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ABSTRACT

New methods for discovering hidden dependence and for
assessing the possible influence of unobserved variables

by

Yeo Jung Park

Advisor: Kerby Shedden

The biological interpretation of neuroimaging data often depends on changes in the de-

pendence structure between locations in the brain. A major challenge in neuroscience

is uncovering the relationship between consciousness and brain activity. Electroen-

cephalography (EEG) recordings made on human subjects who are given anesthesia

for surgery provide an opportunity to directly study this relationship. The main fo-

cus in this area has been on changes in the connectivity between brain regions that

occur as the consciousness state changes. Connectivity can be assessed in terms of

the statistical dependence between EEG measurements from different recording sites

on the scalp.

In this thesis, we consider two approaches for capturing changes in the dependence

structure among several time series. We first consider the possibility that dependence

between two series may be localized to a specific frequency band, and hence cannot

be uncovered using global measures dependence. We propose methods to characterize

the frequency-specific dependence in such data. We then consider the possibility that

the dependence between two series can be revealed by applying a local transformation.

x



We optimize over a class of such transformations to maximize a simple association

measure, leading to a new measure of dependence for serially observed data. These

two new methods are used to analyze a data that consists of multi-channel EEG

recordings of multiple subjects under several consciousness states.

Another question that arises in analyzing complex biological data sets is whether

there exists an unobserved variable responsible for all apparent relationships between

a given set of observed variables and the outcome. In the last chapter, we propose an

approach to understanding under what circumstances a single unmeasured variable

could explain the entire observed relationship between an outcome and several ob-

served predictors. The unobservable regression of interest is characterized in terms of

three quantities: the distribution of the unobserved covariate, the effect size of the un-

observed covariate, and the net dependence between the unobserved and the observed

covariates. We derive an explicit functional relationship among these quantities, and

how this in turn can be used to learn about possible alternative explanations for an

observed multiple regression relationship.

xi



CHAPTER I

Introduction

Neuroscientists who study consciousness are interested in identifying and charac-

terizing the neural activity patterns associated with different conscious experiences

(Rees et al. (2002)). General anesthesia, combined with brain imaging technology,

can be used as a tool for addressing such questions (Alkire and Miller (2005); Hudetz

(2012)). There are number of hypotheses about the brain state under anesthesia-

induced unconsciousness (Nallasamy and Tsao (2011)). Alkire et al. (2008) propose

that anesthesia-induced unconsciousness is the result of disrupted functional connec-

tivity among certain brain regions. Figure 1.1 is a simple illustration of the hypothe-

ses. Fp1, Fp2, F3, F4 indicates the front part of the brain and P3, P4 are the back

part of the brain. As can be seen, the hypothesis states that when a person is under

anesthesia-induced unconscious, the connectivity between front and back part of brain

are reduced, while within front and back region connectivity are remained. There-

fore, the problem of characterizing neural activity for both resting awake state and

anesthesia state becomes to show how the neural connectivity among brain regions

changes between two settings.

In statistics, there is a large literature on methods for analysis of brain imaging

data. In this thesis, we focus on the analysis of brain connectivity. In this area,

functional Magnetic Resonance Imaging (fMRI) is widely used. Usually, there are

1
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Figure 1.1: A simple illustration of the hypotheses on the brain connectivity under
consciousness and anesthesia-induced unconsciousness states. Nodes represent the
regions of the brain, and edges are drawn if two regions are connected. For simplicity,
we only show 6 regions that we will be considering in our data analysis.

two kinds of connectivity that require different approaches: undirected and directed.

In the fMRI literature, the undirected and directed connectivity are also known as

functional and effective connectivity, respectively (Friston (1994)). For undirected

connectivity analysis, methods such as Principal Components Analysis (PCA) and

Independent Components Analysis (ICA) are mainly used. For directed connectivity

analysis, Structural Equation Modeling (SEM), Dynamic Causal Modeling (DCM),

and Granger causality are commonly used. We refer to Lindquist (2008); Friston

(2011) for a more detailed review.

There are a growing number of studies of consciousness that utilize general anes-

thesia. Three regions of the brain - thalamus, frontoparietal and posterior cingulate

cortex1 - are mainly studied in terms of activation and connectivity in anesthesia-

induced unconsciousness (Nallasamy and Tsao (2011); Hudetz (2012)). We focus on

frontoparietal connectivity: the connection between the front and back part of the

brain.

It is commonly understood that the brain is spatially organized, so the different

1The surface of the brain is divided by four sections: front, middle, back and bottom. Each
sections are called the frontal lobe, the parietal lobe, the occipital lobe, and the temporal lobe
respectively. Thalamus is located at the center of inner brain and posterior cingulate cortex is back
part of the inner brain near thalamus. See Alkire et al. (2008) for the picture.
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regions have different functions. Specifically, Crick and Koch (2003) proposed a

hypothesis that the front and back regions of the brain have their own synthetic

processes, yet with active interaction with each other. This suggests that connectivity

within regions may play a different role than connectivity between regions. Peltier

et al. (2005) used fMRI and showed that under anesthesia, connectivity between

motor-related regions and others are lost. Their approach used a correlation map

between seed region (motor cortex) and all other voxels. Each voxel contains a single

series that is an average of preprocessed multiple time series in that voxel. Schrouff

et al. (2011) also used fMRI and applied an information-theory based approach to

assess connectivity. They observed that the frontoparietal connectivity reduces under

anesthesia.

The data sets considered in this thesis are multi-channel EEG recordings. All data

sets contain multiple subjects whose EEG signals are collected from 6 brain locations

under several different conscious states: Awake, Induction and Anesthesia. Details

of the data are given in Chapter II.

There is a literature that uses multi-channel EEG data to characterize the neural

connectivity pattern in several different consciousness states. Ku et al. (2011) used an

information-theory based method, called Symbolic Transfer Entropy, which identifies

changes in information flow among brain regions. This study showed that there was a

decreased amount of information exchange from the parietal to frontal regions under

anesthesia, and no significant change of the flow from the frontal to parietal areas.

Cimenser et al. (2011) also explored the connectivity pattern by applying a method

based on the spectrogram and global coherence2. In this study, they found that

under anesthesia certain frequency bands showed distinctive changes of the power in

the occipital and frontal lobes. These studies suggest that the connectivity pattern

changes are seen particularly between the frontal and parietal regions (Alkire and

2Spectrum is a frequency domain measure that utilize the Fourier transformation, and Global
coherence is a summary measure of the spectrogram matrix.

3



Miller (2005)).

This thesis develops two approaches to understanding connectivity, and connec-

tivity changes in EEG measurements of the brain activity. The focus is on identifying

connections that are mostly invisible to simple descriptive measures of association.

Chapter II provides an approach that utilize scale space decomposition of series. This

approach is motivated from the possibility that the hidden association pattern appears

in certain temporal scale. In Chapter III, we propose a local transformation approach

that reveals hidden association. This approach is motivated from the possibility that

we can reveal hidden association by capturing some local characteristics of two se-

ries using localized transformation. In addition, Chapter IV presents a new method

for understanding the role of unobserved variables in regression analysis. This tech-

nique is motivated by issues that arisen genetic analysis, but analogous issues arise

in neuroscience application.
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CHAPTER II

A correlation decomposition approach to

connectivity analysis for multivariate time series

with application to a study of anesthesia-induced

unconsciousness

2.1 Introduction

In this chapter, we consider an approach that explores the changes in neural con-

nectivity under different conditions using multi-channel EEG. We view connectivity

as being any type of statistical dependency between two series. Therefore, the prob-

lem can be defined as exploring how the association patterns among multiple time

series change under several conditions. The approach developed in this chapter lo-

cally decomposes the time series into frequency bands, to identify relationships that

are hidden in the raw data.

The approach is motivated by the observation that simple association measures

such as the correlation coefficient have limited ability to capture relationships in

sequentially observed data. As an illustration, we can consider that a series arises

as a sum from two frequency bands: low and high. Figure 2.1 (a) shows two series

whose correlation is strong in the high frequency band and weak in the low frequency

5
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Figure 2.1: Illustrative examples of two series with hidden correlation in certain
frequency band.

band. If the variation in the high frequency band is dominated by variance at other

frequencies, the Pearson correlation between raw series would not reveal such hidden

association. The opposite case is also possible. Figure 2.1 (b) shows the case that

strong correlation is in the high frequency band but its variation is small.

Classical frequency domain analysis based on Fourier methods has been studied

and used extensively across a broad range of fields such as neuroscience and economics

(Platt and Damon (1975); Iacobucci (2003); Cimenser et al. (2011)). In particular,

in the neural connectivity analysis, the coherence measure (analogous to the corre-

lation coefficient for frequency domain) is widely used. For multivariate time series,

Brillinger (1975) developed a method that measures association between two sets of

multiple time series. This method is an extension of Hotelling (1936)’s Canonical

Correlation Analysis to time series using the frequency domain.

Fourier transformation (FT) captures periodic behavior that remains synchro-

nized over the entire length of the data series. Unless the series is almost perfectly

stationary, this is unlikely to effectively capture the important features of the data. In

order to accommodate non-stationary time series while using a Fourier-like approach,

6



Short-time FT (STFT) has been proposed (Allen (1977)). This method applies FT

to local windows of a series. However, STFT has limitations due to rigid size of the

windows regardless of the frequency level. That is, there is a trade off in resolutions of

frequency and time according to the window size; using a narrow window to capture

high frequency gives good frequency resolution but poor time resolution and using a

wide window has the opposite effect.

Wavelet approaches have become a more popular means to decompose variation

in time series that are not strictly stationary. The wavelet transformation uses or-

thogonal, compactly supported basis functions to resolve effects that occur at specific

temporal scales, while allowing these effects to evolve freely over time. We will briefly

review wavelet decompositions in Section 2.2. We also refer to Abramovich et al.

(2000) for a review of wavelet analysis in statistical applications.

In this chapter, we introduce a procedure that uses a scale space transformation,

such as the wavelet transformation. This procedure aims to identify dependencies

between two series that are localized to a relatively narrow frequency band. Figure 2.2

shows the schematic of our approach. As can be seen, given two series from location

1 and 2, each series can be decomposed into different temporal scale (high to low).

Then, we look at the associations between two decomposed series with the same

temporal scale. This approach is interpretable, efficient to compute, and enables

effective visualization.

The rest of the chapter is organized as follows. In Section 2.2, we discuss our

method in detail including review of wavelet transformation. Section 2.3 provides

a simulation study that assesses the effect of series length on detecting the hidden

association. Section 2.4 discuss a real data application using EEG data with three

different anesthetic drugs. Section 2.5 provides concluding remarks.
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Figure 2.2: Schematic of our approach. The pairs of series that are used to compute
an association measure are connected with the arrowed line. Each color denotes the
each pair of association.

2.2 Correlation decomposition using wavelet transformation

In this section, we provide details of the approach. The approach can be viewed

as consisting of two steps. First, apply a scale space transformation of series as

depicted in Figure 2.2. Second, we explore the dependence structure between the

series, within each level of the scale space decomposition. This exploration takes the

form of visualizations as well as more formal statistical analysis. The scale space

decomposition we consider in this analysis is wavelet transformation. We begin this

section by providing a review of wavelet transformation.

2.2.1 Discrete Wavelet Transformation

Overview:

The wavelet transformation (WT) is well known for its localization in both time and

frequency. This dual localization is achieved by taking an inner-product of an original

8



series and a small wave shaped basis function. This basis function can have various

spans according to frequency bands. WT has two different formats: continuous and

discrete. Continuous wavelet transform (CWT) is defined over the entire real line

of time, whereas discrete wavelet transform (DWT) is defined over discretized time

points (integer values). In the analysis, we use DWT because of its orthogonality of

basis function and computational efficiency. Note that DWT differs from a discrete

approximation of CWT, which is a practical implementation of CWT. For details of

CWT, see Samar et al. (1999) and Addison (2005).

DWT can have many different forms of basis function. The Daubechies wavelet

family is one of the most popular ones that are used in a wide range of fields. The

shape of the basis function is provided by a mother wavelet (or wavelet function).

Figure 2.3 shows selected examples of the mother wavelet from the Daubechies family.

A subclass of Daubechies family is classified by its vanishing moment, which is half of

the number of coefficients used to construct mother wavelet function. For example,

in the wavelet examples in Figure 2.3, (a) has vanishing moment 1, (b) has 2 and (c)

has 4. In the analysis, we use Daubechies wavelet with order 4 based on the study

by Adeli et al. (2003).

(a) Haar (b) Daubechies Order 2 (c) Daubechies Order 4

Figure 2.3: Various mother wavelets from Daubechies wavelet family.

Applying DWT to original series produces two kinds of coefficients: wavelet (or

detail) and scaling coefficient. Wavelet coefficients are the product of a wavelet basis

and the series, and scaling coefficients are product of a scale function and the series.
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Usually, wavelet coefficients are considered to be series that passed a high-pass (or

bandpass) filter, and scaling coefficients are series that passed a low-pass filter. As

an illustration, in the Haar wavelet case, at a time point t, wavelet coefficients are

differences of the local average of signals over a certain time interval before and after

t. The scaling coefficients are just an average of the series over the entire time. Other

families of DWT basis function work in similar way as the Haar wavelet, but have

more complicated structure in order to have flexibility in the shape.

Decomposition of a series into different frequency bands is achieved by applying

multi-resolution DWT. Multi-resolution DWT is an iterative application of rescaled

mother wavelet according to frequency bands; the mother wavelet in a basis function

repeats in narrower span for higher frequencies and wider span for lower frequencies.

Figure 2.4 shows the shape of basis function of Haar wavelet in different frequencies.

This way of constructing a basis achieves localization in both time and frequency

scales that naturally leads to a good resolution in both scales simultaneously, and

the decomposed series completely reconstruct the original series without having re-

dundancy. As DWT is based on a dyadic subsampling scheme, the length of series

cut into half after going thorough each level of transformation. The computational

efficiency is achieved by an iterative algorithm, the so-called Pyramid algorithm1.

Wavelet analysis of variance:

A beneficial consequence of applying orthogonal wavelet basis is that it also decom-

poses the variance and covariance into different frequency bands. Correlation coeffi-

cients at each wavelet level can be calculated using these decomposed variances and

covariances. We review how DWT decomposes the variance and covariance of the

series by frequency bands, and introduce resulting wavelet correlation coefficient. We

borrowed some notations from Lindsay et al. (1996).

1This algorithm applies wavelet and scale function on the scale coefficients from the previous
level in multi-resolution DWT repeatedly (Lindsay et al. (1996)). A good review of the algorithm
can be found in Chapter 4, Percival and Walden (2000)
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Figure 2.4: Illustration of different wavelet basis for multi-resolution DWT (Haar
wavelet). Mother wavelet is rescaled and shifted in order to capture both frequency
and time information.

Multi-resolution DWT provides alternative representation of a series Y with T

time points as the following way:

Y =
L∑
j=1

Djψj + ȳ
−→
1 , (2.2.1)

where Dj is a vector of wavelet coefficients at level j (contain 2−jN coefficients), ψj

is a wavelet basis at level j, and
−→
1 = [1, · · · , 1]′. As the basis are orthonormal, the

inner product of ψi and ψj is 0 if i 6= j and 1 if i = j.

The alternative representation (2.2.1), which is a linear combination of wavelet and

scaling coefficients, implies that the variance of a series Y can be also decomposed.

Let D = [D′1, D
′
2, · · · , D′L, ȳ] and Ψ = [ψ1, ψ2, · · · , ψL,

−→
1 ], where Dj is a vector of

wavelet coefficients (2−jT elements) and ψj is a T×2−jT wavelet basis matrix. Hence,

(2.2.1) can be expressed as Y = Ψ′D. Also, as DWT are constructed for the wavelet

coefficients to have zero mean, sum of squared elements in a wavelet coefficient vector

at level j is equivalent to the variance of wavelet coefficients at level j, i.e. V̂ ar(Dy,j) =∑2−jT
k=1 D2

y,jk. Then the sample variance of Y is decomposed by variances of wavelet

coefficients D as following:
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σ̂2 ≡ Y ′Y

N
− Y 2

=
D′ΨΨ′D

N
− Y 2

=
D′D

N
− Y 2

=
1

N

L∑
j=1

2−jN∑
k=1

D2
y,jk

 , (2.2.2)

where Dy,jk is kth wavelet coefficient of series Y at level j. Similarly, the sample

covariance between two series X and Y can be derived as following:

σ̂xy ≡
1

N
(
N−1∑
t=0

(Xt − X̄)(Yt − Ȳ ) =
1

N

L∑
j=1

2−jN∑
k=1

Dx,jkDy,jk

 . (2.2.3)

Using (2.2.2) and (2.2.3), we can define wavelet sample correlations at each wavelet

level j. The raw correlation between X and Y is not decomposed the same way vari-

ance and covariance did, that is, variances (or covariances) of each level approximately

sum up to the total variance (or covariance). The definition of wavelet sample corre-

lation at level j is as following:

ρ̂xy,j =
σ̂xy,j
σ̂x,jσ̂y,j

, (2.2.4)

where σ̂xy,j is a sample covariance of X and Y at level j, and σ̂x,j, σ̂y,j are sample

variance of X and Y at level j respectively.

2.2.2 Visualizing the association change pattern with the transformed

series

In the previous subsection, we discussed how to decompose each time series and

calculate the wavelet correlation coefficients from those decomposed series. In this

subsection, we elaborate on the post-analysis that provide a summary measure of the

association change for visualization. Recall, we have n number of subjects, and each

subject has a p × p correlation matrix. After applying a multi-resolution DWT, we

have a total of L frequency levels (for L ≥ 1). Then each subject have L number of

12



p× p correlation coefficient matrix per experimental condition. Given the number of

resulting p× p correlation matrices is 2×n×L, we take the difference of the squared

correlation matrices between two conditions, as our interest is in the magnitude of

association change. Hence, the number of matrices is now reduced to n × L. Each

element of p× p correlation difference matrix will be averaged over subjects to have

L number of adjacency matrix.

Figure 2.5 shows the schematic of the method producing an adjacency matrix

for each wavelet level. In order to achieve some sparsity for the adjacency matrix

at each level, we conduct one sample t-test using n differences for each element of

the difference matrix. This tests whether the mean difference is 0 or not for that

particular location pair at the level l. We consider multiple comparison correction for

each wavelet level. In our data analysis, we apply Bonferroni corrected significance

level. The final adjacency matrix at level l will have nonzero value if the t-test result

is significant, and zero otherwise. Now we have L number of thresholded correlation

difference matrices, and we can draw a network plot of the connectivity change at

each wavelet level based on these matrices.

2.3 Simulation study

In this section, we provide a simulation study that assesses the effect of series

length on detecting the frequency band where the association between two series is

hidden. Generating two series with a hidden association is done using the multi-

resolution wavelet representation of a series:

X =
∑L

j=1D
x
jψj + x̄

−→
1

Y =
∑L

j=1D
y
jψj + ȳ

−→
1 .
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Figure 2.5: Schematic of producing adjacency matrices for each wavelet level j.
∆ik indicate the difference of squared correlation from condition 1 to condition 2, i.e.
∆j
ik = ρ̂2ik,j,1 − ρ̂2ik,j,2, for j = 1, · · · , L and i, k ∈ 1, · · · , p. At each location pair, one

sample t-test with 90% confidence level is applied on ∆j
1.ij, · · · ,∆jn.ik to threshold

the connectivity differences .

We generate two sets of wavelet coefficients Dx
j and Dy

j for each level j = 1, 2, . . . L

to have certain correlation. The L is determined by total length of the series T . Two

sets of coefficients with correlation r are generated by

Dx
j , ε ∼ N(0, 1)

Dy
j = rDx

j +
√

1− r2ε.

The characteristics of wavelet basis are shared across the different wavelet families.

Therefore, for simplicity we use Haar wavelet without loss of generality. The wavelet

level j indicates the width of the Haar basis. The width of basis function is equivalent

to the number of points in a series that is used to calculate coefficients. Specifically,

the Haar basis function of level 1 uses 2 non-overlapping neighboring time points to

calculate the coefficients. Hence, the length of resulting coefficients is T/2. Similarly,

at the jth level, 2j number of non-overlapping points are used to calculate correlation
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and the number of coefficient is T/2j. The lower level indicate higher frequency band.

In the simulation, we use series constructed from Haar wavelet with lengths in

power of 2. As an illustration, if we want to generate series with length 25, we need

to generate 5 levels of wavelet coefficients each with length 2j for j = 0, 1, 2, 3, 4, and a

scale coefficient (mean of the series). The considered series lengths are 210, 211, 212, 213,

and 214. We set level 3 (basis width 8) to have highest correlation (0.5) for each gen-

erated time series. Other levels have correlation between 0.2 and 0.4. We also only

consider the wavelet level with enough series length to have reasonable correlation co-

efficient. The series should contain at least 20 time points. Therefore, the considered

levels for each length are up to 6.

The simulation is repeated 500 times. At each iteration, we generate two series,

decompose the series using Haar wavelet, and calculate correlation coefficients for

each wavelet level. Figure 2.6 shows the resulting distribution of argument of the

maximum (argmax) among the correlations from 6 wavelet levels. Regardless of the

series length, the true level 3 is detected most frequently. When series length increases,

we see that the detected argmax wavelet level converges to the true level.

2.4 Application to EEG data

In this section, we discuss the structure of the real data (EEG recordings from sur-

gical subjects who are anesthetized with three different anesthetics) and our analysis

results.

2.4.1 Data description

Our data set is composed of EEG recordings (sampling rate 256 Hz) of surgical

subjects whose unconscious states are induced by three different anesthetic agents:

Propofol2, Sevoflurane and Ketamine. The recordings were taken under five experi-

2This data was previously analyzed by Ku et al. (2011).
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Figure 2.6: Distribution of the argmax from the simulation for different series length.
True wavelet level that contain higher correlation is 3. All simulations are repeated
500 times.

mental conditions3 for Propofol and Sevoflurane, and three conditions4 for Ketamine.

As there are various surgeries conducted on the subjects, EEG recordings from ROC

state shows huge individual variation. In order to obtain better contrast, we use two

states of consciousness, which are Resting wakefulness (baseline) and Under anes-

thesia (anesthesia). A schematic of the experiment is shown in Figure 2.7 (a). Each

recording (per subject and state for all anesthetics) is from 6 locations in the brain ac-

cording to 10-20 international system: 4 frontal and 2 parietal regions (purple circles

in Figure 2.7 (b)). For Propofol and Sevoflurane, 5 minutes of EEG were originally

recorded at each state. We use a manually selected minute long segment in order to

minimize artificial effects. Ketamine data are 5 minutes long for baseline state and 3

minutes long for anesthesia state, and we used all the recordings. Table 2.1 shows a

summary of the data structure.

EEG are considered to be a composition of several oscillators with various frequen-

3Resting Wakefulness, Anesthesia induction, Under anesthesia, Return of consciousness (ROC),
and Post ROC.

4Resting wakefulness, Anesthesia induction and Under anesthesia
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Awake Induction ROC Post ROC

Consciousness
Level

Anesthesia

 2 seconds of observed EEG

Surgery

(a) Schematic of the experiment

(b) 10-20 International System

Figure 2.7: Experiment description and brain location map. (a) In the analysis, we
use two consciousness states (red boxes). (b) Purple circles are locations used in the
analysis. The picture is reprinted from Jenkins et al. (2009).

cies. Therefore, the frequency domain analysis is widely used in order to classify the

sequence into different frequency components (Nunez and Srinivasan (2006)). These

classified frequency ranges were named with Greek letters and the corresponding tasks

are extensively studied (Herrmann et al. (2005); Dietrich and Kanso (2010)). The

decomposition levels from multi-resolution DWT can be approximated to this clas-
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Table 2.1: Summary of the collected data

Anesthetics Propofol Sevoflurane Ketamine
No. of Subject 9 9 29
No. of Location 6 (4 frontal, 2 parietal) 6 6
No. of Condition 5 5 3

Length 5 min. 5 min. 5 min.(Baseline)
(all conditions) (all conditions ) 2 min.(Induction)

3 min.(Anesthesia)

sical frequency range (Bassett et al. (2006)). Table 2.2 is a list of the wavelet levels

and its approximation to the classical frequency bands with related tasks.

Table 2.2: Approximated Wavelet decomposition levels to the classical EEG frequency
bands with sampling rate 256 Hz.

Wavelet Level Frequency (Hz) Name Associated task

1 32 - 64 Gamma (γ) Higher brain function such as binding

of a perceptual information

2 16 - 32 Beta (β) Alert, active thinking and motor ac-

tions

3 8 - 16 Alpha (α) Awake, relaxed and large number of

cognitive process

4 4 - 8 Theta (θ) Working memory

5, 6, 7 0.5 - 4 Delta (δ) Deep sleep

* In this table, we only include the wavelet levels that correspond to the classical fre-

quency bands. We rearranged the wavelet levels to match with the classical frequency

bands.

2.4.2 Results

Characteristic of EEG:

EEG is an noninvasive method that measures electrical signal generated by up to a

billion of neurons’ post-synaptic potentials on the human scalp (Nunez and Srinivasan
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(a) Condition 1: Baseline (b) Condition 2: Anesthesia

Figure 2.8: 30 seconds of raw EEG data in two different condition for the same
person and location.

(2006)). Due to this complicated relationship among neurons, generally raw EEG

does not show any distinctive patterns for a certain experimental condition (Rampil

(1998)). Figure 2.8 shows EEG series in two different states. The plot of raw EEG

suggests that though it is hard to find any distinctive pattern in the mean structure,

it is possible that the variance of EEG increases in the anesthesia state. Figure 2.9

shows mean, variance and covariance of EEG at all recorded states. On average, the

mean of EEG recordings are almost constant over different conditions regardless of

the anesthetic. Variances, on the other hand, tend to increase when subjects are

under anesthesia for all anesthetics; strong increasing tendency shown in Propofol

and Sevoflurane, and weaker tendency for Ketamine. Covariances also show a similar

pattern as variances, but have more variety by the anesthetic agents. This suggests

that the neural activities are reflected in variance structure of the EEG rather than

the mean.

Before we get into the analysis with transformed series, we explore the association

pattern reflected from the raw EEG series. To obtain this overview of connectivity

patterns among brain regions, we made a scatter plot matrix of the raw EEG from six

brain channels for each subject and condition (see Figure 2.10 for a selected subject
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Figure 2.9: Three descriptive statistics (each row) plot in different treatment con-
ditions of three different anesthetic agents (each column) for selected brain locations.
The selected locations are 1) Fp1 for mean and variance, and 2) Fp1 and P3 pair
for covariance. Gray lines represent the changes of each subject. Blue lines represent
average of the descriptive statistics over all subjects.
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and condition). Regardless of the anesthetic agents, the relationship between EEG

series from two brain regions are fairly linear and show some heterogeneity. This

linear pattern suggests that using the Pearson correlation coefficient may provide

some useful summary that shows the alternation in the connectivity pattern under

two conditions. However, the provided information would be limited as it does not

fully characterize the temporal inter-relationship.

Wavelet analysis result:

In multi-resolution DWT, the total possible wavelet decomposition levels depend on

the length of the EEG series. The resulting maximum wavelet level by applying multi-

resolution DWT is 11 for a minute long EEG (Propofol and Sevoflurane case) and 12

for 2∼3 minutes long EEG (Ketamine case)5. At each level, the length of transformed

series (i.e. wavelet coefficients) become approximately half of the previous wavelet

level’s series length. Our results only include the levels that correspond to the classical

frequency bands (see Table 2.2).

In order to investigate whether there is a dominant frequency scale, wavelet vari-

ances and covariances are calculated according to (2.2.2) and (2.2.3) respectively.

Figure 2.11 shows the variances and covariances for each wavelet level for selected

locations6. The increasing variances and covariances under anesthesia is observed at

most of the wavelet levels. In both conditions (baseline and anesthesia), the maxi-

mum of decomposed variance happens at wavelet level 4 (or approximately α range)

for Propofol and Sevoflurane and wavelet level 7 (δ range) for Ketamine. Covariances

over multiple wavelet levels do not show any consistent pattern for all the anesthetics

(see the second column of Figure 2.11). Overall, the most noticeable frequency bands

are level 4 and 7, which corresponds to α and δ range respectively.

5As the sampling rate is 256 Hz, the length of a minute long series is 256 ∗ 60 = 15360, and two
or three minutes long series have length 30720 and 46080, respectively.

6Other regions have similar pattern as the selected locations

21



Baseline Anesthesia
P

ro
p

of
ol

S
ev

ofl
u
ra

n
e

K
et

am
in

e

Figure 2.10: Scatter plot matrix of raw EEG from six brain locations for selected
subjects.

22



Variance (Fp2) Covariance (Fp2 and P4)
P

ro
p

of
ol

1 2 3 4 5 6 7
Wavelet scales (finer to coarse)

50

100

150

200

250

Va
ria

nc
e 

(M
ea

n)
Fp2

Baseline
Anesthesia

1 2 3 4 5 6 7
Wavelet scales (finer to coarse)

10

20

30

40

50

Co
va

ria
nc

e 
(M

ea
n)

P4 vs. Fp2
Baseline
Anesthesia

S
ev

ofl
u
ra

n
e

1 2 3 4 5 6 7
Wavelet scales (finer to coarse)

50

100

150

200

250

300

350

Va
ria

nc
e 

(M
ea

n)

Fp2

Baseline
Anesthesia

1 2 3 4 5 6 7
Wavelet scales (finer to coarse)

20

40

60

80

100

Co
va

ria
nc

e 
(M

ea
n)

P4 vs. Fp2
Baseline
Anesthesia

K
et

am
in

e

1 2 3 4 5 6 7
Wavelet scales (finer to coarse)

50

100

150

200

Va
ria

nc
e 

(M
ea

n)

Fp2
Baseline
Anesthesia

1 2 3 4 5 6 7
Wavelet scales (finer to coarse)

10

20

30

40

50

Co
va

ria
nc

e 
(M

ea
n)

P4 vs. Fp2
Baseline
Anesthesia

Figure 2.11: Average of wavelet variance and covariance over all subjects for selected
locations: 1) Fp2 for the variance, 2) Fp2 and P4 for the covariance.

23



Connectivity pattern analysis:

As described in Section 2.2, at each wavelet level, we obtain an adjacency matrix

where each element is the squared wavelet correlation difference between two con-

ditions that passed a threshold. With these adjacency matrices, we draw network

plots with 6 nodes that are specific regions of the brain. Two nodes are connected if

there is significant change in association pattern between two locations. As a thresh-

old, we use two different significance levels: nominal (0.05) and Bonferroni correction

(0.05/15). Edges have two kinds, increasing and decreasing, depending on the di-

rection of the correlation change after anesthesia. Based on the previous studies,

connectivity changes among frontal and parietal regions (longer distance relation-

ship) are particularly of interest7. Figure 2.12 shows the resulting network plots at

each wavelet level.

We first focus on the association pattern between any frontal and parietal regions.

In the δ and θ range, we see strong decreased connectivity under anesthesia between

most of the pairs from frontal and parietal for all three anesthetics. In the α range,

the association change pattern differs by anesthetics. The Propofol and Ketamine

cases show similar patterns (decrease connectivity between any frontal and parietal),

whereas Sevoflurane only shows a decreased change in any pairs between (Fp1, Fp2)

and (P3, P4).

More distinctive changes in association pattern across different anesthetics occur

in the β and γ range. In Propofol case, both β and γ range show the similar change

pattern as that of α and δ range: decreased connectivity between any pairs from (Fp1,

Fp2) to (P3, P4). Sevoflurane case does not show significant alternation between

any frontal and parietal regions in these ranges. Ketamine, on the other hand, shows

increasing connectivity between (Fp1, F3) and P3 in γ range and no significant change

7Previous studies consistently showed that there is disconnection between frontal and parietal
regions especially for Propofol and Sevoflurane case (Ketamine case is still under study, Alkire and
Miller (2005)).
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in β range. This increasing trend is interesting because Ketamine is well known as

a dissociative agent, that is it causes massively increased brain activity in order to

arise unconsciousness, unlike Propofol or Sevoflurane that suppress the brain activity

(Alkire and Miller (2005)).

The connectivity alternation pattern among any frontal regions vary according

to both anesthetic agents and wavelet levels. In δ range, selective pairs of location

in frontal region show increased connectivity for Propofol and Sevoflurane case. For

Ketamine, there are increased connectivities in all possible location pairs among the

frontal regions. In θ range, none of the anesthetics show significant change. In

contrast, α range show decreased connectivity between frontal regions for Propofol

and Ketamine case. The high frequency bands (γ and β ranges), Propofol case show

decreased connectivity pattern among few pairs, and Sevoflurane show decresed (γ)

and increased (β) connectivity pattern for a pair, respectively.

The connectivity change between two parietal regions are mostly non-significant.

Few exceptions are γ range (decreased) and α range (increased) for Propofol, and δ

range (decreased) for Ketamine.

2.5 Discussion

In this chapter, we have presented a correlation-based approach that explores

how the association pattern among multiple time series alters under different con-

ditions. The proposed approach utilizes wavelet analysis to allow the association

pattern changes in different frequency bands to be identified. Wavelet correlation

coefficients, which are calculated from each decomposed level, are used to show the

connectivity change pattern at different frequency bands. Our method is applied to

EEG data to analyze neural connectivity changes from a conscious state to general

anesthesia-induced unconscious state. Our results suggest that there is different con-

nectivity alteration pattern according to frequency band. Among three anesthetic
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Figure 2.12: Network plot of the squared correlation differences, i.e. Anesthesia
Corr2 - Baseline Corr2. Red and blue lines indicate that increased and decreased
connectivity under anesthesia respectively. Solid lines are for location pairs whose p-
value is lower than a Bonferonni significance level (0.05/15), and dashed lines are the
pairs whose p-value is lower than a nominal significance level (0.05). Orange nodes
indicate frontal locations and light blue nodes denote parietal locations of the brain.
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agents, for Propofol and Sevoflurane case, we had consistent results with the previ-

ous literature. We observed that the association change pattern for the Ketamine

case had some discrepancy from the other two agents. Though there is little existing

literature using Ketamine agent, it is known that Ketamine have different anesthesia

mechanism from the other two agents.

In conducting a discrete wavelet analysis, there are numerous possible families and

subfamilies of wavelet functions that we can use. There are relatively few literature

on how to select a wavelet family. Daubechies family is commonly used one in wavelet

analysis (Lindsay et al. (1996)). Our choice of the wavelet family (Daubechies order 4)

is based on Adeli et al. (2003), which focused on selecting a wavelet family in terms

of the detection of epileptic transition in EEG data. Though our results showed

meaningful discretion of association change pattern in different frequency bands, we

can further investigate the sensitivity of the analysis to choice of wavelet for other

wavelet family such as coiflets, symlets, and biorthogonal.

A possible extension of our method is using a modified version of the discrete

wavelet transformation (DWT) that has potential to provide better resolution of the

series. This modified DWT8 uses highly redundant non-orthogonal bases unlike DWT.

This transformation method has advantages such as 1) meaningful alignment between

the transformed and original series (so called zero-phase filter), and 2) obtaining

more efficient estimator for decomposed variance and covariance than DWT (Percival

and Mofjeld (1997)). To apply this approach, we need to address how to deal with

boundary issues.

This correlation-based framework provides the basis for a sensitivity analysis on

the connectivity change, that is, assessing the effect of a signal from unobserved brain

regions on the observed connectivity. The idea of this sensitivity analysis is based on

8The modified version of DWT is called by many different names: maximal overlap DWT
(MODWT), undecimated DWT, stationary DWT, translation-invariant DWT, and time-invariant
DWT (Percival and Mofjeld (1997)).
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the hypothesis that E(Y |X,U) = E(Y |U), where Y and X are observed signals and

U is an unobserved signal. This approach has a potential to answer an interesting

scientific question that has arisen by neuroscientists, e.g. “Is the observed connectivity

solely resulting from the neural connectivity between two brain regions?”.
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CHAPTER III

A local transformation approach to revealing

hidden dependence in multivariate time series

3.1 Introduction

Suppose we are interested in assessing the associations between pairs of series in a

collection of time series. As an illustration, consider the two series shown in Figure 3.1

(a). We could calculate the Pearson correlation coefficient between the two series,

ignoring the serial structure. As seen in the scatter plot Figure 3.1 (c), the Pearson

correlation does not reveal much of a relationship. However, it is possible that a

hidden relationship remains to be discovered, if we take account of the serial structure

of the time series. One way to proceed is to recalculate the Pearson correlation after

applying local transformations to the two series. A simple local transformation is to

smooth the series over a bandwidth of w points. Figure 3.1 (b) shows the Pearson

correlation after applying the smoothing transformation with different bandwidths.

As can be seen in Figure 3.1 (d), the correlation increases as the two series are

smoothed, up to a point where the correlation is maximized, and then the correlation

decreases as the two series are further smoothed. Building on this idea, our goal will

be to find a local transformation that can reveal such hidden associations among time

series.
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(c) Corr. = 0.2 (d) Corr. = 0.65

(a) Raw Data

Y
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(b) Corr(X', Y')

X'
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Y

X

Figure 3.1: An illustrative example of the motivation. (a) Simulated two series X, Y
(b) Correlation between transformed series X ′ and Y ′ using smoothing transformation
with different bandwidth (c) Scatter plot between the raw series (d) Scatter plot
between the transformed series

A transformation is one of the standard techniques in statistics that is used to

facilitate the discovery of the relationships among variables. A familiar example of a

transformation is the use of a log transform to remove certain types of mean/variance

relationships. In regression analysis, the Box-Cox power transformations allow op-

timal transformations to be adaptively identified from data. More recently, the al-

ternating conditional expectation (ACE) algorithm (Breiman and Friedman (1985))

finds coordinate transformations that give a best fit between the response and pre-

dictor variables. For the simple regression setting, the ACE algorithm estimates the

maximal correlation. Note that the maximal correlation is one of dependence measure

defined as

arg max
f,g

Corr(f(X), g(Y )),

where f and g are real-valued functions for random variables X and Y , respectively.

These transformation techniques are mainly developed for non-sequential data.

In this chapter, we propose methods that construct local transformations that
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reveal some underlying association structure among the time series. In particular,

we focus on revealing the hidden correlation, that is maximizing correlations between

the transformed series. In order to handle the temporal structure, we consider local

transformations that have the following form:

X̃t = f(Xt, Xt−1, . . . , Xt−w)

Ỹt = g(Yt, Yt−1, . . . , Yt−w),

where T is the total length of the series X, w is arbitrary time point less than T , and

f, g are arbitrary functions. The proposed method adaptively finds the transformation

that maximizes the correlation between X̃ and Ỹ . In this analysis, we use a linear

transformation.

The rest of this chapter is organized as follows. In Section 3.2, the characteristics

of a filter structure are discussed. In Section 3.3, 3.4 and 3.5, we discuss our method in

detail including relevant literature reviews. Then in Section 3.6, we provide simulation

study that investigates the performance of our transformation method. Section 3.7

is about a real data application using EEG data from the Ketamine study. Lastly,

Section 3.8 provides concluding remarks.

3.2 Linear time-invariant transformation

One widely studied class of transformation for time series is the linear time-

invariant (LTI) transformation or linear filter. The LTI transformation is used in

many fields. One of the main purposes of using the linear filter is noise reduction.

For example, in biomedical engineering, decomposing electrocardiogram (ECG) to

detect heartbeat uses extensive signal processing techniques utilizing linear filters

(Afonso et al. (1999)). In image processing, the filter is used to sharpen the edges of

an image (Glasbey and Horgan (1995)). Another example can be found in economics
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for estimating business cycle for macroeconomics data (Baxter and King (1995)).

The filter produces an output series that highlights certain characteristics of an

input series and suppresses others. A linear filter can be represented as the convolution

of an input series x(t) and specified coefficients b(t):

x̃t =
∞∑

u=−∞

buxt−u, t = 0m± 1, . . . , (3.2.1)

where bu’s are real number satisfying
∑∞

u=−∞ b
2
u < ∞. The coefficient bu that deter-

mines the filter is also called the impulse response function (Koopmans (1974)).

We are particularly interested in the finite-time finite filter coefficients in discrete

time, also known as the finite-time digital filter or Finite Impulse Response (FIR)

filter. The output series from this filter can be expressed as the following:

X̃(t) =
T−1∑
u=0

φ1(t− u)X(u), for t = 0,±1, · · · , T

Ỹ (t) =
T−1∑
u=0

φ2(t− u)Y (u), for t = 0,±1, · · · , T,

(3.2.2)

where φ1 ∈ Rd1 and φ2 ∈ Rd2 are finite filter coefficients for X and Y separately.

There are numerous literature on constructing linear filters. The non-adaptive

method uses prespecified filter coefficients to reveal certain characteristic of an input

series. For example, we can construct a filter that only allows the certain frequency

band of an input series to pass through, so the output series contains the signal

from the certain frequency band. The low-pass filter only passes low frequencies, the

high-pass filter passes high frequencies, and the band-pass filter passes user specified

frequency band of an input series. See Chapter 4 of Koopmans (1974) for details of

these filter constructions. These types of filter are extensively used in image processing

applications.

The adaptive way of constructing a filter involves some type of optimization
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procedure to find its coefficients. Some examples of this kind of filter are Wiener-

Kolmogorov filter, Kalman filter, and the matched filter. These approaches view an

input signal as a mixture of signal and noise. The Wiener filter constructs the filter

coefficients based on the minimum mean square of the error signal. The Kalman fil-

ter constantly updates the filter coefficients constructed from this least mean squares

algorithm. The Kalman filter can handle nonstationary input series, whereas the

Wiener filter only handles stationary input series. See Chapter 7 of Hayes (1996) for

more details. The matched filter uses different optimization criteria. This filter con-

structs the coefficients that minimizes signal-to-noise ratio of a series (Turin (1960)).

Note that the introduced examples are only considering one input series.

Our approach is an adaptive way of constructing the optimal local transformation

that maximizes correlation between two series. Using the expression in (3.2.2), we

can rewrite our objective as the following:

Construct the filter φ1 and φ2 that maximizes Corr(X̃, Ỹ ).

The filters φ1 and φ2 can be either different or the same. The construction of the

these two cases are illustrated in following two sections. Furthermore, we extend the

filter construction to multiple time series.

The length of the filter can be determined using external knowledge. As our focus

is on the high frequency time series, the length of the filter φi should be long enough

to capture some local characteristics of the input series. The high-dimensional filter

would cause computational issue as well as identifiability. One way to avoid these

issues is to construct the filter based on the B-spline basis. This way we reduce the

dimension of unknown parameters from length of filter to the number of necessary

knots for the spline basis. For example, if we want to apply a filter with length 50

with 5 knots, the number of unknown parameters is 5 instead of 50.
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Any order of B-spline can be used, but for simplicity we use the linear B-spline of

order 2. Also, we include a delta function in our basis in order to consider the raw

series as a possible resulting filter. Figure 3.2 shows the shape of the bases used in

our analysis.

Figure 3.2: B-spline basis of order 2 with delta function (Blue).

3.3 Constructing series specific filter for a pair of series

In this section, we describe the method finding the optimal local transformations

for two series. Here, we let each series have its own local transformation. Consider

the following objective function:

arg max
φ1,φ2∈Rd

Corr(φ1 ∗X,φ2 ∗ Y ), (3.3.1)

where * is a convolution operator and d ∈ Z+. The construction of two local trans-

formations φ1, φ2 for each series X and Y can be achieved by using the Canonical

Correlation Analysis (CCA). We begin this section by introducing CCA.

3.3.1 Canonical correlation analysis (CCA)

CCA is used to measure the linear association between two sets of variables. Since

it was proposed by Hotelling (1936), CCA has been widely used in many fields such
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as computer science, engineering, psychology, and economics. In particular, CCA

has been extensively applied to image analysis (Friman et al. (2001); Hardoon et al.

(2004); Donner et al. (2006); Jing et al. (2011)). In the literature, CCA is often

presented as a dimension reduction technique such as Principal Components Analysis

(PCA), Independent Component Analysis (ICA), among others. The main difference

between CCA and PCA dimension reduction methods is that CCA finds a projection

for a different basis for each set of the variables, whereas PCA considers only one

basis for one set of variables. Specifically, CCA finds new coordinates for each set to

maximize the correlation between the projection of the two sets of variables.

Let X and Y be vectors of random variables with p and q dimensions, respectively.

Then we have mean vectors µX ∈ Rp and µY ∈ Rq, covariance matrices ΣXX ∈ Rp×p,

ΣY Y ∈ Rq×q and ΣXY ∈ Rp×q. Consider the linear combination of X and Y :

X̃ = α′X and Ỹ = β′Y.

Then the correlation between X̃ and Ỹ is the following:

Corr(X̃, Ỹ ) =
α′ΣXY β

(α′ΣXXα)1/2(β′ΣY Y β)1/2
(3.3.2)

CCA searches projections α and β that maximize (3.3.2). This problem is equivalent

to the following:

arg max
α,β

α′ΣXY β

subject to α′ΣXXα = β′ΣY Y β = 1. (3.3.3)

Finding a linear combination that maximizes (3.3.3) can be solved analytically.
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The solutions are obtained from the following eigenvalue equations:

Σ
−1/2
XX ΣXY Σ−1Y Y ΣY XΣ

−1/2
XX α = λα

Σ
−1/2
Y Y ΣY XΣ−1XXΣXY Σ

−1/2
Y Y β = λβ. (3.3.4)

The eigenvalue equation (3.3.4) can be solved by applying the singular vector decom-

position (SVD) to the correlation matrix Σ
−1/2
XX ΣXY Σ

−1/2
Y Y . The resulting r non-zero

eigenvalues λ1 > λ2 > · · · , λr for r = min(p, q) correspond to the maximized correla-

tion. We use the eigenvectors α and β corresponding to the first eigenvector as our

linear filter. Sample covariance matrices for X, Y and XY will be calculated in the

following way:

Σ̂XX =

∑n
i=1XiX

′
i

n
, Σ̂Y Y =

∑n
i=1 YiY

′
i

n
, Σ̂XY =

∑n
i=1XiY

′
i

n
, (3.3.5)

where n is the sample size and mean vectors µx, µy are assumed to be zero. See

Chapter 10 of Johnson and Wichern (2002) and Chapter 10.2 of Brillinger (1975) for

details.

3.3.2 Our approach

In this subsection, we will show the formulation of our problem in terms of CCA.

Given two series, the convolution of filter and a series can be represented as a matrix

product. This matrices contain the time lagged series of each series respectively. If

we view each matrix as a set of variables, the problem is finding optimal filters that

maximizes correlation, and this can be solved using CCA framework. To be specific,

let X, Y be infinite time series and l is the filter length. Then we can construct a

collection of lagged series

Xm = [Xt, Xt+1, · · · , Xt+l], Ym = [Yt, Yt+1, · · · , Yt+l],
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for any t. Using these restructured data matrices Xm, Ym, we can express the convo-

lution representation (3.2.2) as a multiplication between this data matrix and a filter

coefficient vector. With the reconstructed matrix, we have the following mean and

covariance: Xm

Ym

 ∼


µ
ν

 ,

ΣXmXm ΣXmYm

ΣYmXm ΣYmYm


 ,

where ΣXmXm , ΣYmYm are autocovariance matrices and ΣXmYm , ΣYmXm are cross-

covariance matrices. The definition of autocovariance and cross-covariance for (i, j)th

element are

[ΣXmXm ]ij = E[(Xi − µXi )(Xj − µXj )]

[ΣYmYm ]ij = E[(Yi − µYi )(Yj − µYj )]

[ΣXmYm ]ij = E[(Xi − µXi )(Yj − µYj )],

where µXi and µYi are mean of X and Y at time point i. If both series were stationary,

we have µXi = µXj = . . . = µX and µYi = µYj = . . . = µY for all time points i, j.

The linear filter can be found by applying SVD on the correlation matrix

Σ
−1/2
XmXm

ΣXmYmΣ
1/2
YmYm

. (3.3.6)

Let Fx, Fy be the resulting linear filter from SVD (right and left eigenvector respec-

tively). It is well known that the filters Fx, Fy are the same if the correlation matrix

(3.3.6) is symmetric. Hence, it is possible that we have the same resulting filters

Fx, Fy. This result depends on the level of symmetry of ΣXmYm , since ΣXmXm and

ΣYmYm are symmetric.

In classical CCA setting, it is not necessarily expected to have a symmetric co-

variance matrix between two sets of variables. However, in our setting, it is possible

especially we deal with stationary time series. We will explore what type of time

series may have a symmetric cross-covariance matrix using a vector autoregressive

(VAR) process with two time series.
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Suppose the following VAR(1) model:

Zt = ν +B1Zt−1 + ut, t = 0,±1,±2, . . . , (3.3.7)

where Zt = (Xt, Yt)
′ is 2 × 1 random vector, ν = (νX , νY ) is 2 × 1 fixed intercept

vector, B1 is (2× 2) fixed coefficient matrix, and ut is the white noise with E(ut) =

0, E(utu
′
t) = Σu, E(utu

′
s) = 0 for t 6= s. In order to derive the cross-covariance

expression, we first represent the series by an infinite sum of white noise

Zt = µ+
∞∑
i=0

Bi
1ut−i, t = 0,±1,±2, . . . ,

where µ ≡ (I2−B1)
−1ν and Bi

1 denote that B1 is multiplied i times. The mean vector

is E(Zt) = µ for all t, and the cross-covariance with h time lag is

Cov(Zt, Zt−h) =

Cov(Xt, Xt−h) Cov(Xt, Yt−h)

Cov(Yt, Xt−h) Cov(Yt, Yt−h)

 . (3.3.8)

See Lütkepohl (2005) for more details.

Symmetry of the cross-correlation can be checked by comparing the (1, 2)th and

(2, 1)th elements of the cross-covariance matrix (3.3.8). Using (3.3.7), this cross-

covariance matrix can be expressed as the following:

Cov(Zt, Zt−h) ≡ E(Zt − µ)(Zt−h − µ)′

= lim
T→∞

T∑
i=0

T∑
j=0

Bi
1E(ut−iu

′
t−h−j)(B

j
1)
′

= lim
T→∞

T∑
i=0

Bi
1E(ut−iu

′
t−h) +Bi

1E(ut−iu
′
t−h+1)B

′
1 + · · ·

= lim
T→∞

Bh
1E(ut−hu

′
t−h) +Bh+1

1 E(ut−h+1u
′
t−h+1)B

′
1 + · · ·

= lim
T→∞

T∑
i=0

Bh+i
1 Σu(B

i
1)
′ =

∞∑
i=0

Bh+i
1 Σu(B

i
1)
′. (3.3.9)
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Here, Σu is a symmetry matrix. It is hard to control the symmetry of the cross-

covariance matrix as the matrix would be more affected by the values in Σu than B1.

Therefore, we expect that the resulting linear filters for X and Y would have very

similar shape in VAR(1) model case.

We close this subsection by introducing the reconstruction of time series with

finite time. Consider a series X with T time points and a filter coefficient vector b

with length l. Without considering boundary effects, the elements of the series from

a convolution between X and b is the following:

t = l blx1 + bl−1x2 + · · ·+ b1xl

t = l + 1 blx2 + b2x3 + · · ·+ b1xl+1

...

t = T blxT−l+1 + b2xT−l+1 + b1xT .

(3.3.10)

This convoluted series (3.3.10) can be expressed by matrix multiplication Xmb, where

b = [bl, b2, · · · , b1]′ and Xm is a restructured matrix from a series X as the following:

Xm =



x1 x2 · · · xl

x2 x3 · · · x(l+1)

...
...

...

x(T−l+1) x(T−l+2) · · · xT


(T−l+1)×l

. (3.3.11)

Note that the each column of Xm shows the lagged time series starting from the full

series. Similarly, we can reconstruct another series Y and the reconstructed matrix

is denoted as Ym.

The sample covariance matrices for (3.3.4) can be computed from these restruc-
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tured matrices Xm, Ym and XmYm as the following:

ĈXX = 1
T − l + 1



∑T−l+1
k=1 xkxk

∑T−l+1
k=1 xkxk+1 · · ·

∑T−l+1
k=1 xkxk+l−1∑T−l+2

k=2 xkxk−1
∑T−l+2

k=2 xkxk · · ·
∑T−l+2

k=2 xkxk+l
...

...
...∑T

k=l xkxk−l+1

∑T
k=l xkxk−l+2 · · ·

∑T
k=l xkxk


l×l

ĈY Y = 1
T − l + 1



∑T−l+1
k=1 ykyk

∑T−l+1
k=1 ykyk+1 · · ·

∑T−l+1
k=1 ykyk+l−1∑T−l+2

k=2 ykyk−1
∑T−l+2

k=2 ykyk · · ·
∑T−l+2

k=2 ykyk+l
...

...
...∑T

k=l ykyk−l+1

∑T
k=l ykyk−l+2 · · ·

∑T
k=l ykyk


l×l

ĈXY = 1
T − l + 1



∑T−l+1
k=1 xkyk

∑T−l+1
k=1 xkyk+1 · · ·

∑T−l+1
k=1 xkyk+l−1∑T−l+2

k=2 xkyk−1
∑T−l+2

k=2 xkyk · · ·
∑T−l+2

k=2 xkyk+l
...

...
...∑T

k=l xkyk−l+1

∑T
k=l xkxk−l+2 · · ·

∑T
k=l xkyk


l×l

(3.3.12)

Then using these sample covariance Ĉxx, Ĉyy, Ĉxy, the linear filter φ1, φ2 are con-

structed from (3.3.4).

3.3.3 Brillinger’s CCA extension to time series

Brillinger (1975) extended Hotelling’s CCA to multivariate time series. Brillinger’s

CCA is interested in finding filters that measure the association between two sets of

multivariate time series. Consider two vector-valued stationary time series Xt ∈ Rd1

and Yt ∈ Rd2 for t = 0,±1, . . .. The transformed series are as the following:

X̃t =
∑

u φt−uXu

Ỹt = µ+
∑

u ψt−uX̃u,

where {φt} is q × d1 filter, {ψt} is d2 × q filter and µ is a d2 vector of constants.
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Brillinger approached this problem as the least squares set up. That is, the filter

{φt} and {ψt} are constructed to minimize

E[(Yt − Ỹt)′(Yt − Ỹt)]. (3.3.13)

It can be shown that this approach leads to the same as (3.3.3). See the proof of

Theorem 10.2 in Brillinger (1975) for more details.

Given spectral density matrices1 fXX(λ), fY X(λ), fXY (λ) and fY Y (λ) at the fre-

quency λ, the optimum filters {φt} and {ψt} are constructed using eigenvectors Vk(λ)

of the matrix

fY X(λ)f−1XX(λ)fXY (λ).

The resulting filters are the following:

φt = 1
2π

∫ 2π

0
B(λ) exp(itu)dλ

ψt = 1
2π

∫ 2π

0
C(λ) exp(itu)dλ,

where

B(λ) =


V1(λ)′

...

Vq(λ)′

 fY X(λ)fXX(λ)−1

C(λ) = [V1(λ), . . . , Vq(λ)] .

The main difference in Brillinger’s approach from ours is in the construction of

the covariance matrix. Brillinger’s method focuses on the dimension reduction of

multiple time series, so the filter is constructed for the whole series. In other words,

the covariance matrices or spectral densities are constructed using cross-covariance

functions between two different series. On the other hand, our filter is designed

1The spectral density matrix is the Fourier transformation of the cross-covariance matrix. To be
specific, the off diagonal elements of the spectral density of fXX are cross-spectrum of series Xi, Xj

for i 6= j, and the diagonal elements are power spectrum of Xi. Other spectral density matrices are
constructed similar way.
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to capture localized structure, so the covariance matrix contains cross-covariance

function between two different time points in a series.

3.4 Constructing pairwise common filter

In this section, we discuss the method that constructs a filter φ ∈ Rd that maxi-

mizes correlation between two time series. For given two series X and Y , the objective

function is the following:

arg max
φ∈A

Corr(φ ∗X,φ ∗ Y ), (3.4.1)

where A ⊂ Rd for d ∈ Z+.

Optimization algorithm

We propose a heuristic algorithm that searches for the optimum filter coefficients. Our

algorithm adopts the idea of random search algorithms2. A random search algorithm

is a sequential optimization algorithm that moves the feasible space by a randomly

selected direction. This algorithm is particularly used for optimization problems

with non-convex objective function (Schumer and Steiglitz (1968); White (1971);

Zabinsky et al. (2010)). The new candidate point in each iteration is determined by

two components: direction and step size. For step size determination, we consider

the fixed step size random search proposed by ?.

Our algorithm generates a direction vector at each iteration from the standard

normal distribution with unit length. Mainly our algorithm moves a unit length, if

there is no improvement we decrease the length by half until either the improvement

is made or the length reaches near 0. Our algorithm is following the structure of

Improving Hit-and-Run (IHR) algorithm proposed by Zabinsky et al. (1993) with a

2This algorithm can also be called as a Monte Carlo method or a stochastic algorithm (Zabinsky
et al. (2010))
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modification in the step when improvement is not made. Pseudo code is given in

III.2.

Algorithm III.1 Conv.Corr: A function that construct a filter and calculate corre-
lation coefficient between transformed series

Require: Two time series X, Y , a B-spline basis B, a starting point S ∈ Rd

1: Construct a filter φk = BS.
2: Compute convolutions: X̃ = φk ∗X, Ỹ = φk ∗ Y
3: return Corr(X̃, Ỹ ).

Algorithm III.2 Heuristic Up Hill Algorithm

Require: Time series X, Y and a B-spline matrix B.
1: Initialize Sk ∈ Rd.
2: repeat
3: Compute a transformed correlation: Ck = Conv.Corr(X, Y,B, Sk).
4: Generate a direction r from the standard normal distribution.
5: if Conv.Corr(X, Y, Sk + r, B) > Ck then
6: Set Sk+1 = Sk + r.
7: else
8: Set j = 1.
9: while Conv.Corr(X, Y, Sk + r/2j) < Ck and j < J do

10: Set rj = r/2j, compute Conv.Corr and increment j
11: if Ckj > Ck then
12: Set Sk+1 = Sk + r.
13: else
14: Set Sk+1 = Sk.
15: end if
16: end while
17: end if
18: until
19: Stopping rule met.

In addition, we use the n-dimensional spherical coordinate system with a unit

radius. The conversion to Cartesian coordinates can be done by the formula derived

by Blumenson (1960). This coordinate conversion allow us to have one reduced

dimension for φ.

Visualizing the surface

In order to explore the resulting correlation surface, we developed a visualization tool
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that explores the surface around a local maximum point. We use Principle Component

Analysis (PCA) to set a direction for the exploration. As a start, we repeatedly

apply the Heuristic up hill algorithm for multiple starting points. PCA is applied on

the resulting optimum coefficients. Let M be the optimized filter coefficients at the

maximum correlation from all the iterations. Then we compute correlation coefficient

from transformed series with filter coefficients from

M + a1PC1 + a2PC2,

where a1, a2 are grid points over certain range. A contour plot can be made using the

correlation values along the a1 and a2. This contour plot can be made for different

PC combinations.

3.5 Constructing an optimal filter for multiple series

In this section, we discuss constructing a filter that reveals hidden association

structure in multiple time series. In order to extend to the multiple series, we use a

summary measure of the correlations from all possible pairs from the multiple time

series. This approach is analogous to the idea of the Projection pursuit algorithm.

Projection pursuit algorithm is designed to find a lower dimensional projection that

reveals some interesting structure of the original high dimensional data. This projec-

tion is constructed through optimizing over a certain projection index. The projection

index are defined to construct a “useful” projection, so it can be different for each

applications (Friedman and Tukey (1974)).

The linear filter we try to construct has the similar purpose as the projection pur-

suit algorithm: reveal a hidden structure. Hence, we refer this approach, constructing

a filter for multiple series, as Projection Pursuit (PP) approach. In this study we con-

sider two projection indexes: mean and variance of transformed correlations.
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Suppose that X is a collection of multiple time series. Following is the objective

function using the mean projection index:

arg max
φ∈A

∑
(k1,k2)∈K Corr(φ ∗Xk1, φ ∗Xk2)

|K|
, (3.5.1)

where K is the set of indexes for all possible pairs in X, |S| is the cardinality of a set

S, and A ⊂ Rd for d ∈ Z+. Similarly, we can obtain the objective function with the

variance index. Then we use the heuristic algorithm (III.2) to find a filter φ.

3.6 Simulation Study

In this simulation study, we explore the characteristics of the linear filter con-

structed from our methods. We consider four scenarios to generate time series, that

carries unique characteristics. The simulation scenarios are as following:

1. Difference: Two series that one is the difference of the other

X ∼ Normal(0, 1)

Yt = Xt −Xt−1, for t = 2, 3, . . .

2. Time Delay: Two series generated from VAR(1) model.

Et ∼ Multivariate Normal(0,ΣE)

Xt = 0.2Xt−1 + 2Yt−1 + Ex
t

Yt = 0.2Xt−1 + 0.5Yt−1 + Ey
t
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3. Low frequency shared (LFS): Two sinusoid that share the same structure, but

have independent errors.

X = sin(2πft) + 0.5Ex

Y = sin(2πft) + 0.5Ey,

where f = 0.01Hz and Ex, Ey are standard normal errors.

4. High frequency shared (HFS): Two sinusoid that have distinctive structure (dif-

ferent frequency and phase), but share the same error.

X = sin(2π · ft) + 0.3 ∗ E

Y = sin(2π · 3ft+ π/4) + 0.3 ∗ E,

where f = 0.1Hz and E is standard normal error.

All simulated series have length of 10000.

The first scenario, a series Y is the difference of values between consecutive time

points of another series X. The scenarios Low Frequency Shared and High Frequency

Shared, we view the series consists of two frequency component. For illustrative pur-

pose, we let the series in both scenarios share one of the frequency components. To be

specific, the smoothing case share the low frequency component, and the contrasting

case share the high frequency component. Similarly, the series in time delay case are

constructed to have high emphasis on the effect of Yt−1 to Xt. Then in all of the sce-

narios, we expect that the well constructed linear filter will give a perfect correlation.

Figure 3.3 shows the simulated series according to the scenarios and the scatter plots.
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Scenario Raw series Scatter plot

Difference

Time delay

Low
Frequency
Shared

Low
Frequency
Shared

Figure 3.3: Simulated series for each scenario and the scatter plot for those two
series. For raw series plot, we show first 100 or 500 time points of the series.

3.6.1 Series-specific filter

In this subsection, we show the simulation results of using the series specific filters.

In order to compare the smoothness of the filters, we used two kinds of basis function:

1) B-spline of order 2 (linear) with 5 knots, and 2) identity matrix. The identity basis
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function is equivalent to impose no restriction on smoothness of the filter. We refer

each basis function as B-spline and Free, respectively.

Table 3.1 shows the correlation between two raw series and between two out-

put series. The correlation between output series increased quite dramatically in

all scenario but the Time delay. There are very little difference in these optimized

correlation between B-spline and Free basis functions.

Table 3.1: Correlation coefficient computed from the raw series and output series
from the series-specific filters.

Scenario Difference Time delay LFS HFS
Raw -0.707 0.214 0.117 0.153

B-spline 1.000 0.291 0.793 1.0
Free 1.000 0.341 0.788 1.000

Figure 3.4 shows the resulting series-specific filters for each four scenarios. In the

Difference and the Time delay scenarios, not only we see fairly different shape of

filters for both series, but also using B-splines and Free basis functions. The filters

for each series in the Low Frequency Shared and High Frequency Shared scenarios

are almost the same regardless of the basis functions.

3.6.1.1 Model selection

In this subsection, we explore the filters in different length. We focus on the

constrained filter case. The evaluation is on the optimized correlation coefficient and

over-fitting. In the first part of evaluation, the effect of filter length, considered filter

lengths are 5, 25, 50, 100, 500, 1000 and 3000, which are 0.05%, 0.25%, 0.5%, 1%,

5%, 10% and 30% of the filter respectively. Due to an issue with covariance structure,

being non-positive definite, for high dimensional filters, we only consider simulated

series from Time Delay, High Frequency Shared (HFS) and Low Frequency Shared

(LFS) scenarios. Also, for the high dimensional case (length over 50), we use B-splines

basis for the filters. Number of knots for the B-splines basis are set to be either differ
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Scenario B-splines Free

Difference

Time delay

Low
Frequency
Shared

High
Frequency
Shared

Figure 3.4: Constructed filters for two series from each simulation scenario. The
first column shows the filter constructed using B-spline basis with order 2, and the
second column shows the free parametrized filter. Blue line is the resulting filter for
series X, and green line is the filter for series Y .

by the filter length and a fixed number. In the different know case, the knot size is

determined to have a 10 time points between knots. For example, there are 5 knots

for the filter length 50 and 100 knots for the filter length 1000. For the fixed knot
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case, we use 5 knots.

Figure 3.5 shows the correlation between output series for the three scenarios. For

each scenario, we plotted two knot cases. The solid line shows the resulting correlation

for the different knot case, and the dashed line shows the result for the fixed knot

case. Both the differed and fixed knot cases will have the same resulting correlations

for the filter length 5, 25 and 50. This is because the B-splines basis is not used

for the length 5 and 25, and there is the same number of knots for the length 50.

In the Time Delay scenario, increasing filter length leads to the increased optimum

correlation regardless of knot size. However, if you have more knots for the basis,

the optimum correlation tend to be higher. On the other hand, though the change is

very small. The optimized correlation has a decreasing tendency as the filter length

increases in the HFS scenario regardless of knot size. If the knot size increases, it

seems that the noticeable drops in the correlation happen in the shorter filter length.

Lastly, the LFS scenario shows two different pattern.

5 25 50 100 500 1000 3000
0

0.2

0.4

0.6

0.8

1

Filter Length

O
pt
im

iz
ed

C
or
re
la
ti
on

Time Delay
LFS
HFS

Figure 3.5: Optimized correlation result for different filter length. The solid lines
with white filled marks are the results from the changing number of knots by filter
length. The dashed lines with color filled marks are the results from the case where the
number of knots is fixed to be 5 regardless of filter length. The optimized correlation
for the length 5, 25, and 50 are the same for both cases.

The overfitting of the constructed filter is assessed via cross validation analysis.
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For cross validation, we cut the series into half and construct a filter with the first half

of the series (training). Then the constructed filter is applied to the second half of

the series (testing). As an overfitting measure, we use the absolute difference between

the two optimized correlations, training and testing series. Since we are using half of

the series, the covariance structure issue mentioned in the length study case happens

for shorter filter length. Hence, the simulation is performed for the filter length up

to 500. Similar as the previous length study, we consider the two cases of knot size:

differ by filter length and fixed to be 5.

Table 3.2 shows the mean absolute difference (MAD) from 100 repeats for each

scenario and filter length. In most cases, the magnitude of absolute difference is

somewhat negligible, especially in the High Frequency Shared scenario. The Time

Delay scenario showed the largest MAD and it increases as the filter length increase.

Table 3.2: Mean absolute difference between optimized correlation from training
and test sample.

Filter Length Time delay LFS HFS
5 0.02087 0.02300 1.18E-07
25 0.05553 0.02547 1.10E-06
50 0.05445 0.02676 3.43E-06
100 0.08004 0.01969 1.32E-03
500 - 0.01226 -

3.6.2 Pairwise common filter

In this subsection, we explore the performance of pairwise common filter, or the

same filter for two series. B-splines of order 2 basis with 5 knots is used to construct

the filter, in order to reduce the dimension of the filter. Also, we set the length of

filter to be 50.

We first check the stability of our heuristic algorithm as well as the surface of

the filtered correlations. For given two simulated series, we repeat the optimization

procedure using the Heuristic up-hill algorithm for 100 different starting points. The
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results of those 100 optimized filter and correlations are shown in Figure 3.6.

The left column of Figure 3.6 shows resulting the filters that gives optimized

correlation near the maximum. As can be seen, the resulting filters are clustered

into 2 groups3 The filters in each cluster are mirror image to each other for most of

the scenarios. The filters in Difference scenario shows few exceptions. Though we

don’t have nearly perfect two clusters in the Difference scenario, the filters at least

share the similar pattern. The right column of Figure 3.6, shows the distribution of

optimized correlation from 100 repeats. Both Time delay and Smoothing scenarios

reached the same optimal correlation value from any starting point. For Difference

and Contrasting scenarios, 70% of the starting points reached the similar optimized

correlation value.

Table 3.3 shows the optimized correlation coefficient from the pairwise common

filter. The pairwise common filter generally gives the lower optimized correlation than

the series-specific filter. In particular, the Difference scenario showed the biggest gap

in the optimized correlations between series-specific and pairwise common filter. This

result is somewhat expected as the Difference scenario simulation is constructed to

have two different filter for each series. For other scenarios, the optimized correlations

from the common filter are similar to the optimized correlation from the B-spline

series-specific filter.

Table 3.3: Correlation coefficient computed from the raw series and output series
from the pairwise common filter.

Scenario Difference Time delay LFS HFS
Raw -0.707 0.214 0.117 0.153

Optimum 0.001 0.292 0.719 0.878

Surfaces of the filtered correlations around the maximum filter are shown in Fig-

ure 3.7. The bottom part of the figure is contour plots of shows the correlation

coefficients at each principal components (PC) coordinates. In each plot, we set the

3We applied k-means clustering using filter coefficients.
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Scenario Filter Optimized correlation

Difference

Time delay

Low
Frequency
Shared

High
Frequency
Shared

Figure 3.6: Resulting filters for each scenario. Each simulation were repeated for
100 different starting points. First column shows clustering analysis of the resulting
filters. Second column shows histograms of the resulting correlation between output
series.

(0,0) coordinate to be the filter that gives the maximized correlation value. We can

see the multiple modes in the three scenarios - Difference, Time delay and Smoothing,

and the area of modes are quite large. The Contrasting scenario, on the other hand,
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have very narrow region that gives maximized correlation.

Difference Time Delay

Low Frequency Correlated High Frequency Correlated

Figure 3.7: Resulting filters and the response surfaces using the pairwise same filter
approach. Results from the four simulation studies are shown. The length of filter is
set to be 50 with 5 knots.

3.6.3 Multiple series with same filter

In this simulation study, we explore the performance of the projection pursuit

approach that constructs a linear filter for multiple time series. We generate six time

series with a hidden connectivity structure. There are two groups of series that are

highly correlated each other within each group, and independent across the group.

Table 3.4 shows the summary of the simulation.

Figure 3.8 shows the correlation between all possible pairs from raw data series.

most of these correlations are very small (up to 2∼3 decimal points) due to large

errors. From this plot, the group structure of the series is not seen that clear. If we

highlight the pairs with the largest correlation, we see spurious relationships between

X2, X3 and Y1. Still the interpretation of the connectivity is somewhat meaningless
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Table 3.4: Summary of the simulation

Group 1 2
No. of series 4 2

Formula sin(2πft) + 5ε sin(2π · 3ft+ π/4) + 5ε
Notation X1, X2, X3, X4 Y1, Y2

* f = 0.01Hz, t = 1, . . . , 10000 and ε ∼ N(0, 1).

since the magnitudes of correlation are very small.

Figure 3.8: Correlation coefficients of possible pairs from the simulated data.

We consider two filter lengths 50 and 200 with alternating knot size 5 and 20,

respectively. The filter is constructed from the Heuristic up-hill algorithm using mean

and variance projection indexes. Figure 3.9 shows the optimized correlation among

the six series. With filter length 50, we see that the correlation among X1, X2, X3, X4

are increased to at least 0.3, and correlations between any Xi and Yj are less than 0.1.

The optimized correlation recovered the relationships among Xs, but the relationship

between Y1 and Y2 was not recovered. Note that, the mean and variance index gave

very similar results. Similarly, with filter length 200, we reveal the highly correlated

relationships amongXs. The magnitude of the optimized correlations are much higher

than that of the filter length 50.
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Index Mean Variance

Filter
Length

50

Filter
Length

200

Figure 3.9: Optimized correlation from the projection pursuit approach with sim-
ulated data. Mean and variance indexes are shown for filter length 50 and 200 with
knot size 5 and 20, respectively.

Table 3.5: Mean and Standard deviation of the resulting correlations for each pro-
jection indexes.

Index Mean Variance
Raw 0.008 (0.012)
FL*= 50 0.151 (0.189) 0.142 (0.182)
FL*= 200 0.280 (0.326) 0.276 (0.340)

*FL = Filter Length

3.7 Application to EEG data

In this section, we illustrate the use of optimal local transformations with data

from the Ketamine study. This data set contains EEG recordings of 29 subjects. For

illustration, we use the pre-treatment (awake) portion of the data. For each subject,

5 minute duration EEG recordings were made in 6 locations in the brain (4 frontal

and 2 parietal). Our goal is to assess whether optimal local transformations can be

used to aid in understanding the neural connectivity in this baseline resting state.

Throughout the analysis, the time interval for the local transformation, or the filter
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length, is set to be 50. This length is chosen based on the scientific reason that the

length matches with the time that a person responds to a visual stimulus4.

The analysis is conducted in the following ways: 1) using position-specific local

transformations, 2) using a a common filter for each position pair, 3) using a common

transformation for multiple position pairs. For simplicity, in each analysis we show

the results for 1) each subject for a fixed location pair (subject-wise), and 2) each of

the possible location pairs for selected subjects (location-wise).

3.7.1 Pairwise analysis with position-specific transformations

Given a location pair, transformations are constructed for each location. For

example, if we are interested in the location pair Fp1 and P3, two transformation

filters are constructed for Fp1 and P3, respectively. As described in Section 3.3.2,

CCA is used to construct filters. To explore the effect of the number of knots (we

consider equal space between knots), we consider two basis functions for the filter:

B-splines with 5 knots and free. The free basis function is equivalent to have a basis

with 50 knots5.

First, we discuss the subject-wise analysis results. Figure 3.11 shows the cor-

relations from raw and filtered series constructed with the two basis. Most of the

subjects have similar filtered correlation for both B-spline and Free basis functions.

The subjects whose correlation showed more than a 0.1 difference between Free and

B-spline basis are 4, 17, 19, 20, 22, 23 and 24. This suggests that the filter could be

quite smooth.

Figure 3.12 shows the resulting filters from the B-splines and Free basis functions

for selected subjects. Subject 1 and 13 have very small difference in the filtered

4It is well known that 200 millisecond is the time that a visual stimulus travel through retina,
thalamus and parietal to frontal area. The sampling rate of our data set is 256 Hz, which has 256
points in a second. So using 50 filter length means the filter covers 1/5 second or 200 milliseconds.

5We also used knot sizes 10 and 25, but the both of filtered correlations were very similar to that
of 5 knots.
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Figure 3.11: Subject-wise correlations between EEG series from Fp1 and P3 loca-
tions. Raw and filters series are shown together. The filtered series are from B-spline
and Free position-specific filters.

correlation between the two basis. Subjects 4, 17 and 23 are the ones whose optimized

correlation increased over 0.1, and the optimized correlations of Free filter are near 1.

Interestingly, the subjects with similar filtered correlations from two basis functions

tend to share the similar filter shape for Free basis as seen in subjects 1 and 13. Others

share the shape of subjects 4, 17 and 23. Also, this distinction is more apparent in

the Free basis filter than B-spline filter.

The constructed filters have some nice interpretation. For example, the Free filter

from subject 4 and 17 take differences of the neighboring points. Subject 4’s filters

are almost the same for each location, whereas subject 17’s filters have a time lag

between the locations. Fig 3.13 shows subject 4’s filtered series for the location pair

Fp1 and P3 (up to about 2 seconds), and scatter plot of those two series. The plot

shows that the filtered series are indeed have strong linear relationship.

Now, let’s look at the results from location-wise analysis. For simplicity, we show

the results for subjects 1 and 4 using B-spline basis filter. Both Free and B-spline

filters give very similar results. With the EEG data, it is known that the signals from

the nearby locations synchronize better the signals from further locations. Therefore,
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using the optimized connectivity to assess the connectivity pattern may not be as

effective. Instead, we use differences of the correlations of locations pairs between

raw and transformed series. For example, let series from Fp1 be X and P3 be Y ,

then we calculate

Corr(φ̂ ∗X, φ̂ ∗ Y )− Corr(X, Y ), (3.7.1)

where φ̂ is the constructed common filter for X and Y , and * is the convolution

operator. As the optimized correlation should be larger than the raw correlation,

all the differences are expected to be positive. This calculation is repeated for each

possible pairs of 6 locations (15 location pairs).

Figure 3.14 shows the resulting differences for each position pair in subjects 1

and 4. In both subjects, the most noticeable differences occur at the pairs Fp1-P3,

Fp1-P4, Fp2-P3, and Fp2-P4. This result is coherent with the scientific hypothesis

that the connectivity between frontal and parietal regions are active when a person

is conscious.

3.7.2 Analysis with pairwise common local transformation

In this analysis, we restrict the optimal local transformations to be the same for

a pair of location. Allowing different transformation for each series may give the

largest increase of the optimized correlation. However, most of the subjects or the

location pairs had very similar filter for each series. Hence, it may also be scientifically

meaningful to assume that there exists some shared behavior in a certain location

pairs.

In the analysis, the filter is constructed for each pair of location. The heuristic

algorithm (III.2) introduced in Section 3.4 is used to construct the transformation.

Note that we let the transformation to be different for the signal from same location

when the signal is paired with different locations. For example, the constructed filters

may differ for the pair Fp1-P3 and Fp1-Fp1 though the same Fp1 series is involved.
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Similar as the position-specific filter analysis, the results are shown in subject-wise

and location-wise ways.

In the subject-wise transformation analysis, we construct filters for each subject

using the location pair Fp1-P3. Figure 3.15 shows the optimized correlation from

the common filter. For the comparison, the resulting correlation from the B-spline

position-specific filter and raw series are also plotted. As can be seen, the optimized

correlations for each subjects with common filters are slightly lower than that of the

position-specific filters. The average increase of the optimized correlation from these

common filters across the subjects is 0.158 and the standard deviation 0.088. The

most prominent change is seen in subjects 1, 3 and 8 with the increase 0.294, 0.298

and 0.354 respectively.

Now, we discuss the results from the location-wise analysis. For simplicity, we

show the results from subject 1 and 4. All possible pair of 6 locations are considered.

Note that the analysis is still done for each pair. Similar as the location-wise analysis

with the position-specific transformation, we look at the correlation change before and

after the transformation. Recall, we use the differences in order to avoid observing

dominant correlation pattern among the nearby location pairs. Figure 3.16 shows

the resulting differences between raw and transformed series pair. The pattern of the

differences is very similar to the result of position-specific transformation analysis:

both subjects show prominent increase in the frontal-parietal connectivity.

Post-hoc Analysis

Suppose that we are interested in clustering analysis for either subjects or location

pairs based on the filters. This clustering analysis can be tricky if we were to use the

filter directly, due to the identifiability issue. Instead, we create a measure that can

be used to compute the similarity between clustering objects. The basic idea is that

if the common filters from two different location pairs differ, the resulting filtered

correlation from each others filter would be significantly lower than using their own
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filter. Therefore, we calculate the filtered correlation using the other pair’s filter, and

call it Cross-matched correlation. The idea is that, if certain subjects or location pairs

share a similar pattern of the filter, the distribution of their cross-matched correlation

would be similar.

This Cross-matched correlation can be computed for both subject and location-

wise analysis. In the subject-wise analysis, the Cross-matched correlation can be

computed for each subject. Hence, in our data, there will be 28 filtered correlation

values applying the subject i’s filter to others. By repeating this calculation for all 29

subjects, we obtain 29×29 matrix with the diagonal be the filtered correlation using

subject i’s own filter. Here, the each row indicates where the filter is from, and the

each column indicates that subject whom the filter is applied to. For example, if we

apply a filter from the subject 1 to subject 3, the resulting correlation will be at (1,3)

coordinate of the matrix. Similarly, we can compute this Cross-matched correlation

for the location-wise analysis, where each row indicates the location pair that create

the filter and each column indicates the location pair that the filter is applied to.

We first apply hierarchical clustering with single linkage to explore the grouping

pattern, then apply the k-means to cluster the subjects. Both of the clustering anal-

ysis give very similar results. For the hierarchical clustering, we define the similarity

matrix as the following:

Dij =
n∑
k=1

(Corr(φ̂i ∗Xk, φ̂i ∗ Yk)− Corr(φ̂j ∗Xk, φ̂j ∗ Yk))2,

where φ̂i is the common filter constructed for series pair Xi and Yi, n is the number

of clustering objects, and ∗ is the convolution operator. For the k-means, we use the

Euclidean distance of the cross-matched correlation between two rows (subjects or

location pairs). In the between subject analysis, the subjects who share similar filter

would be clustered together. Similarly, in the location-wise analysis, the location
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pairs that share the similar filter are clustered together.

Figure 3.17 shows the clustering result for the between subject analysis. From the

dendrogram, we see that most of the subjects are grouped together except subjects 21

and 27. Though subject 27 is not abnormal in terms of its raw and filtered correlation

value, subject 21 have significantly lower raw and filtered correlation compare to that

of other subjects. This analysis suggests that we can consider a common filter that

accounts for all the subjects at a certain location pair.

Figure 3.18 shows the clustering results for the within subject analysis. These

clustering methods are applied to subject 1 and 4 separately. In both subject, we

can see 2 clusters from the dendrogram. Interestingly, the location pairs in each

clusters are the same for both subjects. Table 3.6 shows the location pairs for the

each cluster. One cluster contains the pairs only within frontal or parietal regions,

and another cluster contains the pairs across any frontal and parietal regions. The

shapes of filters in each cluster also show some coherent patterns.

Table 3.6: List of location pairs for each cluster from K-means clustering analysis.
Subject 1 and 4 have the same clustering results, and the cluster number is arbitrary.

Cluster Location pair
1 Fp1-Fp2, Fp1-F3, Fp1-F4, Fp2-F3, Fp2-F4,

F3-F4, P3-P4
2 Fp1-P3, Fp1-P4, Fp2-P3, Fp2-P4, F3-P3,

F3-P4, F4-P3, F4-P4

3.7.3 Multiple series with the same filter

In this subsection, we analyze the data by constructing a filter over multiple series

using projection pursuit approach. Many different kind of projection index, or the

summary function of all possible pairwise correlation among the multiple series, can

be used. In this analysis, we use mean and variance indexes. Similar as the previous

analysis using position-specific transformation and pairwise common transformation,

we consider subject-wise and location-wise level analysis. In the subject-wise analysis,
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we construct a common filter across the subject for a location pair Fp1 and P3.

Similarly, in the location-wise analysis, we construct a common filter across all the

possible pairs among the 6 locations for a subject.

Figure 3.19 shows the optimized correlation from the subject-wise analysis. As

the filter is constructed to increase the mean correlation of all subjects, not all of the

subject’s correlation increase after the transformation. For the subjects whose trans-

formed correlation increased, the magnitude is slightly lower than the transformed

correlation from the position-specific filter. Also, for decreased subjects, there is a

subject who has noticeable decrease: subject 27. Recall that this subject was in the

other cluster along with subject 21 whose correlations are significantly lower than

others. The change pattern of the transformed correlation are very similar in the two

indexes.

In the location-wise analysis, we look at the correlation change before and after the

transformation. Figure 3.20 shows the resulting differences for each index and subject.

As can be seen, the mean and variance index showed quite different pattern in both

subjects. In the mean index case, we see the increased connectivity between frontal

and parietal regions after the transformation, which is consistent with the previous

analysis. However, with the variance index, we see the decreased connectivity between

frontal and parietal regions after the transformation. Note that the filter used in this

analysis is different from the one we constructed across the subject.

Lastly, we show the resulting filters and their response surfaces for 6 different pro-

jection pursuit approach: two indexes for subject-wise and location-wise analysis. See

Figure 3.21. The resulting filters have fairly different shape across the analysis cases.

Also, most of the case have very narrow regions of maximum filtered correlation.
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3.7.4 Summary

As a summary, we provide mean and sample standard deviation of optimized

correlation from each method (Table 3.7). The position-specific approach have the

largest optimal correlation on average. However, the optimal correlation from pairwise

common filter is also very similar to that of position-specific filter. Both method

have almost the same standard deviation. The projection pursuit approach have less

increase in average optimal correlation for both projection indexes. However, both

measure have larger standard deviation than that of pairwise methods.

Table 3.7: Summary of the filtered correlation from subject-wise analysis for all the
methods.

Raw Position-specific Common PP Mean PP Variance
Mean 0.544 0.720 0.702 0.630 0.613
SD 0.155 0.153 0.151 0.213 0.230

3.8 Discussion

In this chapter, we developed local transformation methods that reveal hidden

association among multivariate time series. The local transformation take the form

of convolution between filter coefficients and series, or linear filter. The filter co-

efficients are constructed to maximize the correlation between output series. We

considered several different ways of constructing the coefficients: series-specific, pair-

wise common, and common transformation for multiple series. In the construction

of series-specific transformation, we used Canonical correlation analysis approach.

In the construction of common filter for a pair or multiple series, we developed the

Heuristic up-hill algorithm that finds the filter coefficients for optimum correlation.

The proposed approach can be easily changed to reveal different aspect of the

relationships. For example, in the neuronal connectivity application, we can find the

filter that maximizes differences of the correlation between EEG series collected under
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different conditions. Also, the method can be extended using different measures of

association such as information measures, or different transformation method. All

this can be done by just adjusting the objective function.

It is more likely to have non-convex objective function by imposing minimal re-

strictions on choosing one. This arises the question of identifiability and uniqueness

of the constructed transformation. Though the local transformations constructed in

our simulation study and data analysis did not show severe problem regarding the

identifiability (giving quite small group of patterns), this issue is still remained to be

further investigated.
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Subject B-spline Free

1

4

13

17

23

Figure 3.12: Constructed filters from CCA for the selected subjects The first column
shows the filter constructed using B-spline basis with order 2, and the second column
shows the free parametrized filter. Solid line is the resulting filter for EEG series from
Fp1, and dashed line is the filter for series from P3.
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(a) Filtered series (b) Scatter plot

Figure 3.13: Subject 4’s filtered series for each location and its scatter plot. Blue is
the filtered series for Fp1 and green is for P3. The length of original series is 77632,
and we only show first 500 time points. For the filter construction, the Free basis
function is used.

(a) Subject 1 (b) Subject 4

Figure 3.14: Location-wise correlation differences between raw and filtered series
(Filtered - Raw) for selected subjects. The position-specific filter is used.
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Figure 3.15: Subject-wise correlations between EEG series from Fp1 and P3 loca-
tions. Raw and filters series are shown together. The filtered series are from 1) the
pairwise common filter and 2) B-spline position-specific filter

(a) Subject 1 (b) Subject 4

Figure 3.16: Location-wise correlation differences between raw and filtered series
(Filtered - Raw) for selected subjects. The pairwise common filter is used.
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Figure 3.17: Dendrogram from the hierarchical clustering result on the subjects.
The numbers on the x-axis denote the each subject.

Dendrogram Clustered Filter

Subject
1

Subject
4

Figure 3.18: Clustering analysis results for the location-wise level analysis. The
first column is dendrograms from the hierarchical clustering analysis, and the second
column shows the filter for each cluster from k-means. The labels in the dendrograms
indicate the location pairs.
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(a) Mean (b) Variance

Figure 3.19: Subject-wise correlations between EEG series from Fp1 and P3 loca-
tions. Raw and filtered series are shown together. The filtered series are from 1) the
projection pursuit approach and 2) B-spline CCA approach.

Index Mean Variance

Subject
1

Subject
4

Figure 3.20: Location-wise correlation differences between raw and filtered series
(Filtered - Raw) for selected subjects. The projection pursuit filter is used.
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CHAPTER IV

Assessing the impact of a single unobserved

covariate on the estimated effects of multiple

observed covariates in regression analysis

4.1 Introduction

Multiple regression analysis is used in many scientific fields to aid in understanding

the relationship between measured covariates and an outcome. However, in practice

some important covariates that influence an outcome may not be observed, and this

complicates the interpretation of fitted regression models. In this project we consider

problems relating to questions about what can be learned regarding the possible

effects of unobserved variables in a regression analysis. We start by providing several

examples of scientific problems where regression analysis is usefully applied, and where

there are likely to be important variables that cannot be measured and included in

the regression.

• Neuroscience

Suppose a researcher measures neural activity in several parts of the brain, in

order to understand its relation to the perception of pain. If a multiple regression

analysis indicates that neural activity in multiple brain regions contributes to
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the outcome, one may interpret this as an indication that pain perception is

influenced by several distinct neural systems. However, as activity levels from

all parts of the brain cannot be measured in practice, it is possible that neural

activity in a single unmeasured brain region is the only important variable. If

this is the case, the results of our multiple regression analysis are qualitatively

misleading, in that not only are the relevant brain regions misidentified, but we

also erroneously conclude that multiple distinct regions, rather than one region,

contribute to the perception of pain.

• Genetics

A geneticist wants to perform multiple regression analysis to understand the as-

sociation between an observable trait and genetic variables. In current practice,

only a subset of possible genetic variables are directly measured. Due to link-

age disequilibrium, the unmeasured genetic variables will be correlated with the

measured genetic variables. Suppose we perform a multiple regression analysis

using the measured genetic data, in a situation where only a single unmeasured

genetic variable is truly important. The effect of the unmeasured variable will

be transferred to one or more of the measured variables in the regression anal-

ysis. This may lead to the incorrect suggestion that “allelic heterogeneity”1 is

present, when in fact the genetic effect is quite simple.

• Nutrition

A doctor wants to study how dietary intake of food components such as fat

or protein is related to a health outcome. Nutrient intake is usually assessed

by administering food-frequency questionnaires. Foods consist of numerous

components, and not all foods are present on the questionnaire. Therefore, it

is possible that a single eating behavior underlies the risk for a given health

outcome, even when several behaviors, analyzed as incomplete data, seem to

1The presence of multiple functional variants within a linked region.
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play major roles.

There are numerous models that deal with unobserved variables. One model is the

latent variable model. The latent variable model assumes that there exist latent (or

hidden) variables that explains the joint distribution of the observed variable usually

with a reduced number of variables. For example, factor analysis (one of the simplest

form of latent model) is based on modeling observed variable by a linear function

of latent variables (Bishop (1999)). Another form is sensitivity analysis proposed by

Rosenbaum and Rubin (1983). In this approach, the unobserved variable is considered

to be a hidden bias that is not controlled by adjusting observed variables (Rosenbaum

(2002)). Their main interest is to measure the effect of this hidden bias where it alters

the significant effect of the treatment. Hence, this method is based on modeling the

odds ratio with an unobserved variable and derive the boundary of the p-value with

a related hypothesis test.

Our work has a similar goal as Rosenbaum style of sensitivity analysis, in the

sense that the unobserved variable has its own effect beside the portion explained

by observed variables. In all the scientific problem examples above, the key issue

is to understand the effect of an unobserved covariate U . Such a question can only

be partially answered in practice. As a special case, we will consider the situation

where a single unobserved variable U contains all the information in X about Y , i.e.,

P (Y |X,U) = P (Y |U). Note that U must be correlated with X. We focus initially

on linear models, so that the effect size of U can be defined as the coefficient θ where

E(Y |U) = θU . Here θ cannot be estimated as U is unobserved. But it will be seen

that in this setting, as long as X and Y are correlated, the effect size of U must

be nonzero and should be somehow related to the effect sizes of the Xs, which are

estimable.

One special situation is the case when U is a function of X, e.g. U = δ′X. In

this case, U and X may contain the same information about Y , but it is not possible
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for U to contain information about Y that is not in X. However, there is some

situation that U may explain additional variance in Y , beyond that explained by X.

For example, take the conventional way of expressing the linear model,

Y = β′X + ε.

Given any decomposition of the error ε = η+ ε̃, where ε̃ is uncorrelated with β′X+η.

If we set U = β′X + η, then U is an unobserved variable that explains a greater

fraction of the response variance than X does. Based on this example, it is clear

that we should only hope to place a lower bound on the effect size of U . It is also

interesting to consider how weakly U and X can be related, with U still capturing all

the information in X about Y .

The rest of this report is organized as follows. In section 2, we elaborate on how

to address the problems we discussed: finding lower bound for effect size of U and

relationship between U and X. In Section 3, we will show an illustrative example

via simulation study based on an application to genetics. In the last section, we will

discuss future work.

4.2 Problem formulation

In this section we introduce several quantities that can be used to learn about the

influence of an unmeasured covariate. Our goal at this point is to establish what can

be learned about the population level relationship between Y and U in a situation

where we have complete information about the population level relationship between

Y and X. Here we do not address the further complicating factor that characteristics

of the joint distribution of Y and X must be estimated.
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4.2.1 Bounds on moments between observed and unobserved predictors

We have n subjects with continuous responses Y1, · · · , Yn. For each subject i,

we observe p independent variables Xi = (Xi1, · · · , Xip). Suppose that there is an

unobserved variable U which carries all the information in X about Y , that is

E(Y |X1, · · · , Xp, U) = E(Y |U). (4.2.1)

The assumption (4.2.1) implies that when both X,U are present in the regression

model, the coefficients of X will be zero. Also, we assume a linear relationship

between U and Y , i.e.,

E(Y |U) = α + θU. (4.2.2)

As it is not possible to recover the subject level of Ui values, we focus on a much

lower dimensional quantity X ′U – the collection of the inner products between each

observed component Xj and the unobserved variable U for j = 0, · · · , p (we include

intercept in the design matrix X).

While we cannot recover the exact value of X ′jU for j = 0, · · · , p, we demonstrate

that this term can be bounded in a couple of ways using available information. First,

as (I −X(X ′X)−1X ′) is a projection matrix, the semi-definiteness of the projection

matrix gives the first inequality

U ′X(X ′X)−1X ′U ≤ U ′U. (I1)

Moreover, by the Cauchy-Schwartz inequality, we get another inequality

∣∣∣∣X ′Un − X̄Ū
∣∣∣∣ � SD(X)SD(U), (I2)

where SD(X) is a vector of standard deviation of Xj(j = 0, · · · , p), SD(U) is a
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standard deviation of U (scalar) and � denotes element-wise inequality. To be spe-

cific, the inequality (I2) is derived from the fact that the absolute value of a sample

correlation between Xj and U cannot exceed 1 for all j = 0, · · · , p.

The terms containing U in (I1)-(I2) can be substituted with the terms that can

be calculated from the observed data. Suppose that (4.2.1) and (4.2.2) hold. Under

the linearity assumption between Y and U as in (4.2.2), the assumption (4.2.1) is

equivalent to the following:

Y = θU + ε and E(ε|U,X) = 0. (4.2.3)

The above assumption (4.2.3) allows us to have the following expected normal equa-

tion when both X, U are observed:

 X ′EY

U ′EY


(p+2)×1

=

 X ′X X ′U

U ′X U ′U





α

0

...

0

θ


, (4.2.4)

where EY = E(Y |X,U) = E(Y |U) ∈ Rn. Since U is unknown, (4.2.4) has p + 2

equations and p+ 6 scalar unknowns which are: α, θ, U ′U,
∑N

i=1 Ui, U
′EY and X ′U .

Here, the unknown quantities are mostly the first or second moments except α and

θ, which are the intercept and the effect size of U respectively. By expanding (4.2.4)

we get the following equations :

X ′EY = αSx + θX ′U (4.2.5)

U ′EY = αU.+ θU ′U, (4.2.6)
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where Sx = (n,X1., · · · , Xp.)
′ is the first column of X ′X and U. =

∑N
i=1 Ui. Then

rearranging (4.2.5) yields:

X ′U =
X ′EY − αSx

θ
. (4.2.7)

We are now able to express the key moment vector X ′U in terms of just two unknowns

(α and θ) instead of p + 1 unknowns (U.,X ′1U, · · · , X ′pU), which can be quite high

dimensional.

Moreover, the terms U./n, U ′U/n can be replaced with E(U) and E(U2) by using

external information regarding the distribution of U . As illustrations, if we consider

a Bernoulli distribution with parameter pu = P (U = 1), then we automatically have

following first and second moments expressed by pu:

E(U2) = pu, E(U) = pu.

When the distribution of U can be expressed in terms of one unknown parameter, we

are able to obtain fairly explicit formula for θ, the effect size of U . If U comes from a

more general distribution family, we can only make very weak statements about these

quantities unless we have some idea about the behavior of V ar(U). Therefore, in this

paper, we consider distributions such that V ar(U) depend on only one parameter such

as pu. Also, we use E(U), V ar(U) rather than expressing these terms in a particular

form under a certain distribution,

4.2.2 Combining all the known information

So far, we have established inequality constraints (I1)-(I2) involving the key un-

known quantity X ′U . Also, we have expressed X ′U explicitly in terms of the two

unknowns α and θ. In this subsection, we will express the inequality (I1)-(I2) in

terms of pu and θ. These two unknown values pu and θ are of primary interest and

both have practical interpretation: θ is the effect size of the unobserved variable U
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with respect to Y , and pu determines the first two moments of U .

First, by plugging (4.2.7) into (I1)-(I2), the inequality relationship become the

following inequality constraints (I1′)-(I2′) with three unknown parameters pu, θ and

α:

(X ′EY − αSx)′(X ′X)−1(X ′EY − αSx) ≤ nE(U2)θ2 (I1′)∣∣∣∣X ′EY − αSxθ
− X̄E(U)

∣∣∣∣ � SD(X)SD(U). (I2′)

Here pu plays a role in E(U), E(U2) and V ar(U), which may have different form

according to the distribution of U . Note that the value of α can be computed from

the first row of inequalities in (I2′) as the first column of X is (1, · · · , 1)′. Hence, the

standard deviation of the first column of X is 0, and therefore

α = EY − θŪ . (4.2.8)

From (I1′)-(I2′), which are explicit algebraic functions of θ and pu, we can find

a set of (θ, pu) values that satisfy both constraints. However, it is not possible to

analytically express the range of these values. Thus we adopt a numerical approach

exploring the range of possible (θ, pu) values. The lower bound for θ found by the

numerical approach will be denoted as θLB.

We first use a grid-search over θ ∈ [−3, 3], pu ∈ [0.5, 1] range. Fig. 4.1 shows the

region for possible pairs of (θ, pu) found through this grid-search (the black colored

area). The plot shows that any value of θ greater than a lower bound θLB satisfies

(I1′)-(I2′). Hence, instead of searching over all possible grid for (θ, pu), we can apply

a bisection-like root finding algorithm to find corresponding θLB for a given pu. We

consider only positive part in the algorithm, as there is the symmetry pattern in

possible (θ, pu) values area. An interesting point revealed from this numerical search

is that (I1′) provides the most tight bound for θ, that is once (I1′) is satisfied (I2′)

does not impose any additional restriction other than deciding α value. Below is a
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Figure 4.1: A collection of possible (θ, pu) pairs satisfying (I1′) - (I2′) from the numerical
example in Section 4.4. We performed this numerical grid search under different scenarios
of simulated data and all gave the same pattern for the possible pairs. We will discuss about
simulating different kind of data structure in depth in Section 4.4. Here considered range
of θ is [−3, 3] and by symmetry pu ≥ 0.5 are considered. The plot has only two values such
that -1(white) for pair values not satisfying at least one of the constraints and 1(black) for
pair values satisfying all constraints.

root(θLB)-seeking algorithm that was used in the numerical study.

4.2.3 Relationship between X and U

If an unobserved variable U contains all the information in X about Y , then

U must be related with X in some degree. Intuitively, if X can explain a good

portion of variance in Y , then a weak dependence between X and U will cause the

effect size of U to be large. However, as U is not observed, we cannot estimate this

relationship between U and X with given data. Nevertheless, there are some cases in

practice such that possible level of the relationship between observed variable X and

an unobserved variable U can be assumed. For example, in genetic analysis we know

that any genetic variable U must have a certain minimal level of dependence with the

measured X variables based on the density of markers. Hence, one can utilize the
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Algorithm IV.1 Bisection like algorithm that finds θLB

1: For fixed value pu, consider an initial value θ0 = [0, t].
2: if f(t) = −1, where

f(x) =

{
1 if both (I1′) and (I2′) are satisfied
−1 otherwise

then
3: Increase the value t until f(t) = 1.
4: θ0 ← [0, t∗]
5: end if
6: Set θ = θ0.
7: while Absolute value of the difference in θ > ε do
8: Take mean of the values in θ, and denote it as s.
9: Compute f(s).

10: if f(s) == 1 then
11: θ ← [0, s]
12: else
13: θ ← [s, t]
14: end if
15: end while
16: Return s as θLB for the fixed pu.

external information to bound the possible level of the relationship between X and

U .

In this subsection, we establish an equation relating the level of dependency be-

tween X and U with the effect size θ and the variance of U . As we are considering

multiple Xs, we quantify the net dependence between U and X as a sample R2(R̂2
u|x)

of a hypothetical regression of U on X:

R̂2
u|x =

‖ Û − Ū ‖2

‖ U − Ū ‖2
=
Û ′Û/n− Ū2

U ′U/n− Ū2
, (4.2.9)

where Û is a projection of U onto X space, i.e. Û = X(X ′X)−1X ′U . The R̂2
u|x in

(4.2.9) is a ratio of sample variances of Û to that of U , and this allows us to express

the net dependence as a function of θ and pu. Once a functional relationship among

R̂2
u|x, θ and pu is established, we can explore the surface of possible influences of an
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unobserved variable U .

In order to establish this relationship, we need to substitute the terms containing

U in (4.2.9). As Û contains the key unknown moment X ′U , we can substitute this

term with the following expression by using (4.2.7) in Subsection 4.2.2. As a result,

we have

R̂2
u|x =

(
(X ′EY − αSx)′(X ′X)−1(X ′EY − αSx)/nθ2 − Ū2

)
U ′U/n− Ū2

. (4.2.10)

Furthermore, by using distribution information of U , we have following functional

relationship among the three parameters θ, R2
u|x and Pu:

R2
u|x ≈

(A/θ2 − E(U)2)

V ar(U)
, (4.2.11)

where A = (X ′EY −αSx)′(X ′X)−1(X ′EY −αSx)/n. The left-hand side R2
u|x cannot

be calculated from the data, whereas the right-hand side can be. Therefore, we do

not have an exact equation as (4.2.10).

The relationship (4.2.11) can be solved for θ by plugging in α = EY − θE(U):

θ2p ≈
(
EY ′PxEY

n
− EY 2

)(
1

R2
u|xV ar(U)

)
. (4.2.12)

We denote the functional relationship (4.2.12) as θp to indicate that this relationship

contains population value such as EY . The relationship (4.2.12) will be called as

the first approximation and it consists of two parts: data and parameters. That is

(4.2.12) can be expressed as

θp = h(EY )g(R2
u|x, Pu).

This population functional relationship can have a sample version by using Y
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instead of EY . We will call this sample version of relationship as the second approx-

imation. Let a sample version of A be A′ = (X ′Y −αSx)′(X ′X)−1(X ′Y −αSx)/n. If

we expand A′, we get the following:

A′ = (X ′Y − αSx)′(X ′X)−1(X ′Y − αSx)/n

= (X ′(Y − EY + EY )− αSx)′(X ′X)−1(X ′(Y − EY + EY )− αSx)/n

= (X ′(Y − EY ) +X ′EY − αSx)′(X ′X)−1(X ′(Y − EY ) +X ′EY − αSx)/n

= A+ ε′Pxε/n+ 2θε′PxU/n− 2ε̄(Ȳ − θŪ).

(4.2.13)

Then the second approximation can be expressed as

R̂2
u|x +

2θε′PxU/n− 2ε̄(Ȳ − θŪ) + ε′Pxε/n

θ2
(
U ′U/n− Ū2

) , (4.2.14)

which has some discrepancy from the R̂2
u|x in (4.2.10).

Now, we define a sample version of the functional relationship among three pa-

rameters as following:

θ2s =

(
Y ′PxY

n
− Y 2

)(
1

R2
u|xV ar(U)

)
. (4.2.15)

Similar as θp in (4.2.12), the sample version θs can be divided into data and parameter

parts

θs = h(Y )g(R2
u|x, Pu).

Note that h(Y ) is a sample version of h(EY ), which can be denoted as ĥ(EY ).

4.3 Toy example

In this section, we provide a toy example to illustrate our method. We consider

normally distributed observed, unobserved and response variables with several differ-

84



ent correlation structures. Simulated data are generated following way.

1. Observed variable:

Xj =
√

1− rxZj +
√
rxe, where Zj, e ∼ N(0, 1) and Corr(Xj, Xj̃)

2 = rx for any

j 6= j̃.

2. Unobserved variable:

U =
√

1− ruZu +
√
rue, where Corr(Xj, U)2 = ru for ∀j

3. Response variable:

Y = θU +
√
c2εu, where c2 = θ2V ar(U)1−Corr(Y,U)

Corr(Y,U)
for a given Corr(Y, U) and

εu ∼ N(0, 1)

For simplicity, variances of all Xi and U are set to be 1.

The simulation study has two purposes: one to demonstrate the utility of the

equation (4.3.1), another to assess possible factors that may affect the performance

of θs. With our simulation setting, the functional relationship (4.2.15) derived in

Section 4.2.3 contains only two unknown parameters which are θ and R2
u|x:

θ2s =

(
Y ′PxY

n
− Y 2

)(
1

R2
u|x

)
(4.3.1)

Using the equation (4.3.1), we can produce a plot of the relationship between the two

parameters. In order to offer a practical interpretation, the simulation is set to reflect

reality. Also, θs will be infinite when R2
u|x = 0, so we consider a range of possible R2

u|x

from 0.05 to 1.

The plots for the relationship between R2
u|x and θs are shown in Fig. 4.2. As can

be seen, θs is monotonically decreasing as R2
u|x increases. This decreasing relationship

is expected regardless of the data structure, such as level of net dependency between

X and U or true θ value. Intuitively, this decreasing relationship implies that if U

is explained well by X, the effect size of U will be small, or the role of U is very
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Figure 4.2: This plot show the relationship between θs and R2
u|x derived in (4.3.1).

R̂2
u|x in the legend box denotes sample regression R2 calculated from simulated U and

X and R2
u|x in x-axis is a symbol varying from 0.05 to 1. Correlation between X1 and

X2 for both plot is set to 0.1 and 1, 5 is used for true θ value.

weak. Yet we are not discussing the effect of correlation structure of the data on the

parameter relationship. This plot is also useful to gain better ideas about possible

range of the effect size of U , especially if one can use external information to restrict

the possible range of the X and U relationship. Though the parameter relationship

differs for different true θ, there is no distinct tendency in the relationship for different

correlation structures between X and U .

Next, we assess the performance of θs under different combinations of several levels

of possible covariates that may affect the performance such as correlation structure

of data and number of observed covariates. For the correlation structure of data, we

consider different levels of correlations 1) between X and U , 2) between Y and U ,

3) among X. We also consider 2 and 10 number of observed variable X. In this

simulation study, the performance we are interested in is the absolute magnitude of

discrepancy of θs from the true value θ, denoted as |Bias| in the table. Note that

our bias is not the same as conventional statistical definition of bias. Also, we fix
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R̂2
u|x with the value calculated from the simulated data X and U rather than using

possible range of R2
u|x as in (4.3.1).

The simulation result with 1000 repetition is shown in Table 4.1. As can be seen,

the average of absolute bias has largest value when the dependence 1) X & U and

2) Y & U are weak. This result can be explained from the second approximation

formula (4.2.14), which shows where the discrepancy coming from. To be specific,

the error ε will be larger if U explains less portion of the variation in Y . If X has

nearly no relationship with U then it is natural that the bias gets larger. Though the

dependence 1) is weak, if 2) gets stronger the bias reduces significantly. Hence, in

order to have reasonable bias we need moderate dependence level in either 1) or 2). It

is interesting to note that higher multicollinearity (we call dependence 3) here) helps

to reduce the bias. It seems that this is because adequate amount of multicollinearity

increases R̂2
u|x.

4.4 Numerical example: Genetic mapping

In this section, we provide a simulation study based on a genetics application.

Genetic mapping aims to locate a gene that is associated with a certain quantitative

trait (Altshuler et al. (2008)). In such association studies, usually genetic markers

called single-nucleotide polymorphism (SNP) are used as explanatory variables. SNP

is a gene’s location on a chromosome where allelic differences occur among individuals.

SNPs on the same chromosome are supposed to be in linkage disequilibrium (LD),

i.e. correlated with each other if their positions are close. Details about density of

SNPs and LD can be found in Reich et al. (2001).

4.4.1 Parametrize U for biallelic SNPs

Under a targeted region, we use a multiple regression analysis to understand the

association between a quantitative trait Y = (Y1, · · · , Yn) and the causal DNA variant.
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For each subject, indexed by i = 1, · · · , n, p number of SNPs (Xij, j = 1, · · · , p) are

observed. Suppose that the causal SNP that carries all the signals reflected in X

about Y is untyped and denote this variant as U . Each SNP in X and U have values

in {−1, 0, 1}, where 1 stands for homozygote2 with allele whose frequency is greater

than 0.5, -1 stands for homozygote with allele whose frequency is less than 0.5 and

0 stands for heterozygote3. As noted above, within the targeted region, SNPs are in

LD, which guarantees nonzero correlation between observed and unobserved SNPs.

In genetics, each SNP is generally assumed to satisfy Hardy-Weinberg equilibrium

(HWE), an important assumption that assures independence of individuals. Under

HWE, U is distributed according to the following one parameter family of distribu-

tions:

Pr(U = 1) = p2u, P r(U = −1) = (1− pu)2 and Pr(U = 0) = 2pu(1− pu),

where pu is the major allele frequency (MAF)4 for U . Hence, we get the following

expressions for the mean and the variance of U :

E(U) = 2pu − 1, V ar(U) = 2pu(1− pu). (4.4.1)

Hence, we get following approximated functional relationship with three unknown

parameters:

θ2s =

(
Y ′PxY

n
− Y 2

)(
1

R2
u|x2Pu(1− Pu)

)
. (4.4.2)

4.4.2 Simulation study set up

The simulation study consists of two parts as the toy example in Section 4.3.

However, in order to generate discrete variables for X and U , we use a probit type of

2A SNP whose genotype consists of two same allele. e.g. AA or BB
3A SNP whose genotype consists two different allele. e.g. AB
4Allele frequency > 0.5
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method that first generates continuous random variables then classifies the generated

random numbers into several categories. Specifically, we first sample X and U from

multivariate normal distribution with mean 0 and standard deviation Σ (the same

method as toy example). Then for a given p, MAF for a SNP, use (1 − p)2 and

p2 quartiles of standard normal as thresholds to classify the generated continuous

variables into three classes {−1, 0, 1}. MAF p can differ for the SNPs in X and U ,

but we use 0.5 for all SNPs in the simulation.

We consider several different data structures reflecting potential covariates that

may affect the performance of the approximated functional relationship (4.4.2). The

potential covariates are the following dependence structures: 1) between X and U ,

2) between Y and U , 3) among X. We generate X and U from multivariate normal

distribution with the following exchangeable covariance matrix that has two different

covariance value; one among X(ρx) and another between X and U(ρu), i.e.

Cov([U,X]) =



1 ρu · · · ρu

ρu 1 · · · ρx
...

...
. . .

...

ρu ρx · · · 1


. (4.4.3)

Entries of the covariance matrix (4.4.3) are the same as correlation as we set variance

of X and U to be 1. To make sure that we control the dependence structure of

simulated covariates as categorical variables, we calculate average correlation among

X and between each X and U to select the data set with a certain correlation structure

after classifying the continuous random variables into three classes.

In the simulations, three different levels of dependence structures 3) among X are

considered by choosing data set with average correlation {0.1, 0.4, 0.7}. Similarly, we

use three levels of dependency 1) X & U , which are denoted as ‘NN’ for nearly no,

‘M’ for moderate and ‘S’ for severe relationship in resulting tables. Once we generate
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U , the quantitative trait Y is generated as

Y = θU + rε,

where ε is standard normal error and r is a scaling factor for U and Y , which controls

the level of dependence 2) Y & U . The squared correlation between Y and U is

θ2V ar(U)
θ2V ar(U)+r2

. We consider 10 observed SNPs that all have MAF 0.5 as well as U . The

considered true effect size θ of U are [0.5, 1, 3, 5, 10] with sample size 250. Also, we

set squared correlation between U and Y to be 0.1 as a single gene may account for

10 to 15% of the response variance (Allen et al. (2010)),

4.4.3 Relationship between X and U

In the simulation study, the equation for the functional relationship in (4.2.15)

contains three unknown parameters: θ, R2
u|x, Pu. Hence, we get a surface of feasible

θs values for given R2
u|x and Pu (Fig. 4.3). For better visualization, we consider the

range [0.1, 1] and [0.5, 0.8] for R2
u|x and Pu respectively as either R2

u|x is close to 0 or

Pu is close to 1, θs value shoots up.

Analogous to Fig. 4.2, 4.3 (a) shows the tendency that the value of θs increases

when R2
u|x gets small and Pu gets larger (upper right corner of the plot). The effect

of R2
u|x is consistent with toy example in Section 2 and possible reason is discussed

in the section. About the effect of Pu, this can be explained as when Pu increases

V ar(U) in this simulation will decrease and the reduced variation in U causes effect

size to become larger in order to account the portion of variation explained by X.

Particularly, in a genetic mapping effort, typically it is known that all genetic

variants would have a certain minimal dependence level with the measured variants.

The value of this minimal level of dependence would be determined by the density

of the measured genetic markers. Thus, if we know that any unmeasured genetic
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Figure 4.3: Resulting 3-dimensional plot for functional relationship with one time
simulation (no repetition). Both R2

y|u and Corr(Xi, Xj) are set to be 0.1. (a) Surface

plot when a true θ is 3. (b) Surface plot for three different θ values. Bottom blue is
when θ = 1, middle red is when θ = 3 and upper green is when θ = 10. The same
values are used for dependence structures as (a). (c) Centered plot of (b) by each
mean. (d) Scaled plot of (b) by true θ.
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variable would need to have at least 40% of its variance explained by the measured

genetic variables, then we would know that the effect size of the unmeasured variable

need to be in between 2.5 and 3 according to Pu. However, if it was around 10%,

then the unmeasured genetic factor would need to have an effect size about 5 to 6

according to Pu value.

Fig. 4.3 (b),(c),(d) shows how the shape of functional relationship responds to

different values of θ. As can be seen in plot (b), the surface moves up along the axis

of θs as the true θ value increases. in order to compare the surface shape according

to different θ values, the plot (b) is centered and scaled version by its mean and true

θ respectively (plot (c) and (d)). It seems that from plot (b) the shape of functional

relationship are not so different, since we seek θs through the fixed grid of R2
u|x and

Pu. However, plots in (c) and (d) shows that the shape actually differ correspondent

to the each data set.

Performance of the functional relationship (4.2.15) is assessed in terms of bias

and variance using simulated R̂2
u|x and Pu. Here the bias is calculated as (θs − θ)

and we take average of squared bias as the bias can be either positive or negative

according to (4.2.14). Additionally, we divide this average squared bias by true θ2

to scale out the effect of magnitude of true θ value. Table 4.2 shows the simulation

result with different θ values, different correlation structure between X and U and

different approximations. The first approximation, which plug in E(U) and V ar(U)

instead of sample values U./n and U ′U/n in (4.2.15), has nearly 0 bias across all the

combinations. We can see that most of the bias comes from the second approximation

that is plugging in Y instead of EY from the third approximation that is combination

of the first and the second approximation.
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Table 4.2: Bias and variance result of 100 repeated simulation. The correlation
between Y and U is set to be 0.1 and the average of correlations among X is set to
be 0.1 as a nearly orthogonal case.

Mean of squared bias/ θ2 Standard deviation
Sample mean of Corr(X,U)

θ 0.1 0.4 0.7 0.1 0.4 0.7

First
Approximation

0.5 0.00005 0.00006 0.00009 0.00352 0.00339 0.00318
1 0.00004 0.00005 0.00007 0.00664 0.00695 0.00536
3 0.00005 0.00006 0.00008 0.02078 0.02176 0.01880
5 0.00005 0.00005 0.00008 0.03654 0.03475 0.03101
10 0.00003 0.00005 0.00009 0.05827 0.06765 0.05671

Second
Approximation

0.5 7.08625 0.00538 0.00306 0.60169 0.03561 0.02739
1 5.90011 0.00646 0.00214 0.90290 0.07736 0.04466
3 6.37932 0.00692 0.00195 3.60179 0.24068 0.12660
5 6.66666 0.00650 0.00201 5.34683 0.37874 0.22416
10 8.16516 0.00556 0.00289 14.47273 0.70376 0.50179

Third
Approximation

0.5 7.07827 0.00525 0.00306 0.60119 0.03551 0.02767
1 5.88771 0.00634 0.00203 0.90033 0.07710 0.04471
3 6.40138 0.00675 0.00178 3.61006 0.23988 0.12508
5 6.65841 0.00657 0.00207 5.35292 0.38401 0.22546
10 8.15888 0.00559 0.00262 14.47224 0.71394 0.49832

4.5 Discussion

In this chapter, we proposed a method that assesses the effect of unobserved vari-

able in multiple linear regression analysis. As an assessment, we derived an explicit

formula that represents a functional relationship among three parameters: variance

of an unobserved variable, relationship between the observed and an unobserved vari-

able, and relationship between the unobserved variable and an outcome. Using this

functional relationship we can explore the possible range of the relationship between

an unobserved variable and the outcome.

This approach has a major limitation in representing true existence of U . That

is, the functional relationship curve would be the same regardless of the existence of

an unobserved variable that accounts all the observed regression relationship. One

possible solution to this is using different measure for the relationship between an

unobserved variable and observed predictors. We may not obtain an explicit formula
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by introducing another measure of the relationship between observed covariates and

an unobserved variable. However, it would be more interesting if the functional

relationship can incorporate some underlying effect of this unobserved variable.

We close this chapter by providing future works.

4.5.1 Future work

Extensions of the method

Lastly, we would like to consider possible extensions of the method in the following

ways:

1. Time series: This method can be extended to time series combined with the

correlation methods proposed in previous chapters.

2. Multiple unmeasured variable U : U1, U2 with (P1, θ1), (P2, θ2)

Adding one more unobserved variant would increases the combination of possi-

ble situations exponentially. Therefore, to address this problem, we may need

to consider some additional constraints regarding relationship between Us.

3. Additional constraint using higher moments.

As we saw limitation of inequality constraints (I1)-(I2), we may consider con-

structing additional constraints which are helpful to get more precise bounds

for the effect size of unobserved variable. One natural way is using higher mo-

ments, since it is possible we may still obtain simple expression including θ and

pu.

Sensitivity to the modeling framework

As we assume a linear relationship between Y and U , we may ask how robust our

results are to the case when there is a nonlinear relationship. As we work with

moments of X and U , the non-linearity assumption on the relationship between X
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and U should not affect our results. We seek to explore the effect of nonlinearity via

simulations involving such models.

Mapping

We can derive lower and upper bounds for the correlation between each observed

covariate and U . Particularly for genetics application, this has a practical interpre-

tation regarding to the location of the trait-causing gene. The correlation between

each X and U can be expressed as following:

Corr(Xi, U) =
Cov(Xi, Y )

θSD(Xi)SD(U)

We can bound the squared correlation between Xi and U by using the fact that

V ar(Y ) > V ar(U) and the inequality constraint (??):

Corr(Xi, Y )2

θ2
≤ Corr(Xi, U)2 ≤ Cov(Xi, Y )2

V ar(Ŷx)V ar(X)
(4.5.1)

However, as the lower bound in (4.5.1) depends on θ, it is still ambiguous how this

inequality would behave when |θ| ≤ 1. Thus, we need to investigate further the

bounds when |θ| ≤ 1. Alternatively, we may consider another upper bound not

depending on θ.
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