions of the reaction. For 

instance, x[0][1][1][0][0] does not exist, because CRY binding with CK1 is not allowed 

if PER1 or PER2 are not bound in our model. In this case, the variable’s concentration is 

always zero. The reactions between these variables are described by ODE systems using 

explicit mass kinetics as in the original model (28). The model equations are provided in 

the Appendix A.  

 

3.2.3 Parameter estimation of the detailed model 
 

While the original Forger-Peskin model used 36 parameters, the new model has the 75 

parameters due to the extensions and modifications of the model. Despite the increased 

number of parameters, we could get tighter restriction on the range of parameters with 
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newly published data (listed below). Over these ranges, parameters are estimated by 

fitting to more various types of data: timecourses of gene expressions and proteins, 

abundance of proteins, and mutation phenotypes. 

 

(1) We choose 14 parameters (degradation rate of mRNAs and proteins) matching 

published experimental data. These parameter values were allowed to vary up to 50% 

from the experimentally determined values to account for experimental error and cellular 

heterogeneity (see Table A-3) 

(2) PER1’s phosphorylation rate is set lower than that of PER2 (63). Light induced-Per1 

transcription is set lower than light induced-Per2 transcription (92). 

(3) The dissociation constant between BMALs-CLOCK and CRY is set greater than that 

between BMALs-CLOCK and PER (84).  

(4) The ratio between cytoplasm and nucleus volume are limited to between 1 and 3.5 

(97).  

(5) The other parameters are also restricted into a biologically reasonable range (see 

Table A-3). 

 

Within these restrictions, a simulated annealing method (SA, a global stochastic 

parameter searcher) (98) was used to estimate the parameters in two steps. First, we 

found parameters that provides a good fit with mRNA and protein time profiles measured 

in mouse suprachiasmatic nuclei (SCN) (44, 99) and relative abundance of clock proteins 

measured in mouse liver (63) and fibroblast (61, 62) (Figure 3-2). In this fitting, we used 

a similar cost function to that used in estimating the parameters of the original model 

(Forger & Peskin, 2003). 

 

 
 

Here, j runs through 6 mRNAs and 4 proteins. nj  is the number of data points (12 for 

mRNA and 13 for protein). sij and eij are simulated timecourses and experimentally 

measured timecourses, respectively. sij are normalized, matching experimental data (see 

wij
(sij − eij )

2

nji=1

nj

∑
j=1

10

∑ + (pmk − pk )
2

k
∑
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Figure 3-2). wij = 5 when eij = 1 and wij = 1 otherwise, so that the cost function has more 

weight at the peak time than other times. pmk and pk are maximum value of protein 

abundance, respectively. pmk and pk are normalized, so that the maximum abundance of 

the CRY1 protein is 1.  

 

 
Figure 3-2. Validation of the detailed model.  
(A) Predicted mRNAs timecourses in SCN (44). Timecourses were normalized so that the peak 
value is 1, matching experimental data. (B) Predicted protein timecourses in SCN (99). As had 
been done previously, we normalize the protein timecourses so that the maximum is 1 and the 
minimum is 0. (C) Model comparison of the relative abundance of proteins in liver and fibroblast 
(61-63). All of the values were normalized so that the maximum abundance of the CRY1 protein 
is 1. For the CKIε/δ, CKIε maximal expression is approximately 22.5% of the maximum 
abundance of CRY1 in the liver (63) and CKIδ is two times more abundant than CKIε in the 
fibroblast (61). From this, we assumed that total CKIε/δ would be approximately 66.5% of the 
maximum value of CRY1 in mice liver and fibroblast.  
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Table 3-1. Comparison of model predictions with experimental data and previous model 
predictions on the phenotypes of circadian mutations 

Mutated	  
Gene	   SCN	   Animal	   New	  

Model	  
Relogio	  
(2011)	  

Mirsky	  
(2009)	  

Leloup	  
(2003)	  

Forger	  
(2003)	  

Cry1-‐/-‐	   Short	   Short	   -‐1	   Long	   AR	   Short	   WT	  

Cry2-‐/-‐	   Long	   Long	   +1.6	   Long	   Long	   Short	   Long	  

Per1-‐/-‐	   	   	   WT	   AR	   AR	   Short	   Long	  

Per1ldc	   WT	   Short/AR	   	   	   	   	   	  

Per2-‐/-‐	   	   	   AR	   AR	   AR	   Short	   Short	  

Per2ldc	   	   Short/AR	   	   	   	   	   	  

Bmal1-‐/-‐	   SR	   	   AR	   AR	   AR	   AR	   AR	  

Bmal1-‐/+	   WT*	   	   +0.1	   AR	   Na	   AR	   Long	  

Clock-‐/-‐	   WT	   Short	   -‐0.2	   Long	   AR	   AR	   AR	  

ClockΔ19/Δ19	   AR*	   Long	   AR	   Long	   Na	   na	   na	  

ClockΔ19/+	   Long*	   	   +1.1	   Long	   Na	   na	   na	  

Npas2-‐/-‐	   WT	   Short	   WT	   na	   Na	   na	   na	  

Rev-‐erbα -‐/-‐	   	   Short	   -‐0.2	   AR	   Short	   na	   WT	  

CK1ε tau/tau	   Short	   Short	   -‐3	   na	   Na	   Short	   Short	  

Here we indicate whether the phenotype predicted by our model, or seen in experimental data is 
wild-type (WT), stochastically rhythmic (SR), arrhythmic (AR) or shows a change in period in 
hours. Experimental data can be found in (18) as well as references cited therein, except those 
marked with * which can be found in (100) and ** which can be found in (23). Red represents 
different phenotype prediction from the new model. na represents not available. For the Leloup-
Goldbeter model, first parameter set of the model is used.  
 

After the first round of SA, we found several parameter sets qualitatively matching with 

experimental data on phenotypes of mutations of mice (WT, short, long and AR)  (Table 

3-1). Then we used these parameter sets as initial parameter sets for another round of SA 

to get the final parameter set, which shows a quantitatively good fit with knockout 



 37 

mutation phenotype as well as time profiles (Table A-3). The cost function used for the 

second round is followed.  

 

 
 

mpl and ml are simulated period and experimentally measured period of rhythmic 

phenotypes of mutations, respectively. man are simulated relative amplitude of 

arrhythmic phenotypes of mutation (e.g. Per2-/- or Bmal1-/-). 

 

3.2.4 Accurate prediction of various mutation phenotypes.  
 

With the estimated parameters, our model accurately predicts the phenotype of known 

mutations of genes in the central circadian clock (SCN) (18, 23, 100), which other 

models do not predict (see Table 3-1) (28, 29, 101, 102). Interestingly, our model shows 

opposite phenotypes for Cry1-/- and Cry2-/- matching experimental data (103). There are 

two differences between CRY1 and CRY2 in our model. First, Cry1 transcription is 

delayed through repression by Rev-erbα and Rev-erbβ (55, 57, 104). Additionally, Cry1 

mRNA is more stable than Cry2 mRNA and CRY1 protein is more stable than CRY2 

protein (84, 105, 106). Since a longer half-life causes rhythms to be delayed, and delayed 

rhythms cause a longer period (17, 104), removing CRY1 shortens the period and 

removing CRY2 lengthens the period. The opposite phenotypes of Clock-/- (null 

mutation) and ClockΔ
19/+ (dominant negative mutation) are also correctly simulated in the 

model for the first time (107-109). Moreover, our model also predicts the mutant 

phenotypes of isolated SCN neurons, which are different from the SCN slices (103). We 

note that SCN slices have significantly higher gene expression of per1 and per2 through 

CREB/CRE pathway than isolated SCN neurons (110). Interestingly, when we reduced 

per1 and per2 expression about 60% in our model, our model was able to accurately 

reproduce the phenotypes of isolated SCN neurons (Table 3-2). 

  

wij
(sij − eij )

2

nji=1

nj

∑
j=1

10

∑ + (pmk − pk )
2

k
∑ + (mpl /ml −1)

2 +
l
∑ (man )

2

n
∑



 38 

Table 3-2. Comparison of modified model predictions with experimental data of single SCN 
neurons on the phenotypes of circadian mutations 

Gene	   dSCN	   Model	  

Cry1-‐/-‐	   AR	   AR	  

Cry2-‐/-‐	   Long	   +2.3	  

Per1-‐/-‐	   	   AR	  

Per1ldc	   AR	   	  

Bmal1-‐/-‐	   AR*	   AR	  
Here we indicate whether the phenotype predicted by our model, or seen in experimental data is 
arrhythmic (AR) or shows a change in period in hours. Experimental data can be found in (103), 
except those marked with * which can be found in (23).  

 

3.3 A mechanism for robust circadian timekeeping 
 

3.3.1 Proper stoichiometric balance between activators and repressors is 
crucial to sustained rhythms  

Since our mathematical model can accurately predict the phenotype of known mutations 

of the mammalian circadian clock, we next looked for a mechanism that could explain 

why some phenotypes were rhythmic, while others were not.  We found that 

stoichiometry plays a key role in determining which mutations showed rhythmic 

phenotypes. Here we define stoichiometry as the average ratio between the 

concentrations of repressors (all forms of PER and CRY in the nucleus) to that of 

activators (all forms of BMAL-CLOCK/NPAS2 in the nucleus) over a period. Moreover, 

we specifically refer to repressors and activators of E/E’-boxes when discussing 

stoichiometry. We found that mutations that caused the stoichiometry to be too high or 

too low, yielded arrhythmic phenotypes (Figure 3-3A).  So long as the mutations allowed 

the stoichiometry to be around a 1-1 ratio, relatively high amplitude oscillations were 

seen. Thus, we predict that stoichiometry provides a unifying principle to determine the 

rhythmicity of mutations of the mammalian circadian clock. To further test this principle, 

we constitutively expressed either the Per2 gene (the dominant repressor gene) or the 

Bmal and Clock genes (the dominant activator genes) at different levels. Interestingly, 
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within a range centered near a 1-1 stoichiometry, the model shows sustained oscillations 

with high amplitude (Figure 3-3B). However, if the stoichiometry was too high or too 

low, rhythms are dampened or completely absent (Figure 3-3B). This matches a recent 

experimental study showing that the amplitude and sustainability of population rhythms 

increase when the level of PER-CRY is increased closer to that of BMAL1-CLOCK in 

mouse fibroblasts (62).  

 

 
Figure 3-3. Proper stoichiometry between activators and repressors is the key to sustained 
oscillations.  
(A) Our detailed mathematical model accurately predicts the phenotype of the known mutations 
in circadian genes (Table 3-1). We plot the stoichiometry predicted by our model in these mutants 
with the relative amplitude of Per1 mRNA rhythms (or Per2 mRNA when considering the Per1-/-

). These results indicate that the phenotype of the mutants can be predicted by their effects on 
stoichiometry. (B) The stoichiometry between repressors and activators is changed by 
constitutively expressing either the Per2 gene or the Bmals and Clock genes at different levels. 
Note that the model is rhythmic only when the stoichiometry is near 1-1. (C) Schematic of a 
simplified model based on the Goodwin oscillator. Instead of a Hill-type equation, the 
sequestration of the activator (A) by the repressor (P) is used to describe repression of the gene. 
(D) Oscillations are seen around a 1-1 stoichiometry as the level of activator is changed. The 
range of the stoichiometry widens as the dissociation constant (Kd) decreases or the binding 
between the activator and the repressor tightens.  
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We defined the stoichiometry as the average ratio between the total concentrations of 

repressors to that of activators over a period. However, recent work has shown that CRY1 

has stronger repressor activity than CRY2. The underlying biochemical mechanisms for 

this result have not been fully identified (111). If the difference is due to a different post-

translational mechanism (e.g. binding between PER and CRY, which could affect the 

repressor concentration in the nucleus), the current definition of stoichiometry can be 

kept. Otherwise, a more sophisticated definition of stoichiometry may be needed (e.g. one 

that gives more weight to concentration of CRY1 than that of CRY2). 

 

3.3.2 How stoichiometry generates rhythms 
To test the role of stoichiometry in sustaining oscillations, we developed a simple model 

by modifying the well-studied Goodwin model (30) to include an activator (A), which 

becomes inactive when bound by a repressor (P) (Figure 3-3C). Transcription is 

proportional to the fraction of free activator that is not bound by the repressor, f (P, A, 

Kd) (112), matching experimental data from the mammalian circadian clock (Figure 3-4) 

(113). mRNA (M) is translated to a repressor protein (Pc). The protein enters the nucleus 

(P) and binds and inhibits the activator (A). This generates a single negative feedback 

loop (SNF) since the activator is constitutively expressed. The model is similar to a 

previously published mathematical model (114); however, we allow for both association 

and dissociation of the activator and repressor (through a defined Kd), which turns out to 

be crucial for understanding the effects of stoichiometry. By nondimensionalization and 

setting the clearance rates of all species to be equal (to increase the chance of oscillations, 

see (17)), only two parameters remain: the activator concentration (A) and the 

dissociation constant (Kd) (See Appendix B).  

 

When we changed the activator concentration, which changed the stoichiometry (average 

ratio between the level of repressor (P) to the level of activator (A)), sustained 

oscillations were only seen at around a 1-1 stoichiometry similar to our detailed model 

(Figure 3-3D). As the other parameter (Kd) decreased (indicating tight binding), the range 

of stoichiometry that permitted oscillation increased (Figure 3-3D). Interestingly, if the 

binding was too weak, the rhythms did not occur. The tight binding between activators 
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and repressors is also found in the detailed model, and in the mammalian circadian clock 

(63, 113, 115). This indicates that the sustained rhythms require tight binding as well as 

balanced stoichiometry in the circadian clock.  

 

 
Figure 3-4. The transcription rate control by protein sequestration of the simple model 
matches experimental data.  
(A) The fraction of the free activator, f(P, A, Kd), with various dissociation constants, Kd. As 
dissociation constant between the activator (A) and the repressor (P) decreases, the fraction of 
free activator decreases or transcription rate decreases. Here, A=0.0659. (B) The effects of 
mCRY1 expression on CLOCK:BMAL1 activated transcription.  Data are taken from Figure 2 
and Supplementary Figure 2 of (113).  Our model can easily match this data. 

 

Many previous studies have argued that ultrasensitive responses (e.g. a large change in 

transcription rate for a small change in repressor or activator concentration) can cause 

oscillations in feedback loops (2, 17, 116, 117). A previous study showed that an 

ultrasensitive response can be generated by tight binding of activators and repressors in a 

synthetic system (112).  Taken together, this provides a potential mechanism of rhythm 

generation. That is, when the total concentration of repressor is higher than that of 

activators, the repressor sequesters and buffers activator and inhibits transcription 

completely (117). As the repressor is depleted, the excess free activators are no longer 

sequestered by repressors and are free to turn on the transcription. At this threshold, 

transcription of repressor shows an ultrasensitive response to the concentration of 

repressor or activator. Ultrasensitive responses amplify rhythms and prevent rhythms 
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from dampening (17). In both our simple and our detailed model, we found ultrasensitive 

responses around a 1-1 stoichiometry (Figure 3-5A). When the stoichiometry was not 

around 1-1, an ultrasensitive response was not seen, and both models did not show 

sustained rhythms.  

 

 
Figure 3-5. 1-1 stoichiometry generates an ultrasensitive response.  
(A) The relative sensitivity of transcription rate of repressors is the highest at 1-1 stoichiometry in 
both the detailed and the simple model. From the solutions of model, we calculated  
 

 
 
(See Figure 3-6B for the parameters used). (B) The upper and lower bound of steady state of 
stoichiometry where the simple model oscillates. See Appendix B for details.  

 

Over the course of a day, as levels of repressor and activator change, the stoichiometry 

and also sensitivity change as well. We found that the 1-1 average stoichiometry is 

required to generate the ultrasensitive response which causes rhythms through 

mathematical analysis, confirming our simulation results (Figure 3-3D). That is, via both 

local and global stability analysis, we derived an approximate range of the 

stoichiometries (<S>) that permit oscillations  

 

 

0.7 0.8 0.9 1 1.1 1.20

10

20

30

40

Stoichiometry

R
el

at
iv

e 
Se

ns
iti

vi
ty

 o
f T

ra
ns

cr
ip

tio
n

 

 

Detailed Model
Simple Model

A! B!

10−15 10−10 10−50.8

0.9

1

1.1

Kd

St
oi

ch
io

m
et

ry
 (S

te
ad

y 
St

at
e)

Re lative Sensitivity = d(% of Free Activators)
d(Stoichiometry)

Stoichiometry
% of Free Activators

8
9
< S <

2
7 7 Kd / 2



 43 

 

(See Appendix B). In agreement with our simulations shown in Figure 3-3D, this 

mathematical analysis also suggests that: 1) Oscillations are seen around a 1-1 

stoichiometry; 2) the stoichiometry needs to be greater than 8/9 for sustained rhythmicity; 

3) as the binding between activators and repressors becomes tighter, the upper bound on 

stoichiometry increases; 4) if the binding is too weak (e.g. Kd=10-3), sustained 

oscillations do not occur. 

 

3.3.3 An additional negative feedback loop improves the regulation of 
stoichiometric balance  

If stoichiometry is key to sustained oscillation, are there mechanisms within circadian 

clocks that keep the stoichiometry of components balanced? Does the additional negative 

feedback loop of the NNF structure, found in circadian clocks, help balance 

stoichiometry? To test this structure, we added an additional negative feedback loop into 

our simple model (Figure 3-6A). Previously, other studies suggested that an additional 

positive, rather than negative, feedback loop could sustain intracellular clocks (3, 51, 52, 

118). We tested these structures by including an additional protein R (Rev-ERBs or 

RORs in the mammalian circadian clocks) that is transcribed in a similar way to P. R then 

represses (as in the Rev-erbs) or promotes (as in the Rors) the production of A in the 

negative-negative feedback loop (NNF) or the positive-negative feedback loop (PNF) 

structure, respectively (Figure 3-6A).  

 

We studied how the SNF, NNF, and PNF structures effectively maintain the 

stoichiometric balance when model parameters (e.g. transcription rate) are changed. With 

both simulation and steady state analysis, we found that the NNF structure is best at 

keeping stoichiometry balanced while the PNF structure is worst at keeping 

stoichiometry balanced, regardless which parameters are perturbed (see Appendix B, and 

Figure 3-6B-C). Moreover, our detailed model, which also follows the NNF structure, 

also carefully balanced the stoichiometry by controlling the expression of repressors and 

activators.  Knockdown of the repressor Cry1 leads to higher expression of the 

repressors, which are controlled by E-boxes, and lower expression of the activators, 
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which are controlled by a ROREs (Figure 3-7A).  Opposite effects are seen when the 

activator CLOCK is removed (Figure 3-7A). This active control of repressors and/or 

activators via the NNF structure regulates the stoichiometric balance tightly (Figure 

3-7B) and matches experimental data on gene dosage (18). Moreover, the detailed model 

(with the NNF structure) also correctly predicts the change of clock gene expression after 

the removal of the additional negative feedback loop (Rev-erbα,β-/-) (Figure 3-7C) (55, 

58, 59). In particular, knockout of the Rev-erbα,β decreases PER expression, but increase 

CRY1 expression. For our nominal set of parameters, oscillations are still possible when 

this additional negative feedback is removed.  However, for other sets of parameters, 

where stoichiometry is not as well balanced, removal of this additional negative feedback 

stops rhythmicity (See below).  This could explain the phenotype of the Rev-erbα,β-/-, 

which show some indications of rhythmicity.  Our model predicts that rhythm generation 

remains in cell types that have a near balanced stoichiometry, and a lack of rhythms in 

cell types without a balanced stoichiometry. 

 

 
Figure 3-6. The NNF structure maintains stoichiometry in balance by active compensation 
of both repressors and activators. 
(A) A negative or positive feedback controlling the activator is added to the original negative 
feedback controlling the repressor. (B) The relative sensitivity (% change in mean level of 
stoichiometry per % change in transcription rate of repressor) in the simple models with SNF, 
NNF, and PNF structure were measured over a range of the transcription rates of repressor Then, 
we calculated the average of relative sensitivity over the range of parameters. On average, the 
relative sensitivity of the NNF model is about 2 fold less sensitive that of the SNF model, but  
that of the PNF model is about 4 fold more sensitive than that of the SNF model. (Here we 
assumed δ=0.2. When this assumption was relaxed, the result is similar. See  Appendix B and 
Figure 3-6C). (C) Relative sensitivity of the steady state of % of free activator for the general 
parameters of the simple models with different structures (see Appendix B for the details). 
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Figure 3-7 The explanation of how the NNF structure maintains the stoichiometric balance. 
(A) The detailed model matches data from Gene Dose Network Analysis experiments (18). After 
the knockout of a repressor gene (here, Cry1), the activity of the repressor promoters, controlled 
by an E-box, increases. This increases the expression of Rev-Erbs and reduces the activity of the 
activator promoter, controlled by a RORE. An opposite phenotype is seen when an activator 
(here, Clock) is knocked out. (B) The schematic explanation how the NNF structure maintains the 
stoichiometric balance. Clock-/- increases the stoichiometry (repressors/activators) because the 
activator decreases. The increased stoichiometry strengthens the core negative feedback and 
reduces the expression of the repressors and Rev-erbs. This weakens the additional negative 
feedback loop and increases the expression of other activators. The reduced expression of the 
repressors and increased expression of the activators decrease the increased stoichiometry to 1-1. 
(C) The detailed model matches data from Rev-erbs-/- (55, 58, 59). Rev-erbα-/- (50% reduction 
of transcription rate of the Rev-erbs due to the presence of Rev-erbβ) slightly shortens the period 
and has little effect on the expression level of Per2, Cry1 and Bmal1. Double knockout of the 
Rev-erbα and Rev-erbβ (100% reduction of transcription rate of the Rev-erbs) increases the 
expression level of Bmal1 and Cry1, but decreases that of Per2. All the values were normalized 
by the average of Per2 expression level in WT. 
 

3.3.4 A slow additional negative feedback loop improves the robustness  
Our central hypothesis is that, as stoichiometry is more tightly regulated, oscillations will 

occur over a wider range of parameters. To confirm this, we varied the transcription rate 

of the activator (or activator concentration in the SNF) and the transcription rate of the 

repressor to determine which sets of parameters yielded oscillations. While the SNF, 

NNF and PNF structures have almost the same behavior with their nominal parameters 

(mean stoichiometry, amplitude and period, see Figure 3-8A), the NNF structure 
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oscillated over the widest range of parameters and the PNF oscillated over the narrowest 

range of parameters in the simple model (Figure 3-9A and Figure 3-10A). Interestingly, 

as the activator becomes more stable (i.e. the additional negative feedback becomes 

slower), the NNF structure allows sustained oscillations over a wider range of parameters 

(Figure 3-10D). Indeed, the clearance rate of the activators is significantly slower than 

other circadian clock components (Table 3-3) (81).  

 

 
Figure 3-8. The timecourses of the three feedback loop structures (NNF, SNF and PNF). 
(A) The repressor (P) time profiles of simple models of the three structures. The amplitude is 
normalized by its average value.  Here, we assumed Kd = 10-5 and δ = 0.2. γ in the NNF model 
and the PNF model were selected as 0.0043 and 0.0395, which made the NNF model and the PNF 
model have the same average activator concentration as in the SNF model (A=0.0659). With 
these parameters models have a similar stoichiometry, amplitude and period. (B) The Per2 
mRNA time profile of detailed mammalian circadian clock models with three types of structures. 
In the SNF model, the level of the oscillating activators (Bmals and Npas2) is fixed at the average 
level in the original model (NNF). Transcription of Bmals and Npas2 are activated with E-box 
activation in the PNF model while they are repressed with E-box activation through REV-ERBs 
in the original model (NNF).  

 

We also checked the role of the NNF structure in our detailed mammalian clock model. 

We modified the NNF structure of the detailed model to that of a SNF by fixing the 

activator (BMAL, CLOCK and NPAS2) concentration to the average value found in their 

WT simulations. We also constructed the PNF structure by converting the repressor 

(REV-ERBs) to an activator (e.g. the RORs) in the NNF structure. This did not 

significantly change the rhythms in the core feedback loop (Figure 3-8B), matching 

previous studies that showed that the loss or change in rhythms in the activators had little 

effect on the circadian rhythms (55). It is tempting to conclude that the additional 

Time(hr) 
0 20 40 60 80 1000

5

10

15

20

25

 

 

NNF
SNF
PNF

0 5 10 15 200.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 

 

NNF
SNF
PNF

Simple Model Detailed Model A! B!

R
el

at
iv

e 
A

m
pl

itu
de

 

A
m

pl
itu

de
 



 47 

feedback loops controlling activators are not important in the circadian clocks. However, 

when we changed the transcription rate of the repressor (Per) and activator (Bmal, Clock 

and Npas2), the original model (with a NNF structure) had the widest range of 

parameters where oscillations occur while the PNF structure had the narrowest range of 

parameters (Figure 3-9B).  Interestingly, experiments have shown that REV-ERBs play a 

more dominant role than the RORs indicating that our proposed mechanism may play an 

important role in in vivo timekeeping (55). Thus, the choice of the additional feedback 

greatly affected the range of parameters where oscillations are seen. 

 

We also examined the role of the additional negative feedback loop in a mathematical 

model of the Drosophila circadian clock (119). The original study that developed the 

model concluded that the NNF and SNF structures were equally likely to show 

oscillations. However, their study only changed transcription rates by 20%. With a larger 

perturbation of parameters, we found that the additional negative feedback loop 

significantly extends the range of parameters that yield oscillations (Figure 3-9C).  

 
Table 3-3. Activators have a longer half-life than repressors. 

 Mice Fibroblasts Drosophila S2 cells 

Repressors PER PERP CRY dPER 

Half-Life (hr) 13 1.4 3.1-5.2 1.5 

Activators BMAL1 CLOCK BMAL1-CLK dCLOCK 

Half-Life (hr) 47 13 3 6 

The endogenous activators (BMAL1/CLOCK/BMAL1-CLOCK/clock) have longer half-life than 
the endogenous repressors (PER/PERP/CRY/dPER) in mice fibroblasts and Drosophila S2 cells. 
This implies that feedback loops for the activators are slower than those of the repressors in the 
circadian clocks because the degradation rates of the components of the feedback loops are the 
key step that determines the time scale of a feedback loop. These data come from the following 
experimental studies: PER: Unphosphorylated PER1, 2 (61), PERP: Phosphorylated PER1, 2 
(120), CRY: CRY1, 2 (84, 106, 120), BMAL1: CLOCK unbinding BMAL1 (81), CLOCK: 
BMAL1 unbinding (81) CLOCK (81), BMAL1-CLOCK: dimer BMAL1-CLOCK (81), dPER: 
PER in Drosophila S2 cells (121), and clock: CLOCK in Drosophila S2 cells (122). 
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Figure 3-9. The NNF structure oscillates over the widest range of parameters.  
(A) The transcription rate of the repressor and the activator are changed from their initial value, 
and the range of parameters where the rhythms persist is shown. Here, dissociation constant, Kd 
=10-5 and clearance rate of activator, δ = 0.2. When Kd is varied, the NNF model still has the 
widest range of parameters (Figure 3-10A). When δ increases, the range of parameters which 
generate the sustained rhythms decreases (Figure 3-10B). (B) repeats the tests with the detailed 
mammalian model and (C) uses a Drosophila model.  Details about these plots, as well as our 
methods for generating them are described in Figure 3-8A-B. The bifurcation lines, which 
indicate where oscillations in the system are lost, were calculated with XPP-AUTO. 
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Figure 3-10 A slower additional feedback loop increases the range of parameters for which 
the system oscillates in NNF. 
(A) The NNF structure has the widest range of parameters where the model oscillates regardless 
the dissociation constant. Here, Kd is decreased to 10-15 from 10-5 in Figure 3-9A. The range of 
parameters where the system oscillates is shown when the transcription rate of the repressor and 
activator were changed from their initial value (100%). As the dissociation constant decreases, 
the ranges of parameters, where the system oscillates, increase in all three structures. Here we 
assumed δ=0.2 (B) A slower additional feedback loop (i.e. more stable activator) increases the 
range of parameters for which the system oscillates in NNF.  Here, δ is changed from 0.2 to 3. γ 
is also changed from 0.0043 to 0.0645 to keep the same expression levels of the activator. Other 
parameters are the same with those in Figure 3-9A.  
 

3.3.5 A network design for cellular clocks with a fixed period. 
The PNF structure can create a robust biological oscillator that has a tunable period when 

the additional positive feedback loop is fast (i.e. the activator degrades quickly) (3, 51, 

52) (Figure 3-11A). Consistent with these findings, our simple model with the PNF 

structure has a tunable period for changes in gene expression levels (Figure 3-11C). 

However, the simple model with the NNF structure has a nearly constant period in the 

presence of large changes in gene expression levels (Figure 3-11B and D). Furthermore, 

this NNF structure becomes more robust as the additional negative feedback loop slows 

(i.e. the activator degrades more slowly) (Figure 3-10B) in contrast to the fast positive 

feedback of the tunable clocks (3, 51, 52). Consequently, our results propose two 

different designs for robust biological oscillators. The NNF structure (Figure 3-11B) is 

suitable for biological clocks in which the maintenance of a fixed period is crucial (e.g. 

circadian clocks). The PNF structure (Figure 3-11A) is suitable for the biological 

oscillators that need to tune their period (e.g. cell cycle or pacemaker in the Sino-atrial 
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node) (3). This is also supported by mathematical analysis of the simple model (For more 

details, see Appendix B). 

 

 
Figure 3-11. A design suitable for the cellular clocks with a fixed period.  
(A) A single negative feedback loop with an additional fast positive feedback loop, with which 
activator (A) activates itself and degrades quickly. This structure has been identified in various 
biological oscillators like the cell cycle and pacemaker in the Sino-atrial node (3). (B) A single 
negative feedback loop with an additional slow negative feedback loop, with which activator (A) 
represses itself and degrades slowly. Circadian clocks in mammals or Drosophila have been 
shown to have this structure (Table 3-3) (53-55). (C and D) The period of the NNF is nearly 
constant for the perturbations in transcription rates while the period of the PNF changes about 
two-fold. Parameters used are as in Figure 3-10A. The period is plotted as a color where green 
refers to the period with the unperturbed parameters.  
 

3.4 A systems pharmacology model of the mammalian circadian clock 

 

3.4.1 Model description 
We have investigated the mechanisms for a robust circadian timekeeping. Another 

interesting property of circadian clocks is entrainability to external signals, known as 

zeitgebers (e.g. light/dark (LD) cycle and temperature cycle) (48, 67). The zeitgebers 
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synchronize circadian clock and environmental cycle by changing the level of clock 

components. If these external signals cannot reach the circadian timekeeping system, 

misalignments of circadian timing with the external environment occur, which can cause 

significant physiological problems including mood disorders (68-71). To treat the 

misalignment of circadian clocks with the external environment, pharmacological 

manipulation of the phase of circadian rhythms has been explored (72-75). In particular, 

PF-670462, an inhibitor for CK1δ/ε, one of the key kinases controlling the phase of 

circadian rhythms, can delay the phase of circadian rhythms. To study the effect of PF-

670462 on circadian rhythms under LD cycle with seasonal variation, we incorporated 

PF-670462 into our mathematical model of intracellular mammalian circadian clocks (2).  

 

In the new model, PF-670462 binds CK1δ/ε and inhibits the phosphorylation of CK1δ/ε 

(Figure 3-12). The inhibition of phosphorylation reduced the degradation rate of PER1/2, 

nucleus translocation of PER1/2 and binding rate of PER1/2 and CRY1/2 in the model. 

We considered the concentration of PF-670462 in four compartments: in plasma, brain 

tissue, cytoplasm and nucleus (Figure 3-12 and Table 3-4). To describe the import into 

and export out of these four compartments, 6 parameters were added. Because PF-670462 

is absorbed to plasma very fast (<0.5h) (Figure 3-13A), we assumed that dosing is 

directly applied to the plasma compartment for simplicity. The addition of a new 

compartment (e.g. skin) describing drug administration did not change the behavior of 

model (data not shown). We also considered a clearance rate for free CK1δ/ε in plasma. 

The binding and unbinding rates of PF-670462 to CK1δ/ε are also considered. Since 

CK1δ/ε can freely exit the nucleus of the cell in the original model (2), we allowed for 

the rate of nuclear export of CK1δ/ε to be different when it is bound to PF-670462. 

Finally, we needed to choose an initial concentration of free PF-670462 in plasma when a 

32 mg/kg dose is administrated (higher or lower doses can be determined by 

appropriately scaling this value). In total, this adds 11 parameters to the model while 

other parameters of the original model were left unchanged (Table 3-5). Via a simulated 

annealing method (123), the values of these new parameters were estimated by fitting to 

experimental data: timecourse of PF-670462 in plasma and brain, phase response curve 

(PRC) to PF-670462 and chronic dosing data of PF-670462.  
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Table 3-4. The variables used in the mathematical model to describe dynamics of CK1 
inhibitor (PF-674062) in Figure 3-12. 

Name Symbol 

The free plasma concentration of CK1 inhibitor Inhp 

The free brain concentration of CK1 inhibitor Inhb 

The free cytoplasm concentration of CK1 inhibitor Inhc 

The free nucleus concentration of CK1 inhibitor Inhn 

The concentration of CK1 complex unbound to CK1 inhibitor in cytoplasm CK1c 

The concentration of CK1 complex bound to CK1 inhibitor in cytoplasm Inh:CK1c 

The concentration of CK1 complex unbound to CK1 inhibitor in nucleus CK1n 

The concentration of CK1 complex bound to CK1 inhibitor in nucleus Inh:CK1n 
 
Table 3-5. Parameters of the mathematical model that describe dynamics of CK1 inhibitor 
(PF-670462). 

Parameter Description Symbol Value 

Initial free plasma concentration of CK1 inhibitor (32 mg/kg) prodi 2562.61 nM 

Transfer rate from plasma to brain for CK1 inhibitor nlpin 6.33/hr 

Transfer rate from brain to plasma for CK1 inhibitor nepin 15.35/hr 

Transfer rate from brain to cell for CK1 inhibitor nlbin 0.486/hr 

Transfer rate from cell to brain for CK1 inhibitor nebin 19.2/hr 

Nuclear localization rate constant for CK1 inhibitor nlin 0.533/hr 

Nuclear export rate constant for CK1 inhibitor nein 0.192/hr 

Nuclear export rate constant for CK1 and CK1 inhibitor complex lnei 0.047/hr 

Nuclear export rate constant for CK1  lne* 0.595/hr 

Binding rate constant for CK1 inhibitor to CK1  inbin 0.421/nM hr 

Unbinding rate constant for CK1 inhibitor to CK1  inubin 3.38/hr 

Clearance rate constant for free CK1 inhibitor in plasma uinp 1.653/hr 

Ratio of cytoplasmic to nucleus compartment volume Nf* 3.351 
Presented value of prodi represents the initial free plasma concentration of CK1 inhibitor 
corresponding to 32 mg/kg dosing. The value of prodi is scaled according to the amount of dosing. 
For the in vitro simulations, presented value of prodi represents the initial free CK1 inhibitor 
concentration in medium after 5.2 µM dose, which is scaled according to the amount of dosing. * 
indicates the parameters of the original model, which are used to describe dynamics of CK1 
inhibitor (Figure 3-12B). 
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Figure 3-12. A simplified model diagram and equations describing the dynamics of the CK1 
inhibitor (PF-670462).  
(A) The concentration of CK1 inhibitor is considered in four possible locations: in plasma, brain 
tissue as well as the cytoplasm and nucleus of a neuron. Because PF-670462 is absorbed to 
plasma very fast (<0.5h) Figure 3-13A), we assumed that dosing is directly applied to the plasma 
compartment for the simplicity of the model. While only free inhibitor is considered in plasma 
and brain tissue, binding between inhibitor and its target CK1 is considered in cells. Since CK1 
can freely exit the nucleus of the cell in the original model, potentially taking the inhibitor with it, 
we allow for the rate of nuclear export of CK1 to be different when bound to CK1 inhibitor. (B) 
Ordinary differential equations that describes the dynamics of the CK1 inhibitor. These equations 
were added to the original model systems (Kim and Forger, 2012). The parameters and variables 
are described in Table 3-4 and Table 3-5. Inhp ,Inhb , Inhc , and Inhn represent concentration of 
free CK1 inhibitor in plasma, brain, cytoplasm and nucleus. CK1c and CK1n represent 
concentration of CK1 complex unbound to CK1 inhibitor in cytoplasm and nucleus, respectively. 
Inh:CK1c and Inh:CK1n represent concentration of CK1 complex bound to CK1 inhibitor in 
cytoplasm and nucleus, respectively. Note that Nf indicates the ratio of nuclear to cytoplasmic 
compartment volume, which was used in the original model (Kim and Forger, 2012). Here, all 
concentrations are defined with respect a reference volume (cytoplasmic volume) according to the 
convention of intracellular circadian clock modeling (28, 79, 101, 124). 
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3.4.2 Model validation 
The estimated parameters reflect the PK and PD of PF-670462 accurately. Our 

parameters are fitted to the disposition profiles of PF-670462 free drug concentration in 

plasma and brain tissue following a single 32 mg/kg subcutaneous (s.c.) dose (Figure 

3-13A). Furthermore, interestingly, the model correctly predicts CK1δ/ε occupancy, the 

fraction of bound CK1δ/ε by PF-670462 (Figure 3-13B), suggesting accurate prediction 

of the binding affinity between PF-670462 and CK1δ/ε.  

 

Next, we compared simulations of our model with previous in vitro experimental studies 

that measured the effect of PF-670462 on clock gene expression (78). Our model 

successfully predicts dose dependent period changes of clock gene expression in SCN 

(Figure 3-13C). Matching previously published data (78), the model also predicts that 

period prolongation by CK1δ/ε inhibition is mainly due to the prolongation of the interval 

between peaks of Per2 and Bmal1 (Figure 3-13D).  

 

Finally, we compared the phase shifts of behavior produced by light and CK1δ/ε 

inhibition in the model and in the experiments. For this, we explored PRCs, which are 

measured by giving a stimulus (e.g. light) to circadian rhythms at different times and 

measuring the effect on the phase of rhythms (125, 126). Previous studies have shown 

that PRCs of circadian rhythms to light pulses have both advance and delay regions (90, 

127, 128), but the PRC to dosing of PF-670462 shows only delays (76). That is, light 

stimuli can advance or delay circadian rhythms depending on the timing of stimuli, but a 

dose of PF-670462 always delays the phase, regardless of dosing timing. Our 

mathematical model successfully reproduced these two PRCs (Figure 3-13E) and was 

also able to reproduce both a constant stable delay induced by LD chronic dosing and a 

cumulative increasing delay induced by DD chronic dosing at ZT11 (Figure 3-13F and 

Figure 3-14).  

 

To test the reliability of estimated parameters, we also simulated PRCs to dosing of PF-

670462 in the presence of parameter perturbations. Even with the significant 

perturbations of parameters, the model successfully produced PRCs that show only 
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delays (Figure 3-15). These simulations indicate that the model can accurately and 

robustly reproduce behavioral data in response to CK1δ/ε inhibition in a LD cycle. 

 

 
Figure 3-13. Comparison between simulations and experimental data: PK/PD of PF-670462 
(A and B), clock gene expression phase change (C and D), and behavioral phase changes (E 
and F).  
(A) Experimentally measured disposition profiles of free PF-670462 in plasma and brain tissue 
after a single 32 mg/kg s.c. dose were compared with simulations. The units of concentrations of 
simulations are scaled to match experimental data. (B) The model correctly predicts CK1 
occupancies corresponding to concentrations of free brain PF-670462. (C) The model predicts 
dose-dependent prolongation of circadian period, matching a previous experimental study of SCN 
slice (78). (D) The model predicts that PF-670462 induced prolongation of period in Figure 
3-13C is mainly due to the lengthened internal phase relationship between the Per2 peak and the 
Bmal1 peak (ΔPB), matching the experimental data of the previous study (78). PB0 and PBn 

represent the difference of peak timing of Per2 and Bmal1 mRNA without and with 1µM dosing 
of PF-670462, respectively. ΔPB is the difference between PBn and PB0. (E) The model 
successfully reproduces PRCs to a 12-hour, 100 lux light pulse (128) and a 50 mg/kg dose of PF-
670462 (76). (F) Simulations of 32 mg/kg chronic dosing of PF-670462 at ZT11 induces a 
constant stable delay under 12:12 LD, but not under DD, matching our experimental data (Figure 
3-14). The experimental data of Figure 3-13A, E and F were used in estimation of parameters.  
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Figure 3-14. Chronic dosing of PF-670462 induces a constant stable delay under LD, but not 
under DD.  
Mice were maintained in 12:12 LD and circadian measures followed for 7d prior to dosing. In 
each experiment, mice were either shifted into DD or kept in LD, and daily treated with vehicle 
or PF-670462 (3.2, 10, 32 mg/kg) at CT11 (ZT11), red dash indicates days of dosing. After the 
last dose, mice in LD were shifted into DD and all groups followed for an additional 7d. Daily 
phase angle was measured as the start of the circadian signal relative to that defined by the 7d 
prior to dosing. DD chronic dosing induces continually accumulating delays regardless of dosing 
amount (A), but LD chronic dosing induced the constant stable phase delays (B). 
 

 
Figure 3-15. The variations of PRC to PF-670462 in the presence of parameter 
perturbations.  
11 new parameters are added to describe the dynamics of PF-670462 in the mathematical model 
(Table 3-5).  We tested how increasing or decreasing these parameters by 50% changed the PRC 
to PF-670462. After changing each parameter, PRCs to the dosing of 50 mg/kg PF-670462 were 
simulated. Even with the significant perturbations, the model successfully generates the all delay 
PRC, which is an important characteristic of PF-670462. Representative PRCs with changes in 
six parameters are shown 
 

3.5 Modeling chronic manipulation of circadian rhythms via PF-670462  
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3.5.1 Chronic dosing with different dosing timing 
 

Our mathematical model was successfully able to reproduce experimental data on the 

effects of a light pulse or CK1δ/ε inhibition on circadian rhythms (Figure 3-13). With our 

mathematical model, we simulated daily PF-670462 treatment under various conditions. 

First, we investigated whether LD chronic dosing with 32 mg/kg of PF-670462 can 

induce a constant stable phase delay regardless of dosing timing. Based on our 

experiments showing that LD chronic dosing at ZT11 caused a constant stable phase 

delay (Figure 3-14B) (76), one might assume that LD chronic dosing at other times might 

also lead to constant stable phase delays. However, the model surprisingly predicted that 

this was not the case.  In fact, our model predicts that stable entrainment does not occur, 

i.e. no stable relationship between the LD cycle and circadian phase is achieved, when 

the inhibitor is applied during the early night (Figure 3-16A).  This contrasts with late 

night dosing which is predicted to produce minimal phase shifts. The model also predicts 

that stable entrainment can occur during daytime dosing, however the magnitude of the 

phase delay is predicted to vary greatly depending on the dosing timing (Figure 3-16A). 

Thus, we predict that dosing timing must be very carefully controlled to achieve a desired 

phase delay. 

 

Since the timing of exact daily dosing is predicted to have a great effect on the ability of 

the circadian clock to entrain to an LD cycle, we next wondered if the accuracy of the 

dosing timing was also an important factor. To explore this, we simulated 32 mg/kg 

chronic dosing that varies somewhat but centers around either ZT2, 5, 8 or 11 under a 

12:12 LD cycle (see the legend of Figure 3-16B for details). While entrainment could still 

be seen in the presence of variations in dosing timing, the phase of the circadian clock 

was, as expected, less controlled particularly near ZT11 (Figure 3-16B). In fact, the 

variability in dosing timing often prevented entrainment from occurring at ZT11 (Figure 

3-16B). These results indicate that LD chronic dosing in the morning or early afternoon is 

more likely to induce a stable and robust phase delay in the presence of a less controlled 

dosing schedule.  
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Figure 3-16. Simulations of chronic dosing under various conditions: Different dosing 
timings (A), less controlled dosing timings (B), and different day lengths (C).  
(A) 32 mg/kg chronic dosing under 12:12 LD with different dosing timings were simulated. The 
model predicts that the chronic dosing in the morning, but not at early night induces a constant 
stable phase delay. (B) The same simulations of Figure 3-16A for day dosing were performed in 
the presence of perturbations in dosing timing (left panel). Here, the dotted lines represent the 
average of 10 individual simulations (thin lines). Dosing timings were perturbed daily by 
choosing dosing timing from normal distribution with mean of a original dosing timing and 
standard deviation of 1hr. The perturbations of dosing timings are illustrated in the right panel: 
thin lines are perturbed dosing timings and dotted lines are the average dosing timing of 10 
individual simulations. (C) 32 mg/kg chronic dosing at ZT11 under various day lengths were 
simulated. The model predicts that the chronic dosing under short days, but not long days induces 
a constant stable delay. (D) The simulated ranges of dosing timings that induce a stable 
entrainment for 3 weeks dosing  (32 mg/kg) are represented as gray bars under various day length 
conditions. 
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3.5.2 Chronic dosing under different day lengths 
The effect of the seasonal change of day length on chronic dosing was explored. Since 

light opposes the phase delays induced by chronic dosing and produces the stable 

entrainment (Figure 3-14B and Figure 3-16A), we initially expected that increasing the 

amount of available light (e.g. to a 16:8 LD cycle) would allow for entrainment over a 

wider range of dosing times. However, our simulations showed the opposite results: As 

the light duration lengthens, entrainment is less likely to occur, and was lost for ZT11 

dosing (Figure 3-16C). The ranges of dosing timings that induces the stable entrainment 

become narrower as day length increases (Figure 3-16D). These results indicate that 

dosing schedules should be adjusted according to short and long day lengths, 

corresponding to winter and summer, to ensure stable entrainment. 

 

3.5.3 Chronic dosing with different intrinsic periods of circadian rhythms 
The effect of different intrinsic period on chronic dosing was also investigated. If free-

running period is longer than 24h, the phase would be delayed every day, and this 

difference in period must be made up by phase shifts from light and the inhibitor to 

achieve entrainment. Due to the additional delays induced by longer free-running period, 

stable entrainment is less likely to occur as the free-running period becomes longer, 

which matches simulations of the model (Figure 3-17).  

 

 
Figure 3-17. The stable entrainment is less likely to occur when free-running period is long. 
The ranges of dosing timing that induce a stable entrainment for 3weeks dosing (32 mg/kg) are 
represented as gray bars. The time scale of the model was adjusted to simulate different free 
running period. 
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3.6 Discussion 
 

3.6.1 Summary  
In this chapter, we have investigated two important properties of circadian clocks by 

developing and analyzing mathematical models of circadian clocks: “How does circadian 

clocks maintain 24-rhythms over a wide range of conditions?” and “How can the phase of 

circadian clocks be manipulated pharmacologically under a LD cycle?” 

 

Regarding the first question, our work identifies several key mechanisms that allow 24-

hour rhythms in the circadian clocks of higher organisms: 1) Proper stoichiometric 

balance between the activators and the repressors, 2) tight binding between activators and 

repressors, 3) the NNF structure, and 4) longer half-life of activators than repressors. 

These mechanisms synergistically generate rhythms with periods robust to gene dosages 

(Figure 3-11D). The range of the stoichiometry where the rhythms occur widens as 

binding between activators and repressors tightens (Figure 3-3D). Moreover, the NNF 

structure regulates the expression of activators as well as repressors to balance 

stoichiometry (Figure 3-6B and Figure 3-7A). For instance, the increased stoichiometry 

(elevated repressor concentrations) strengthens the repression in the core negative 

feedback loop and reduces the expression of the repressors (e.g. Pers and Crys) and Rev-

erbs. The decreased expression of Rev-erbs weakens the additional negative feedback and 

increases the expression of activators (Bmal1 and Npas2), which lowers the 

stoichiometry (Figure 3-7B). When this is done on a slower timescale, so that the basics 

of the 24-hour timekeeping are unaffected, the robustness of the rhythms is enhanced 

(Figure 3-10B).   

 

Regarding the second question, we found that chronic dosing of PF-670462 under LD 

cycle can induce a constant stable behavior shift, which depends on dosing amount, 

dosing timing, intrinsic period and day lengths. The model predicts that the stable 

entrainment due to the chronic CK1 inhibition under LD is less likely to occur when PF-

670462 is dosed at early night and when day length becomes longer (Figure 3-16A and 
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C). Furthermore, simulations predict that stable entrainment is less likely to occur as free-

running period becomes longer (Figure 3-17). 

  

3.6.2 Relation to previous experimental data 
Many experimental observations could be interpreted as mechanisms by which the 

mammalian circadian clock balances stoichiometry. When the repressor (CRY) is 

overexpressed or the repressor (PER) is removed, the activator (BMAL1) concentration is 

found to increase or decrease, respectively (129, 130).  When a repressor’s expression is 

reduced, the expression of other repressors is increased and the expression of activators is 

decreased (18). Knockdown of activators yields opposite effects (18). Both our detailed 

and simplified NNF models confirm these results (Figure 3-6B and Figure 3-7A-B). 

Additionally, the rhythms of the mammalian circadian clock persist even after the 

transcription of all clock genes are reduced significantly (50). In agreement with this 

data, both the detailed and the simple model oscillate after significant reduction of the 

transcription rates of both activators and repressors because their stoichiometry is 

maintained (Figure 3-9). Our study also suggests an underlying mechanism 

(ultrasensitive response) for a previous experimental observation showing that the 

robustness of circadian rhythms is enhanced by making the level of PER-CRY closer to 

that of CLOCK-BMAL1 in mouse fibroblasts (Appendix B and Figure 3-5A) (62).  

 

Experimental data also support the role of the slow additional negative feedback loop in 

regulating circadian timekeeping in higher organisms.  The timecourse of the activator 

(BMAL1 in mammal or CLK in Drosophila) seems to be controlled mainly by the 

additional negative feedback loop (Rev-Erbs or Vrille) (53-55). The elimination of 

additional positive feedback has little effect on circadian clocks in contrast to other 

cellular clocks based on the PNF structure (3, 54, 55, 116). Furthermore, a key step, the 

clearance rate of the activators, which governs the timescale of the additional feedback 

loop, is significantly slower than other circadian clock components (Table 3-3) (81). 

Removing the slow additional negative feedback loops in the mammalian clock (Rev-

erbα-/-) yields timekeeping where the period is not as well-maintained (57). Moreover, 

recent studies have confirmed a pivotal role for the additional negative feedback loop for 
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regulating the circadian rhythms via double knockout of Rev-erbα and Rev-erbβ (58, 59). 

Thus, our proposed mechanism of robust circadian timekeeping matches known data on 

the mammalian circadian clock. Further comparison with known experimental data is 

shown in Figure 3-18. 

 

 

 
Figure 3-18. Comparison of the predictions of the new model and experimental data. 
The predictions of the new model based on the protein sequestration match experimental data of 
circadian clocks of higher organisms, but not Neurospora circadian clocks. 
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model based on the protein sequestration (114) which focuses on other mechanisms, e.g. 

slow RNA dynamics, that do not play a role in circadian clocks. We have identified a 

basic mechanism of tight binding and protein sequestration for generating high 

sensitivity, similar to what has been proposed in the cell cycle and synthetic studies 

(112), as the key rhythm generating mechanism in our model.  Previous circadian clock 

models do not use this mechanism, and a careful justification, based on experimental data 

from higher organisms, of the mechanisms for generating high sensitivity and, 

consequently, oscillations, in these models has yet to be performed (100). In fact, several 

of these mechanisms have been called into question (28).  

 

 
Figure 3-19. Comparison of the predictions of the previous models and experimental data. 
The predictions of the previous models based on the cooperative reactions (e.g. cooperative 
binding or phosphorylation on multiple sites) match experimental data of Neurospora circadian 
clocks, but not higher organisms circadian clocks (31, 102, 131, 132). 
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Previous models have used different mechanisms for rhythm generation (e.g. high-Hill 

coefficients) and have proposed different roles for the additional negative feedback loop. 

They have proposed that the additional negative feedback loop is capable of independent 

oscillations, even when the core negative feedback loop was removed (102, 132). 

However, despite much experimental study, no oscillations have yet been found from this 

additional feedback loop in isolation (115) and the known phenotypes of knockout of 

genes in this additional feedback loop had not been correctly predicted (57, 102). 

Moreover, other previous studies argued that the additional negative feedback loop is not 

important (131), which does not match with recent experimental data on the mammalian 

circadian clock (58, 59). We claim that the additional negative feedback loop is not an 

independent oscillator, nor ancillary, but acts to regulate stoichiometry.  

 

Interestingly, the predictions of previous modeling studies (31, 131) match experimental 

data from the Neurospora circadian clock, in which a 1-1 stoichiometry is not important 

and the additional negative feedback loop seems to not play an important role (133). Our 

predictions match experimental data from circadian clocks in higher organisms (Figure 

3-18 and Figure 3-19).  

 

3.6.4 Proposed experiments based on model predictions 
Our most important prediction may be the following: when the stoichiometry between 

activators and repressors is within a fixed range, oscillations are sustained, and outside 

this range oscillations are damped (Figure 3-3). This can be tested by measuring the 

relative concentration of activators and repressors in many tissues and in the presence of 

several possible mutations which lead to damped or sustained rhythms. This has been 

done in WT fibroblasts and liver (62, 63), but has not been done in other tissues or 

mutants. Moreover, we note that these previous experiments were done in population cell 

assays, whereas single cell measurements may be needed to determine whether damped 

oscillations are the result of damped rhythms in single cell, or greater population 

desynchrony (134, 135). 
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The behavior of isolated SCN neurons is similar to fibroblasts in that mutations of 

circadian genes can easily lead to arrhythmicity (103). We note that intercellular coupling 

in the SCN not only synchronizes SCN neurons, but also increases transcription of per1 

and per2 (110), which may balance stoichiometry and help sustain rhythms when 

repressors are effectively removed (Table 3-1 and 3-2). Thus, we predict that increasing 

transcription of per1 and/or per2 could enhance rhythmicity in isolated SCN neurons 

similar to what is seen in fibroblasts (63). Moreover, our model predicts that cells with 

low stoichiometry (e.g. isolated SCN neurons) shows larger phase-shifts in response to 

light than cells with 1-1 stoichiometry (e.g. SCN slices) (data not shown). It would be 

interesting future work to see whether different cell types have different PRCs depending 

on their stoichiometry. 

 

We also predict that tight binding between activators and repressors is required for 

rhythmicity (Figure 3-3D). Several studies have identified binding sites for PER and 

CRY on BMAL1 and CLOCK (85, 115, 136). Point mutations in binding sites can 

generate different binding affinities between PER-CRY and BMAL1-CLOCK. 

Comparing the experimentally measured binding affinities of these mutants, with the 

resultant rhythms, or lack thereof, would directly test this prediction. 

 

Loss of the additional negative feedback loop (e.g. in the Rev-erbs-/-, constitutive 

expression of Rev-erbs or constitutive expression of BMAL) is predicted to cause the 

intracellular circadian clock to oscillate over a much narrower range of conditions (Figure 

3-9). It would be interesting to test whether these cells would have less temperature 

compensation or would lose rhythms more easily when other genes are knocked out (e.g. 

Cry2-/-, Per1-/-). Moreover, we predict that in the Rev-erbs-/-, rhythms persist in cell types 

with a balanced stoichiometry, but not in poorly balanced cells (Figure 3-9). It would be 

interesting future work to investigate whether SCN and peripheral clocks have different 

phenotypes of Rev-erbs-/- depending on their stoichiometry. We also predict that Rev-

erbs-/- cells show a wider period distribution than WT (Figure 3-11).  
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Our modeling and analysis also predicts that relatively stable activators (e.g. BMAL1 and 

CLOCK) in the additional negative feedback loop allow rhythmicity over a wide range of 

conditions (Figure 3-10B). These activators can be destabilized with point mutations 

(95). Simply destabilizing the activators might lead to lower activator concentrations and 

unbalance stoichiometry, which is also predicted to reduce rhythmicity. However, we 

predict a loss of rhythmicity when these activators are destabilized, even when the overall 

activator concentrations are controlled for.   

 

Perhaps the most direct way to test our model is to build the clock described in our 

simple NNF model using the tools of synthetic biology. Other synthetic clocks have been 

built, and the design we propose is not more complex than what has been previously built 

(3, 51, 52).  Validation could first be done in an analog electric circuit, even though this 

might be much less convincing. Building a synthetic clock would be of particular 

importance since it would be the first synthetic clock predicted to have a tightly regulated 

period. 

 

3.6.5 Future work 
Further work should explore the role of the NNF structure in the presence of molecular 

noise (137, 138). Here, we studied the role of an additional negative feedback loop 

controlling the activators of the circadian clocks of higher organisms. Future work could 

consider the functions of the additional negative feedback loops in other organisms.  In 

particular, the plant circadian clock has a different feedback loop structure than the 

mammalian or Drosophila circadian clocks (139).  It would be interesting to see if our 

ideas carry over to other organisms and other cellular clocks.  Furthermore, other types of 

feedback loops in the circadian clocks of higher organisms could be explored. Here, we 

found that balancing stoichiometry properly might be a universal principle of biological 

timekeeping. This finding not only is in agreement with experiment data from the 

circadian clocks in higher organisms, but even in agreement with the circadian clock in 

cyanobacteria as well (140). It would be interesting to test the role of stoichiometry in 

other cellular clocks, such as developmental clocks.  
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Our work has also shown that chronic dosing of PF-670462 under LD can induce a 

constant stable behavior shift in dose dependent manner (Figure 3-14) (78, 141). The 

effect suggests that LD chronic dosing can be used to treat circadian rhythm sleep 

disorders, in particular advanced sleep phase disorder (ASPD) which is characterized by 

a several hour earlier sleep schedule than what is desired. Currently, treatment of ASPD 

involves timed exposure to bright light in the evening (chronotherapy) or dosing of 

melatonin in the morning, each of which have their own limitations due to the lengthy 

process and sedating effect, respectively (73, 142-144). These issues may be addressed 

by the LD chronic dosing of PF-670462 (Figure 3-14). Although there are side effect 

concerns since CK1δ/ε are key regulators of diverse cellular growth and survival 

processes (145), a recent study showed that PF-670462 has only a modest effect on cell 

proliferation (146). With an accurate and detailed mathematical model of mammalian 

circadian clock (79), we studied how dosing amount, dosing timing and day length affect 

the chronic dosing induced phase delay (Figure 3-16). This will lead to the reliable use of 

the LD chronic dosing of PF-670462 to modulate the phase of circadian rhythms in real 

life. Many studies have shown that bipolar disorders and mood disorders are associated 

with disrupted circadian rhythms (68-70, 147). Specifically, phase misalignment is 

frequently present in mood disorders and rhythm amplitude is often reduced (71, 147, 

148). This suggests that the chronic dosing of PF-670462 under a LD cycle could be a 

potential way to treat mood disorders on the basis of modulating the phase stably and 

increasing the amplitude of circadian rhythms. Indeed, recent studies showed that the 

chronic inhibition of CK1δ/ε rescues pathological behaviors in animal models of mania 

and alcoholism (149, 150). Future work should test whether chronic dosing can treat 

these and other models of mood disorders (151-155). 

 



 68 

Chapter 4 Mechanisms that Enhance Sustainability of p53 
Pulses 

 

4.1 Introduction 
 

Cancer is a group of various diseases caused by failure in regulating tissue growth, in 

which, the proliferating cells without control form tumors and invade other parts of the 

body (156, 157). The failure of regulation of cell growth is usually caused by malfunction 

of oncogenes or tumor suppressor genes, which promote growth or inhibit cell division, 

respectively (47, 158). p53 protein is one of the most important tumor suppressors, which 

regulates key functions to prevent tumorigenesis in response to cellular stress (e.g. DNA 

damage and genomic instability), such as DNA repair, cell cycle arrest and apoptosis 

(25). That is, if DNA is damaged, p53 stops cell cycle and repairs DNA damage. If DNA 

damage is too severe to repair, p53 initiates apoptosis, programed cell death, to eliminate 

damaged cells from the organism (159). Since p53 protein plays  pivotal roles in 

preventing tumorigenesis, mutant of p53 protein has been linked to more than half of all 

human cancers (160). 

 

Recent studies have found that depending on the type of stresses, p53 protein exhibits 

different dynamical behaviors. While p53 protein levels are low in the absence of stress, 

transient DNA double-strand breaks (DSBs) that occur during a normal cell-cycle lead to 

spontaneous pulses of p53 (161). A single pulse of p53 can also be triggered by UV 

irradiation (162). The most dynamic behavior of p53 is induced by severe DNA damage. 

When severe DSBs are caused by γ-irradiation or radiomimetic drugs, cells generate a 

series of p53 pulses (26, 163-165). Interestingly, these different dynamical behaviors 

appear to be highly correlated with appropriate responses of p53 to different types of 

stresses (6, 161, 162). 
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The γ-triggered p53 pulses have three notable features: 1) the pulse amplitudes are 

independent of γ-irradiation strength, 2) the pulses are sustained so long as DSBs persist 

(i.e. undamped pulses) and 3) while the period of the pulses is tightly regulated, the 

amplitude is highly variable. The molecular mechanisms underlying these unique features 

of p53 pulses have been explored both experimentally and theoretically. Among many 

feedback loops regulating p53 (166), a negative feedback loop between p53 protein and 

E3 ubiquitin ligase Mdm2 is considered to be a core mechanism that generates p53 

oscillations (167-172). Recently, mathematical modeling and subsequent experiments 

have found an additional feedback loop between upstream kinase ATM and p53 through 

WIP1, which is also required to sustain p53 pulses with amplitudes that are independent 

of γ-irradiation strength (163, 173). In addition to the molecular mechanisms underlying 

p53 pulses, the relationship between the dynamics of p53 and its output functions, such as 

DNA repair or cell cycle arrest have also been widely studied both theoretically and 

experimentally (6, 161, 174-178). In light of the considerable theoretical and 

experimental focus on dynamics of p53 pulses and the role of these pulses, it is somewhat 

surprising that very little attention has been paid to how cells robustly sustain p53 pulses, 

even in the presence of perturbation (e.g. intrinsic noise or genetic perturbation) (170, 

178). Given the importance of sustaining p53 pulses for cell fates in response to severe 

DNA damage (6, 161), it is of considerable interest to understand how cells can sustain 

p53 pulses over a wide range of conditions.  

 

In other biological oscillatory systems, mechanisms that sustain robust rhythms in the 

presence of perturbations have been widely studied. Importantly, it has been shown that 

adding additional positive or negative feedback loops to a core negative feedback loop 

can often contribute to maintaining rhythms over a wide range of environmental 

conditions (2, 3, 79). For instance, an additional positive feedback is essential for high 

amplitude rhythms of active mitosis promoting factor (MPF) in the presence of intrinsic 

noise (3, 7). An additional negative feedback loop also allows molecular circadian 

rhythms to persist in the presence of genetic perturbations (79). Together with additional 

intracellular feedback loops, intercellular feedback loops through coupling among 
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neighboring cells also often contribute to generating robust rhythms. For instance, while 

the circadian rhythms of clock gene expression in single cells are easily disrupted by 

intrinsic noise or genetic mutations, circadian rhythms in coupled cells can persist 

robustly even in the presence of significant genetic perturbations (23, 103). Cellular 

coupling can also tightly regulate the periods and the amplitudes of c-AMP rhythms in 

Dictyostelium (179) and membrane potential spikes in neurons (180, 181). The coupling 

has been investigated as a mean to reduce the effects of noise on rhythms, but more 

recent studies have found that coupling and noise often synergistically enhance rhythms 

in calcium systems and circadian clocks (23, 182).   

 

The identification of mechanisms that enhance robustness of rhythms in various 

biological oscillatory systems has lead to the question of whether similar mechanisms 

that enhance robust γ-triggered p53 pulses exist. Indeed, several positive feedback loops 

acting on p53 through PTEN, dapk1, c-Ha-Ras and DDR1 have been identified (183-186). 

However, these feedback loops do not appear to be essential for sustaining p53 pulses (1). 

A recent study identified a novel positive feedback loop between p53 and Rorα, which 

may enhance the sustainability of p53 pulses (187). In this positive feedback loop, p53 

promotes gene expression of Rorα in response to DNA damage, and increased RORα 

protein stabilizes p53. Together with additional feedback loops acting on p53, a recent 

study found radiation induced bystander effect (RIBE) (188), which may be a potential 

mechanism that couples p53 pulses of neighboring cells. RIBE refers to DNA damage of 

un-irradiated cells induced by the molecular signals produced by their neighboring 

irradiated cells. Among various molecular signals involving RIBE, Cytochrome-c (cyt-c) 

can act as an excitatory signal for p53 pulses in neighboring cells (27). More specifically, 

p53 activation induced by DNA damage stimulates the mitochondrial release of cyt-c, 

which activates p53 in un-irradiated neighboring cells. However, whether cyt-c can 

couple p53 pulses in irradiated cells has yet to be investigated.  

 

In this chapter, we develop a new mathematical model of p53 pulses to explore molecular 

mechanisms that enhance sustainability of p53 pulses in the presence of DNA damage. 

Our new model is able to reproduce many key experimental observations that discern 
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characteristics of p53 pulses. By simulating this model both deterministically and 

stochastically, we find that a positive feedback loop between p53 and Rorα plays a 

pivotal role in sustaining p53 pulses over a wide range of conditions. Moreover, we find 

that noise can often prevent p53 pulses from dampening even after mutations of key 

molecular species that generate p53 pulses. Interestingly, we also found that p53 pulses in 

DNA-damaged cells have characteristics similar to Type II resonator neurons, which are 

prone to synchronize their spikes through excitatory couplings. Similar to Type II 

neurons, even a weak coupling via cyt-c can synchronize p53 pulses of cells and 

significantly increase the chance that p53 pulses will be sustained in response to DNA 

damage.  

 

4.2 A Mathematical model of p53 pulse regulatory system  
 

4.2.1 Model description 
To explore mechanisms that enhance sustainability of p53 pulses, we have developed a 

new mathematical model that describes the dynamics of p53 pulses. Our model is based 

on the delay-differential equation (DDE) model of Batchelor et al. 2008, which made 

important contributions to understanding the mechanisms underlying p53 pulse 

generation (6, 161-163). In particular, their model found that DNA damage induced 

activation of ATM, an upstream signaling kinase for p53 phosphorylation, and that 

deactivation of ATM by p53 via WIP1 triggers a series of p53 pulses (163). Batchelor’s 

model tracks the temporal changes of five molecular species: p53inactive, p53active, Mdm2, 

Wip1 and ATM-P (Figure 4-1A). The interactions among these five species can be 

described by three negative feedback loops: 

1) ATM-P induced p53active promotes production of Mdm2 and Mdm2 induces 

ubiquitination of p53,  

2) ATM-P induced p53active promotes production of Wip1 and Wip1 mediates 

dephosphorylation and inactivation of p53active, and 

3) ATM-P induced p53active promotes the production of Wip1 and Wip1 

dephosphorylates and inactivates ATM-P (162, 163).  
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In addition to these negative feedback loops, Mdm2 phosphorylation by ATM-P 

inactivates and destabilizes Mdm2.  

 

 
Figure 4-1. The new model of p53 pulse regulatory system.  
(A) A schematic diagram of Batchelor’s DDE model (163). (B) Extension of Batchelor’s model 
that includes intermediate steps instead of explicit time delays. (C) Our full model including an 
additional positive feedback loop between p53 and Rorα as well as intermediate steps (see 
Appendix C for a detailed model description). (D-E). Comparison between the model without 
Rorα (Figure 4-1B) and with Rorα (Figure 4-1C) indicating the probability of p53 rhythm 
occurrence (D) and average relative amplitude of p53 (E). For models without and with Rorα, 
newly added parameters were randomly chosen until 500 parameter sets were found that generate 
sustained pulses of p53 in response to 10Gy irradiation. For 500 parameter sets, mean relative 
amplitude of p53 pulses were measured in the two different models. (F). The distributions of 
periods and amplitudes of our new model (Figure 4-1C) with the 500 parameter sets. (G). In the 
Batchelor’s model, the activation rate of ATM is proportional to the strength of γ-irradiation 
(163), but in the new model, the activation rate of ATM saturates for the strong γ-irradiation.  
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We begin developing our new model by first converting the DDEs used in Batchelor’s 

model into ordinary differential equations (ODEs). Our rationale for this modification is 

that DDEs often generate rhythms in systems whose structures are not likely to produce 

rhythms naturally (2, 189). We, therefore, want to ensure that the p53 pulses in our model 

are not explicit delay-induced instabilities, which often occur in nonlinear feedback 

systems. Another reason for converting to ODEs is that it is more difficult to perform 

stochastic simulations of DDEs than ODEs because methods to introduce stochasticity 

into the explicit time delays in DDEs have not been fully developed (190). Two explicit 

time delays, 0.7 hours and 1.25 hours for p53active -dependent production of Mdm2 and 

Wip1, respectfully were used in Batchelor’s model. We removed these explicit delays 

and introduced intermediate steps (mRNAs) required for the production of MDM2 

protein and WIP1 protein (Figure 4-1B). The two new ODEs that describe dynamics of 

Mdm2 and Wip1 mRNA are given below.  

 

d[Mdm2]
dt

= βmm[p53active ]+βmi −αmm[Mdm2]

d[Wip1]
dt

= βim[p53active ]−αim[Wip1]
 

 

To test whether the newly introduced intermediate steps without the explicit time delays 

are sufficient to generate sustained p53 pulses after 10 Gray (Gy) irradiation, new 

parameters associated with the equations for the mRNA of Mdm2 and Wip1 were 

randomly searched until 500 parameters yielding oscillations were found (Table C-4). 

Here, we defined sustained pulses as undamped oscillations. However, the probability of 

rhythm occurrence was very low (<0.1%) (Figure 4-1D). Considering robustness as a 

design principle of biological systems whose essential functions are nearly independent 

of varying biochemical parameters (191-193), the low chance of rhythm occurrence 

implies that the current ODE model with intermediate steps for protein production might 

lack one or more essential components for generating rhythms. 

 

One potential issue with the current ODE model is that it consists of only negative 

feedback loops.  It is well known that an additional positive feedback loop often enhances 
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the robustness of rhythms in other biological oscillatory systems (2, 3, 170). Indeed, a 

recent study identified a positive feedback loop between Rorα and p53, in which after γ-

irradiation, p53active induces the expression of Rorα and increased RORα protein inhibits 

the Mdm2 dependent degradation of p53 (187, 194). We added this positive feedback 

loop into the model (Figure 4-1C), which added two ODEs to describe dynamics of Rorα 

mRNA and Rorα protein.  

 

d[Rorα]
dt

= βrm[p53active ]+βrmi −αrm[Rorα]

d[RORα]
dt

= βr[Rorα]−αr[RORα]
 

 

Moreover, since the MDM2-dependent degradation rate for p53 is inhibited by Rorα, the 

MDM2-dependent degradation rate of p53 is modeled as follows:  

 

 

 

With this new model with the positive feedback loop (Figure 4-1C), we randomly 

searched the new parameters associated with this positive feedback loop as well as those 

for the mRNA of Mdm2 and Wip1 again (Table C-4). Surprisingly, the addition of this 

positive feedback loop significantly increased the chance of rhythm occurrence (>10 

fold) (Figure 4-1D). Another benefit of adding the positive feedback loop is that it 

increases the average amplitude of sustained p53 pulses generated with the 500 parameter 

sets (Figure 4-1E). We also analyzed the distributions of periods and amplitudes of pulses 

induced by these 500 parameter sets (Figure 4-1F). With the additional positive feedback 

loop, the new ODE model was able to capture a distinct characteristic of p53 pulses: a 

large variation in amplitude, but little variation in periods (26). Since recent studies have 

shown that the sustainability of p53 pulses is essential for the repair of DNA damage, our 

study further indicates that the positive feedback loop between p53 and Rorα can play an 

α mpi[Mdm2][p53inactive ]!→! α mpi[Mdm2][p53inactive ]
Trr

Trr +[Rorα]

α mpa[Mdm2][p53active ]!→! α mpa[Mdm2][p53active ]
Trr

Trr +[Rorα]
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important role in the appropriate response of p53 to DNA damage (6). Indeed, Rorα-/- 

cells failed to regulate apoptosis in response to DNA damage (187).  

 

Finally, previous experimental studies found a nonlinear relationship between the amount 

of DNA damage and the activation rate of ATM (195, 196). We therefore changed the 

mechanisms for ATM activation induced by DSBs in Bachelor’s model, where ATM 

activation is linearly proportional to the extent of DNA damage (163). In the new model, 

ATM activation becomes more sensitive to small amounts of DNA damage and becomes 

saturated for large amounts of DNA damage (Figure 4-1G) as described below, in which 

the production rate of active ATM is more sensitive to a weak γ-irradiation (IR) and 

saturates for strong IR:  

 

 
 

We found that this modification is critical to simulating the correct responses of p53 

systems, such as period distributions in response to different strengths of γ-irradiation 

(see below). The complete system of ODEs is described below (see Table C-1 for the 

description of parameters): 

 
d[p53inactive ]

dt
= βp −βsp[p53inactive ]

[ATM ]ns

[ATM ]ns +TS
ns
−α pi[p53inactive ]−α mpi[Mdm2][p53inactive ]

Trr
Trr +[RORα]

+α ipa[WIP1][p53active ]

d[p53active ]
dt

= βsp[p53inactive ]
[ATM ]ns

[ATM ]ns +TS
ns
−α mpa[Mdm2][p53active ]

Trr
Trr +[RORα]

−α ipa[WIP1][p53active ]

d[Mdm2]
dt

= βmm[p53active ]+βmi −αmm[Mdm2]

d[MDM2]
dt

= βm[Mdm2]−αsm[ATM ][MDM2]−αm[MDM2]

d[Wip1]
dt

= βim[p53active ]−αim[Wip1]

d[WIP1]
dt

= βi[Wip1]−αi[WIP1]

d[ATM ]
dt

= βs
IRng

Tg + IR
ng
−αis

[WIP1]ni

[WIP1]ni +Ti
ni
[ATM ]−αs[ATM ]

d[Rorα]
dt

= βrm[p53active ]+βrmi −αrm[Rorα]

d[RORα]
dt

= βr[Rorα]−αr[RORα]

 

IR!→! βs
IRNg

Tg + IR
Ng
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4.2.2 Model validation 
Our extensions and modifications of Batchelor’s model added 14 parameters to the list of 

parameters in their model. We selected new parameters that were able to reproduce many 

important experimental findings, including the mean and variation of the period and 

amplitude of p53 pulses with various strengths of the irradiation dose and mutation 

phenotypes (Table C-1). Other parameter values were maintained from the original 

model, which were carefully selected based on experimental data (163). We also 

analyzed the sensitivity of all parameters (Table C-1 and Figure 4-3), which indicates that 

all species in the model play important role in regulating p53 pulses. With the new 

parameter set, our model was able to generate sustained pulses of p53 in response to 5Gy 

irradiation (Figure 4-2A). To compare simulations of the new model with experimental 

data, stochastic simulations were also performed with Gillespie’s algorithm to reflect 

molecular fluctuations in experimental data (197). Gillespie’s algorithm has been widely 

used to study the effect of molecular noise on the dynamics of biochemical and genetic 

systems (137, 167, 198). The lists of reactions together with the probability for their 

occurrence are described in Table C-2. Hill equations and Michaelis-Menten equations of 

the deterministic model were also used in the stochastic simulation by assuming fast time 

scales for the elementary reactions underlying these equations (199, 200). This stochastic 

model also generated sustained p53 pulses after 5Gy irradiation (Figure 4-2B).  

 

 
Figure 4-2. Deterministic and stochastic simulation of the new model after 5Gy irradiation. 
(A). Deterministic Simulation. (B). Stochastic simulation with Gillespie algorithm. Total p53 
(Blue), active ATM (Green), WIP1 (Yellow), MDM2 (Brown), and RORα (Orange). 
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Figure 4-3. Parameters with relative sensitivity higher than 0.1.  
If there exists a dominant feedback loop in the biological oscillatory system, most parameters 
with high sensitivities are related to the core feedback loop (79, 201). However, in our p53 model, 
parameters with sensitivity higher than 0.1 are associated with all species, indicating that all 
species and feedback loops in the model play important roles in regulating p53 pulses. 
Furthermore, the period of p53 pulses shows the most sensitive response to the perturbations of 
degradation rates of Wip1 mRNA and protein, which propose interesting future experiments. 

 

First, with Gillespie’s algorithm, we simulated the period distributions of MDM2 

oscillations in 500 cells after 0.3, 5, and 10 Gy irradiations. To consider the heterogeneity 

among cells (202), the original parameters of the model were randomly perturbed by 

multiplying eX (X ~ N(0, 0.2)). The simulations showed that the distributions of periods 

become narrower as γ-irradiation strength increases, which is consistent with 

experimental data (Figure 4-4A and B) (26). With low strength γ-irradiation (0.3 Gy), 

MDM2 rhythms showed a wide range of periods (e.g. 9hr and 6hr) (Figure 4-4C). 

Moreover, as the strength of γ-irradiation becomes stronger, the fraction of cells 

oscillating with period 4-7 hours increases, matching experimental data (Figure 4-4D) 

(26).  

 

Next, among oscillating cells, we measured the average amplitude, peak width of p53 and 

time delay between the peaks of p53 and Mdm2 for first five peaks of pulses (Figure 

4-5A-C). All of these values were well matched with experimental data (26). Moreover, 
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the model simulated a significantly larger variation in the peak amplitudes than those in 

the peak width of p53 or delay between peak timing of p53 and Mdm2 (Figure 4-5D-F), 

as shown in previous experiments (26). Taken together, the new model can successfully 

reproduce key features of p53 pulses induced by γ-irradiation.   

 

 
Figure 4-4. Period distributions of cells in response to different strengths of γ-irradiation. 
(A) Simulated histograms of the characteristic period of Mdm2 in 100 cells over the first 72h 
after irradiation in response to different strengths of irradiation. To determine whether 
stochastically simulated time courses of p53 or Mdm2 are oscillating, we used autocorrelation 
method, which is used to detect pitch in speech. The stochastically simulated time courses are 
sampled every 0.05 hr and then sampled signals are smoothed through Gaussian smoothing. The 
autocorrelation of signals are then calculated and if the autocorrelation value is higher than 0.2, 
we concluded that the time courses are oscillating. Moreover, the detected pitch period is used as 
the period of time courses. (B) Experimentally measured histograms of the characteristic period 
of Mdm2-YFP signals in MCF-7 cells exposed to different strengths of γ-irradiation (Figure. 3 in 
(26)). Reprinted by permission from Macmillan Publishers Ltd: Molecular Systems Biology 2006 
(doi: 10.1038/msb4100068). (C) Examples of simulated Mdm2 oscillations with short (~6hr) and 
long (~9hr) periods after 0.3Gy irradiation. (D) Fractions of cells (out of the total number of cells) 
with a characteristic period of 4–7 h in response to different strengths of irradiation match 
experimental data (26). 
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Figure 4-5. Average amplitude, width, and time delay of oscillation peaks and their variance. 
(A–C) Stochastically simulated average values of first five p53 pulse peaks in 200 cells exposed 
to 5 Gy irradiation match experimental data (Fig. 4 in (26)). (A) Average amplitude. (B) Average 
peak width (full width with half-amplitude). (C) Average time delay between the p53 peak and 
the subsequent Mdm2 peak. (D–F) Simulated distributions of the individual peak amplitudes, 
peak widths, and time delays between the p53 peaks and Mdm2 peaks divided by its mean value 
match those measured experimentally (Figure 4 in (26)). In particular, while amplitude shows a 
large variation, but peak width and peak delay show small variations. Experimental data is 
reproduced by permission from Macmillan Publishers Ltd: Molecular Systems Biology 2006 (doi: 
10.1038/msb4100068). 

 

4.3 Mechanisms that enhance the sustainability of p53 pulses 
 

4.3.1 Noise can enhance the sustainability of p53 pulses in mutated cells 
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To quantify the role of each molecular species in the model, we simulated various types 

of mutations. Given 10Gy irradiation, the model with Wip1 knockout generates a single 

peak followed by a high steady state of p53 instead of sustained pulses of p53, matching 

a previous experimental study (Figure 4-6A) (163). It is known that SNP309 

(polymorphism of mdm2 promoter) increases expression of Mdm2 mRNA about 10 

times and induces the low stable state of p53 instead of oscillations after γ-irradiation 

(203, 204).  We tested this in our model by increasing the transcription rate of Mdm2 by 

a factor of 10 and found that this causes the same behavior that was observed 

experimentally (Figure 4-6B). Finally, the model predicts that Rorα is also essential to 

generate sustained pulses of p53 in the presence of 10 Gy γ-irradiation (Figure 4-6C).   

 

While deterministic simulations predict that sustained p53 pulses will not occur with 

these three types of mutations, stochastic simulations predict that the sustained pulses 

often occur even with these mutations (Figure 4-6D-F). In particular, the model showed 

clear oscillations of p53 in Rorα-/- cells. Interestingly, previous studies also showed that 

noise could often induce rhythms in other biological oscillatory systems, such as the 

circadian clock, by moving the system away from its natural steady state (23). To see 

how often noise can induce the sustained pulses with these mutations, we conducted a 

simulation of 200 cells with Gillespie algorithm. Here, we again assumed heterogeneity 

among cells as we did previously. Cells with any one of three mutations showed a lower 

chance of rhythm occurrence than WT cells (Figure 4-6G). In particular, Wip1-/- cells had 

the lowest probability of sustaining pulses. Moreover, the amplitudes of pulses were also 

significantly reduced with these mutations (Figure 4-6H). Interestingly, a previous 

experimental study also showed that only small portion of cells can generate sustained 

p53 pulses with low amplitudes after treatment of Wip1 siRNA (163). Our simulations 

indicate that while these mutated cells were unable to generate sustained pulses of p53 

after γ-irradiation at the cell population level (deterministic simulation), noise can often 

induce sustained rhythms at the single cell level (stochastic simulation).  
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Figure 4-6. Simulations of knockout or overexpression mutations. 
(A-C) Deterministic simulations of Wip1-/-, Mdm2 overexpression (10 fold), and Rorα-/- showed 
dampened p53 pulses after 10Gy irradiation. (D-F) Stochasticity or intrinsic noise was often able 
to induce sustained p53 pulses even with these mutations after 10Gy irradiation. (G) Probability 
of sustained p53 pulse occurrence with noise for 500 cells in response to 10Gy irradiation. (H) 
Mean relative amplitude of p53 pulses of oscillating cells among 500 cells (normalized to average 
relative amplitudes in WT cells). 

 

4.3.2 Common characteristics between the p53 model and Type II neurons 
We noticed that the p53 regulatory system in cells behaves like an excitatory system  

similar to neurons. That is, while p53 levels remain at a steady state in the absence of 
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DNA damage, transient DNA damage can induce spontaneous pulses of p53 (161). 

Moreover, severe DNA damage induced by γ-irradiation yields a series of p53 pulses 

with a small variation in period, but a large variation in amplitude (Figure 4-5D-E) (26). 

Interestingly, these are also common features of type II neurons, which are also known  

as resonator neurons due to their preferred frequency of spiking (205). When an external 

current greater than a certain threshold is applied, type II neurons begin generating spikes 

with a narrow range of frequencies, regardless of the strength of the external stimuli, 

while other types of neurons (e.g. type I neurons) yield spikes with a wide range of 

frequencies depending on the strength of the external currents (205-207).  

 

 
Figure 4-7. p53 pulses in the model and spikes of type II neurons show similar responses to 
the external stimuli with different strengths (A) and with varying frequencies (B). 
(A) Both oscillating spikes in type II neurons and sustained p53 pulses of model have a non-zero 
lower bound for frequencies and a narrow range of frequencies in response to different strengths 
of constant external stimuli. (B) Both membrane potential in type II neurons and p53 in the model 
respond sensitively to oscillating stimuli with a specific frequency. The figures of type II neurons 
are reproduced with Figures 7.3 and 7.17 in (208) by permission from The MIT Press 
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We further explored whether pulses of p53 in cells and spikes of type II neurons have 

more common features in response to external stimuli. Given external constant currents 

with different strengths, type II neurons have a non-zero lower bound for frequency and a 

narrow range of frequency variation (Figure 4-7A) (205, 207). Similarly, p53 pulses also 

have a non-zero lower bound for their frequency and a narrow range of frequency 

variation for different strengths of γ-irradiation in the model (Figure 4-7A). When an 

oscillating current, as opposed to a constant current, with varying frequency and low 

amplitude is injected, type II neurons also show an interesting response. They respond 

sensitively to the injected current with a specific frequency (205, 207) (Figure 4-7B). We 

tested whether p53 pulses would respond in a similar way to low amplitude γ-irradiation 

with varying frequency,  Gy. Surprisingly, p53 levels showed a 

sensitive response to irradiation with a specific frequency (~0.16/hr) similar to type II 

neurons (Figure 4-7B). Mathematically type II neurons are characterized by a Hopf 

bifurcation when the level of external current is varied. Indeed, our p53 model also shows 

a supercritical Hopf bifurcation when the strength of γ-irradiation is changed.  

 

4.3.3 A potential coupling mechanism of p53 pulses among neighboring 
cells 

We have shown that both p53 pulses in DNA-damaged cells and spikes of type II neurons 

have the characteristics of resonators. This raises the question of why DNA-damaged 

cells act as resonators or, in other words, what is the benefit of behaving as a resonator 

when p53 pulses are generated. One of the distinct characteristics of resonator neurons is 

that they can synchronize rhythms in purely excitatory networks, while integrator neurons 

cannot synchronize their rhythms (209). This feature of the resonator neuron leads to the 

hypothesis that like resonator neurons, DNA-damaged cells are designed to synchronize 

p53 pulses.  

 

Before exploring this hypothesis, we first examined whether there exists a coupling 

signal among cells similar to excitatory neurotransmitters among neurons. Interestingly, 

recent studies have found that neighboring cells communicate with each other after γ-

irradiation through the ‘radiation induced bystander effect (RIBE) (188). RIBE is 

2.78+ 0.02Sin(0.1π t1.15 )
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characterized by DNA damage in un-irradiated cells that is induced by molecular signals 

produced by their neighboring irradiated cells. While many molecular signals involving 

RIBE have been proposed, a recent study identified Cytochrome-c (cyt-c) as one of main 

signals inducing RIBE. Specifically, γ-irradiation induces the p53 dependent release of 

mitochondrial cyt-c, which enters un-irradiated neighboring cells through gap junctions 

(210) and diffusion (174) (Figure 4-8A). The released cytochrome-c then causes DSBs or 

DNA damage that activates p53 in the un-irradiated neighboring cells (Figure 4-8A) 

(211). In this way, cyt-c can act as an excitatory neurotransmitter and provide a potential 

mechanism that couples p53 pulses of neighboring cells (Figure 4-8B). Similar couplings 

via diffusion of molecular signals have been identified in other biological oscillators, 

including the coupling of circadian rhythms of clock gene expressions via diffusion of 

VIP signal (212, 213) and coupling of Dictostelium cAMP oscillations via the diffusion 

of cAMP signal (179). 

 

 
Figure 4-8. Radiation-induced bystander effects (RIBE) can be a potential mechanism that 
couples p53 pulses. 
γ-irradiation stimulates the p53-dependent release of cytochrome-c. The released cytochrome-c 
can stimulate the upper signal of p53 pathway of neighboring cells. This can be a potential 
excitatory coupling mechanism of p53 pulses among neighboring cells in response to γ-
irradiation.  

 

Given that previous studies of RIBE have explored only the effect on un-irradiated cells 

neighboring irradiated cells, the question remains whether the RIBE can activate p53 

even in irradiated cells. Regarding this question, a recent study has shown the promising 

result that DSBs induced by RIBE, persist for a longer period than those induced by 
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direct irradiation (214). This suggests that RIBE has a distinct pathway for the activation 

of p53 different from that of direct γ-irradiation. Thus, DSBs induced by cyt-c could 

activate p53 even in irradiated neighboring cells and provide a potential coupling 

mechanism, although the strength of coupling may be weak (Figure 4-8B).  

 

4.3.4 Coupling enhances the sustainability of p53 pulses 
To determine whether coupling via cyt-c can induce synchronization of p53 pulses 

among irradiated cells, we extended the current model to include cyt-c. In the model, cyt-

c is produced in proportion to activated p53 in each cell after γ-irradiation (see Table C-3 

for the description of parameters). 

  

d[Cyt − c−i ]
dt

= βc
[p53active−i ]

nc

[p53active−i ]
nc +Tc

nc
−α c[Cyt − c−i ]  

 

in which, sub-index i represents the ith cell. Total cyt-c from all neighboring cells, 

representing the exogenous concentration of cyt-c, then activates ATM in all neighboring 

cells.  

 

βs
IRNg

Tg + IR
Ng
!→! βs

(IR+
βcf
n

Cyt − c−i
i=1

n

∑ )Ng

Tg + (IR+
βcf
n

Cyt − c−i
i=1

n

∑ )Ng

 
 

in which, the average of cyt-c produced in each cell represent exogenous concentration of 

cyt-c. Here, we assumed that cyt-c, released from each cell by 3Gy irradiation, induces 

DSBs of neighboring cells similar to those induced by ~0.5 Gy irradiation, matching 

experimental data (27). Although DSBs induced by cyt-c were significantly less than 

those induced by 3Gy γ-irradiation, the coupling via cyt-c can synchronize p53 pulses of 

four neighboring cells, all of which initially had different phases (Figure 4-9A). Here, we 

considered four cells since coupling through diffusion or gap junctions would work only 

locally.  
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This result leads to the question of what might be the potential benefit of synchronization 

through the coupling. Because previous studies have found that synchronization through 

a coupling can enhance rhythm occurrence in circadian clocks and Dictostelium cAMP 

oscillators (22, 23, 103, 179), we tested whether the coupling can help to sustain p53 

pulses.  

 

 
Figure 4-9. Coupling enhances the sustainability of p53 pulses.  
(A) After 3 Gy irradiation, coupling through cyt-c synchronizes p53 pulses with different initial 
phases of four cells. (B) As the strength of coupling becomes stronger, the fraction of cells that 
can sustain p53 pulses increases. Here, a heterogeneous mixture of 4000 cells is considered, with 
coupling of four randomly selected cells. p53 pulses were simulated for 72 hours after γ-
irradiation with different strengths (1, 3, 5 and 7 Gy). For the different strength of coupling, 6, 3, 
1.5 and 0 were used as βcu,, a coupling strength parameter (Table C-3). (C) The effect of the cyt-c 
signal on ATM activation becomes weaker as the strength of γ-irradiation becomes stronger. 
Here, βcf  = 6 (blue), 3 (red), 1.5 (green) and 0 (purple). (D-G). Comparison of p53 pulses in two 
neighboring cells without coupling and with coupling in the presence of 1Gy irradiation. Here, 
two neighboring cells were considered. 
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The sustainability of p53 pulses for 3 days in 4000 heterogeneous cells was simulated in 

response to different strengths of γ-irradiation. Here, parameters of every cell were 

perturbed by multiplying random numbers eX (X ~ N(0, 0.2)) as we did previously. To test 

the role of coupling, we randomly coupled every four cells in the 4000 cells. Simulations 

showed a clear role of the coupling in sustaining p53 pulses after γ-irradiation. That is, as 

the strength of coupling becomes stronger, more cells can maintain their p53 pulses 

(Figure 4-9B). For instance, while two cells are unable to generate sustained p53 pulses, 

coupling can restore their pulses (Figure 4-9D). This is also seen when only one of two 

cells oscillates (Figure 4-9E). Moreover, when both cells can sustain p53 pulses with a 

similar period, coupling increases the amplitude of rhythms (Figure 4-9F). In this way, 

coupling enhances the occurrence of p53 rhythms, but the effect of coupling is reduced as 

the strength of γ-irradiation increases (Figure 4-9B). This is because ATM activation 

induced by coupling is too small to compete with activation induced by strong γ-

irradiation (Figure 4-9C). Moreover, when both cells sustain p53 pulses with significantly 

different periods, coupling cannot synchronize p53 pulses and increase the amplitude, but 

instead coupling reduces the period difference (Figure 4-9G), indicating that the coupling 

could also play a role in tight regulation of the periods of p53 pulses. Taken together, the 

coupling of cells via cyt-c can synchronize p53 pulses and enhance the sustainability of 

the pulses. The effect of coupling becomes even more remarkable when the strength of γ-

irradiation becomes weaker and the heterogeneity of periods is smaller. 

 

 

4.4 Discussion 
 

To explore potential mechanisms that sustain p53 pulses in response to γ-irradiation, we 

developed a new mathematical model by modifying and extending Batchelor’s model 

(163). While most mathematical models of p53 pulses are based on a single negative 

feedback loop between p53 and Mdm2 (167-172), recent experimental studies have found 

that additional negative feedback loops are required to generate p53 pulses. While 

Batchelor’s model includes these newly identified negative feedback loops, it also 

includes explicit time delays (~1hr), which might be biologically unrealistic and often 
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induce oscillation in systems whose structures are not likely to produce rhythms naturally 

(2, 189). Thus, rather than including the explicit time delays, we included the 

intermediate steps associated with Wip1 and Mdm2 production (Figure 4-1A). During 

this process, we found that a network structure consisting of three interlocked negative 

feedback loops, could not sustain p53 pulses over a wide range of conditions (Figure 

4-1B and D). Interestingly, when we added a recently identified positive feedback loop 

between p53 and Rorα, both sustainability and amplitude of the p53 pulses were 

significantly improved, which is consistent with previous studies showing the potential 

role of additional positive feedback loops (2, 170, 178) (Figure 4-1D and E). 

Furthermore, our new model with the additional positive feedback loop was able to 

reproduce many key features of p53 pulses (Figure 4-4 and Figure 4-5). Our model 

proposes a new network structure, which can generate more robust p53 pulses: three 

interlocked negative feedback loops with an additional positive feedback loop. Moreover, 

when we included noise through stochastic simulations, we found that noise can often 

prevent p53 pulses from dampening even after mutations of essential species of p53 

oscillatory systems, such as Wip1-/-, SNP309, and Rorα-/- (Figure 4-6D-F), although the 

overall chances of sustained p53 pulse occurrence are significantly reduced (Figure 

4-6G). Finally, we found that when p53 pulses in neighboring cells are coupled via cyt-c 

signals (Figure 4-8), p53 pulses are synchronized and their sustainability is enhanced 

unless the difference of periods were significant (Figure 4-9). The coupling effect 

becomes more significant as the strength of γ-irradiation becomes weaker (Figure 4-9B). 

Interestingly, a similar influence of coupling has been found in other biological 

oscillatory systems, such as circadian clocks and cAMP oscillators (23, 103, 179). In 

summary, we found three potential mechanisms that enhance the sustainability of p53 

pulses: 1) an additional positive feedback loop between p53 and Rorα, 2) intrinsic noise, 

and 3) the intercellular coupling through cyt-c.  

 

Biological oscillatory systems can be categorized according to the driving sources of their 

rhythms. One category consists of endogenous oscillators (e.g. circadian clocks and sino-

atrial node), which can generate rhythms without external stimuli (15, 215). The p53 

regulatory system belongs to the other category, exogenous oscillators, which require 
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external stimuli to sustain oscillations. One of the most widely studied exogenous 

oscillators in cell biology is the neuron. Depending on their responses to external stimuli, 

most neurons can succinctly be classified as type I or type II neurons (205-207). Type I 

neurons behave like an integrator, which accumulates various external current inputs that 

generate rhythms. Type II neurons behave like a resonator, which generate rhythms when 

an external current with a specific frequency is applied. We found that DNA-damaged 

cells behave like type II neurons (Figure 4-7). The fact that type II neurons easily 

synchronize their spikes when they are coupled through excitatory signals (209) led to the 

question of whether neighboring cells also have a coupling mechanism that synchronizes 

p53 pulses. Indeed, a recent experimental study found a potential coupling signal (cyt-c) 

for p53 pulses among neighboring cells (Figure 4-8) (27). When we included this 

intercellular coupling in the model, we found that coupling through cyt-c can synchronize 

p53 pulses unless the difference in the periods of coupled cells is significant (Figure 4-9). 

Moreover, the coupling significantly enhances the sustainability of p53 pulses (Figure 

4-9B). 

 

Regarding the synchronization of p53 pulses, a high correlation between the distance 

among cells and their phase relationship would be an indicator of the presence of local 

coupling that synchronizes p53 pulses of neighboring cells. Unfortunately, most previous 

studies measured only the time courses of p53 pulses in individual cells without keeping 

track of spatial information (26, 162, 163). We did, however, find one set of experimental 

data that recorded the time courses of p53 pulses among five neighboring cells (26). 

Interestingly, when we analyzed this data, we found that the five cells could be 

categorized into two groups, each with the same peak timing of p53 pulses. This indicates 

that closer cells may have more similar phases or that they may synchronize p53 pulses. 

However, to derive a significant conclusion about the relationship between p53 phases 

and distance among cells, a data set much larger than five cells is required. Another 

interesting experiment would be to test whether cyt-c can act as a coupling mechanism of 

p53 pulses. For this, we first need to study whether cyt-c increases DNA damage even in 

irradiated neighboring cells since cyt-c induced DNA damage has been studied in only 

un-irradiated neighboring cells (Figure 4-8). If cyt-c could induce DNA damage even in 
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irradiated neighboring cells, the next step would be to test whether cyt-c can synchronize 

p53 pulses and enhance their sustainability. The direct test for this would involve 

studying the effect of the inhibition of cyt-c via cyclosporine A on the p53 pulses. More 

specifically, future research could test whether the inhibition of cyt-c yields a wider 

distribution of phases and periods of p53 pulses and lower chance of sustained p53 pulses 

occurrence. Moreover, additional future modeling could consider a spatio-temporal 

modeling approach to study the role of cyt-c in depth (216). 

 

We also found that Rorα may be an essential component in sustaining γ-triggered p53 

pulses. That is, sustainability and amplitudes of p53 pulses are significantly reduced in 

Rorα-/- cells (Figure 4-1D-E and Figure 4-6G-H), although noise can often induce 

sustained p53 pulses even with Rorα-/- (Figure 4-6F). It would be a worthwhile future 

experiment to test the role of Rorα on γ-triggered p53 pulses by knocking out Rorα. 

Interestingly, Rorα is one of core circadian (~24hr) clock genes, whose gene expression 

shows 24hr periodic rhythms (217). Since p53 also exhibits circadian rhythms at both the 

mRNA and protein level, various candidate pathways underlying p53 circadian rhythms 

have been proposed, such as c-myc (218, 219). Our study proposed another potential 

mechanism that generates the circadian rhythms of p53 protein: positive feedback 

between p53 and Rorα, which could be an important target for chronotherapy. This 

hypothesis can be tested by considering the effect of Rorα-/- on circadian rhythms of p53. 

A previous study suggested that noise in protein production rate with a slow correlation 

time (10~20h) could be a reason for the variability observed in γ-triggered p53 pulses 

(26). Circadian rhythms of Rorα gene expression or p53 gene expression could be the 

source of the slowly varying noise in the protein production rates, causing a large 

variability in the amplitude of p53 pulses.  
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Chapter 5 Conclusion 
 

This dissertation developed theorems and mathematical models to approach two 

fundamental problems in cellular rhythms: identifying the biochemical network structure 

underlying biological clocks and understanding the functions of these biochemical 

networks.  

 

In chapter 2, we studied the existence and uniqueness of the mathematical models of 

biological clocks given oscillating timecourses. For this, we considered a simple, but very 

general form of mathematical model, which is frequently used to describe molecular 

biological clocks:  

 

(5.1)             dr
dt
= f (s)− g(r)  

 

First, we proved that if there exists a model with the form (5.1), which has solutions 

matching two given oscillating timecourses and , then the model is unique in 

most cases. That is, this theorem indicates that oscillating timecourses can alone 

determine the biochemical rates of models with the form (5.1). Furthermore, we proved a 

necessary condition of oscillating timecourses and  in order for them to be 

solutions of the models with the form (5.1). If this condition is invalidated, the model 

having solutions and  does not exist, which in turn means that two species, r and 

s have no biochemical interaction. This theorem provides a simple algorithm that 

identifies unrelated species in biochemical network based on their timecourses: 

 

r(t) s(t)

r(t) s(t)

r(t) s(t)
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• Step 1. Given two oscillating timecourses, and , find 𝑟(𝑡)  and 𝑠(𝑡) , 

which map one time point to another time point where and  have the 

same value, respectively. 

• Step 2. Find the  composite of 𝑟(𝑡) and 𝑠(𝑡): . Check  if 𝜙! 𝑡  has 

a fixed point t for any n.  

• Step 3. If there exists a fixed point, which does not satisfy the degenerative 

condition, and  cannot be solutions of any model with the form (5.1), 

indicating that  two species r and s have no biochemical interactions. 

 

Since this new algorithm is the very first approach that uses a fixed point criteria to reveal 

the network structure, more study is needed to apply this algorithm to real data. In 

particular, the current theory assumes that timecourse data does not have any noise. Since 

all biological data include noise, future work should test whether this algorithm is stable 

in the presence of noise. Furthermore, the incorporation of a statistical method, which 

filters the noise in timecourse data, to the algorithm would be another interesting future 

project.  

 

In chapter 2, we also considered the existence and uniqueness of models with forms, 

which are different from (5.1):  

 

(5.2)             df (r)
dt

= s+ g(r) ,  

 
and  
 

(5.3)             dr
dt
= f (r)s− g(r) . 

 

We found that models with these forms have uniqueness and existence over a broader 

class of timecourses than models with the form (5.1). Interestingly, we also found that 

most results about the existence and uniqueness of models with these forms were also 

obtained by studying the fixed points of an iterating map 𝜙! 𝑡 , indicating the 

r(t) s(t)

r(t) s(t)

φ(t) := ŝ(r̂(t))

r(t) s(t)
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importance and general applicability of map 𝜙! 𝑡 . Given the results of our work here, 

several fruitful lines of research could be pursued. First, given the importance of fixed 

points of the iterating map 𝜙! 𝑡 , future work should consider the method to more easily 

determine the fixed points. Second, while the present study considers only models that 

consist of two species r and s, future work could consider more general models that 

consist of more than two species. This can lead to a new algorithm that detects 

biochemical interactions among multiple species. Finally, the algorithm developed in 

chapter 2 is not limited to only biochemical networks, and so it would be interesting to 

apply it to detect the structures of other types of complex networks with oscillating 

outputs (e.g. neuronal networks, ecological systems, climate systems or social networks). 

  

In chapter 3, we developed the most detailed mathematical model of the mammalian 

circadian clock to date. This model matches various experimental data including time 

courses and relative concentrations of key transcripts and proteins, mutation phenotypes, 

and the effects of changes in gene dosage. In particular, the model accurately predicts the 

phenotype of known mutations of genes in the circadian clock, which was not achieved in 

previous models. Furthermore, for the accuracy of the model, mass action kinetics was 

used to explicitly describe dynamics of all possible complexes of monomers. With the 

simulation of this model, we proposed mechanisms that generate circadian rhythms and 

maintain 24-hr period over a wide range of conditions:  

 

• Proper stoichiometric balance between activators (BMAL–CLOCK/NPAS2) and 

repressors (PER1–2/ CRY1–2) of a core negative feedback loop in the circadian 

clock,   

• Tight binding between activators and repressors, 

• The NNF (negative-negative feedback loops) structure, in which repressors and 

activators suppress their own transcription via core negative feedback loop and 

additional negative feedback loop, respectively, 

• Longer half-life of activators than repressors. 
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These mechanisms synergistically generate rhythms with a nearly constant period even 

with significant perturbations in transcriptions. The range of the stoichiometry where the 

rhythms occur widens as binding between activators and repressors tightens. Moreover, 

to maintain stoichiometry in the range where rhythms occur, the NNF structure allows the 

regulation of the levels of both activators and repressors. When an additional feedback 

loop regulates the expression of activators on a slower timescale (i.e. a longer half-life of 

activators than repressors), the core negative feedback function of rhythm generation is 

not disrupted by the additional negative feedback loop, which enhances rhythm 

generation. These mechanisms were also validated by analysis of a simplified 

mathematical model of the mammalian circadian clock, indicating the generality of these 

mechanisms.  

 

While the mammalian circadian clock model revealed these mechanisms for robust 

circadian rhythms, we found that these mechanisms are commonly used by other 

multicellular organisms (e.g. flies) (53, 54, 64). In the case of unicellular organisms (e.g. 

Neurospora), however, these mechanisms do not appear to be used in generating 

circadian rhythms (133, 220). This raises the interesting question of why different 

organisms use different designs for executing the same function of circadian rhythm 

generation. One hypothesis is that the design of circadian clocks in multicellular 

organisms might be better at synchronizing rhythms with neighboring cells than the 

design of circadian clocks in unicellular organisms. To test this hypothesis, the extension 

of the current single cell model to coupled multi-cell models would be valuable future 

work.  

 

In chapter 3, we also studied how pharmacological inhibition of CK1δ/ε can modulate the 

phase of mammalian circadian clocks under a light-dark cycle by using the detailed 

mathematical model of the mammalian circadian clock. To achieve accurate predictions 

of the model, experimentally measured PK/PD data of CK1δ/ε inhibitor (PF-670462) 

were incorporated to the model. The model predicts that chronic inhibition of CK1δ/ε 

under a LD cycle can yield a constant stable delay of circadian phase depending on 

dosing amount, dosing timing, day lengths and intrinsic period of circadian rhythms. That 
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is, the model predicts that a constant stable delay is more likely to occur as dosing occurs 

earlier in the day or/and day length becomes shorter. This work shows how mathematical 

modeling can be used to determine a dosing strategy of chronic CK1δ/ε inhibition and to 

estimate the effect of environmental condition on dosing. Furthermore, our work provides 

a non-traditional approach to stable modulation of the phase circadian rhythms, which 

can be used to treat the misalignment of circadian clocks (e.g. advanced sleep phase 

disorder).  

 

This work here indicates that our mathematical model can be used to study the effect of 

inhibition of the other kinases involving circadian clocks. In particular, an important 

kinase of circadian clocks, GSK3β could be the focus of interesting future work. An 

inhibitor of GSK3β, Lithium, also delays circadian phase in a manner similar to the 

CK1δ/ε inhibitor. Interestingly, the modulation of circadian rhythms induced by Lithium 

has been proposed to explain the effect of chronic dosing of Lithium on treatment of 

mood disorders, such as a bipolar disorder. Future work could consider the incorporation 

of Lithium into our detailed mathematical model. The model could then be used to find 

an optimized dosing strategy of chronic dosing of Lithium to treat mood disorders.  

 

In chapter 4, we developed a mathematical model of the p53 pulse regulatory system to 

investigate molecular mechanisms that enhance sustainability of p53 pulses in response 

to DNA damage. In our development of the mathematical model, we found that the 

currently known biochemical network structure of the p53 pulse regulatory system, 

namely three inter-locked negative feedback loops, cannot on their own sustain p53 

pulses over a wide range of conditions. We found that the addition of a recently identified 

positive feedback loop between p53 and Rorα to the original structure significantly 

improves both sustainability and amplitude of the p53 pulses. This indicates that Rorα is 

an important component of p53 pulse regulatory system. Interestingly, Rorα is one of 

core circadian clock genes, which generate and control circadian rhythms in the master 

circadian clock. Since the level of Rorα also shows circadian rhythms, Rorα can induce 

circadian rhythms of p53 level via the positive feedback loop between p53 and Rorα. If 

Rorα were a key link between the p53 regulatory system and circadian clocks, it would 
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be an important target for chronotherapy, which focuses on the relationship between 

dosing timing and dosing effects on cancer. To explore the Rorα induced circadian 

rhythms of p53, linking our two models, the circadian clock model and p53 model can be 

considered for future work.  

 

By simulating the model with the Gillespie algorithm, we also found that intrinsic noise 

can help sustain p53 pulses in response to the mutation of key species of the p53 pulse 

regulatory system. We also found that DNA damaged cells behave like type II neurons, 

which act as resonators. The fact that type II neurons easily synchronize their rhythms 

when they are coupled led to the question of whether neighboring cells also synchronize 

p53 pulses. When we included a recently identified potential coupling signal, cyt-c, in the 

model, indeed, the coupling synchronizes p53 pulses and significantly improves the 

sustainability of p53 pulses. Future work should look for similarities between neuronal 

oscillations and other types of externally induced cellular rhythms. Since neurons are the 

most widely studied biological oscillators, the underlying mechanisms of their dynamical 

behaviors are relatively well known. Therefore, the identification of similarities between 

biological clocks with neuronal oscillators could help unravel the mysteries of complex 

functions in biological clocks, such as the functions we found regarding the 

synchronization of p53 pulses.  

 

Through the studies described in chapter 2 through 4, this dissertation demonstrates how 

mathematical theory and modeling can be used to illuminate biochemical networks and 

core dynamics of biological clocks by integrating experimental data. The revealed core 

mechanisms that generate cellular rhythm can be used to diagnose the cause of disrupted 

cellular rhythms and restore the disrupted rhythms. Furthermore, our work also shows the 

practical applicability of mathematical modeling to test the drug effects on cellular 

rhythms systemically under various environmental conditions. Given the significant 

impact of misaligned or disrupted rhythms on various diseases including cancer, 

insomnia, mood disorders, and diabetes, we believe our studies can contribute to 

improving human health significantly.  
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Appendix A Description of the detailed model of mammalian 
circadian clocks 

 

A.1 Variables 
 

Table A-1. The variables used in the detailed model of circadian clock. 
Name	   Symbol	  

The concentration of Per1 mRNA in the nucleus/ cytoplasm MnPo/McPo 
The concentration of Per2 mRNA in the nucleus/ cytoplasm MnPt/McPt 
The concentration of Cry1 mRNA in the nucleus/ cytoplasm MnRo/McRo 
The concentration of Cry2 mRNA in the nucleus/ cytoplasm MnRt/McRt 
The concentration of Bmals mRNA in the nucleus/ cytoplasm MnB/McB 
The concentration of Npas2 mRNA in the nucleus/ cytoplasm MnNp/McNp 
The concentration of Rev-erbs mRNA in the nucleus/cytoplasm MnRev/McRev 
The concentration of BMALs protein in the cytoplasm B 
The concentration of CLOCK/NPAS2 protein in the cytoplasm Cl 
The concentration of unphosphorylated BMALs-CLOCK/NPAS2 BC 
The concentration of unphosphorylated REV-ERBs in the 
nucleus/cytoplasm revn/cyrev 

The concentration of unphosphorylated REV-ERBs bound with GSK3β in 
the nucleus/cytoplasm revng/cyrevg 

The concentration of phosphorylated REV-ERBs bound with GSK3β in the 
nucleus/cytoplasm revngp/cyrevgp 

The concentration of phosphorylated REV-ERBs in the nucleus/cytoplasm revnp/cyrevp 
The probability of the per1, per2, and cry1 E-box being activated G 
The probability of the per1, per2, and cry1 E-box being repressed GR 
The probability of the cry2 E-box being activated Gc 
The probability of the cry2 E-box being repressed GcR 
The probability of the rev-erbs E-box being activated Gr 
The probability of the rev-erbs E-box being repressed GrR 
The probability of the npas2 and cry1 RORE being activated GB 
The probability of the npas2 and cry1 RORE being repressed GBR 
The probability of the Bmals RORE being activated GBb 
The probability of the Bmals RORE being repressed GBRb 
The activity of GSK3β gto 
The strength of transcription drive of light ltn 
Note the protein complexes are separately listed in Table A-2. 
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Table A-2. The variables of protein complexes used in the detailed model of circadian clock. 

Index 
j 
 

PER 

k 
 

CRY 

l 
 

Kinase 

m 
 

Location 

n 
 

BMALs-CLK 

0 No PER bound No CRY 
bound 

No Kinases 
bound Cytoplasm No BMALs-

CLK bound 

1 PER1 CRY1 CKI Nucleus BMALsP-CLKP 

2 PER1P by CKI CRY2 GSK3   

3 PER2  CKI&GSK3   

4 PER2p by CKI     

5 PER2P by GSK3     

6 PER2P by both GSK3 
and CKI     

Each complex is encoded as x[j][k][l][m][n], where j, k, l, m and n refer to the proteins that are 
present in the complex, or the location of the complex. We also assume that when BMALs-CLK 
is phosphorylated when in complex. “P” represents “phosphorylated”.  
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A.2 Parameters 
 
Table A-3. Parameters of the detailed model of circadian clock. 
Parameter	  Description	   Symbol	   Value	   Reference	  
Transcription rate constant for Per1 trPo 25.92  
Transcription rate constant for of Per2 trPt 44.85  
Transcription rate constant for of Cry1 trRo 23.07  
Transcription rate constant for Cry2 trRt 39.94  
Transcription rate constant for Bmal (1) trB  46.10  
Transcription rate constant for Npas2 (1) trNp  0.33  
Transcription rate constant for Rev-Erbs trRev 102.9  
Translation rate constant for PER1 and PER2 tlp 1.81  
Translation rate constant for CRY1 and CRY2 tlr 5.038  
Translation rate constant for BMAL (1) tlb 0.53  
Translation rate constant for CLOCK (1) tlc 4.645  
Translation rate constant for NPAS2 (1) tlnp 1.251  
Translation rate constant for REV-ERBs  tlrev 8.907  
Binding rate constant for PER2 to GSK3β (4) agp 1.396  
Binding rate constant for REV-ERBs to GSK3β (4) ag 0.162  
Unbinding rate constant for PER2/REV-ERBs to GSK3β (4) dg 2.935  
Binding rate constant for PER1/2 to CKIε/δ ac 0.046  
Unbinding rate constant for PER1/2 to CKIε/δ dc 0.108  
Binding rate constant for PER1/2 to CRY1/2 ar 0.024  
Unbinding rate constant for PER1/2 to CRY1/2 dr 0.605  
Binding rate constant for PER1/2 to BMAL-
CLOCK/NPAS2 in the nucleus (2) bbin 6.926 (84) 

Unbinding rate constant for PER1/2 to BMAL-
CLOCK/NPAS2 in the nucleus (2) unbbin 0.13 (84) 

Binding rate constant for CRY1/2 to BMAL-
CLOCK/NPAS2 in the nucleus (2) cbbin 6.599 (84) 

Unbinding rate constant for CRY1/2 to BMAL-
CLOCK/NPAS2 in the nucleus (2) uncbbin 0.304 (84) 

Binding rate constant for BMAL to CLOCK/NPAS2 (1) cbin 0.045  
Unbinding rate constant for BMAL to CLOCK/NPAS2 (1) uncbin 7.272  
Binding rate constant for REV-ERBs to GSK3β (4) ag 0.162  
Normalized binding rate constant for BMAL-
CLOCK/NPAS2 to Per1/2/Cry1 E-box (3) bin 6.972  

Normalized unbinding rate constant for BMAL-
CLOCK/NPAS2 to Per1/2/Cry1 E-box (3) unbin 0.255  

Normalized binding rate constant for BMAL-
CLOCK/NPAS2 to Cry2 E-box  (3) binc 0.280  

Normalized unbinding rate constant for BMAL-
CLOCK/NPAS2 to Cry2 E-box (3) unbinc 0.009  

Normalized binding rate constant for BMAL-
CLOCK/NPAS2 to Rev-erbs E-box (3) binr 6.154  

Normalized unbinding rate constant for BMAL-
CLOCK/NPAS2 to Rev-erbs E-box (3) unbinr 2.91  
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Normalized binding rate constant for REV-ERBs to Bmal 
RORE (1) binrevb 0.006  

Normalized unbinding rate constant for REV-ERBs to Bmal 
RORE (1) unbinrevb 5.305  

Normalized binding rate constant for REV-ERBs to 
Cry1/Npas2 RORE (1) binrev 0.012  

Normalized unbinding rate constant for REV-ERBs to 
Cry1/Npas2 RORE (1) unbinrev 10.97  

Rate constant for folding and nuclear export of Per1/2, 
Cry1/2, Bmal and Npas2 mRNA tmc 0.164  

Rate constant for folding and nuclear export of Rev-Erbs 
mRNA tmcrev 9.263  

Nuclear localization rate constant for proteins bound to PER nl 0.643  
Nuclear export rate constant for protein bound to PER ne 0.026  
Nuclear localization rate constant for REV-ERBs as well as 
GSK3β if bound (4) nlrev 9.637  

Nuclear export rate constant for REV-ERBs as well as 
GSK3β if bound (4) nerve 0.015  

Nuclear localization rate constant for BMAL-
CLOCK/NPAS2 (1) nlbc 5.265  

Nuclear export rate constant for unbound kinases GSK3β 
and CKI (4) lne 0.595  

Total CK1 concentration Ct 57.61 (63) 
Total GSK3β concentration (4) Gt 79.73  

CKIε/δ phosphorylation rate constant for PER1 hoo 0.527 (63) 

CKIε/δ phosphorylation rate constant for PER2 hto 2.456 (63) 
Phosphorylation rate constant for BMAL-CLOCK/NPAS2 
(1) phos 0.291  

Increase rate of GSK3β activity (4) trgto 0.644  

Decrease rate of GSK3β activity (4) ugto 0.063  
Degradation rate constant for Per1 umPo 0.765 (106) 
Degradation rate constant for Per2 umPt 0.589 (106) 
Degradation rate constant for Cry1 umRo 0.403 (106) 
Degradation rate constant for Cry2 umRt 0.456 (106) 
Degradation rate constant for Bmal (1) umB 0.795 (221) 
Degradation rate constant for Npas2 (1) umNp 0.369  
Degradation rate constant for Rev-Erbs  umRev 1.51 (222) 
Degradation rate constant for unphosphorylated PER upu 0.07 (61) 
Degradation rate constant for CKI phosphorylated PER up 3.537 (120) 
Degradation rate constant for CRY1 uro 0.174 (106) 
Degradation rate constant for CRY2 urt 0.482 (84, 105) 
Degradation rate constant for BMAL (1) ub 0.019 (81) 
Degradation rate constant for CLOCK/NPAS2 (1) uc 0.025 (81) 
Degradation rate constant for BMAL-CLOCK/NPAS2 (1) ubc 0.349 (81) 
Degradation rate constant for unphosphorylated REV-ERBs 
(4) urev 1.649 (221) 

Degradation rate constant for GSK3β phosphorylated REV-
ERBs (4) uprev 0.517 (221) 

Ratio of cytoplasmic and nuclear compartment volume Nf 3.351 (97) 
Additional Per1 transcription rate in the presence of light(5) lono 0.206 (92) 
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Additional Per2 transcription rate in the presence of light (5) lont 0.396 (92) 
Light level (5) ltI 500 (90) 
Rate of activation of pho (5) lta 0.607 (90) 
Light effect decrease (backward) rate (5) ltb 0.013 (90) 
References presenting experimental data on the parameter are indicated. If a parameter has been 
newly added to the previous model, a number is presented after the parameter description.  This 
number corresponds to the list that describes the changes that were made to the model in the 
chapter 3.2.1. The units of time are hours, concentrations are expressed in nM and light is 
presented in Lux. As described in (28), binding rates to promoter elements are considered 
“normalized” because they are tracked by the probability that they are unbound.  Further details 
can be found in (28). 
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A.3 Ordinary differential equations 
 

(1) Promoter Activity 

E-box 

GR'=bin*(Sum[x[0][kk][0][1][1],(195)])*(1-G-GR)-unbin*GR 

G'=bin*x[0][0][0][1][1]*(1-G-GR)-unbin*G 

GrR'=binr*(Sum[x[0][kk][0][1][1],{kk,1,2}])*(1-Gr-GrR)-unbinr*GrR 

Gr'=binr*x[0][0][0][1][1]*(1-Gr-GrR)-unbinr*Gr 

GcR'=binc*(Sum[x[0][kk][0][1][1],{kk,1,2}])*(1-Gc-GcR)-unbinc*GcR 

Gc'=binc*x[0][0][0][1][1]*(1-Gc-GcR)-unbinc*Gc 

 

RORE 

GBR'=binrev*(revn+revng+revngp+revnp)*GB-unbinrev*GBR 

GB'=-binrev*(revn+revng+revngp+revnp)*GB+unbinrev*GBR 

GBRb'=binrevb*(revn+revng+revngp+revnp)*GBb-unbinrevb*GBRb 

GBb'=-binrevb*(revn+revng+revngp+revnp)*GBb+unbinrevb*GBRb 

 

(2) Transcription 

MnPo'=trPo*G-tmc*MnPo-umPo*MnPo 

McPo'=tmc*MnPo-umPo*McPo 

MnPt'=trPt*G-tmc*MnPt-umPt*MnPt 

McPt'=tmc*MnPt-umPt*McPt 

MnRt'=trRt*Gc-tmc*MnRt-umRt*MnRt 

McRt'=tmc*MnRt-umRt*McRt 

MnRev'=trRev*x[0][0][0][1][1]*Gr-tmcrev*MnRev-umRev*MnRev 

McRev'=tmcrev*MnRev-umRev*McRev 

MnRo'=trRo*G*GB-tmc*MnRo-umRo*MnRo 
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McRo'=tmc*MnRo-umRo*McRo 

MnB'=trB*GBb-tmc*MnB-umB*MnB 

McB'=tmc*MnB-umB*McB 

MnNp'=trNp*GB- tmc*MnNp - umNp*MnNp 

McNp'=tmc*MnNp-umNp*McNp 

 

(3) Secondary Loop 

B'=tlb*McB-cbin*B*Cl+uncbin*BC-ub*B 

Cl'=tlnp*McNp+tlc-cbin*B*Cl+uncbin*BC-uc*Cl 

BC'=cbin*B*Cl-uncbin*BC-phos*BC-ubc*BC 

cyrev'=tlrev*McRev-(nlrev+urev)*cyrev-ag*cyrev*(x[0][0][2][0][0])+nerev*revn+dg*cyrevg 

revn'=-(nerev+urev)*revn-ag*Nf*revn*(x[0][0][2][1][0])+nlrev*cyrev+dg*(revng) 

cyrevg'=ag*cyrev*x[0][0][2][0][0]-(dg+gto+urev+nlrev)*cyrevg+nerev*revng 

revng'=ag*Nf*revn*x[0][0][2][1][0]-(dg+gto+urev+nerev)*revng+nlrev*cyrevg 

cyrevgp'=gto*cyrevg-(dg+uprev+nlrev)*cyrevgp+nerev*revngp 

revngp'=gto*revng-(dg+uprev+nerev)*revngp+nlrev*cyrevgp 

cyrevp'=dg*(cyrevgp)-(uprev+nlrev)*cyrevp+nerev*revnp 

revnp'=dg*(revngp)-(uprev+nerev)*revnp+nlrev*cyrevp 

 

(4) Translation 

x[j][k][l][m][n]'= 

If[(j=1)&&(k=0)&&(l=0)&&(m=0)&&(n=0),tlp*McPo,0] 

+If[(j=3)&&(k=0)&&(l=0)&&(m=0)&&(n=0),tlp*McPt,0] 

+If[(j=0)&&(k=1)&&(l=0)&&(m=0)&&(n=0),tlr*McRo,0] 

+If[(j=0)&&(k=2)&&(l=0)&&(m=0)&&(n=0),tlr*McRt,0] 

 

(5) Binding/Unbinding 
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PER-CRY 

x[j][k][l][m][n]'= 

If[(k=0)&&(n=0)&&((j=2)||(j=4)||(j=5)||(j=6)),-

ar*If[m=1,Nf,1]*Sum[x[0][kk][0][m][0],{kk,1,2}]*x[j][k][l][m][n]+dr*Sum[x[j][kk][l][m][n],{kk,1,

2}],0]+ 

If[(j=0)&&((k=1)||(k=2))&&(l=0)&&(n=0),-

ar*If[m=1,Nf,1]*x[j][k][l][m][n]*Sum[x[jj][0][ll][m][0],{jj,{2,4,5,6}},{ll,0,3}]+dr*Sum[x[jj][k][ll][m]

[n],{jj,{2,4,5,6}},{ll,0,3}],0]+ 

If[((j=2)||(j=4)||(j=5)||(j=6))&&((k=1)||(k=2))&&(n=0),ar*If[m=1,Nf,1]*x[0][k][0][m][n]*x[j][0][l][

m][0]-dr*x[j][k][l][m][n],0]+ 

If[(k=0)&&(n=1)&&((j=2)||(j=4)||(j=5)||(j=6))&&(m=1),-

ar*Nf*x[j][k][l][m][n]*Sum[x[0][kk][0][m][0],{kk,1,2}]+dr*Sum[x[j][kk][l][m][n],{kk,1,2}],0]+ 

If[(j=0)&&((k=1)||(k=2))&&(l=0)&&(m=1)&&(n=0),-

ar*Nf*x[j][k][l][m][n]*Sum[x[jj][0][ll][m][1],{jj,{2,4,5,6}},{ll,0,3}]+dr*Sum[x[jj][k][ll][m][1],{jj,{2,4

,5,6}},{ll,0,3}],0]+ 

If[((j=2)||(j=4)||(j=5)||(j=6))&&((k=1)||(k=2))&&(m=1)&&(n=1),ar*Nf*x[j][0][l][m][n]*x[0][k][0][

m][0]-dr*x[j][k][l][m][n],0]+ 

If[(k=0)&&(n=0)&&((j=2)||(j=4)||(j=5)||(j=6))&&(m=1),-

ar*Nf*x[j][k][l][m][n]*Sum[x[0][kk][0][m][1],{kk,1,2}]+dr*Sum[x[j][kk][l][m][1],{kk,1,2}],0]+ 

If[(j=0)&&((k=1)||(k=2))&&(l=0)&&(m=1)&&(n=1),-

ar*Nf*x[j][k][l][m][n]*Sum[x[jj][0][ll][m][0],{jj,{2,4,5,6}},{ll,0,3}]+dr*Sum[x[jj][k][ll][m][n],{jj,{2,4

,5,6}},{ll,0,3}],0]+ 

If[((j=2)||(j=4)||(j=5)||(j=6))&&((k=1)||(k=2))&&(m=1)&&(n=1),ar*Nf*x[j][0][l][m][0]*x[0][k][0][

m][1]-dr*x[j][k][l][m][n],0]+ 

If[(l=0)&&(j>0)&&(n=0),ac*If[m=1,Nf,1]*x[j][k][l][m][n]*x[0][0][1][m][0]+dc*x[j][k][1][m][n],0] 

 

PER-CKI 

x[j][k][l][m][n]'= 
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If[(j=0)&&(k=0)&&(l=1)&&(n=0),-

ac*If[m=1,Nf,1]*x[j][k][l][m][n]*Sum[x[jj][kk][0][m][0],{jj,1,6},{kk,0,2}]+dc*Sum[x[jj][kk][l][m][

0],{jj,1,6},{kk,0,2}],0]+ 

If[(j>0)&&(l=1)&&(n=0),ac*If[m=1,Nf,1]*x[0][0][1][m][0]*x[j][k][0][m][n]-dc*x[j][k][l][m][n],0]+ 

If[(l=0)&&(j>0)&&(m=1)&&(n=1),-

ac*Nf*x[j][k][l][m][n]*x[0][0][1][m][0]+dc*x[j][k][1][m][n],0]+ 

If[(j=0)&&(k=0)&&(l=1)&&(m=1)&&(n=0),-

ac*Nf*x[j][k][l][m][n]*Sum[x[jj][kk][0][m][1],{jj,1,6},{kk,0,2}]+dc*Sum[x[jj][kk][l][m][1],{jj,1,6},{

kk,0,2}],0]+ 

If[(j>0)&&(l=1)&&(m=1)&&(n=1),ac*Nf*x[0][0][1][m][0]*x[j][k][0][m][n]-dc*x[j][k][l][m][n],0]+ 

If[(j>2)&&(l=2)&&(n=0),-

ac*If[m=1,Nf,1]*x[j][k][l][m][n]*x[0][0][1][m][0]+dc*x[j][k][3][m][n],0]+ 

If[(j=0)&&(k=0)&&(l=1)&&(n=0),-

ac*If[m=1,Nf,1]*x[j][k][l][m][n]*Sum[x[jj][kk][2][m][0],{jj,3,6},{kk,0,2}]+dc*Sum[x[jj][kk][3][m][

0],{jj,3,6},{kk,0,2}],0]+ 

If[(j>2)&&(l=3)&&(n=0),ac*If[m=1,Nf,1]*x[0][0][1][m][0]*x[j][k][2][m][n]-dc*x[j][k][l][m][n],0]+ 

If[(j>2)&&(l=2)&&(m=1)&&(n=1),-

ac*Nf*x[j][k][l][m][n]*x[0][0][1][m][0]+dc*x[j][k][3][m][n],0]+ 

If[(j=0)&&(k=0)&&(l=1)&&(m=1)&&(n=0),-

ac*Nf*x[j][k][l][m][n]*Sum[x[jj][kk][2][m][1],{jj,3,6},{kk,0,2}]+dc*Sum[x[jj][kk][3][m][1],{jj,3,6},

{kk,0,2}],0]+ 

If[(j>2)&&(l=3)&&(m=1)&&(n=1),ac*Nf*x[0][0][1][m][0]*x[j][k][2][m][n]-dc*x[j][k][l][m][n],0] 

 

PER-GSK3β 

x[j][k][l][m][n]'= 

If[(j>2)&&((l=0)||(l=1)),-

If[m=1,Nf,1]*agp*x[j][k][l][m][n]*x[0][0][2][m][0]+dg*x[j][k][l+2][m][n],0]+ 
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If[(j=0)&&(k=0)&&(l=2)&&(n=0),-

If[m=1,Nf,1]*agp*Sum[x[jj][kk][ll][m][nn],{jj,3,6},{kk,0,2},{ll,0,1},{nn,0,1}]*x[j][k][l][m][n]+dg*

Sum[x[jj][kk][ll][m][nn],{jj,3,6},{kk,0,2},{ll,2,3},{nn,0,1}],0]+ 

If[(j>2)&&((l=2)||(l=3)),If[m=1,Nf,1]*agp*x[j][k][l-2][m][n]*x[0][0][2][m][0]-dg*x[j][k][l][m][n],0] 

 

PER-BMALs-CLOCK/NPAS2 

x[j][k][l][m][n]'= 

If[(j>0)&&(m=1)&&(n=0),-bbin*Nf*x[j][k][l][m][n]*x[0][0][0][m][1]+unbbin*x[j][k][l][m][1],0]+ 

If[(j=0)&&(k=0)&&(l=0)&&(m=1)&&(n=1),-

bbin*Nf*Sum[x[jj][kk][ll][m][0],{jj,1,6},{kk,0,2},{ll,0,3}]*x[j][k][l][m][n]+unbbin*Sum[x[jj][kk][ll][

m][n],{jj,1,6},{kk,0,2},{ll,0,3}],0]+ 

If[(j>0)&&(m=1)&&(n=1),bbin*Nf*x[j][k][l][m][0]*x[0][0][0][m][n]-unbbin*x[j][k][l][m][n],0] 

 

CRY-BMALs-CLOCK/NPAS2 

x[j][k][l][m][n]'= 

If[(j=0)&&(k>0)&&(l=0)&&(m=1)&&(n=0),-

cbbin*Nf*x[j][k][l][m][n]*x[0][0][0][m][1]+uncbbin*x[j][k][l][m][1],0]+ 

If[(j=0)&&(k=0)&&(l=0)&&(m=1)&&(n=1),-

cbbin*Nf*Sum[x[0][kk][0][m][0],{kk,1,2}]*x[j][k][l][m][n]+uncbbin*Sum[x[0][kk][0][m][n],{kk,1

,2}],0]+ 

If[(j=0)&&(k>0)&&(l=0)&&(m=1)&&(n=1),cbbin*Nf*x[j][k][l][m][0]*x[0][0][0][m][n]-

uncbbin*x[j][k][l][m][n],0]+ 

 

REV-ERBs-GSK3β 

x[j][k][l][m][n]'= 

If[(j=0)&&(k=0)&&(l=2)&&(m=0)&&(n=0),-

ag*cyrev*x[j][k][l][m][n]+(dg)*cyrevg+(dg)*cyrevgp,0]+ 
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If[(j=0)&&(k=0)&&(l=2)&&(m=1)&&(n=0),-

ag*Nf*revn*x[j][k][l][m][n]+(dg)*revng+(dg)*revngp,0] 

 

(6) Translocation 

PER binding proteins 

x[j][k][l][m][n]'= 

If[((j=2)||(j=4)||(j=5)||(j=6))&&(m=1),-

ne*If[(n=0),1,0]*x[j][k][l][m][n]+If[(n=0),1,0]*nl*x[j][k][l][0][n],0]+ 

If[((j=2)||(j=4)||(j=5)||(j=6))&&(m=0),ne*If[(n=0),1,0]*x[j][k][l][1][n]-

If[(n=0),1,0]*nl*x[j][k][l][m][n],0]+ 

 

BMALs-CLOCK/NPAS2 

x[j][k][l][m][n]'= 

If[(j=0)&&(k=0)&&(l=0)&&(m=1)&&(n=1, nlbc*x[j][k][l][0][n],0]+ 

If[(j=0)&&(k=0)&&(l=0)&&(m=0)&&(n=1),-nlbc*x[j][k][l][m][n],0]+ 

 

Kinase 

x[j][k][l][m][n]'= 

If[(j=0)&&(k=0)&&((l=1)||(l=2))&&(m=1)&&(n=0),-lne*x[j][k][l][m][n],0]+ 

If[(j=0)&&(k=0)&&((l=1)||(l=2))&&(m=0)&&(n=0),lne*x[j][k][l][1][n],0] 

 

(7) Phosphorylation 

x[j][k][l][m][n]'= 

If[((j=1))&&(l=1)&&(k=0)&&(m=0)&&(n=0),-hoo*x[j][k][l][m][n],0]+ 

If[((j=2))&&(l=1)&&(k=0)&&(m=0)&&(n=0),+hoo*x[1][k][l][m][n],0]+ 

If[((j=3)||(j=5))&&((l=1)||(l=3))&&(k=0),-hto*x[j][k][l][m][n],0]+ 

If[((j=4)||(j=6))&&((l=1)||(l=3))&&(k=0),hto*x[j-1][k][l][m][n],0]+ 
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If[((j=3)||(j=4))&&((l=2)||(l=3)),-gto*x[j][k][l][m][n],0]+If[((j=5)||(j=6))&&((l=2)||(l=3)),gto*x[j-

2][k][l][m][n],0]+ 

If[(j=0)&&(k=0)&&(l=0)&&(m=0)&&(n=1),phos*BC,0] 

 

(8) Degradation 

PER and CRY 

x[j][k][l][m][n]'= 

If[(j=0)&&(k=1)&&(l=0)&&(n=0),-uro*x[j][k][l][m][n],0]+ 

If[(j=0)&&(k=2)&&(l=0)&&(n=0),-urt*x[j][k][l][m][n],0]+ 

If[(j=0)&&(k=1)&&(l=0)&&(m=1)&&(n=1),-uro*x[j][k][l][m][n],0]+ 

If[(j=0)&&(k=2)&&(l=0)&&(m=1)&&(n=1),-urt*x[j][k][l][m][n],0]+ 

If[(j=0)&&(k=0)&&(l=0)&&(m=1)&&(n=1),uro*x[j][1][l][m][n]+urt*x[j][2][l][m][n],0]+ 

If[((j=1)||(j=3)||(j=5))&&(k=0),-If[(m=0)&&(n=1),0,1]*upu*x[j][k][l][m][n],0]+ 

If[((j=2)||(j=4)||(j=6))&&(k=0),-If[(m=0)&&(n=1),0,1]*up*x[j][k][l][m][n],0]+ 

If[(j=0)&&(k=0)&&(l=1)&&(n=0),up*Sum[x[jj][0][ll][m][nn],{jj,2,6,2},{nn,0,1},{ll,1,3,2}]+upu*

Sum[x[jj][0][ll][m][nn],{jj,1,5,2},{nn,0,1},{ll,1,3,2}],0]+ 

If[(j=0)&&(k=0)&&(l=2)&&(n=0),up*Sum[x[jj][0][ll][m][nn],{jj,2,6,2},{ll,2,3},{nn,0,1}]+upu*Su

m[x[jj][0][ll][m][nn],{jj,1,5,2},{ll,2,3},{nn,0,1}],0]+ 

If[(j=0)&&(k=0)&&(l=0)&&(n=1)&&(m=1),up*Sum[x[jj][0][ll][m][n],{jj,2,6,2},{ll,0,3}]+upu*Su

m[x[jj][0][ll][m][n],{jj,1,5,2},{ll,0,3}],0] 

 

BMALs-CLOCK/NPAS2 and REV-ERBs 

x[j][k][l][m][n]'= 

If[(j>0)&&(k=0)&&(m=1)&&(n=1),-ubc*x[j][k][l][m][n],0]+ 

If[(j=0)&&(k=0)&&(l=0)&&(n=1),-ubc*x[j][k][l][m][n],0]+ 

If[(j>0)&&(k=0)&&(m=1)&&(n=0),ubc*x[j][k][l][m][1],0]+ 

If[(j=0)&&(k=0)&&(l=2)&&(m=0)&&(n=0),urev*cyrevg+uprev*cyrevgp,0]+ 

If[(j=0)&&(k=0)&&(l=2)&&(m=1)&&(n=0),urev*revng+uprev*revngp,0] 
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(9) Transcriptional Activity of GSK3β  

gto'=trgto*G*GB-ugto*gto 

 

(10) Light Activity 

ltn'=60*lta*(1-ltn)-ltb*ltn 

MnPo'=trPo*G-tmc*MnPo-umPo*MnPo+lono*19.9*lta*(1-ltn[t])*trPo 

MnPt'=trPt*G-tmc*MnPt-umPt*MnPt+lont*19.9*lta*(1-ltn[t])*trPt 

 

 

(11) The way to understand the equations of multi-state variables 

 

x[j][k][l][m][n]'=If[(j=1)&&(k=0)&&(l=0)&&(m=0)&&(n=0),tlp*McPo,0] is same with 

x[1][0][0][0][0]'= tlp*McPo. This means PER1 proteins are translated from cytoplasmic 

Per1 mRNA (McPo) with the rate, tlp.  

 

x[j][k][l][m][n]'=If[(j=0)&&(k=0)&&(l=0)&&(m=1)&&(n=1), nlbc*x[j][k][l][0][n],0] is same with 

x[0][0][0][1][1]'= nlbc*x[0][0][0][0][1]. This means that BMALs-CLOCK/NPAS in 

cytoplasm (x[0][0][0][0][1]) enters the nucleus and becomes x[0][0][0][1][1], with rate 

nlbc. 
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Appendix B Mathematical analysis of the simple model of 
circadian clocks 

 

B.1 Description and nondimensionalization of the simple model 
 

The simple model is generated by modifying the well-studied Goodwin model to include 

an activator, which can be inactivated when bound in complex with the repressor. The 

mRNA (M) is transcribed proportional to the % of unbound free activator f (P, A, Kd), 

which indicates the activity of the promoter (112, 117). Then, as in the Goodwin model, 

mRNA is translated to cytoplasmic protein Pc. Pc enters the nucleus (denoted P). P then 

represses transcription by inhibiting activator A through binding with dissociation 

constant Kd. 

 

 

 

B.1.1 The SNF Model 
The model has 8 parameters. We reduce the number of parameters by scaling and 

assuming degradation rates are the same to increase the chance of the oscillations. In 

scaling all variables, we have  

 

. 

dM
dt

=α1 f (P,A,Kd )−β1M

dPc
dt

=α2M −β2Pc

dP
dt

=α3Pc −β3P

f (P,A,Kd ) =
1
2
1−P / A−Kd / A+ (1−P / A−Kd / A)

2 + 4Kd / A( )

€ 

M = ˆ M M*, P = ˆ P P*, Pc = ˆ P cPc*, A = ˆ A A*, Kd = ˆ K dKd *, t = ˆ t t *
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and the model equations are 

 

 

 

By selecting the scale of each variables as 

 

 

 

and assuming the entire degradation rates are the same to increase the chance of 

oscillations (17)  as 

 

 

 

the system becomes 

 

 

 

dM̂M *

dt̂t*
=α1 f (P̂P

*, ÂA*, K̂dKd
* )−β1M̂M

*

dP̂cPc
*

dt̂t*
=α2M̂M

* −β2P̂cPc
*

dP̂P*

dt̂t*
=α3P̂cPc

* −β3P̂P
*

f (P̂P*, ÂA*, K̂dKd
* ) = 1

2
1− P̂P* / ÂA* − K̂dKd

* / ÂA* + (1− P̂P* / ÂA* − K̂dKd
* / ÂA*)2 + 4K̂dKd

* / ÂA*( )

M * =
α1
β1
,PC

* =
α1α2

β1β2
,P* = A* = Kd

* =
α1α2α3
β1β2β3

, t* = 1
β1

β1 = β2 = β3

dM̂
dt̂

= f (P̂, Â, K̂d )− M̂

dP̂c
dt̂

= M̂ − P̂c

dP̂
dt̂

= P̂c − P̂

f (P̂, Â, K̂d ) =
1
2
1− P̂ / Â− K̂d / Â+ (1− P̂ / Â− K̂d / Â)

2 + 4K̂d / Â( )
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This system has now two non-dimensional parameters, dissociation constant ( ) and 

the concentration of the activator ( ). Because these two parameters are scaled by the all 

the original parameters, these two parameters represents combined effect of all original 

parameters on the behavior of the system. Therefore, the model’s behavior including the 

range of stoichiometry where the model becomes rhythmic (Figure 3-3D), the sensitivity 

of the stoichiometry (Figure 3-6B) and the robustness of the rhythms as parameters are 

perturbed (Figure 3-9A) can be understood by the effects of these two parameters. 

 

B.1.2 The NNF and PNF models 
This single negative feedback loop (SNF) model can be extended by adding additional 

negative or positive feedback loops controlling the production of activator. 

 

(Additional Negative Feedback Loop) 

 

(Additional Positive Feedback Loop) 

 

We can also reduce the number of parameters by scaling the R and assuming the 

degradation rate of R and A are the same.  

 

(Additional Negative Feedback Loop) 

 

K̂d

Â

dR
dt

= γ1 f (P,A,Kd )−δ1R

dA
dt

=
γ2
R
−δ2A

dR
dt

= γ1 f (P,A,Kd )−δ1R

dA
dt

= γ2R−δ2A

dR̂
dt̂

= f (P̂, Â, K̂d )−δR̂

dÂ
dt̂

=
γ
R̂
−δ Â
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(Additional Positive Feedback Loop) 

 

Then, both the NNF (Negative-Negative Feedback Loops) model and the PNF (Positive-

Negative Feedback Loops) model have three free parameters, a dissociation constant (

), a transcription rate of the activator (γ) and a degradation rate of the activator (δ). The 

SNF model has two free parameters, dissociation constant ( ) and the fixed level of 

activator concentration ( ). Because , δ also represents the relative speed of 

the additional feedback loop. 

 

B.2 Analysis showing that a balanced stoichiometry promotes oscillations 
 

Recent studies have shown that when repressor binds to an activator to repress 

transcription, an ultrasensitive response (a large change in transcription rate for a small 

change in repressor or activator concentration) can be seen when the stoichiometry of the 

activator and repressor is near 1-1 (112, 117). Many previous studies have argued that 

ultrasensitive responses can cause oscillations in feedback loops (2, 116). These results 

are built on a longstanding mathematical theory (2, 17, 223). The combination of these 

results shows why a balanced stoichiometry leads to oscillations in transcription-

translation feedback loops. 

 

These previous studies also match our simulation results (Figure 3-3D). To provide 

further evidence for these results, we now provide detailed mathematical analysis of our 

simplified mathematical model (See below). Additionally, we showed that a 1-1 

stoichiometry leads to the ultra-sensitivity in our detailed and simple models (Figure 

3-5A). 

 

dR̂
dt̂

= f (P̂, Â, K̂d )−δR̂

dÂ
dt̂

= γ R̂−δ Â

K̂d

K̂d

Â δ = δ1 / β1
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This analysis first considers the stability of the fixed point of the model.  By the theory of 

Mallet-Paret and Smith, instability of the fixed point implies that the model will oscillate 

(224).  The “Secant Condition” proposed by Thron and several earlier authors can be 

used to determine whether the fixed point is unstable (223, 225) . This gives a range of 

stoichiometry around 1-1 where oscillations can be seen.  We then also use recent 

nonlinear analysis presented in (17) to show that if the fixed point is stable, that no 

oscillations can be seen. We then show that if the stoichiometry is far from 1-1, no 

oscillations can be seen.  

 

B.2.1 Local instability analysis when Kd=0  
The secant condition shows that the fixed point will be unstable if   

 

(2.1) 

 

and as shown above, the nondimensionalized model has the following form: 

 

(2.2) 

 

at the fixed point, , so (2.1) is equivalent to 

 

(2.3) 

 

Since the dissociation constant (Kd) is small when rhythms occur (Figure 3-3D), let us, 

for the moment, consider it to be zero (this assumption will be relaxed later).  Then: 

 

 

df
dP

P
f
> (secπ / 3)3 = 8

dM / dt = f (P,A,Kd )−M
dPC / dt =M −PC
dP / dt = PC −P

P / f =1

df
dP

> (secπ / 3)3 = 8

f (P,A,Kd ) =
1
2
1−P / A−Kd / A+ (1−P / A−Kd / A)

2 + 4Kd / A( ) = 1−P / A
0

P / A ≤1
otherwise

#
$
%

&
'
(
≡ 1−P / A*+ ,-
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Therefore, the secant condition implies that the system will oscillate if 

 

 
 

Since  at the fixed point, the model oscillates if 

 

 

 

We also note, that if the steady state of stoichiometry is greater than 1, the transcription 

rate of this model is zero, which implies that the value of P at the fixed point would be 

zero.  So the steady state of stoichiometry must be bounded from above by 1.  Thus: 

 

 

 

B.2.2 An accurate approximation for  when Kd≠0  

Before analyzing the stability of the simple model (Kd≠0), we find a simple 

approximation for . Since oscillations occur only when Kd is small (<10-4) 

(Figure 3-3D), let us assume that  is small which implies that the activators and 

repressors form a stable complex, which is also supported by experimental data (see 

above). Because we want to show that the model loses rhythms if the stoichiometry is not 

1-1, we only consider the case where the stoichiometry is not 1-1. In this case, we can 

derive a simple approximation for f.  That is, if the stoichiometry is  

 

or  

 

df
dP

=
1
A
> (secπ / 3)3 = 8

1−P / A = P

S = P
A
=

1
A+1

>
8
9

8 / 9 < S ≤1

f (P,A,Kd )

f (P,A,Kd )

ε = Kd / A

P
A
<<1− (2 2ε 2 +ε −3ε) P

A
>>1+ (2 2ε 2 +ε +3ε)
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 (where the right hand side of these inequalities is very close to 1 when ε is small). These 

inequalities are equivalent to 

 

 

 

which allows the Taylor series expansion of f and a simple approximation for f. 

 

(2.4) 

 

This approximation matches the original function well (see Figure B-1). 

 

B.2.3 Local instability analysis when Kd≠0  

First, we find a lower bound of the steady state of stoichiometry (S) where the model 

oscillates. If ,  by (2.4). Then, the secant 

condition (2.3) implies   

 

(2.5) 

 

(1− P
A
+ε)2 >> 4ε P

A

f (P,A,Kd ) =
1
2
1−P / A−Kd / A+ (1−P / A−Kd / A)

2 + 4Kd / A( )
=
1
2
1−P / A−ε + (1−P / A−ε)2 + 4ε( )

=
1
2
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2
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(1−P / A+ε)

#

$
%%

&

'
(( if (1−P / A +ε)2 << 4εP / A

=

1− P
A
+

εP / A
(1−P / A+ε)

if P / A <<1− (2 2ε 2 +ε −3ε) or 1−P / A+ε >> 2 2ε 2 +ε − 2ε > 0

ε(1+ε)
(P / A−1−ε)

if P
A
>>1+ (2 2ε 2 +ε +3ε) or 1−P / A+ε << −2 2ε 2 +ε − 2ε < 0

)

*

+
+

,

+
+
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)

*
+

,+

S = P / A <<1− (2 2ε 2 +ε −3ε) f ≈1−P / A

df / dP ≈1/ A > 8
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Figure B-1. Approximation of f(P, A, Kd). 

(A) Approximation of with when and 

is small. Here, and . See Appendix B for details. (B) 

Approximation of  with  when . 

 

Since at the fixed point  or , (2.5) is equivalent with  

 

(2.6) 

 

This provides the lower bound of S where the fixed point is unstable. Now, let us find the 

upper bound. If , . The secant condition 

(2.3) implies  

 

(2.7) 

 

Since at the fixed point , (2.7) is equivalent with  

 

(2.8) 
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=
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or 

 

(2.9) 

 

From (2.9), we can get an upper bound on the steady state of stoichiometry where the 

fixed point is unstable: 

 

(2.10) 

 

Thus, (2.6) and (2.10) provides the approximate range of the steady state of stoichiometry 

where the model is locally unstable:  

 

 

 

Indeed, this approximation matches with the actual stoichiometry range, which is 

calculated without approximation (see Figure 3-5B). Since the instability of the fixed 

point implies the oscillation in the model by the theory of Mallet-Paret and Smith, the 

model can be rhythmic when the steady state of the stoichiometry is around 1-1.  

 

B.2.4 Global stability analysis 
At the previous section, we showed that if , the model is locally stable. Here, we 

show that in this case, the model is globally stable (i.e. oscillation does not occur).  

 

(1) Global stability conditions  

The model becomes globally stable (oscillations cannot be seen) if the gain of 

 satisfies 

 

P / A > 8(P / A−1)

S = P
A
<
8
7

8
9
< S < 8

7

S < 8 / 7

f (P,A,Kd )



 120 

(2.11) 

 

, where  is mean of f and pm is defined by  (17).  The left hand side 

of the equation is the average slope of f between  and , and 

since (e.g. see Figure 3-4A) we have: 

 

 

 

Therefore,  

 

(2.12) 

 

will be a sufficient condition to show the global stability of the model.  

 

(2) The average value of P is greater than or equal to the value of P at the fixed point   

The average value of P ( ) and the average value of f ( ) of our model 

(2.2) satisfies (17). Since ,  

 

(2.13) 

 

or 

 

and  

 

f − f
P(t)− pm

< 8

f f (pm,A,Kd ) = f

(pm, f ) (P(t), f (P(t),A,Kd ))

d 2 f / dP2 ≥ 0

f − f
P(t)− pm

≤
1− f
0− pm

=
1− f
pm

1− f
pm

< 8

P f (P,A,Kd )

f (P,A,Kd ) = P d 2 f / dP2 ≥ 0

f (P,A,Kd ) ≥ f ( P ,A,Kd )

P = f (P,A,Kd ) = f ( P ,A,Kd )+δ δ ≥ 0
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Since at the fixed point, , if , the average of P and the steady state of 

P are the same. If , the average of P is greater than the steady state of P or 

 

(2.14) 

 

, where P represents the steady state of P.  

 

(3) Global stability when S<8/9 

 

Since  and  at the fixed point, (2.14) implies that  

 

 

 

Since f is a decreasing function of P, we find 

 

(2.15) 

 

Therefore,  

 

 

 

and we can use approximation (2.4). That is  or 

. Then, the global stability condition (2.12) is equivalent to  

 

(2.16) 

 

P = f (P,A,Kd ) δ = 0

δ > 0

P ≥ P

f (pm,A,Kd ) = P f (P,A,Kd ) = P

f (pm,A,Kd ) = P ≥ P = f (P,A,Kd )

pm ≤ P

pm
A

≤
P
A
= S < 8

9

f = f (pm,A,Kd ) ≈1− pm / A

pm ≈ A(1− f )

1− f
pm

≈
1− f
A(1− f )

=
1
A
< 8
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From (2.5) and (2.6), S<8/9 implies that 1/A<8. Therefore, if S<8/9, the model is globally 

stable as well as locally stable. 

 

B.2.5  Bounds on the average stoichiometry  

If S<8/9, the model is globally stable and . As described above, when S  = 8/9, the 

fixed point becomes unstable and oscillations are seen. At this point, stoichiometry is low 

and . Then, the linearity of  implies the equality of (2.13) and 

(2.14) or  when S = 8/9. Therefore, the model becomes rhythmic when the 

average stoichiometry is greater than 8/9. This explains the lower bounds of the average 

stoichiometry that appear in Figure 3-3D. 

 

Since is greater than or equal to the steady state shown (2.13), the average 

stoichiometry ( ) is also greater than equal to the steady state of stoichiometry (S). 

Therefore, if  is less than 8/7, then S is also less than 8/7 and the model is rhythmic 

due to (2.10). Therefore, if  is between 8/9 and 8/7 or  is around 1-1, the model 

becomes rhythmic. This explains why a 1-1 average stoichiometry generates the rhythms 

in the model (Figure 3-3D). However, the upper bound is a sufficient condition (but not a 

necessary one), so  is greater than equal to 8/7 does not mean that the model 

necessarily loses rhythms.  

 

The upper bound of  increases as is decreases, which can be seen in Figure 3-3D. 

Here we explain this behavior. When the steady state stoichiometry S reaches its lower 

bound 8/9, near the fixed point,  or  as shown above. This implies that 

steady state of and  are the same since  and . As the 

activator concentration decreases, both  and  increase from 8/9 to 8/7. When 

 reaches its upper bound 8/7, we can expect  as in 

S = S

f ≈1−P / A f ≈1−P / A

S ≈ S

P

S

S

S S

S

S Kd

S = S P = P

P / A pm / A f (P) = P f (pm) = P

P / A pm / A

S = P / A pm / A >1+ (2 2ε 2 +ε +3ε)
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the approximation of f above. Then,  by (2.4).  

Since ,  

 

(2.16) 

 

When  reaches its upper bound 8/7, by (2.7),  and . 

Then (2.16) becomes 

 

(2.17) 

 

(2.17) implies that the upper bound of average stoichiometry will increase as  

decreases, which is seen in Figure 3-3D. Furthermore, (2.17) explains why the model 

does not oscillate when Kd is too large. For instance, the upper bound of the average 

stoichiometry becomes 0.61 when , which is less than the lower bound 8/9. 

This is why the model does not oscillate when  (Figure 3-3D). Moreover, the 

upper bound is 1.16 when  which matches our simulations in Figure 3-3D. In 

summary, the mathematical analysis about the range of average stoichiometry implies 

that 

 

• If	  	   ,	  the	  model	  is	  globally	  stable	  and	  does	  not	  oscillates.	  
• If	   ,	  the	  model	  is	  locally	  instable	  and	  oscillates.	  

• If	   ,	   	  

 

This is in agreement with simulations shown in Figure 3-3D: 1) Oscillations are seen 

around a 1-1 stoichiometry; 2) the stoichiometry needs to be greater than 8/9 for 
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oscillations; 3) as the dissociation constant decreases, oscillations are seen over a larger 

range of stoichiometry. 

 

B.3  Analysis of the role of an additional feedback loop in balancing a 1-1 
stoichiometry   

 

Our simulations showed that an additional negative feedback loop improves the 

regulation of stoichiometric balance (Figure 3-6B). Here, we provide the mathematical 

analysis for the simulation results in Figure 3-6B. Because the model only oscillates 

when the dissociation constant is small (<10-4) (Figure 3-3D), we assume that the 

dissociation constant is small for the simplicity of the analysis. In this case, the % of free 

activator equation can be simplified to 

 

 

 

B.3.1  The SNF model 
With the approximation, the system can be simplified as 

 

 

 

Then, the steady state of the system becomes 

 

(3.1) 

 

f (P,A,Kd ) =
1
2
1−P / A−Kd / A+ (1−P / A−Kd / A)

2 + 4Kd / A( ) ≈ 1−P / A
0

P / A ≤1
otherwise

$
%
&

'
(
)
= 1−P / A*+ ,-

dM
dt

=α1 1−
P
A

"

#"
$

%$
−β1M

dPC
dt

=α2M −β2PC

dP
dt

=α3PC −β3P

p / a
1− p / a"# $%

a = α1α2α3
β1β2β3



 125 

, where p and a are steady state of P and A in the system. Since activator is constant, A 

and a are the same. Then, 

 

(3.2) 

, where  representing the steady state of % of free activator and C1 represents 

all parameters of the system.  

 

(3.3) 

 

Now, let’s calculate the relative sensitivity of ε with respect to C1 from the above 

equation. If this sensitivity is low, then we can expect the % of free activator of this 

system is stable for the perturbation of any parameters.  

 

(3.4)
 

 

Because the system oscillates only when the stoichiometry between p and a is close to 1 

(Figure 3-3D), ε will become close to 0 and C! becomes large from (3.2) or (3.3) when 

the model oscillates. Therefore, we can expect the relative sensitivity would be around -1 

from (3.4) (Figure 3-6C).  

 

B.3.2  The NNF model 
Additional secondary loop in the NNF also becomes simple with the assumption Kd=0. 
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Then, the steady state of the activator A becomes 

 

(3.5)
 

 

By combining two steady state equations (3.1) and (3.5), we can get  

 

 
 

Again, C2 represents the all parameters in NNF.  
 

 

  

For small ε, the relative sensitivity becomes about -0.5 (Figure 3-6C), which is half of 

that of SNF.  

 

B.3.3  The PNF model 
In a similar way used to analyze NNF, we can also derive the steady state of the activator 

in PNF, 

 

(3.6) 

 

By combining two steady state equations (3.2) and (3.6), we can get  
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(3.7) 

(3.8) 

(3.9) 

 

For small ε, 1- C3 is small by (3.8). Then, we can expect the sensitivity will be huge for 

small ε (Figure 3-6C) from (3.9). In fact, by combining (3.8) and (3.9), 

 

 

 

We can see that the sensitivity is approximately 1/ε. 

 

B.3.4  Summary 

The relative sensitivity of the % of free activator (ε) for any parameter perturbation 

becomes about 1, 0.5 and 1/ε in NF, NNF and PNF, respectively (Figure 3-6C). This 

means % of free activator (ε) is most robust for parameter perturbation in NNF structure. 

Because , the robustness of ε in NNF implies the 

robustness of stoichiometry in the NNF structure. In the previous section, we showed that 

the model becomes rhythmic when the steady state of stoichiometry is in appropriate 

range (Figure 3-6C). Since an additional negative feedback loop improves the regulation 

of the stoichiometric balance, the NNF structure is the best to maintain the rhythms for 

the perturbations.  

 

B.4 Analysis of the role of an additional negative feedback loop in 
maintaining a fixed period  
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We showed that the NNF structure has a nearly constant period in the presence of large 

changes in gene expression levels (Figure 3-11D). Here, we provide the mathematical 

analysis for the simulation results in Figure 3-11D. As we showed at the previous section, 

the simple model can be approximated as  
 

(4.1) 

 

If the transcription rate is increased by α, then the model is changed to  

 

(4.2) 

 

If we define new variable , and , the model (4.2) becomes  

 

(4.3) 

 

These equations are the same with the original equations (4.1) except for the transcription 

term, . We have shown that the additional negative feedback loop maintains 

the stoichiometric balance by adjusting the level of the activators according to the change 

of the repressor levels. In this case, the repressor level is increased by α, so in ideal case, 

the activator level (A) can be increased by α through the additional negative feedback 

loop. This makes  to the . That is, with the additional negative 

feedback loop, (4.3) becomes  
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(4.4) 

 

Therefore, the model (4.4) has the solution with the same period of the solution of the 

original model (4.1) while the amplitude of solution ( ) is increased by α since 

. 

 

 

d M / dt = 1− P / A"# $%− M

d PC / dt = M − PC
d P / dt = PC − P

P

P = P /α
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Appendix C Mathematical description of the p53 model. 
 
Table C-1. Parameters of the model of p53 pulses  

Name	   Description	   Value	   Sensitivity	   Min	   Max	  

β p	   p53 inactive production rate	   0.9 Cs h-1 -0.03 0.67 >10 

β sp Saturating production rate of p53 active 10 h-1 -0.04 0.44 >10 

β  mm p53-dependent Mdm2 mRNA production rate 9.425 h-1 -0.23 0.39 1.55 

β  mi p53-independent Mdm2 mRNA production rate 0.08 Cs h-1 -0.01 0 5.71 

β m Mdm2 translation rate 0.9 h-1 -0.24 0.41 1.5 

β  im p53-dependent Wip1 mRNA production rate 2.2437 h-1 0.18 0.79 3.22 

β i Wip1 translation rate 0.25 h-1 0.18 0.79 3.22 

β  rm p53-dependent Rorα mRNA production rate 0.52 h-1 0.02 0 >10 

β  rmi p53-independent Rorα mRNA production rate 0.574 Cs  h-

1 0.16 0.5 3.3 

β  r Rorα translation rate 1.223 h-1 0.17 0.53 2.94 

β  s Saturating production rate of ATM-P 100 Cs h-1 -0.12 0.77 1.92 

α mpi 
Saturating MDM2 and Rorα dependent p53inactive degradation 
rate 5 Cs-1 h-1 0.03 0 4.94 

α pi p53inactive degradation rate 2 h-1 0.02 0 2.46 

α ipa Wip1-dependent p53active inactivation rate 0.14 Cs-1 h-

1 0.01 0 >10 

α mpa Saturating Mdm2 and Rorα dependent p53active degradation rate 1.4 Cs-1 h-1 -0.27 0.39 1.5 

α  mm Mdm2 mRNA degradation rate 0.583 h-1 0.17 0.69 1.87 

α m MDM2 degradation rate 1 h-1 0.11 0.47 1.77 

α sm ATM-P-dependent MDM2 inactivation rate 0.5 Cs-1  h-1 0.05 0.15 >10 

α  im Wip1 mRNA degradation rate 0.769 h-1 -0.43 0.43 1.25 

α i WIP1 degradation rate 0.7 h-1 -0.42 0.48 1.29 
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α  rm Rorα mRNA degradation rate 0.295 h-1 -0.17 0.33 1.86 

α  r RORα degradation rate 1.091 h-1 -0.17 0.33 1.91 

α is Saturating WIP1-dependent ATM-P degradation rate 50 h-1 0.06 0.73 >10 

α s WIP1-independent ATM-P degradation rate 7.5 h-1 0.01 0 1.16 

Ts ATM-P concentration for half-maximal p53 production 1 Cs 0.17 0.57 1.34 

Ti WIP1 concentration for half-maximal ATM-P degradation 0.2 Cs -0.19 0.32 1.26 

Trr RORα concentration for half-maximal p53 degradation 0.976 Cs-1 -0.17 0.34 1.89 

Tg DNA damage for half-maximal ATP-production 24 0.12 0.48 1.31 

ns Hill coefficient of active p53 production by ATM-P 4 0.15 0.88 >10 

ni Hill coefficient of ATM-P degradation by WIP1 4 -0.03 0.88 >10 

IR Strength of γ-irradiation 0 ~10 Gy -0.01 0.51 >10 

ng 
Constant converting strength of γ-irradiation to DNA 
damage 0.4 -0.07 0.58 2.13 

 p53 inactive initial condition 0.243 Cs    

 p53 active initial condition 0.077 Cs    

 Mdm2 mRNA initial condition 1.065 Cs    

 MDM2 initial condition 2.336 Cs    

 Wip1 mRNA initial condition 0.081 Cs    

 WIP1 initial condition 0.348 Cs    

 Rorα mRNA initial condition 1.39 Cs    

 RORα initial condition 0.226 Cs    

 ATM-p initial condition 2.083 Cs    

Cs = simulated concentration units. Newly added parameters are highlighted in bold. The name of 
parameters follows the original model (162, 163). Sensitivity was calculated by 
d log(period) / d log(parameter)  in response to 5Gy irradiation. Minimum and maximum 
factor of parameters between 0 and 10 that can generate sustained p53 pulses were also 
calculated. 
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Table C-2. Reaction steps and probabilities in stochastic simulations of p53 pulses.  

Reaction	  Number	   Reaction	  step	   Probability	  of	  Reaction	  

1	   ∗ 𝑝53!"#$%!&'	   𝛽!×Ω	  

2	   𝑝53!"#$%!&' ∗	   𝛼!"#×[𝑝53!"#$%!&']×[𝑀𝐷𝑀2]×
Ω𝑇!!

Ω𝑇!! + [𝑅𝑂𝑅𝛼]
	  

3	   𝑝53!"#$%!&' ∗	   𝛼!"×[𝑝53!"#$%!&']	  

4	   𝑝53!"#$%!&' 𝑝53!"#$%& 	   𝛽!"×[𝑝53!"#$%!&']×
[𝐴𝑇𝑀]!!

(𝑇!×Ω)!! + [𝐴𝑇𝑀]!!
	  

5	   𝑝53!"#$%& ∗	   𝛼!"#×[𝑝53!"#$%&]×[𝑀𝐷𝑀2]×
Ω𝑇!!

Ω𝑇!! + [𝑅𝑂𝑅𝛼]
	  

6	   𝑝53!"#$%& 𝑝53!"#$%!&'	   𝛼!"#×[𝑝53!"#$%&]×[𝑊𝐼𝑃1]	  

7	   ∗ 𝑀𝑑𝑚2	   𝛽!"×Ω	  

8	   ∗ 𝑀𝑑𝑚2	   𝛽!!×[𝑝53!"#$%&]	  

9	   𝑀𝑑𝑚2 ∗	   𝛼!!×[𝑀𝑑𝑚2]	  

10	   ∗ 𝑀𝐷𝑀2	   𝛽!×[𝑀𝑑𝑚2]	  

11	   𝑀𝐷𝑀2 ∗	   𝛼!×[𝑀𝐷𝑀2]	  

12	   𝑀𝐷𝑀2 ∗	   𝛼!"× 𝑀𝐷𝑀2 ×[𝐴𝑇𝑀]/Ω	  

13	   ∗ 𝑅𝑜𝑟𝛼	   𝛽!"#×Ω	  

14	   ∗ 𝑅𝑜𝑟𝛼	   𝛽!"×[𝑝53!"#$%&]	  
	  

15	   𝑅𝑜𝑟𝛼 ∗	   𝛼!"×[𝑅𝑜𝑟𝛼]	  

16	   ∗ 𝑅𝑂𝑅𝛼	   𝛽!×[𝑅𝑜𝑟𝛼]	  

17	   𝑅𝑂𝑅𝛼 ∗	   𝛼!×[𝑅𝑂𝑅𝛼]	  

18	   ∗ 𝑊𝑖𝑝1	   𝛽!"×[𝑝53!"#$%&]	  

19	   𝑊𝑖𝑝1 ∗	   𝛼!"×[𝑊𝑖𝑝1]	  

20	   ∗ 𝑊𝐼𝑃1	   𝛽!×[𝑊𝑖𝑝1]	  

21	   𝑊𝐼𝑃1 ∗	   𝛼!×[𝑊𝐼𝑃1]	  

22	   ∗ 𝐴𝑇𝑀	   𝛽!×Ω×
𝐼𝑅!!

𝑇! + 𝐼𝑅!!
	  

23	   𝐴𝑇𝑀 ∗	   𝛼!"×[𝐴𝑇𝑀]×
[𝑊𝐼𝑃1]!!

(𝑇!×Ω)!! + [𝑊𝐼𝑃1]!!
	  

24	   𝐴𝑇𝑀 ∗	   𝛼!×[𝐴𝑇𝑀]	  

The parameter Ω represents the number of molecules in the system. Here, we assumed that 
Ω=100 as did in previous studies (167, 198). 
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Table C-3. Parameters that describe coupling through Cytochrome-C. 

Parameter	   Description	   Value	  

β c	   Saturating p53-dependent Cyt-c production rate	   1 h-1	  

α c Cyt-c degradation rate 5 h-1 

nc Hill coefficient of Cyt-c production by p53active 2 

β cf Strength of coupling 6 

T c p53 concentration for half-maximal Cyt-c production 0.1 

 

 
Table C-4. Ranges of the random parameter sets.  

Name	   Description	   Range	  

β mm	   p53-dependent Mdm2 mRNA production rate	   0-50 

β mi p53-independent Mdm2 mRNA production rate 0-50 

β im p53-dependent Wip1 mRNA production rate 0-50 

β rm p53-dependent Rorα mRNA production rate 0-50 

β rmi p53-independent Rorα mRNA production rate 0-50 

β r Rorα translation rate 0-50 

α mm Mdm2 mRNA degradation rate 0-10 

α im Wip1 mRNA degradation rate 0-10 

α rm Rorα mRNA degradation rate 0-10 

α r RORα degradation rate 0-10 

Trr RORα concentration for half-maximal p53 degradation 0-10 

The random parameters were drawn from the uniform distributions in Figure 4-1D-E. The wider 
supports or ranges of uniform distributions were used for production rates than degradation rates. 
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