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Abstract 

Microporous coordination polymers (MCPs) are a rapidly growing class of 

porous, crystalline materials derived from alternating organic and inorganic building 

blocks. While some MCPs exhibit exceptional sorption properties, many others do not 

show the performance expected based on their crystallographic models. Realizing the full 

potential of these materials requires a thorough understanding of why many fall short of 

such expectation. Obtaining such insight is hampered by a lack of methods to examine 

localized defects and heterogeneity within these materials. This dissertation focuses on 

the use of positron annihilation lifetime spectroscopy (PALS) to elucidate the reasons for 

low porosity in two well-known MCPs, Zn-HKUST-1 (Zn2(btc)3, btc = 1,3,5-benzene 

tricarboxylate) and IRMOF-8 (Zn4O(ndc)3, ndc = 2,6-naphthalene dicarboxylate). PALS 

is used to show that while the Zn-HKUST-1 interior contains empty pores of diameter 

commensurate with the corresponding crystallographic model, the pores near the surface 

of Zn-HKUST-1 are inaccessible, thereby precluding access to the porous interior. The 

porosity of the material before solvent removal is confirmed by the facile diffusion of 

solution-phase guest species into the crystal interior. IRMOF-8, despite having been first 

reported more than a decade ago, has until now shown surface areas at best only half of 

that expected based on its crystallographic model. A combination of PXRD, gas sorption, 

and PALS are used to show that typical preparations of IRMOF-8 in fact produce an 

interpenetrated analogue. A route to synthesize and activate non-interpenetrated IRMOF-

8 is developed. The material has high gravimetric adsorption capacities for gaseous fuels 

such as hydrogen and methane; however, in situ PALS reveals that even at high 

pressures, only monolayer sorption is achievable with light gases above their critical 

temperatures. Hence, to maximize volumetric adsorption, linker functionalization is 

necessary. The use of PALS to analyze MCPs also resulted in the serendipitous discovery 

that positronium assumes a quantum mechanical Bloch state in highly ordered and porous 
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MCPs such as IRMOF-1 (Zn4O(bdc)3, bdc = 1,4-benzene dicarboxylate) and non-

interpenetrated IRMOF-8. 

 



1 

Chapter 1 

Porous Materials: Their Properties and Characterization 

1.1 Charcoal and Activated Carbon 

Porous carbonaceous materials have existed since fire first came into contact with 

organic matter. The result of such a union, charcoal, is a material having pores (internal 

voids) of sizes ranging from mm all the way down to sub-nm length scales, depending on 

the nature and conditions of the combustion of the precursor material(s).1 The first 

recorded uses of charcoal as an adsorbent date back as early as ~1500 B.C.E.,2 where the 

material was used in Egypt for drying wounds. Medicinal uses for charcoal were also 

recorded by Greek and Roman physicians,2 and its uses for water purification and 

preservation were known to both Western and Eastern civilizations of the time.2 

As an industrial sorbent, the first uses of porous carbon were described by Lowitz 

in the late 1700s. These uses included tartaric acid purification and as a decolorizing 

agent during sugar refining.2-4 Around the same time, researchers were beginning to take 

interest in the properties of charcoal as a gas sorbent. Fontana5 and Scheele6 

independently reported the reversible uptake of large volumes of gas by charcoal, 

suggesting that high internal space was available to store gas within the exterior of 

individual grains. Not long after, in the early 1800s, emphasis on the importance of 

surface area and porosity was introduced by de Saussure7 and Mitscherlich,8 respectively. 

By the beginning of the 20th century, activated carbon (the term for charcoal produced to 

maximize pore accessibility, volume, and surface area) was in widespread use for 

industrial applications.2,9-12 



2 

High surface area carbons are obtained through a variety of means to obtain a 

sorbent with the desired properties. Typically, a precursor carbon source is treated with 

acid or base and pyrolyzed at ~700-1000 °C. These materials can come from sources as 

diverse as peach pits13 and coconut shells14 to coal or petroleum coke.15 Current industrial 

applications for these materials include water16 and gas17 purification, catalyst supports,18 

and medical adsorbents.19 They are also being studied for potential use in adsorption-

based fuel storage and delivery.20 

1.2 Zeolites, Silica, and Alumina 

Historically, porous metal oxides were the only known sorbent alternatives 

to activated carbon. Zeolites (Figure 1.1), crystalline, porous metal oxides 

composed of aluminum, silicon, oxygen, and other cations typically from groups 1A 

and 2A, occur naturally; however, their study only began in earnest near the end of 

the 1700s.21,22 The reversible water uptake properties of these materials were 

recognized by Damour in 1857;23 the following year saw the first report on the 

synthesis of a zeolite.24 Commercialization of zeolites came at the beginning of the 

1900s, when their utility in removing divalent cations from water was described by 

Gans.25 However, zeolites did not enjoy widespread attention in the scientific 

community until the pioneering work of Richard Barrer,21 who developed 

hydrothermal synthesis techniques for  a number of naturally occurring26 and 

previously unknown27  zeolites. The field matured rapidly during the subsequent 

decades, with a number of both industrial28-30 and academic31,32 researchers expanding 

upon earlier work to synthesize many new zeolites. This influx of new materials led 

to the expansion of the capabilities of zeolites in separation science. Zeolites are 

widely used in industry today, especially for catalysis, ion exchange, and both gas and 

liquid phase separations.33 

Silica gel, a porous form of SiO2, was known as early as 1640, although it was not 

commercialized34 until World War I where it was used as an adsorbent in gas masks.35 

The use for silica as sorbent for chromatography (perhaps its most notable use in 

laboratories today) dates back to the early 1940s;36 the speed and efficiency with which 
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such separations could be carried out popularized silica rapidly. Currently, silica finds 

uses for applications of a variety of complexities, from air drying37 to ultra high-

performance liquid chromatography.38  

The history of alumina dates back to Roman times, and knowledge of its 

composition began to grow in the early 1700s.39 It is possible that alumina was used as a 

sorbent well before the 20th century (reliable documentation appears lacking); it is certain 

that by the early 1900s, a number of preparations of alumina were known to yield porous 

material.40-42 In the earlier half of the 1900s, activated alumina was used for laboratory-

scale chromatography and as a desiccant (“activated” here refers to the process of 

rendering pores empty and accessible to molecular guests).43 Large-scale separations 

using activated alumina gained popularity in the latter half of the 20th century; its use as a 

heterogeneous catalyst support is also now widespread.37 

 

1.3 Microporous Coordination Polymers 

Until 1989, microporous materials consisted primarily of carbons, zeolites, silica, 

and alumina. In that year, Hoskins and Robson published their seminal communication 

enumerating the defining concepts of what would soon become the field44 of microporous 

coordination polymers (MCPs). They hypothesized that by using the rigid, tetrahedral, 

tetratopic ligand 4,4´,4´´,4´´´-tetracyanotetraphenylmethane and the tetrahedrally 

coordinating cation Cu+, a coordination polymer with a diamondoid network could be 

formed (Figure 1.2). Slow evaporation of a solution containing the appropriate precursors 

indeed led to crystals of the expected structure. This approach was demonstrated over the 

next few years to be applicable to numerous materials, and many other research groups 

began examining MCPs and expanding the chemistries available for their synthesis. 

Accessible porosity and maintenance of crystallinity in these materials after guest 

removal was demonstrated by Rosseinsky,45 Kitagawa,46 and Mori47 (it should also be 

noted that the Prussian blue and analogues were shown to maintain structural integrity 

after guest removal many years earlier48). In 1999, separate reports by Yaghi49 and 

Williams50 demonstrated that activated MCPs could exhibit surface areas on par with 
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those typically observed in only zeolites and activated carbons. The materials in these 

papers, MOF-5 (Zn4O(bdc)3, bdc = 1,4-benzene dicarboxylate) and HKUST-1 (Cu3(btc)2, 

btc = 1,3,5-benzene tricarboxylate) were both constructed using rigid carboxylate ligands 

connecting metal clusters; the use of anionic ligands coupled to cationic clusters imparted 

robustness towards guest removal, and the chosen linker/metal cluster combinations 

allowed formation of 3-dimensional frameworks with large void fractions. After the 

publication of MOF-5 and HKUST-1, the field of coordination polymers gained a 

tremendous amount of popularity due to the versatility of these materials for applications 

as diverse as gas sorption51 and separation,52 catalysis,53 and non-linear optics54. 

 

1.4 Characterization of Microporous Coordination Polymers by X-ray Diffraction and 

Gas Sorption Methods 

By far the two most widely used techniques for assessing the characteristics and 

quality of synthesized MCPs are X-ray diffraction (both powder and single crystal 

methods) and gas sorption analysis. Since MCPs are crystalline materials, obtaining a 

crystal structure model (typically via single crystal X-ray diffraction, SXRD) and then 

comparing bulk powder X-ray diffraction (PXRD) data to PXRD data simulated from the 

single crystal structural model provides strong evidence for the bulk atomic arrangement 

of the material being analyzed. Using computational methods (vide infra), a theoretical 

surface area can then be obtained from the (guest-free) structural model. The theoretical 

surface area is compared with that estimated from gas sorption. Gas sorption analysis is 

then used to obtain an experimental surface area via the BET method (see below), which 

is finally compared with the expected theoretical surface area to verify that the material’s 

pores are empty and accessible. This is the typical workflow used to analyze new MCPs. 

In cases where single crystals are easily obtained and the MCP can be fully activated 

without altering or eliminating structural order, PXRD and gas sorption data can lend 

confidence to the correspondence between crystallographic models and experimentally 

obtained materials. 
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Single crystals of MCPs are most commonly obtained through solvothermal 

techniques. Screening synthesis conditions (temperature, solvent, pH, concentration, etc.) 

can lead to crystals of quality high enough for reliable structure solution. Solvent 

diffusion or solvent evaporation are also used, although these were more commonly 

employed in the earlier stages of the field, before solvothermal methods came into 

common use. In many cases, however, single crystals are not easily obtained. In cases 

where a hypothetical structure can be modeled based on precursor components, Rietveld 

refinement can be used to quantify agreement between experimental PXRD patterns and 

PXRD simulated from hypothetical structures. Good agreement lends confidence to the 

proposed structural model. Further solid-state analysis (thermogravimetric analysis, 

elemental analysis, IR spectroscopy, Raman spectroscopy, solid-state NMR spectroscopy, 

etc.) can be used to corroborate the proposed structural model. In the case where a 

structural model is not easily predicted based purely on linker and cluster geometry, more 

sophisticated methods are required. Férey and coworkers developed an approach55 coined 

the “Automated Assembly of Secondary Building Units” (AASBU) whereby 

geometrically defined building blocks are assembled in silico to form energy-minimized 

extended framework structures. The first example of this method applied to MCPs was 

demonstrated in 2004, where the compound MIL-100 (Cr3F(H2O)3(btc)2, Figure 1.3), 

having a cubic unit cell dimension of ~7 nm, was obtainable only as a microcrystalline 

powder.56 Three candidate structures were obtained computationally using the AASBU 

approach, and subsequent Rietveld refinement of the experimental PXRD pattern against 

the computational models was used to determine the correct structure for the material. It 

should be emphasized that a synchrotron X-ray source was used to obtain PXRD data; an 

intense X-ray source is often a prerequisite to accurately obtaining a crystallographic 

model using PXRD data. 

Ab initio structure solution from PXRD data using synchrotron-based X-ray 

sources has been reported in a few instances for MCPs. Routes to solving structures from 

PXRD data include the maximum-entropy method,57 simulated annealing,58-60 a direct-

space genetic algorithm,61 and others.62,63 Notably, a laboratory X-ray source was 

recently used to solve the structures of triazolate-based MCPs using the charge-flipping 

method.64 
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Gas sorption as a structural characterization technique is used to demonstrate 

accessible porosity and can further quantify surface area, pore volume, and pore size 

distribution. Given a crystallographic model, a theoretical surface area can be calculated 

based on the Connolly65 or geometric accessible methods. The geometric accessible 

surface area66 is generally preferred, as it accounts for the differences in accessibility 

between concave and convex surfaces. A surface area obtained by gas sorption methods 

can then be compared with the theoretical surface area; good agreement supports the 

accuracy of the crystallographic model used to obtain the theoretical surface area. To 

obtain an experimental surface area, solvent and other volatile molecular guests must first 

be removed from the sample. The sample is typically prepared by subjecting it to reduced 

pressure, or more recently, supercritical CO2,
67 a process termed “activation.” During 

activation under reduced pressure, capillary forces of the evaporating occluded solvent 

are thought to be responsible for pore collapse.67 In supercritical CO2 activation, occluded 

solvent in an MCP is replaced by liquid CO2 at room temperature and subsequently 

heated beyond the critical temperature (31°C for CO2). Pressure is then slowly reduced, 

inducing the supercritical fluid-gas phase transition. As supercritical fluids lack surface 

tension, capillary forces are avoided as CO2 leaves the MCP, reducing the chances of 

pore collapse on guest removal. While supercritical CO2 activation has been necessary to 

reveal accessible porosity in the highest surface area MCPs known,68 it must be 

emphasized that a molecular level understanding of activation (whether via reduced 

pressure, supercritical CO2, or otherwise) in these materials is currently unknown, 

especially for materials of pore diameter only a few guest molecules wide. Nitrogen 

sorption isotherms obtained from activated materials at 77 K are typically used to obtain 

experimental surface area values. Nitrogen gas is a weakly-interacting gas such that only 

physisorption (no chemisorption) is expected to occur with the adsorbent. Surface areas 

are obtained using the BET method,69 a model that calculates surface area based on the 

number of molecules of known diameter adsorbed to a surface (the number of adsorbed 

molecules is derived from nitrogen isotherm data). The BET method accounts for 

multilayer adsorption. The applicability of the BET method in surface area analysis of 

MCPs was explored extensively by Snurr and co-workers,70 who determined that by 

careful choice of the pressure range used to apply the BET method, good agreement 



  

7 

 

between theoretical66 and experimental surface area values can be obtained. The use of 

the Langmuir method of surface area determination for MCPs is not uncommon, but 

should be avoided, as it is very well known to overestimate surface area due to the 

unfounded and typically inaccurate assumption that adsorption occurs in just one 

monolayer.71 

Pore volumes are calculated from nitrogen isotherms obtained at 77 K as well. 

Given the assumption that nitrogen packs in pores as a condensed (liquid) phase, the 

uptake at pressures near the saturation vapor pressure (in cm3/g) is first converted to 

moles by the ideal gas law, and then multiplied by the molar volume of liquid nitrogen 

(34.7 cm3/mol) to obtain the volume of the pores in which (presumably) condensed 

nitrogen resides. 

While numerous mathematical methods for determining pore size distributions 

(PSDs) are available, including the Horvath-Kawazoe,72 Dubinin-Radushkevich,73  and 

Dubinin-Astakhov74 methods, non-local density functional theory (NLDFT) fitting of 

experimental isotherms can show excellent agreement between PSDs obtained from 

experimental data and crystallographic models. NLDFT requires kernels for the 

adsorbate-adsorbent combination of interest; kernels for specific MCPs are currently 

unavailable, but assuming zeolite-like properties still leads to data in good agreement 

with crystallographic models in most cases. NLDFT models for fitting Ar isotherms 

obtained at 87 K are readily available; for this reason, researchers in the field often obtain 

PSDs from Ar isotherms. 

1.5 Disorder and Defects in Crystalline Porous Materials 

While X-ray diffraction and gas sorption are the most commonly employed 

techniques used for analyzing crystalline porous materials, they do present significant 

limitations in examining disorder and defects in these materials. X-ray diffraction 

provides only space-averaged structural information, and is generally not well-suited to 

elucidating structural disorder. Hence, crystalline domains in an otherwise amorphous 

material will contribute significantly to the X-ray diffraction pattern, potentially 

misleading the researcher into believing the entire material is crystalline. If the material 
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possesses local defects despite bulk crystallinity, these defects will go undetected by X-

ray diffraction. Gas sorption suffers similar drawbacks. Furthermore, the presence of 

occluded guests or isolated pores can lead to observation of an apparently reduced or a 

complete lack of porosity. While limited porosity by gas adsorption can be used to infer 

pore collapse, interpenetration, or the presence of occluded guests, none of these 

phenomena can be addressed directly by gas sorption alone. In these cases, 

complementary techniques such as solid-state NMR spectroscopy, Raman spectroscopy, 

etc. are needed to elucidate the cause of low surface area. 

Although the vast majority of the MCP literature deals solely with the synthesis 

and functionality of new materials, a small number of groups have turned their attention 

to examining non-ideal behavior in MCPs – that is, those occasions where a material 

simply does not behave as the crystallographic model might suggest. Single crystal X-ray 

diffraction was used to detect both interpenetration and occluded Zn(OH)2 in MOF-5 

synthesized by rapid precipitation methods.75 This study was especially important at the 

time because many research groups were synthesizing a material claimed to be MOF-5 

that possessed BET surface areas around 1000 m2/g or less. The detection of 

interpenetration and occluded guests in these materials accounts for the data observed in 

many previous studies, and clearly demonstrated the effects of utilizing synthetic 

protocols not optimized to achieve the maximum possible surface area. X-ray scattering 

was used in a subsequent paper to characterize such impure MOF-5 further.76 The pore 

structure of the material examined by SAXS suggested a micropore structure less ordered 

than that which would be expected for a pure material. Furthermore, mesopores of ~3 nm 

diameter were detected. 

Other approaches to examine pore structure and highlight defects in MCPs have 

involved the tracking of guest molecules in these materials. Gas permeation 

measurements employing interference and infrared microscopy were used to show that 

the surface of an otherwise porous MCP, Zn(tbip) (tbip = 5-tert-butyl isophthalate), is 

almost completely blocked.77,78 Gas diffusion into the pores of this material occurs 

through only a small number of open sites at the surface. Fluorescent guests have also 

lent insight into the pore structure of MCPs. Single-molecule fluorescence microscopy 

was performed on UMCM-1 (Zn4O(bdc)(btb)4/3, btb = 1,3,5-benzene tribenzoate), 
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UMCM-2, (Zn4O(t2dc)(btb)4/3, t2dc = thieno[3,2-bis]thiophene-2,5-dicarboxylate) and 

UMCM-4 (Zn4O(bdc)(tpa), tpa = 4,4′,4′′-tricarboxytriphenylamine) using Nile Red as the 

fluorescent guest. While the ensemble diffusion characteristics of Nile Red in these 

materials followed those expected based on the pore structures of these materials 

(confined, 1D, or 2D diffusion), individual molecules showed behavior inconsistent with 

that expected from ideal crystallographic models. Defects sites appeared to arrest the 

motion of Nile Red in some cases, while in other cases, open defects seem to allow facile 

diffusion over large distances.79 In a study by Ameloot et al.,80 furfuryl alcohol (FFA) 

was used as a probe to detect free acidic sites in HKUST-1, MOF-5, and MIL-53(Ga) 

(Figure 1.4). FFA polymerizes in the presence of an acid. Poly(FFA) is fluorescent, so 

defect sites could be spatially resolved within single crystals. Furthermore, α-pinene was 

used to distinguish between Lewis vs. Brønstead acid sites. 

An XPS and computational study of HKUST-1 grown as a multilayer film 

showed that the film possessed both Cu2+ and Cu+. This suggested the presence of both 

tetracarboxylate and tricarboxylate paddlewheel clusters, despite a PXRD pattern that 

indicated phase-pure HKUST-1, which should have only tetracarboxylate clusters. 

Finally, AFM has been used to analyze microscopic  defects such as dislocation 

growth spirals in a number of MCPs including MOF-5,81 HKUST-1,82 and ZIF-8.83 

1.6 Positron annihilation lifetime spectroscopy 

Positron annihilation lifetime spectroscopy (PALS) is a technique operating on 

the principle that positronium (Ps), the bound state of an electron and a positron, 

spontaneously annihilates in an amount of time depending on the size of the void space in 

which it annihilates.84,85 In PALS, a radioactive positron source (typically a salt 

containing 22Na) is placed near the material being analyzed. On the emission of a 

positron, a 1270 keV γ-ray is emitted concomitantly and serves as the “start” signal. 

Emitted positrons assume an energy distribution between 0 and 511 keV and hence are 

implanted with a depth of ~0.5-1 mm. Positrons lose energy through inelastic, ionizing 

collisions with electrons in the target material, eventually losing enough energy to bind to 

one of these ionized electrons to form Ps. Positrons can also annihilate directly with 
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electrons, a process generally occurring within a few hundred picoseconds after positron 

emission. Formed Ps can take on parallel (ortho) or antiparallel (para) spins. The para 

species (p-Ps) has a lifetime in vacuum of 0.125 ns while the ortho species (o-Ps) has a 

longer lifetime in vacuum of 142 ns. The longer-lived species diffuses throughout the 

porous material, annihilating more rapidly in smaller pores. Annihilation yields γ-rays of 

energies at or below 511 keV; these photons provide the “stop” signal. The Ps lifetime is 

then the difference between the start and stop γ quanta, the average lifetime being 

determined from an exponential decay fitted to a histogram built from ~105-107 

annihilation events. The size of the pore in which o-Ps annihilates can be determined 

from the average lifetime(s) of o-Ps annihilation in a sample using an extended Tau-

Eldrup model.86-89 

PALS holds a number of advantages over more traditional porosimetry 

techniques. First, PALS can provide information on buried or otherwise inaccessible 

pores. For non-interconnected pores, PALS provides lifetimes reflecting local pore 

structure. PALS depth-profiling, a technique where positrons are implanted at controlled 

energies (typically in the 0.1-10 keV range), allows probing the pore structure as a 

function of depth from the material’s surface with nanometer resolution.90 These 

characteristics make PALS ideally suited to examining disorder and defects in MCPs 

where methods such as X-ray diffraction and gas sorption fall short.  

Prior to the work described in this dissertation, our group published the first paper 

using PALS to examine an MCP.91 We examined MOF-5 during thermal degradation and 

CO2 adsorption, proving the utility of PALS for in situ, time-resolved measurements of 

porous materials. 

 

1.7 Organization of Thesis 

This thesis focuses on the use of PALS to examine MCPs. In Chapter 2,92 the 

study of a long-known but little-studied MCP Zn-HKUST-1 (Zn3(btc)2) is described. Zn-

HKUST-1 is a material isostructural to Cu-HKUST-1. However, despite retention of bulk 

crystallinity after activation, Zn-HKUST-1 exhibits no measurable porosity by gas 
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adsorption. PALS reveals that, while the interior pores of Zn-HKUST-1 are empty, the 

surface of the material is collapsed, prohibiting the entry of molecular guests. Chapter 3 

describes the discovery that IRMOF-8 (Zn4O(ndc)3, ndc = 2,6-naphthalene 

dicarboxylate), which typically exhibits BET surface areas between 1000-2000 m2/g, can 

be synthesized and activated in a manner to maximize its surface area.93 A surface area of 

4400 m2/g was achieved, a result made possible using activation by our recently 

developed flowing supercritical CO2 system.94 Following this work, Chapter 4 describes 

in detail the cause for low surface area in solvothermally synthesized IRMOF-8.95 

Interpenetration occurs in this material when synthesized at elevated temperatures (>70 

°C), as revealed by a combination of PALS and PXRD analysis. PALS is then used to 

examine methane uptake in high surface area IRMOF-8 in situ. Surprisingly, monolayer 

sorption seems to be operative at room temperature irrespective of pressure, suggesting 

that above the critical temperature, a gas will only adsorb in an MCP in a single 

monolayer. 

Our studies of heterogeneity and defect structure in MCPs also led to the 

remarkable discovery that o-Ps in an MCP assumes a delocalized Bloch state, allowing o-

Ps to travel hundreds of times greater distances in MCP channels than would be expected 

for a classical particle.96 These results are detailed in Appendix A. 

Chapter 5 concludes the thesis with a perspective on the consequences of this 

work and the developments stemming from it that are hoped to follow. 
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1.8 Figures 

 

 

Figure 1.1. Example structure of a zeolite (IFT zeolite from ref. 95) 

 

Figure 1.2. Structure of Cu(4,4´,4´´,4´´´-tetracyanotetraphenylmethane)BF4 

discovered by Hoskins and Robson.96 
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Figure 1.3. Structure of MIL-100 (Cr3F(H2O)3(btc)2)
56 as determined by PXRD 

and computational methods. 

 

Figure 1.4. Defect structure in HKUST-1 revealed by fluorescence microscopy. 

Reproduced with permission from ref. 80. 
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Chapter 2 

 

Reconciling the Discrepancies between Crystallographic Porosity and Guest Access 

as Exemplified by Zn-HKUST-1† 

2.1 Introduction 

The myriad and tunable chemistries and pore structures of microporous 

coordination polymers (MCPs) have significantly expanded the potential capabilities of 

porous materials.1 MCPs have shown great promise for applications such as gas 

separation2 and storage,3 catalysis,4 and selective adsorption from the liquid phase.5 

However, for many MCPs there is a discrepancy between the theoretical surface area 

predicted by crystallographic considerations and experimentally determined porosity.6-8 

Although underperformance in MCPs has been attributed to interpenetration,9 incomplete 

removal of guests from pores,10 and pore collapse,11 and various methodologies have 

been employed to achieve higher porosity,11,12 direct detection and analysis of these 

failure modes remains difficult and can yield ambiguous results. The structural purity of 

MCPs is most often analyzed by X-ray diffraction and gas sorption techniques. Powder 

X-ray diffraction (PXRD) can yield information about crystallinity, but is less well suited 

for examining disorder. Gas sorption techniques provide quantitative measurements of 

accessible internal surface area but are subject to kinetic limitations and do not probe 

closed pores. 

In this study, we describe investigations on an MCP that, despite promising 

structural data, fails to yield substantial gas uptake by conventional gas sorption 

techniques. A strategy for improving the performance of MCPs for specific applications 

                                                 
† Adapted with permission from Feldblyum, J. I.; Liu, M.; Gidley, D. W.; Matzger, A. J. J. Am. 

Chem. Soc. 2011, 133, 18257. Copyright 2011 American Chemical Society. 
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is the discovery and employment of isostructural analogues where one metal is replaced 

with another or different metals are mixed in the same structure.13 Lighter metals can be 

used in this manner to improve surface area,14-16 and selection of metal can be used to 

enhance and control catalytic and photocatalytic activity.17,18 Cu3(btc)2 (commonly 

“HKUST-1,” hereafter “Cu-HKUST-1”) was one of the first MCPs demonstrated to 

retain its crystal structure and exhibit permanent porosity upon removal of guest 

molecules.19 In addition, it is one of the few commercially marketed MCPs20 and a great 

deal of effort has been spent on making it an industrially viable and useful material.21-24 

The prevalence of zinc paddlewheels25 in a variety of MCPs suggests that Zn is a 

promising metal with which to construct an isostructural analogue to Cu-HKUST-1 

(Zn3(btc)2, hereafter “Zn-HKUST-1”); however, zinc paddlewheel MCPs frequently 

exhibit lower-than-expected surface areas or complete collapse upon removal of axial 

ligands.26,27 Although the failure of these materials to exhibit theoretically achievable 

porosity has not been explored in detail, their underperformance may be due to structural 

rearrangement or distortion of the Zn-paddlewheel under dry conditions.28,29 Although 

Zn-HKUST-1 was synthesized previously,30 no evidence of permanent porosity was 

reported. 

Our group recently applied positron annihilation lifetime spectroscopy 

(PALS)31,32 to investigate the porosity, thermal stability, and CO2 gas adsorption of the 

prototypical MCP MOF-5.33 Positron interaction with dielectric materials can form 

positronium, the atom-like bound state of a positron and an electron. The electron and 

positron comprising a positronium atom can have either parallel or antiparallel spins. The 

species with parallel spins, ortho-positronium (o-Ps), has a characteristic lifetime in 

vacuum of 142 ns. In a porous dielectric material, the lifetime of o-Ps is reduced in a 

manner directly related to the size of pores within that material. By bombarding a sample 

with positrons and detecting γ-rays emitted from o-Ps decay, a o-Ps lifetime (or a 

distribution of lifetimes) can be determined and correlated to a precise pore size (or pore 

size distribution) for the analyzed material. PALS has inherent advantages over gas 

sorption techniques as an analytical tool to study porous materials. Most importantly, an 

accessible, interconnected pore space is not required to yield pore size and occurrence 

data, as energetic positrons will pass directly through insulating material until losing 
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enough energy to form positronium or annihilate directly via positron-electron 

interaction.31 In addition, by tuning the energy of implanted positrons, the bulk and 

surface of a material can be studied separately. 

Using a combination of PXRD, gas sorption analysis, PALS, depth-profiled 

PALS, optical microscopy, and NMR spectroscopy, a thorough analysis of the failure 

mode of Zn-HKUST-1 is provided. Crystallinity after evacuation is maintained, yet no 

observable porosity by gas sorption analysis is found. PALS provides an explanation for 

these results and is able to demonstrate that the surface of Zn-HKUST-1 is unstable after 

drying. 

2.2 Results and Discussion 

The crystallinity of Zn-HKUST-1 was probed by PXRD (Figure 2.2) immediately 

after crystal growth and after evacuation under reduced pressure (~20 mTorr). Zn-

HKUST-1 appears isostructural to Cu-HKUST-1, with a slightly larger unit cell (Cu-

HKUST-1 a = 26.343 ± 0.005 Å,19 Zn-HKUST-1 a = 26.520 ± 0.001 Å, determined from 

indexing PXRD data obtained at room temperature). Differences in peak intensities 

between simulated and experimental diffractograms can be attributed to coordinated 

guest molecules. Such differences in peak intensity have previously been attributed to 

pore occlusion by molecular guests.9 Despite retention of crystallinity after attempted 

activation, no condition was found for which Zn-HKUST-1 exhibited significant porosity 

by N2 adsorption surface area measurements. Attempted activation methods included 

evacuation at both room temperature and at 170 °C, use of DMF, CHCl3, and benzene11 

as activation solvents, activation by flowing dry nitrogen at atmospheric pressure, and 

activation using supercritical CO2.
12 Furthermore, attempts at accessing the pores of dry 

Zn-HKUST-1 crystals by adsorption of Ar at 87 K or CO2 at 298 K yielded no indication 

of porosity in the material (see Figure 2.3 for representative isotherms). 

Reasonable hypotheses for the failure of Zn-HKUST-1 to exhibit porosity include 

complete or partial structural collapse upon drying, interpenetration, an inability to 

remove molecular guests trapped in the framework, and/or the presence of a surface 

layer34,35 blocking entry of gases into the crystal. Powder X-ray diffraction data (Figure 
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2.2) were used to rule out complete structural collapse. Computational modeling of a 

hypothetical interpenetrated material having the framework structure of Cu-HKUST-1 

(HKUST-1_int) showed that interpenetration was unlikely due to steric hindrance 

between interpenetrating frameworks (Figure 2.4). Furthermore, a simulated powder X-

ray diffractogram of HKUST-1_int lacked peaks at 6.7° and 11.55° that are present in the 

simulated and experimentally determined powder X-ray diffractograms of Cu-HKUST-1 

and Zn-HKUST-1 (Figure 2.5). Upon 1H NMR analysis of Zn-HKUST-1 dried under 

dynamic vacuum at 170 °C (see Experimental Methods), DMF was found to be present at 

a ratio of 2.19:1 DMF:btc (Figure 2.6). The NMR data corroborates the sorption data that 

indicates a closed structure, but cannot be used to rule out one or another hypothesis, as 

DMF might reasonably be found trapped in the MCP framework considering any of the 

failure models enumerated above. 

Given its proven utility in probing buried pores32 and MCP pore systems,33 PALS 

was used to determine whether empty pores remained within activated Zn-HKUST-1 

crystals. O-Ps annihilation lifetimes were determined by fitting the raw lifetime data 

(Figure 2.7) to multiple, superimposed exponential decays. Two separate o-Ps decay 

components were found corresponding to lifetimes of 2.13 ± 0.13 ns and 5.24 ± 0.17 ns, 

as would be expected were o-Ps trapped in either the small or the large pores present in 

the Zn-HKUST-1 crystal structure (Figure 2.1). The fitting of these two distinct lifetimes 

indicates that o-Ps does not freely diffuse through the Zn-HKUST-1 pore space because a 

freely-diffusing o-Ps atom would sample all voids and thus only a single average o-Ps 

lifetime would be fit in the spectrum (beam PALS results below will confirm this claim 

of trapping). Using quantum mechanical models36-39 to correlate calculated lifetimes to 

pore sizes, pore diameters of 0.59 ± 0.02 nm and 0.97 ± 0.02 nm were deduced. Pore 

sizes were determined from the crystal structure using the diameters of the inscribed 

sphere (Figure 2.1) of each pore (taking into account neutral van der Waals radii of 

relevant atoms at the pore walls). Idealized pore sizes for the small and large pores 

determined in this manner are 0.56 nm and 1.10 nm, respectively, in good agreement with 

PALS-derived values. The fractional contributions from each lifetime component, 

provided as intensities relative to the total number of all positrons emitted from the 22Na 

source, were 5.1 ± 0.2% and 4.5 ± 0.3% for the small and large pores, respectively (note 
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that since in our PALS apparatus only half the positrons from the 22Na source can stop in 

the sample, these intensities should be doubled when comparing with beam PALS results 

below). In the ideal crystal structure, the number of small pores is equal to the number of 

large pores. However, the larger pores, having nearly four times the surface area and 

eight times the volume of the smaller pores, will preferentially trap positronium. Hence, 

these initial PALS data hint at a deficit in the number of empty large pores compared 

with that expected from the ideal Zn-HKUST-1 crystal structure. For a pristine crystal, an 

intensity significantly greater than 5.1% would be expected for the large pore annihilation 

component. The depth dependence of this deviation is explored and discussed below. The 

small apertures between large and small pores, possibly constricted further by the 

presence of residual solvent (as evidenced by solution 1H NMR of dissolved Zn-HKUST-

1; see Experimental Methods), may account for o-Ps trapping in individual voids. As 

such o-Ps trapping on time scales of 5-10 ns does not rule out gas uptake into 

interconnected 1 nanometer voids on a time scale 109 times longer, these data solely 

demonstrate the presence of empty pores generally consistent with the crystallographic 

structure of Zn-HKUST-1.  

As experimental PALS data describes a structure in which at least a significant 

fraction of pores in the bulk are present and accessible by positrons and o-Ps, depth-

profiled beam PALS32 was used to examine the pore structure at the surface of Zn-

HKUST-1. By moderating the energy of positrons directed toward the sample, the 

positron mean implantation depth, and hence, the depth of o-Ps formation, was 

controlled. The depth profiling results (Figure 2.8) are very revealing. First, no o-Ps 

diffuses through interconnected pores back to the sample surface where it would escape 

into vacuum. This is consistent with o-Ps trapping in the pores and/or with pores sealed at 

the surface to prevent any escape. Additionally, fitting the lifetime spectrum at each 

implantation depth requires two o-Ps lifetimes corresponding to two pore sizes similar to 

those found by bulk fitting (Figure 2.8a), for which the intensity of o-Ps annihilating in 

the larger pore is a factor of five lower in the region within 500 nm of the crystal surface 

than in the bulk (Figure 2.8b). At the shallowest mean implantation depth (16 nm), there 

is virtually no o-Ps annihilation in the larger pores. Throughout the surface region the 

intensity of o-Ps annihilating in the larger pores gradually increases with depth, but is still 
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much lower than that in the bulk of the crystal. Moreover, the top 30-40 nm may be 

largely devoid of the larger pores due to complete collapse of the structure, leaving only 

microvoids from debris (as a result, the fitted values of the short and long o-Ps lifetimes 

could well deviate from those of the bulk crystal). This clearly indicates that the surface 

of the Zn-HKUST-1 crystal is densified, presumably due to pore collapse. As the large 

pores are necessary for interconnection between all pore space within the framework, a 

blocking or complete collapse of large pores at the surface effectively inhibits the ability 

of adsorbates such as N2 gas from entering the bulk structure. 

To further explore the instability of the large pores in Zn-HKUST-1, a bulk 

sample was heated to 50 °C for 30 minutes, cooled to room temperature, and 

subsequently analyzed by PALS (Figure 2.9). This procedure was then repeated on the 

same sample at 100 °C, 150 °C, and 200 °C. After the initial period of heating, the pore 

characteristics remained largely unchanged. However, at 100 °C, the intensity of o-Ps 

annihilation in the large pores dropped by a factor of about two to 2.47 ± 0.23%, and on 

further heating at higher temperatures, o-Ps annihilation in the large pores dropped to 

0.51 ± 0.29%, accounting for only a small fraction of the open pore space left in the 

material (Figure 2.9b). At higher temperatures, a concomitant decrease in the size of the 

large pores was observed (Figure 2.9a). In contrast, the intensities and pore sizes of the 

small pores showed little change over successive heating and cooling cycles. The slight 

increase in o-Ps annihilation intensity in the small pores at higher temperatures can be 

attributed to reduced o-Ps formation in large pores, limiting annihilation to the small 

pores of the material. Both the reduced occurrence and reduced pore size indicate 

collapse solely of the larger pores after heating at higher temperatures. These trends are 

consistent with degradation of the bulk material and indicate that the larger pores 

responsible for gas transport exhibit comparatively poorer durability. Presumably, the 

surface of the crystal is even less durable to pore collapse than the interior, even without 

heating. 

Having confirmed the nature of structural failure in Zn-HKUST-1, a sample of 

activated Zn-HKUST-1 was mechanically crushed under a nitrogen atmosphere to 

determine whether the surface layer was due to the presence of dense guest-filled layer or 

collapse of the crystal itself. No porosity was observed by measuring N2 uptake (Figure 
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2.10) of the crushed Zn-HKUST-1 at 77 K, indicating that the surface collapse is 

apparently due to inherent instability of the dry material (Figure 2.11). This instability 

suggests that further attempts at activation, barring post-synthetic chemical modification, 

are unlikely to yield a dry, stable, porous material. 

Although the surface of Zn-HKUST-1 appears to be unstable, highly ordered 

crystals grow to sizes of up to 100 µm when solvothermally synthesized in DMF (Figure 

2.12a). To examine whether molecular guests could enter the pores of Zn-HKUST-1 in 

solvent, MCP crystals were immersed in saturated solutions of strongly-colored species 

including Nile red, methylene blue, azobenzene, and elemental iodine. Only iodine was 

found to diffuse slowly into Zn-HKUST-1 crystals, as evidenced by a color change from 

colorless to dark orange-brown over a period of 7 days (Figure 2.12b). The small pore 

aperture of the larger pores (0.66 nm after complete removal of axially coordinated 

ligands) precluded adsorption of the organic dyes. The lack of organic dye uptake also 

eliminates the possibility that iodine uptake was due to mesopore or macropore defects. 

To examine the diffusion of iodine in the HKUST-1 structure further, a layer of Zn-

HKUST-1 was grown on crystals of Cu-HKUST-1 in a core-shell configuration40,41 (Zn-

HKUST-1@Cu-HKUST-1, Figure 2.12c, Figure 2.13). Such a configuration provided a 

more rapid means to confirm the diffusion of iodine into the crystal due to the strong 

color contrast between iodine in CHCl3 and Cu-HKUST-1. After immersion in saturated 

iodine/CHCl3 for a single day, substantial diffusion of iodine into the copper portion of 

Zn-HKUST-1@Cu-HKUST-1 was observed (Figure 2.12d). These results show that in 

solution, both bulk Zn-HKUST-1 crystals and Zn-HKUST-1 shells bound to Cu-HKUST-

1 cores are stable and exhibit accessible, interconnected pore space before the removal of 

solvents. In contrast, crystals of Zn-HKUST-1 soaked in saturated iodine/CHCl3 after 

evacuation exhibited no observable iodine uptake after 7 days (Figure 2.14). This 

behavior is consistent with the other observations in this study, suggesting that after 

surface densification on evacuation, re-immersion of Zn-HKUST-1 in solvent does not 

re-stabilize the surface open it to guest inclusion. 
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2.3 Conclusions 

A detailed description of the mode of failure in the MCP Zn-HKUST-1 has been 

presented. Retention of crystallinity after activation juxtaposed with a demonstrated lack 

of accessible porosity can be explained by combining bulk and depth-profiled PALS data. 

Analysis by these techniques reveals the preservation of an ordered and open pore 

network in the bulk of the Zn-HKUST-1 crystals made inaccessible by a densified layer 

at the surface. The instability of the Zn-HKUST-1 surface was shown to be characteristic 

of the material in dry environments, as dry, crushed crystals exhibited no significant 

uptake of N2 gas despite an interior shown to have open pore space. In contrast, the 

material exhibited accessible porosity before removal of solvent by the infusion of iodine 

both throughout bulk Zn-HKUST-1 crystals and through Zn-HKUST-1 layers 

encapsulating Cu-HKUST-1 crystals immersed in CHCl3. 

These results deepen the understanding of a previously unknown42 mode of 

failure in MCPs and suggest that a lack of observable gas uptake in dried crystals should 

not be taken as conclusive evidence for complete structural collapse or pore filling by 

guests. Although some MCPs may require specialized activation techniques11,12 to 

maintain stability in the dry state, it has been shown that instability of specific structural 

features (for example, the largest pores) within an MCP may fundamentally limit porosity 

for solvent-free applications. Porous materials exhibiting a lack of accessible internal 

surface area after solvent removal may still be useful for liquid-phase adsorption 

applications,43-45 where pores may remain open and interconnected. 

2.4 Experimental Methods 

Synthesis of Zn3(btc)2 (Zn-HKUST-1). A mixture of 1,3,5-benzene tricarboxylic 

acid (H3BTC, 39.5 mg, 0.188 mmol, Acros Organics) and Zn(NO3)2•6H2O (170.7 mg, 

0.574 mmol, Fisher Scientific) was dissolved in 10 mL N,N-dimethylformamide (DMF, 

Fisher Scientific), aided by sonication. The resultant solution was filtered through P5 

filter paper (Fisher Scientific) into a 20 mL scintillation vial and subsequently incubated 

at 85 °C for ~16 hours. Incubation yielded colorless, transparent cubic crystals. Note that 

longer incubation times yielded opaque white crystals exhibiting poorer crystallinity 
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when analyzed by PXRD. After incubation, solvent was decanted and replaced with ~10 

mL pure DMF three times. The solvent was then decanted and replaced with chloroform 

four times over the next 48 hours, during which the sample was stored in a tightly capped 

vial in a desiccator. The sample was then held under dynamic vacuum (20 mTorr) at 

room temperature for ~10 h and transferred to a N2 glove box for storage and further 

analysis. 

Synthesis of Zn-HKUST-1@Cu-HKUST-1. 5 mL >18.2 MΩ cm-1 H2O, 5 mL 

ethanol (Decon Labs), and 5 mL DMF were added to a mixture of 0.30 g H3btc (1.43 

mmol) and 0.60 g Cu(NO3)2•2.5H2O (2.58 mmol, Fisher Scientific) in a 20 mL 

scintillation vial. The resultant solution was sonicated until it became a uniform cloudy 

blue color (~5 minutes). Concentrated HCl was then added dropwise until the solution 

became a transparent blue (~12 drops from a glass pipet). The clear solution was 

incubated at 85 °C for ~20 hours, after which a thick layer of blue Cu-HKUST-1 crystals 

formed at the bottom of the vial. The vial was removed and allowed to cool to room 

temperature. The solvent was subsequently decanted and replaced three times with ~10 

mL fresh DMF. 

In a separate 20 mL scintillation vial, a precursor solution of Zn-HKUST-1 was 

prepared by adding 0.228 g Zn(NO3)2•6H2O (0.765 mmol), 0.0526 g H3btc (0.250 

mmol), and 10 mL DMF and sonicating until complete dissolution of the solid. The 

solvent from the vial containing the Cu-HKUST-1 was decanted and replaced with the 

Zn-HKUST-1 precursor solution. The crystals in the precursor solution were incubated at 

85 °C for ~20 hours and subsequently cooled to room temperature. The solvent was 

immediately exchanged three times with pure DMF and analyzed by PXRD. Upon 

further examination by optical microscopy, a heterogeneous mixture of Cu-HKUST-1 

and Zn-HKUST-1@Cu-HKUST-1 was observed.  

Infusion of iodine in Zn-HKUST-1 and Zn-HKUST-1@Cu-HKUST-1. Zn-

HKUST-1 was synthesized in DMF as described above. After crystals formed, the 

solvent was decanted and replaced with ~10 mL pure DMF three times. The solvent was 

then decanted and replaced with chloroform, after which crystals were analyzed by 

PXRD. Crystals were then transferred to a 4 mL vial containing a minimum amount of 

chloroform (~0.5 mL) to keep samples submerged for one week. Elemental iodine (Fisher 
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Scientific) was added liberally until the solution reached saturation. The vial containing 

Zn-HKUST-1, solvated iodine, and solid iodine was placed on a shaker (IKA KS 260) 

and agitated at 120 rpm for 7 days. Crystals were then analyzed by PXRD and optical 

microscopy. To visualize cross sections, a single crystal was isolated and carefully sliced 

on opposite sides with a razor to obtain a cross section from the center of the crystal 

(Figure 2.12). Crystals of Zn-HKUST-1@Cu-HKUST-1 were synthesized as described 

above. The sample was then treated similarly as described for Zn-HKUST-1, but 

immersion in saturated iodine/CHCl3 was limited to 24 h. Crystals of Zn-HKUST-1 after 

evacuation were transferred from a N2 glove box into a vial containing chloroform under 

ambient atmosphere. These crystals were soaked in saturated iodine for 7 days and 

imaged as described above. 

Positron annihilation lifetime spectroscopy. The dry sample was loaded in a N2 

glove box into a well-type sample holder with a 4 µCi 22Na positron source deposited on 

the bottom of the well. The sample holder was placed between two plastic scintillators to 

detect gamma rays signaling positron emission from the 22Na formation and o-Ps 

annihilation.  Before measurement of o-Ps lifetimes within the sample, the sample holder 

was evacuated to 10 mTorr to eliminate significant interaction between o-Ps and residual 

gas. A histogram of the lifetimes of discrete annihilation events was obtained at a rate of 

60 counts per second (representative histogram in Figure 2.7). Pore sizes were 

determined from lifetime data with an extended Tao-Eldrup model36-39 using in-house 

software. Samples remained in the PALS apparatus under dynamic vacuum (10-3 Torr) 

during sample heating and cooling, and measurements of heated samples were taken at 

room temperature after heating and subsequent cooling.  

Depth-profiled positron annihilation lifetime spectroscopy. An optically thick 

layer of analyte was deposited on a piece of conductive tape attached to a sample holder. 

The sample holder was inserted into a depth-profiled PALS apparatus, in which 

monoenergetic positrons are focused on the sample under high vacuum conditions.32 The 

energy of positrons impinging upon the sample was varied between 1-6 keV, controlling 

the depth at which o-Ps formed and annihilated within the sample. In this manner, 

information regarding pore size and relative porosity was obtained, as well as information 

about the ability of o-Ps to diffuse out of the structure before annihilation.  
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Surface area determination by N2 gas sorption. Volumetric N2 sorption 

isotherms were obtained on a Quantachrome NOVA 4200e, using 99.999% purity N2 

(Cryogenic Gases). Samples (~30 mg) were transferred to sample cells in a N2 glove box 

and rapidly attached to the surface area analyzer to avoid exposure to air. Sample cells 

were immediately subject to dynamic vacuum, after which surface area analysis was 

performed. 

Determination of CO2 and Ar gas sorption. Volumetric CO2 and Ar isotherms 

were obtained on a Quantachrome Autosorb-1C at room temperature and 87 K, 

respectively. Samples were treated identically as in N2 gas sorption experiments 

described above. Gases used were of 99.999% purity (Cryogenic Gases). 

Powder X-ray diffraction analysis. Analyte crystals were coated in Paratone N 

oil (Hampton Research), mounted on a Nylon loop, and placed in a goniometer head. 

Samples were then analyzed with a Rigaku R-Axis Spider diffractometer equipped with a 

CuKα X-ray source (λ = 1.5406 Å) operating at 50 kV and 40 mA. An image plate 

detector was used to collect images in 10 minute scans by transmission with χ = 45°,  

rotating at 10°/min, and ω oscillating between 80° and 140°. Integration of images was 

carried out using the AreaMax 2.0 software package with a step size of 0.2° in 2θ. 
1H Nuclear Magnetic Resonance Spectroscopy. Crystals of Zn-HKUST-1 were 

synthesized and washed with DMF and chloroform as described above. The Zn-HKUST-

1 was then dried under dynamic vacuum (~20 mTorr) at 170 °C for ~10 h. After sorption 

analysis, the crystals were transferred rapidly from a nitrogen glove box atmosphere to a 

1 M solution of NaOD in D2O. The solution was agitated for ~5 minutes, after which 

time the crystals were completely dissolved. The resultant solution was characterized by 
1H NMR spectroscopy. 

Simulation of hypothetical interpenetrated material having the framework 

structure of Cu-HKUST-1 (HKUST-1_int). Optimization of geometry and lattice 

parameters was performed in Materials Studio 4.346 using the Forcite module. The 

Universal force field47 was employed using the Smart algorithm. Space group: R-3m; a = 

33.166679 Å, c = 83.583213 Å. 
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2.5 Figures 

 

Figure 2.1. HKUST-1 structure as viewed down the [100] direction, angled 
slightly to show 3-dimensional structure (Cu, blue; C, black; O, red; H, light grey). The 
void spaces of the large and small pores present within the structure are depicted by 
yellow and blue spheres, respectively. 

   

Figure 2.2. Powder X-ray diffractograms of Zn-HKUST-1 immediately after 
synthesis and after evacuation under reduced pressure (~20 mTorr) compared with 
simulated diffractogram of Cu-HKUST-1. 
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Figure 2.3. N2 (77 K), Ar (87 K), and CO2 (298 K) sorption isotherms of activated 
Zn-HKUST-1. The N2 isotherm shown is that of the highest BET surface area (55 m2/g) 
material obtained, and hence provides an upper bound for the samples analyzed (15 
total). The majority of samples exhibited BET surface areas less than 10 m2/g. 

 

Figure 2.4. a) Space-filling model of HKUST-1_int. The centroid of the small 
pore of one framework is centered at the centroid of the large pore of the other 
framework to minimize steric hindrance. Axial oxygen atoms of copper paddlewheel 
clusters still overlap with carboxylate groups of the interpenetrating structure. b) Ball-
and-stick model showing enclosed small cage of one framework in the larger cage of the 
other. c) Space-filling model of facing benzene rings of HKUST-1_int pore walls. 
Benzene rings are 2.85 Å apart. 
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Figure 2.5. a) Crystal structure of HKUST-1_int viewed along the a axis. b) 
Simulated powder X-ray diffraction pattern of HKUST-1_int compared with powder 
patterns of Cu-HKUST-1 (simulated) and Zn-HKUST-1 (experimentally measured). 

 

Figure 2.6. 1H NMR spectrum of activated Zn-HKUST-1 dissolved in ~1 M 
NaOD/D2O. The MCP was activated by repeated solvent exchange with chloroform (4 
times over 3 days) followed by heating at 170 °C under dynamic vacuum (~20 mTorr). 
Peak identification shows significant presence of DMF within the framework even after 
evacuation. The ratio of btc:DMF was determined to be 1:2.19. 
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Figure 2.7. PALS spectrum of Zn-HKUST-1 after evacuation under reduced 
pressure (~20 mTorr). Lifetimes, relative intensities, and corresponding cubic pore 
lengths are provided. 

 

 

Figure 2.8. Beam PALS of Zn-HKUST-1 after evacuation under reduced pressure 
(~20 mTorr) showing a) pore size and b) annihilation intensity at controlled depths. Two 
pores were detected corresponding to the small and large pores expected from the Zn-
HKUST-1 crystal structure. Values obtained at room temperature for small (dotted line) 
and large (dash-dotted line) pores by PALS measurements of crystal bulk from Figure 2.7 
are shown for reference. Note that reference intensity values are doubled to account for 
differences in sample holder positioning between bulk and beam measurements. As no 
large pore component was detected at the shallowest depth (16 nm), no pore size was 
obtainable. 
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Figure 2.9. PALS measurements of small and large pores of Zn-HKUST-1 at 
room temperature (~25 °C) and after successive 30 minute heating/cooling cycles at 
temperatures up to 200 °C. a) Pore size and b) annihilation intensity of small pores 
remains largely unchanged, but large pore intensity vanishes as temperature increases. 

 

Figure 2.10. N2 sorption isotherm at 77 K of activated Zn-HKUST-1 
mechanically crushed under a nitrogen atmosphere. Lack of evidence for pore structure 
suggests spontaneous collapse of the crystal surface. 
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Figure 2.11. Schematic representation of material failure of Zn-HKUST-1. a) 
Solvent-filled material is open to guest exchange. After drying under vacuum (i), b) the 
surface of Zn-HKUST-1 collapses, leaving only small pores at the surface. Mechanically 
grinding the material into a fine powder (ii) leads to c) surface collapse of smaller Zn-
HKUST-1 fragments. 

 

 

Figure 2.12. a) Optical micrograph of Zn-HKUST-1 examined immediately after 
crystallization. b) Optical micrograph of a cross section of Zn-HKUST-1 after immersion 
in saturated iodine/CHCl3 solution for 7 days. Inset: crystal before cross section. c) 
Optical micrograph of Zn-HKUST-1@Cu-HKUST-1. d) Optical micrograph of Zn-
HKUST-1@Cu-HKUST-1 after immersion in saturated iodine/CHCl3 for 24 hours. Scale 
bars, 100 µm. 
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Figure 2.13. Powder X-ray diffractogram of Zn-HKUST-1@Cu-HKUST-1 
immediately after synthesis and solvent replacement with fresh DMF. 

 

Figure 2.14. Optical micrograph of Zn-HKUST-1 crystals after drying under 
reduced pressure (~20 mTorr) and subsequently immersing in saturated iodine/CHCl3 
solution for 7 days. Crystals were rapidly rinsed with clean CHCl3 to remove iodine 
adsorbed at the surface. In contrast to Zn-HKUST-1 immersed in saturated iodine/CHCl3 
solution before drying (Figure 2.12), no iodine uptake was observed.48,49 
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Chapter 3 

 

Non-interpenetrated IRMOF-8: synthesis, activation, and gas sorption† 

3.1 Introduction 

Despite surface areas exceeding 5000 m2/g in microporous coordination polymers 

(MCPs),1-4 many difficulties still exist in achieving sorption properties commensurate 

with theoretical expectations. Reasons cited for experimental surface areas falling short 

of values computed from ideal, guest-free crystallographic models include incomplete 

guest removal,5,6 structural amorphitization7,8 or transformation9 upon guest removal, and 

interpenetration.10 With the tremendous growth of the field, the need to understand and 

overcome these obstacles has become imperative. Our group11,12 and others10,13,14 have 

begun to analyze non-ideal behavior in MCPs in detail. In this work, we focus on 

IRMOF-8 (Zn4O(ndc)3, ndc = naphthalene-2,6-dicarboxylate),15 one of the earliest 

examples of a material which, though expected to have an outstanding surface area based 

on its guest-free crystal structure, has yet to exhibit predicted gas sorption properties. 

IRMOF-8 has a cubic structure constructed from the linkage of basic zinc acetate 

clusters and ndc ligands (Figure 3.1a). Soon after the initial report, it was scrutinized as a 

H2 storage material.16-20 However, the maximum excess H2 uptake in this material is 

exceeded by the topologically identical materials IRMOF-1 and IRMOF-20,21 a result at 

odds with that expected from their shorter linker lengths.22 Researchers have proposed a 

number of reasons for the curious sorption behavior of IRMOF-8 including extra-

framework zinc species,17 incomplete activation,18 and interpenetration.19,23,24 Indeed, a 

number of interpenetrated phases of Zn4O/ndc-based systems have been discovered,25-27 

                                                 
† Feldblyum, J. I.; Wong-Foy, A. G.; Matzger, A. J. Chem. Commun. 2012, 48, 9828. Adapted by 

permission of The Royal Society of Chemistry. 



  

40 

 

the syntheses of which are similar to that of IRMOF-8, lending credence to the possibility 

that typical solvothermally synthesized IRMOF-8 contains at least a significant amount 

of an interpenetrated phase. In this work, we report fully activated, non-interpenetrated 

IRMOF-8 and examine its sorption properties. 

3.2 Results and Discussion 

Initially, we synthesized IRMOF-8 using common solvothermal routes (hereafter 

denoted IRMOF-8-HT).15,18 After activation by solvent exchange with CH2Cl2 and 

subsequent evacuation under reduced pressure (~10-2 Torr), a BET surface area of 1671 

m2/g was obtained (Figure 3.2a). Materials synthesized with dimethylformamide (DMF) 

or diethylformamide (DEF), as well as those activated using supercritical CO2, exhibited 

similar surface areas. Thermogravimetric analysis (TGA) (Figure 3.3) of the activated 

samples revealed minimal mass loss, suggesting thorough removal of solvent on 

evacuation (though not discounting occluded non-volatile guests10,28). X-ray diffraction 

of the material before and after evacuation (Figure 3.4) indicates that bulk crystallinity is 

maintained; however, reflections in addition to those expected for phase-pure IRMOF-8 

are observed (Figure 3.5). Previous reports19,23,24 have suggested framework 

interpenetration as the primary cause for low surface area arising from these synthetic 

procedures. Indeed, comparison with a hypothetical ndc-based framework derived from 

the structure of IRMOF-923 (Figure 3.1b) shows only modest agreement with our 

experimental data. Although comparison with recently reported interpenetrated Zn/ndc-

based systems25-27 did not yield better agreement, it stands to reason that the low surface 

area of IRMOF-8-HT is due, at least in part, to the presence of one or more 

interpenetrated phases. 

Incubation of ndc and Zn(NO3)2•4H2O at room temperature in DEF29 for one 

week afforded colorless ~100 micron truncated cubic crystals of high optical quality 

(hereafter denoted IRMOF-8-RT, Figure 3.6a). Analysis by powder X-ray diffraction 

(PXRD)  showed excellent agreement with that simulated from the original crystal 

structure (Figure 3.6b).15 However, upon solvent exchange with CH2Cl2 and subsequent 

evacuation, a relatively low BET surface area of 773 m2/g was obtained. PXRD data of 



  

41 

 

the evacuated material are consistent with partial structural collapse, accounting for a 

surface area significantly lower than the calculated geometric accessible surface area30 of 

4350 m2/g. Activation using supercritical CO2
31 applied in a flow apparatus32 yielded a 

BET surface area of 4461 m2/g, an unusually high value for a material with simple cubic 

symmetry.33 Characterization of IRMOF-8- RT by Ar sorption and subsequent NLDFT 

fitting (Figure 3.2b) yielded a surface area-weighted average pore size of 17.1 Å, closely 

matching the crystal structure pore size of 17.5 Å.34 In contrast, IRMOF-8-HT Ar 

sorption data yielded a lower surface area-weighted average pore size of 11.0 Å, 

consistent with an interpenetrated material. 

Given the consistency in N2 and Ar sorption properties with theory, we elected to 

compare the hydrogen sorption properties of IRMOF-8-RT with previous reports on 

related materials.16,18,35,36 The H2 uptake at cryogenic temperatures between 0 and 1 bar is 

given in Figure 3.7a. The gravimetric uptake at 1 bar and 77 K is 12.3 mg/g (1.23 wt%), 

lower than previously reported values ranging from 14.5-15.2 mg/g under identical 

conditions; because the surface area of IRMOF-8-RT is dramatically greater than those of 

these other materials, the low uptake at 1 bar must be coupled with a lower isosteric heat 

of adsorption (Qst). The Qst for IRMOF-8-RT was determined using a modified Clausius-

Clapeyron equation37  (Figure 3.7b) by fitting the isotherms collected at 77 and 87 K to 

the Langmuir-Freundlich equation (Figure 3.8). Fits yielded values of 5.5 kJ/mol and 4.6 

kJ/mol at low H2 uptake and averaged over the examined pressure range, respectively 

(Figure 3.7b). These values are significantly lower than that previously determined for 

IRMOF-8 (6.1 kJ/mol),18 a discrepancy that can be explained by the less constricted 

pores of IRMOF-8-RT. In this context, it is worth noting that other non-interpenetrated 

Zn4O MCPs exhibit similarly low Qst values: IRMOF-1, ~4-5 kJ/mol,18,38 and UMCM-2, 

~4.2 kJ/mol.2 

The known isosteric heats of adsorption for all Zn4O-based MCPs (including 

IRMOF-8-RT) are well below the range needed for optimal H2 sorption at room 

temperature.39,40 However, at 77 K the optimal range for Qst is significantly lower as well. 

Too high a Qst at cryogenic temperatures is detrimental for sorbate release due to 

significant uptake below the lowest operating pressure (~1-1.5 bar) of the pressure swing 

cycle.39 In slit-pore carbons, a Qst of ~6 kJ/mol leads to an ideal operating temperature of 
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115 K. Theory predicts that for a Qst of ~4 kJ/mol for the same class of materials, an 

operating temperature of 77 K is ideal.39 Hence, for H2 storage and delivery at 77 K, 

physisorbents such as IRMOF-8-RT are in fact better suited than lower surface area, 

higher affinity materials. 

3.3 Conclusions 

In summary, the gap between experimental and theoretical porosity in IRMOF-8 

has been bridged. A high surface area in excess of 4400 m2/g was obtained, and the pore 

size distribution and powder diffraction data are in excellent agreement with expectations 

based on crystallography. Cryogenic H2 sorption data between 0 and 1 bar yields a 

modest heat of adsorption consistent with that obtained for other Zn4O-based MCPs, 

which may in fact be advantageous for deliverable hydrogen at cryogenic temperatures. 

3.4 Experimental Methods 

Starting reagents. Zinc nitrate hexahydrate (Fisher Scientific, ACS grade), 

naphthalene-2,6-dicarboxylic acid (H2ndc, TCI, >98%), dichloromethane (Fisher 

Scientific, >99.9%), and dimethylformamide (DMF, Fisher Scientific, >99.5%) were 

used as-received without further purification. Diethylformamide (DEF, TCI, >99.0%) 

was purified by storing over activated carbon for ~1 month and subsequently passing 

through a column containing silica gel. DEF was used within one month of purification in 

this manner. 

Zinc nitrate tetrahydrate, Zn(NO3)2•4H2O. Zinc nitrate hexahydrate (~25 g) 

was placed in a Schlenk flask and exposed to dynamic vacuum (10-2 Torr) for 24 h, 

collected, and stored in a desiccator. Water content was assessed periodically by 

thermogravimetric analysis and maintained at a mol ratio below 4.5:1 H2O:Zn. 

IRMOF-8-HT. A mixture of 0.21 g (0.80 mmol) Zn(NO3)2•4H2O and 0.050 g 

(0.23 mmol) H2ndc was dissolved in 10 mL DEF by sonication in a 20 mL scintillation 

vial. The solution was then incubated at 85 °C for ~36 h, after which time pale yellow 

crystal clusters formed. The vial was cooled to room temperature, and the solid was 
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rinsed three times over 24 h with fresh DMF and subsequently four times over two days 

with CH2Cl2. The solid was finally dried under reduced pressure (10-2 Torr) and stored in 

a N2 glovebox until analysis. Materials made with DMF were produced identically, but 

replacing DEF with an equal volume of DMF. The yield of the dry, activated sample is 

33%, based on H2ndc. 

IRMOF-8-RT. A procedure modified from a previous preparation29 was used. A 

mixture of 2.18 g (8.83 mmol) Zn(NO3)2•4H2O and 0.240 g H2ndc (1.11 mmol) was 

dissolved in 200 mL DEF by sonication in a 400 mL jar. Ten microscope slides were 

placed upright in a home-built holder in solution to afford additional sites for crystal 

growth and simplify collection of strongly adherent crystals. The solution was incubated 

at room temperature for 7 days, after which time ~100 µm diameter clear, truncated cubic 

crystals had grown on the slides and walls of the jar. The crystals were collected and 

rinsed four times with fresh DMF over 24 h. The material was activated using 

supercritical CO2
31 with a flow-through apparatus (see below) and stored in a N2 

glovebox until analysis. The average yield as determined from six preparations of the dry, 

activated sample is 20%, based on H2ndc. 

Supercritical CO2 activation. Samples were activated by flowing supercritical 

CO2. The method has been described in detail elsewhere.41  

Powder X-ray diffraction. Powder X-ray diffraction data were collected with a 

Bruker D8 Advance diffractometer having a Bragg-Brentano geometry. The Cu-Kα 

(1.5406 Å) X-ray radiation source was operated at 40 V and 40 mA. Samples were 

ground in a mortar and pestle and evenly dispersed on a low-background quartz plate 

with a cavity depth of 0.3 mm (The Gem Dugout, State College, Pennsylvania, USA) in a 

N2 glovebox. Samples were then transferred to the diffractometer and analyzed under 

ambient conditions and low relative humidity (<25%). Stability of the analyte under 

measurement conditions was confirmed by comparing rapid (0.1 sec./step) scans obtained 

immediately after exposure of the analyte to ambient conditions and comparing them 

with data obtained with slower, higher resolution scans (2-3 sec./step). 

Gas sorption measurements. Sorption experiments were carried out using an 

Autosorb 1C (Quantachrome Instruments, Boynton Beach, Florida, USA). He (99.999%, 

used to determine void volumes), N2 (99.999%), Ar (99.999%), and H2 (99.999%) were 
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purchased from Cryogenic Gases and used as received. For N2 and Ar measurements, a 

glass sample cell was charged with 20 mg sample and analyzed at 77 and 87 K, 

respectively. For analysis of H2 uptake, 103 mg of sample was added to a glass sample 

cell. A glass rod of diameter slightly smaller than the inner diameter of the sample cell 

was inserted into the cell to minimize dead volume. The sample was then analyzed at 77 

and 87 K. 

Surface areas were obtained using the BET method following the consistency 

criteria introduced by Rouquerol42 and applied to MCPs by Snurr.43 Consistency criteria 

plots and BET plots are given in Figure 3.9 and Figure 3.10, respectively. 

Ar pore size distributions were using NLDFT methods available in NovaWin 9.0 

(Quantachrome Instruments). It is noted that the fit for IRMOF-8-RT showed poor fitting 

between 0.02 and 0.08 P/P0 (Figure 3.11). 

Thermogravimetric Analysis. A TA Instruments Q50 TGA was used to obtain 

thermogravimetric data. Activated analyte (5 mg) was heated and analyzed in a platinum 

pan under a dry nitrogen atmosphere. 

  

3.5 Figures 

 

Figure 3.1. Structures of a) IRMOF-8 and b) interpenetrated IRMOF-8 analogue. 
Blue = Zn, red = O, grey = C. Hydrogen atoms omitted for clarity. 
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Figure 3.2. a) N2 isotherms of IRMOF-8-HT (blue triangles) and IRMOF-8-RT 
(black circles). b) Ar isotherm of IRMOF-8-RT. Inset: Pore size distribution from 
NLDFT fit. 

 

Figure 3.3. Thermogravimetric analysis of IRMOF-8-HT under a N2 atmosphere 
after solvent removal. 
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Figure 3.4. PXRD pattern of IRMOF-8-RT immediately before and after 
evacuation. 

 

Figure 3.5. PXRD pattern of IRMOF-8-HT compared with the simulated 
diffractograms of IRMOF-8 and a hypothetical model of interpenetrated IRMOF-823 
(based on the interpenetration mode of IRMOF-9). 
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Figure 3.6. a) Optical micrograph of crystals of IRMOF-8-RT immediately after 
synthesis. Scale bar = 500 µm. b) Powder X-ray diffractogram of IRMOF-8-RT after 
supercritical CO2 activation. 

 

Figure 3.7. a) H2 isotherms of IRMOF-8-RT at 77 and 87 K. b) Isosteric heat of 
adsorption for H2 uptake in IRMOF-8-RT. 

 

Figure 3.8. Langmuir-Freundlich fits of IRMOF-8-RT H2 sorption data at 77 and 
87 K. 
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Figure 3.9. Determination of BET plot range for a) IRMOF-8-HT and b) IRMOF-
8-RT based on consistency criteria.42,43 

 

Figure 3.10. a) BET plot for a) IRMOF-8-HT and b) IRMOF-8-RT. The 
maximum points were chosen by the consistency criteria (Figure 3.9). For IRMOF-8-RT, 
inclusion of points at P/P0 values below 0.05 resulted in poorer fits to the data. 
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Figure 3.11. NLDFT model of Ar isotherm for IRMOF-8-RT based on a kernel 
for zeolites and silica with cylindrical pores. Inset shows poor fitting between 0.02 and 
0.08 P/P0, yielding some uncertainty in the pore size distribution (see Figure 3.2, inset). 
No more accurate NLDFT model was available. 
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Chapter 4 

 

Interpenetration, Porosity, and High-Pressure Gas Adsorption in Zn4O(2,6-

naphthalene dicarboxylate)3
† 

4.1 Introduction 

The study of microporous coordination polymers (MCPs) has been fueled by the 

promise of their utility in gas sorption applications, in particular hydrogen/methane 

storage and delivery1,2 and carbon dioxide capture.3 The rational optimization of these 

materials for sorption applications is made possible due to the relative ease with which 

they can be designed. The design principles elegantly delineated by Robson and 

coworkers in their pioneering work of the early 1990’s4 demonstrated that by using 

organic ligands (typically termed “linkers” in the more recent literature) and metals with 

geometrically defined preference for assembly, open structures could be produced to 

mimic known solid-state networks such as diamond4 or PtS.5 Shortly thereafter it was 

demonstrated that chemical functionalization or increasing ligand length would lead to 

chemically tunable or expanded lattices with identical topology.5 Indeed, the concept of 

increasing linker length while maintaining geometry has become a well-known strategy 

to reduce density and increase surface area of topologically identical coordination 

polymers.6,7 

Despite the many successful examples of MCPs-by-design, predicted structures 

have often proven difficult to obtain experimentally. Obstacles such as interpenetration,8,9 

unexpected or unpredictable coordination geometries,10 or interference with structure 

formation by the presence of incompatible functional groups11-13 or steric bulk14 can lead 

                                                 
† Adapted with permission from Feldblyum, J. I.; Dutta, D.; Wong-Foy, A. G.; Dailly, A.; 

Imirzian, J.; Gidley, D. W.; Matzger, A. J. Langmuir 2013, 29, 8146. Copyright 2013 American Chemical 
Society. 
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to materials with disappointing properties such as lower-than-expected surface areas or 

low degrees of crystallinity. Arguably, in no set of isostructural MCPs are these obstacles 

more evident than in the IRMOF-series.15 This is a set of simple cubic-structured MCPs 

based on Zn4O clusters linked together by linear dicarboxylates. IRMOF-1 (originally 

and more commonly termed MOF-5, Zn4O(bdc)3, bdc = 1,4-benzene dicarboxylate)16 

exhibits surface areas typically between 3000 and 3500 m2/g.15,17 Surface area in MCPs 

can be related to the mass ratio of organic component to metal cluster and the 

accessibility of these components by adsorbates.6 Thus, using a longer p-phenylene-based 

linker (such as 4,4′-biphenyldicarboxylate as in IRMOF-10 or 4,4′′-

terphenyldicarboxylate as in IRMOF-16) would be expected to yield a material having 

higher surface area.6 In practice, IRMOF-1018 and IRMOF-16,19 as well as the extended-

linker IRMOF-1215 and IRMOF-14,15 have exhibited surface areas significantly lower 

than those predicted from crystallographic models. IRMOF-820-32 also exhibited similarly 

low surface areas until our recent findings.33 Obstacles such as interpenetration, pore 

collapse upon guest removal, or non-volatile occluded guests may be responsible for 

these inconsistencies between theory and experiment. However, developing a deeper 

understanding of such inconsistencies is hampered by the use of traditional probes of 

porous materials such as gas sorption and X-ray diffraction because they are averaging 

techniques insensitive to defects.  

We have recently demonstrated the utility of positron annihilation lifetime 

spectroscopy (PALS) to probe defects,34 degradation,35 and pore architecture during gas 

sorption35 in MCPs. PALS operates on the principle that the average annihilation lifetime 

of positronium (the bound state of a positron and an electron) in an empty pore is directly 

related to the size of that pore. Positronium is formed throughout a porous solid upon 

exposing that solid to high-energy positrons that burrow deep within it. Positronium is 

formed from the interaction between implanted positrons and electrons present within the 

material, allowing the detection of buried pores and local disorder where other 

porosimetry methods often fall short. Detailed reviews of the technique are available.36,37 

Given the numerous examples20-32,38 of a material derived from Zn4O metal clusters and 

ndc (ndc = 2,6-naphthalene dicarboxylate) and referred to as IRMOF-8, but having 

surface areas typically between 1000-2000 m2/g (significantly lower than the predicted 
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geometric accessible surface area39 of 4350 m2/g), and considering previous speculation 

that interpenetration led to such deviation from crystallographic expectation,21,25,40,41 we 

sought to determine the cause of the low surface area in this material using PALS. During 

our investigations, we discovered an approach to synthesize and activate high surface 

area, phase-pure IRMOF-8.33 In the present work, we provide conclusive evidence that 

attempts at synthesizing IRMOF-8 under typical solvothermal conditions leads to an 

interpenetrated analogue. Furthermore, we investigate the high pressure methane and 

hydrogen storage sorption properties of non-interpenetrated IRMOF-8. 

4.2 Experimental Section 

Materials. All reagents were obtained from commercial vendors and used as-

received unless otherwise noted. N,N-Diethylformamide (DEF) was purified by storing 

over activated carbon for a minimum of 1 month and subsequently passing through a 

silica gel column before use. Purified DEF was used within one month or until the 

solvent color changed from colorless to pale yellow by visual inspection. To obtain 

Zn(NO3)2•4H2O, powdered Zn(NO3)2•6H2O was subjected to reduced pressure (~20 

mTorr) for 24 h. Water content was assessed by thermogravimetric analysis (TGA). Both 

IRMOF-8 and interpenetrated analogues were prepared and activated as previously 

described33 unless otherwise noted. 

Gas sorption measurements. N2 sorption isotherms were obtained on a 

NOVA4200E (Quantachrome Instruments) gas sorption analyzer. An activated sample 

(~40-50 mg) was added to a long-stem glass sample cell in a N2 glove box and 

subsequently transferred to the sorption apparatus for measurement. Samples were 

analyzed at 77 K using 99.999% purity N2 (Cryogenic Gases). Ar sorption isotherms 

were obtained on an Autosorb 1C (Quantachrome) gas sorption analyzer. An activated 

sample (~30 mg) was charged into a long-stem glass sample cell in a N2 filled glove box 

and subsequently transferred to the sorption apparatus for measurement. Samples were 

analyzed at 87 K using 99.999% purity Ar (Cryogenic Gases). Excess H2 sorption 

isotherms were obtained using a volumetric Sieverts’ apparatus (Hy-Energy LLC PCT-

Pro 2000). Samples (~200 mg) were cooled to 77 K by immersing the sample cell in a 
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liquid N2 bath. He gas (99.999% purity, Airgas Inc.) was used to determine the cell 

volume and the dead space volume of the sample-filled cell at room temperature. H2 gas 

of 99.999% purity (Airgas Inc.) was used for sorption analysis. Excess CH4 sorption 

isotherms were collected on an HPA-100 High Pressure Analyzer (VTI Corporation) at 

295 K using 99.99% purity CH4 (Air Products). Activated sample (~250 mg) was 

charged into a stainless steel sample cell in a N2 filled glove box and transferred to the 

sorption apparatus for analysis. The void volume of the cell was determined by He 

expansion from the dosing manifold into the sample cell. Compression factors of the 

gases (ZHe, ZCH4) both in the dosing manifold and in the sample cell were determined 

using the NIST Reference Fluid Thermodynamic and Transport Properties (REFPROP 

version 7.0) incorporated into the HPA-100 software. A CH4 isotherm was then 

constructed from adsorption data collected from 0-60 bar and from desorption data from 

47-5 bar.  

Positron annihilation lifetime spectroscopy (PALS). MCPs were loaded in an 

inert atmosphere N2 glove box into a home-built sample holder having a one-sided ~1 

µCi 22Na positron source. The sample holder was subsequently sealed and connected to a 

stainless steel apparatus capable of pressures between 10-5 and 2 × 103 psi. Further details 

on data collection and analysis have been described previously.34 

Computation. Geometric accessible surface areas were obtained by the method 

described by Düren et al.39 A slightly modified version of the originally reported structure 

of IRMOF-815 was used, where solvent was removed and single-site occupancy was 

assigned to the organic linkers before computational analysis. Pore sizes were determined 

from guest-free structures using PSDSolv, a Monte Carlo-based method that provides a 

pore size distribution using spherical probes.42,43 

4.3 Results and Discussion 

The initial objective of this work is to elucidate the origin of the low surface area 

of Zn4O(ndc)3 synthesized at elevated temperatures. When synthesized at 85 °C 

(hereafter denoted IRMOF-8-HT), a precipitate of cubes and cube clusters is formed after 

36 h (Figure 4.1). Previous reports on Zn4O(ndc)3 synthesized solvothermally both in 
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N,N-dimethylformamide (DMF)22,29,31,32,38 or DEF24,26-28,30,33 at temperatures ranging 

from 85 to 130 °C have presented surface areas between 1000 and 2000 m2/g: values less 

than half of that expected from the geometric accessible surface area calculated from the 

originally reported15 crystal structure. Indeed, when activated under reduced pressure 

(~20 mTorr) after solvent exchange with CH2Cl2, N2 sorption indicates a relatively low 

BET surface area of 1606 m2/g (Figure 4.2). Activation by flowing supercritical CO2
44 

led to a similar BET surface area (Figure 4.3). Examination of the powder X-ray 

diffraction (PXRD) data (Figure 4.4) of both as-synthesized and evacuated material 

shows reflections that are not present in the simulated PXRD pattern of the ideal, non-

interpenetrated IRMOF-8; furthermore, these reflections do not match those present in 

the simulated powder patterns of other known Zn/ndc-based systems (Figure 4.5). We do 

note a significant resemblance between the powder patterns of IRMOF-8-HT after 

activation under reduced pressure and that of a previously proposed, hypothetical 

interpenetrated analogue21 of IRMOF-8 (Figure 4.4, and as discussed previously33). As 

we were not able to obtain crystals suitable for single crystal X-ray diffraction, and no 

hypothetical model was found to provide a better-matching simulated PXRD pattern, we 

sought other methods that might lend insight into the potentially interpenetrated nature of 

IRMOF-8-HT.  

Ar sorption of IRMOF-8-HT activated under reduced pressure indicates a fairly 

broad pore size distribution in the range of 0.7-1.5 nm (Figure 4.6). The pore diameter42,43 

calculated for the hypothetical interpenetrated IRMOF-8 analogue proposed by Rowsell21 

(based on the interpenetration mode of IRMOF-9) is 0.87 nm, at the low end of the range 

determined by NLDFT fitting of the 87 K Ar sorption isotherm. Although the small pores 

of the pore size distribution are in agreement with a hypothetical interpenetrated 

structure, the presence of pores up to 1.5 nm in diameter suggests that this specific 

interpenetrated framework model used cannot wholly account for the sorption 

characteristics of the bulk sample analyzed. 

To assess the presence and extent of interpenetration in IRMOF-8-HT, PALS 

analysis was applied; this technique provides information on the size and population of 

pores in a material, even if those pores are inaccessible or otherwise undetected by gas 

sorption methods. The PALS spectrum of IRMOF-8-HT in vacuum is shown in Figure 
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4.7. Average lifetimes of 8.31 ± 0.12 and 16.48 ± 1.33 ns, derived from ortho-

positronium (o-Ps) sampling the MCP, were obtained by fitting the PALS spectrum to a 

linear combination of exponential decays. A third lifetime of ~90 ns, arising from 

annihilation in the intergranular space between crystals, was also observed, indicative of 

o-Ps escaping from the interior of the analyte crystals (less precision is used for this third 

lifetime as it is variable depending on factors such as crystal grain size, and does not 

provide direct information on the pore characteristics of the analyte).45 The two lifetimes 

observed for IRMOF-8-HT reveal the presence of two pores of different sizes. Since o-Ps 

readily diffuses throughout these materials (as evidenced by the presence of annihilation 

from the intergranular region), and as o-Ps tends to annihilate from the largest available 

pores,36 the large and small pores must exist in spatially separated regions. If these pores 

were spatially well-mixed, only a single average lifetime would be observed. Pore sizes 

of 1.01 ± 0.01 and 1.41 ± 0.05 nm can be determined for the small and large pores, 

respectively, applying an extended46,47 Tau-Eldrup48,49 model and assuming50 channel-

like pores. These pore sizes may represent a lower limit of the true pore size, as the 

longest-lived o-Ps diffuses out of the crystal grains as evidenced by the ~10% of formed 

o-Ps annihilating in the intergranular space. The smaller of the two pore diameters 

determined from PALS is within 12% of the computationally determined pore diameter 

based on the largest sphere that can fit in the IRMOF-8-HT pores. This agreement is 

quite good given the assumptions in both the extended Tau-Eldrup model and in our 

determination of theoretical pore size. The larger MCP lifetime is likely due to the 

presence of some quantity of non-interpenetrated pores of the type proposed in the model 

of IRMOF-815 (discussed further below). The annihilation intensity, the relative 

contribution to the PALS spectrum of each lifetime component, provides an estimate of 

the relative population of each pore. The intensity is weighted toward larger pores, in 

which o-Ps is both more likely to form and more likely to diffuse into.51 The intensities of 

19.3% and 2.9% for small and large pores, respectively, are therefore consistent with a 

predominantly interpenetrated sample. As the Ar sorption isotherm of IRMOF-8-HT (and 

the resultant pore size distribution) shows little agreement with that of Zn4O(ndc)3 

synthesized at room temperature (hereafter denoted IRMOF-8-RT), the minor component 
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of larger pores detected by PALS can be rationalized by incomplete interpenetration 

within otherwise interpenetrated grains. 

The PALS spectrum of IRMOF-8-RT activated via flowing supercritical CO2
44 

(Figure 4.8) is strikingly different from that of IRMOF-8-HT (Figure 4.7). In this case, 

only one MCP lifetime is observed, 18.45 ± 0.26 ns. This lifetime corresponds to a 

channel-pore size of 1.49 ± 0.01 nm, in excellent agreement with the 1.50 nm cubic pore 

diameter determined geometrically from the original15 crystal structure. Noting that 

detailed comparison of extended Tau-Eldrup-derived pore size and crystallographic 

dimension is a subject of ongoing investigation,50 a conclusion consistent with the 

available data is that IRMOF-8-RT is free of interpenetration. An additional contribution 

from o-Ps annihilating in the intergranular space was detected, as expected given the 

open and interconnected pore space of the non-interpenetrated material. 

Given the high BET surface area of IRMOF-8-RT (~4400 m2/g33), the H2 and 

CH4 sorption properties of the material are of interest. Figure 4.9 shows the excess H2 

uptake of IRMOF-8-RT at 77 K and pressure up to 80 bar. We previously proposed33 that 

the higher surface area, yet lower H2 uptake at 1 bar and 77 K of IRMOF-8-RT compared 

with its (presumed) interpenetrated analogue meant that the maximum excess uptake 

must be higher in IRMOF-8-RT since maximum excess H2 uptake has been shown to 

correlate well with the BET specific surface area.17 Indeed, the maximum uptake is 6.36 

wt% at 40.2 bar, nearly twice that of the maximum uptake previously observed (3.6 wt%) 

for what is likely an interpenetrated IRMOF-8 analogue.24 

As we33,52 and others53-56 have previously emphasized, critical for the practical use 

of MCPs as sorbents for hydrogen fuels is the deliverable H2 uptake. This value reflects 

the difference in uptake between the maximum excess and minimum practical operating 

pressure. The deliverable excess H2 uptake for IRMOF-8-RT is given in Table 4. 1 along 

with that of a subset of representative MCPs for which data were available. The 

minimum pressure used for calculation of deliverable H2 uptake vary widely in the 

literature; typical values for this lower limit are between 1-5 bar,53-66 but values as high as 

10 bar67 have been used. Although the US Department of Energy target value is 3 bar,68 

data at this value is not available for most of the materials discussed herein, and hence, 

we were only able to make comparisons using a minimum deliverable pressure of 1 bar. 
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For future comparison, the deliverable uptakes of H2 in IRMOF-8-RT using minima of 1 

bar, 1.5 bar, 3 bar, and 5 bar are 5.13 wt%, 4.46 wt%, 3.51 wt%, and 2.70 wt%, 

respectively, resulting in deliverable fractions of maximum excess uptake of 81%, 70%, 

55%, and 42%, respectively. These values were calculated using interpolation when 

necessary. IRMOF-8-RT shares similar excess H2 sorption characteristics with the 

isostructural IRMOF-20; the higher surface area MOF-177 has a greater deliverable 

capacity, although the deliverable fraction of the maximum excess uptake (fdeliv) is similar 

for each of these materials. Likewise, the higher surface area, isostructural, Zn4O-based 

SNU-70’ has a nearly identical fdeliv. 

Materials with higher affinity for H2 due to the presence of coordinatively 

unsaturated metal sites or interpenetration show significantly lower fdeliv (for the specific 

(P, T) operating conditions discussed above) in comparison with IRMOF-8-RT. For 

MCPs with coordinatively unsaturated metal sites, most telling is the example of PCN-

66;7 despite having a higher maximum excess uptake than IRMOF-8-RT, the deliverable 

uptake is in fact lower. In NOTT-101,69 the deliverable uptake is 30% lower than that of 

IRMOF-8-RT, despite having a maximum excess uptake only 5% less than that of the 

Zn-based MCP. Although in many cases high affinity does lead to low fdeliv, we now 

consider the case of the isostructural series of materials PCN-61, PCN-66, and PCN-68.7 

Each of these materials is constructed from hexatopic linkers connected by Cu 

paddlewheel clusters having coordinatively unsaturated metal sites. As maximum excess 

H2 uptake (and surface area) increase, so does fdeliv, approaching the values more typical 

for the aforementioned low-affinity zinc-based MCPs. We rationalize this trend by 

considering the successively larger linkers of PCN-61, PCN-66, and PCN-68. The 

volumetric density of high-affinity coordinatively unsaturated metal sites in PCN-68 is 

smaller than that of PCN-61; hence, it behaves more as a low-affinity material in that fdeliv 

is quite high. Accordingly, the volumetric density of coordinatively unsaturated metal 

sites in PCN-66 lies in between those of PCN-61 and PCN-68, as does its fdeliv. Taken 

together, the isostructural series of PCN-61, PCN-66, and PCN-68 provides clear 

evidence that a higher fdeliv can be achieved by lowering the volumetric density of such 

high-affinity sorption sites. Finally, the interpenetrated IRMOF-11 illustrates the 

influence of catenation on deliverable excess H2 uptake. Increased van der Waals 
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interactions due to the confined pore space enhances uptake below the deliverable 

minimum, resulting in a very low fdeliv. IRMOF-8-RT and related, non-interpenetrated 

Zn4O-based materials, composed of low-affinity sorption sites throughout, have high 

fdeliv. 

The excess CH4 sorption isotherm for IRMOF-8-RT between 1 and 60 bar and 

298 K is presented in Figure 4.10. The excess CH4 uptake at 35 bar is 193 cm3/g, 

corresponding to a volumetric uptake of 87 v/v, calculated with the crystal density of 

0.448 g/cm3. As in the case for H2, minimum pressures for calculating deliverable CH4 

uptake vary, but are typically between 1-5 bar.70-79 The deliverable gravimetric uptakes of 

CH4 in IRMOF-8-RT using minima of 1 bar, 1.5 bar, 3 bar, and 5 bar and assuming a 

maximum working pressure of 35 bar are 185 cm3/g, 182 cm3/g, 171 cm3/g, and 159 

cm3/g, respectively, resulting in deliverable fractions of 96%, 94%, 87%, and 82%, 

respectively. Corresponding deliverable volumetric uptakes at these pressures are 83 v/v, 

81 v/v, 77 v/v, and 71 v/v, resulting in deliverable fractions of 95%, 93%, 89%, and 82%, 

respectively. These values were calculated by interpolation when necessary. Despite the 

high gravimetric uptake, the modest volumetric uptake at 35 bar is expected for a 

material with relatively large pores, given that the optimal pore size for volumetric 

storage is generally understood to be either 0.4 or 0.8 nm (dimensions allowing the 

adsorption of exactly one or exactly two CH4 molecules, respectively80,81), and that 

optimal surface areas have empirically been estimated to lie in the 2500-3000 m2/g 

range.81 

To understand how CH4 fills the pore space of the large-pore IRMOF-8-RT, we 

analyzed the material with PALS during CH4 sorption at pressures ranging from 0 to 89.4 

bar (Figure 4.11). The two datasets shown in Figure 4.11a are as-fitted o-Ps lifetime data 

and lifetime data corrected for the effects of collisional annihilation due to gas present 

within the pore, but not adsorbed to the pore walls. The corrected lifetime data shows 

how the o-Ps lifetime is influenced solely by CH4 adsorbed within the pores, decreasing 

with increasing CH4 pressure as would be expected for CH4 adsorbed to the pore walls 

(the slight increase in lifetime at 0.76 bar is attributable to reduced escape of the longest-

lived o-Ps from the MCP due to scattering from CH4 gas, before reduction in o-Ps 

lifetime due to CH4 adsorption overtakes this effect as at higher pressures45). The fraction 
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of the pore volume filled by CH4 on increasing gas pressure, determined by subtracting 

the measured void volume at a given pressure from the void volume measured in 

vacuum, is given in Figure 4.11b. The exact fraction of occupied volume depends on the 

model (2D or 3D confinement of o-Ps) used to convert lifetime to pore diameter (and 

hence, volume), as discussed previously for the case of CO2 adsorption in MOF-5.35 At 

35 bar, only 33-48% of the volume in the pores is utilized for adsorption. The volume 

filled by a single monolayer of CH4 is estimated to be ~60%; consequently, adsorption at 

35 bar in IRMOF-8-RT occurs at sub-monolayer coverage. This finding explains 

previous observations that specific surface area (which is defined at complete monolayer 

coverage) does not necessarily correlate with CH4 uptake at 35 bar in MCPs.7 At the 

highest pressures analyzed, only 50-64% of the pore volume is filled by adsorbed gas, 

and CH4 uptake seems to level off at higher pressures. These data may suggest that at 

room temperature, and potentially at any temperature above the critical temperature, only 

monolayer coverage is achievable irrespective of pressure (within reasonable pressure 

limits for storage and delivery).  

4.4 Conclusions 

In this work we have shown that attempts at synthesizing IRMOF-8 at high 

temperatures in fact yield an interpenetrated analogue of the material. Analysis of bulk 

samples by PXRD, gas sorption, and PALS reveals data consistent with the presence of 

near-complete interpenetration. The high pressure H2 and CH4 sorption properties of high 

surface area, non-interpenetrated Zn4O(ndc)3 were also examined. H2 uptake was 

determined to be consistent with expectations based on other Zn4O-based materials. 

Importantly, the fraction of deliverable H2 uptake was found to be above 80%, having a 

value shared by other MCPs with minimal H2-sorbent interaction and in contrast to the 

low deliverable fraction calculated for MCPs with significant contributions from binding 

at coordinatively unsaturated metal sites or those displaying interpenetration. Despite 

high gravimetric CH4 sorption, volumetric sorption in IRMOF-8-RT was low, a finding 

further illuminated by PALS. Only 33-48% of the pore volume is occupied by CH4 at 35 

bar, corresponding to sub-monolayer coverage. Even at pressures up to 90 bar, uptake 
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levels off and only monolayer coverage is achieved, suggesting that multi-layer 

adsorption of CH4 is not operative in this material at room temperature. Taken together, 

these data suggest that successful synthesis and activation of IRMOFs with yet longer 

linkers and higher surface areas such as IRMOF-10 or IRMOF-16 may be possible, 

although even partial interpenetration may be an obstacle in maximizing the porosity of 

these materials. Given the low volumetric uptake of light gases expected for such 

materials having high gravimetric surface areas,81 a combination of both linker extension 

and linker functionalization may be necessary to simultaneously maximize both 

gravimetric and volumetric uptake. 

4.5 Figures 

 

Figure 4.1. Optical micrograph of IRMOF-8-HT after cooling and rinsing three 

times with fresh N,N-dimethylformamide. Scale bar = 100 µm. 
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Figure 4.2. a) N2 sorption isotherm of IRMOF-8-HT activated under reduced 

pressure (~20 mTorr). Filled and open circles represent adsorption and desorption, 

respectively. b) Consistency criterion plot82,83 for determining P/P0 range for BET 

analysis of IRMOF-8-HT based on isotherm in (a). Inset: detail of consistency criterion 

plot between 0 and 0.1 P/P0. c) BET plot of IRMOF-8-HT using points below P/P0 = 

0.037. The BET surface area was determined to be 1606 m2/g. 

 

Figure 4.3. a) N2 sorption isotherm of IRMOF-8-HT activated with supercritical 

CO2. Filled and open circles represent adsorption and desorption, respectively. b) 

Consistency criterion plot to determine pressure range for BET analysis. Inset: pressure 

region between P/P0 = 0 and 0.1. c) BET plot between P/P0 = 0.27 and 0.47. Inclusion of 

lower pressure points led to poorer linear fits. The BET surface area was determined to be 

1501 m2/g. 

 

Figure 4.4. Powder X-ray diffractogram of IRMOF-8-HT as-synthesized and after 

activation under reduced pressure (~20 mTorr) compared with diffractogram simulated 

from the originally reported15 crystal structure. The simulated interpenetrated Zn4O(ndc)3 
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diffractogram is from a hypothetical interpenetrated analogue of IRMOF-8 (see main 

text). 

 

Figure 4.5. Comparison of simulated powder X-ray diffractograms of IRMOF-8-

HT activated under reduced pressure (~20 mTorr) and all other known Zn/ndc-based 

coordination polymers. Dotted lines correspond to highest peaks and shoulders of 

IRMOF-8-HT diffractogram and serve to simplify visual comparison with other 

diffractograms. Diffractograms from top to bottom are Zn(ndc)•H2O,84 

Zn3(ndc)3(CH3OH)2•2DMF•H2O,85 CPO-1,86 MOF-105,87 MOF-37,88 CPO-6,89 MOF-

69b,90 UTSA-38,91 SUMOF-3,92 {[Zn4O(ndc)3(CH3OH)(H2O)]}n,
93 and either IRMOF-8-

HT as-synthesized (left figure) or IRMOF-8-HT after activation under reduced pressure 

(right figure), from this work. 
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Figure 4.6. a) Ar sorption isotherm of IRMOF-8-HT activated under reduced 

pressure (~20 mTorr) obtained at 87 K (●, adsorption; ○, desorption). Inset: pore size 

distribution determined from NLDFT fit. b) NLDFT fit of IRMOF-8-HT Ar sorption data 

determined in NovaWin 9.0.94 A fit error of 0.114 % was achieved using a model 

optimized for spherical and cylindrical pores in zeolites and silica. The adsorption branch 

of the isotherm was used for fitting. Inset: pressure range between 0-0.10 P/P0 showing 

inexactness of fit in the P/P0 = 0.02-0.08 pressure region. ○, experimental data. ×, 

NLDFT fit. 

 

Figure 4.7. PALS spectrum of IRMOF-8-HT. The calculated lifetimes are 8.31 ± 

0.12 ns, 16.48 ± 1.33 ns, and 90 ns, with intensities of 19.32 ± 0.53%, 2.88 ± 0.48%, and 

2.47 ± 0.04%, respectively. 
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Figure 4.8. PALS spectrum of IRMOF-8-RT activated via flowing supercritical 

CO2. The calculated lifetimes are 18.45 ± 0.26 ns and 90 ns, with intensities of 22.52 ± 

0.23% and 2.69 ± 0.14%, respectively. 

 

Figure 4.9. High pressure excess H2 adsorption isotherm at 77 K of IRMOF-8-RT 

activated via flowing supercritical CO2. 
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Figure 4.10. High pressure excess CH4 sorption isotherm of IRMOF-8-RT at 298 

K activated via flowing supercritical CO2 (●, adsorption; ○, desorption). 

 

Figure 4.11. PALS analysis of IRMOF-8-RT as a function of CH4 pressure at 

room temperature. a) o-Ps lifetime corrected (●) and uncorrected (▲) for o-Ps pickoff 

annihilation with free, unadsorbed methane gas in the IRMOF-8-RT pores. b) Fraction of 

pore volume filled by adsorbed methane estimated using models of 2D Ps confinement 

(●) and 3D Ps confinement (○) as discussed in the main text.  
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4.6 Tables 

Table 1. Deliverable excess H2 uptake at 77 K of select MCPs[a] 

MCP H2@1 bar (wt 
%) 

H2 max (wt 
%) 

Deliverable H2 
(wt%) 

% 
Deliverable[b] 

Ref. 

IRMOF-8-RT 1.23 6.36 5.13 81 33, 
this work  

IRMOF-20 1.35 6.67 5.32 80 17 

SNU-70’ 1.24 7.38 6.14 83 9 

MOF-177 1.25 7.3 6.05 83 17,20 

NOTT-101 2.52 6.06 3.54 58 69 

PCN-68 1.87 7.32 5.45 74 7 

PCN-66 1.79 6.65 4.86 73 7 

PCN-61 2.25 6.24 3.99 64 7 

IRMOF-11 1.62 3.52 1.90 54 17,20 

Table 4. 1. Deliverable excess H2 uptake at 77 K of select MCPs[a]  
[a] Deliverable excess H2 sorption calculated as the difference between the 

maximum excess H2 uptake at 77 K and the excess uptake at 1 bar, the pressure at which 
most data were available. 

[b] Fraction of maximum excess H2 uptake (fdeliv) that is adsorbed above 1 bar. 
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Chapter 5 

 

Conclusions and Future Perspectives 

The studies herein represent only a glimpse of the possible challenges 

encountered during the discovery and characterization of new microporous coordination 

polymers (MCPs). Interpenetration and collapse on guest removal are common, and 

while localized defects such as the surface collapse in Zn-HKUST-1 has not yet been 

reported explicitly in other materials, all of these phenomena represent obstacles that can 

remain undetected and limit the utility of MCPs as high-performance sorbents. While 

PALS has proven an indispensable tool for elucidating the structural characteristics of 

MCPs, future work must also develop methods to circumvent structural defects limiting 

porosity in these materials. 

Interpenetration may be one of the most common obstacles to achieving large 

pores in MCPs. A number of approaches have been demonstrated to achieve non-

interpenetrated materials, including those outlined earlier in this thesis. Changing 

solvent,1-3 temperature,4,5 or reactant concentration5 have in some cases proven viable 

strategies to eliminate interpenetration. However, these approaches often require 

laborious screening of reaction conditions before interpenetration is eliminated. The use 

of bulky substituents to frustrate interpenetration has shown some success,6-8 but this 

strategy by its nature still reduces porosity in the resulting MCP. Furthermore, bulky 

substituents can sometimes change the net topology of the resulting framework entirely.9 

The use of bulky photolabile10 or thermolabile11-13 substituents improves on this 

approach, allowing the revelation of near-ideal porosity after a non-interpenetrated 

material is formed. Wöll and coworkers showed that non-interpenetrated MOF-508a 

could be synthesized by step-by-step growth off of a surface, the surface serving to 

eliminate translational symmetry in the MCP, thereby frustrating interpenetration.14 
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While a clever approach, this has not yet been demonstrated to apply to other materials. 

A curious result was obtained by Ahn and coworkers, who discovered that sonochemical 

synthesis of Cu3(tatb)2 (tatb = 4,4′,4′′-s-triazine-2,4,6-tryl-tribenzoate) or Zn4O(bpdc) 

(4,4′-biphenyl dicarboxylate) reduced interpenetration in these materials.15 Very recently, 

post-synthetic ligand exchange was used to expand the porosity of a pre-synthesized, 

smaller-pore MCP, circumventing interpenetration that occurred in the direct synthesis of 

the target material.  An interesting result reported by Zhou and coworkers showed that 

the inclusion of a small amount of oxalic acid in the MCP synthesis solution eliminated 

interpenetration in Cu3(tatb)2;
16 this strategy has not been developed further. The “infinite 

SBU” approach was espoused by Yaghi in the early 2000s;17 however, the closely-packed 

metal atoms in these materials lead to MCPs of relatively high density. Finally, MCPs of 

certain net topology cannot interpenetrate, such as the rht net, which has been utilized in 

the MCP with the highest surface area to date.18 

Introducing small amounts of linkers of smaller or larger size as “impurities” to 

frustrate interpenetration (as in the aforementioned work of Zhou and coworkers16) may 

be a promising approach to achieve non-interpenetrated MCPs of the desired structure. 

Preliminary results in our laboratory show the success of this strategy for at least one 

material. An added advantage to this approach is that the host framework may tolerate 

typically incompatible linker functionality in the impurity linker. Our group previously 

showed that carboxylic acid functionality could be imparted to MOF-5 in this manner.19 

It remains to be seen how much non-structural ligand can be tolerated in an MCP before 

its long-range order is modified or eliminated; this avenue of research is certainly 

underexplored and deserves greater scrutiny. 

Collapse on guest removal is an issue that has been directly addressed by the 

research groups of Lin and Hupp. Lin and coworkers used freeze-drying to improve the 

activation of a copper-based MCP.20 Hupp used supercritical CO2 activation to enhance 

porosity in Zn4O(tpdc)3 (tpdc = p-terphenyl-4,4′′-dicarboxylate) and other materials;21 

this approach quickly gained traction, and inspired our own improved flowing 

supercritical CO2 activation method.22 While further methods may be developed in the 

future, it is unlikely that MCPs unstable toward supercritical CO2 activation will be stable 

after other means of guest removal; it is probable that such MCPs are unstable in the 
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absence of guests in their pores. Structural collapse has been avoided by the inclusion of 

molecular “struts” to bolster the porous structure.23 However, this often entails the 

deliberate introduction of interpenetration,16 which is counterproductive to achieving high 

porosity in the first place. The removal of generally insoluble, non-volatile guests such as 

metal oxides from MCP pores can also prove quite challenging.24 Harsh conditions to 

remove these guests can dissolve the MCP as well. In such cases, synthesis conditions 

must be developed to bypass the formation of these species in the first place. 

The characterization of disorder in MCPs requires techniques beyond those 

necessary for standard assessment of crystallinity and porosity. Furthermore, the 

challenges faced in describing disorder are often unique to the particular material in 

question. This dissertation has focused on the use of PALS to elucidate the nature of such 

disorder. Due to the nature of ortho-positronium (o-Ps) diffusion in an MCP, o-Ps 

localizes in non-interconnected (“buried”) pores, allowing the detection of such defects. 

Depth-profiling also allows examination of a sample’s pore characteristics at the surface 

with high (nm) depth resolution. The studies discussed in this thesis have shown the 

utility of PALS in detecting surface barriers, interpenetration, thermal degradation, and 

pore characteristics on gas adsorption. This work also led to conclusive evidence that o-

Ps assumes a Bloch state in highly ordered and interconnected MCP pores (see Appendix 

A).  

Looking ahead, PALS will serve as an invaluable tool to examine pore evolution 

during gas adsorption and chemical/thermal perturbation. We are currently examining 

water adsorption and water-induced degradation of MCPs; preliminary results suggest 

that water condensation is necessary to irreparably damage Zn4O-based MCPs. Below a 

threshold value (dependent on pore size) of relative humidity, materials such as MOF-5 

appear to be stable. There remains much opportunity to examine the influence of pore 

structure on this phenomenon. Extending this work to materials having multiple pore 

sizes such as UMCM-225 and UMCM-326 could help to elucidate the factors governing 

pore collapse on exposure to water in these materials. UMCM-1,27 with long, open, 3.2 

nm diameter channels flanked by smaller, more constricted pores, might show distinct 

degradation characteristics in the presence of H2O vapor. Finally, chemical 
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functionalization may reveal enhanced or diminished propensity for water condensation 

in MCP pores; PALS presents an ideal platform with which to study these subjects. 

A significant challenge in PALS is the study of materials having unpaired 

electrons. Unpaired electrons (such as those in Cu2+, commonly used to form MCPs) can 

rapidly accelerate the annihilation of o-Ps in a process called “conversion,” whereby the 

electron in o-Ps exchanges with the unpaired electron in the surrounding environment, 

converting o-Ps to p-Ps, which annihilates ~1000 times more rapidly.28 Reduction of 

observable o-Ps formation by the presence of bromine has also been seen to occur;29 the 

cause for this effect is not currently understood, but may be due to chemical quenching, 

as has been observed for o-Ps annihilation in bromine-impregnated silica gel.30 While the 

presence of coordinatively unsaturated metal sites (UMCs) in archetypal MCPs such as 

HKUST-131 drastically reduces the measured intensity of o-Ps annihilation from the 

pores, it may be possible to explore chemical passivation techniques which would enable 

o-Ps annihilation intensity adequate to study the pore characteristics of such materials. It 

is conceivable that physically blocking UMCs or heavy atoms (such as bromine) with a 

strongly adsorbed gas may also enable PALS studies in materials exhibiting low 

annihilation intensities under vacuum. Not only would this enable the study of the 

structural pore characteristics of such materials, but it may also provide a route to directly 

examine the interaction of adsorbed species with atoms or chemical groups known to 

quench o-Ps or suppress its formation. 

Finally, the work discussed herein may pave the way for examining the 

fundamental physics of o-Ps in ordered, porous materials. We have already discovered 

that o-Ps assumes a Bloch state in MOF-5 and IRMOF-8.32  Future work can proceed in a 

number of directions. The energy of emitted o-Ps from MCPs is currently being studied 

by velocity spectroscopy;33 it appears that o-Ps can thermalize in an MCP lattice and 

subsequently be emitted with an energy gain directly related to the size of the MCP pores. 

This may be an approach to obtaining monoenergetic o-Ps having energies higher than 

thermal energy. o-Ps trapping phenomena have been observed in functionalized 

IRMOFs34 at cryogenic temperature. It is possible that pendant groups on linkers may 

orient toward the center of the pore, forming a smaller space that can disrupt the o-Ps 

Bloch state and serve as an energy well from which o-Ps cannot easily escape. More 
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work needs to be carried out to explain such phenomena and explore the generality to 

other MCPs of different structure and functionality. 
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Appendix A 

                                                                                               

Evidence of Positronium Bloch States in Porous Crystals of Zn4O-Coordination 

Polymers† 

A.1 Introduction 

Positronium (Ps) is the hydrogenlike bound state of an electron with its 

antiparticle, the positron. Its ground state consists of spin singlet (p-Ps) and triplet states 

(o-Ps) that annihilate into two and three photons, respectively, with mean lifetimes of 

0.125 and 142 ns.1 Ps readily forms by electron capture when positrons are stopped in 

matter. In gases the Ps is free, interacting with the gas molecules only during collisions. 

In condensed matter Ps does not form in metals due to electron screening. In amorphous 

insulators Ps forms, localizes, and decays in open volume regions and is a well-known 

probe to characterize such ‘‘free’’ volume.2 In some crystalline materials and within 

certain temperature limits p-Ps is observed in a delocalized Bloch state3-6 but this is 

relatively rare and strong many-body effects can distort Ps and complicate interpretation. 

Such a novel quantum state of a single atom in a crystalline solid has also been observed 

for the heavier exotic atom of muonium,7 but only at very low temperatures (<10 mK). 

Recently a new class of crystalline materials called microporous coordination polymers, 

MCPs,8,9 has been synthesized that has nanometer-sized open volume networks that 

promote copious Ps formation.10 We will show that triplet Ps in an MCP can be in a 

completely delocalized state consistent with a Bloch state throughout the temperature 

range from 77 to 650 K, thus enabling the exploration of Ps Bloch state decay and 

dynamics or transport using simple lifetime techniques. 

                                                 
† Adapted with permission from Dutta, D.; Feldblyum, J. I.; Gidley, D. W.; Imirzian, J.; Liu, M.; 

Matzger, A. J.; Vallery, R. S.; Wong-Foy, A. G. Phys. Rev. Lett. 2013, 110, 197403. Copyright 2013 
American Physical Society. 
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MCPs are formed from the self-assembled linking together of metals or metal-

oxide clusters and organic ligands (‘‘linkers’’) of controllable nanometer lengths to form 

rigid, highly porous (open volumes up to 93%11) lattices with record-setting specific 

surface areas (>5000 m2/g11-16). Development of MCPs over the last decade has attracted 

intense interest from both academic and industrial researchers17 because of the 

transformative impact of this sorbent class for applications such as gas storage15,17, 

separation18 and catalysis.19 O-Ps shows great promise as a unique, in situ probe10,20 of 

these new crystals. O-Ps lifetimes measured in MCPs are nominally consistent with the 

standard Tao-Eldrup model21,22 and its extensions23,24 in terms of deducing a mean free 

path in the porous network, but these models inherently treat Ps localized in at least two 

dimensions (e.g., confined radially in a very long cylindrical pore). By ignoring the 

regularity of the highly open lattice the mobility of the Ps Bloch state and the startlingly 

long diffusion lengths that result and affect how Ps probes the material are lost. To realize 

its promising potential it is crucial to understand the quantum state in which Ps exists in 

MCPs. 

A.2 Experimental Section 

We focus this study on two MCPs called IRMOF-1 and IRMOF-8 (IRMOF refers 

to “isoreticular metal-organic framework,” a MOF having the same net topology; see 

Figure A.1). The IRMOF series25 consists of cubic-structured materials comprised of 

octahedral Zn4O clusters linked together by linear dicarboxylates of variable length and 

chemical functionality. IRMOF-1 and IRMOF-8 are characterized for specific surface 

area, 3100 and 4200 m2/g, respectively, and crystallinity (sharp X-ray diffraction pattern 

matching patterns simulated from previously published crystallographic models). Both 

have individual grains that are transparent cubic single crystals with average side length 

of 300 µm. MCPs are analyzed by stopping positrons in them and measuring the lifetimes 

of o-Ps that annihilates both in and between the grains. The timing apparatus is similar to 

that reported in Ref. 10. We have two standard bulk PALS spectrometers and a variety of 

vacuum tight holders that permit vacuum and high pressure gas exposure, resistive 

heating, and liquid nitrogen sample cooling. A 22Na positron source of ~10 µCi is 
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deposited on a tungsten foil and placed at the bottom of a well containing about 0.1 cm3 

of MCP crystals. The fraction of all positrons emitted from the source that annihilate as 

o-Ps is 35-40%. 

A.3 Results and Discussion 

The annihilation lifetime spectrum is generally well fitted with 3 lifetimes: a short 

lifetime less than 0.5 ns due to positron and p-Ps annihilation; a predominant o-Ps 

lifetime around 13.5 (IRMOF-1) or 18.5 ns (IRMOF-8) due to o-Ps annihilation within 

the crystal framework (72%–90% of the o-Ps); and a long lifetime (roughly 80 ns in 

evacuated MCP) comprising 10-28% of all o-Ps decays. These framework lifetimes 

correspond in extended Tao-Eldrup annihilation models23 to o-Ps mean free paths for 

annihilation of 1.3 and 1.5 nm, respectively, close to the mean free paths (1.5 and 1.8 nm) 

calculated from 4V/S where V and S are specific free volume and surface area from 

adsorption data.25 Based on the same annihilation models Liu et al.10 suggested that the 

80 ns lifetime component in evacuated IRMOF-1 was due to o-Ps trapping in widely 

spaced 6 nm diameter crystal defects. We will show that it is instead due to o-Ps diffusing 

out and escaping from the crystal grains and annihilating in the intergranular open 

volume. This escape is both very surprising and revealing for two reasons: (i) It is 

surprising that o-Ps in such open interparticle volume with void size comparable to the 

300 µm particle size, has such a short lifetime of 80 ns and not a value23 much closer to 

that of o-Ps in free-space vacuum, 142 ns; and (ii) grain escape would require an 

extraordinarily long o-Ps diffusion length ℓ within the MCP grain of ~10 µm. This 

implies a diffusion constant D of order 100 cm2/s, two orders of magnitude larger than o-

Ps or positron diffusion constants reported for condensed matter.26-29 We will have to 

abandon the classical model of o-Ps diffusion in favor of a quantum mechanical treatment 

similar to that for treating electron conductivity and its temperature dependence in 

metals. 

To show that the 80 ns component is due to o-Ps escaping from the IRMOF-1 

grains, PALS spectra were acquired with the MCP exposed to helium and hydrogen gas 

pressures ranging from vacuum to 110 bar. Our focus is on the decay rate (1/lifetime) and 
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relative intensity of the long-lived o-Ps component (the effect of gas exposure or 

adsorption on o-Ps annihilating in the framework will be presented elsewhere). Figure 

A.2 shows this decay rate for He and H2 gases at 296 and 77 K as a function of gas 

density measured in amagat (1 amagat corresponds to the number density of Avogadro’s 

number of molecules in the STP molar volume, 1.08 bar at 296 K). At densities >0.1 

amagat the decay rate is consistent with that of o-Ps in pure gas (curves in Figure A.2). 

These decay rates extrapolate to nominally the vacuum o-Ps value, 0.007 ns-1 (1/142 ns). 

Were o-Ps annihilating in gas-filled, 6 nm lattice defects the gas dependent decay rates 

would extrapolate to 1/80 ns. The decay rates above 0.1 amagat are completely consistent 

with o-Ps annihilating in the very large intergranular volume while undergoing 

temperature (T) independent pick-off annihilation with the specific gas. However, the 

question remains: what is happening below 0.1 amagat? 

The unexpected rise in the fitted o-Ps decay rate at the very lowest gas densities is 

expanded in the bottom graph of Figure A.2. After scaling the H2 density by a 

multiplicative factor of 2.5 for both temperatures, the H2 results then agree with the He 

results (to be discussed). Furthermore, if we scale the two 77 K curves by a factor of 3.3 

(~T, not shown in figure) then all four curves would merge to a universal result. This 

unusual gas and temperature dependence can be explained by assuming that nominally 

thermalized o-Ps within the MCP grain diffuses to and escapes from the grain receiving 

an energy boost of E0 so its total energy outside the grain is E0 + kBT (E0, on the scale of a 

zero point energy, might be 0.1-0.3 eV30,31). Unhindered, such o-Ps would travel 20–30 

mm making ~100 grain collisions and occasionally reenter a grain where annihilation 

occurs with higher rate corresponding to the 13 ns lifetime deep within the IRMOF-1 

framework. The observed 80 ns o-Ps lifetime is then a time-weighted average of o-Ps 

subject to annihilation both inside (13 ns) and outside a grain (142 ns). The role of the gas 

is simply to degrade the o-Ps energy by an amount kBT or more to below the E0 threshold 

for grain reentry leaving o-Ps trapped in the intergranular space. We assume the energy 

lost per collision with a gas molecule of mass Mg is ~(m/Mg)E0 where m is the o-Ps mass, 

and hence the energy loss rate in a gas of density ng is 
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where σg is the collision cross section for o-Ps with the particular gas molecule and υ0 is 

the o-Ps velocity corresponding to E0. To eliminate grain reentry after some time t (10 ns, 

the time we begin fitting the spectrum) we require the gas density to be high enough so 

that (dE/dt)t ≈ kBT and therefore the required density, ng
*, to decrease the fitted decay rate 

to that in the pure gas depends on temperature and gas as ng
* ~ (Mg/σg)T. This linear 

dependence on T is evident in Figure A.2 (right), the 77 K results scaled by 3.3 (close to 

296/77 = 3.8) merge with the 296 K results. The factor of 2.5 scaling in density of the H2 

data indicates 
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and, after accounting for the masses, we conclude σH2 = 1.25 σHe at energy E0. Based on 

direct cross section measurements32 at energies >5 eV this ratio is plausible. Indeed, 

given the difficulty in measuring o-Ps collision cross sections at sub-eV energies33 it 

might be useful to use this new MCP-based method for accurately determining relative o-

Ps momentum transfer cross sections for different gases. 

 The long-lived component in the PALS spectrum is thus the result of o-Ps 

escaping from the MCP grains and sometimes reentering them if there is no buffer gas to 

slow down the o-Ps. As a lower limit on the fraction of o-Ps escaping from the grains, 

Fesc, we can simply use the fitted relative o-Ps intensity of this long-lived component 

which ranges in IRMOF-1 from ~16% at 296 K to 28% at 77 K (in vacuum). Assuming 

o-Ps is formed uniformly throughout a cubic particle of side length L the fractional 

volume within diffusion length ℓ of a surface is Fesc ~ 6ℓ/L.  Fesc of 16% and 28% 

correspond to ℓ = 8-14 µm for particles with L = 300 µm. It is straightforward to calculate 

the diffusion constant D = (l2/τ) since τ = 13.5 ns. Thus, D(77 K) ~ 150 cm2/s and D(296 

K) ~ 50 cm2/s. Such large values for l and D in concert with longer diffusion at lower 

temperature are not consistent with classical diffusion. The argument for quantum 



  

84 

 

diffusion in a Bloch state is compelling if we deduce the mean free path for o-Ps 

scattering with the lattice, ࣦ, and compare with the value of 1.5 nm determined from 

IRMOF-1 structure. Since D = υࣦ/3 we can deduce ࣦ if the average o-Ps diffusion 

velocity, υ, is known. If we make the unsubstantiated assumption that o-Ps is thermalized 

then we deduce ࣦ(77 K) = 1100 nm and ࣦ(296 K) = 190 nm. Even if υ is 10 times higher 

(unphysical o-Ps energy of 1-4 eV) ࣦ is still 1-2 orders of magnitude larger than 1.5 nm. 

 To test this assertion of very long mean free paths for lattice scattering we again 

use He gas as an inert source of o-Ps scattering within the MCP framework to variably 

impede o-Ps diffusion and promote o-Ps thermalization. We consider Fesc vs gas number 

density, nHe, at 77 and 296 K. Actually, we have plotted in Figure A.3 Fesc vs nHeσHe 

where we have assumed a reasonable value33 (within a factor of 2) for σHe = 0.07 nm2 in 

order to provide an absolute length scale (1/nHeσHe is the mean free path for o-Ps between 

gas collisions). We can fit most of the data in Figure A.3 if we assume ࣦ depends only on 

temperature, υ is constant over the fitted gas density range, and gas collisions shorten the 

total o-Ps mean free path such that 
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We exclude data below 0.001 nm-1 which correspond to the low density (<0.1 amagat) 

results shown in Figure A.2 that involve grain reentry (not a simple diffusion model). The 

fitted values of ࣦ are 200 ± 25 nm at 296 K and 425 ± 50 nm at 77 K. The important 

point here is that ࣦ(T) is primarily determined by the gas scattering dependence (the 

shape of the curve) and not the absolute normalization term of ඥ߭߬/3. We do find that  

this fitted velocity term is the same for 77 and 296 K which suggests that o-Ps is only 

able to approach room temperature thermalization in the lattice. The agreement of this 

value of ࣦ(296 K) with the earlier value of 190 nm assuming thermal velocity supports 

this claim. Depending on our choice of σHe these values could change by a factor of 2, but 

the inescapable fact is that the mean free path for scattering by lattice imperfections is 2 

orders of magnitude larger than the 1.3 nm cell size of IRMOF-1. This unhindered 
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propagation due to the coherent constructive interference of the scattered waves by a 

perfect lattice is a hallmark of Bloch states. 

 The temperature dependence of o-Ps escaping from the grains, Fesc, is shown for 

IRMOF-1 and IRMOF-8 in Figure A.4. The o-Ps lattice mean free path ࣦ should be the 

combined result of temperature dependent phonon scattering (ࣦ୮୦) and temperature 

independent defect scattering (ࣦୢୣ୤); 
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Assuming the phonon density nph will increases ~ linearly with T (the high temperature 

limit of the Bose-Einstein phonon distribution) the o-Ps-phonon scattering mean free path 

ࣦ୮୦ ൌ 1/݊୮୦ߪ୮୦~1/ܶ. The curves shown in the figure are fits with this model that 

ignores any temperature dependence in the velocity term in Fesc (no o-Ps thermalization). 

This increase in the already long mean free path of o-Ps at low temperatures further 

illustrates the similarity with metallic electrical conductivity governed by phonon or 

defect scattering of Bloch electrons. 

A.4 Conclusions 

 By way of temperature dependent gas exposure measurements in two MCPs we 

have shown that D ~ 100 cm2/s and the deduced mean free paths for o-Ps scattering with 

lattice phonons and defects are hundreds of nanometers. On the other hand, o-Ps 

annihilation determined by wave function overlap is perfectly consistent with the lattice 

scale lengths of ~1.5 nm. The simplest conclusion is that o-Ps is in a Bloch state 

manifested by a mean free path for scattering limited only by lattice imperfections. This 

is the first unambiguous experimental evidence of the existence of o-Ps in a Bloch state, 

the study of which is enabled by the recent availability of controllable nanometer lattice 

constant crystals and is simplified by the minimal complexity of bulk lifetime techniques. 

Bloch state o-Ps annihilation will be influenced significantly by the degree of crystalline 

imperfection of synthesized due to o-Ps diffusing and (not) thermalizing in the 
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framework (fitted lifetime and intensity reduced by escape from the grain) and o-Ps 

moving amongst and reentering the grains (the lifetime and intensity of the long-lived o-

Ps component). Further understanding of Bloch state o-Ps may enable the use of PALS to 

quantify local defects that reduce (but do not eliminate) guest diffusion in MCPs. 

Contributions to fundamental physics may also be enabled by the discoveries 

enumerated in this appendix. It would be interesting to perform angular correlation 

measurements on p-Ps annihilating in MCPs to determine if the distinctive umklapp 

phonon peaks can be resolved.34 Velocity spectroscopy30 of the o-Ps emitted from the 

grains of varying IRMOF samples could check the lattice size dependence of the 

emission energy E0. Relative o-Ps-gas collision cross sections for E0 in the sub-eV range 

could help constrain divergent absolute measurements.33 Further experiments on o-Ps 

Bloch state scattering from gases in the framework are also warranted to examine the 

applicability of plane wave cross sections determined in the pure gas. Finally, we need to 

improve our understanding of how this delocalized state of o-Ps is probing this important 

new class of MCP crystals. 

A.5 Figures 

 

Figure A.1. Models of IRMOF-1 (left) and IRMOF-8 (right). Zn, blue tetrahedra; 
O, red; C, gray. H atoms omitted for clarity. The center-to-center distances of the closest 
Zn4O clusters are 1.292 nm and 1.505 nm for IRMOF-1 and IRMOF-8, respectively. 
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Figure A.2. (Left) Long-lived component decay rate in IRMOF-1 for He and H2 
gas at 77 and 296 K. The solid and dashed curves are the o-Ps decay rates measured in 
the respective pure gases at 77 and 296 K. The 77 K data continue the same trend to 400 
amagat. The unusual drop in the decay rate to that in the pure gases (solid line) at the 
lowest 0.1% of density are expanded in the lower graph. Both sets of H2 data have been 
scaled by a multiplicative factor of 2.5 in density to account for its faster energy loss per 
collision than He. 

 

Figure A.3. The fraction of Ps escaping the IRMOF-1 grain vs gas density 
(multiplied by a nominal value for the Ps-He cross section, σHe = 0.07 nm2). The smooth 
curves are fits to a simple diffusion model that incorporates the variable gas scattering 
mean free path, 1/nHeσHe, with a temperature dependent mean free path for scattering with 
the lattice. Points on the far left are excluded from fitting as discussed in text. 
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Figure A.4. The temperature dependence of Ps escaping evacuated IRMOF-1 and 
IRMOF-8 grains. For IRMOF-8 Fesc has been divided by a factor of 2.3 = 300 µm / 130 
µm to account for its enhanced escape from smaller 130 µm grains. The smooth curves 
are fits to a diffusion model with a Ps-phonon mean free path that varies as 1/T and with a 
Ps-defect mean free path that is constant. 
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