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Abstract

My dissertation examines two kinds of statistical tools for taking prior information

into account, and investigates what reasons we have for using one or the other in

different sorts of inference and decision problems.

Chapter 1 describes a new objective Bayesian method for constructing ‘precise

priors’. Precise prior probability distributions are statistical tools for taking account

of your ‘prior evidence’ in an inference or decision problem. ‘Prior evidence’ is the

wooly hodgepodge of information that you come to the table with. ‘Experimental

evidence’ is the new data that you gather to facilitate inference and decision-making.

I leverage this method to provide the seeds of a solution to the problem of the priors,

the problem of providing a compelling epistemic rationale for using some ‘objective’

method or other for constructing priors. You ought to use the proposed method, at

least in certain contexts, I argue, because it minimizes your need for epistemic luck

in securing accurate ‘posterior’ (post-experiment) beliefs.

Chapter 2 addresses a pressing concern about precise priors. Precise priors, some

Bayesians say, fail to adequately summarize certain kinds of evidence. As a class,

precise priors capture improper responses to unspecific and equivocal evidence. This

motivates the introduction of imprecise priors. We need imprecise priors, or sets of

distributions to summarize such evidence. I argue that, despite appearances to the

contrary, precise priors are, in fact, flexible enough to capture proper responses to

unspecific and equivocal evidence. The proper motivation for introducing imprecise
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priors, then, is not that they are required to summarize such evidence. We ought to

search for new epistemic reasons to introduce imprecise priors.

Chapter 3 explores two new kinds of reasons for employing imprecise priors. We

ought to adopt imprecise priors in certain contexts because they put us in an unequiv-

ocally better position to secure epistemically valuable posterior beliefs than precise

priors do. We ought to adopt imprecise priors in various other contexts because they

minimize our need for epistemic luck in securing such posteriors. This points the way

toward a new, potentially promising epistemic foundation for imprecise Bayesianism.

Thesis Supervisor: James M. Joyce

Title: Cooper Harold Langford Collegiate Professor of Philosophy
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Chapter 1

An Anti-Luck Solution
to the Problem of the Priors

“In realistic problems of decision or inference,” Edwin Jaynes notes, “we often have

prior information which is highly relevant to the question being asked; to fail to take

it into account is to commit the most obvious inconsistency of reasoning and may lead

to absurd or dangerously misleading results” (Jaynes 1968, 1). When a microbiologist,

for example, designs and performs an experiment to adjudicate between competing

theoretical hypotheses, e.g., whether over expression of a certain gene causes chromo-

somal instability in breast tumors, it would be both epistemically irresponsible and

practically disastrous for her to ignore the great deal of prior information at her dis-

posal. This includes information about the levels of different genes expressed in past

patients, as well as their various clinical symptoms, recurrence rates, etc., informa-

tion about the broader causal mechanisms that give rise to breast cancer, and so on.

Unfortunately, finding a well-motivated, practically useful method for taking prior

information into account is difficult. Prior information such as the microbiologist’s is

incredibly multifarious and complex.

Bayesians argue that the best method for incorporating prior evidence E in de-

cision and inference problems is to specify a ‘prior’ probability distribution p over

the competing hypotheses H1, ..., Hn which somehow “summarizes [the] great deal
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of heterogeneous information” contained in E (Suppes 1966, 203). We can think of

these probabilities as estimates of the truth-values of H1, ..., Hn which (i) satisfy con-

straints imposed by E while intuitively (ii) going no further than those constraints

require. Subjective Bayesians say that experienced physicists, biologists, medical

researchers, engineers, etc. — agents who are typically quite adept at synthesizing

multifarious and complex data — ought to look to their own opinions to furnish these

priors. They ought to specify some prior probability distribution which captures their

best estimates of the truth of H1, ..., Hn, and in turn reflects their prior evidence E

(as well their personal inductive quirks and hunches).

Frequentist statisticians object: if the best method for taking account of prior

information requires expert researchers to look to their own opinions to determine

‘subjective priors’, then we ought to simply ignore this information. Better to make

do with statistical tests that “could be described as independent of these [prior] prob-

abilities” than to rob scientific practice of its objectivity (Pearson 1962, 55). Any

method for incorporating prior information in inference and decision problems, if it

is to have any relevance to science, must be ‘objective’ in at least the following sense:

it prescribes adopting the same prior probability distribution in any two problems

where the prior evidence imposes the same constraints (cf. Jaynes 1968, 3). The

subjectivist method violates this demand. Expert opinions about the plausibility of

competing theoretical hypotheses may differ — sometimes significantly — even if they

agree, broadly, on the constraints forced on us by the prior evidence.

Contemporary objective Bayesians, in contrast, generally endorse the maximum

entropy method (MaxEnt), which satisfies the demand for objectivity:

• Summarize your prior evidence by constraints C1, ..., Cn, which you model by a

set of probability distributions C .
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• Adopt the prior p that maximizes entropy H(p)= –
∑

i p(Hi) · log(p(Hi)) on C .

Though a researcher’s own opinions may be important for determining the constraints

imposed by her prior evidence (cf. Jaynes 1976, 181-194), they should not be used

to determine the prior distribution in its entirety, on the objectivist view. Instead,

all researchers who arrive at the same evidential constraints should proceed in the

same manner. They ought to adopt the prior that maximizes entropy on the set of

probabilities that satisfy those constraints.

While MaxEnt may provide an ‘objective’ method for incorporating prior infor-

mation, in the sense that it prescribes adopting the same prior in any two problems

where we have the same evidential constraints, frequentists and subjectivists doubt

that there is any compelling epistemic rationale undergirding it. More generally,

they think, there is no compelling rationale for us to use any ‘objective’ method for

constructing prior probability distributions. This is the problem of the priors. In

addition, John Venn (1866), J.M. Keynes (1921) and R.A. Fisher (1922) all provide

examples that seem to show that MaxEnt yields inconsistent results in a range of

cases, depending on how you describe them.1 This paper outlines and defends a new

kind of objective Bayesian solution to the problem of the priors.

In §1.1, I describe Jaynes’ rationale for employing MaxEnt, and give some reason to

find this rationale wanting. In §1.2, I outline a novel, anti-luck rationale for adopting

an alternative prior, the maximally sensitive (MaxSen) prior. In §1.3-1.6, I fill in this

outline. In §1.3, I investigate the theoretical role of priors, to elucidate the form that a

proper response to the problem of the priors ought to take. I suggest that the central

role of priors is to help us secure accurate posterior beliefs, and to minimize our need

for epistemic luck in securing those beliefs. In §1.4, I distinguish two importantly

different types of epistemic luck. In §1.5, I illustrate how one prior might depend
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more on luck for success than another. In §1.6, I explore the extent to which the

MaxEnt prior ameliorates the need for such luck. In §1.7, I describe the MaxSen

prior. I argue that this prior does more to ameliorate the need for luck than the

MaxEnt prior. In fact, it minimizes the need for luck in securing accurate posteriors,

and so is best suited to play the primary theoretical role of priors. In §1.8, I draw

together the preceding threads, to resolve the problem of the priors. Finally, in §1.9,

I address two pressing concerns, including a concern about MaxSen’s consistency.

1.1 The Problem of the Priors

In situations of complete ignorance regarding hypotheses H1, ..., Hn, when our evi-

dence provides no constraints on probabilities over H1, ..., Hn, the maximum entropy

distribution is just the uniform distribution.2 So MaxEnt agrees with Laplace’s Prin-

ciple of Insufficient Reason (PIR):

PIR. In situations of complete ignorance regarding hypotheses H1, ..., Hn,

when there is no reason to think that any hypothesis is more or less

probable than any other, the uniquely correct prior to adopt is the uniform

distribution u, so that u(Hi) = u(Hj) for all i and j.

Proponents of MaxEnt and PIR disagree however about why you ought to adopt

the uniform prior. Laplace reasons as follows: “when we see no reason that makes

one [hypothesis] more probable than the other... this uncertainty makes us regard

them as equally probable” (Laplace 1774, 378). But frequentists and subjectivists

see this as no better than an admission that there is no good rationale for adopting

any particular prior in situations of ignorance, coupled with an arbitrary selection of

the uniform distribution. Here is Fisher: the choice of the uniform prior is “evidently

extremely arbitrary... evolving a vitally important piece of knowledge, that of the
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exact form of the distribution... out of an assumption of complete ignorance” (Fisher

1922, 324-5). In situations of ignorance, we lack reason to think any one hypothesis

more probable than any other. It would indeed be arbitrary to simply suppose that

this forces us to pretend that we have one set of reasons — reasons that speak equally

strongly in favor of each hypothesis — rather than any other set of reasons.

Jaynes offers a different rationale. “The maximum-entropy distribution may be

asserted,” he says, “for the positive reason that it is uniquely determined as the one

which is maximally noncommittal with regard to missing information, instead of the

negative one that there was no reason to think otherwise” (Jaynes 1957, 623; emphasis

mine). The entropy of a distribution p, H(p)= –
∑

i p(Hi) · log(p(Hi)), is uniquely

reasonable, Jaynes argues, as a measure of the informativeness of that distribution.

This “supplies the missing criterion of choice which Laplace needed to remove the

apparent arbitrariness of the principle of insufficient reason” (Jaynes 1957, 623). Gone

is the old Laplacian rationale, viz., that we are forced to see ourselves as having

reasons that speak equally strongly in favor of all hypotheses whenever we lack reasons

altogether. In is the new, information-theoretic rationale: in situations of ignorance,

our prior evidence is minimally informative. The uniform distribution encodes the

minimum amount of information about theoretical hypotheses H1, ..., Hn, since it

maximizes entropy (and informativeness decreases as entropy increases). Hence, the

uniform distribution best reflects our prior evidence aboutH1, ..., Hn, at least in terms

of informational content.

There is good reason, however, to doubt Jaynes’ rationale, and in turn, to doubt

the adequacy of the maximum entropy method. The primary theoretical role of priors

is not to best reflect your prior evidence, as I will argue shortly. Rather, it is to help

you secure accurate posterior beliefs by updating on your evidence, and to minimize

your need for epistemic luck in securing those beliefs. A proper justification for the
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maximum entropy method, if there were one, would illuminate why the MaxEnt

distribution is best suited to play the theoretical role of priors. In fact, however, an

alternative distribution, the MaxSen prior, is best suited to play this role.

1.2 Main Argument

The remainder of this chapter is devoted to outlining and defending a new kind of

objective Bayesianism: the maximum sensitivity method, or MaxSen. Schematically,

the argument for MaxSen goes as follows.

1. You ought to adopt whichever prior is best suited to play the primary theoretical

role of priors, if there is one.

2. The primary role of priors is to help you secure accurate beliefs by updating on

your evidence, and to minimize your need for epistemic luck in securing those

beliefs.

3. Various priors put you in a position to secure accurate posteriors by updating

on your evidence.

4. Only the MaxSen prior, however, minimizes your need for epistemic luck in

securing accurate posteriors.

C. You ought to adopt the MaxSen prior to incorporate prior information in infer-

ence and decision problems.

I qualify this conclusion a bit in §1.5 and §1.7-1.8. I also do not fully defend any

of premises 1-4. To defend premise 4, for example, I construct the MaxSen prior

in toy cases involving simple theoretical hypotheses (about the bias of a coin) and

binomial data (data that comes in the form of a sequence of ‘successes’ and ‘failures’).
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I then show that the MaxSen prior minimizes the need for epistemic luck in these toy

cases. This simple approach, however, is sufficient for the modest end of this paper:

to gesture toward a promising, anti-luck rationale undergirding the MaxSen method,

and in turn, to draw attention to a promising resolution to the problem of the priors.

1.3 The Theoretical Role of Priors

When we ask,“Is there a good rationale for adopting any particular prior?” we are

asking for a certain kind of reason in response. If adopting priors suddenly made us

better cooks, or lovers, or conversationalists, that would be one reason — a pragmatic

reason — to adopt them. But our question demands reasons that speak to the primary

theoretical role of priors. A proper answer to our question takes the form: we ought

to adopt this prior or that because it is best suited to play the relevant theoretical

role (whatever that may be).

We must, then, be clear about what this theoretical role is. Some objective

Bayesians, such as Jaynes, assume that the primary role of priors is representational.

Jaynes prescribes adopting the maximum entropy prior for the “positive reason that

it is... maximally noncommittal with regard to missing information” (Jaynes 1957,

623); the maximum entropy prior best reflects or represents the informational content

of our prior evidence.

Informational Account. The primary theoretical role of prior probabili-

ties is to accurately reflect the informational content of the agent’s prior

evidence.

Certain subjective Bayesians agree that the primary role of priors is representa-

tional, but insist that Jaynes and others ought not restrict their attention to evidence.

Prior probabilities ought to represent an agent’s all-things-considered prior judgments
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about the plausibility of hypotheses, which might depend not only on her prior evi-

dence, but also on her assessment of their intrinsic plausibility, her personal inductive

quirks, etc.

Subjectivist Account. The primary theoretical role of priors is to accurately

represent the agent’s prior opinions about the plausibility of hypotheses.

Still other Bayesians, such as Jon Williamson, claim that the primary role of priors

is practical. Williamson prescribes adopting the maximum entropy prior because it

yields the most ‘cautious’ decision-making policy consistent with the prior evidence

(Williamson 2007, 12-7).

Practical Account. The primary theoretical role of priors is to yield the

most sensible decision-making policy under conditions of ignorance.

To illustrate Williamson’s proposal, suppose that you would like to visit a friend in

the city, but you have no evidence about whether the train that you need is running

or not. You also have an important Skype meeting in an hour. Your roommate is

willing to give you a ride to the station. As long as the train is running, you will

make the meeting and see your friend. But if the train is not running, you will have

to take an expensive cab home, and may well miss your meeting. If you adopt the

MaxEnt (uniform) prior, Williamson observes, your credence that the train is running

is 1/2, and hence (given that the costs of taking an expensive cab and missing your

important meeting outweigh the benefits of seeing your friend) the expected utility

of staying home is higher than the expected utility of going with your roommate to

the station. This ‘cautious’ decision-making policy, Williamson claims, is clearly the

sensible one, given how scant your evidence is. (You have none!) Hence, the MaxEnt

prior, in virtue of delivering this sensible policy, is well-suited to play the relevant

theoretical role.
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Each of these accounts is inadequate. The practical account is difficult to make

sense of in a non-question-begging manner. The reason: which decision-making policy

counts as most cautious depends on which epistemic perspective you evaluate it from.

Suppose, for example, that you are nearly certain that the train is running, despite

having no evidence about the matter. Then the decision-making policy that MaxEnt

recommends appears downright foolish from your perspective, not cautious. It will

not do, by the way, to insist that in light of your evidence (you have none) you ought

to evaluate MaxEnt’s decision-making policy from a more ‘even-handed’ epistemic

perspective, e.g., one in which you treat the competing hypotheses — that the train is

running, and that it is not — as equally probably. This is just to evaluate MaxEnt’s

decision-making policy from its own perspective. And the decision-making policy

yielded by any prior appears most cautious from that prior’s own perspective.

The informational and subjectivist accounts, on the other hand, are inadequate be-

cause they pay insufficient attention to the theoretical role of evidence itself. Evidence

helps us secure accurate posterior credences, or truth-value estimates. Credences are

more accurate the closer they are to the actual truth-values. And accuracy is a ‘basic

epistemic good’. Whatever else is true of them, credences are more valuable, from

the epistemic perspective, the more accurate a picture of the world they paint (cf.

Joyce 2009, 267-71). But evidence does more than just this. It also helps us secure

accurate posteriors in a way that minimizes our need for epistemic luck. For example,

gathering ballistic evidence, DNA evidence, etc. minimizes the detective’s need for

epistemic luck in arriving at a true belief about who killed Jones.

This fully characterizes the theoretical role of evidence. Evidence is important to

our epistemic lives, at bottom, exactly because it helps us secure accurate posteriors

in a luck-minimizing fashion. Plausibly, then, prior probabilities — statistical tools

for taking prior evidence into account — are important exactly to the extent that they
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enable evidence to play its role, i.e., to assist us in securing accurate posteriors in a

luck-minimizing fashion. This suggests the following position about the theoretical

role of priors:

Instrumental Account. The primary theoretical role of priors is to put

us in a position to secure accurate, minimally luck-dependent posterior

credences by updating on new data.

When the various roles listed above conflict, it is clear that this final role takes

precedence. When, for example, the prior that best represents a researcher’s opinions

about the plausibility of hypotheses happens to put her in a rather poor position to

secure accurate, minimally luck-dependent posterior credences, it would be absurd

to advise her to adopt that prior (the same goes for the prior that most accurately

reflects the informational content of her prior evidence).3 Suppose, for example, that

a scientist has scant prior evidence about the causal mechanism under investigation

(a particular virus’ infection mechanism, perhaps). She does, however, find one par-

ticular hypothesis extremely intrinsically plausible. But she does not find it plausible

for any good reason. Her hunch reflects no particular skill at assessing intrinsic plau-

sibility. She simply ‘feels it in her bones’. Then advising her to adopt a prior that

reflects this hunch, by concentrating probability on her favorite hypothesis, would be

absurd. It would result in her discounting new data that she really ought to be more

sensitive to (in much the way that a conspiracy theorist discounts data that tells

against her favorite hypothesis, e.g., that an alien spacecraft crashed near Roswell,

New Mexico in 1947).

This illustrates what should be clear: whichever prior best enables evidence to play

its theoretical role is ipso facto best suited to play the theoretical role of priors. It is

worth noting that the instrumental account does, in fact, enjoy a certain measure of
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support in the literature. Here, for example, is Patrick Suppes: “It is of fundamental

importance to any deep appreciation of the Bayesian viewpoint to realize that the

particular form of the prior distribution expressing beliefs held before the experiment

is conducted is not a crucial matter... The well-designed experiment is one that will

swamp divergent prior distributions with the clarity and sharpness of its results”

(Suppes 1966, 204). The reason that it is not a crucial matter exactly which form the

prior distribution takes is that, in a ‘well-designed’ experiment, the data we receive is

fairly weighty. And when the data we receive is weighty, the ‘washing out’ theorems

show that a range of priors converge on the true theoretical hypothesis (with high

objective probability).4 As a result, those priors are all likely to yield fairly accurate

— and minimally luck-dependent — posterior distributions. Hence, they all play the

primary theoretical role of priors close to equally well. And they do so even though

some priors do a rather poor job representing, for example, the agent’s prior opinions

about the plausibility of hypotheses. This latter fact is — or at least ought to be —

“not a crucial matter” from the Bayesian viewpoint.

One final aside: unfortunately, not all experiments yield data weighty enough

to “swamp divergent prior distributions with [its] clarity and sharpness” in the way

Suppes envisions (Suppes 1966, 204). Limits on time, personnel, funding, etc. keep

scientific researchers from gathering as much data as they would like. And in those

pitiable, but all-too-common circumstances, the washing out theorems do not have

much purchase. Many priors will depend significantly on luck for success (accuracy).

If there is one prior that is minimally luck-dependent, then, at least in these cir-

cumstances, there will be good reason to use it to take your prior information into

account.
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1.4 Two Kinds of Epistemic Luck

Now when we ask, “Is there a good rationale for adopting any particular prior?” we

have something of an answer. Our answer: there is a good rationale if there is some

prior distribution that minimizes the need for epistemic luck in securing accurate

posterior beliefs. Such a distribution would be uniquely suited to play the primary

theoretical role of priors. I will argue that there is such a distribution: the maximally

sensitive, or MaxSen prior. Before describing the MaxSen prior, though, we ought to

get clearer on the target phenomenon: epistemic luck.

There are various kinds of epistemic luck. If the ground under an archer could

easily have shifted, but did not, and she fires off a skillful shot which hits the bullseye,

then her success is subject to what virtue epistemologists such as Pritchard (2009)

call environmental luck. This is the sort of luck that enables agents to exercise skill.

Without it, our archer would not have gotten her shot off, and so would not have

been successful (hit the bullseye). Even so, note: certain important contrastive facts

about her success are explained primarily by her skill, an internal factor, e.g., the

fact that she hit the bullseye dead on, rather than two (or three, or four) inches below

the bullseye (or above the bullseye, or to the left of the bullseye, etc.).

In contrast, another sort of luck — intervening luck — severs this explanatory link.

If an expert archer’s shot is knocked off-track and then back on-track by subsequent

gusts of wind, then she is subject to intervening luck. Her shot is, to a high degree,

successful, but not because it was skillful (her shot is not apt, in Sosa’s terminology; cf.

Sosa 2007, 79). Her particular degree of success (the fact that it hit the bullseye, rather

than two, or three, or four inches below, etc.) is not explained primarily by internal

factors (the agent’s skill). Rather, it is explained by external factors (fortuitous gusts

of wind). We will take this to be the defining characteristic of intervening luck: it
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is in play when external factors are primarily responsible for explaining an agent’s

particular degree of success (why she achieved exactly this degree of success, rather

than some other degree).

Prior distributions are also subject to intervening epistemic luck, in the following

sense: when you update a prior on evidence, it yields a posterior which is more or

less accurate (more or less successful). This particular degree of accuracy (why the

posterior is accurate to exactly this degree, rather than some other degree), in turn,

is explained more or less by two different kinds of factors. On the one hand, internal

factors — facts about the prior’s intrinsic properties, such as how resilient it is (cf.

§1.5) — might bear the bulk of the explanatory burden. On the other hand, external

factors — facts about the prior’s extrinsic properties, such as the proximity of a coin’s

true bias to the prior’s expected bias — might end up shouldering a bigger part of

this burdern.

Of course, no prior minimizes dependence on luck tout court. There are various

kinds of both environmental and intervening luck that adopting a prior — any prior

— will simply not mitigate. No prior mitigates the environmental luck in play when

a researcher’s heart keeps functioning normally, rather than failing (as it easily could

have, perhaps). No prior helps eliminate the luck involved in stumbling upon a friend

returning from a movie, and learning that the ending was a disaster (“...and then

she opened her eyes, and it was all a dream!”). (No prior mitigates this sort of luck

in receiving new evidence.) And no prior (fully) ameliorates the luck involved in

avoiding wildly misleading evidence, of the sort that a gambler faces if she observes a

coin with bias B = 0.9 (biased strongly toward heads) come up tails 19 of 20 tosses.5

In searching, then, for a distribution best suited to play the primary theoretical role

of priors, we ought to attempt to identify a prior that yields posterior credences

which depend minimally on a special kind of intervening epistemic luck (the sort of
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luck susceptible to mitigation by savvy prior construction), not epistemic luck tout

court. A plausible candidate: luck in having the true chances fall close to one’s prior

estimates of the chances. When we talk of epistemic luck from here on out, we will

have this special kind of luck in mind.

1.5 Dependence on Luck: An Example

To illustrate how one distribution might depend more on luck for success than another

— in particular, luck in having the true chances fall close to its prior estimates —

compare priors of varying resilience. A prior distribution p is resilient with respect

to a datum D to the extent that the posterior distribution pD (p conditioned on D)

is close to p. Compare, for example, the maximum entropy (uniform) distribution

u over hypotheses about the bias of a coin, B = x, on the one hand, and a more

concentrated distribution b on the other hand (e.g., a beta distribution with α = 10

and β = 4).6 (Beta distributions b are parameterized by two quantities, α and

β. These ‘shape parameters’ determine which hypotheses B = x the distribution b

focuses its probability mass on. The larger (smaller) α is compared to β, the more

b focuses probability mass on B = x with x ≈ 1 (x ≈ 0). For more information,

see endnote 7.7) Suppose that you flip the coin 15 times. It comes up heads 12

times and tails 3 times. When you condition the maximum entropy distribution on

this data sequence (H12T 3), it moves quite a bit: the distance from u to uD is 0.107

(at least when you measure distance using one plausible distance function, Cramer-

von Mises, detailed in §1.6).8 The more concentrated distribution, in contrast, moves

much less: the distance from b to bD is 0.007. (Both priors and posteriors are pictured

right, next page.) Even if you had observed the data sequence that makes the more

concentrated distribution move most (H0T 15), it would not have moved much more
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than the maximum entropy distribution: 0.35 as compared to 0.3.

Figure 1.1: Left: u and uD. Right: b and bD.

Priors that are more

resilient than others

with respect to a wide

range of data tend

to depend more on

luck for success (i.e.,

luck in have the true

chances fall close to its prior estimates). Consider Betsy and Jim, for example, two

climate scientists working on papers about the future impact of climate change on

coastal areas for the new IPCC report (intergovernmental panel on climate change).

They are both competent, let’s suppose. But neither are Sherlock Holmesian ‘super

sleuths’. Neither are especially skilled at assessing the ‘intrinsic plausibility’ of the

various candidate climate models. They do, however, have access to large experi-

mental data sets (the same data sets). This includes data about current land air

temperature, sea surface temperature, sea level, ozone, etc. It also includes data

about these quantities over the last 100 years. In addition, they have a great deal

of prior information about how these quantities interact, about the broader causal

mechanisms that give rise to climate change, and so on (the same prior information,

suppose). In order to incorporate their prior information, both Betsy and Jim adopt

priors over theoretical hypotheses (climate models). Jim adopts a prior that con-

centrates probability almost exclusively on one particular theoretical hypothesis (a

concentrated beta distribution). In contrast, Betsy adopts a prior that is much less

resilient than Jim’s with respect to a wide range of data (the MaxEnt prior). The

effect is that Betsy’s prior is much more malleable, much more prone to change in

the face of new data.
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Both Betsy and Jim consult the climate data for the last 100 years. As Betsy

pores over it, she updates her prior, which tends to move quite a bit and forces her

to revise her credences for observing different sorts climate-related effects in coastal

areas (conditional on the current ozone levels being one way or another, on greenhouse

emission rates staying constant, etc.). In contrast, as Jim pores over the data for the

last 100 years, his prior tends to not move much at all. So he revises his credences

minimally.

Finally, Betsy and Jim both update their priors on the data regarding current

climatic conditions and deliver their reports to the IPCC. Their total data is non-

misleading, let’s suppose, and both Betsy and Jim are successful. They both end up

making accurate predictions about what sorts of effects to expect in coastal areas over

the next 10 years (e.g., erosion, ecosystem loss, coral bleaching). But Jim’s success

depends more on luck than Betsy’s. In particular, it depends more on luck in having

the true theoretical hypothesis (climate model) fall close to his prior estimate. Had

the true climate model been rather dissimilar from Jim’s preferred model, and had

Jim received similarly non-misleading evidence, his posterior distribution would have

been much further from the truth than it currently is. In turn, his predictions about

what sorts of effects to expect in coastal areas over the next 10 years would have

been much less accurate. Not so for Betsy. Her posterior distribution would have

converged on the true climate model to nearly the same extent that it actually does

(see §1.6 for more detail).

One might wonder, “Why restrict our attention to non-Holmesian researchers?

Why not imagine that Jim is especially skilled at assessing the intrinsic plausibility of

theoretical hypotheses? Suppose he is. Suppose the bias in his prior reflects this skill.

And suppose that intrinsic plausibility is a reliable guide to the truth. Then we could

say that Jim’s success depends rather minimally on luck as well.” True enough, but be-
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side the point. Remember, our aim is to identify a general, impersonal, well-motivated

method for constructing priors over theoretical hypotheses, which researchers can use

to incorporate prior evidence in inference and decision problems. The sort of Holme-

sian skill imagined by our objector, however, presumably delivers information much

too complex to be summed up (even approximately) by constraints on expectations,

and does so in a manner much too complex to be captured by any tractable algo-

rithm (perhaps similar to skill at diagnosing obscure medical conditions). But then

it is hopeless to write such skill into the actual protocol for constructing priors. And,

unfortunately, many researchers lack this skill. So no sufficiently general method for

constructing priors simply advises individual researchers to exercise this skill, while

staying silent on what this amounts to. The upshot: Sherlock Holmes and his ilk

are well-advised to exercise their skill to arrive at a prior, rather than employing an

‘objective’ method like MaxSen. But it is, nonetheless, worthwhile to identify a gen-

eral, impersonal method for incorporating prior information in inference and decision

problems, which non-Holmesian researchers can use to arrive at accurate, minimally

luck-dependent posteriors.

1.6 Ameliorating Dependence on Luck

Priors that are more resilient than others with respect to a wide range of data tend

to depend more on luck for success. To make this claim a bit more precise, and to

substantiate it, consider one attractive measure of datum-relative resilience. Recall, a

distribution p is resilient with respect to a datum D to the extent that pD(·) = p(·|D)

is close to p. Deza and Deza (2009) survey a wide range of distance functions on the

space of probability distributions, each of which gives us a different way of saying

exactly how close pD is to p. I will focus on one in particular, Cramer-von Mises
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distance:

C(p, q) =
∫ 1

0
|P (x)−Q(x)|2dx

Figure 1.2: Cramer-von Mises distance.

C specifies the distance between distribu-

tions p and q as a function of the area be-

tween their corresponding cumulative dis-

tribution functions, P and Q (counting re-

gions of smaller divergence for less and re-

gions of greater divergence for more; pic-

tured left).9 (It is the squared L2 metric

between P and Q.) It is attractive because

(i) it is an analogue of squared Euclidean

distance on the space of probability densities, and (ii) it yields the correct verdict

about comparative closeness in those cases where obviously correct answers are to be

had.10 In addition, note that the Brier score, I(p, w) = (1/N) ·
∑N

i=1(p(Xi)−w(Xi))
2

— a paradigmatically reasonable scoring rule (see Joyce 1998, 2009 and Leitgeb and

Pettigrew 2010) — measures the inaccuracy of discrete distributions by squared Eu-

clidean distance. Because C provides a natural extension of squared Euclidean dis-

tance to the space of continuous distributions, I will sometimes speak of C(p,H) (the

Cramer-von Mises distance between p and the indicator distribution iH which places

all of its probability on H) as the accuracy of p with respect to H.

On the proposed view, a distribution p is resilient with respect to a datum D to

the extent that the following is close to zero: C(p, pD) =
∫ 1

0
|P (x) − PD(x)|2dx. To

see why resilient priors tend to depend more on luck for success (posterior accuracy),

consider an illustrative case. Compare, once more, the maximum entropy (uniform)

distribution u over hypotheses about the bias of a coin, and a more concentrated beta
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distribution b (with α = 10 and β = 4). A bookie hands you and your friend a coin,

and offers you a bet. Neither of you have any prior evidence about the coin’s bias.

The bookie allows you to flip the coin for awhile prior to deciding whether or not to

take the bet. You adopt the maximum entropy prior u. Your friend adopts the more

biased beta prior b (she feels it in her bones that the coin’s bias is roughly b’s mean,

viz., 5/7). Note: b is more resilient than u with respect to a wide range of data.

Figure 1.3: uD and bD.

You flip the coin 14 times. It comes up

heads 10 times and tails 4 times. When you

both condition on this data D, you arrive

at the posteriors uD and bD, respectively

(right). Suppose that D is perfectly non-

misleading evidence; the true hypothesis H

about the bias of the coin is B = 5/7 (ex-

actly the frequency of heads in your data

sequence). Then your friend is more suc-

cessful (accurate). Her distribution converges more on H than yours: C(uD, H) =

0.028 > 0.020 = C(bD, H). But her success also depends more on luck in having the

coin’s true bias fall close to her prior estimate than yours. Had the coin’s true bias

fallen further from her prior estimate, and had she received similarly non-misleading

evidence, then her posterior distribution would have ended up much further from the

truth than it currently is. Not so for you. Your posterior distribution would have

converged on the true hypothesis about the coin’s bias to nearly the same extent.

Even more to the heart of the matter, your distribution u’s expected posterior

accuracy:

14∑
k=0

 14

k

 · xk · (1− x)14−k · C(uD, H)
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stays fairly constant across hypotheses H of the form B = x (i.e., hypotheses about

the coin’s bias; left). To see that this is the crux of why her success depends more on

luck than yours, consider an example.

The Rain Machine. You stumble upon a machine with the potential to

affect the rainfall in London. Let R be the amount of rainfall in London

tomorrow. The machine (somehow) graphs the marginal chance distribu-

tion p for R. It also has two knobs, set all the way to the left, in the ‘off’

position. As you spin the top knob, p changes fairly significantly. As you

spin the bottom knob, it remains largely unaltered. Before you leave the

machine, you spin both knobs all the way to the right.

Figure 1.4: The objective expected posterior

accuracy of u from the perspective of chance

hypotheses H of the form B = x.

The next day London gets 3mm

of rain. The fact that it gets this

amount of rain (3mm), rather than

something less (2mm, 1mm, etc.), is

explained, in part, by the position of

the top knob. The position of the

bottom knob, in contrast, is more

or less irrelevant. Why? Well, the

explanation of the fact that London

gets 3mm of rain, rather than 2mm,

1mm, etc. is probabilistic. The most

proximate explanatory factor is that

the marginal chance distribution p for R has a particular character (a particular,

mean, variance, etc.). To explain why London gets 3mm of rain, rather than 2mm,

1mm, we must cite not only probability mass that p assigns to R = 3, but also the
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mass that p assigns to R = 2, R = 1, and so on; the entire distribution is relevant (all

of its moments: mean, variance, etc.). In addition, p serves as an explanatory screen.

Any other factor relevant for explaining why London gets 3mm of rain, rather than

2mm, 1mm, etc. is only relevant in virtue of explaining why p takes the exact form

that it does. Now, the position of the top knob, clearly, is relevant for explaining why

p has the character it does. Had you only turned it half way to the right, rather than

all the way to the right, p would have had a much different character. In contrast,

the position of the bottom knob is next to irrelevant for explaining why p has the

character it does. Regardless of how you turn the bottom knob, p remains almost

entirely unaltered. Plausibly, then, the position of the bottom knob is (more or less)

irrelevant for explaining why London gets 3mm of rain, rather than 2mm, 1mm, etc.11

Similarly, the explanation of the fact that uD is inaccurate to a particular degree

(C(uD, H) = 0.028), rather than some other degree (0.027, 0.026, etc.) is probabilistic.

The most proximate explanatory factor is that, immediately prior to your experiment

(flipping the coin), the true marginal chance distribution p for C(uD, H) had a par-

ticular character (pictured right). And just as above, to explain why uD is inaccurate

to the exact degree that it is, rather than something slightly higher or lower, we must

cite not only probability mass that p assigns to the hypothesis C(uD, H) = 0.028, but

also the mass that p assigns to C(uD, H) = 0.027, C(uD, H) = 0.026, etc.; the entire

distribution is relevant. In addition, p serves as an explanatory screen. Any other

factor relevant for explaining why uD is inaccurate to exactly the degree that it is

(0.028), rather than some other degree (0.027, 0.026, etc.), is only relevant in virtue

of explaining why p takes the exact form that it does.12

Now note: p is more or less invariant across hypotheses H about the coin’s bias.

Whether the true bias is 5/7, 11/64 or 82/97, the marginal chance distribution p

for C(uD, H) will look more or less the same.13 This is reflected in the fact that p’s
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mean — u’s expected posterior accuracy — stays fairly constant across hypotheses

H (see figure 1.4, p. 20). The upshot: the external factor in question — how close

Figure 1.5: The marginal chance distribu-

tion for C(uD, H), which stays fairly constant

across hypotheses H about the coin’s bias.

the coin’s true bias happened to fall

to u’s prior estimate — is not terribly

relevant to explaining why p takes the

exact form that it does. Hence, it is

also not terribly relevant to explaining

why uD is inaccurate to exactly degree

0.028, rather than 0.027, 0.026, etc.

The moral: u depends fairly minimally

on luck in having the true chances fall

close to its prior estimates for success

(posterior accuracy).

To hammer this point home, consider a less fanciful analogy than the rain machine.

The Expert Archer. A highly skilled archer faces a number of different

targets T arranged at varying distances. Given her expertise, the marginal

chance distribution p for D (distance of her arrow from the center of

the target) looks more or less the same, regardless of which target she

takes aim at. Whether she aims at some target T rather close by, or

some T ′ rather far away (within reasonable bounds, of course), p assigns

roughly the same (high) probability mass to the hypothesis D = 0 (hitting

the target dead center), roughly the same (low) probability mass to the

hypothesis D = 15 (hitting 15cm off target), and so on.

Because p remains largely unaltered across targets T , the initial proximity of

our archer to T is plausibly (more or less) irrelevant for explaining why p takes the
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exact form that it does. And because facts about the form that p takes serve as an

explanatory screen vis-á-vis D — any other factor relevant for explaining why D = 0

(she hits the target dead center), rather than D = 1, D = 2, etc., is only relevant in

virtue of explaining why p takes the exact form that it does — that initial proximity

is (more or less) irrelevant for explaining why our archer is successful to the exact

degree that she is. This mirrors the coin flipping case. Because p remains largely

Figure 1.6: The objective expected posterior

accuracy of b from the perspective of various

chance hypotheses H of the form B = x.

unaltered across chance hypotheses H,

the (initial) proximity of your prior u

to H is plausibly (more or less) irrel-

evant for explaining why p takes the

exact form that it does. And because

facts about the form that p takes serve

as an explanatory screen vis-á-vis pos-

terior accuracy — any other factor rel-

evant for explaining why C(uD, H) =

0.028, rather than C(uD, H) = 0.027,

C(uD, H) = 0.026, etc., is only relevant

in virtue of explaining why p takes the

exact form that it does — that initial proximity is next to irrelevant for explaining

why your posterior uD is successful (accurate) to the exact degree that it is (0.028).

Your friend, however — the one who adopts the more biased beta prior b — is

in a different boat. The marginal chance distribution q for C(bD, H) varies rather

significantly across chance hypotheses H. This is reflected in the fact that q’s mean

— the expected posterior accuracy of her distribution b — varies significantly across

H (left, previous page). The upshot: the (initial) proximity of her prior b to H is

relevant for explaining why q takes the exact form that it does. In turn, it is relevant
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for explaining why her posterior bD is successful (accurate) to the exact degree that

it is (0.020).

The situation here is not unlike that of an unskilled archer. Such an archer might

face targets T arranged at varying distances. Suppose she aims at a close one and

hits the bullseye dead center. Unlike in the expert archer case, the marginal chance

distribution q for D (distance of her arrow from the center of the target) varies

significantly across T . If she aims at some target T rather close by, the mean of q

(i.e., the expected value of D) might be close to 0. There is a high chance of hitting

the bullseye dead center, a lower chance of hitting 1cm off target, an even lower

chance of hitting 5 cm off target, etc. But if, instead, she aims at some T ′ far away,

the mean of q might be much higher. There is a much higher chance of missing the

bullseye by quite a bit. The upshot: the unskilled archer’s initial proximity to her

target is relevant for explaining why q takes the exact form that it does. In turn, it

is relevant for explaining why she is successful to the exact degree that she is.

This all serves to highlight an important virtue of the MaxEnt prior. It renders

external factors less explanatorily relevant than certain other priors (more concen-

trated beta priors), and thereby does more to ameliorate dependence on intervening

epistemic luck. The MaxEnt prior is better suited, then, to play the primary theo-

retical role of priors. But an alternative prior, viz., the MaxSen prior, is even better

suited to play this role.

1.7 The MaxSen Method

When a scientist designs and performs an experiment aimed at adjudicating between

competing theoretical hypotheses, H1, ..., Hn, she ought to, according to the MaxSen

method, take her prior information into account as follows:
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• Summarize her prior evidence by constraints C1, ..., Cm, which we model by a

set of probability distributions C .

• Adopt the prior s in C that is ‘maximally sensitive’ to evidence in the follow-

ing sense: the experimental data, rather than the initial proximity of the true

theoretical hypothesis H to s’s prior estimate, explains, to the greatest extent

possible, posterior accuracy.

– Formally: minimize f(p) = maxi ExpHi
(d(pD, Hi)) - minj ExpHj

(d(pD, Hj))

on C .14 (Read d(pD, Hi) as the distance between pD and the indicator

distribution iHi
which places all of its probability on Hi.)

∗ We continue to use C to measure the distance between probability

distributions, though it is open to the proponent of MaxSen, of course,

to use an alternative distance function.

To illustrate the MaxSen method, imagine once more that you have a coin of

unknown bias. You plan to perform n independent coin flips, in order to adjudi-

cate between competing chance hypotheses. You have no relevant prior information,

suppose, save for the following (which we assume only to limit computational com-

plexity): your prior ought to take the form of a beta distribution. So C is the set of

all beta distributions.

At this point, MaxEnt prescribes adopting the uniform prior. The distribution

that maximizes entropy on C is the beta prior with α=β=1, which is just the uniform

prior. MaxSen, in contrast, prescribes adopting a non-unform beta prior. Which prior

it prescribes depends on the details of the experimental set-up. I address this issue

in §1.9.1. For now, just note that this is to be expected, if what we have said about
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Figure 1.7: The beta distribution with

α = β = 1.45.

the theoretical role of priors is correct. If

what we have said is correct, then priors

are merely instrumentally valuable tools

for securing accurate, minimally luck-

dependent posterior credences by updat-

ing on new data. It is no surprise that

which tools are best suited for this end

depends on what new experimental data

you stand to receive. And it is no sur-

prise that what data you stand to receive

depends on the details of the experimental set-up. This includes details about what

kind of evidence the experiment is designed to yield: evidence about the outcomes of

coin flips, or about levels of gene expression, or about sea surface temperature, etc. It

also includes details about, for example, the number of times n that the experiment

is to be repeated. In our coin flip example, if you are going to flip the coin 8 times

(n = 8), then the MaxSen prior is the beta distribution with α = β = 1.45 (right). If

instead you are going to flip the coin twenty times (n = 20), then the MaxSen prior

is the beta distribution with α = β ≈ 2.

To construct the MaxSen prior, one might use any number of optimization algo-

rithms, e.g., a Markov Chain Monte Carlo algorithm. I use simple regression analysis

here, since my purposes are merely illustrative. Consider, for example, the case of

n = 8 (you flip the coin eight times). In this case, if you choose a reasonably fine

partition of C , and evaluate f(p) = maxi ExpHi
(d(pD, Hi)) - minj ExpHj

(d(pD, Hj))

at the upper and lower bounds of the elements of this partition, regression analysis

yields the polynomial approximation f ∗ of f (pictured left, next page).15 As is clear

from inspection of this graph, f takes a minimum, roughly, at the beta distribution
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Figure 1.8: Approximation of f given n=8.

with α = β = 1.4. Standard La-

grangian methods reveal the unique

minimum to be, more precisely, at

the beta distribution s with α = β =

1.45. This is the MaxSen prior. Sim-

ilar techniques can be used to ap-

proximate the MaxSen distribution

for any n. In addition, Orbanz and

Teh (2010) describe how to use stan-

dard inference techniques in a way

that can be leveraged to construct

the MaxSen distribution in more difficult inference and decision problems (we re-

turn to this issue in §1.8.2).

The MaxSen prior s, rather than the MaxEnt (uniform) prior u, minimizes the

need for epistemic luck in securing accurate posteriors. Recall, u’s expected posterior

accuracy varies fairly minimally across chance hypotheses H. There is a fairly high

chance that the experiment will yield data that causes it to converge significantly on

the true chance hypothesis H, regardless of which H is true. As a result, the MaxEnt

prior u performs better than many other priors (low variance beta priors) vis-á-vis

ameliorating dependence on epistemic luck. This notwithstanding, the MaxSen prior

s’s expected posterior accuracy varies significantly less than u’s with changes in H

(pictured next page). In fact, the difference between the maximum and minimum

expected accuracy is only 0.012 (f(s) = 0.012). The result: facts about how close

the true chances happened to fall to s’s (prior) estimates — an external factor —

play virtually no role in explaining the (posterior) accuracy of sD. Not only does the

MaxSen prior perform better than the MaxEnt prior vis-á-vis ameliorating dependence
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on luck, but it performs (more or less) as well as any prior could perform in this regard.

Figure 1.9: Expected posterior accuracy of s

(from the perspective of various chance hy-

potheses H of the form B = x).

Once more, the situation is not

unlike that of an expert archer.

Whether she aims at some target

rather close by, or another far away

(within reasonable bounds), she has

roughly the same (high) chance of

hitting the target dead center, the

same (lower) chance of hitting 1cm

off target, and so on. The result:

facts about how close she happened

to be to her target play virtually no

role in explaining her success. Her

skill ameliorates her dependence on luck — in particular, luck in having her target

fall close to some ‘preferred’ distance — to the maximum extent possible.

Figure 1.10: Expected posterior accuracy

of both u and s (rescaled to emphasize dif-

ference in variation across hypotheses H).

The moral is this: the MaxSen prior

renders external facts — facts about how

close the true chances happened to fall

to s’s initial estimates — virtually ex-

planatorily irrelevant. In turn, it mini-

mizes the need for epistemic luck in se-

curing accurate posterior beliefs. Hence,

the MaxSen prior is uniquely suited to

play the primary theoretical role of priors

(at least in simple decision and inference

problems like those considered here).
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1.8 Concluding Remarks

1.8.1 Recap

I have argued that there is a promising, anti-luck rationale for employing the MaxSen

method to incorporate prior information in inference and decision problems. If cor-

rect, this resolves the problem of the priors. To recap, the argument goes as follows:

1. You ought to adopt whichever prior is best suited to play the primary theoretical

role of priors, if there is one.

2. The primary role of priors is to help you secure accurate beliefs by updating on

your evidence, and to minimize your need for epistemic luck in securing those

beliefs.

3. Various priors put you in a position to secure accurate posteriors by updating

on your evidence.

4. Only the MaxSen prior, however, minimizes your need for epistemic luck in

securing accurate posteriors.

C. You ought to adopt the MaxSen prior to incorporate prior information in infer-

ence and decision problems.

The majority of this chapter is devoted to defending premise 4. It is worthwhile to

restate that defense here, in a more succinct form.

1′. No prior mitigates the need for epistemic luck tout court. Rather, the prior that

minimizes your need for luck, if there is one, does so by mitigating a special

kind of intervening epistemic luck: luck in having the true chances fall close to

one’s initial estimates of the chances.
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2′. Intervening luck is the sort of luck in play when external factors are primarily

responsible for explaining success. Mitigating intervening luck is a matter of

rendering such factors explanatorily irrelevant.

3′. The MaxSen prior s renders facts about how close the true chances happen to

fall to s’s initial estimates less explanatorily relevant than any other prior.

4′. So, the MaxSen prior does more to mitigate the relevant kind of luck than any

other prior. (From 2 and 3 )

C′. This is all that a prior can do to ameliorate dependence on epistemic luck tout

court ; so the MaxSen prior minimizes the need for such luck in securing accurate

posteriors. (From 1 and 4 )

1.8.2 Outstanding Issues

This chapter motivates and details a new kind of objective Bayesian method, the

MaxSen method, for constructing priors. But it does not provide a full defense of

this method. Consider premise 3′. In arguing for this premise, we restricted our

attention to inference and decision problems involving simple theoretical hypotheses

about the bias of a coin and binomial data. But, a full defense must consider a much

broader class of theoretical hypotheses and data. Microbiologists, for example, are

not concerned with the biases of coins or binomial data. They design and perform

experiments aimed at adjudicating between more complex theoretical hypotheses,

e.g., causal models that describe how over expression of a certain gene produces

chromosomal instability in breast tumors. And the data that such experiments yield

— qualitative data about the reorganization of certain cellular structures, quantitative

data about levels of DNA replication, etc. — is certainly not binomial (does not

come in the form of a sequence of ‘successes’ and ‘failures’).16 In inference and
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decision problems of this sort, Bayesian priors are nonparametric.17 A fuller defense

of the MaxSen method would illustrate how standard inference techniques (MCMC,

sequential Monte Carlo, variational inference, expectation propagation) can be used

to determine a nonparametric MaxSen prior in such problems, and to compute its

posterior (see Orbanz and Teh 2010 and Neal 2000). It would also identify the

conditions under which these techniques are applicable.

This paper also does not address some pressing concerns. For example, Venn

(1866), Keynes (1921) and Fisher (1922) all provide examples that seem to show that

MaxEnt yields inconsistent results in a range of cases, depending on how you describe

them. I briefly address Fisher’s concern below. But it is incumbent on the proponent

of MaxSen to show definitively that these problems do not extend to her proposal.

Examining the boundaries of the class of contexts in which MaxSen is applicable,

and responding fully to description or parameterization dependency concerns are tasks

that require separate investigation. Our aim here was simply to highlight the kind

of epistemic rationale undergirding MaxSen, and in turn, to highlight a promising

route for resolving the problem of the priors. I conclude by raising a few additional

questions to be addressed in future research.

• We specified the MaxSen prior using one particular distance function on the

space of probability densities, viz., Cramer-von Mises distance. Are our results

robust under a range of metrics, e.g., the Lévy metric? the Lp metrics?

• The MaxSen prior outperforms alternative precise priors, including the MaxEnt

prior, vis-á-vis ameliorating dependence on luck. But we have not compared the

MaxSen prior to imprecise priors, or sets of probability functions. Is there good

epistemic reason to prefer the MaxSen prior to alternative imprecise priors, at

least in certain contexts of inquiry? (I address this issue in chapter 3.)
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• In §1.3, we remarked that, in certain circumstances, limits on time, personnel,

funding, etc. keep scientific researchers from gathering weighty enough data for

the washing out theorems to have much purchase. And in such circumstances,

many priors will depend significantly on luck for success (accuracy). When is

an experiment sufficiently “well-designed” for some fairly large class of priors to

depend fairly minimally on luck for success?

1.9 Objections

1.9.1 Likelihood Principle

The MaxSen method seems to run afoul of the Likelihood Principle:

Likelihood Principle (LP). For any two experiments aimed at adjudicating

between theoretical hypotheses H1, ..., Hn, and any two data sequences D

and D′ produced by those experiments, if D and D′ determine the same

likelihood function (up to an arbitrary positive constant), i.e., there is

some k > 0 such that p(D|Hi) = k ·p(D′|Hi) for allHi, then the ‘evidential

meaning’ or ‘evidential import’ of D and D′ for H1, ..., Hn is the same.

(cf. Edwards, Lindman and Savage 1963, 237)

Many Bayesian statisticians, such as Savage, de Finetti and Berger (as well as

‘frequentist’ statisticians such as Fisher) take the LP to be central to rational inductive

inference. Birnbaum (1962) summarizes the standard Bayesian rationale for the LP

as follows. First, on the Bayesian view, according to Birnbaum, the aim of rational

inductive inference is to use “experimental results along with other available [prior]

information” to determine a posterior that provides “an appropriate final synthesis

of available information” (Birnbaum 1962, 299). Posteriors ‘synthesize’ the total
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available data E by specifying truth-value estimates for the theoretical hypotheses

under investigation, H1, ..., Hn, which capture the ‘evidential meaning’ or ‘evidential

import’ of E for H1, ..., Hn.

Second, Bayes’ theorem tells us that posteriors, p(·|D), are fully determined by

two components: a prior, p(·), and a likelihood function for the experimental data

D, p(D|·), which specifies how probable the various theoretical hypotheses H1, ..., Hn

render D.

Bayes’ Theorem. p(Hi|D) = [p(D|Hi) · p(Hi)]/p(D)

= [p(D|Hi) · p(Hi)]/
∑

j p(D|Hj) · p(Hj)

Finally, because the prior distribution captures the ‘evidential meaning’ of the prior

data (no more, no less), the likelihood function must capture the ‘evidential meaning’

of the experimental data, on the Bayesian view (no more, no less). “In this sense,”

Birnbaum says, “we may say that [Bayes’ theorem] implies [the likelihood principle]”

(Birnbuam 1962, 299). “The contribution of experimental results to the determination

of posterior probabilities is always characterized just by the likelihood function and

is otherwise independent of the structure of an experiment” (ibid.).

MaxSen seems to violate the LP by making ‘extraneous’ features of the experimen-

tal set-up — in particular, its ‘stopping rule’ — relevant to the ‘evidential meaning’ or

‘evidential import’ of experimental data. Stopping rules are rules that specify when

to stop gathering new data. They are extraneous, according to the LP, because they

have no influence on likelihoods.

The argument that MaxSen violates the LP, by making stopping rules relevant to

evidential force, goes as follows. First, as any proponent of the method would happily

admit, stopping rules are relevant to which prior you ought to adopt, according to

MaxSen. Suppose, for example, that you and your friend are going to flip a coin, in
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order to adjudicate between competing hypotheses about its bias. You adopt different

fixed stopping rules — you plan to flip the coin 8 times; your friend plans to flip it 20

times. Then MaxSen recommends that you adopt the beta prior s with α = β = 1.45.

It recommends that your friend adopt the beta prior s′ with α = β = 2.

From here, it seems, we are just a few small steps from showing that MaxSen

violates the LP.

1. Posteriors reflect the ‘evidential meaning’ of the total available data (prior and

experimental) for the theoretical hypotheses under investigation.

2. MaxSen renders posteriors sensitive to stopping rules.

3. So, according to MaxSen, the ‘evidential meaning’ of the total available data is

sensitive to stopping rules. (From 1 and 2 )

4. Stopping rules are obviously irrelevant to the meaning of the prior data. If they

are relevant to the meaning of the total data at all, it must be because they

impact the meaning of the experimental data.

5. Hence, the meaning of the experimental data is sensitive to stopping rules,

according to MaxSen. (From 3 and 4 )

6. The LP says: stopping rules are irrelevant to the meaning of the experimental

data.

C. MaxSen violates the LP. (From 5 and 6 )

In fact, though, MaxSen is perfectly consistent with the LP. The problem with this

argument: premise 1 is false. The primary role of priors is not to reflect the ‘evidential

meaning’ of the prior data, or anything of the sort, but rather, to help us secure
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accurate posteriors in a luck-minimizing fashion (or so I argued in §1.3). Similarly,

the primary role of posteriors is not to reflect the ‘evidential meaning’ of the total

data (prior and experimental together), but rather, to encode accurate, minimally

luck-dependent truth-value estimates for both theoretical hypotheses (e.g., models of

viral infection mechanisms, climate models, etc.) and non-theoretical propositions

(regarding ecosystem loss, etc.).

Rational inductive inference, on this view, is simply not aimed at using “experi-

mental results along with other available [prior] information” to determine a poste-

rior that provides “an appropriate final synthesis of available information” (Birnbaum

1962, 299). Of course, summarizing ‘what the data says’ — its ‘evidential meaning’ or

‘evidential import’ — is important for various purposes, e.g., reporting experimental

results in science journals. But rational inductive inference aims at something dif-

ferent: getting at the truth (securing accurate truth-value estimates) in a minimally

luck-dependent fashion.

The proponent of MaxSen might elaborate as follows: the ‘evidential meaning’

or ‘evidential import’ of a body of evidence is almost always best summarized by a

set probabilities. Such ‘meanings’ are rarely specific enough to single out a unique

distribution. Prior evidence, for example, typically imposes constraints on prior prob-

abilities, constraints satisfied by a range of distributions. And, given that the LP is

true, capturing the correct ‘meanings’ for experimental data items is a matter of en-

coding the correct likelihoods; many priors encode the correct likelihoods. Normally,

then, there will be a set of distributions that, when updated on the experimental data,

reflect the evidential meaning of the total evidence as well as any other distribution.

Still, if MaxSen is correct, one of these priors is uniquely well-suited to play the

primary role of priors, viz., to help us secure accurate posteriors in a luck-minimizing

fashion. The crucial point is this: its distinguishing properties — the properties that
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set it apart from the other priors that adequately summarize ‘what the data says’ —

are important merely because they make it (the MaxSen prior) well-suited to play

the relevant theoretical role. These distinguishing properties do not reflect anything

about the ‘evidential meaning’ of the data, prior or experimental. Such ‘meaning’ is

characterized by the constraints that the prior evidence imposes (which the MaxSen

prior satisfies), and the likelihood functions for potential experimental data items

(which the MaxSen prior correctly encodes).

To recap: MaxSen is consistent with the LP, despite its sensitivity to stopping

rules. Stopping rules do determine certain features of the MaxSen prior. But these

features do not reflect ‘what the data says’. They are merely instrumentally valu-

able ‘design features’ which make the MaxSen prior well-suited to play its particular

theoretical role.

A final note: appreciating the proper role of priors — to help us secure accurate,

minimally luck-dependent posteriors — not only squares MaxSen with the LP, but

also makes clear why one’s choice of a prior should be sensitive to stopping rules.

Consider a practical analogy. Monica has an investment advisor. The advisor’s

goal is to deliver the largest return that she can on Monica’s investments at some

time point, e.g., 10 years from now. She has two tools to achieve this goal: (i) the

investment capital that Monica provides each month, and (ii) an investment strategy.

Now, some features of Monica’s circumstances are irrelevant to which investment

strategy her advisor ought to adopt: whether she hopes to retire in Montana or

Monterrey, for example. This has no effect on which investment strategy will yield the

highest return. But other features of her circumstances clearly do matter. It clearly

matters how much investment capital Monica has available. If she can invest $1,000

per month, and her friend can invest $5,000 per month, then it would be foolish for

their respective advisors to adopt the same investment strategy. Her advisor might be
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best served opting for a conservative investment strategy (government bonds, etc.),

while her friend’s advisor is better served by focusing more on higher risk/higher

reward options.

Similarly, a researcher might have a couple tools at her disposal for achieving her

epistemic goal (securing accurate, minimally luck-dependent posteriors): (i) the data

that her experiment yields, and (ii) an inductive strategy (encoded by her prior).

Some features of her experimental set-up are clearly irrelevant to which inductive

strategy (prior) she ought to adopt: whether her pipettes were made by company A

rather than company B, for example. This has no effect on which inductive strategy is

likely to yield the highest ‘epistemic return’ (the most accurate, least luck-dependent

posteriors). But other features of her circumstances clearly do matter. It clearly

matters how much data that experiment will yield (which depends on the stopping

rule she employs). Just as one financial advisor might be better served opting for a

more ‘aggressive’ investment strategy than another, if her client has more investment

capital to work with, so too might one researcher be better served opting for a more

‘aggressive’ inductive strategy than another, if she has more (weightier) experimental

data to work with. She can afford to adopt a prior that concentrates probability more

on less ‘extreme’ theoretical hypotheses (hypotheses that assign less extreme objective

probabilities to experimental data items), without increasing her dependence on luck.

The reason: the more extreme hypotheses will do more to ‘make themselves heard’;

given the weightiness of the data, they will either be very strongly confirmed or very

strongly disconfirmed.

It is no surprise, then, that which prior you ought to adopt depends on how

much data your experiment is designed to yield (and other important features of

the experimental set-up, e.g., whether the kind of data that it is designed to yield

is particularly probative vis-á-vis the relevant theoretical hypotheses). And it is no
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strike against MaxSen that it respects this fact.

1.9.2 Parameterization Dependence

As frequentists and subjectivists often note, MaxEnt seems to yield inconsistent re-

sults in a range of cases, depending on how you describe them. The following example,

adapted from Fisher 1922 (pp. 324-5), illustrates the point. One final time, consider

a coin of unknown bias. You plan to flip the coin n times, in order to adjudicate

between the competing chance hypotheses. You have no relevant prior information,

save for the following: your prior ought to take the form of a beta distribution.

Given these evidential constraints, MaxEnt prescribes adopting the uniform prior

over hypotheses B = x. But, Fisher points out, you “might never have happened to

direct [your] attention to the particular quantity” B (Fisher 1922, 325). Instead, you

Figure 1.11: Non-uniform prior over

hypotheses B = x defined by f .

might have maximized entropy with respect to

θ =
√
B. “The quantity, θ,” Fisher says, “mea-

sures the degree of probability, just as well as

[B], and is even, for some purposes, the more

suitable variable” (ibid., 325). If, however, you

maximize entropy with respect to θ, you will

adopt the uniform prior over hypotheses of the

form θ = x, which is equivalent to adopting a

non-uniform prior over hypotheses B = x de-

fined by the probability density f(x) = 1/(2
√
x) (right).

The upshot: depending on which parameter you focus on, B or θ, MaxEnt will

prescribe a different prior. In turn, you will make different (inconsistent) judgments

in the two cases. For example, if you maximize entropy with respect to B, and then

observe two heads in a row, your new best estimate of the coin’s bias is 0.75. In
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Figure 1.12: MaxSen prior s for B.

contrast, if you maximize entropy with respect

to θ and observe two heads, your best estimate

is 0.71.

One might suspect that the MaxSen

method is subject to a similar sort of param-

eterization dependence. And it is. But this is

a feature, not a bug. Suppose that you plan

to flip the coin of unknown bias 5 times. The

Figure 1.13: MaxSen prior s∗ for θ.

MaxSen prior over hypotheses B = x is the

beta distribution s with α = β ≈ 1.2 (left,

above). If, in contrast, you use the MaxSen

method to determine a beta prior over hypothe-

ses of the form θ = x, you will arrive at the dis-

tribution s∗ with α ≈ 0.9 and β ≈ 1.5 (right).

And s∗ is not equivalent to s. Adopting the

prior s∗ over hypotheses θ = x is equivalent to

adopting the distribution over hypotheses B = x defined by the probability density

Figure 1.14: Non-MaxSen prior s∗

for B.

g(x) = 0.65581
√

1−
√
x/x0.55 (left, below).

This is a feature, I claim, not a bug, be-

cause (i) there are grounds for focusing certain

parameters, rather than others; the MaxSen

method does not leave you in the precarious

position of yielding different prescriptions rela-

tive to different parameters, with no good rea-

son to choose between them; (ii) in virtue of

its parameterization dependence, the MaxSen
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method is flexible enough to yield appropriate prescriptions for a variety epistemo-

logical tasks.

Which parameter you ought to focus on, I claim, depends on what your epistemic

aims are in your context of inquiry. Suppose, for example, that your aim is two-fold:

Figure 1.15: Bottom curve: objective

expected posterior inaccuracy of the

truth-value estimate sD(X) =
∫ 1

0
x ·

sD(x)dx (measuring inaccuracy by the

Brier score). Top: expected inaccuracy

of s∗D(X) =
∫ 1

0
x2 · s∗D(x)dx.

(i) to arrive at an accurate, minimally-

luck dependent posterior pD over theoreti-

cal hypotheses (about the bias of the coin,

about the square root of the bias of the

coin, etc.), and (ii) to arrive at an accurate,

minimally-luck dependent estimate, pD(X),

of the truth-value of X, the proposition that

the coin will come up heads on the next toss.

Perhaps you care about the former because

it is a good means to the latter. When pD is

sufficiently accurate (it concentrates proba-

bility significantly enough on the true theo-

retical hypothesis), it will yield a truth-value

estimate for X that is (objectively) likely to

be accurate too.

If this your aim — to get at the truth of X in a minimally luck-dependent fashion

— then you ought to focus on the parameter B, rather than θ, I claim. The reason:

the objective expected accuracy of sD(X) =
∫ 1

0
x · sD(x)dx (the posterior probability

for X determined by the MaxSen prior s over hypotheses B = x) varies less across

hypotheses B = x (and θ = x) than the expected accuracy of s∗D(X) =
∫ 1

0
x2 ·s∗D(x)dx

(the posterior probability determined by the MaxSen prior s∗ over hypotheses θ = x).

So s depends less on luck in yielding a successful (accurate) posterior probability for
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X than s∗ does.

The reason, informally, is that the MaxSen prior s∗ over hypotheses θ = x is

particularly adept at converging on the true value of θ. But small changes in θ

correspond to large changes in B. So it is not quite as adept at converging on the

true value of B (the chance of X). Moreover, s∗’s posterior probability (truth-value

estimate) for X is just its estimate of B. And the accuracies of these two estimates

hang together. The less (objectively) likely it is to yield an accurate estimate of B,

the less (objectively) likely it is to yield an accurate posterior probability for X. The

upshot: it is not particularly adept at converging on the actual truth-value of X.

It requires more epistemic luck for success (accuracy) than the MaxSen prior s over

chance hypotheses B = x.

So there are grounds for focusing on B rather than θ. If your aim is to get

at the truth of X in minimally luck-dependent fashion, then you would be better

served by focusing on B than on θ. But, in other contexts of inquiry, it might be

epistemically important to arrive at accurate, minimally luck-dependent estimates of

other quantities. For this end, it might be better to adopt a prior that is better at

converging on the true value of θ. It is precisely because the MaxSen method offers

non-equivalent prescriptions for B and θ that it is able to furnish priors that are

well-suited for these different tasks.

The moral is this: researchers are typically concerned not only with securing

accurate, minimally luck-dependent truth-value estimates for theoretical hypotheses,

but also with securing such estimates for various other quantities. We might not only

care about how over expression of some gene influences instability in breast tumors.

We might also care about whether a patient will go into remission if she receives

certain therapies or treatments. Which other quantities we are concerned with — e.g.,

the truth-values of pertinent non-theoretical propositions (about remission, and so on)
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— can and ought to inform how we go about investigating theoretical hypotheses, by

informing how we parameterize them.

Notes

1Venn (1866), Keynes (1921) and Fisher (1922) aim their objections at Laplace’s Principle of

Insufficient Reason (PIR). But these problems for PIR extend directly to MaxEnt.

2More carefully, when our evidence provides no constraints on probabilities over theoretical hy-

potheses, and a countably additive uniform distribution over that space exists, then the MaxEnt

distribution is just the uniform distribution. In certain contexts, however, the MaxEnt prior exists

while a countably additive uniform prior does not. For example, Furrer et al. (2011) claim to specify

techniques that can be used to derive an ‘infinite-dimensional generalization of the entropic uncer-

tainty relation’ (Furrer et al. 2011, 12). But, it is well known that there is no Lebesgue measure on

infinite-dimensional spaces, and hence, no analogue of the standard uniform distribution.

3See ch. 3, §1.

4See Savage 1972, pp. 46-50. See also Barron, Schervish and Wasserman (1999), or Hawthorne

(1993) for discussion of conditions that guarantee convergence.

5Rather, no prior fully amerliorates the luck involved in avoiding misleading evidence without

rendering facts about evidence irrelevant to explaining posterior accuracy altogether. If a gambler

adopts a close-to-perfectly dogmatic prior — one which is nearly perfectly resilient with respect to

nearly all data — then of course the accuracy or inaccuracy of her posterior estimate of the coin’s

bias will depend minimally on the misleading nature of her new evidence. But it does so because

it depends minimally on the character of any new data. The moral: no prior singles out and fully

ameliorates exactly the sort of epistemic luck involved in avoiding misleading evidence.

6By the uniform prior u over hypotheses B = x, I mean the prior u defined by the uniform density

function f(x) = 1.

7A beta prior b is a probability distribution defined by a density function of the form f(x) =

((1 − x)−1+βx−1+α)/Beta[α, β]. Beta distributions are characterizable in terms of α and β, and

hence, fairly computationally tractable. They also form a very flexible class of distributions. For

these two reasons, we restrict our attention to beta distributions in many of our examples.
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8For simplicity, I only consider sequences of coin tosses that are exchangeable, from the perspec-

tive of the true chance distribution.

9The cumulative distribution function P corresponding to a distribution p over chance hypotheses

(defined by density f) is defined by P (ch(X) ≤ x) =
∫ x
0
f(y)dy, and specifies the probability that

the chance of X is less than or equal to x.

10For example, for any beta densities f , g and h, if they all have the same mean but increasing

variance, then f is closer to g than to h. Similarly, if they all have the same variance but larger and

larger means, then f is closer to g than to h.

11The usual caveats are needed: there is no demon intervening to make the bottom knob causally

inefficacious, except when it’s turned all the way to the right, or anything of the sort. If that were

the case, of course, then the position of the bottom knob might well be relevant to explaining why

London gets 3mm of rain, rather than 2mm, 1mm, etc., despite not being counterfactually relevant.

12Save, of course, for the fact that, at the end of the day, your experiment produced exactly the

outcome that it did.

13Of course, when B ≈ 0 or B ≈ 1, this distribution will concentrate probability almost exclusively

on one value for C(uD, H).

14It would be better to minimize g(p) = maxi,jd(chHi , chHj ), where chHi is the objective marginal

distribution for d(pD, Hi) determined by Hi. But the extra layer of complexity that this would

add would, I suspect, obscure the more important, underlying philosophical point. It would draw

attention away from the anti-luck rationale undergirding the MaxSen method.

15I evaluated f(p) = maxi ExpHi
(d(pD, Hi)) - mini ExpHi

(d(pD, Hi)) at all beta distributions p

with α, β ∈ {0.001, 0.25, 0.5, 0.75, ..., 2}. For the raw data, the details of the polynomial (n = 5)

least-squares fit of the data, or the Mathematica code needed to run the simulations, please email

jpkonek@gmail.com.

16Of course, like any version objective Bayesianism, the MaxSen method will not be applicable in

all realistic problems of inference or decision.

17Nonparametric Bayesian models specify a joint distribution over an infinite number of parame-

ters, e.g., each of the uncountably many values of a probability density function.
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Chapter 2

Precise Priors Without
Total Comparative Probability

In the casino, your evidence might be perfectly specific. You might, for example, know

exactly which cards have been dealt, exactly which cards your opponent needs to beat

you on the river, and so have evidence that justifies a perfectly precise credence, say

3/52, that she will win and take the rest of your money. But evidence is often

unspecific and equivocal. Consider your current evidence that it will snow next new

year’s eve, or your evidence about the price of copper twenty years from now, or about

interest rates on home equity loans forty years from now. “About these matters,”

Keynes says, “there is no scientific basis on which to form any calculable probability

whatever” (Keynes 1937, 213-4).

Imprecise Bayesians say that when your evidence is unspecific and equivocal, your

opinions should be unspecific and equivocal too. Precise priors (single probability

functions), however, do not allow for such opinions. If you adopt a precise prior,

in an attempt to incorporate unspecific/equivocal evidence in an inference or deci-

sion problem, you will be stuck with perfectly specific opinions. Taking account of

unspecific and equivocal prior evidence requires imprecise priors (sets of probability

functions). Call this the preclusion problem for precise Bayesianism.

Preclusion Problem. Precise priors preclude unspecific and equivocal opin-
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ions, and so invariably capture improper responses to unspecific and equiv-

ocal evidence.

The preclusion problem captures the central epistemic motivation for imprecise Bayes-

ianism. My aim in this chapter is to demonstrate how flexible precise priors are.

Despite first appearances, precise priors do indeed allow for unspecific and equivocal

opinions.

In §2.1, I sketch the Bayesian approach to inductive inference. In §2.2, I detail the

preclusion problem. In §2.3, I identify the background assumption that generates the

preclusion problem, which I call locality. In §2.4-2.6, I present a number of reasons

for doubting locality. In §2.7, I outline a broadly Bayesian, locality-free approach to

inductive inference, and show that it avoids the preclusion problem. Finally, in §2.8,

I explore independent reason for thinking that this approach, or something much like

it is correct. If it is, this undercuts the central epistemic motivation for introduc-

ing imprecise priors. This, in turn, provides impetus to search for new epistemic

foundations for imprecise Bayesianism.

2.1 The Bayesian Approach to Inductive Inference

All Bayesians agree on certain facts about inductive inference. They agree, for exam-

ple, that when a researcher designs and performs an experiment aimed at adjudicating

between competing theoretical hypotheses, H1, ..., Hn, she ought to (i) take her prior

evidence E for H1, ..., Hn into account by adopting a ‘prior’, which somehow sum-

marizes the information in E, (ii) update that ‘prior’ on her experimental data, to

obtain a ‘posterior’, and (iii) read her new opinions about H1, ..., Hn (as well as the

propositions X that H1, ..., Hn render more or less likely) off of this ‘posterior’. They

also agree that (iv) probabilities are useful for constructing priors; constructing a
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prior involves specifying a probability distribution p (a precise prior), or a set of

distributions (an imprecise prior) over H1, ..., Hn. Finally, they agree, for the most

part, on (v) which comparative and qualitative judgments any ‘posterior’ (precise or

imprecise) commits its bearer to making; they agree on how to ‘read off’ new opinions

from a posterior.18

Imagine, for example, a virologist who designs and performs an experiment to

adjudicate between competing hypotheses H1, ..., Hn about a protein interaction in a

virus. (H1, ..., Hn might be causal models that represent how this interaction works.)

She comes to the table with a great deal of prior information, of course, e.g., in-

formation about how these sorts of interactions work in similar viruses. Then her

experiment yields new data. On the Bayesian view, to take her prior evidence E into

account in her inference problem, she ought to adopt a prior over H1, ..., Hn. Different

Bayesians, however, prescribe adopting different priors.

Subjective Bayesians say that agents ought to look to their own opinions to fur-

nish priors. If an agent’s opinions are rich enough to pin down a single truth-value

estimate for each of the H1, ..., Hn, then she ought to adopt a precise prior, a single

probability distribution p over H1, ..., Hn that summarizes E (viz., the prior p that

encodes ‘her’ truth-value estimates).19 If, in contrast, her prior opinions fail to pin

down a single probability distribution p over H1, ..., Hn, then she ought to adopt an

imprecise prior, or a set of a probabilities. In particular, she ought to adopt the set

of probabilities that are (rationally) compatible with her comparative and qualitative

judgments (rationally permissible to adopt given those judgments).

Objective Bayesians, in contrast, endorse methods for constructing priors that do

not depend, in the same way, on the agent’s prior opinions (and inductive quirks,

hunches, etc.). Edwin Jaynes (1957, 1968, 1973), for example, endorses the maximum

entropy method (MaxEnt):
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• Summarize your prior evidence by constraints C1, ..., Cn, which you model by a

set of probability distributions C .

• Adopt the prior p that maximizes entropy H(p)= –
∑

i p(Hi) · log(p(Hi)) on C .

On this view, any researcher who arrives at the same evidential constraints should

proceed in the same manner. She should adopt a precise prior, viz., the probabil-

ity distribution p over H1, ..., Hn that maximizes entropy on the set of probabilities

that satisfy those constraints. See Kass and Wasserman (1996) for an overview of

precise, objective Bayesian approaches to inductive inference. Alternatively, objec-

tive Bayesians might prescribe adopting a particular imprecise prior. Jeffrey (1983)

and Dalkey (1985), for example, propose measures of entropy for imprecise models

(sets of probabilities).20 Imprecise objective Bayesians might prescribe adopting the

maximum entropy imprecise prior consistent with your evidence (viz., C itself).

So different Bayesians prescribe adopting different priors. They agree, nonetheless,

about how inductive inference proceeds once an agent has a prior in hand. They

agree, for example, that our virologist ought to proceed by updating her prior on

her new, experimental data D. If she adopts a precise prior, i.e., a single probability

distribution p over hypotheses H1, ..., Hn (about the relevant protein interaction) that

summarizes her prior evidence E (about how these sorts of interactions work in similar

viruses, etc.), then this involves conditioning p on D, i.e., adopting the posterior

pD(·) = p(·|D). If she adopts an imprecise prior, a set of probabilities S, then this

involves conditioning every p in S on D. She ought to then ‘read off’ her new opinions

about H1, ..., Hn from her posterior. If her prior p is precise, this involves making the

comparative and qualitative judgments that her posterior pD rationally commits her

to making, according to Bayesian orthodoxy:

• She is committed to judging that X is more plausible than Y if pD(X) > pD(Y ).
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• She is committed to judging that D provides positive incremental support for

X if pD(X) > p(X).

• She is committed to judging that action A is preferable to B if the expected

utility of A (from the perspective of pD) is greater than the expected utility of

B (from the perspective of pD).

If her prior S is imprecise, reading new opinions off of her posterior SD involves

making the comparative and qualitative judgments that SD is univocal about, i.e.,

the judgments that all elements of SD commit her to making.

This last bit of orthodoxy — about which comparative and qualitative judgments

a precise prior/posterior commits you to making — though extremely entrenched,

is also extremely implausible. It forces agents to ignore a great deal of information

about the quality of their evidence — in particular, the weight of their evidence —

in inquiry and decision-making. This makes for bad inductive and practical policy in

a wide range of contexts, I will argue.

The reason this matters: this bad bit of orthodoxy generates the preclusion problem.

Fixing this bug, I will argue, reveals how flexible precise priors are. Fixing this

bug shows that precise priors plausibly capture adequate responses to unspecific and

equivocal evidence.

2.2 The Preclusion Problem

2.2.1 The Basic Issue

The question that divides precise and imprecise Bayesians is this: should you in-

variably use a single probability distribution to incorporate your prior information

in inference and decision problems? Or are there circumstances in which imprecise

priors (sets of distributions) are called for? Precise Bayesians say that you should
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invariably adopt a precise prior. Imprecise Bayesians say that there are circumstances

in which imprecise priors are called for.

It may seem obvious that there are circumstances in which imprecise priors are

called for. After all, you might think, the primary theoretical role of priors is just

to represent an agent’s actual prior opinions about the plausibility of hypotheses.

(This is a natural enough subjectivist thought.) And normal researchers’ actual

prior opinions often fail to pin down a single truth-value estimate for each of the

theoretical hypotheses H1, ..., Hn under investigation. Here, for example, are Kyburg

and Pittarelli:

Suppose that the judgments “A is at least as probable as B” and “B or C is

at least as probable as A” are made for mutually exclusive and exhaustive

events A, B, and C. Any of the infinitely many solutions to the system

of linear inequalities

p(A) + p(B) + p(C) = 1

p(A) ≥ p(B)

p(B) + p(C) ≥ p(A)

for example

p(A) = 0.2, p(B) = 0.1, p(C) = 0.7

is compatible with these judgments. If nothing stronger than these com-

parisons is forthcoming, then there is no basis for choosing a single one of

these functions as representative of the probability information. (Kyburg

and Pittarelli 1996, 325)

An agent’s comparative probability judgments � ‘leave open’ any distribution

p that weakly represents them, i.e., is such that Hi � Hj only if p(Hi) ≤ p(Hj)
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(in the sense that p is not impermissible to adopt simply in virtue of her making

judgments �). And, as Kyburg and Pittarelli stress, a normal researcher’s actual

opinions normally ‘leave open’ many distributions. When they do, the imprecise

prior S, which contains all of these ‘open’ distributions p, best represents her actual

prior opinions. If the primary theoretical role of priors is just to represent actual prior

opinions, then she ought to adopt that imprecise prior S.

Alternatively, one might contend that the primary theoretical role of priors is to

represent the opinions about the plausibility of hypotheses that are best supported by

her prior evidence. If this is right, it is no longer obvious that certain circumstances

call for imprecise priors. The mere fact that actual researchers have less than maxi-

mally specific prior opinions (prior opinions that fail to pin down precise truth-value

estimates) no longer settles the dispute. The important question to ask now is: do

certain bodies of prior evidence support less than maximally specific states of opinion?

If so, then some evidential circumstances call for imprecise priors. If not, then not.

Imprecise Bayesians such as Levi (1980), Walley (1991) and Joyce (2005) argue

that certain bodies of evidence do indeed support less than maximally specific states

of opinion. In particular, when your evidence is unspecific and equivocal, your opin-

ions should be unspecific and equivocal too. The upshot: on either account of the

theoretical role of priors, certain circumstances call for imprecise priors. Here, for

example, is Walley:

If there is little evidence concerning [a hypothesis,] then beliefs about [that

hypothesis] should be indeterminate, and probability models imprecise, to

reflect the lack of information. (Walley 1991, 212-3)

And here is Joyce:

...the proper response to symmetrically ambiguous or incomplete evidence
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is not to assign probabilities symmetrically, but to refrain from assigning

precise probabilities at all... Imprecise credences have a clear epistemo-

logical motivation: they are the proper response to unspecific evidence.

(Joyce 2005, 171)

Unspecific evidence regarding a propositionX is evidence that fails to discriminate

X from incompatible alternatives X ′ (Joyce 2005, 167). For example, your evidence

about interest rates R on home equity loans forty years from now might be very

specific with respect to the claim that R will be higher than 15% (it might nearly

rule it out), but be relatively unspecific with respect to the claim that R will be exactly

3% (it might fail to discriminate that claim from competitors, e.g., R = 2.9, R = 3.1,

etc.). Equivocal evidence regarding X is evidence that is open to different readings,

and whose significance for X varies on those different readings (ibid.). For example,

your evidence about whether you will have health problems later in life might be

equivocal if you have some alarming symptoms, but very little information about

the underlying condition causing them (perhaps your symptoms are equally plausible

on a range of hypotheses about their cause). On different suppositions about the

underlying condition, the significance of your current symptoms (and family history,

etc.) shifts; it tells a different story, so to speak, about whether you will have health

problems later in life.

To see why imprecise Bayesians like Walley, Joyce and others hold that unspecific

and equivocal prior evidence calls for imprecision in one’s prior probabilities, consider

a case adapted from Williamson (2010, 116-20). An oncologist prescribes hormonal

treatment T to a breast cancer patient. She performs a test to determine whether the

patient’s tumor is estrogen-receptor-positive (ER+). She also has auxiliary evidence

about R, whether her patient’s breast cancer will recur given T , which includes (i)
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data about the patient’s symptoms, (ii) data from clinical databases about age, tumor

size, survival time, etc. of past patients, (iii) quantitative molecular data on tumor

cells, etc.

Our oncologist has a wealth of prior information relevant to R, much more than

we typically have about other matters: whether it will snow next new year’s eve,

what the price of copper will be twenty years from now, how high/low interest rates

on home equity loans will climb/fall forty years from now. This relatively weighty

evidence might be specific enough to impose the following constraints on any prior

that summarizes it:

• the tumor is at least 9/10-likely to be estrogen-receptor-positive;

• the patient’s cancer is 1/4-likely to recur given that her tumor is estrogen-

receptor-positive (T is a fairly effective treatment for estrogen-receptor-positive

tumors);

• the patient’s cancer is 3/4-likely to recur given that her tumor is estrogen-

receptor-negative (T is much less effective for estrogen-receptor-negative tu-

mors).

If her evidence does impose these constraints, then it plausibly commits her to making

certain comparative and qualitative judgments, e.g., “It is more probable that the pa-

tient’s tumor is estrogen-receptor-positive than it is that there will be an earthquake

in London today.” But, it does not commit her to making certain other judgments.

She is not committed to judging, “ER+ is more probable than drawing a black ball

at random from an urn containing 92 black balls and 8 red balls,” just as you or I am

not committed to judging, “Snow next new year’s eve is more probable than drawing

a black ball at random from an urn containing 43 black balls and 57 red balls.” Even
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weighty, quantitative evidence, such as our oncologist’s, is too unspecific to be this

demanding. Our oncologist’s evidence only commits her to a partial comparative

probability ordering, not a total ordering. An agent’s comparative probability order-

ing � is total if it is a partial order (reflexive, antisymmetric, transitive) and also

satisfies totality : X � Y or Y � X, for all X and Y . In this sense, her less than max-

imally specific evidence at least permits (and perhaps positively requires) less than

maximally specific (merely partial) opinions, or comparative/qualitative judgments.

Suppose, however, that our oncologist adopts some precise prior, in order to incor-

porate her prior information in her inference and decision problem (to help her figure

out what to think about the prospects of sustained remission, whether to prescribe

additional treatments, etc.). Perhaps she adopts the MaxEnt prior, i.e., the prior p

that maximizes entropy on the set S of priors q that satisfy the constraints imposed

by her evidence:

• 9/10 ≤ q(ER+) ≤ 1

• q(R|ER+) = 1/4

• q(R|ER−) = 3/4.

Then her prior probabilities for ER+ and R are p(ER+) = 0.9 and p(R) = 0.3,

respectively. But, according to Bayesian orthodoxy, this means that she is committed

to making exactly the sorts of comparative probability judgments that we claimed she

need not make, given her evidence.

• She must judge that it is definitely less probable that the patient’s tumor is

estrogen-receptor-positive than it is that she will select a black ball if she ran-

domly draws from an urn containing 92 black balls and 8 red balls.
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• She must judge that it is definitely more probable that her patient’s cancer will

recur than it is that she will see 3 heads if she flips a fair coin 7 times.

Something stronger is true, in fact. All precise priors p are such that p(X) ≤ p(Y )

or p(X) ≥ p(Y ), for any X and Y . And since an agent who adopts p is committed

to judging X � Y if p(X) ≤ p(Y ), according to Bayesian orthodoxy, it follows

straightaway that your comparative probability judgments � must form a total order

if you adopt such a prior. That is, you are either committed to judging X � Y or

Y � X, for any X and Y . (Similarly, since the expectation operator Expp totally

orders actions, your preferences must form a total order as well.) But having perfectly

specific opinions — a total comparative probability ordering, total preferences, etc.

— is the wrong way to respond to unspecific and equivocal evidence.

This is why imprecise Bayesians like Walley, Joyce and others hold that unspecific

and equivocal prior evidence calls for imprecision in one’s prior probabilities. If our

oncologist adopts an imprecise prior, in order to incorporate her prior information in

her inference and decision problem, she is not necessarily committed to comparative

and qualitative judgments that all form total orders. Suppose, for example, that she

adopts the set S of distributions that satisfy the constraints imposed by her evidence.

The marginally unspecific nature of her prior evidence for R (the proposition that her

patient’s breast cancer will recur) is reflected in the spread {p(R)|p ∈ S} = [0.25, 0.3],

on the imprecise Bayesian view. The greater this spread, typically, the fewer com-

parative and qualitative judgments she will be committed to making with respect to

R. For example, if all p in S agree that the probability of observing 3 heads on 7

independent flips of a fair coin is 0.273 (p(3H) = 0.273), and some p in S say that

the probability of the patient’s cancer recurring is 0.25 (p(R) = 0.25), while other

p′ in S say that the probability is 0.3 (p(R) = 0.3) — and of course there are such
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p and p′ in S — then our oncologist is neither committed to judging R � 3H nor

3H � R (according to Bayesian orthodoxy). She is only committed to making the

comparative and qualitative judgments that S is univocal about, i.e., the judgments

that all elements of S commit her to making.

The moral: agents who adopt imprecise priors are typically committed to merely

partial comparative probability judgments, comparative preferability judgments, judg-

ments of incremental support, etc. They are permitted to abstain from judgment on

various issues. In this way, imprecise priors allow for genuinely unspecific and equiv-

ocal opinions.

2.2.2 Adopting a Prior vs. Being Representable by a Prior

The remainder of this chapter is devoted to demonstrating just how flexible precise

priors are. Agents who adopt precise priors are typically committed to merely partial

comparative and qualitative judgments, I claim. They are permitted to abstain from

judgment on various issues. Precise priors are flexible enough, then, to allow for

genuinely unspecific and equivocal opinions.

We ought to address one concern now, though, at the outset. One might worry

that it betrays a rather basic confusion to suggest that a precise prior could allow for

a merely partial comparative probability ordering. The reason: to count as adopt-

ing a precise prior, one must already have a total comparative probability ordering.

Adopting a precise prior is just equivalent, one might suggest, to having a comparative

probability ordering that is rich enough to pin down a single truth-value estimate for

each of the theoretical hypotheses under investigation H1, ..., Hn. Scott (1964) shows

us just what this ‘richness’ amounts to. A comparative probability ordering � is

representable by a unique probability distribution p, in the sense that X � Y only if

p(X) ≤ p(Y ), if and only if � satisfies Scott’s axiom:
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Scott’s Axiom. If 〈X1, ..., Xn〉 and 〈Y1, ..., Yn〉 contain the same number of

truths as a matter of logic, so that
∑

iw(Xi) =
∑

iw(Yi) for any world

w, then it is not true that Xi � Yi for all i while Xj ≺ Yj for some j.

and, in addition, satisfies two other structural axioms: totality and non-atomicity (cf.

Scott 1964, p. 246; Joyce 2010, p. 285).21 The upshot: any comparative probability

ordering that is ‘rich enough’ to pin down a single truth-value estimate for each of

H1, ..., Hn must already be total. It is nonsense, then, to suggest that an agent should

adopt a precise prior, in order to incorporate her prior information in her inference or

decision problem, and yet is not rationally required to have total comparative beliefs.

This worry runs together two distinct notions: having or being representable by a

probability distribution p over hypotheses H1, ..., Hn, on the one hand, and adopting

p as one’s prior, on the other hand. Distinguishing these notions resolves our objec-

tor’s worry. Having or being representable by a probability distribution p over

theoretical hypotheses is a matter of having opinions (making comparative and quali-

tative doxastic judgments) that rationally commit you to estimating truth-values via

p.22 Adopting a distribution p over theoretical hypotheses as one’s prior, in contrast,

is a matter of making the comparative and qualitative judgments that p rationally

commits you to making, of allowing p to guide your inferential practices and decision-

making, in this sense. Importantly, the comparative/qualitative judgments that a

distribution commits you to making differ significantly from the judgments that

commit you to estimating truth-values via that distribution (or so I will argue). It is

perfectly possible for the former to be merely partial while the latter are total.

Richard Jeffrey (1987, p. 589) illustrates the distinction when, discussing the

Ellsberg paradox (cf. §5). He says, “I think you do well to find a definite probability

function to express your uncertainty, if you can... in the Ellsberg problems (were I ever
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to face them) I think I would try to express my uncertainty via a single probability

assignment — the uniform one, I imagine. If so, I differ from [Mark] Kaplan, who

would see my adoption of the uniform distribution as unjustifiable precision, whereas

I think I would adopt it as a precise characterization of my uncertainty” (emphasis

mine). Jeffrey’s point, of course, is not that you would do well to make some set of

total, non-atomic, Scott’s-axiom-satisfying comparative probability judgments, which

commit you to estimating truth-values via some single probability assignment. “We

humans are not capable of adopting opinions gratuitously, even if we cared to do

so” (Jeffrey 1983, 145). The point, rather, is just that you would do well to use

some probability assignment to facilitate decision-making in the Ellsberg problem,

by making the qualitative and comparative judgments (judgments of comparative

preferability, in this case) that it commits you to making (in a limited domain).

Adopting a precise prior is a common practice too. Objective Bayesian statis-

ticians will attest that using MaxEnt to facilitate inquiry in computational biology,

computer vision, or natural language processing (just a few of the areas where Max-

Ent has proved enormously useful) does not require making an incredibly rich set of

comparative and qualitative judgments. It only requires using the MaxEnt prior to

guide your inferential practices and decision-making, by making the judgments that

it commits you to making (in a limited domain).

Once we distinguish the notions of having or being representable by a probability

distribution p over theoretical hypotheses, on the one hand, and adopting p as one’s

prior, on the other hand, our objector’s worry dissolves. It is not confused to suggest

that a researcher could (and perhaps should) adopt a precise prior, in order to incor-

porate her prior information in her inference or decision problem, despite not being

representable by a precise prior. Neither is it confused to suggest that this researcher

might not be rationally required to make comparative probability judgments that
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form a total order, as a result of adopting such a prior.

2.3 Rational Commitment

According to Bayesian orthodoxy, an agent who adopts a precise prior p is committed

to making the following comparative judgments:

• She is committed to judging that X is more probable than Y if p(X) > p(Y ).

• She is committed to judging that data D provides positive incremental support

for H if pD(H) > p(H).

• She is committed to judging that action A is preferable to B if the expected

utility of A (from the perspective of p) is greater than the expected utility of B

(from the perspective of p).

This bit of orthodoxy is implausible, however. To show this, I will first identify some

pro tanto reason to expect it to be false (in §2.3-2.5). I will then turn to the main

argument argument against it (in §2.6-2.8).

We ought to expect the orthodoxy about rational commitment to be false because

it directs agents to ignore a great deal of information about the quality of their

evidence — in particular, the weight of their evidence — when making comparative

and qualitative judgments, judgments which not only have epistemic value in their

own right, plausibly, but also structure subsequent inquiry, and so have downstream

epistemic consequences. Reasonable agents, however, take all information about the

quality of their evidence into account for these purposes.

To see this, note that according to orthodoxy, whether p carries a commitment to

judging X � Y (that X is more plausible than Y ) depends exclusively on p(X) and

p(Y ). These probabilities, however, are merely the first moments of certain marginal
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distributions (they are expected values, viz., the expected objective probabilities of X

and Y , respectively); p(X) =
∑

i p(X|Hi) · p(Hi) =
∑

x x · p(QX = x), where QX = x

if and only if some theoretical hypothesis Hi with p(X|Hi) = x is true. (When

considering uncountably many theoretical hypotheses, p(X) =
∫ 1

0
x · fQX

(x)dx, where

fQX
is the density that defines the marginal distribution of QX .) And the higher

moments of these distributions (variance, skewness, etc.) plausibly reflect important

information about the quality of one’s evidence (in particular, the weight of one’s

evidence) for X and Y .

Figure 2.1: fQX
and fQY

, as well as their means,

p(X) and p(Y ).

Similarly, whether p carries a

commitment to judging that data

D provides incremental support for

X depends exclusively on p(X)

and p(X|D), according to the or-

thodox account. These probabili-

ties, however, are merely the first

moments of certain marginal dis-

tributions; p(X) =
∑

i p(X|Hi) ·

p(Hi) =
∑

x x · p(QX=x) and

pD(X) =
∑

i pD(X|Hi) · pD(Hi) =∑
x x · pD(VX = x), where VX = x if and only if some theoretical hypothesis Hi with

pD(X|Hi) = x is true.23 Again, the higher moments of these distributions plausibly

reflect important information about the quality (weight) of the evidence for X (before

and after learning D).

Finally, whether p carries a commitment to judging that A is preferable to B

depends exclusively on Expp(A) and Expp(B), according to orthodoxy. These expec-

tations, once more, are merely the first moments of certain marginal distributions;
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they are the (evidential, let’s suppose) expected utilities of A and B, respectively.

Expp(A) =
∑

w u(w) · pA(w) =
∑

x x · pA(u = x).24 The higher moments of these

distributions might reflect important information about the quality of one’s evidence

that A and B will produce good outcomes.

The general theme is this: for each type of comparative judgment JX,Y between

X and Y , the orthodox account of rational commitment says that there are certain

marginal distributions, f and f ′, that encode the information relevant for determining

whether p commits its bearer to making the judgment JX,Y . Moreover, that informa-

tion is encoded in a specific ‘spot’, so to speak, in f and f ′. It is encoded locally, we

might say, in the mean, or first moment of f and f ′, respectively. It is not encoded

globally, across all of the moments of f and f ′ (mean, variance, skewness, etc.). Call

this the locality thesis.

We ought to expect the locality thesis to be false. Information about the quality

of one’s evidence — in particular, the weight of one’s evidence — for X and Y , is

distributed across all of the moments of f and f ′ (mean, variance, skewness, etc.),

as we will see in §4. And such information is plausibly relevant for determining

whether and which comparative/qualitative judgments you are rationally committed

to making, in virtue of adopting p, as we will see in §2.5 and §2.6.

2.4 How Probabilities Reflect Weight

The weight of an agent’s total evidence for a proposition is a matter of “how much

relevant information the data contains, irrespective of which way it points” (Joyce

2005, 159). Keynes introduces the notion of weight as follows:

As the relevant evidence at our disposal increases, the magnitude of the

probability of the argument may either decrease or increase, according as
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the new knowledge strengthens the unfavourable or the favourable evi-

dence; but something seems to have increased in either case, — we have

a more substantial basis upon which to rest our conclusion. I express this

by saying that an accession of new evidence increases the weight of an

argument. New evidence will sometimes decrease the probability of an

argument, but it will always increase its ‘weight’. (Keynes 1921, 77)

To illustrate, consider Popper’s paradox of ideal evidence (Popper 1959, 425-7).

A bookie hands you a coin and offers you a bet. You have no prior evidence about

Figure 2.2: u and uD.

the coin’s bias. Before you decide

what to do, the bookie hits you

over the head and knocks you out.

When you come to, she reports

that she flipped it 1000 times, and

that it came up heads 500 ± 20

times. To take account of your

prior information (viz., none) in

your decision problem, you decide

to adopt the maximum entropy

prior u over hypotheses B = x about the coin’s bias. You then condition u on

your new data D.

After you receive your new data, you have weightier evidence about whether the

coin will come up heads on its next flip (and so weightier evidence about whether you

will make or lose money if you take the bookie’s bet). You have a “more substantial

basis upon which to rest [your] conclusion,” as Keynes says. But this is not reflected

in your probability for H (the proposition that the coin will come up heads on the
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next flip). Both your prior u(H) and posterior probability uD(H) equal 1/2 (right).25

Richard Jeffrey notes that while u and uD assign the same probability to H, they

nonetheless “assign different values to any proposition A(n) that asserts, concerning

n ≥ 2 distinct tosses, that all of them yield heads” (Jeffrey 1965, 184). For example,

u(A(6)) = 1/7 ≈ 0.143 and uD(A(6)) ≈ 0.016 ≈ 1/26. The reason: uD is much more

resilient than u, much more steadfast in the face of new data. This is reflected in the

fact that uD(H|X) is close to uD(H) for a wide range of potential new data items

X. For example, suppose that you are going to flip the coin 6 times. Let Hi be the

proposition that it comes up heads on the ith toss. Then we have uD(H1) = 1/2,

uD(H2|H1) ≈ 1/2, uD(H3|H1&H2) ≈ 1/2, etc. UD is resilient; conditioning on new

data — H1, H1&H2, H1&H2&H3, etc. — does not alter the probability of observing

a heads on the next flip very much. That is why uD(A(6)) = uD(H1&...&H6) =

uD(H1) · uD(H2|H1) · uD(H3|H1&H2) · ... · uD(H6|H1&...&H5) ≈ 1/26.

Skyrms sums up Jeffrey’s view as follows: “In a word, the ideal evidence” — ex-

tremely weighty evidence — “has changed not the probability of tails on toss a, but

rather the resiliency of the probability of tails on toss a” (Skyrms 1977, 707). The

characteristic effect of weighty evidence is to render one’s posterior resilient with re-

spect to new data. This is a matter of stabilizing its conditional probabilities (making

uD(H|X) close to uD(H) for a wide range of X). The important point to note, for

our purposes, is that while u’s unconditional probability for H depends exclusively

on its first moment (mean) — u(H)=
∫ 1

0
x·f(B=x)dx=

∫ 1

0
xdx=1/2 — its conditional

probabilities are a function of all of its moments (mean, variance, skewness, etc.).

To see this, compare the probability that u assigns to H conditional on D with the

probability that lower/higher variance beta priors assign (pictured left, next page),

for a range of data sequences D:
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Table 2.1: Conditional probabilities across priors of decreasing variance.

u: α = β = 1
mean: 0.5
variance: 0.83

b: α = β = 0.5
mean: 0.5
variance: 0.125

b∗: α = β = 10
mean: 0.5
variance: 0.01

D = H7T 3 uD(H) = 0.667 bD(H) = 0.682 b∗D(H) = 0.567
D = H5T 20 uD(H) = 0.222 bD(H) = 0.212 b∗D(H) = 0.333
D = H1T 49 uD(H) = 0.038 bD(H) = 0.029 b∗D(H) = 0.157

Figure 2.3: u, b and b∗.

The probability of H conditional on D

varies as you move from u to b to b∗,

despite the fact that the first moment

(mean) of each distribution is the same

(=0.5). How resilient these priors are

with respect to data sequences D, then,

depends not just on their first moments

(means), but on their higher moments

as well (variance, etc.). This means that

higher moments encode information about the weight of one’s evidence, on Jeffrey’s

view.

Joyce (2005) suggests that the characteristic effect of weight is somewhat different.

Weighty evidence for H tends to cause a prior p’s probabilities to “concentrate more

and more heavily on increasingly smaller subsets of chance hypotheses” (Joyce 2005,

167). On Joyce’s picture, this effect is measured roughly by how small the following

quantity is, across potential data sequences D:

wp(H,D) =
∫ 1

0
|f(B = x) · (x− p(H))2 − fD(B = x) · (x− pD(H))2|dx

(where f is the density that defines p). Importantly, f(B = x)·(x−p(H))2 tends to be

small if p concentrates probability on a small, connected subset of chance hypotheses
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(hypotheses about the coin’s bias, B = x). The reason: f(B = x) is quite small when

(x − p(H))2 is large; (x − p(H))2 is quite small when f(B = x) is large. Similarly,

fD(B = x) · (x − pD(H))2 tends to be small too. The upshot: wp(H,D) is close to

zero, for a wide range of data D.

The important point to note, for our purposes, is that wp(H,D) is a function of

p’s higher moments. To illustrate this, compare the values that this quantity takes

relative to the uniform prior u, as opposed to lower/higher variance beta priors b and

b∗, across a range of data sequences D:

Table 2.2: Joyce’s measure of weight across priors of decreasing variance.

u: α = β = 1
mean: 0.5
variance: 0.83

b: α = β = 0.5
mean: 0.5
variance: 0.125

b∗: α = β = 10
mean: 0.5
variance: 0.01

D = H7T 3 wu(H,D) = 0.078 wb(H,D) = 0.121 wb∗(H,D) = 0.007
D = H5T 20 wu(H,D) = 0.079 wb(H,D) = 0.121 wb∗(H,D) = 0.011
D = H1T 49 wu(H,D) = 0.083 wb(H,D) = 0.125 wb∗(H,D) = 0.012

Figure 2.4: A sequence of mean-

preserving spreads.

Joyce’s quantity w(H,D) varies as you

move from u to b to b∗, despite the fact that

the first moment (mean) of each distribu-

tion is the same (=1/2). The value of this

quantity depends not just on the first mo-

ments (means) of the respective priors, but

on their higher moments as well (variance,

etc.). This means that higher moments en-

code information about the weight of one’s

evidence on Joyce’s view as well.

There are various other accounts of how prior (and posterior) probabilities reflect

the weight of evidence. You might, for example, eschew quantitative measures of
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weight altogether. Instead, you might borrow something like the notion of a mean-

preserving spread from Machina and Rothschild (1990). Machina and Rothschild

introduce the notion as follows (1990, p. 233):

Intuitively, such a spread consists of moving probability mass from the

centre of a probability distribution to its tails in a manner which preserves

the expected value of the distribution.

You might then suggest that a prior p reflects weightier evidence for X than p′ if

p′’s marginal for X is a mean-preserving spread of p’s. If this is right, then again,

higher moments (variance, skewness, etc.) encode information about the weight of

one’s evidence.

Whether or not any one of these proposals is fully adequate is beside the point.

The point is just this: on any plausible account of how priors p reflect the weight of

one’s evidence — Jeffrey’s, Joyce’s, or some alternative account — information about

weight is not encoded ‘locally’, exclusively in p’s first moment (mean). It encoded

‘globally’, across all of p’s moments (mean, variance, skewness, etc.).

2.5 Decision-Making and the Weight of Evidence

Gärdenfors and Sahlin (1982, pp. 361-2) consider a case much like the following,

in order to illustrate the importance of the weight of one’s evidence for determining

which practical (comparative preferability) judgments she is committed to making.

Julie sits down to watch a tennis match between players 1 and 2. The players are

to play a fixed number N of games. At the outset, Julie has no information about

players 1 and 2 (does not know their strengths and weaknesses, their track records

against similar opponents, their present physical conditions, etc.). Her friend sits

down and offers her a bet B. B costs $45. But it pays out $100x, where x is the
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Figure 2.5: Prior distribution over

chance hypotheses ch(W1 = x) = y.

proportion of the N games that player 1

wins. So, if player 1 wins every game, B

pays out $100. If player 1 wins half of the

games, B pays out $50. If player 1 wins 1/4

of the games, B pays out $25, and so on.

Julie adopts some prior distribution p

over hypotheses ch(W1 = x) = y about the

chance that player 1 will win a certain pro-

portion x of the games, to take account of

her prior evidence (none) about player 1’s prospects for winning, for the purposes

of decision-making. She makes whatever judgment p (together with her desires u)

Figure 2.6: Prior distribution p over

utility hypotheses u = x conditional

on B.

commits her to making and chooses accord-

ingly. Suppose, for concreteness, that p is

the MaxEnt prior, that u($k) = k, and that

N = 18 (they are going to play 3 6-game sets).

So, for each x, her distribution over chance

hypotheses ch(W1 = x) = y is given by the

density fx(y) = 19e−19y (left), her prior prob-

ability for W1 = x is p(W1 = x) =
∫ 1

0
y ·

fx(y)dy = 1/19, and her expected utilities

for accepting and declining, respectively, are

Expp(Accept B) =
∑18

i=0 p(W1 = i/18) · ((100i/18)− 45) = 5 and Expp(Reject B) = 0.

The upshot: accepting B is, according to her best estimate, preferable to the status

quo. So she accepts.

Julie then acquires new data D. She watches players 1 and 2 for an entire day,

and learns a great deal about their strengths and weaknesses, etc. She learns that
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Figure 2.7: Prior and posterior distribu-

tions over utility hypotheses u = x condi-

tional on B.

while player 1 has an excellent service

game, player 2 has an excellent return

game. While player 2 is very effective at

the net, player 1 has a very effective pass-

ing shot. They are very evenly matched.

The next day, she sits down to watch an-

other match. Her friend offers her bet B

again. In order to incorporate her new

data in her decision problem, Julie con-

ditions p on D. The result: pD is nearly

certain that players 1 and 2 have an even

chance of winning each game; pD concentrates probability largely on ch(W1 = x) = 1

if x ≈ 1/2 and largely on ch(W1 = x) = 0 if x 6≈ 1/2. This causes pD to concentrate

probability around W1 = 1/2, which in turn causes pD to concentrate probability

around on U=5.

Importantly, none of this is reflected in the expected utility of B (just as in Pop-

per’s paradox of ideal evidence). Julie’s prior expected utility for accepting bet B

is Expp(Accept B) =
∑18

i=0(1/19) · ((100i/18) − 45) = 5. Julie’s posterior expected

utility is:

ExppD
(Accept B) ≈

18∑
i=0

 18

i

 (1/2)18((100i/18)− 45) = 5.

So Julie’s best estimate of B’s utility remains unchanged (despite the fact that she

has much weightier evidence undergirding that estimate). According to Bayesian

orthodoxy, then, Julie ought to take bet B on day 2, after acquiring a wealth of new

data, if and only if she takes it on day 1, when she knows next to nothing about the
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players. “It seems, however, perfectly rational,” Gärdenfors and Sahlin say, “if... Julie

decides to bet on [the second day’s match], but not on [the first]” (Gärdenfors and

Sahlin 1982, 362).

The lesson of cases like this, Gärdenfors and Sahlin posit, is that “the amount and

quality of information which the decision maker has concerning the possible states

and outcomes of the decision situation in many cases is an important factor when

making the decision” (Gärdenfors and Sahlin 1982, 362). Information about the

amount or weight of one’s evidence that an action/bet will produce good outcomes

is not, however, reflected in that action/bet’s expected utility. Julie’s expectations

remain constant as the weight of her evidence varies. If this is right, then locality is

wrong. Whether or not Julie is committed to judging Accept B preferable to Reject

B depends on more than just Expp(Accept B) and Expp(Reject B). It depends on

whatever ‘global’ properties of her prior encode information about the weight of her

evidence.

The Gärdenfors and Sahlin case provides pro tanto reason to expect locality to

be false (though certainly not conclusive reason; for an orthodox Bayesian response,

see Broome 1991, ch. 5). The Ellsberg paradox seems to provide similar reason. In

the Ellsberg paradox (1961, pp. 653-5), a friend offers you two pairs of bets, A/A∗

and B/B∗, on a random draw from an urn containing 90 balls. You know that 30

balls are yellow, and that the other 60 are either red or black. But you have no prior

information about the proportion of red to black. The bets pay out as follows:

Yellow Red Black
A $100 $0 $0
A∗ $0 $100 $0
B $100 $0 $100
B∗ $0 $100 $100

Table 2.3: Ellsberg problem payoff table.
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Many prima facie reasonable agents prefer A to A∗ and B∗ to B (Ellsberg 1961, 669).

This pattern of preferences, however, violates Savage’s Sure-Thing Principle. The

Sure-Thing Principle says that when you evaluate two options, you ought to ignore

alternatives in which they produce the same outcome. So you ought to prefer A to

A∗ if and only if you prefer B to B∗. According to Bayesian orthodoxy, however, any

precise prior commits you to preferences that satisfy the Sure-Thing Principle.

The lesson, Ellsberg imagines a respondent saying, is not that there is anything

wrong with adopting a precise prior, or that there is anything wrong with the pattern

of preferences. Rather, the lesson is this:

...having exploited knowledge, guess, rumor, assumption, advice, to arrive

at a final judgment [precise prior probabilities for the events on which

the utility of one’s alternative actions depends]... one can still stand back

from this process and ask: “How much, in the end, is all this worth? How

much do I really know about the problem? How firm a basis for choice,

for appropriate decision and action, do I have?” (Ellsberg 1961, 659-60).

And when the answers to these questions are, “It’s not worth much,” or “I don’t know

very much,” or “I don’t have a very firm basis for choice, for appropriate decision

and action,” rationality might not demand very much from you (Ellsberg 1961, 660).

You may not be rationally committed to aligning your preferences with your best

estimates of utility. Instead, you may be permitted to “search for additional grounds

for choice,” such as an action’s ‘security level’ (its minimum expected utility relative

to the priors not ruled out by your evidence; Ellsberg 1961, 662).

The Ellsberg case provides additional pro tanto reason to expect locality to be false

(though still not conclusive reason). It seems to highlight the fact that information

about the weight of one’s evidence is relevant for determining whether or not you are
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rationally committed to judging one action preferable to another. But, information

about the weight of one’s evidence that an action/bet will produce good outcomes is

not reflected in that action/bet’s expected utility. Again, if this is right, then locality

is wrong. Rational commitments (to make comparative preferability judgments, and

perhaps also other qualitative/comparative judgments, e.g., comparative probability

judgments) supervene on whatever ‘global’ properties of priors happen to encode

information about the weight of one’s evidence.

2.6 Rejecting Locality

2.6.1 The Main Argument

Bayesian orthodoxy about rational commitment is one example (the most plausible

example) of a ‘local’ account of rational commitment. Local accounts say that for

any type of comparative judgment JX,Y between X and Y , there are certain marginal

distributions, f and f ′, that encode the information relevant for determining whether

p commits its bearer to making the judgment JX,Y . Moreover, that information is en-

coded locally, in the mean, or first moment of f and f ′, respectively. Local accounts

of rational commitment, however, are implausible. So far, we have examined only

pro tanto reason to think this. In a nutshell, the reason is: locality renders ratio-

nal commitments insensitive to those features of priors (and posteriors) that encode

information about weight (the higher moments of f and f ′). But, the Gärdenfors

and Sahlin case, as well as the Ellsberg case, seem to suggest that this information

is important for determining whether and which comparative/qualitative judgments

you are committed to making.

The more definitive reason to reject the orthodox account of rational commitment

(and any other local account) is this:
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1. The orthodox account of rational commitment yields a particular inductive

policy I , or plan for making comparative and qualitative judgments in response

to new data.

2. No plausible account of rational commitment R yields an inductive policy I

that is strongly dominated by another policy I ∗, in the sense that (i) for any

prior p and context C, I ∗’s expected epistemic utility in C, relative to p, is at

least as great as I ’s, and (ii) for some prior p′ and context C ′, I ∗’s expected

epistemic utility in C ′, relative to p′, is strictly greater than I ’s.

3. The orthodox policy I is strongly dominated by another policy I ∗. (In fact,

any local policy is strongly dominated by I ∗.)

C The orthodox account of rational commitment is implausible.

Section 2.6 defends premise 2. Sections 2.7-2.8 defend premise 3.

2.6.2 Expected Epistemic Utility of Inductive Policies

Every account of rational commitment R corresponds to an inductive policy of the

following form: an agent who adopts a prior p in context C and receives new data D

should make exactly the comparative and qualitative judgments that pD commits her

to making in C, according to R (no more, no less). For example, the orthodox account

corresponds to the following policies for making comparative probability judgments

and judgments of incremental support, respectively:

I�(p, C,D,X, Y ) =

 X � Y if pD(X) > pD(Y )

X � Y otherwise
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• In words: if you adopt prior p in context C and receive new data D, judge that

X is more probable than Y if pD(X) is greater than pD(Y ); judge that X is no

more probable than Y otherwise.

IConfirmation(p, C,D,H) =


D incrementally confirms H if pD(H) > p(H)

D incrementally disconfirms H if pD(H) < p(H)

D is irrelevant to H otherwise

• In words: if you adopt prior p in context C, judge that new data D provides

positive (negative) incremental support for H if pD(H) is greater (less) than

p(H); judge that D is irrelevant otherwise.

Inductive policies have epistemic consequences, and so are evaluable in terms

of expected epistemic utility. Consider, for example, a policy IAccept for accept-

ing/rejecting theoretical hypotheses. Imagine that a doctor orders a test, in order to

adjudicate between hypotheses about the disorder underlying a patient’s symptoms

(blindness in her left eye, perhaps). On the basis of her data, the doctor accepts

hypothesis H (that her patient has an autoimmune disorder) while rejecting H ′ (that

she has a viral infection), in accordance with IAccept. Typically, then, she will order

certain kinds of follow-up tests. And these tests will put her in a better or worse

position vis-á-vis securing epistemically valuable opinions regarding the patient’s ex-

act disorder (multiple sclerosis, lupus, etc.) and related issues (which treatment will

be most effective). The epistemic value or utility of a state of opinion somehow

summarizes all of its epistemically laudable qualities: accuracy, explanatory power,

simplicity, and more. As Joyce (2009) notes, accuracy — which is a matter of how

close the state of opinion is to the truth — is central to the notion of epistemic value.

“Accuracy is the one epistemic value about which there can be no serious dispute: it
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must be reflected in any plausible epistemic scoring rule,” or epistemic utility function

(Joyce 2009, 267).26

States of acceptance or rejection are plausibly evaluable directly in terms of epis-

temic utility (not simply indirectly, in terms of the downstream effects that they have

on different types of opinions). Take, for example, a naïve, but illustrative version of

a more sophisticated proposal from Briggs et al. (2013). An agent either accepts or

rejects some hypotheses H1, ..., Hn. We represent her acceptance/rejection state by a

sequence s of 0s and 1s (‘0’ for reject, ‘1’ for accept). Then we can measure the inac-

curacy of her acceptance/rejection state via the Hamming distance d(s, s′) between

this sequence s and the ‘perfectly vindicated’ sequence s′ (the sequence of 0s and 1s

that give the truth-values of H1, ..., Hn). This amounts to measuring inaccuracy by

counting up the number of mistakes she makes (where she makes a mistake by either

accepting a false hypothesis or rejecting a true hypothesis).27 In contexts in which

accuracy is paramount, then, d(s, s′) gives a rough measure of the epistemic utility

of her acceptance/rejection state.

Given that acceptance/rejection states have epistemic utility scores relative to dif-

ferent worlds (and contexts, perhaps), different policies for accepting/rejecting theo-

retical hypotheses will have different expected epistemic utilities. If an agent adopts

some prior p over theoretical hypotheses H1, ..., Hn in some context C, the expected

epistemic utility of a policy I for accepting/rejecting those hypotheses is:

Expp(eu(I )) =
∑

i

∑
j p(Hi&Dj) · eu(I (p,Dj), Hi)

=
∑

i p(Hi)
∑

j p(Dj|Hi) · eu(I (p,Dj), Hi)

where I (p,Dj) is the set of acceptance/rejection judgments that I advises our

agent to make if she receives new data Dj in context C, and eu(I (p,Dj), Hi) is the

epistemic utility of making those judgments in C given that Hi is true.28 Imagine,
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for example, that a researcher adopts the uniform prior p over competing theoretical

hypotheses, H and H ′, so that p(H) = p(H ′) = 1/2. She performs an experiment

to adjudicate between H and H ′, which can yield one of two data items, D and D′.

The objective probabilities for receiving any datum are given by: p(D|H) = 0.7,

p(D′|H) = 0.3, p(D|H ′) = 0.3 and p(D′|H ′) = 0.7. Finally, the epistemic utility of

accepting (rejecting) when H is true (false) is as follows, let’s suppose:

Table 2.4: Epistemic payoff of accepting/rejecting/abstaining.

H true H ′ true
Accept H & Reject H ′ 1 −5
Accept H ′ & Reject H −5 1
Abstain from judgment −0.5 −0.5

Then the expected epistemic utility of the most sensible ‘total’ policy I , which says

accept H/reject H ′ if you receive D, and accept H ′/reject H if you receive D′, is

Expp(eu(I )) = (0.7) · (1) + (0.3) · (−5) = −0.8. (So, it turns out, the most sensible

total policy is not very sensible at all. Abstaining come what may has higher expected

epistemic utility, relative to p.)

Other sorts of comparative and qualitative judgments have epistemic consequences

as well. Consider comparative probability judgments, for example, which will be our

focus from here on out. Suppose that a doctor orders a test, in order to adjudicate be-

tween hypotheses about a patient’s disorder. On the basis of her data, she judges that

X is more probable than Y (e.g., that significant optic nerve demyelination/vision

loss is more probable than minor demyelination/vision loss). Typically, this will af-

fect how she structures subsequent inquiry. Perhaps she will not order the exact same

suite of follow-up tests that she would if she outright accepted X and rejected Y . Still,

she will likely focus her inquiry by ordering more tests aimed at probing hypotheses

that render X probable, and fewer tests aimed at probing hypotheses that render Y
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probable (e.g., by ordering a lumbar puncture, which tests for autoimmune diseases,

rather than blood work which tests for viral infections). This will put her in a better

or worse position vis-á-vis arriving at valuable (accurate, etc.) opinions regarding

the patient’s exact disorder (multiple sclerosis, lupus, etc.) and related issues (which

treatment will be most effective).

Comparative probability judgments are plausibly evaluable directly in terms of

epistemic utility as well (not simply indirectly, in terms of their downstream epistemic

effects). Here, for example, is a naïve version of a proposal from Fitelson (2013), which

is similar in many respects to that of Briggs et al. (2013). An agent makes various

comparative probability judgments between hypotheses H1, ..., Hn. We represent her

H1 ... Hn

H1 1 ... 0
...

...
...

...

Hn 1 ... 1

Figure 2.8: Adja-

cency matrix repre-

senting �.

comparative probability ordering � by an adjacency matrix

m; ‘1’ at the 〈Hi, Hj〉 node of the matrix indicates that she

judges Hi � Hj and ‘0’ indicates that she does not. Then

we can measure the inaccuracy of her comparative probability

ordering via the Kemeny distance d(m,m′) (analog of Hamming

distance for adjacency matrices) between this matrix m and

the ‘perfectly vindicated’ matrix m′, which has a ‘0’ at the

〈Hi, Hj〉 node of the matrix if Hi is true and Hj false, and a ‘1’

otherwise. This amounts to measuring inaccuracy by counting

up the number of mistakes she makes (where she makes a mistake if she judges

Hi � Hj with Hi true/Hj false, or fails to judge Hi � Hj in any other case). In

contexts in which accuracy is paramount, then, d(m,m′) gives a rough measure of

the epistemic utility of her comparative probability ordering. (In chapter 3, I discuss

a way of measuring the epistemic value of imprecise credal states, which provides

an alternative approach to measuring the epistemic value of comparative probability

orderings.)

75



Given that comparative probability orderings have epistemic utility scores relative

to different worlds (and contexts), different policies for making comparative probabil-

ity judgments will have different expected epistemic utilities. Suppose, for example,

that we make a simplifying assumption of the following sort: the epistemic utility of

judging X more probable than Y is given by:

Table 2.5: Epistemic payoff of judging X � Y , or abstaining.

X&Y X&¬Y ¬X&Y ¬X&¬Y
X � Y eu1 eu2 eu3 eu4

Abstain from judgment eu5 eu5 eu5 eu5

or perhaps:

Table 2.6: Epistemic payoff of judging X � Y , or abstaining.

ch(X) ≤ ch(Y ) ch(X) > ch(Y )
X � Y eu∗1 eu∗3

Abstain from judgment eu∗2 eu∗2

with eu∗1 > eu∗2 > eu∗3. It does not matter much which simplifying assumption we

make. The results that we obtain in §2.7-2.8 are fairly robust. But it will be helpful

to have some numbers to work with. I will opt for the latter, simpler assumption.

In contexts in which the epistemic utilities are as described in table 2.6, the

orthodox inductive policy I for making comparative probability judgments, namely:

I (p,D) =

 X � Y if pD(X) > pD(Y )

X � Y otherwise

will typically have lower expected epistemic utility than various other policies I ∗,

from the perspective of a range of different priors (mutatis mutandis for any other

‘local’ policy).

To illustrate, suppose that a bookie hands you a coin and offers you a bet. You

have no prior evidence about the coin’s bias. But the bookie allows you to flip the coin
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for awhile — 25 times, for example — prior to deciding whether or not to take the

bet. To take account of your prior information (viz., none) in your decision problem,

you decide to adopt the maximum entropy prior u over hypotheses B = x about the

coin’s bias. Then the expected epistemic utility of I from the perspective of u is:

Expu(eu(I )) =
∫ 1

0

25∑
k=0

 25

k

 · xk · (1− x)25−k · eu(I (u,HkT 25−k), B = x)dx

where D = HkT 25−k is any sequence of k heads and 25-k tails.29 For concreteness,

suppose that the epistemic utilities are given by the following table (see the appendix

for discussion of this particular assignment of epistemic utilities):

Table 2.7: Epistemic payoff of judging Heads � Tails, Heads � Tails, or abstaining.

ch(Heads) ≤ ch(Tails) ch(Heads) > ch(Tails)
Heads � Tails 1 −5
Heads � Tails −5 1

Abstain from judgment −0.5 −0.5

Then the expected epistemic utility of I is Expu(eu(I )) = 0.535057. Now note

that I prescribes judging that heads on the next toss is more probable than tails

whenever k ≥ 13 (whenever you flip more heads than tails on your first 25 tosses), and

prescribes judging the opposite — that tails is more probable than heads — whenever

k < 13. Compare I with the policy I ∗ that prescribes (i) judging that heads is more

probable than tails if k ≥ 15, (ii) abstaining from judgment if 11 ≤ k ≤ 14, and (iii)

judging that tails is more probable than heads if k ≤ 10. One might expect I ∗

to have a higher expected epistemic utility than I , since it directs you to ‘hedge

your epistemic bets’ by abstaining from judgment when there’s significant risk (from

u’s perspective) of making a judgment with deleterious epistemic consequences. And

indeed Expu(eu(I ∗)) = 0.627876.
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This is the first step in seeing that the orthodox policy I is strongly dominated

by another policy. If some other policy both (i) weakly dominates I (has at least as

great an expected epistemic utility in every context, relative to every prior), and (ii)

yields the same verdicts in cases like this, then that policy strongly dominates I . In

the next section, I identify exactly such a policy.

We ought to pause here, before proceeding, to say why accounts of rational com-

mitment that yield strongly dominated inductive policies are implausible. The reason

is: it ought to be possible to (i) make every comparative and qualitative judgment

that you are rationally committed to making (in virtue of adopting a prior p and

receiving new data D in context C), (ii) abstain from judgment when you are not

so committed, and (iii) not contravene your best estimates (expectations), i.e., not

make comparative and qualitative judgments that are, according to p’s best estimates

(expectations), epistemically inferior to some other set of judgments that you might

have made. Whatever else is true about what you are positively committed to (in

terms of making comparative/qualitative judgments), in virtue of adopting p, it is

open to you (rationally permissible), one would think, to make exactly the judgments

that you are committed to making (whatever they happen to be) without flouting

your own best estimates. This is a bedrock fact about epistemic rationality, I posit.

Any account of rational commitment that says otherwise — e.g., any account that

yields a strongly dominated inductive policy — is mistaken.30

2.7 Proceeding Without Locality

2.7.1 Globalism

Let’s take stock. Imprecise Bayesians say that less than maximally specific evidence

at least permits (and perhaps positively requires) less than maximally specific (merely
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partial) opinions, or comparative/qualitative judgments. But adopting a precise prior

commits you to a total comparative probability ordering, total preference ordering,

etc. So when your evidence is unspecific, you should not adopt a precise prior. You

should adopt an imprecise prior instead. Imprecise priors, unlike precise priors, permit

merely partial comparative and qualitative judgments.

We will see, however, that adopting a precise prior only seems to commit you

to maximally specific opinions, or comparative/qualitative judgments, because of

Bayesian orthodoxy about rational commitment, viz., that an agent who adopts a

precise prior p is committed to judging:

• ...that X is more probable than Y if p(X) > p(Y ).

• ...that data D provides positive incremental support for H if pD(H) > p(H).

• ...that action A is preferable to B if the expected utility of A (relative to p) is

greater than the expected utility of B (relative to p).

This bit of orthodoxy is implausible. I examined some pro tanto reason to think

this in §2.3-2.5. The more definitive reason, though, to reject the orthodox account

of rational commitment is that it encodes an inductive policy I that is strongly

dominated by another policy I ∗.

The final example in §2.6 shows that I has suboptimal expected epistemic utility

in certain contexts (those in which table 2.7 describes the relevant epistemic utili-

ties), relative to certain priors (the MaxEnt prior). But it does not show that there

is a plausible, non-orthodox account of rational commitment which yields a better

inductive policy I ∗, in the following sense: (i) I ∗ does at least as well (in terms of

expected epistemic utility) as I in every context, relative to every prior, and (ii) I ∗

does strictly better in some contexts, relative to some priors. It does not show that

I is strongly dominated.
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My aim now is to identify such an account. I plan to construct a theory of rational

commitment that takes seriously the moral from §2.5: even when you adopt a precise

prior, the weight of your evidence is relevant for determining whether and which

comparative/qualitative judgments you are rationally committed to making. I will

then show that this account yields an inductive policy I ∗ that strongly dominates

the orthodox policy I .

To see how we might construct such a theory, recall that on the orthodox account,

whether p carries a commitment to judging X � Y depends exclusively on p(X) and

p(Y ). These probabilities, however, are merely the first moments of certain marginal

distributions (they are expected values, viz., the expected objective probabilities of

X and Y , respectively); p(X) =
∑

i p(X|Hi) · p(Hi) =
∑

x x · p(QX = x), where

QX = x if and only if some theoretical hypothesis Hi with p(X|Hi) = x is true.

When considering uncountably many theoretical hypotheses, p(X) =
∫ 1

0
x ·fQX

(x)dx,

where fQX
is the density that defines the marginal distribution of QX .

The characteristic effect of weight is to cause probabilities to concentrate more

and more heavily on increasingly smaller, typically connected subsets of theoretical

hypotheses. Weighty evidence for X causes fQX
to become increasingly ‘peaked’;

likewise, weighty evidence for Y causes fQY
to become increasingly ‘peaked’. As

a result, relative to any reasonable distance function d on the space of probability

densities, the distance between fQX
and fQY

, d(fQX
, fQY

), approaches the distance

between p(X) and p(Y ). Accordingly, d(fQX
, fQY

)/ |p(X)− p(Y )| approaches 1.

One way to render rational commitments sensitive to those features of priors

(and posteriors) that encode information about weight is to tie them quantities like

d(fQX
, fQY

)/|p(X)−p(Y )|. This quantity is determined by all of the higher moments

of fQX
and fQY

, which is where information about weight lives. This is the option we

will explore here. In particular, the proposal is this: an agent who adopts a precise
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prior p is committed to to judging that X is more plausible than Y if (i) p(X) > p(Y )

and (ii) 1− ε < d(fQX
, fQY

)/|p(X)− p(Y )| < 1+ ε, for some contextually determined

Figure 2.9: A range of distributions which

concentrate probability more and more heav-

ily on smaller and smaller subsets of theoret-

ical hypotheses.

threshold ε > 0 (for discussion of

ε, see §2.8).31 (Or a bit more gen-

erally, an agent who adopts a pre-

cise prior p is committed to to judg-

ing that X is more plausible than

Y if (i) p(X) > p(Y ) and (ii)

〈d(fQX
, fQY

), |p(X)− p(Y )|〉 satisfies

a contextually determined constraint

C , where C is either of the form 1 −

ε < d(fQX
, fQY

)/|p(X)−p(Y )| < 1+ε,

or is the limit of a series of such con-

straints, e.g., the trivial constraint,

satisfied by all pairs 〈x, y〉. This gen-

eralization will be important later.) Call this the globalist thesis.

Like Bayesian orthodoxy, this view holds that for any type of comparative judg-

ment JX,Y between X and Y , there are certain marginal distributions, f and f ′,

that encode the information relevant for determining whether p commits its bearer

to making the judgment JX,Y . But unlike Bayesian orthodoxy, this view holds that

this information is encoded globally, across all of the moments of f and f ′ (mean,

variance, skewness, etc.).

2.7.2 An Illustration: Resolving the Preclusion Problem

Imagine that you are at a horse race. A bookie offers you one of three bets. You

can either bet that Goldencents will beat a certain time T , or that Itsmyluckday
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will beat time T , or that Pataky Kid will beat time T . At the outset, you have

no relevant information about the three horses. To take account of your prior in-

formation (viz., none) in your decision problem, you decide to adopt the maximum

entropy prior u over hypotheses ch(Horse X beats time T) = x about the chance that

Goldencents/Itsmyluckyday/Pataky kid beats time T .

You then ask a friend to pull some strings. She gets you into some practice sessions.

You attend N independent runs for each horse, and observe that Goldencents (GC )

beats time T a total of a times, Itsmyluckyday (IMLD) beats it b times, and Pataky

kid (PK ) beats it c times. Call this new data ‘D’. Next week, the bookie offers you

the three bets again. To incorporate your new data in your decision problem, you

condition u on D. The result:

Table 2.8: Posterior probabilities that GC/IMLD/PK beats time T .

uD(GC beats T) uD(IMLD beats T) uD(PK beats T)

Case 1 : N = 5, a = 4,
b = 3, c = 1

0.714 0.571 0.286

Case 2 : N = 47, a = 34,
b = 27, c = 13

0.714 0.571 0.286

According to Bayesian orthodoxy, you are committed to the same total compar-

ative probability ordering � in either case. You are committed to judging (i) that

Goldencents is more likely to beat time T than Itsmyluckyday (IMLD ≺ GC), (ii)

that Goldencents is more likely to beat T than Pataky kid (PK ≺ GC), (iii) that

Itsmyluckyday is more likely to beat T than Pataky kid (PK ≺ IMLD), and so on.

PK ≺ IMLD IMLD ≺ GC PK ≺ GC

¬GC ≺ GC ¬IMLD ≺ IMLD PK ≺ ¬PK

According to the globalist thesis, however, uD only commits you to making a

comparative probability judgment between X and Y when it reflects weighty enough
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evidence for X and Y to make it the case that 1− ε < d(fQX
, fQY

)/|p(X)− p(Y )| <

Figure 2.10: Cramer-von Mises distance.

1 + ε. (Again, for more on ε, see

§2.8.) When it does not reflect sufficiently

weighty evidence, uD simply does not com-

mit you to making a comparative probabil-

ity judgments between X and Y one way

or the other. It permits you to not take a

stand on the matter.

Deza and Deza (2009) survey a wide

range of distance functions on the space

of probability densities. For concreteness, I focus on one in particular. I let

d(fQX
, fQY

) be the Cramer-von Mises distance between fQX
and fQY

, which we de-

note C(fQX
, fQY

).

C(f, g) =
∫ 1

0
|F (x)−G(x)|2dx

C specifies the distance between densities f and g as a function of the area between

their corresponding cumulative distribution functions, F and G (counting regions of

smaller divergence for less and regions of greater divergence for more; pictured left).32

(It is the squared L2 metric between F and G.) It is attractive because (i) it is an

analogue of squared Euclidean distance on the space of probability densities, and

(ii) it yields the correct verdict about comparative closeness in those cases where

obviously correct answers are to be had.33

In cases 1 and 2, you arrive at the same posterior truth-value estimates for

the various propositions of interest: that Goldencents/Itsmyluckyday/Pataky kid

will beat time T . But you have much weightier evidence undergirding your es-

timates in case 2. You have a firmer basis for making comparative and quali-
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tative judgments, both doxastic and practical. This is reflected in the value of

the quantity d(fX|D, fY |D)/|uD(X) − uD(Y )| (where fX|D is the marginal density

of uD over hypotheses ch(Horse X beats time T) = x about the chance that Golden-

cents/Itsmyluckyday/Pataky beats time T ). For illustrative purposes, let ε = 0.52.

So uD only commits you to judging that horse X is likelier to beat time T than

horse Y (or vice versa) when it reflects weighty enough evidence for the propositions

Horse X will beat T and Horse Y will beat T, respectively, to make it the case that

d(fX|D, fY |D)/|uD(X)− uD(Y )| ∈ [0.48, 1.52]. Now compare:

Table 2.9: The effect of weight on d(fX|D, fY |D)/|uD(X)− uD(Y )|.

d(fGC|D,fIMLD|D)

|uD(GC)−uD(IMLD)|
d(fGC|D,fPK|D)

|uD(GC)−uD(PK)|
d(fIMLD|D,fPK|D)

|uD(IMLD)−uD(PK)|

Case 1 : N = 5, a = 4,
b = 3, c = 1

= 0.245 6∈ [.48, 1.52] = 0.6 ∈ [.48, 1.52] = 0.443 6∈ [.48, 1.52]

Case 2 : N = 47, a = 34,
b = 27, c = 13

= 0.511 ∈ [.48, 1.52] = 0.832 ∈ [.48, 1.52] = 0.736 ∈ [.48, 1.52]

In case 1, your posterior uD reflects insufficiently weighty evidence to commit you to

a total comparative probability ordering. It commits you to a merely partial order.

It permits you to not take a stand on some matters, to not make a judgment about

the comparative probability of X and Y , for certain X and Y . It does commit you

to making the following judgments:

PK ≺ GC, ¬GC ≺ GC, PK ≺ ¬PK

But it does not commit you to making other judgments: that Goldcents is definitely

likelier to beat time T than Itsmyluckyday (or vice versa); that Itsmyluckyday is

definitely likelier to beat T than Pataky kid (or vice versa); that Itsmyluckyday is

likelier than not to beat T (or vice versa).
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(((((((hhhhhhhPK � IMLD (((((((hhhhhhhIMLD � GC (((((((hhhhhhhGC � IMLD

(((((((hhhhhhhIMLD � PK (((((((((hhhhhhhhh¬IMLD � IMLD (((((((((hhhhhhhhhIMLD � ¬IMLD

In case 2, however, your posterior uD reflects sufficiently weighty evidence to commit

you to a total comparative probability ordering. In case 2, you are committed to

making exactly the same judgments, on both the globalist and localist (orthodox)

accounts.

This highlights how flexible precise priors are. If the globalist account of ratio-

nal commitment is right, then precise priors do indeed allow for partial comparative

probability orderings (as well as partial preference orderings, etc.). In that case, we

ought to rethink the central epistemic motivation for imprecise Bayesianism. Impre-

cise Bayesians say, “You ought to adopt imprecise priors, in certain circumstances

— in particular, when your prior evidence is unspecific or equivocal — because they

allow for unspecific opinions; they allow for partial comparative and qualitative judg-

ments. Precise priors do not.” But precise priors do allow for unspecific and equivocal

opinions in a wide range of evidential circumstances, on the globalist account; they

do allow for partial comparative and qualitative judgments.

2.8 A Rationale for Globalism

The globalist inductive policy strongly dominates the orthodox policy (and any other

‘local’ policy), I hope to show. This provides good epistemic reason to reject Bayesian

orthodoxy about rational commitment (and any other ‘local’ account).

To illustrate, imagine one more time that a bookie hands you a coin. She offers

you a bet. You have no prior evidence about the coin’s bias. The bookie allows you

to flip the coin 25 times before deciding whether or not to take the bet. You adopt

the maximum entropy prior u over hypotheses B = x about the coin’s bias. The
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epistemic utilities are given by:

Table 2.10: Epistemic payoff of judging Heads � Tails, Heads � Tails, or abstaining.

ch(Heads) ≤ ch(Tails) ch(Heads) > ch(Tails)
Heads � Tails 1 −5
Heads � Tails −5 1

Abstain from judgment −0.5 −0.5

The globalist inductive policy is built out of policies Ix of the form: if you adopt

a prior p and receive new data D, make exactly the comparative and qualitative

judgments that pD commits you to making, given ε = x (according to globalism). In

particular, Ix says: judge that X is more plausible than Y , iff (i) pD(X) > pD(Y )

and (ii) 1 − x < d(fVX |D, fVY |D)/|pD(X) − pD(Y )| < 1 + x. (Recall, VX = x if and

only if some theoretical hypothesis Hi with pD(X|Hi) = x is true; fVX |D is the density

that defines the marginal distribution of VX conditional on D.) In our coin flipping

case, then, the expected epistemic utility of Ix is:

Table 2.11: Expected epistemic utility of Ix from the perspective of u.

x = 0 x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1
Expu(eu(Ix)) −0.5 0.305 0.588 0.628 0.615 0.535

Figure 2.11: Expu(eu(Ix)).

The globalist inductive policy I ∗ says:

if you adopt prior p in context of inquiry

C, and receive new data D, make the com-

parative/qualitative judgments that Ix pre-

scribes making, for whichever x maximizes

expected epistemic utility Expu(eu(Ix)) in

C. In the case at hand (coin flipping, epis-

temic utilities as per above), Expu(eu(Ix))
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takes a maximum at x = 0.52 (right).34 So the globalist inductive policy I ∗ is just

I0.52 in this context. And I0.52 recommends the following:

I0.52(u,D,Heads,Tails) =


Heads � Tails if D = HkT 25−k for some k > 14

Heads ≺ Tails if D = HkT 25−k for some k < 11

Abstain from judgment otherwise

By construction, the globalist inductive policy I ∗ has at least as great an expected

epistemic utility (from u’s perspective) as any policy Ix. But there are, of course,

various policies not of the form Ix. An inductive policy is just a function:

I (p,D,X, Y ) =


X � Y if condition C1 obtains

X � Y if condition C2 obtains

Abstain from judgment otherwise

The policy that directs you to judge that heads is more probable than tails come what

may, for example, is not equivalent to any Ix. (No Ix advises an agent who adopts

the uniform prior u to judge that heads is more probable than tails in response to

D = H0T 25.)

It would be nice if I ∗ maximized expected epistemic utility in any context of

inquiry, relative to all other inductive policies (not just policies of the form Ix).

Fortunately, it is easy to check that this is so, at least in simple enough contexts.35

For example, when the epistemic utilities are given by our usual table:

Table 2.12: Old ‘conservative’ payoff matrix.

ch(Heads) ≤ ch(Tails) ch(Heads) > ch(Tails)
Heads � Tails 1 −5
Heads � Tails −5 1

Abstain from judgment −0.5 −0.5

and n = 8 (you flip the coin a total of 8 times), then Expu(eu(I ∗)) = 0.349609, which

standard optimization techniques show to be a global maximum (maximum relative
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to all inductive policies). Similarly, if n = 10, then Expu(eu(I ∗)) = 0.414062, which

again is a global maximum.

If we consider a different context, in which the epistemic utilities are given by:

Table 2.13: New ‘liberal’ payoff matrix.

ch(Heads) ≤ ch(Tails) ch(Heads) > ch(Tails)
Heads ≤ Tails 5 −1
Heads > Tails −1 5

Abstain from judgment −0.5 −0.5

then Expu(eu(Ix)) takes a maximum at x = 1. So the globalist inductive policy I ∗

is just I1 in this context. And I1 recommends the following:

I1(u,D,Heads,Tails) =

 Heads � Tails if D = HkT n−k for some k ≥ n/2

Heads ≺ Tails if D = HkT n−k for some k < n/2

So, in this context, the globalist policy and local orthodox policy make the same

recommendations. Once more, it is easy to check that I ∗ has at least as great an

expected epistemic utility (from u’s perspective) as any other inductive policy. If

n = 8, then Expu(eu(I ∗)) = 4.17969. Standard optimization techniques show that

this is a global maximum. No other inductive policy has a higher expected epistemic

utility in this context. Similarly, if n = 10, then Expu(eu(I ∗)) =0.426172, which

again is a global maximum.

These examples by no means show that globalism is the uniquely plausible account

of rational commitment. They do not show that there is no other principled, non-

orthodox account which yields a better inductive policy, a policy I ∗∗ that strongly

dominates I ∗. For all I have said, there could be another policy I ∗∗ that agrees

with I ∗ in the two contexts considered here, but does strictly better in various other

contexts.
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My aim, however, is not to show that globalism is the uniquely plausible account

of rational commitment. Rather, my aim is to identify good epistemic reason to

reject the orthodox (localist) account of rational commitment, and to leverage this to

resolve the preclusion problem.

These illustrative examples suffice for this purpose. The reason: by construction,

I ∗ weakly dominates I . Proof: the orthodox policy I is just the degenerate policy

Itrivial. That is, I says: judge that X is more plausible than Y if and only if

(i) pD(X) > pD(Y ) and (ii)
〈
d(fVX |D, fVY |D), |pD(X)− pD(Y )|

〉
satisfies the trivial

constraint, i.e., the constraint satisfied by all pairs 〈x, y〉. And in any context C, I ∗

is just Ix, for whatever Ix is such that Expu(eu(·)) takes a maximum at Ix in C. So,

in any context in which I maximizes expected epistemic utility, I ∗ just is Itrivial,

which just is I . By construction, then, there is no context in which I has higher

expected epistemic utility (from u’s perspective) than I ∗. In addition, our illustrative

examples show that there are contexts in which I ∗ has strictly higher expected

epistemic utility (from u’s perspective) than I . Hence, I ∗ strongly dominates I .

This provides good epistemic reason to reject Bayesian orthodoxy about rational

commitment (and any other ‘local’ account). Moreover, the contexts C described

above are ones in which no other inductive policy has greater expected epistemic

utility (from u’s perspective) than I ∗. So the true account of rational commitment

R, then — whatever it turns out to be — will agree with the globalist account in

C, and hence make rational commitments sensitive to those features of priors (and

posteriors) that encode information about weight (higher moments) in C (though

perhaps not in exactly the way the globalist account proposes). Plausibly, then, R

will make rational commitments sensitive to those features more generally (unless the

correct account of rational commitment is a gerrymandered mess).

If this is right, then the big take-home lesson is this: there is plausibly no preclusion
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problem for precise Bayesianism. Adopting a precise prior does not commit you

to having perfectly precise opinions. It does not invariably commit you to making

comparative and qualitative judgments that form total orders. The true account

of rational commitment — whatever it turns out to be — will say: a wide range of

precise priors carry commitments to merely partial comparative probability orderings,

preference orderings, etc., in a wide range of contexts.

Of course, this does not mean that there are no good epistemic reasons to employ

imprecise priors. It just means that we should not look to the preclusion problem

to furnish those reasons. In the final chapter of my dissertation, I search for new

epistemic reasons to employ imprecise priors, for a new epistemic foundation for

imprecise Bayesianism.

2.9 Conclusion

I have argued that adopting a precise prior does not invariably commit you to a total

comparative probability ordering, preference ordering, etc. A wide range of precise

priors carry commitments to merely partial comparative probability orderings, etc.,

in a wide range of contexts. The proper motivation for introducing imprecise priors,

then, is not they are required in order to avoid overly specific posterior states of

opinion. To recap, the main argument goes as follows:

1. The globalist account of rational commitment, or something similar, is plausibly

true. The orthodox account is implausible.

2. If the globalist account of rational commitment, or something similar, is true,

then a wide range of precise priors carry commitments to merely partial com-

parative probability orderings (and preference orderings, etc.).
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3. If a wide range of precise priors carry commitments to merely partial orderings,

then they do not invariably capture improper responses to unspecific evidence.

C. Plausibly, then, precise priors do not invariably capture improper responses to

unspecific evidence.

The defense of premise 1 comes in two parts. The first part goes as follows:

1′ Every account of rational commitment R corresponds to an inductive policy

of the form: an agent who adopts a prior p in context C and receives new

data D should make exactly the comparative and qualitative judgments that

pD commits her to making in C, according to R.

2′ No plausible account of rational commitment R yields an inductive policy I

that is strongly dominated by another policy I ∗, in the sense that (i) for any

prior p and context C, I ∗’s expected epistemic utility in C, relative to p, is at

least as great as I ’s, and (ii) for some prior p′ and context C ′, I ∗’s expected

epistemic utility in C ′, relative to p′, is strictly greater than I ’s.

3′ The orthodox account of rational commitment yields an inductive policy I

that is strongly dominated by the globalist policy I ∗.

C ′ The orthodox account of rational commitment is implausible.

The second part:

1′′ For some priors p and contexts C, the globalist policy’s I ∗’s expected epistemic

utility in C, relative to p, is at least as great as any other policy’s expected

epistemic utility.
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2′′ The true account of rational commitment R, then, will agree with the globalist

account in contexts C, and hence make rational commitments sensitive to those

features of priors (and posteriors) that encode information about weight (higher

moments) in C (though perhaps not in exactly the way the globalist account

proposes).

3′′ Plausibly, then, R will make rational commitments sensitive to those features

more generally (unless the correct account of rational commitment is a gerry-

mandered mess).

C ′′ So the globalist account of rational commitment, or something similar, is plau-

sibly true.

If correct, this seems to undercut the central epistemic motivation for imprecise

Bayesianism. At a minimum, it provides impetus to search for new epistemic foun-

dations for imprecise Bayesianism. I conclude by raising a few additional questions

to be addressed in future research.

• We specified the globalist thesis using one particular distance function on the

space of probability densities, viz., Cramer-von Mises distance. Are our results

robust across a range of metrics, e.g., the Lévy metric? the Lp metrics?

• We suggested that we might be able to measure the inaccuracy of an agent’s

comparative probability ordering � over hypotheses H1, ..., Hn at a world w

by representing � as an adjacency matrix m, and taking the Kemeny distance

d(m,m′) between this matrix m and the ‘perfectly vindicated’ matrix m′ at w.

In contexts in which accuracy is paramount, then, d(m,m′) might provide a

rough measure of the epistemic utility of �. But is this really the right way

to think about the epistemic utility of a comparative probability ordering at a

92



world? What are the alternatives? What exactly are the relevant desiderata

for deciding between alternatives? I address some of these questions in the final

chapter of my dissertation.

• The globalist account ties rational commitments vis-á-vis comparative proba-

bility to a particular quantity, d(fQX
, fQY

)/|p(X)− p(Y )|, which reflects infor-

mation about the weight of the evidence that the prior p summarizes. What

other quantities might an alternative account tie such commitments to? What

reasons are there to prefer the globalist quantity to these other quantities, or

vice versa?

• How far can standard optimization techniques take us toward proving that the

globalist inductive policy I ∗ is non-undermining, in the following sense: for

any prior p and context C, I ∗’s expected epistemic utility in C, relative to p,

is at least as great as that of any other inductive policy?

Notes

18Bayesians, of course, agree about much more than this. They agree, for example, that any rea-

sonable distributions p and q agree on the likelihoods or direct inference probabilities that H1, ...,Hn

specify for the potential experimental data sequences D (p(D|Hi) = q(D|Hi), though p and q might

disagree on the unconditional probability of various Hi (p(Hi) 6= q(Hi); cf. Hawthorne 1994). They

also disagree certain issues, e.g., which quantitative confirmation judgments an agent who adopts a

prior p is committed to making.

19If, for example, an agent’s comparative probability judgments between competing theoretical

hypotheses satisfy Scott’s axiom (read ‘X ≤ Y ’ as hypothesis Y is at least as plausible as hypothesis

X), and are also rich enough to satisfy some additional structural axioms (completeness: X ≤ Y or

X > Y for all X and Y ; non-atomicity: for any X such that X > X&¬X, there is a Y such that

X&Y > X&¬X and X&¬Y > X&¬X), then those comparative judgments ‘pin down’ a precise
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prior, in the following sense: there is a unique probability distribution p that represents them, i.e.,

is such that Hi ≤ Hj only if p(Hi) ≤ p(Hj) (cf, Scott 1964, p. 246; Joyce 2011, p. 285).

Scott’s Axiom. If 〈X1, ..., Xn〉 and 〈Y1, ..., Yn〉 contain the same number of truths as a

matter of logic, so that
∑
i w(Xi) =

∑
i w(Yi) for any world w, then it is not true that

Xi ≤ Yi for all i while Xj < Yj for some j.

In that case, according to the subjective Bayesian, she ought to adopt this unique probability p as

her prior (use p to facilitate inference and decision-making).

20See Kyburg 1996, p. 326.

21Non-atomicity: for any X such that X > X&¬X, there is a Y such that X&Y > X&¬X and

X&¬Y > X&¬X.

22Having or being representable by a set of probability distributions S is a matter of having

opinions that make it impermissible to estimate truth-values via any p not in S.

23When considering uncountably many theoretical hypotheses, pD(X) =
∫ 1

0
x · fVX |D(x)dz, where

fVX |D is the density that defines the marginal distribution of VX conditional on D.

24When considering uncountably many theoretical hypotheses, Expp(A) =
∫ 1

0
x · fu|A(x)dz, where

fu|A is the density that defines the marginal distribution of u conditional on A.

25Your prior probability is u(H) =
∫ 1

0
f(H|B = x) · f(B = x)dx =

∫ 1

0
xdx = 1/2 (where f is the

uniform density that defines u). Your posterior probability is

uD(H) =
∫ 1

0
fD(H|B = x) · fD(B = x)dx =

∫ 1

0
x · 24.4 ·

520∑
k=480

 1000

k

 (x)k(1− x)1000−k = 1/2.

26For discussion about features of epistemic utility beyond accuracy, see Maher 1993, ch. 9, and

Joyce 1998, 2009.

27See Deza and Deza 2009 for a catalog of distance functions that one might employ in constructing

accuracy measures for acceptance/rejection states.

28Note that the expected epistemic utility of I , from the perspective of p, is just p’s best estimate

of the objective expected utility of I .

29I assume that u treats any sequence of outcomes as exchangeable.

30For related discussion, see Gibbard 2008, p. 4, and Joyce 2009, p. 277.

31This proposal extends straightforwardly to other comparative judgments, e.g., judgments of

comparative preferability, and qualitative judgments, e.g., judgments of incremental support.
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32The cumulative distribution function P corresponding to a distribution f over chance hypotheses

(defined by density f) is defined by P (ch(X) ≤ x) =
∫ x
0
f(y)dy, and specifies the probability that

the chance of X is less than or equal to x.

33For example, for any beta densities f , g and h, if they all have the same mean but increasing

variance, then f is closer to g than to h. Similarly, if they all have the same variance but larger and

larger means, then f is closer to g than to h.

34Of course, Expu(eu(Ix)) does not take a unique minimum at x = 0.52. But this is to be

expected, since in the relevant context, Ix = Iy for any x, y ∈ [0.52, 0.61].

35When an experiment has a small enough outcome space, we can simply examine the expected

epistemic utility of every possible policy for responding to the experimental data, and check that the

globalist policy attains a maximum. When the outcome space becomes too large, this is no longer

feasible.
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Chapter 3

Cliffordian Conservatism &

Imprecise Prior Probabilities

When a doctor, or an engineer, or a scientist performs an experiment or test to

adjudicate between competing theoretical hypotheses, or firm up her grounds for

decision-making, she typically comes to the table with a great deal of relevant prior

information. Any competent neurologist who is trying to diagnose a patient’s disease,

and settle on an appropriate treatment plan, not only has newly acquired clinical data

— the results of blood tests, a lumbar puncture, etc. — but also an enormous amount

of prior data: information about which symptoms correlate with which diseases, how

those symptoms are caused, which treatments are most effective for which purposes,

and so on. Obviously, it is imperative to take such prior information into account

when making an inference or decision. To fail to do so is, as Jaynes says, “to commit

the most obvious inconsistency of reasoning and may lead to absurd or dangerously

misleading results” (Jaynes 1968, 1).

Unfortunately, finding a well-motivated, practically useful method for taking prior

information into account is difficult. Prior information tends to be incredibly multi-

farious and complex. Precise Bayesians argue that the best method for incorporating

prior evidence E in decision and inference problems is to specify a ‘prior’ probability

distribution p over the competing hypotheses H1, ..., Hn which somehow summarizes
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the information in E. We can think of these probabilities as estimates of the truth-

values of H1, ..., Hn which (i) satisfy constraints imposed by E while intuitively (ii)

going no further than those constraints require. Imprecise Bayesians, such as Richard

Jeffrey, Mark Kaplan, Peter Walley and Jim Joyce agree that an agent ought to take

her prior evidence into account by adopting a ‘prior’ which summarizes it. But they

disagree that priors should, in all circumstances, take the form of a single, precise

probability distribution. Certain circumstances, they say, call for imprecise priors.

In certain circumstances, you ought to use a set of distributions over H1, ..., Hn to

incorporate your prior information. Like precise distributions, sets of distributions

encode information about your prior evidence E. But a set of distributions encodes

less information than any distribution in that set. It encodes only the information

that is invariant across all elements of the set. The determinate properties of an

imprecise prior (or posterior) S are just the properties that all of the distributions in

that set S share in common.

Certain subjectivist proponents of imprecise probabilities say that an agent ought

to look to her own opinions to furnish priors. And in many circumstances, an agent’s

actual actual prior opinions fail to pin down a single truth-value estimate for each of

the theoretical hypotheses H1, ..., Hn under investigation (cf. Kyburg and Pittarelli

1996, 325). When they do, on the subjectivist view, she ought to adopt the set S of

distributions p over H1, ..., Hn that are consistent with her prior opinions.

Joyce, Walley and others argue that there are more compelling reasons to adopt

imprecise priors. Joyce contends that precise priors fail to adequately summarize

certain kinds of evidence — in particular, unspecific and equivocal evidence. We

need imprecise priors to summarize such evidence. Here is Joyce:

...the proper response to symmetrically ambiguous or incomplete evidence
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is not to assign probabilities symmetrically, but to refrain from assigning

precise probabilities at all... Imprecise credences have a clear epistemo-

logical motivation: they are the proper response to unspecific evidence.

(Joyce 2005, 171)

Suppose, for example, that you have a coin, but very little information about its bias

(cf. Joyce 2010, 284). Perhaps you flip it over to check that it is not double sided.

But nothing more. A bookie then offers you a bet. She kindly allows you to flip

the coin a few times before deciding whether or not to accept or reject. You decide

to adopt the uniform distribution u over hypotheses B = x about the coin’s bias

(with 0 < x < 1 perhaps), to take account of your prior evidence E (viz., next to

nothing). This might seem like an appropriate prior to adopt, since you have very

little prior information, and u is minimally informative (amongst precise priors, when

measuring informativeness by Shannon entropy). But despite this fact, Joyce argues,

the uniform distribution does a poor job summarizing your prior information. To see

this, note that adopting u commits you to making the following judgments:

• Rolling an ace with a fair 6-sided die is definitely less probable (u(Ace) = 0.166)

than having the coin come up fewer than 17 times in 100 independent tosses

(u(Heads < 17) = 0.168).

• It would be definite mistake to let $100 ride on a rolling an ace than to let it

ride on the coin coming up fewer than 17 times in 100 independent tosses.

Your prior evidence, however, is simply too unspecific to be this demanding. It might

be specific enough to commit you to making certain comparative and qualitative

judgments, e.g., “It is more probable that the coin will come up heads than it is that

the sun will suddenly expand and engulf the Earth.” (You did, after all, see that
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it is not double sided; it has a non-zero chance of coming up heads.) But it does

not commit you to making specific judgments like the ones above. So any prior that

commits you to making such judgments does a bad job summarizing your evidence.

And precise priors as a class are bad in this respect. The moral is this: when you have

unspecific and equivocal prior evidence, you should avoid precise priors altogether.

You should adopt an imprecise prior instead. Imprecise priors, unlike precise priors,

permit you to abstain from judgment on various issues. So they do not, as a class,

capture improper responses to unspecific evidence, in the way that precise priors do.

The aim of this chapter is to point toward a new motivation for employing im-

precise priors. You might hope for new reasons to employ imprecise priors because

you find extent motivations less than fully compelling. (Perhaps you doubt that pre-

cise priors invariably capture improper responses to unspecific evidence, as I argue in

chapter 2.) Or you might simply be interested in identifying the full range of reasons

favoring imprecise Bayesianism. My plan is to highlight, for any interested parties,

two new kinds of reasons for employing imprecise priors. We ought to adopt impre-

cise priors in certain contexts because they put us in an unequivocally better position

to secure epistemically valuable posterior beliefs than precise priors do. We ought to

adopt imprecise priors in various other contexts because they minimize our need for

epistemic luck in securing such posteriors.

In §3.1, I investigate the theoretical role of priors, to illuminate what a compelling

reason for adopting imprecise priors might look like. I suggest that the central role

of priors is to help us secure epistemically valuable posterior beliefs, and to minimize

our need for epistemic luck in securing those beliefs. In §3.2, I outline an argument

that imprecise priors are sometimes best suited to play this role. In §3.3-3.6, I fill in

this outline. In §3.3, I sketch an accuracy-centered approach to measuring the all-

things-consider epistemic value or worth of imprecise priors and posteriors. Certain
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of these measures, I argue, reflect Jamesian liberalism, while others reflect Cliffordian

conservatism. In §3.4, I provide examples of conservative contexts in which imprecise

priors put you in an unequivocally better position to secure epistemically valuable

posteriors than precise priors do. This is the first new kind of reason to employ impre-

cise priors. In §3.5-3.6, I distinguish different types of epistemic luck, and illustrate

how one prior might do more to ameliorate our dependence on luck than another.

Lastly, in §3.7, I provide examples of conservative contexts in which imprecise priors

do more to ameliorate dependence on epistemic luck than precise priors do. This is

the second new kind of reason to employ imprecise priors.

3.1 The Theoretical Role of Priors

When we ask, “Why should we adopt imprecise priors?” we are asking for a certain

kind of reason in response. If imprecise priors somehow made our knees less achy, or

our jokes funnier, or our wallets fatter, that would be one reason to adopt them. But

our question demands an epistemic answer, not a pragmatic one. Indeed, it demands

a certain kind of epistemic answer. It demands reasons that speak to the primary

theoretical role of priors. A proper answer to our question takes the form: we ought

to adopt imprecise priors in certain contexts because they are best suited to play the

relevant theoretical role (whatever that may be).

We must, then, be clear about what this theoretical role is. Some traditional,

objective Bayesians, such as Edwin Jaynes, assume that the primary role of priors

is representational. Jaynes prescribes adopting the maximum entropy prior for the

“positive reason that it is... maximally noncommittal with regard to missing informa-

tion” (Jaynes 1957, 623); the maximum entropy prior best reflects or represents the

informational content of our prior evidence.
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Informational Account. The primary theoretical role of prior probabili-

ties is to accurately reflect the informational content of the agent’s prior

evidence.

Certain subjective Bayesians agree that the primary role of priors is representa-

tional, but insist that Jaynes and others ought not restrict their attention to evidence.

Prior probabilities ought to represent an agent’s all-things-considered prior judgments

about the plausibility of hypotheses, which might depend not only on her prior evi-

dence, but also on her assessment of their intrinsic plausibility, her personal inductive

quirks, etc.

Subjectivist Account. The primary theoretical role of priors is to accurately

represent the agent’s prior opinions about the plausibility of hypotheses.

Neither of these accounts are quite right. The reason: evidence is important

to our epistemic lives, at bottom, exactly because it helps us secure epistemically

valuable (accurate, justified, sensitive, etc.) posterior beliefs in a luck-minimizing

fashion. So priors — statistical tools for taking prior evidence into account — are

plausibly important exactly to the extent that they help us achieve this end. They

are important exactly to the extent that they put us in a position to secure valuable,

minimally luck-dependent posterior beliefs by updating on new evidence.

Instrumental Account. The primary theoretical role of priors is to put us

in a position to secure epistemically valuable, minimally luck-dependent

posteriors by updating on new data.

Imagine an objector who denies this. When the various roles listed above conflict,

she will give precedence to one of the former ones, rather than the last one. Suppose,

101



for example, that a scientist has scant prior evidence about the causal mechanism

under investigation (a particular virus’ infection mechanism, perhaps). She does,

however, find one particular hypothesis extremely intrinsically plausible. But she

does not find it plausible for any good reason. Her hunch reflects no particular skill

at assessing intrinsic plausibility. She simply ‘feels it in her bones’. Our objector, if

she favors the subjectivist account, will nevertheless advise her to adopt a prior that

reflects this hunch, by concentrating probability on her favorite hypothesis. But this

would be absurd. It would result in her discounting new data that she really ought

to be more sensitive to (in much the way that a conspiracy theorist discounts data

that tells against her favorite hypothesis, e.g., that an alien spacecraft crashed near

Roswell, New Mexico in 1947).

Alternatively, our researcher might have quite a lot of prior information, but find

herself in an odd context of inquiry. For example, it might be much, much more

epistemically important to avoid determinate error, in her context, than it is to get

determinately close to the truth. Maybe all that matters is avoiding determinate

error. (Some philosophers argue that the standards of evaluation operative in a con-

texts can depend on pragmatic factors. If this is correct, and there are much more

serious negative consequences for getting it determinately wrong than there are pos-

itive consequences for getting it determinately right, then she might be in such a

context.) Our objector, if she favors the informational account, will advise the re-

searcher to adopt a prior that reflects the informativeness her evidence, presumably

by concentrating probability on some hypothesis or other. But, if getting determi-

nately close to the truth is really of no independent value — if avoiding determinate

error is really all that matters in this context, from the epistemic perspective — then

this is absurd. It is absurd in the way that gambling is absurd, if all that you care

about is not losing money. You should simply not take the risk of gambling if all you
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care about is not losing money. Similarly, our researcher should also not risk error by

‘gambling’ on some hypothesis or other (by concentrating probability on it). Instead,

she should adopt a prior that encodes no opinion whatsoever about the virus’ true

infection mechanism, which no ‘concentrated’ prior does. She should adopt such a

prior even though it does a rather poor job reflecting the informational content of her

evidence.

This illustrates what should be clear: whichever prior best enables evidence to

play its theoretical role is ipso facto best suited to play the theoretical role of priors.

It is worth noting that the instrumental account does, in fact, enjoy a certain mea-

sure of support in the literature. James Berger (2006), for example, justifies the use

objective Bayesian methods for constructing priors on the grounds that “objective

Bayes intervals [95% confidence intervals] are, on average, smaller than the classi-

cally derived intervals,” and have “better performance” in terms of average accuracy

(“whether the interval contains the true θ or misses to the left or right”) over a large

number of independent trials (Berger 2006, 390-1). This is an appropriate justifica-

tion, one might think, because the job of a prior is to put us in a position to secure

accurate posteriors by updating on new data (and, plausibly, to do so in a way that

minimizes our need for luck).

Similarly, Patrick Suppes says, “It is of fundamental importance to any deep ap-

preciation of the Bayesian viewpoint to realize that the particular form of the prior

distribution expressing beliefs held before the experiment is conducted is not a cru-

cial matter... The well-designed experiment is one that will swamp divergent prior

distributions with the clarity and sharpness of its results” (Suppes 1966, 204). The

reason that it is not a crucial matter exactly which form the prior distribution takes is

that, in a ‘well-designed’ experiment, where the experimental data is fairly ‘weighty’,

a range of priors will converge on the true theoretical hypothesis (with high objec-
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tive probability).36 As a result, those priors are all likely to yield fairly accurate —

and minimally luck-dependent — posterior distributions. Hence, they all play the

primary theoretical role of priors close to equally well. And they do so even though

some priors do a rather poor job representing, for example, the agent’s prior opinions

about the plausibility of hypotheses. This latter fact is — or at least ought to be —

“not a crucial matter” from the Bayesian viewpoint.

3.2 Main Argument

The remainder of this chapter outlines two new kinds of reasons for employing im-

precise priors. In broad strokes, the idea is this:

1. In any context of inquiry, you ought to adopt whichever prior is best suited to

play the primary theoretical role of priors in that context, if there is one.

2. The primary role of priors is to help you secure epistemically valuable posterior

beliefs, and to minimize your need for epistemic luck in securing those beliefs.

3. In certain contexts, imprecise priors put you in a better position to secure

epistemically valuable posteriors than precise priors do.

4. In other contexts, no imprecise prior puts you in a better position to secure

valuable posteriors than every precise prior, or vice versa. But imprecise priors

minimize your need for epistemic luck.

C. In some contexts, you ought to adopt imprecise probabilities to incorporate your

prior information.

If correct, this points the way toward a new, potentially promising foundation for

imprecise Bayesianism. The reasons outlined here are not like those that concern
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Joyce and others. They have nothing to do with whether imprecise priors are required

to summarize certain kinds of evidence (cf. Joyce 2005, 2011). They are not like

those that concern Walley, in many places, viz., whether imprecise priors alone satisfy

a range of nice symmetry and invariance principles (cf. Walley 1996). Instead, the

reasons outlined here go straight to the heart of what priors are for ; imprecise models

are required because they often are best suited to play the primary theoretical role

of priors.

To be clear, I will not offer a complete, systematic defense of this thesis. My aim

here is limited. My aim is merely to gesture toward two new kinds of reasons for

employing imprecise priors. To do this, I will simply provide examples of contexts

in which (i) some imprecise prior puts you in a better position to secure valuable

posteriors than precise priors do, and (ii) some imprecise does more to ameliorate

dependence on luck than precise priors do.

3.3 Epistemic Value

3.3.1 General Remarks

Priors and posteriors often have a range epistemically laudable qualities. They are

accurate, for example. The truth-value estimates they encode are close to the actual

truth-values of the target hypotheses. (Imprecise priors and posteriors are determi-

nately accurate when the family of truth-value assignments they encode are all close

to the truth.) They are well calibrated. The relative frequency estimates they encode

are close to the actual relative frequencies. They are refined.37 They sort hypothe-

ses into classes that are (more or less) uniformly true or false. They are justified.

They capture appropriate responses to the available evidence. They are informative.

They encode truth-value estimates for hypotheses that paint a rich, detailed picture
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of the world, and so on.38 For almost any property of qualitative beliefs that tradi-

tional epistemologists focus on — being reliably produced, sensitive, etc. — there are

analogous properties of priors and posteriors.

Epistemic utility functions provide a measure of a prior (or posterior) p’s all-things-

considered epistemic value or worth at a world w, which it has in virtue of having

these laudable qualities to a greater or lesser extent at w. As Joyce (1998, 2009)

stresses, while there is room for reasonable dispute about the relative importance of

certain qualities, any reasonable epistemic utility function must reflect an overriding

concern for accuracy. Ceteris paribus, priors and posteriors are all-things-considered

better, from the epistemic perspective, the more accurate they are.39

What we might call pluralist approaches to theorizing about epistemic value treat

various of these laudable qualities — accuracy, justification, informativeness, etc.

— as making an independent contribution to all-things-consider epistemic worth.

Accuracy-centered approaches, in contrast, treat ‘auxiliary’ virtues — everything but

accuracy — as relevant to the epistemic value of a prior or posterior only to the extent

that they are reflected in its accuracy (cf. Joyce 2013). On this view, our carefully

considered judgments regarding justification, and so on, may well influence how we

value ‘closeness to the truth’, how we measure p’s accuracy at w.40 But this is the

only route by which they affect epistemic value. (This is a bit too narrow of a char-

acterization, but will do for now.) In what follows, I will sketch an accuracy-centered

approach to theorizing about the epistemic value of both precise and imprecise priors.

How exactly should we think about the accuracy of a prior (or posterior) at a

world? Following Joyce (1998, 2009), Predd et al. (2009), and Leitgeb and Pettigrew

(2010), we will measure the accuracy of precise priors/posteriors by an epistemic scor-

ing rule or inaccuracy score. An inaccuracy score is a function I , which maps prob-

ability distributions p and worlds w to non-negative real numbers, I (p, w). I (p, w)
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measures how inaccurate p is if w is actual. If I (p, w) equals zero, then p is mini-

mally inaccurate (maximally accurate) at w. Inaccuracy increases as I (p, w) grows

larger. As in Joyce (2009, p. 269, 280), we assume that any reasonable inaccuracy

score satisfies the following two conditions:

Truth-Directedness. Moving a prior p’s probabilities, or truth-value

estimates closer to the actual truth-values always improves accuracy. If p

and q differ only in that p assigns higher (lower) probabilities than q does

to some propositions that are true (false) at w, then I (p, w) < I (q, w),

i.e., p is less inaccurate (more accurate) than q at w.41

Coherent Admissibility. No probabilistically coherent prior p is less

accurate than an incoherent prior q in every world. More carefully, it is

not the case that (i) I (p, w) ≥ I (q, w), for all w, and (ii) I (p, w′) >

I (q, w′), for some w′.

Truth-Directedness guarantees that moving prior probabilities (truth-value esti-

mates) closer to the truth always has a net positive impact on accuracy (cf. Joyce

2013, 3). (The positive effect associated with getting closer to the truth always out-

weighs the negative effect associated with becoming less well-calibrated, less justified,

etc.) Coherent Admissibility guarantees that reasonable inaccuracy scores cohere

with our most robust intuitions about which priors are appropriate to adopt in which

evidential circumstances. For any probabilistically coherent prior p, we can find ev-

idential circumstances in which p seems very clearly to be the right prior to adopt

(cf. Joyce 2009, 279). If, however, p is less accurate than some other q in every world

according to an inaccuracy function I , then p is epistemically defective from I ’s

perspective. You should not adopt p in any circumstances, according to I . Coher-

ent admissibility sees this flouting of our most robust intuitions as a mark of I ’s
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unreasonableness.

Figure 3.1: Inaccuracy of p(Hi) = x

when Hi is true, relative to Brier and

log scores, respectively.

These constraints rule out many inaccuracy

scores as unreasonable.42 Nevertheless, a num-

ber of scores satisfy both Truth-Directedness

and Coherent Admissibility. The Brier score,

for example, satisfies both constraints. The

Brier score, I , measures the inaccuracy of a

prior p, defined over a partition 〈H1, ..., Hn〉,

at a world w, by the average squared Eu-

clidean distance between its truth-value esti-

mates, p(Hi), and the actual truth-values at

w, w(Hi). That is, I (p, w) = (1/n)
∑

i(p(Hi) − w(Hi))
2. The logarithmic score,

which measures the inaccuracy of p at w by (1/n)
∑

i−ln[|1 − w(Hi) − p(Hi)|], also

satisfies both constraints. So do various other scores, e.g., the power score, spherical

score, any other proper scoring rule.43,44 We will measure inaccuracy by the Brier

score in what follows.

Unlike precise priors, imprecise priors and posteriors are typically not accurate

to any determinate degree. The determinate properties of an imprecise prior (or

posterior) S are just the properties that all of the distributions in S share in common.

So, for example:

• An imprecise prior encodes a determine probability x for a hypothesis H only

if every element of that set agrees that the probability of H is x.

• An imprecise prior carries a commitment to making a qualitative or comparative

judgment, e.g., that X is more probable than Y , or that X is independent of

Y , only if every element of that set carries that commitment.
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• An imprecise prior is accurate to a determinate degree y only if every element

of that set is accurate to degree y.

Except in very special circumstances, the elements p of an imprecise prior S will vary

in their accuracy at a world w. So typically imprecise priors (and posteriors) S will

not be accurate to any determinate degree at w.

This does not mean, however, that there is nothing determinate to say about the

accuracy of imprecise priors. Often there is quite a lot to say. For example, suppose

that you are wondering about the amount of rain R that Bristol received yesterday.

A friend informs you that the best estimate of R is 2.5mm. Assume that R can only

take one of three values: R = 1 in world w1, R = 2 in world w2, and R = 3 in world

w3. To incorporate your prior information, you adopt an imprecise prior: the set S of

probability distributions p over 〈w1, w2, w3〉 consistent with the constraint imposed by

your prior information, viz., p(w1) + 2p(w2) + 3p(w3) = 2.5. Then your prior S is not

accurate to any determinate degree, whatever world is actual. To see this, suppose

that w1 is actual (Bristol actually received 1mm of rain). Then there are distributions

p and q in S such that I (p, w1) = 0.42 6= 0.445 = I (q, w1).45 Nevertheless, there are

quite strong determinate facts about S’s accuracy at w1. For example, we can say

that S does at least this poorly, i.e., is at least this inaccurate: 0.375. (Every element

p of S is such that I (p, w1) ≥ 0.375.) Similarly, we can say that S does at most

this poorly: 0.5. (Every element p of S is such that I (p, w1) ≤ 0.5.) This grounds

a rather rich set of determinate facts about S’s comparative accuracy. We can say,

for example, that S is determinately more accurate than the precise prior r which is

such that r(w1) = 0.01, r(w2) = 0.01, r(w1) = 0.98 and determinately less accurate

than the prior t with t(w1) = 0.5, r(w2) = 0.25, r(w1) = 0.25. The inaccuracy of r

and t at w1 is I (r, w1) = 0.647 and I (t, w1) = 0.125, respectively.
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The accuracy-centered theorist might propose that these determinate facts are suf-

ficient to determine precise degrees of all-things-considered epistemic value or worth.

Imprecise priors and posteriors S are epistemically valuable to a determinate degree

at worlds w, even though they are not accurate to a determinate degree at w. Their

epistemic value supervenes on what we will call their lower and upper-inaccuracy

scores.

• l(S,w) = inf {I (p, w)|p ∈ S}

• u(S,w) = sup {I (p, w)|p ∈ S}

The first quantity, l(S,w), is S’s lower-inaccuracy. For any prior S and world w,

S does at least this poorly at w, i.e., is at least this inaccurate: l(S,w). (Every

element p of S is such that I (p, w) ≥ l(S,w).) The second quantity, u(S,w), is S’s

upper-inaccuracy. S does at most this poorly: u(S,w). (Every element p of S is

such that I (p, w) ≤ u(S,w).) As noted above, these quantities ground a rich set of

facts about S’s comparative accuracy. If l(S,w) and u(S,w) are both greater than

l(S ′, w) and u(S ′, w), then S is determinately more inaccurate (less accurate) than

S ′ at w. If l(S,w) and u(S,w) are both less than l(S ′, w) and u(S ′, w), then S is

determinately less inaccurate (more accurate) than S ′ at w. If neither is true, then

there is no determinate fact about the comparative inaccuracy of S and S ′ at w.

The reason that a prior S’s upper and lower-inaccuracy scores ground a precise

degree of epistemic value, an accuracy-centered theorist might say, is this: they al-

low us to say how S fares with respect our two “great commandments as would-be

knowers”, viz., Believe truth! Shun error! (James 1896, §VII). At bottom, she might

continue, epistemic value is a matter of obeying these two commands. (This is in

keeping with the spirit of the accuracy-centered approach.) And imprecise priors, in

virtue of having upper and lower-inaccuracy scores, obey these two commands to a
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determinate degree. A prior S’s lower-inaccuracy score, l(S,w), provides a measure

of the extent to which S avoids determinate error at w. Its upper-inaccuracy score,

u(S,w), provides a measure of the extent to which S determinately converges on the

truth at w. So any imprecise prior S ought to count as epistemically valuable to a

determinate degree at any world w.

We will measure the all-things-considered epistemic value or worth of a prior (or

posterior) at a world by an epistemic disutility score. An epistemic disutility score is a

function D , which maps priors, or sets S of probability distributions (treating precise

priors as singleton sets), and worlds w to non-negative real numbers, D(S,w). D(S,w)

measures how much disutility or disvalue S has if w is actual, from the epistemic

perspective. If D(S,w) equals zero, then S has minimal epistemic disutility (maximal

utility) at w. Epistemic disutility increases as D(S,w) grows larger. The accuracy-

centered theorist assumes that any reasonable epistemic disutility score satisfies at

least the following four conditions:

Extensionality. The epistemic disutility of a prior S at a world w is

solely a function of S’s upper and lower-inaccuracy scores at w.

Continuity. Epistemic disutility scores are continuous.

Upper/Lower Dominance. Moving a prior S’s upper and lower inac-

curacy scores uniformly downward always improves epistemic utility. If

u(S,w) and l(S,w) are both less than u(S ′, w) and l(S ′, w), then D(S,w) <

D(S ′, w).

Normalization. When a prior S has a determinate degree of inaccuracy

at w, its epistemic disutility at w just is that degree of inaccuracy. If

I (p, w)=x, for all p in S, so that u(S,w)=l(S,w)=x, then D(S,w)=x.
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Extensionality guarantees that accuracy is the cardinal ‘epistemic good’. ‘Aux-

iliary’ goods — calibration, justification, etc. — impact the all-things-considered

epistemic value or worth of a prior/posterior S at a world w by impacting how we

value ‘closeness to the truth’ (how we measure accuracy), or by impacting how we

balance off different determinate facts about accuracy (upper and lower-inaccuracy

scores) against one another to arrive at an all-things-considered epistemic (dis)utility

score. Continuity guarantees that small changes to facts about accuracy do not

result in excessively large changes in facts about epistemic utility. Upper/Lower

Dominance guarantees that determinate improvements in accuracy always result in

determinate improvements in epistemic utility. Finally, Normalization guarantees

that when a prior is informationally rich enough to pin down a precise degree of accu-

racy, nothing else matters to its epistemic utility. Its degree of epistemic (dis)utility

just is its degree of (in)accuracy.

3.4 Cliffordian Conservatism and Jamesian Liberalism

William James emphasizes the first of our two “great commandments as would-be

knowers,” viz., Believe truth! The risk of being in error, he says, is “a very small

matter when compared with the blessings of real knowledge.” W. K. Clifford, on the

other hand, emphasizes the second, Shun error! “It is wrong always, everywhere, and

for anyone,” he says, “to believe anything upon insufficient evidence” (Clifford 1877).

All inaccuracy scores strike some balance between these two commandments, and

in this way take some stand in the Clifford/James debate (cf. Joyce 2009, 281). The

more convex an inaccuracy score I is, the more it emphasizes avoiding error; the

more it reflects Cliffordian conservatism. An inaccuracy score I is convex at a world

w if (1/2)I (p, w)+(1/2)I (q, w) ≥ I ((1/2)p+(1/2)q, w), for any prior distributions
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p and q.46 The more concave it is, the more it emphasizes the pursuit of truth; the

more it reflects Jamesian liberalism.

Figure 3.2: Inaccuracy of p(Hi) =

x when Hi is true, according

to increasingly convex exponential

scores.

To illustrate, compare the Brier score,

I (p, w) = (1/n)
∑

i |p(Hi) − w(Hi)|2, which

is convex, with the power score (z = 8),

I ∗(p, w) = (1/n)
∑

i 7p(Hi)
8 + w(Hi) · (1 −

8p(Hi)
7), which is almost everywhere concave.

Suppose that I have an urn containing black,

green and yellow balls mixed in some unknown

proportion. (See Joyce 2009, p. 283 for a sim-

ilar example.) I decide to adopt the uniform

prior u over hypotheses H regarding the chance

of drawing a black, green or yellow ball, respec-

tively. So my prior probability (truth-value estimate) for observing a black ball on

next draw is 1/3 (similarly for green and yellow). Now imagine that you draw a ball

Figure 3.3: Inaccuracy of p(Hi) =

x when Hi is true, according

to increasingly concave exponential

scores.

and observe that it is black. You decide not

to tell me the outcome of your draw outright.

But you have a pill that you can give me, which

will randomly raise or lower my prior probabil-

ity for Black (the proposition that the selected

ball is black), with equal chance, by 1/3, while

leaving the rest of my prior probabilities the

same. What should you do?

If all you care about is the accuracy of

my prior, and you measure inaccuracy by the

(mostly) concave power score I ∗, then you
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should opt for the more aggressive, truth-seeking option. You should give me the

pill. Because I ∗ is concave, the benefits of getting closer to the truth significantly

outweigh the costs of getting further from it. This is reflected in your best estimates

of the inaccuracy of my prior conditional on my taking the pill, on the one hand, and

standing pat, on the other. You are sure that if I stand pat, then my prior probabil-

ities for Black, Green and Yellow, respectively, are inaccurate to degree 0.333. Your

best estimate of their inaccuracy if I take the pill, however, is 0.302. You expect me

to improve, in terms of inaccuracy, if I take the pill.

If you measure inaccuracy by the convex Brier score I , however, then you should

opt for the more conservative option. You should tell me to stand pat. Because

I is convex, the benefits of getting closer to the truth pale in comparison to the

costs of getting further from it. This, again, is reflected in your best estimates of the

inaccuracy of my prior, conditional on my taking the pill/standing pat. You are sure

that if I stand pat, my prior probabilities are inaccurate to degree 0.222. Your best

estimate of their inaccuracy if I take the pill, however, is 0.259. You expect me to do

worse, in terms of inaccuracy, if I take the pill.

The moral is this: the convexity/concavity properties of inaccuracy scores reflect

some way of balancing our two “great commandments as would-be knowers”, viz.,

Believe truth! Shun error! Concave scores place more of an emphasis on believing

the truth. Convex scores place more of an emphasis on avoiding error.

On the accuracy-centered view, every reasonable epistemic disutility score D is a

function of some inaccuracy score I . The epistemic disutility of S at w, D(S,w), is

determined by S’s upper and lower-inaccuracy scores at w:

• l(S,w) = inf {I (p, w)|p ∈ S}

• u(S,w) = sup {I (p, w)|p ∈ S}
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Epistemic disutility scores strike a balance between our ‘two great commandments’,

then, by featuring inaccuracy scores which strike a particular balance. Some scores D

feature the Brier score, while others D ′ feature the logarithmic score, while still other

D ′′ feature a power score, and so on. In virtue of the different balances that these

inaccuracy scores strike, D , D ′ and D ′′ count as doing so as well, as taking different

positions in the Clifford/James debate. But epistemic disutility scores strike a balance

between our ‘two great commandments’ in another way too. Different disutility scores

afford upper and lower-inaccuracies, u(S,w) and l(S,w), different degrees of relative

importance. Depending on which dictum you are inclined to place more emphasis on

— Believe truth! or Shun error! — you will see certain weightings as more reasonable

than others.

Jamesians will see disutility scores D that treat u(S,w) as more important than

l(S,w) as capturing a more reasonable view about how to balance off all of the deter-

minate facts about S’s accuracy at w to arrive at an all-things-considered judgment

about epistemic worth. “Avoiding determinate error,” they will say, “is a very small

matter when compared with the blessings of getting determinately close to the truth.”

Avoiding determinate error is a matter of having a low lower -inaccuracy score, l(S,w).

Getting determinately close to the truth, in contrast, is a matter of having a low up-

per -inaccuracy score, u(S,w). The upshot: any reasonable measure of epistemic

disutility, or all-things-considered epistemic disvalue, according to the Jamesian, will

count u(S,w) as much more important than l(S,w). It will reward a prior S more

for having u(S,w) close to zero than for having l(S,w) close to zero.

Cliffordians, on the other hand, will see disutility scores D that treat l(S,w) as

more important than u(S,w) as capturing a more reasonable view about all-things-

considered epistemic worth. “The sin of being in determinate error,” they will say, “is

a much greater offense than the sin of failing to get determinately close to the truth.”
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So, any reasonable measure of epistemic disutility, or all-things-considered epistemic

disvalue, according to the Cliffordian, will count l(S,w) as much more important than

u(S,w). It will penalize a prior S much more for having a high lower-inaccuracy score

(i.e., for being in determinate error) than it will for having a high upper-inaccuracy

score (i.e., for failing to get determinately close to the truth).

In what follows, I will consider only the simplest epistemic disutility scores, ‘linear

scores’ of the form:

Dλ(S,w) = λ · l(S,w) + (1− λ) · u(S,w).

Linear scores Dλ with λ > 1/2 treat lower inaccuracy, l(S,w), as more important

than the upper inaccuracy, u(S,w). We call these Cliffordian disutility scores. Linear

scores Dλ with λ < 1/2 treat u(S,w) as more important than l(S,w). We call these

Jamesian disutility scores.

Linear disutility scores are ‘reasonable’, in the sense described in §3.3.1. They

satisfy Extensionality, and so guarantee that accuracy, in some sense, is the cardi-

nal ‘epistemic good’. They satisfy Continuity, and so guarantee that small changes

to facts about accuracy do not result in large changes in facts about epistemic util-

ity. They satisfy Upper/Lower Dominance, and so guarantee that determinate

improvements in accuracy always result in determinate improvements in epistemic

utility. Finally, they satisfy Normalization, and so guarantee that when a prior is

informationally rich enough to pin down a precise degree of accuracy, nothing else

matters to its epistemic utility.

Many other epistemic disutility scores satisfy these constraints as well. I focus on

linear disutility scores because the aims of this chapter are limited. I only hope to

gesture toward some new kinds of reasons for employing imprecise priors. And for

this end, it is sufficient to simply provide examples of contexts in those reasons are
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extremely salient. Linear disutility scores are particularly useful for furnishing such

examples.

Figure 3.4: The Cramer-von Mises dis-

tance between two beta distributions,

given by a function of the area between

their respective cumulative distribution

functions.

For concreteness, I will also restrict

my attention to disutility functions that

feature the Brier score, at least when

considering discrete priors (priors de-

fined over countably many theoretical

hypotheses). When we consider continu-

ous priors (priors defined over uncount-

ably many theoretical hypotheses, e.g.,

chance hypotheses), we will measure in-

accuracy by Cramer-von Mises distance,

which is a natural extension of squared

Euclidean distance (‘Brier distance’) to

the space of continuous distributions.47

The Cramer-von Mises distance between continuous distributions p and q, C(p, q) =∫ 1

0
|P (x) − Q(x)|2dx, is just the squared L2 metric between their respective cumula-

tive density functions, P and Q (Deza and Deza 2009, 245).48 C(p, q) specifies the

distance between p and q as a function of the area between the CDFs, P and Q,

counting regions of smaller divergence for less and regions of greater divergence for

more (left, previous page). The proposal, a bit more carefully then, is to measure the

inaccuracy of a continuous prior p at a world in which H is true by the Cramer-von

Mises distance between p and the indicator distribution ιH , which is defined by the

Dirac density that centers all of its probability mass on H. Again, restricting our

attention in this way will allow us to provide specific examples of contexts in which

the reasons for employing imprecise priors are extremely salient.
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3.5 A Dominance Argument for Imprecise Priors

We ought to adopt imprecise priors in certain contexts because they put us in an

unequivocally better position to secure epistemically valuable posterior beliefs than

precise priors do. In such contexts, imprecise models are better suited to play the

primary theoretical role of priors than precise models are.

What exactly does it take, though, for one prior to put you in a better position

to secure epistemically valuable posteriors than another prior? We can get a handle

on this question, I suggest, by comparing the objective expected posterior epistemic

value of different priors S across all relevant theoretical hypotheses. In any exper-

imental context aimed at adjudicating between hypotheses H1, ..., Hn, we can ask:

how (objectively) likely is it that the experiment will yield any particular data item

D1, ..., Dm if hypothesis Hi is true? We can also ask: to what extent will S converge

on Hi when conditioned on Dj? How epistemically valuable will the posterior, SDj
, be

as a result? Finally, we can ask what the (objectively) best estimate of S’s posterior

epistemic value is if hypothesis Hi is true. What is ExpHi
(D(SD, Hi))? In certain

cases, I claim, facts about these (objective) best estimates settle our question defini-

tively; they settle the matter of whether one prior S puts you in a better position

than another prior S∗ to secure epistemically valuable posteriors.

Consider a concrete case. A scientist is going to perform an experiment to adjudi-

cate between competing theoretical hypotheses H1, ..., Hn about whether (and how)

over expression of a certain gene causes chromosomal instability in breast tumors.

She has a great deal of relevant prior evidence E: information about the levels of

different genes expressed in past patients, as well as their various clinical symptoms,

recurrence rates, etc.; information about the broader causal mechanisms that give

rise to breast cancer, and so on. If two priors, S and S ′, both satisfy the constraints
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imposed by E, but S’s objective expected posterior epistemic disutility is lower than

S∗’s relative to every theoretical hypothesis Hi, then S must put her in a better posi-

tion than S∗ to secure epistemically valuable posteriors. Whatever else is true about

“putting oneself in a good position” with respect to some goal, it must be the case that

if one option gives you a better chance of achieving the goal than another, however

the world happens to be (whatever the true chance hypothesis is), then that option

puts you in a better position with respect to that goal.

So we have a sufficient condition for one prior S to put you in a better position

than another S∗, in terms of securing epistemically valuable posteriors:

(F) S puts you in a better position than S∗ to secure epistemically valu-

able posteriors if S’s objective expected posterior epistemic disutility is

lower than S∗’s relative to all Hi.

The goal now is to provide examples of contexts in which imprecise priors put you

in an unequivocally better position to secure epistemically valuable posterior beliefs

than precise priors do.

Figure 3.5: MaxEnt prior u over hy-

potheses B = x.

In some contexts, certain precise priors

put you in a better position to secure epis-

temically valuable posteriors than imprecise

priors do. Imagine that a bookie hands you

a coin and offers you a bet. You have no

prior evidence about the coin’s bias. But the

bookie allows you to flip the coin for awhile

— 5 times, for example — prior to deciding

whether or not to take the bet. Consider two

options that you have for taking your prior
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information (viz., none) in your decision problem. (Of course, these are not the only

two options.) Option 1: adopt the (precise) maximum entropy (uniform) prior u over

hypotheses B = x about the coin’s bias. Option 2: adopt an imprecise beta-binomial

model, with some level of concentration s, e.g., s = 10 (see Walley 1991, §5.3, for a

more detailed exposition). Beta distributions b are parameterized by two quantities,

Figure 3.6: Beta distributions with

concentration s = 10.

α and β. These ‘shape parameters’ deter-

mine which hypotheses B = x the distribu-

tion b focuses its probability mass on. The

concentration parameter, s = α + β, corre-

sponds roughly to how ‘peaked’ b is around

its mean. The imprecise beta model with

concentration 10 is the set M10 of all beta

distributions b with s = 10 (examples of such

distributions pictured left). Nota bene: I fo-

cus on beta priors in what follows because

(i) they are very rich; any prior distribution can be approximated by a finite mix-

ture of beta distributions; (ii) they are mathematically tractable; they generate beta

posterior distributions. (cf. Walley 1996, 9).

Suppose that, given the standards of evaluation operative in your context of in-

quiry, the appropriate measure of epistemic disutility D is completely Jamesian:

D(S,w) = D0(S,w) = 0 · l(S,w) + 1 · u(S,w) = sup {I (p, w)|p ∈ S}

Such a disutility function D reflects an unmitigated commitment to getting deter-

minately close to the truth. It sees no independent value in avoiding determinate

error. Posteriors that get determinately close to the truth (have low upper-inaccuracy

scores), of course, will also avoid determinate error (have low lower-inaccuracy scores).
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But error avoidance is not something to be sought for its own sake, on this view.

Figure 3.7: Top curve: M10’s objective

expected (Jamesian) disutility, relative to

chance hypotheses B = x. Bottom: u’s

objective expected disutility, relative to

B = x.

The important observation is this:

given a completely Jamesian measure

D , the MaxEnt prior u’s objective ex-

pected posterior epistemic disutility is

lower than M10’s relative to every chance

hypothesis B = x. The reason: for any

chance hypotheses B = x and any data

sequence D = HkT 5−k, there is some

distribution b in M10 that converges on

B = x less than u does, when con-

ditioned on D. (This is just a conse-

quence of the ‘inclusiveness’ of the im-

precise beta model M10.) This ensures

that the upper-inaccuracy of u is lower than the upper-inaccuracy of M10, whichever

data sequence you observe, and whatever the true chance hypothesis happens to

be. And that guarantees that u’s objective expected posterior epistemic disutility is

lower than M10’s, come what may. It guarantees that u dominates M10, in terms of

objective expected disutility.

This shows that there are contexts in which certain precise priors (viz., the MaxEnt

prior) put you in a better position to secure epistemically valuable posteriors than

certain imprecise priors (viz., the imprecise beta prior with concentration s = 10). We

will now show that the converse occurs as well. There are contexts in which certain

imprecise priors put you in a better position than various precise priors to secure

epistemically valuable posteriors. In fact, there are contexts in which they put you in

a better position than any reasonable precise prior. This provides decisive epistemic
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reason to employ imprecise priors in those contexts.

Suppose once more that you are considering different options for incorporating

your prior information about the coin’s bais (viz., none) in your decision problem.

Now, however, the operative standards of evaluation yield a measure of epistemic

disutility D that is completely Cliffordian, rather than Jamesian.

D(S,w) = D1(S,w) = 1 · l(S,w) + 0 · u(S,w) = inf {I (p, w)|p ∈ S}

Such a disutility function D reflects unadulterated concern for avoiding error. It

sees no independent value in getting determinately close to the truth. Of course,

getting determinately close to the truth (have a low upper-inaccuracy score) is in-

strumentally valuable; it guarantees avoidance of determinate error (it guarantees a

Figure 3.8: Top curve: u’s objective ex-

pected (Cliffordian) disutility, relative

to chance hypotheses B=x. Bottom:

M10’s objective expected disutility, rel-

ative to B=x.

low lower-inaccuracy score). But getting de-

terminately close to the truth is not worth

pursuing for its own sake, on this view.

Given a completely Cliffordian measure

D , the imprecise beta model, M10, domi-

nates the MaxEnt prior u, in terms of ob-

jective expected posterior epistemic disutil-

ity. The reason: for any chance hypotheses

B = x and any data sequence D = HkT 5−k,

there is some distribution b in M10 that con-

verges on B = xmore than u does when con-

ditioned on D. (Again, this is just a conse-

quence of the ‘inclusiveness’ of the imprecise

beta model M10.) This is sufficient to guarantee that the lower-inaccuracy of M10 is

less than the lower-inaccuracy of u, whichever data sequence you observe, and what-
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ever the true chance hypothesis happens to be. This, in turn, guarantees that M10’s

objective expected posterior epistemic disutility is lower than u’s, come what may.

This phenomenon — objective expected disutility domination — is rare. But it

is not entirely restricted to contexts in which the appropriate measure of all-things-

considered epistemic value or worth is given by a maximally Jamesian or Cliffordian

disutility score. Compare, for example, the objective expected disutilities of the

Figure 3.9: Top curve: u’s objective

expected disutility, relative to chance

hypotheses B=x, measuring disutility

by D0.9. Bottom: M10’s objective ex-

pected disutility, relative to B=x.

imprecise beta model, M10, and the Max-

Ent prior, u, when the appropriate disutility

score is Dλ(S,w) = λ · l(S,w) + (1 − λ) ·

u(S,w), with λ > 0.9. Such scores are Clif-

fordian, but not maximally Cliffordian. In

any such context, M10 dominates u, in terms

of objective expected disutility (right).

Or consider a context in which the ap-

propriate disutility score is D0.95(S,w) =

0.95·l(S,w)+0.05·u(S,w). Again, this score

is Cliffordian, but not maximally so. Rel-

ative to this score, M10 dominates all beta

priors b, in terms of objective expected disu-

tility, other than those with excessively low entropy.49 It is not difficult to see why,

either. For every relatively high entropy beta prior b, every chance hypothesis B = x,

and every data sequence D, there is a lower entropy b′ in M10 that converges more

on B = x when conditioned on D than b does. Only if b has particularly low entropy,

and is centered on B = x, will it tend to converge on B = x more than any prior in

M10.

The consequence is that the imprecise beta prior M10 puts you in a better position
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to secure epistemically valuable posteriors than any prima facie reasonable precise

Figure 3.10: Left: M10’s objective expected disutility across hy-

potheses B=x, compared to the beta distribution p with α = 0.8

and β = 2.4 (entropy: -0.425). Right: M10’s objective expected

disutility compared to q with α = β = 0.5 (entropy: -0.242).

beta prior. Why?

Because excessively

low entropy pri-

ors are (at least)

prima facie unrea-

sonable, in this

context. Given

that you have no

relevant prior ev-

idence about the

coin’s bias, low entropy priors will depend significantly on epistemic luck for suc-

cess (posterior epistemic value), in a sense to be made precise in §3.6.

This provides good epistemic reason to employ imprecise priors in contexts like

the ones considered here, contexts in which all-things-considered epistemic value is

best measured by a severely conservative disutility score. Still, such contexts are

(plausibly) too exotic to be central to the foundations of imprecise Bayesianism.

So we turn to another new motivation for employing imprecise priors. This second

motivation provides good reason to employ imprecise priors in a much wider range of

contexts than the first.

3.6 Epistemic Luck

Even when imprecise priors do not dominate precise priors, in terms of objective

expected disutility, there is often good epistemic reason to adopt one, rather than a

precise prior. The primary role of priors is to help you secure epistemically valuable

posteriors, and to minimize your need for epistemic luck in securing them. In a fairly
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wide range of conservative contexts, imprecise priors minimize your need for luck.

There are various kinds of epistemic luck. If there could easily be an earthquake

in Los Angeles right now, but it fails to materialize, and a talented artist in the midst

of a project goes on to produce her most beautiful painting to date, then her success

is subject to what virtue epistemologists such as Pritchard (2009) call environmental

luck. This is the sort of luck that enables agents to exercise skill. Without it, our

artist would not have managed to paint anything at all, and so would not have

been successful (produced a beautiful painting). Even so, note: certain important

contrastive facts about her success are explained primarily by her skill, an internal

factor, e.g., the fact that her subject’s eyes glisten to just the right degree, rather

than slightly more, or less.

In contrast, another sort of luck — intervening luck — severs this explanatory

link. Suppose, for example, that our artist’s arch nemesis tries to sabotage her. He

covers her canvas with a chemical which, when mixed with oil-based paint, produces

colors at random. Fortunately for our artist, this random process happens to return

each stroke, time after time, to its original color. So she is successful. Her efforts

yield a beautiful painting. But she is not successful because skillful (her performance

is not apt, in Sosa’s terminology; cf. Sosa 2007, 79). Her particular degree of success

(the fact that her painting is nearly perfect, rather than marred by 1, or 2, or 100,

or 1000 off-colored strokes) is not explained primarily by internal factors (the agent’s

skill). Rather, it is explained by external factors (fortuitous chemical reactions). We

will take this to be the defining characteristic of intervening luck: it is in play when

external factors are primarily responsible for explaining an agent’s particular degree

of success (why she achieved exactly this degree of success, rather than some other).

Priors are also subject to intervening epistemic luck, in the following sense: when

you update a prior on evidence, it yields a posterior which is more or less epistemically
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valuable (more or less successful). The fact that the posterior is valuable to exactly

this degree, rather than some other degree, in turn, is explained more or less by

two different kinds of factors. On the one hand, internal factors — facts about the

prior’s intrinsic properties, such as how resilient it is — might bear the bulk of the

explanatory burden. On the other hand, external factors — facts about the prior’s

extrinsic properties, such as the proximity of a coin’s true bias to the prior’s expected

bias — might end up shouldering a bigger part of this burdern.

Of course, no prior minimizes dependence on luck tout court. There are various

kinds of both environmental and intervening luck that adopting a prior — any prior

— will simply not mitigate. No prior mitigates the environmental luck in play when

the ground underneath one’s lab stays intact, rather than opening up and swallowing

the building whole (as it easily could have, perhaps, if the conditions were right

for an earthquake). No prior helps eliminate the luck involved in stumbling upon a

particularly pertinent journal article. (No prior mitigates this sort of luck in receiving

new evidence.) And no prior ameliorates the luck involved in avoiding misleading

evidence, of the sort that a detective faces if the primary suspect in her investigation

is being framed.

When evaluating the claim, then, that imprecise priors minimize your need for luck

in a range of conservative contexts, we ought to focus our attention on a particular

kind of luck, not epistemic luck tout court. We ought to focus attention on whatever

kind of luck a well-constructed prior could plausibly mitigate. A good candidate:

luck in having the true theoretical hypothesis (e.g., the coin’s true bias) fall close to

one’s prior estimate of the true theoretical hypothesis (e.g., its prior expected bias).

When we talk of epistemic luck from here on out, we will have this special kind of

(intervening) luck in mind.
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3.7 Ameliorating Dependence on Luck

A prior depends on this special sort of luck — luck in having the true theoretical

hypothesis fall close to its prior estimate — for success (posterior epistemic value) to

the extent that facts about the proximity of that estimate to the true hypothesis are

relevant for explaining success. It depends on this special sort of luck to the extent

that such facts are relevant for explaining why the posterior is epistemically valuable

to some particular degree, rather than some other degree.

Figure 3.11: Uniform prior u (bot-

tom) and more concentrated beta

prior b (top).

To show, then, that imprecise priors do

more to ameliorate dependence on luck than

precise priors, in certain contexts, we need to

show that the relevant proximity-facts do less

to explain their degrees of success, in those

contexts, than they do to explain the success

of precise priors. As a warm-up, let’s first il-

lustrate how fortuitous proximity-facts might

do less to explain the success of one precise

prior than another. Take our standard exam-

ple: a bookie hands you a coin and offers you

a bet; you have no prior evidence about the coin’s bias. Consider two options for tak-

ing your prior information (viz., none) into account. You could adopt the (precise)

maximum entropy (uniform) prior u over hypotheses B = x about the coin’s bias.

Alternatively, you could adopt a more concentrated beta distribution b (with α = 10

and β = 4).

Now imagine that you flip the coin 14 times. It comes up heads 10 times and

tails 4 times. When you condition both priors on this data D, you arrive at the
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Figure 3.12: uD and bD.

posteriors uD and bD, respectively (pic-

tured left, next page). Suppose that the

true hypothesis H about coin’s bias is

B = 5/7 (exactly the frequency of heads in

your data sequence). Then bD is (determi-

nately) more accurate, and hence (determi-

nately) more epistemically valuable than

uD, on the accuracy-centered view. The

former is inaccurate to degree C(bD, H) = 0.020, while the latter is inaccurate to

degree C(uD, H) = 0.028 (measuring inaccuracy by Cramer-von Mises distance).

Though the concentrated beta prior b is more successful (attains a higher degree

of posterior epistemic value), the uniform prior u’s success depends less on luck.

Figure 3.13: The marginal chance distribu-

tion p for D(uD, H), relative to the true hy-

pothesis H about the coin’s bias, B = 5/7.

To see this, note: the explanation of

the fact that uD has a particular de-

gree of epistemic disutility (D(uD, H) =

C(uD, H) = 0.028), rather than some

other degree (0.027, 0.026, etc.) is prob-

abilistic. The most proximate explana-

tory factor is that, immediately prior

to your experiment (flipping the coin),

the true marginal chance distribution p

for D(uD, H) had a particular charac-

ter (pictured right). To explain why uD

is valuable to the exact degree that it is, rather than something slightly higher

or lower, we must cite not only probability mass that p assigns to the hypothe-

sis D(uD, H) = 0.028, but also the mass that p assigns to D(uD, H) = 0.027,
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D(uD, H) = 0.026, etc.; the entire distribution is relevant. In addition, p serves

as an explanatory screen, it seems. Any other factor relevant for explaining why uD

is valuable to exactly the degree that it is (0.028), rather than some other degree

(0.027, 0.026, etc.), is only relevant in virtue of explaining why p takes the exact form

that it does.50

The key observation: p is more or less invariant across hypotheses H about the

coin’s bias. Whether the true bias is 5/7, 11/64 or 82/97, the marginal chance

distribution p for D(uD, H) will look more or less the same.51 This is reflected in

the fact that p’s mean — u’s expected posterior epistemic disutility — stays fairly

constant across hypotheses H (see figure 13, p. 24). The upshot: the external factor

in question — how close the coin’s true bias happened to fall to u’s prior estimate

— is not terribly relevant to explaining why p takes the exact form that it does.

Hence, it is also not terribly relevant to explaining why uD is valuable to exactly

degree 0.028, rather than 0.027, 0.026, etc. The moral: u depends fairly minimally on

luck in having the true chances fall close to its prior estimates for success (posterior

epistemic value).

To underscore this point, consider an analogy.

The Expert Archer. A highly skilled archer faces a number of different

targets T arranged at varying distances. Given her expertise, the marginal

chance distribution p for D (distance of her arrow from the center of

the target) looks more or less the same, regardless of which target she

takes aim at. Whether she aims at some target T rather close by, or

some T ′ rather far away (within reasonable bounds, of course), p assigns

roughly the same (high) probability mass to the hypothesis D = 0 (hitting

the target dead center), roughly the same (low) probability mass to the
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hypothesis D = 15 (hitting 15cm off target), and so on.

Figure 3.14: The objective expected

posterior epistemic disvalue of u, rel-

ative to chance hypotheses B = x.

Because p remains largely unaltered

across targets T , the initial proximity of our

archer to T is plausibly (more or less) irrel-

evant for explaining why p takes the exact

form that it does. And because facts about

the form that p takes serve as an explana-

tory screen vis-á-vis D — any other factor

relevant for explaining why D = 0 (she hits

the target dead center), rather than D = 1,

D = 2, etc., is only relevant in virtue of ex-

plaining why p takes the exact form that it

does — that initial proximity is (more or less) irrelevant for explaining why our archer

is successful to the exact degree that she is.

The uniform prior is much like this expert archer. Because p remains largely

unaltered across chance hypothesesH, the (initial) proximity of the uniform prior u to

H is plausibly (more or less) irrelevant for explaining why p takes the exact form that

it does. And because facts about the form that p takes serve as an explanatory screen

vis-á-vis posterior epistemic disutility — any other factor relevant for explaining why

D(uD, H) = 0.028, rather than D(uD, H) = 0.027, D(uD, H) = 0.026, etc., is only

relevant in virtue of explaining why p takes the exact form that it does — that

initial proximity is next to irrelevant for explaining why the posterior uD is successful

(epistemically valuable) to the exact degree that it is (0.028).

The more biased beta prior, however, is rather more like an unskilled archer. Such

an archer might face targets T arranged at varying distances. Suppose she aims at
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Figure 3.15: The objective expected

posterior epistemic disvalue of b, rela-

tive to chance hypotheses B = x.

a close one and hits the bullseye dead cen-

ter. Unlike in the expert archer case, the

marginal chance distribution q for D (dis-

tance of her arrow from the center of the tar-

get) varies significantly across T . If she aims

at some target T rather close by, the mean

of q (i.e., the expected value of D) might be

close to 0. There is a high chance of hitting

the bullseye dead center, a lower chance of

hitting 1cm off target, an even lower chance

of hitting 2 cm off target, etc. But if, instead, she aims at some T ′ far away, the mean

of q might be much higher. There is a much higher chance of missing the bullseye

by quite a bit. The upshot: the unskilled archer’s initial proximity to her target is

relevant for explaining why q takes the exact form that it does. In turn, it is relevant

for explaining why she is successful to the exact degree that she is.

Similarly, the marginal chance distribution q for D(bD, H) varies rather signifi-

cantly across chance hypotheses H. This is reflected in the fact that q’s mean —

the expected posterior epistemic disutility of b — varies significantly across H (right,

previous page). The upshot: the (initial) proximity of b to the true chance hypothesis

H is relevant for explaining why q takes the exact form that it does. In turn, it is

relevant for explaining why the posterior bD is successful (epistemically valuable) to

the exact degree that it is (0.020).

The moral of all of this is that certain priors (like certain archers) depend more on

a special sort of luck — luck in having the truth theoretical hypothesis fall close to its

prior estimate — for success (posterior epistemic value) than others. This fact, I hope

to show, gives us good epistemic reason to employ imprecise priors, in a wide range
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of conservative contexts. In these contexts, imprecise priors do more to ameliorate

dependence on luck than precise priors do.

3.8 An Anti-Luck Argument for Imprecise Priors

3.8.1 Case 1: Imprecise Informationless Priors

In many contexts of inquiry, no precise prior puts you in an unequivocally better

position to secure epistemically valuable posteriors than imprecise priors do. And

vice versa. No imprecise priors puts you in an unequivocally better position to secure

valuable posteriors than precise priors do. Nevertheless, there is often still good

epistemic reason to prefer an imprecise prior over a precise one. The primary role

of priors is to help you secure epistemically valuable posteriors, and to minimize

your need for epistemic luck in securing them. I will show that in many contexts

— conservative contexts, in particular — there are imprecise priors whose objective

expected disutility varies much less across chance hypotheses than any precise prior.

And this, I have argued, shows that these special imprecise priors depend less on

luck for success (posterior epistemic value) than precise priors. They do more to

ameliorate dependence on luck. This is the second new motivation for employing

imprecise priors.

To illustrate, suppose one last time that a bookie hands you a coin and offers you

a bet. You have no prior evidence about the coin’s bias. The bookie is going to allow

you to flip the coin 5 times prior to deciding whether or not to take the bet. Given the

standards of evaluation operative in your context of inquiry, the appropriate measure

of epistemic disutility D is Cliffordian. It is not maximally Cliffordian, however.

Perhaps D(S,w) = D0.708(S,w) = 0.708 · l(S,w) + 0.292 · u(S,w). Such a disutility

function sees some independent value in getting determinately close to the truth, but
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nevertheless, places a premium on avoiding determinate error.

Now consider two options that you have for taking your information (viz., none)

into account in your decision problem. (Of course, these are not the only two options.

But they do have implications for nearly all options, as we will see.) Option 1: adopt

the (precise) beta prior b with α = β ≈ 1.2 over hypotheses B = x about the coin’s

bias. Option 2: adopt the imprecise beta-binomial model, with concentration s = 3.

Figure 3.16: Top curve: M3’s objective

expected disutility, relative to chance

hypotheses B=x, measuring disutility

by D0.708. Bottom: b’s objective ex-

pected disutility, relative to B=x.

In this context, I claim, M3 depends

less on luck for success (posterior epistemic

value) than b. The reason: M3’s objec-

tive expected posterior disutility varies less

across chance hypotheses B = x than b’s

does (left). The difference between b’s maxi-

mum and minimum objective expected disu-

tilities, maxi ExpHi
(D0.708(bD, Hi)) - minj

ExpHj
(D0.708(bD, Hj)), is 0.0162. The differ-

ence between M3’s maximum and minimum

objective expected disutilities is less: 0.0102.

Not only does M3 depend less on luck

for success (posterior epistemic value) than

b, but it depends less on luck for success than any precise beta prior. The beta prior

b with α = β ≈ 1.2 is no arbitrarily chosen prior. It is what I call in chapter 1

the maximally sensitive or MaxSen beta prior. It depends less on luck for success

than any other precise beta prior. (There is no other beta prior whose objective

expected posterior disutility varies less across chance hypotheses.) So the fact that

the imprecise beta model M3 depends less on luck for success than it means that M3

depends less on luck for success than all precise beta priors.

133



This seems to me to provide good epistemic reason to adopt an imprecise prior

in conservative contexts such as the one outlined here. There is an imprecise model,

viz., M3, that is better suited to play the primary theoretical role of priors than any

precise beta model. Further, given the flexibility of the class of beta distributions,

one might expect E0.24 to be better suited than any precise distribution to play the

primary role of priors. And in any context of inquiry, we ought to adopt whichever

prior is best suited to play the primary theoretical role of priors in that context.

3.8.2 Case 2: Informative Imprecise Priors

Up to this point, we have focused on a particular class of imprecise priors, viz., the

imprecise beta models. Imprecise beta models are ‘reference priors’ or ‘informationless

priors’, meant to be used when we lack any prior information relevant to the inference

problem at hand. We have focused on this class of priors primary because (i) they

form a rich, flexible class, (ii) they are mathematically tractable, and (iii) they have

proved successful in a range of practical applications, e.g., analyzing clinical data

from randomized trials of medical treatments (cf. Burton et al. 1996).

But, in most inference problems, we come to the table with a great deal of relevant

prior information. If the present, anti-luck motivation for employing imprecise priors

is to be central to the foundations of imprecise Bayesianism, then it must say some-

thing about such cases. And it does. In many conservative contexts, the prior that

both (i) satisfies the constraints imposed by one’s prior evidence, and (ii) minimizes

one’s need for luck in securing epistemically valuable posteriors, is imprecise.

Imagine, for example, that a knowledgeable friend tells you that the best estimate

of the coin’s bias is approximately 1/2 (perhaps she services the machine that made

it, or something of the sort). Consider two options that you have for taking your

evidence E into account. (Again, not the only two options.) Option 1: adopt the
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Figure 3.17: Beta distributions p with en-

tropy H(p) ≥ 0.24 and Expp(B) = 1/2.

(precise) beta prior b with α = β ≈ 1.2

over hypotheses B = x about the coin’s

bias. Of course, since α = β ≈ 1.2, p

satisfies the constraint imposed by E,

viz., Expb(B) = 1/2 (as does any beta

prior with α = β). Option 2: adopt

what we might call an imprecise entropy

model. An imprecise entropy model is

a set Ex of beta priors p (with density

functions f) such that (i) the entropy of

p is greater than or equal to x, i.e., H(p) = −
∫ 1

0
f(y) · log(f(y))dy ≥ x, and (ii) p

Figure 3.18: Top curve: p’s objective

expected disutility, relative to chance

hypotheses B=x, measuring disutility

by D0.708. Bottom: E0.24’s objective ex-

pected disutility, relative to B=x.

satisfies the constraints imposed by E. (In

the case at hand, p satisfies the constraint

imposed by E just in case α = β = z,

for some z.) In particular, imagine that

you adopt the imprecise entropy model with

minimum entropy level x = 0.24, E0.24 (left).

Once more, the standards of evaluation

operative in your context, we suppose, de-

termine a Cliffordian measure of epistemic

disutility, D0.708(S,w) = 0.708 · l(S,w) +

0.292 · u(S,w). So, getting determinately

close to the truth is of some independent

value. But avoiding determinate error is

much more epistemically important. In this context, I claim, E0.24 depends less on

luck for success (posterior epistemic value) than b. The reason: E0.24’s objective ex-
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pected posterior disutility varies less across chance hypotheses B = x than b’s does

(see figure 3.18). The difference between b’s maximum and minimum objective ex-

pected disutilities, maxi ExpHi
(D0.708(bD, Hi)) - minj ExpHj

(D0.708(bD, Hj)), is 0.0162.

The difference between E0.24’s maximum and minimum objective expected disutilities

is 0.0056.

This means that E0.24 depends less on luck for success (posterior epistemic value)

than any precise beta prior. The reason, again, is that beta prior b with α = β ≈ 1.2

depends less on luck for success than any other precise beta prior. So the fact that the

imprecise entropy model E0.24 depends less on luck for success than it means that E0.24

depends less on luck for success than all precise beta priors. E0.24 also depends less on

luck for success than all other imprecise entropy models. There is no other imprecise

entropy model whose objective expected posterior disutility varies less across chance

hypotheses.

We have good epistemic reason, then, to adopt an imprecise prior in conservative

contexts like this. There is an imprecise model, viz., E0.24, that is better suited to

play the primary theoretical role of priors than any precise beta model. Given the

flexibility of the class of beta distributions, one might even expect E0.24 to be better

suited than any precise distribution tout court to play the primary role of priors. And

in any context of inquiry, we ought to adopt whichever prior is best suited to play

the primary theoretical role of priors in that context.

We now have a range of illustrative examples at our disposal. We have examples

of contexts in which some imprecise prior puts you in a better position to secure

valuable posteriors than precise priors do (§3.4). We have examples of contexts in

which some imprecise does more to ameliorate dependence on luck than precise priors

do (§3.7). This is sufficient to achieve the rather limited aims of this chapter. It is

sufficient to gesture toward new kinds of epistemic reasons for employing imprecise
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priors.

3.9 Conclusion

My aim in this chapter was to illuminate two new kinds of reasons for employing

imprecise priors. We ought to adopt imprecise priors in certain contexts because

they put us in an unequivocally better position to secure epistemically valuable pos-

terior beliefs than precise priors do. We ought to adopt imprecise priors in various

other contexts because they minimize our need for epistemic luck in securing such

posteriors. I illuminated these reasons by providing examples of the relevant sorts of

contexts. This work points the way toward a new, potentially promising foundation

for imprecise Bayesianism.

To recap, my main argument went as follows:

1. In any context of inquiry, you ought to adopt whichever prior is best suited to

play the primary theoretical role of priors in that context, if there is one.

2. The primary role of priors is to help you secure epistemically valuable posterior

beliefs, and to minimize your need for epistemic luck in securing those beliefs.

3. In certain contexts, imprecise priors put you in a better position to secure

epistemically valuable posteriors than precise priors do.

4. In other contexts, no imprecise prior puts you in a better position to secure

valuable posteriors than precise priors do, or vice versa. But imprecise priors

minimize your need for epistemic luck.

C. In some contexts, you ought to adopt imprecise probabilities to incorporate your

prior information.
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I conclude by raising a few additional questions to be addressed in future research.

• I made a number of restrictive assumptions regarding the form of the epistemic

disutility scores under consideration. I only considered ‘linear scores’, and only

considered scores that measure inaccuracy by the Brier score (or Cramer-von

Mises distance). How robust are our results across all reasonable epistemic

disutility scores?

• The beta distributions are a very rich class of distributions. Any precise prior

can be approximated by a finite mixture of beta distributions. But does this

guarantee that if (i) an imprecise prior S’s objective expected disutility varies

less than all beta priors across chance hypothesis, then (ii) S’s objective ex-

pected disutility varies less than all precise priors, tout court?

• Is it possible, for fairly general classes of evidential constraints, to specify exactly

which conservative disutility scores call for imprecise priors, and to provide a

tractable method for identifying which imprecise prior they call for?

Notes

36See Savage 1972, pp. 46-50, for discussion of his ‘washing out theorem’. See also Barron,

Schervish and Wasserman (1999), or Hawthorne (1993) for discussion of conditions that guarantee

convergence.

37Murphy (1973) shows that the Brier score, an eminently plausible measure of accuracy, decom-

poses into calibration and refinement components. DeGroot and Fienberg (1982, 1983) generalize

this result, showing that any proper scoring rule can be separated into calibration and refinement

components. See Blattenberg (1985) for additional discussion.

38For illuminating discussions of epistemic value, see Maher 1993, ch. 9 and Joyce 2009.

39See in particular Joyce 2009, §2 and §4.
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40See Joyce 2013 for discussion of accuracy-centered approaches to theorizing about epistemic

value.

41See Joyce 1998, p. 593; Joyce 2009, p.269; Joyce 2013, p. 3.

42Consider, for example, the absolute value score, Iα1 . Let p be a prior defined over mutually

exclusive and jointly exhaustive theoretical hypothesesH1, ...,Hn. The absolute value score measures

the inaccuracy of p at a world w by the average linear distance between p’s estimate of the Hi’s truth-

value, p(Hi), andHi’s actual truth-value at w, w(Hi). That is, Iα1(p, w) = (1/n)
∑
i |p(Hi)−w(Hi)|.

The absolute value score is ruled out as unreasonable because it violates Coherent Admissibility. To

illustrate, let p be the uniform distribution over mutually exclusive and jointly exhaustive hypotheses

H1, H2, and H3; p(H1) = p(H2) = p(H3) = 1/3. The absolute value score of the probabilistically

coherent prior p at each world w is Iα1(p, w) = (1/3)·[2·(1/3−0)+(1−1/3)] ≈ 0.44. In contrast, the

absolute value score of the probabilistically incoherent prior q, which assigns 0 to each hypothesis,

is 1/3 at each world w: Iα1(q, w) = (1/3) · [2 · (0 − 0) + (1 − 0)] ≈ 0.33. So, according to the

absolute value score, there are probabilistically coherent priors which are accuracy-dominated by

incoherent priors, i.e., are at least as inaccurate at every world, and strictly more inaccurate at

some worlds. This is precisely what Coherent Admissibility disallows. For a very similar, but more

detailed discussion, see Joyce 2009, §9.

43An inaccuracy measure I is strictly proper just in case any probabilistically coherent prior

p minimizes expected inaccuracy, as measured by I , from its own perspective, i.e.,
∑
w p(w) ·

I (p, w) ≤
∑
w p(w) ·I (q, w) for any other q.

44See Gneiting 2007 for discussion of the power score, spherical score, and other proper scoring

rules.

45Specifically, if p(w1) = 0.1, p(w2) = 0.3, p(w1) = 0.6, and q(w1) = 0.05, q(w2) = 0.4, q(w1) =

0.55, respectively, then I (p, w1) = 0.42 and I (q, w1)0.445.

46An inaccuracy score I is concave at a world w if (1/2)I (p, w) + (1/2)I (q, w) ≤ I ((1/2)p +

(1/2)q, w), for any prior distributions p and q.

47Cramer-von Mises distance also yields the correct verdict about comparative closeness in those

cases where obviously correct answers are to be had. For example, for any beta densities f , g and h

that have the same mean but increasing variance, f is closer to g than to h, in terms of Cramer-von

Mises distance. Similarly, if f , g and h all have the same variance but larger and larger means, then

f is closer to g than to h.
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48The cumulative distribution function F corresponding to a density function f for a variable V is

defined by F (x) =
∫ x
−∞ f(y)dy, and specifies the probability that V takes a value less than or equal

to x.

49M10 dominates all beta priors b with differential entropy between roughly -0.25 and 0.

50Save, of course, for the fact that, at the end of the day, your experiment produced exactly the

outcome that it did.

51Of course, when B ≈ 0 or B ≈ 1, this distribution will concentrate probability almost exclusively

on one value for D(uD, H).
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Appendix A

In §2.6.2, we considered the following case. You have a coin, but no information about

its bias. In order to adjudicate between competing hypotheses about that bias, you

plan to flip the coin 25 times. To take account of your prior information (viz., none),

you adopt the maximum entropy prior u.

We then asked: what is the expected epistemic utility of the orthodox inductive

policy for making comparative probability judgments, viz.

I (u,D) =

 X � Y if uD(X) > uD(Y )

X � Y otherwise

from u’s own perspective? We imagined that the relevant epistemic utilities are given

by the following table:

Table A.1:

ch(Heads) ≤ ch(Tails) ch(Heads) > ch(Tails)
Heads � Tails 1 −5
Heads � Tails −5 1

Abstain from judgment −0.5 −0.5

If this is the epistemic payoff matrix, then the expected epistemic utility of I is

Expu(eu(I )) = 0.535057. We then outlined an alternative inductive policy that u

expects to do better, viz., the policy I ∗ that prescribes (i) judging that heads is more
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probable than tails if k ≥ 15, (ii) abstaining from judgment if 11 ≤ k ≤ 14, and (iii)

judging that tails is more probable than heads if k ≤ 10. This policy has an expected

epistemic utility of Expu(eu(I ∗)) = 0.627876.

A critical question: why think that any reasonable epistemic utility function yields

a payoff matrix anything like this one? The answer, which I will only briefly sketch

here, comes in three parts. First, the epistemic utility of a comparative probability

ordering � is best identified with the epistemic utility of the set S� of probabilities

that represent it:

S� = {p |X � Y only if p(X) ≤ p(Y )}.

Second, as I argued in chapter 3, there are a range of reasonable measures of the

all-things-considered epistemic value or worth of a set of probabilities S. In particular,

I argue, simple ‘linear scores’ of the form:

Dλ(S,w) = λ · l(S,w) + (1− λ) · u(S,w).

are prima facie reasonable. The quantities l(S,w) and u(S,w) are what I call the

lower and upper-inaccuracy scores of S at a world w.

• l(S,w) = inf {I (p, w)|p ∈ S}

• u(S,w) = sup {I (p, w)|p ∈ S}

I is some ‘reasonable’ inaccuracy function. (See, for example, Joyce 1998, 2009,

Predd et al. 2009, and Leitgeb & Pettigrew 2010 for discussion of constraints on

reasonable inaccuracy functions.)

Finally, certain linear disutility scores yield a payoff matrix like the one above. In

particular, severely ‘conservative scores’ yield a similar payoff matrix, e.g., D0.925(S,w)

= 0.925 · l(S,w) + 0.075 · u(S,w), where l(S,w) and u(S,w) are determined by the
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Brier score (or in the continuous case, Cramer-von Mises distance). (See §2.3.2 for

discussion of why such scores count as conservative.)

For illustrative purposes, consider an agent who judges that heads is at least as

probable as tails (Heads � Tails), and one who abstains from judgment on the matter.

Identify their respective comparative probability orderings with the following sets of

probabilities:

SAbstain = {b | α + β ≤ 10}

SHeads�Tails = {b | α + β ≤ 10 & α/(α + β) ≥ 1/2}.

SAbstain is the beta-binomial model with concentration level 10 (see §3.4, and Walley

1991, §5.3), i.e., the set of beta distributions b (over hypotheses B = x about the bias

of the coin) with concentration (α + β) less than or equal to 10. The beta-binomial

Figure A.1: Epistemic disutility of

SAbstain (bottom) and SHeads�Tails

(top), respectively, as measured by the

linear score D0.925.

model is a popular ‘imprecise ignorance

prior’, well-suited for modeling suspension

of judgment. I use the beta-binomial model,

rather than the full set of priors over hy-

potheses B = x simply to reduce computa-

tional complexity. SHeads�Tails is the set of

beta distributions b with (i) a concentration

less than or equal to 10, and (ii) a mean,

α/(α + β), greater than or equal to 1/2. It

is the subset of SAbstain containing exactly

the b that assign at least as much probability

to Heads as to Tails.

Now consider the epistemic disutility of SAbstain and SHeads�Tails, respectively,

across worlds in which ch(Heads) = x (for all x ∈ [0, 1]), measuring disutility by
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the ‘conservative score’ D0.925(S,w) = 0.925 · l(S,w) + 0.075 · u(S,w) (pictured right,

previous page). Note that D0.925 assigns exactly the same sorts of penalties that we

observed in table 2.7. Judging Heads � Tails is slightly better, according to D0.925,

than abstaining if ch(Heads) > ch(Tails). But it is much worse than abstaining if

ch(Heads) ≤ ch(Tails). The average disutilities in these two cases are as follows:

Table A.2:

ch(Heads) ≤ ch(Tails) ch(Heads) > ch(Tails)
Heads � Tails 0.189 0.051

Abstain from judgment 0.083 0.083

The lesson is this: table 2.7 is simply a coarse-grained representation of the sort of

epistemic disutility assignment furnished by severely conservative disutility scores,

e.g., D0.925. The upshot: prima facie reasonable epistemic utility functions yield

payoff matrices like those hypothesized in table 2.7. Table 2.7 is not an ad hoc

assignment of epistemic utilities.
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