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ABSTRACT

REGULARIZED FUNCTIONAL REGRESSION MODELS WITH
APPLICATIONS TO BRAIN IMAGING

by

Xuejing Wang

Chair: Bin Nan

Positron emission tomography (PET) is an imaging technique that provides use-

ful information about brain metabolism to help clinicians in the early diagnosis of

Alzheimer’s disease (AD). In order to identify the brain areas that show significant

signals, many statistical methods have been developed for the analysis of brain imag-

ing data. However, most of them neglect accounting for spatial information in imaging

data. One way to address this problem is to treat each image as a realization of a

functional predictor. This dissertation includes three research projects concerning

regularized functional regression models via Haar wavelets for the analysis of brain

imaging data, particularly PET images.

The first project develops a lasso penalized 3D functional linear regression model

by viewing PET image as a 3D functional predictor and cognitive impairment as the

response variable, aiming to identify the most predictive voxels with the underly-

ing assumption that only a few brain areas are truly predictive. The PET images

are obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

The second project concerns a lasso penalized 3D functional logistic regression model

x



for classification of PET images from ADNI database. ADNI participants were clas-

sified into three groups during their initial visits: AD, Mild Cognitive Impairment

(MCI) and Normal Control (NC). The model is applied to all the pairwise classi-

fications using baseline PET images. The third project develops a regularized 3D

multiple functional logistic regression model that can account for the group structure

among voxels. Cerebral cortex can be partitioned into multiple regions. Treating

each region as a group, within-group and groupwise regularization is imposed into

the estimation to identify the most predictive voxels. This model is applied to the

prediction of MCI-to-AD conversion using ADNI MCI subjects baseline PET images.

All proposed models are evaluated through extensive simulation studies which are

based on simulated data and slices extracted from ADNI PET images. Comparisons

with existing methods for the prediction performance are also conducted using ADNI

data. The results suggest that the proposed models are able to not only identify the

predictive voxels, but also achieve higher prediction accuracy than existing methods

in general.
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CHAPTER I

Introduction

1.1 Motivation

Functional observations, such as curves or images, have become increasingly pop-

ular in recent years. Standard multivariate methods are unable to analyze functional

observations due to the curse of dimensionality and a failure to account for the correla-

tion between observations. However, statistical analyses of these kinds of observations

are required extensively in many fields of research, including economics, biomechanics

and medicine. This dissertation focuses mainly on developing some novel methods for

analyzing 3D functional data, aiming to overcome the limitations of existing methods.

The primary motivation for this dissertation derives from brain imaging studies,

in particular, the application of brain images, such as positron emission tomography

(PET) images, in assisting the diagnosis of Alzheimer’s disease (AD). It is known that

AD has become the most common type of dementia, accounting for 60-80 percent of

age-related dementia cases. The disease currently affects about five million people in

the US, and the number of victims will significantly increase in the near future barring

the development of therapeutics. By recent estimates (Alzheimer’s Association, 2010),

from 2010 to 2050, the total costs of care for Americans age 65 and older with AD

will increase five-fold, from $172 billion to $1.08 trillion per year. Over the past

decade, many organizations have been established to avert this tidal wave by funding
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research to accelerate the search for cures while improving diagnosis. PET imaging

is based on an assumption that brain activity is associated with high radioactivity,

and it has been shown to be an important tool to assist with the diagnosis of AD. For

example, 18Fluorine-fluorodeoxiglucose PET (FDG PET) measuring brain glucose

metabolism, can show changes of glucose metabolism as the disease progress (Mosconi,

2005). Figure 1.1 shows that glucose metabolism is greatly decreased in some regions

for patients with AD. Improving the diagnosis of AD using PET images has attracted

more and more attention, and many statistical methods have been developed for

this purpose. However, most of the existing methods not only tend to ignore the

correlations between voxels, but also fail to identify the truly predictive brain areas.

Here we conduct a simple experiment to see how existing methods fail to identify

the truly predictive voxels. We use 200 subjects’ PET images for this experiment,

and only consider one and the same axial slice per subject for simplicity. In the

regression framework, the voxels in the selected slice from subject i are treated as Xi

with dimension 1× p, where p is the total number of voxels in the slice. We further

assume that only two small round regions have nonzero effect on the outcome (see

Figure 1.2 (a)), and all other regions have no effect at all. These voxel-level effects

can be characterized by the coefficient β. The blue area indicates negative β, while

the red area indicates positive β. The binary outcome (Yi = 1 or Yi = 0) is considered

for each subject, and thus the logistic regression model is fit as follows:

log

(
πi

1− πi

)
= β0 +XT

i β, i = 1, ..., 200, (1.1)

where πi = P (Yi = 1|Xi). The binary outcomes are simulated following the procedure

commonly used in logistic regression, namely that for subject i, Yi is generated by

drawing a random uniform number u on the interval [0, 1], and let Yi = 1 if πi < u

and Yi = 0 otherwise. Based on these steps, 200 subjects are divided into two groups:
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one with 87 subjects and the other with 113 subjects. The first method considered

here is the univariate voxel-wise analysis, and a two-sample t-test at each voxel is

carried out. As there are a large number of voxels, multiple comparisons need to be

adjusted. We apply the False Discovery Rate (FDR) controlling procedure at the

level of 0.005, and the result is presented in Figure 1.2 (b). It can be easily seen

that the significant voxels identified by the univariate analysis are much more than

the true nonzero voxels, which leads to false positive findings. In addition to the

univariate analysis, we also consider the principal component analysis (PCA) by first

extracting a small number of PCs and then conducting logistic regression based on the

PC scores. The voxels identified in this way are presented in Figure 1.2 (c), showing

that the identified voxels are distributed throughout the brain. One reason for this

massive association obtained from the existing methods could be the high correlation

among voxels.

Figure 1.1: FDG PET images show reduced glucose metabolism in temporal and
parietal regions in patients with Alzheimer’s disease and mild cognitive impairment.
Images courtesy of Suzanne Baker, PhD; William Jagust, MD; and Susan Landau,
PhD.

This dissertation develops some functional regression models by treating PET im-

ages as 3D functional observations. The major advantage here is the extra information

obtained from viewing all the voxels altogether rather than analyzing them one by

one. The main objectives in this dissertation are searching for the predictive voxels

3



a b c

Figure 1.2: (a) The image of true nonzero voxels (β). (b) The image of t statistics
showing differences between the two groups. (c) The coefficient (β) image obtained
by PCA method.

and improving the performance in predicting the outcomes of interest. The limita-

tions of existing methods can be overcome by considering proper basis functions and

regularized estimation. We start with the analysis of 1D functional observations for

the illustration of proposed models and then move on to 2D and 3D cases. Compre-

hensive simulation studies are presented to evaluate the performance for 1D, 2D and

3D functional observations. Finally, we demonstrate how the proposed approaches

can be used in practice by applying them to real PET images.

1.2 Outline

The rest of the dissertation is organized as follows. Chapter II develops a lasso

penalized 3D functional linear regression model via Haar wavelets by treating each

PET image as a realization of a 3D functional predictor and cognition as the response

variable. In terms of regularization, the lasso penalty is considered. The main ob-

jective is to identify the most predictive voxels. The performance of this approach

is examined through a variety of simulation studies and then it is applied to the

PET imaging data obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database. The results indicate that the proposed approach is able to provide

sparse estimates of the voxel-level effects which would enable researchers to identify

4



predictive voxels more precisely. Chapter III proposes a regularized 3D functional

logistic regression model using the lasso penalty for classification of PET images ob-

tained from the ADNI database. The results show that the proposed approach not

only achieves comparable classification accuracy rates to previous studies but also

yields sparse estimation. The findings are in general agreement with previous stud-

ies. Chapter IV is devoted to the application of a regularized multiple functional

regression model that accounts for the group structure among voxels. Cerebral cor-

tex can be partitioned into a number of regions. In order to search for important

brain regions, the sparse group lasso penalty which can achieve both with-group and

groupwise sparsity is incorporated into the estimation by treating each region as a

group. As a result, the predictive groups of voxels and non-predictive groups of voxels

can be identified more accurately. Finally, Chapter V presents conclusions and future

work.
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CHAPTER II

Regularized 3D Functional Linear Regression with

Application to PET Images

2.1 Introduction

Alzheimer’s disease (AD) has become the most frequent cause of dementia in our

increasingly aging societies, representing a significant impact on the US population

with 10% prevalence in individuals aged above 70 years old (Plassman et al., 2007).

Despite the prevalence, this disease remains quite a mystery so far; there is neither a

cure nor a definite treatment to arrest its course, and currently, the only definite way

to diagnose AD is to examine the brain tissue after death. According to recent studies

(Leifer, 2003), the early diagnosis of AD is of great value since new drug therapies

can be used to potentially delay the progression of the disease. To this end, much

progress has been made in assisting the diagnosis of AD with the aid of neuroimag-

ing techniques. One such widely used neuroimaging technique is positron emission

tomography (PET) imaging, which is one of the most promising tools for the early

diagnosis of AD, and it is of great scientific interest to understand the association

between PET imaging and cognitive impairment. In particular, the fluorodeoxyglu-

cose (FDG) PET has been used to measure the cerebral glucose metabolic activity

for over 20 years. Many studies have shown that reduced metabolic activity in some

6



regions of the brain such as posterior cingulate, temporal and parietal cortices are

highly associated with the progression of memory and cognitive impairments in AD

(Foster et al., 1984; Minoshima et al., 1995, 1997b).

FDG PET scans used in this work were obtained from a large multi-center follow-

up study on Alzheimer’s disease and early dementia, called the Alzheimer’s Disease

Neuroimaing Initiative (ADNI). The ADNI project was launched in 2003 by the Na-

tional Institute on Aging (NIA), the National Institute of Biomedical Imaging and

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharma-

ceutical companies and non-profit organizations, to test whether imaging biomarkers

could measure the progression of AD. A total of 403 FDG PET scans at approximately

50 different participating sites were acquired for this application, including 102 normal

control (NC) subjects, 206 subjects with mild cognitive impairment (MCI), and 95

subjects diagnosed with AD. In this study, we consider the baseline FDG PET scans

with a standard 160×160×96 voxel image grid as the predictor to the cognitive per-

formance as measured by mini-mental state exam (MMSE), which is a questionnaire

test that is used to screen for cognitive impairment (Cockrell and Folstein, 1988). The

maximum MMSE score is 30, and on average, MMSE scores decline as the disease

progresses. The goal of our study is to identify brain subregions that are most closely

related to the prediction of MMSE scores.

Many methods have been developed for the analysis of brain imaging data in

order to identify disease-related brain subregions. Most of these methods focus on

region of interest (ROI) and voxel-based univariate analysis, see for example, Luo and

Nichols (2003), Grimmer et al. (2009), Karow et al. (2010) and Habeck et al. (2008),

among many others. These methods are intended to provide statistics by doing a

separate analysis for each ROI or voxel and then to draw inferences at the region-

or voxel-level. As a result of testing millions of hypotheses, appropriate adjustments

for multiple comparison have to be considered. In addition to univariate analysis,
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a multivariate regression model can be fitted by treating every voxel as a covariate.

Since the number of voxels is much larger than the number of scans, some dimension

reduction techniques have to be implemented, otherwise the least squares solutions

are not reliable. Such analysis, however, may lead to difficulties in interpretations and

practical implications. Both the traditional univariate and multivariate approaches

have one major limitation in common: they neglect to account for spatial correla-

tions among voxels. These methods are developed without considering the spatial

information of the brain, possibly resulting in some loss of information. There is an

emerging awareness of the importance of taking such information into account. For

example, multivariate analysis can be conducted with a focus on extracting princi-

pal components from the images (Friston et al., 1996; Kerrouche et al., 2006). More

recently, a variety of Bayesian spatial modeling approaches have been proposed to

model the correlation between neighboring voxels, which need to carefully specify the

prior distributions, see for example Bowman et al. (2008); Kang et al. (2011). Our

way to address this issue is to incorporate voxels’ spatial information by treating the

3D image as a whole. We therefore can retain all the information from the original

image, and take advantage of the extra information to investigate the relationship

between PET images and the diagnosis of disease more efficiently. In this work, we

treat PET imaging data as the 3D functional observations, and propose a novel Haar

wavelet-based regularized approach to analyze PET imaging data in the framework

of functional data analysis.

Functional regression models are known as one of the standard techniques in

functional data analysis. It is noted that the models can be defined as functional

in one or both of two ways: the response variable is functional; at least one of the

covariates is functional. In this work, we focus on the functional linear regression

model with a scalar response variable and a single functional predictor. Using the 1D

case as an illustration, the functional linear regression model relates a scalar response

8



variable Y to a functional predictor as follows:

Yi = β0 +

T∫
0

Xi(t)β(t) dt+ εi, i = 1, · · · , n, (2.1)

where β(t) is the regression coefficient function. As this is the 1D case, t refers to the

time information, and the spatial information will be incorporated in the 3D model.

Regularization methods, such as the roughness penalty approach or using restrictive

basis functions (Ramsay and Silverman, 2005) can be implemented to produce an

estimator that is meaningful in interpretation and useful in prediction.

For the functional linear regression model (2.1), James et al. (2009) proposed a

regularized approach that focuses on producing sparse and highly interpretable esti-

mates of the coefficient function β(t). This approach involves first dividing the time

period into a fine grid of points, and then using appropriate variable selection meth-

ods to determine whether the dth derivative of β(t) is zero or not at each of the grid

points, i.e. β(d)(t) = 0 for one or more values of d ∈ {0, 1, 2, · · · }. They proposed the

Dantzig selector (Candes and Tao, 2007) and a Lasso-type approach for the estimation

of β(t) using piecewise constant basis, where the Dantzig selector seems to be more

natural. Empirical results show that their methods perform well when p, the number

of basis functions, is not too large. When functional data are measured over a very

fine grid such as brain imaging data, the Dantzig selector faces the challenge of solving

a huge linear programming problem and the Lasso-type algorithm can be extremely

slow; note that for the latter the fast shooting algorithm (Fu, 1998; Friedman et al.,

2007) does not apply due to the penalty on derivatives. Without imposing sparsity,

Reiss and Ogden (2010) considered the functional principal component regression for

imaging data.

In this work, we choose the Haar wavelet basis instead of the piecewise constant

basis for analyzing 3D imaging data and show that the Haar wavelet-based approach
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presents a number of advantages. First, it yields regional sparseness without imposing

constraints on derivatives, which is needed in James et al. (2009). In other words, the

estimator of the regression coefficient function can be exactly zero over regions where

no relationship to the response variable is present by shrinking the corresponding

wavelet coefficients of the regression coefficient function to zero. Second, the Haar

wavelet transform offers a way to overcome the issue of high multicollinearity caused

by high neighboring spatial correlations. Third, our approach is flexible enough to

allow the coefficient function to be estimated at different levels of smoothness through

choosing different levels of the Haar wavelet decomposition. Fourth, the Haar wavelet

transform can be applied as a dimension reduction technique prior to model fitting

for high-dimensional imaging data by setting a common set of close to zero wavelet

coefficients of PET images to zero, which is an effective way of removing voxels

outside brain or in brain ventricles. Zhu et al. (2012) considered a wavelet-based

functional mixed model that incorporates functional observations as the fixed-effects

and covariates indicating a possible clustering structure as the random effects, and

the wavelet-based transformation was conducted. The recent article by Zhao et al.

(2012) also considered a wavelet-based approach in functional linear regression. Both

papers did not consider sparsity of the coefficient function β(t).

The rest of this chapter is organized as follows. In Section 2.2, we review some

background on wavelet decomposition and properties of Haar wavelet basis functions

using 1D functional linear regression model as an illustration, and then propose the

ell1 regularized shrinkage estimation for general functional data, including both 1D

and 3D cases. In Section 2.3, we provide non-asymptotic error bounds for prediction

and estimation. To evaluate the numerical performance of our approach, we conduct

extensive simulations in Section 2.4. We present the analysis of ADNI 3D FDG PET

imaging data in Section 2.5, and present some concluding remarks in Section 2.6.
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2.2 Methods

For ease of presentation, we describe the proposed methodology starting with the

1D case given in (2.1), then extend it to the 3D case using a tensor product of three

1D wavelet expansions.

2.2.1 Choice of basis

Basis expansions are commonly used in analyzing functional data. Among a va-

riety of choices of basis expansions, wavelets have the important ability to allow

simultaneous time, or space, and frequency localization. Unlike many other com-

monly used basis systems, wavelet transforms are highly adaptable to different levels

of smoothness, and more capable of capturing edges, spikes and other types of dis-

continuities, especially for wavelet transforms with relatively small support such as

the Haar wavelets. Wavelet transforms also provide a powerful tool to compress the

data. A compressed approximation of the signal can be achieved by penalizing the

wavelet coefficients, which involves discarding least significant coefficients and possi-

bly shrinking the large ones without affecting the main features of the data. Hence

it is advantageous to use wavelet transforms to decompose images as well as the

regression coefficient function for estimation.

In many applications, it is often the case that the association between X(t) and Y

in model (2.1) is sparse, and potentially discontinuous at the boundaries of subregions.

In particular, few brain subregions in the aforementioned PET images are believed

to be related to cognitive impairment. To better identify such patterns, we choose to

use the Haar wavelets. The Haar wavelet transform is easily calculated and affected

less by discontinuities. In addition, sparsity of β(t) can be recovered by shrinking its

wavelet coefficients to zero. The scaling function (also called a father wavelet) φ and
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the mother wavelet ψ of Haar wavelets defined on [0, 1) are given below:

φ(t) =

 1, if 0 ≤ t < 1;

0, otherwise;

ψ(t) =


1, if 0 ≤ t < 1/2;

−1, if 1/2 ≤ t < 1;

0 otherwise.

The Haar wavelet bases are then generated in the form of translations and dilations

of the above father and mother wavelet functions as

φj,k(t) =
√

2jφ(2jt− k),

ψj,k(t) =
√

2jψ(2jt− k),

where j = 0, 1, · · · and k = 0, 1, · · · , 2j−1. The index j refers to dilations and k refers

to translations and
√

2 is the normalizing factor. It is noted that the basis functions

are orthogonal and normalized. Therefore, for a resolution J , the coefficient function

β(t) in (2.1) defined on [0, 1) can be expanded in a Haar wavelet series:

β(t) =
2j0−1∑
k=0

aj0,kφj0,k(t) +
J∑

j=j0

2j−1∑
k=0

dj,kψj,k(t) + e(t), (2.2)

where aj0,k =
∫ 1

0
β(t)φj0,k(t)dt are the approximation coefficients at the coarsest res-

olution j0, dj,k =
∫ 1

0
β(t)ψj,k(t)dt are the detail coefficients that characterize the finer

structures of β(t) as j grows, and e(t) is the approximation error that goes to zero

as J goes to infinity. The Haar wavelet representation of a signal thus consists of

approximations together with details that can provide the desirable frequencies. See

e.g. Walker (2008) for details about Haar wavelets.
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2.2.2 Model estimation

Rewrite β(t) in (2.2) by

β(t) = B(t)Tη + e(t), (2.3)

where B(t) denotes the collection of all φj,k(t) and ψj,k(t) in the above Haar wavelet

expansion, and η is the corresponding wavelet coefficient vector of length p. Plugging

(2.3) into (2.1), we obtain

Yi = β0 +

1∫
0

Xi(t)B(t)Tη dt+ ε∗i = β0 + CT
i η + ε∗i , i = 1, · · · , n, (2.4)

where Ci =
∫ 1

0
Xi(t)B(t) dt. It should be noted that Ci is the wavelet coefficient

vector of Xi(t) when we decompose Xi(t) using the same set of Haar wavelet basis

functions as those in (2.3). Model (2.4) can then be rewritten as follows:

Y = β0 + Cη + ε∗, (2.5)

where C = [C1, C2, · · · , Cn]T , which is an n× p design matrix in linear model (2.5).

Once an estimator η̂ is obtained from (2.5), β(t) can then be estimated by B(t)T η̂.

In practice, X(t) is observed on only a finite set of grid points {t1, · · · , tp}. p is

assumed to be a power of 2 for convenience, since Haar wavelet transform performs

the operations of averaging and differencing on each pair of values, and the operations

are repeated recursively. The wavelet decompositions of X(t) and β(t) on those grid

points can be performed only at a finite number of levels. Using the usual terminology

for Haar wavelets (see e.g. Walker (2008), which is the same as what is used in the

Matlab Wavelet Toolbox, 2011b), we define level 1 Haar wavelet decomposition by

computing the average and the difference on each consecutive pair of values, and
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the maximum level is log2 p. The level number is directly determined by the integer

j0 in (2.2). For any level of Haar wavelet decomposition, the total number of basis

functions φj,k and ψj,k is always p, and the collection of φj,k and ψj,k then forms a set

of p-dimensional orthonormal basis functions.

A key advantage of using Haar wavelets is as follows. When β(t) = 0 in large

regions of t ∈ [0, 1), the coefficient vector η in (2.3)-(2.5) should be sparse, i.e. β(t)

can be well approximated by an economical wavelet expansion with few nonzero

coefficients. To obtain sparse solutions, a variety of variable selection methods can be

used, including the lasso (Tibshirani, 1996), the Dantzig selector (Candes and Tao,

2007), the elastic net (Zou and Hastie, 2005), the adaptive lasso (Zou, 2006) and

SCAD (Fan and Li, 2001). The latter two methods work for cases with p < n and

the method of elastic net is developed for highly correlated covariates. For ultra large

values of p, the computational cost of implementing linear programming for solving

the Dantzig selector problem could be a huge hurdle. We therefore choose the lasso

approach over other procedures in this work, which can be solved by a fast coordinate

descent algorithm (Fu, 1998; Daubechies et al., 2004; Friedman et al., 2007; Wu and

Lange, 2008).

For a given j0, which corresponds to a specific level of Haar wavelet expansion,

the lasso estimator for η is given by

η̂ = arg min
η

{
1

n
‖Y − β0 − Cη‖22 + 2λ‖η‖1

}
, (2.6)

where ‖ · ‖1 and ‖ · ‖2 denote the `1 and `2 norms respectively, and λ ≥ 0 is a tuning

parameter. In our estimating procedure, j0 is another tuning parameter.

It should be noted that in general the Haar wavelet coefficients with larger mag-

nitude are related to salient features. With the Haar wavelet, the magnitude of detail

coefficients should be proportional to the differences between every pair of values, i.e.
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larger magnitude indicates sharp changes at corresponding locations and zero magni-

tude of the detail coefficients indicates no change. If both detail and approximation

coefficients of the Haar wavelet transform are close to zero, then β(t) is close to zero.

Thus we are able to obtain a sparse solution of β(t) by shrinking its small wavelet

coefficients to zero.

2.2.3 Selection of tuning parameters

In addition to the lasso tuning parameter λ in (2.6), we also need to take into

account the level of the Haar wavelet decomposition. There should exist an optimal

level of decomposition for β(t) in terms of certain criteria, such as AIC, BIC, or cross-

validation. If the length of observed Xi(t) is p, then the maximum possible level of the

discrete Haar wavelet transform is log2 p, which is relatively small. Moreover, lower

levels are usually considered in real applications. Therefore including two tuning

parameters does not increase computational burden much.

2.2.4 3D case

A 3D function can be decomposed using the tensor product of three 1D Haar

wavelets. In particular, the 3D Haar wavelet transform can be considered as averaging

and differencing operations (Muraki, 1992). The averaging operation is constructed

by the 3D scaling function below:

φj,{k,l,m}(u, v, w) = φj,k(u)φj,l(v)φj,m(w).
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The differencing operation is taken in seven directions, which is constructed by the

3D wavelet functions as follows:

ψ1
j,{k,l,m}(u, v, w) = φj,k(u)φj,l(v)ψj,m(w),

ψ2
j,{k,l,m}(u, v, w) = φj,k(u)ψj,l(v)φj,m(w),

ψ3
j,{k,l,m}(u, v, w) = φj,k(u)ψj,l(v)ψj,m(w),

ψ4
j,{k,l,m}(u, v, w) = ψj,k(u)φj,l(v)φj,m(w),

ψ5
j,{k,l,m}(u, v, w) = ψj,k(u)φj,l(v)ψj,m(w),

ψ6
j,{k,l,m}(u, v, w) = ψj,k(u)ψj,l(v)φj,m(w),

ψ7
j,{k,l,m}(u, v, w) = ψj,k(u)ψj,l(v)ψj,m(w).

Let Xi(u, v, w) be a 3D functional predictor and Yi be a scalar response variable

for subject i, i = 1, . . . , n. The 3D functional linear regression model can be written

as:

Yi = β0 +

T1∫
0

T2∫
0

T3∫
0

Xi(u, v, w)β(u, v, w) dudvdw + εi. (2.7)

For a resolution J , the 3D coefficient function β(u, v, w) can be approximated by:

2j0−1∑
k,l,m=0

aj0,{k,l,m}φj0,{k,l,m}(u, v, w) (2.8)

+
J∑

j=j0

2j−1∑
k,l,m=0

7∑
q=1

dqj,{k,l,m}ψ
q
j,{k,l,m}(u, v, w).

Denote the set of all basis functions φj,{k,l,m} and ψqj,{k,l,m} in (2.8) by B(u, v, w) and

the wavelet coefficients in (2.8) by η, then β(u, v, w) can be written as

β(u, v, w) = B(u, v, w)Tη + e(u, v, w). (2.9)
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Plugging (2.9) into model (2.7), we obtain

Yi = β0 +

T1∫
0

T2∫
0

T3∫
0

Xi(u, v, w)B(u, v, w)Tη dudvdw + ε∗i (2.10)

= β0 + CT
i η + ε∗i ,

where Ci =
∫ T1
0

∫ T2
0

∫ T3
0
Xi(u, v, w)B(u, v, w) dudvdw, which is equivalent to the wavelet

coefficient vector when we apply the 3D wavelet transform to Xi(u, v, w). Then the

methodology proposed in previous subsections for the 1D case applies exactly.

2.3 Theoretical Results

In this section, we provide non-asymptotic theoretical properties of the proposed

method following the calculation of Bickel et al. (2009). Proofs are deferred to the

Appendix A. Though the results are described using the 1D notation, they hold

exactly for the 3D case by viewing variable t as a 3D variable.

Considering the Haar wavelet representation of β with approximation error as in

(2.3), if we assume only a few elements of η are nonzero, we can define Aη = {j :

ηj 6= 0, j ∈ {1, · · · , p}}. We further denote the cardinality of Aη by |Aη|, which

characterizes the sparsity of η. One common feature for the lasso and the Dantzig

selector is that, for the residual vector δ = η̂ − η, the following relation holds with

high probability:

‖δAcη‖1 ≤ k0‖δAη‖1,

where δAη is the subvector of δ consisting of the jth element of δ where ηj 6= 0, and

the constant k0 is a positive number: k0 = 1 for the Dantzig selector and k0 = 3 for

the lasso (see Bickel et al., 2009). To achieve the oracle inequalities for the proposed

estimator, we assume the same restricted eigenvalue assumption of Bickel et al. (2009)

on the Gram matrix 1
n
CTC, which is given below.
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Assumption . (Restricted Eigenvalue assumption RE(s, k0)) For some integer 1 ≤

s ≤ p and k0 > 0, the following holds:

κ(s, k0) = min
Aη⊆{1,··· ,p}: |Aη |≤s

min
δ 6=0: ‖δAcη‖1≤k0‖δAη‖1

‖Cδ‖2√
n‖δAη‖2

> 0.

We also assume that for a given finite wavelet decomposition with resolution J

and corresponding total number of basis functions p, all the diagonal elements of the

matrix CTC
n

be equal to 1. Then we have Theorem II.1, Theorem II.2 and Theorem

II.3.

Theorem II.1. Assume that εi in model (2.1) follows a normal distribution N(0, σ2
1)

with σ2
1 > 0. Suppose that η is an s-sparse vector, where 1 ≤ s ≤ p. Suppose that

the assumption RE(s, k0) is satisfied with k0 = 3 + 4/θ, for some θ > 0. Let η̂ be the

lasso solution given in (2.6) with λ = aσ1

√
log p
n

, a > 2
√

2. Then with probability at

least 1− p1−a2/8, we have

∥∥∥∥∥∥
T∫

0

X(t)β̂(t) dt−
T∫

0

X(t)β(t) dt

∥∥∥∥∥∥
2

n

≤ (1 + θ) inf
η∈Rp: |Aη |≤s


∥∥∥∥∥∥

T∫
0

X(t)e(t) dt

∥∥∥∥∥∥
2

n

+
D(θ)a2σ2

1

κ2

(
s log p

n

) ,(2.11)

where κ = κ(s, 3 + 4/θ) and D(θ) is a positive constant depending on θ; and for this

given p-dimensional basis, let ω = supt |e(t)| and suppose that there exists an M <∞

such that
∫
|Xi(t)| dt ≤M , then we have

∣∣∣β̂(t)− β(t)
∣∣∣ ≤ γ(t)(4 + 4/θ)

4asσ1

√
log p
n

+ 2κ
√
sMω

κ2

+ ω, (2.12)
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where

γ(t) =

p∑
j=1

∣∣∣∣∣∣ bj(t)√
1
n

∑n
i=1C

2
ij

∣∣∣∣∣∣ ,
and bj(t) is the j-th basis function in B(t).

If we further assume that ε∗i ∼ N(0, σ2
2) in model (2.5), we have the following

result.

Theorem II.2. Assume that ε∗i ∼ N(0, σ2
2) with σ2

2 > 0. The model (2.5) reduces

to a linear regression problem. Suppose that η is an s-sparse vector with 1 ≤ s ≤ p.

Let η̂ be the corresponding lasso solution with λ = aσ2

√
log p
n

, and a > 2
√

2. Also

suppose there exists an M <∞ such that
∫
|Xi(t)| dt ≤M . Then under assumption

RE(s, 3), with probability at least 1− p1−a2/8, we have

∥∥∥∥∫ X(t)β̂(t) dt−
∫
X(t)β(t) dt

∥∥∥∥
n

≤ 4aσ2
κ

√
s log p

n
+Mω, (2.13)

∣∣∣β̂(t)− β(t)
∣∣∣ ≤ γ(t)

16asσ2
κ2

√
log p

n
+ ω, (2.14)

where κ = κ(s, 3).

We would like now to derive the asymptotic rates of convergence for β̂(t) for the

bound (2.12). Before that, we need to state the general conditions for convergence.

These conditions are sufficient to derive Theorem II.3.

C.1 There exists m > 0 such that ωp = O(2−Jm), where J is the finest resolution

for a finite Haar wavelet decomposition (see Mallat, 1989).

C.2 There exists a constant S <∞ such that s ≤ S for all p.

C.3 For a given t, there exists bt such that 2−Jbtγn,p(t) is bounded for all n and p.

C.4 For some θ > 0, there exists a J∗ and corresponding p∗ such that κn,p(sp∗ , 3+4/θ)

is bounded away from zero for reasonably large enough n.
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C.5 For some θ > 0, κ(spn , 3 + 4/θ) is bounded away from zero for reasonably large

enough n and pn, and pn/n→ 0.

C.1 states that the approximation error of wavelet decomposition converges to

zero at the rate of 2−Jm. C.2 assumes that the maximum number of non-zero wavelet

coefficients of β(t) is bounded, and C.3 states that γn,p(t) grows no faster than 2−Jbt .

C.4 and C.5 guarantee that assumption RE(s, k0) is satisfied with k0 = 3 + 4/θ, for

large n or for both large n and pn.

Theorem II.3. Assume that the assumptions in Theorem II.1 hold. For a given finite

Haar wavelet decomposition, fix J = J∗ and then p = p∗. Let ωp∗ = supt |e(t)p∗|suppose

that η is an sp∗-sparse vector and suppose C.1 through C.4 hold, with λ = aσ1

√
log p∗

n
,

as n→∞, we have,

∣∣∣β̂n(t)− β(t)
∣∣∣ ≤ O(n−

1
2 ) +O(2−J

∗m), (2.15)

with probability at least 1− p∗1−a2/8.

Suppose that C.4 is replaced with with C.5, and bt is less than m, if 2Jn grows at

the rate of n
1

2m , we have

∣∣∣β̂n(t)− β(t)
∣∣∣ = O(

√
log n

n
m−bt
2m

), (2.16)

2.4 Simulation Studies

To investigate the performance of the proposed Haar wavelet-based approach, we

have conducted extensive simulations for both 1D and 3D functional data.

2.4.1 1D simulation

We consider a variety of settings of X(t) and β(t). For X(t) = X∗(t)+E(t) defined

on 0 ≤ t ≤ 1, where E(t) ∼ N(0, σ2
E) is the noise term over time t, we consider the
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following two scenarios:

- Fourier: X∗(t) = a0 + a1 sin(2πt) + a2 cos(2πt) + a3 sin(4πt) + a4 cos(4πt),

- B-splines: X∗(t) is a linear combination of cubic B-splines with interior knots

at 1/7, · · · , 6/7 and coefficients ai, i.e. X∗(t) =
∑
aiφi(t), where φi(t) are the

B-spline basis functions.

In both scenarios, the coefficients ai ∼ N(0, 1). To assess the performance of the

proposed approach in identifying continuous and discontinuous signals, we consider

two cases of the regression coefficient function β(t).

- Case 1: β(t) is a smooth function,

β(t) =

 0.5(sin(20t− π) + 1) if π/8 ≤ t < 9π/40,

0, otherwise

- Case 2: β(t) is piecewise constant,

β(t) =


1, if 0.2 ≤ t < 0.3

0.5, if 0.5 ≤ t < 0.7

0, otherwise.

For each curve X∗(t), we record p = 128 equally spaced measurements for con-

venience. The variance of the noise term E(t) is set to be σ2
E = 1

p−1
∑p

j=1(X
∗(tj) −

X̄∗(tj))
2, where X̄∗(tj) is the mean of X∗(tj). The error term ε in model (2.1) also

follows a normal distribution N(0, σ2). The value of σ2 is determined by the signal-

to-noise ratio:

SNR =
σ2
g

σ2
, (2.17)

where σ2
g is the sample variance of g(Xi) =

∫
Xi(t)β(t) dt. The simulation results

presented in this work are under SNR = 9. For each of the settings, we use n = 100
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training observations to fit the model. The optimal tuning parameter is selected by

using one of the following methods: (i) validating by a separate validation (SV) data

set of the same size; (ii) 5-fold cross-validation (CV); (iii) AIC and (iv) BIC (Zou

et al., 2007) given below:

AIC =
‖Y − ĝ(X)‖2

nhatsigma2
+

2

n
d̂f, (2.18)

BIC =
‖Y − ĝ(X)‖2

nhatsigma2
+
log(n)

n
d̂f, (2.19)

where d̂f is the number of nonzero elements of η̂ in model (2.5). We estimate σ2

by the refitted cross-validation method introduced in Fan et al. (2012). We then

generate n = 10, 000 test observations to calculate the mean squared errors (MSEs)

of the corresponding selected models. The procedure is repeated 100 times and the

average MSEs and their standard errors (SE) for each of the models are presented

in Table 2.1. We also report the percentages of correctly identified zero regions and

nonzero regions in Table 2.1. We can see that all four methods perform reasonably

well, while SV performs the best but it is not a practical method. CV method seems

to have a nice trade-off between the sparsity and the prediction accuracy. Averages

of β̂(t) estimated using CV method over 100 replications are shown in Figure 2.1.

We also conduct permutation tests to assess the significance of the regularized

estimates of β(t). For each of the training data set, we generate 200 permutation

data sets by randomly shuffling the response values. Using the same model selection

technique for each of the 200 permutation data sets, 200 sets of β̂perm(t) are obtained.

At each tj, j = 1, · · · , p, the two-sided critical values are set to be the 2.5th and 97.5th

percentiles of β̂perm(tj) for the significance level of 0.05. Suppose the null hypothesis

is β(tj) = 0 at each tj, we will reject the null hypothesis if β̂(tj) is within the critical

region. Repeating this permutation process 100 times, we can compute the percent-

ages that we reject null hypothesis at each tj. The results of the permutation tests
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Average MSE (SE) (×10−3) Average percentage (%)
Type Method Case 1 Case 2 Case 1 Case 2

B-spline

SV 0.11 (0.05) 0.19 (0.08) 84.30 (69.20) 96.00 (57.26)
CV 0.15 (0.11) 0.23 (0.11) 82.95 (69.68) 95.03 (58.90)
BIC 0.60 (1.96) 1.63 (3.10) 72.70 (96.14) 83.26 (79.36)
AIC 0.56 (1.96) 1.56 (3.12) 75.80 (93.80) 82.51 (82.27)

Fourier

SV 0.65 (0.30) 1.20 (0.49) 84.00 (70.59) 95.87 (58.93)
CV 0.92 (0.56) 1.46 (0.63) 82.30 (71.39) 95.56 (55.76)
BIC 1.12 (0.86) 10.62 (20.69) 72.75 (96.59) 84.03 (67.07)
AIC 1.05 (1.28) 10.29 (20.82) 75.80 (93.64) 83.85 (69.01)

Table 2.1: Average MSEs with standard errors (SE, in parentheses), and average
percentages of correctly identified nonzero and zero elements (in parentheses) over
100 replications for 1D cases.
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Figure 2.1: Average of β̂(t) estimated using 5-fold cross-validation over 100 replica-
tions (solid line). The dashed line is true β(t). The top panel is for case 1, and the
bottom panel is for case 2.

using CV method are presented in Figure 2.2, which shows high rejection frequency

in the regions where β(t) is nonzero.
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Figure 2.2: Frequency of rejecting the null hypothesis β(t) = 0 using 5-fold cross-
validation based on 100 permutation repetitions. The thick solid horizontal segments
indicate the true nonzero regions. The top panel is for case 1, and the bottom panel
is for case 2.

2.4.2 3D simulation

For the 3D case, we generate the following type of imagesX(u, v, w) = X∗(u, v, w)+

E(u, v, w) with:

X∗(u, v, w) = a0 + a1 sin(2πu) + a2 cos(2πu) + a3 sin(2πv)

+ a4 cos(2πv) + a5 sin(2πw) + a6 cos(2πw), 0 ≤ u, v, w ≤ 1;

where ai ∼ N(0, 1) and E(u, v, w) ∼ N(0, σ2
E) with σ2

E similarly defined as in the 1D

case. For simplicity, we record 32× 32× 32 equally spaced measurements in the unit

cube. We define the coefficient function β(u, v, w) as follows,

β(u, v, w) =


a(sin(bu+ c) + 1)(sin(bv + c) + 1)(sin(bw + c) + 1), if

(u− 7π/40)2 + (v − 7π/40)2 + (w − 7π/40)2 ≤ (3π/40)2;

0, otherwise;
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where a = 1/8, b = 40/3 and c = π/6. Note that β(u, v, w) = 0 outside a ball that is

located in the center of the unit cube. The error term ε in model (2.7) also follows

a normal distribution N(0, σ2) with SNR = 9. We generate 400 training images and

apply 3D Haar wavelet transform to decompose each image and obtain the wavelet

coefficient matrix. Optimal tuning parameters are selected using the same procedures

as for the 1D case. The results are summarized in Table 2.2. Figure 2.3 illustrates

the comparison of the true β(u, v, w) and the mean estimates of β(u, v, w) over 100

replications at five different slices, which shows that our approach can not only detect

most of the region where X(u, v, w) is associated with Y , but also identify most of

the regions with zero effect.

Method Average MSE (SE) (×10−4) Average percentage (%)
SV 0.97 (0.29) 77.15 (61.97)
CV 1.21 (0.51) 74.25 (57.04)
BIC 4.78 (1.52) 39.48 (99.42)
AIC 4.11 (2.13) 41.86 (98.74)

Table 2.2: Average MSEs with standard errors (SE, in parentheses), and average
percentages of correctly identified nonzero and zero elements (in parentheses) over
100 replications for 3D case.

2.5 ADNI FDG PET image analysis

The FDG PET data used in this work were obtained from the ADNI database

(adni.loni.ucla.edu). The ADNI was launched in 2003 by NIA, NIBIB, FDA, pri-

vate pharmaceutical companies and non-profit organizations, as a $60 million, 5-year

public-private partnership. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), PET, other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of MCI

and early AD. Determination of sensitive and specific markers of very early AD pro-

gression is intended to aid researchers and clinicians to develop new treatments and

25



Slice 12 Slice 12 

Slice 15 Slice 15 

Slice 18 Slice 18 

Slice 21 Slice 21 

Slice 24 Slice 24 

 

 

0

1

2

3

4

5

6

7

8

9

Figure 2.3: The left panel is true β(u, v, w) at five selected slices and the right panel is
the average of β̂(u, v, w) estimated using 5-fold cross-validation over 100 replications
at the same five slices.

monitor their effectiveness, as well as lessen the time and cost of clinical trials. The

Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center

and University of California - San Francisco. ADNI is the result of efforts of many

co-investigators from a broad range of academic institutions and private corporations,

and subjects have been recruited from over 50 sites across the U.S. and Canada. The
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initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the

research, approximately 200 cognitively normal older individuals to be followed for 3

years, 400 people with MCI to be followed for 3 years and 200 people with early AD

to be followed for 2 years. For up-to-date information, see www.adni-info.org.

In the ADNI’s FDG PET study, the injected dose of FDG was 5.0 ± 0.5 mCi,

and subjects were scanned from 30 to 60 minutes post-injection acquiring 6 five-

minute frames. The scans were preprocessed by the following steps: each frame was

co-registered to the first frame of the raw image file; six co-registered frames were av-

eraged to create a single 30 minute PET image; each subject’s co-registered, averaged

PET image from the baseline PET scan was reoriented into a standard 160×160×96

voxel image grid with 1.5 mm cubic voxels and the anterior-posterior axis of the

subject is parallel to a line connecting the anterior and posterior commissures (the

AC-PC line). It should be noted that the number of voxels in each image is over 2.4

million, so the approach via linear programming, as in James et al. (2009), can hardly

be applied here. The data set consists of 403 scans, including 102 NCs, 206 subjects

with MCI, and 95 subjects diagnosed with AD. The demographic characteristics of

the 403 subjects are described in Table 2.3. The goal of our analysis is to identify

brain subregions that are most closely related to MMSE scores, we therefore choose

not to adjust for age and other demographic variables. The summary of MMSE scores

among the three groups of participants is given in Figure 2.4. We treat each PET

image as a realization of the 3D functional predictor and then fit the 3D functional

linear regression model (2.7). The voxel values outside the brain are set to zero prior

to implementing the 3D Haar wavelet transform. We further reduce the computa-

tional cost by excluding those columns of the wavelet coefficient matrix where all the

elements are zero.

In terms of applying 3D Haar wavelet transforms to each subject’s PET image

data, we consider all the possible levels of the Haar wavelet decompositions. Two
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Category Sex (% male) Age (SD) MMSE (SD)

NC (n = 102) 60.8% 80.9 (4.7) 28.9 (1.1)
MCI (n = 206) 67.0% 79.7 (7.3) 27.2 (1.7)
AD (n = 95) 58.9% 80.4 (7.5) 23.4 (2.1)

Table 2.3: Demographics of ADNI participants (n=403)
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Figure 2.4: Box plots of MMSE scores among AD, MCI, and NC.

tuning parameters are therefore included in the model selection procedure: the level

of the 3D Haar wavelet decomposition and the lasso regularization parameter.

Firstly, we evaluate whether the proposed model has a reasonable predictive power

for the MMSE score. To ensure that the evaluation is not misleading nor overly op-

timistic, we employ a technique similar to the leave-one-out cross-validation. Specif-

ically, for each observation, we leave it out as a testing point, use the rest data to fit

a model (including the tuning parameter selection) and compute the prediction error

on the data point that has been left out. We aggregate these quantities in a way

similar to the R-square, i.e. 1 −
∑

(yi − ŷi,−i)
2/
∑

(yi − ȳ)2, where ŷi,−i means the

predicted value of yi is calculated using the estimates obtained from the training data

without observation i. The result is 0.26 for the ADNI data set, which suggests that

about 26% of the variance among the MMSE scores can be explained by our model.

28



Figure 2.5: Clusters of voxels identified using our approach for the ADNI data.

Secondly, we investigate the voxels that are selected by our method. We use

five-fold cross-validation to the full data set to choose the optimal set of tuning

parameters. The identified clusters of voxels (β̂(u, v, w) 6= 0) are shown on selected

axial slices in Figure 2.5, which are presented from the bottom of the brain to the
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Figure 2.6: Bootstrap inclusion frequencies over 100 bootstrap samples.

top. The clusters of voxels with hot colors show a positive association to prediction of

MMSE scores, whereas those with cold colors show a negative association. Each small

square represents a small cluster of voxels. To assess the significance of the selected

voxels, similar to what we have done in simulation studies, we permute the response

variable, i.e., the MMSE score, 200 times. It turns out that 95.3% of the selected

voxels are significant at the 5% level. In addition to this pointwise testing, we also

consider the global test described by Nichols and Holmes (2001), which provides a
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Figure 2.7: Locations of frequently selected voxels in the 3D sagittal view.

way to control the family-wise error rate by comparing β̂(tj) to a “maximal statistic”.

Due to the computational cost, we also perform 200 permutations, and it turns out

that only 15.6% of the selected voxels are significant at the 5% level, which is more

conservative than the pointwise testing procedure. To further evaluate the stability

of the selection, we generate 100 bootstrap samples and for each bootstrap sample,

we apply our method including the tuning parameter selection via five-fold cross-

validation. Similar approaches have also been employed by other researchers, such

as Sauerbrei and Schumacher (1992), Royston and Sauerbrei (2008) and Meishausen

and Bühlmann (2010). To summarize the results, we count the number of times that

each voxel is selected over 100 bootstrap samples, and denote it as the bootstrap

inclusion frequency (BIF). The voxel BIFs are presented in Figure 2.6. The locations

of these more frequently selected voxels are also presented in the 3D sagittal view in

Figure 2.7 for the ease of understanding. It can be seen that the highly selected brain

regions agree well with the results in Figure 2.5. We note that the clusters of voxels

identified in our analysis shown in Figures 2.5 and 2.6 reveal high associations of

the expected anatomical regions with the cognitive deficits. For example, the orange

ones on slices “+12” and “+18” in Figure 2.5 and the big cluster on the same slices
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in Figure 2.6 indicate that the posterior cingulate/precuneus cortex is significantly

related to cognitive impairment; the blue ones on slices “-60”, “-54” and “-48” in

Figure 2.5 and the clusters on the same slices in Figure 2.6 suggest that the medial

temporal/hippocampal cortex is also closely involved; the red ones on slices “-42”,

“-36” and “-30” in Figure 2.5 and the corresponding clusters on the same slices in

Figure 2.6 correspond to the lateral temporal cortex. Many studies have demonstrated

that the most prominent metabolic abnormalities are found in these regions (see for

example Mueller et al. (2005)). In our study, we have particularly found the most

predictive voxels of the cognitive impairment in these regions. Other involved regions

include the superior lateral parietal cortex and the frontal cortex, which are all known

to be related to the progression of Alzheimer’s disease.

2.6 Discussion

In this chapter, we propose a highly effective Haar wavelet-based regularization

approach that can be easily applied to analyze multi-dimensional functional data.

Analysis of the PET imaging data demonstrates that our approach is useful in finding

brain subregions that are most responsible for cognitive impairment in elderly people.

It has great potential to efficiently assist the diagnosis of disease in neuroimaging

studies, yielding easily interpretable results. Our approach is also computationally

fast because of the implementation of the coordinate descent algorithm with the

MATLAB glmnet package (available at http://www-stat.stanford.edu/ tibs/glmnet-

matlab/). We should note that another practical favor of our approach is that the

wavelet transform itself can reduce the large volume of brain imaging data. As a

result, we can then apply the proposed approach on reduced data sets. In such

situations, although the resolution of original PET images is decreased, the results

remain largely the same since related subregions are usually not comprised of a single

voxel but a cluster of voxels.
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CHAPTER III

Classification of PET Images using Regularized 3D

Functional Logistic Regression

3.1 Introduction

The clinical diagnosis of Alzheimer’s disease (AD), the most common cause of

dementia, uses a variety of tests including patient’s family history, physical examina-

tion, mini-mental state exam and neuroimaging. Recently, functional neuroimaging

technologies, such as single photon emission computed tomography (SPECT) and

positron emission tomography (PET), are rapidly becoming powerful tools in the

diagnosis of AD since these technologies have made it possible to reveal pathophys-

iological changes before irreversible anatomical changes are present. For example,

18F-Fluorodeoxyglucose (FDG) is a widely used radioactive tracer in PET imaging,

and FDG PET provides useful information about the cerebral glucose metabolic rate.

Studies have demonstrated reduced glucose metabolism in a small number of brain

regions such as the temporal and parietal lobes in AD patients comparing to normal

subjects (Hoffman et al., 2000b; Langbaum et al., 2009). As such difference becomes

noticeable, researchers are increasingly interest in distinguishing AD patients from

normal subjects by utilizing their brain images. As a non-negligible complementary

way in the diagnosis of AD, PET imaging has high specificity and sensitivity, even a
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long period before full-blown dementia is developed.

A large number of brain imaging studies have been performed in patients with

AD and its prodromal stage, mild cognitive impairment (MCI), in an effort to assist

in the early diagnosis of AD (Zuendorf et al., 2003; Higdon et al., 2004; Silveira and

Marques, 2010; Vemuri et al., 2008; Dehghan et al., 2011; Bonneville et al., 1998;

Illán et al., 2011; Stoeckel and Fung, 2007; Hinrichs et al., 2009; Shen et al., 2011;

Casanova et al., 2011). Traditional methods to discriminate between patients with

AD (or MCI) and normal control subjects are mostly based on voxel-wise analysis.

However, each image contains up to millions of voxels, which can be a major cause

of practical limitation. To overcome the curse of dimensionality, dimension reduction

techniques have been developed prior to classification. One common way is to group

the voxels into anatomical regions and average the voxel values within each region of

interest (ROI) without taking into account any heterogeneity among the voxels. Prior

knowledge of what specific regions may be correlated to the disease is generally desir-

able, however, this knowledge is not always available in practice. In order to account

for spatial correlation between voxels as well as to reduce the dimension of imaging

data, principal component analysis (PCA) has been performed, which reduces the

feature space to a smaller number of principal components (PCs, called eigenimages)

while still preserves the largest portion of variability (Zuendorf et al., 2003; Higdon

et al., 2004). The PC scores are then used as predictors in, for example, a logistic

regression model. However, each PC is usually comprised of weighted contributions

of all voxels within the brain, so PCA is usually less accurate and may blur the true

relation between the progression of disease and voxels as what we will show later in

simulations.

There has been a growing interest in developing machine learning classification

techniques due to the large number of voxels. Support vector machines (SVMs) are

one of these techniques used for binary classification (Hastie et al., 2009). They aim to
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find the hyperplane that maximizes the distance from the nearest training points while

correctly separating two classes. To avoid the curse of dimensionality and improve

prediction performance, SVMs are often performed on selected features, including

selected voxels (Silveira and Marques, 2010; Vemuri et al., 2008), ROIs (Dehghan

et al., 2011), or even PCs (Bonneville et al., 1998; Illán et al., 2011). In an attempt

to incorporate the spatial correlation, Stoeckel and Fung (2007) and Hinrichs et al.

(2009) presented modified versions of SVMs which are implemented by setting similar

weights to neighboring voxels at a very local level. Although SVM-like methods

have been shown to achieve high classification accuracy rates, they are not optimized

for selecting sensitive and interpretable disease-related brain subregions and fail to

provide estimates for the probability that a given subject has the disease or not. To

address this issue, logistic regression can be implemented, often with a regularization

for variable selection to prevent overfitting. Regularized logistic regression models

with the potential of taking into account highly correlated predictors in imaging

have been proposed for this purpose. Shen et al. (2011) developed an ROI-based

regularized logistic regression model with the elastic net penalty (Zou and Hastie,

2005), a linear combination of lasso and ridge penalties, to classify AD subjects from

others. The elastic net penalty enables the selection of groups of highly correlated

ROIs. Their method does not consider correlations between voxels within each ROI.

Casanova et al. (2011) discussed regularized logistic regression with the elastic net

penalty in the context of a large-scale regularization problem in which voxels are used

as predictors. For the typical large-p-small-n classification problem, they showed that

it can be solved efficiently using the coordinate descent algorithm (Friedman et al.,

2010), and it is preferable to SVMs in terms of classification accuracy. However, they

did not evaluate the performance in identifying relevant voxels, and in fact they only

implemented ridge regression.

We propose a highly effective and computationally efficient regularized functional
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logistic regression approach using Haar wavelets, which automatically preserves the

spatial information of voxels by viewing each subject’s image as a realization of the 3D

functional predictor. Functional logistic regression has been used in the classification

of functional data. For example, Reiss and Ogden (2010) considered the problem by

applying functional PCA to images and demonstrated their method in 2D settings.

The general goal of functional data analysis (FDA) is to estimate the coefficient

function that describes the association between an outcome and a functional predictor.

In this study, we are interested in finding out which voxels are most responsive in

the determination of disease status. In particular, we assume that only few brain

subregions are predictive of disease status. Properly regularized FDA with Haar

wavelet expansion is able to yield a sparse coefficient function estimate (taking value

zero at most places in the brain) and also enjoys the advantage of preserving the

spatial correlation among voxels. To demonstrate the advantages of the proposed

approach, we compare it with other classification methods including regularized voxel-

level logistic regression with the elastic net penalty and PCA-based logistic regression.

The data used in this chapter are baseline FDG PET images of 403 subjects from

the Alzheimer’s Disease Neurological Initiative (ADNI) database, including 95 AD

patients, 206 MCI patients and 102 normal controls (NC). The rest of this chapter is

organized as follows. We present the proposed approach and also describe two other

classification methods in Section 3.2. Numerical results for analyzing the simulated

and real data sets are presented in Section 3.3. Final conclusions are provided in

Section 3.4.

3.2 Materials and Methods

In this section, we present three regression-based methods for classification of

brain images and briefly introduce the data set we use in this work. In particular, we

describe how the proposed approach is applied in the functional regression framework
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for analyzing brain images, and also explain in detail why we choose to use Haar

wavelets.

3.2.1 Haar wavelet based regularized functional logistic regression (HW-

RFLR)

Logistic regression is commonly used for a binary response variable Y . Functional

logistic regression is developed to relate the response variable Y to a functional predic-

tor. Here we treat each subject’s 3D brain image as a functional predictor Xi(u, v, w).

Suppose Yi takes values either 0 or 1, indicating the disease status of subject i. We

fit the following 3D functional logistic regression model:

log

(
πi

1− πi

)
= β0 +

∫∫∫
Xi(u, v, w)β(u, v, w) dudvdw, i = 1, ..., n, (3.1)

where πi = P (Yi = 1|Xi) for subject i and β(u, v, w) is the 3D regression coeffi-

cient function. In this study, we are particularly interested in the assumption that

β(u, v, w) = 0 over large regions, with potential discontinuities of β allowed.

Choosing proper basis functions to represent β in the above regression model is

a critical step. Among a variety of basis functions, we choose 3D Haar wavelets

to decompose β owing to the following desirable properties. First, the use of Haar

wavelets provides a way of overcoming the issue of multicollinearity caused by large

spatial correlation among neighboring voxels. Haar wavelets consist of piece-wise

constant functions. Our estimation procedure tends to estimate β as a cluster of

neighboring voxels instead of a single voxel to be zero or nonzero altogether. Second,

as mentioned earlier, we assume that only a few brain subregions are predictive,

implying sparsity of the coefficient function. Exact zero regions can be obtained by

the sparsity of wavelet coefficients. Third, Haar wavelets can be applied as a signal

compression technique. They provide a good approximation of the original function
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with only a subset of nonzero wavelet coefficients, which can be achieved by zeroing

out the wavelet coefficients that are smaller than a pre-specified threshold value. The

dimensionality can thus be reduced if we only consider the nonzero subset.

3D Haar wavelets can be obtained by tensor products of 1D Haar wavelets. For

simplicity, we assume that 0 ≤ u, v, w ≤ 1. 1D Haar wavelets can be constructed

from a mother wavelet function and a scaling function. The mother wavelet function

ψ(t) is given by

ψ(t) =


1 if 0 ≤ t < 1/2,

−1 if 1/2 ≤ t < 1,

0 otherwise;

and the scaling function φ(t) is given by

φ(t) =

 1 if 0 ≤ t < 1,

0 otherwise.

All 1D Haar wavelets are obtained as translated and dilated versions of the above

functions:

ψj,k(t) =
√

2jψ(2jt− k),

φj,k(t) =
√

2jφ(2jt− k),

where j = 0, 1, · · · and k = 0, 1, · · · , 2j − 1. The index j refers to dilations and k

refers to translations and
√

2 is the normalizing factor. It can be seen that these

basis functions are orthogonal to each other, and the support becomes smaller as

j increases. The functions φj,k(t) and ψj,k(t) are usually referred to as averaging

and differencing operations respectively. Let us now consider tensor products of

three elements with each of them being φ(t) or ψ(t). The total number of different

combinations is 23 = 8. The 3D scaling function is the tensor product of three 1D
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scaling functions φ(t). 3D mother wavelet functions are the remaining seven tensor

products considering all cross-spatial horizontal, vertical and diagonal directions. 3D

Haar wavelets are generated as adapted translations and dilations of these functions.

For more details about the construction of 3D Haar wavelets, see Muraki (1992).

We can now decompose Xi(u, v, w) and β(u, v, w) by the same set of 3D Haar

wavelet basis functions, denoted by B(u, v, w), as follows

Xi(u, v, w) = CT
i B(u, v, w), β(u, v, w) = B(u, v, w)Tη, (3.2)

where Ci is the known wavelet coefficient vector of Xi and η is the unknown coefficient

vector of β. Then by the orthogonality of wavelet basis functions, the 3D functional

logistic regression reduces to the following multiple logistic regression by plugging

(3.2) into (3.1):

log

(
πi

1− πi

)
= β0 + CT

i η. (3.3)

Once an estimator of η is obtained from (3.3), an estimator of β can be obtained from

(3.2).

It should be noted that the wavelet expansion of a given function is determined by

the coarsest and finest level of decomposition. In practice, we only observe X(u, v, w)

discretely, e.g. at a finite number of uniformly distributed voxels in a cube. Rep-

resenting observed X(u, v, w) by a set of wavelet coefficients is called the discrete

wavelet transform. In this case, the finest level is always given as the operations on

adjacent voxels, and thus only the coarsest level needs to be determined, which is

refereed to as the level of decomposition in this work.

The estimation of η in (3.3) is accomplished by fitting the model via a penalized
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maximum log-likelihood:

max
η

1

n

n∑
i=1

{Yilog πi + (1− Yi)log (1− πi)} − λ‖η‖1, (3.4)

where ‖ · ‖1 denote the `1 norm. Such a penalty is called the lasso penalty (Tibshi-

rani, 1996) that forces many estimated coefficients to be exactly zero. The constant

λ ≥ 0 is a tuning parameter that determines how much shrinkage is applied to the

vector η. This regularized logistic regression problem can be efficiently solved by the

coordinate descent algorithm (Friedman et al., 2010). The estimation of β(u, v, w) is

then obtained by

β̂(u, v, w) = B(u, v, w)T η̂.

Note that when the wavelet transform is performed under different levels of decom-

position, the obtained η̂ is different, and as a result, the estimator β̂(u, v, w) would be

different. We set the level of decomposition as another tuning parameter in addition

to λ in (3.4), and their optimal values will be determined by certain criterion using a

data driven approach.

3.2.2 Elastic net regularized logistic regression (EN-RLR)

The elastic net is considered a generalized version of lasso which encourages a

grouping effect by allowing strongly correlated predictors to be in or out of the model

together. It also enjoys the computational advantages of lasso. Here we evaluate the

performance of this method at the voxel level rather than the ROI level (Shen et al.,

2011), which is given by

log

(
πi

1− πi

)
= β0 +

∑
u,v,w

Xi(u, v, w)β(u, v, w), i = 1, . . . , n, (3.5)
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where (u, v, w) are integers indicating the location of corresponding voxel. Denote

the total number of voxels by p. Since p � n, regularization is needed to prevent

overfitting. The elastic net method maximizes the following regularized log likelihood

function

max
β

1

n

n∑
i=1

{Yilog πi + (1− Yi)log (1− πi)} − λPα(β), (3.6)

where Pα(β) =
∑

u,v,w{α|β(u, v, w)| + (1 − α)β(u, v, w)2}. It can be seen that the

penalty λPα(β) is a mixture of `1 and `2 penalties, and when α = 1, (3.6) is simplified

to the lasso problem. We set both λ and α as tuning parameters, whereas in Casanova

et al. (2011), α is set to be zero to enforce the `2 penalty, resulting a ridge regression.

Note that (3.4) is for the wavelet transformed images whereas (3.6) is for the original

images.

3.2.3 Principal component based logistic regression (PC-LR)

PCA is a widely used tool for dimension reduction. It projects the original images

onto the eigenspace such that the variance of the projection along each component,

the so-called principal component (PC), is maximized (Zuendorf et al., 2003). Each

PC is referred to as an eigenimage. As most of the variability of images are cap-

tured by a small number of PCs, we retain the first few PCs with greater variances.

The associated PC scores are treated as predictors in the logistic regression model.

The original coefficient function β can be obtained by the inverse transform of the

coefficients of PC scores. The number of PCs used in the regression may affect the

classification performance. Thus in this work, we treat the number of PCs as a tuning

parameter.

3.2.4 PET imaging data

PET imaging data analyzed in this chapter were obtained from the ADNI database

(adni.loni.ucla.edu). The ADNI project was launched in 2003 by the National Insti-
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tute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the

Food and Drug Administration, private pharmaceutical companies and non-profit or-

ganizations, as a $60 million, 5-year public-private partnership. The primary goal

of ADNI has been to test whether serial MRI, PET, other biological markers, and

clinical and neuropsychological assessment can be combined to measure the progres-

sion of MCI and early AD. Determination of sensitive and specific markers for disease

progression in very early AD is intended to aid researchers and clinicians to develop

new treatments and monitor their effectiveness, as well as lessen the time and cost

of clinical trials. The Principal Investigator of this initiative is Michael W. Weiner,

MD, VA Medical Center and University of California - San Francisco. ADNI is the

result of efforts of many co-investigators from a broad range of academic institutions

and private corporations, and subjects have been recruited from over 50 sites across

the U.S. and Canada.

Detailed information about how FDG-PET images were acquired is available on

the ADNI website (http://www.loni.ucla.edu/ADNI/Data/ADNI Data.shtml). The

processing steps can be summarized as follows. First, six five-minute frame scans were

acquired 30-60 min after injecting FDG to the participants. These frame scans were

co-registered to the first frame and then averaged to create a single image. After

this step, the co-registered, averaged PET images were reoriented into a standard

160× 160× 96 voxel image grid with 1.5 mm cubic voxels and the anterior-posterior

axis of the subject is parallel to the anterior commissure-posterior commissure (AC-

PC) plane. Finally, smoothing is performed to produce a uniform resolution. The

data set used in the present work consists of 403 participants’ baseline scans, including

102 NC participants, 206 MCI participants, and 95 AD participants. To reduce the

dimensionality, we set the values of voxels outside the brain and in the ventricles to

zero and exclude the columns whose elements are all zero in the wavelet coefficient

matrix obtained after applying 3D Haar wavelet transform to the images. Typically,
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the dimensionality can be reduced to about 700,000 from more than two million,

which is a significant decrease.

3.3 Numerical Results

The numerical experiments in this section are performed by Matlab 2011b. The

lasso and elastic net problems are solved by the glmnet package for Matlab (available

at http://www-stat.stanford.edu/ tibs/glmnet-matlab/). The wavelet transforms are

performed by the Matlab Wavelet Toolbox.

3.3.1 Simulations

We conduct simulation studies to evaluate the performance of the three classifica-

tion methods. The images, covariates in the logistic regression, are obtained from the

ADNI data set. For illustrative purposes, we extract the same 160 × 160 axial slice

from each subject and use it as the 2D functional covariate Xi(u, v). For a given co-

efficient function β, we randomly generate the response variable Yi from the following

2D model:

log

(
πi

1− πi

)
= β0 +

∫∫
Xi(u, v)β(u, v) dudv, i = 1, . . . , n. (3.7)

The regression coefficient function β(u, v) is chosen to be nonzero at two small

round regions, see Figure 3.2(a). The scale of β(u, v), together with the intercept β0,

is adjusted to achieve a Bayes error rate (Fukunaga, 1990) around 0.15. To mimic the

sample sizes of AD, MCI and NC in the ADNI data set, we consider two case-control

ratios, the ratio of the number of occurrence (Yi = 1) to the number of non-occurrence

(Yi = 0), at r = 1 : 1 and r = 1 : 2. Hence we randomly choose 200 and 300 subjects

from the ADNI data set, respectively, for their 2D images. Such designed simulation

study keeps the original spatial correlation structure of the ADNI FDG PET images,
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whereas the disease status is randomly generated with the original disease status

completely ignored.

The selection of tuning parameters is involved in all three methods. We con-

sider a variety of criteria for determining optimal tuning parameters, including cross-

validated deviance (CV-DEV), cross-validated misclassification error rates (CV-MER),

cross-validated area under the ROC curve (CV-AUC), AIC and BIC, where the use

of CV-DEV and CV-MER are discussed in Friedman et al. (2010), and CV-AUC

criterion, specially designed for optimizing the classification performance for binary

outcomes, is discussed in Jiang et al. (2011). AIC and BIC are criteria that pe-

nalize the number of free parameters, which are common for variable selection in

high-dimensional models. Note that in the calculation of AIC and BIC, the degrees

of freedom (df) need to be determined. An unbiased estimate of df when only `1

penalty is used is the number of nonzero coefficients in the model (Zou et al., 2007),

while an unbiased estimate of df is derived as the trace of the modified hat matrix,

when a mixture of penalties is presented, see Zou (2005) for details. In PC-LR, df is

estimated as the number of PCs used in the model.

We apply a ten-fold cross validation to evaluate prediction accuracy. Specifically,

each simulated data set is randomly partitioned into ten folds. Among them, nine

folds are used as the training set to fit model (3.7) by each of the optimal tuning

parameter selection criteria; the remaining fold is used as a test set to calculate the

predicted probability π̂i for each test observation. The procedure is repeated ten times

with each of the ten folds used exactly once as the test set. For predictions based on

each cut-off value of π̂i, we compute sensitivity and specificity and then construct the

empirical ROC curves by changing the cut-off point of π̂i. Area under the ROC curve

(AUC) is calculated to provide an overall measure of the discriminative ability of each

of the three classification models. The procedure is repeated 100 times by generating

100 independent sets of binary response variables. The average ROC curves with
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average AUCs in 10 scenarios are presented in Figure 3.1.
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Figure 3.1: Average ROC curves and their average AUCs (standard errors) for three
classification methods over 100 simulations (red curve: HW-RFLR; blue curve: EN-
RLR; green curve: PC-LR). The left panel is for r = 1 : 1, the right panel is for
r = 1 : 2. The selection criterion used in (a) and (b) is CV-DEV, (c) and (d) is
CV-MCR, (e) and (f) is CV-AUC, (g) and (h) is AIC, (i) and (j) is BIC.

46



In each scenario, two-sample t-tests are performed to test the difference between

AUC obtained from the proposed approach HW-RFLR and AUCs from other two

methods, respectively. The differences in 9 out of 10 scenarios (except scenario g

in Figure 3.1) are statistically significant at the significance level of 0.0025 after the

Bonferroni correction, showing that the proposed approach HW-RFLR consistently

dominates the other two methods. In general, our simulations indicate that the

proposed HW-RFLR approach can achieve higher classification accuracy than EN-

RLR and PC-LR for both balanced (i.e. r = 1 : 1) and unbalanced (i.e. r = 1 : 2)

case-control data.

In addition to the classification performance, we also assess the performance in

identifying nonzero regions of β(u, v) on the 160×160 grid. To this end, we fit model

(3.7) with the optimal tuning parameters selected via one of the five criteria mentioned

above. Figure 3.2 shows the median estimates of β(u, v) for the 100 repetitions under

the selection criterion CV-AUC which is robust to outliers. The results of r = 1 : 1

and r = 1 : 2 are similar, so we only present the results of r = 1 : 1. From Figure

3.2 we see that HW-RFLR and EN-LR methods not only yield sparse estimates of

β(u, v), but also correctly pick up the two nonzero regions of β(u, v), whereas PC-LR

method completely fails to recognize the true nonzero regions.

3.3.2 ADNI FDG PET image analysis

In this subsection, we apply all three methods described in Section 3.2 to the ADNI

FDG PET imaging data for discriminating AD from NC, AD from MCI, and MCI

from NC. We treat each PET image as a realization of the 3D functional predictor

and then fit 3D functional logistic regression model (3.1) for each pairwise classifica-

tion. In each comparison, Y = 1 indicates a more severe state. Similar to simulation

studies, we assess the classification performance using the ten-fold cross validation.

To examine the overall discriminative power, we plot the cross-validated ROC curves

47



a b

c d

Figure 3.2: Comparison of median of β̂(u, v) using three methods over 100 replications
for the simulated data sets under the case of r = 1 : 1. (a) true β(u, v), (b) median
of β̂PC−LR(u, v), (c) median of β̂HW−RFLR(u, v), (d) median of β̂EN−RLR(u, v).

in Figure 3.3. Corresponding AUCs are also provided. As the asymptotic behaviors

of the lasso estimator still remains an open problem in very high-dimensional set-

tings, the confidence intervals of the reported AUCs are not provided here. We use

CV-AUC and CV-DEV as the criteria to select the tuning parameters, as CV-AUC

is the most intuitive approach for binary classification and CV-DEV provides high-

est AUCs in simulation studies. It can be seen that all three methods work well in

discriminating AD from NC. The proposed HW-RFLR performs best for the more

difficult classification tasks of MCI vs NC and AD vs MCI. Moreover, the proposed

HW-RFLR is the most computationally efficient approach. The estimated regression

coefficient function for each classification by the proposed HW-RFLR approach with

CV-AUC as the tuning parameter selection criterion are given in Figure 3.4 (the re-

sults from CV-DEV are almost identical, thus omitted here). The voxels with cold

colors are negatively associated with the more severe disease state, whereas the voxels

with warm colors indicate a positive relationship. We can see from Figure 3.4 that
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some subregions are found to be predictive in all three classifications, such as poste-

rior cingulate and precuneus, which have been found to be the most discriminative

subregions in several ROI-based analyses (Langbaum et al., 2009; Rabinovici et al.,

2010; Minoshima et al., 1997a).
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Figure 3.3: ROC curves and their AUC for three classification methods under CV-
AUC and CV-DEV for pairwise classification (red curve: HW-RFLR; blue curve:
EN-RLR; green curve: PC-LR). The left panel is under CV-AUC, and the right
panel is under CV-DEV.
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Figure 3.4: Voxels identified using the proposed HW-RFLR under CV-AUC criterion
for pairwise classification. (a): AD vs NC; (b) AD vs MCI; (c) MCI vs NC.
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3.4 Discussion

In this chapter, we describe a Haar wavelet-based approach for classifying brain

images in the framework of 3D functional data analysis. This approach is demon-

strated to not only achieve high classification accuracy, but also be more likely to

identify the most responsive clusters of voxels. The proposed HW-RFLR method does

not impose smoothness requirement on the regression coefficient function, thus has

the potential to identify the boundaries of truly predictive subregions. Our numerical

results demonstrate that the proposed HW-RFLR can achieve higher classification

accuracy than other methods. It should be noted that although many previous stud-

ies reported classification accuracy rates using FDG PET imaging data, most of them

did not perform the selection of voxels. We emphasize that the proposed HW-RFLR

method integrates voxel selection into the estimation procedure, which is useful when

only few brain subregions are related to the disease status. The proportional odds

model can also be considered to address the classification problems in this work by

treating each disease status as a class, but the limitation of this model should be

noted. The proposed HW-RFLR method is also computationally efficient partly due

to the fact that Haar wavelets can further compress the data by thresholding the

absolute value of wavelet coefficients without losing the ability of preserving spatial

correlations among voxels.
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CHAPTER IV

Classification of PET Images using Regularized 3D

Multiple Functional Logistic Regression

4.1 Introduction

With the rapid development of neuroimaging technologies, large-scale brain imag-

ing data are acquired more frequently nowadays for research and clinical applications.

For example, positron emission tomography (PET) imaging, measuring the metabolic

activity in the brain, is being used increasingly to better understand the progression of

neurodegenerative diseases, such as Alzheimer’s disease (AD) (Hoffman et al., 2000a;

Silverman et al., 2001). Although the high resolution scanners can provide more

detailed information of the brain pathology, one challenge for analyzing large-scale

brain imaging data is the large number of voxels, which can easily go beyond a million,

whereas the sample sizes are usually in the order of a few hundred. Traditionally, the

analysis of large-scale brain imaging data has relied on massive univariate voxel-wise

analyses, where the issue of multiplicity must be addressed, and modeling the spa-

tial correlation is a difficult problem. To overcome these challenges, sparse modeling

techniques have been developed in recent years, aiming to find a small set of voxels

that are well suited for interpretation and can be used to predict the outcome more

accurately.
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Sparse modeling techniques are often implemented by introducing sparsity into

the model estimation, leading to a parsimonious model by removing irrelevant fea-

tures. In regression settings, among a variety of sparse modeling techniques, the lasso

regularization (Tibshirani, 1996), which minimizes the `1 norm of regression coeffi-

cients, has long been known as a practical approach. Moreover, techniques that take

advantage of problem specific information can often lead to higher accuracy. In brain

imaging data, it is known that voxels are spatially correlated (Frackowiak et al., 2004).

The elastic net (Zou and Hastie, 2005), as a variant of lasso, is a method to account

for the correlation among voxels. Casanova et al. (2011) and Janousova et al. (2012)

implemented the elastic net penalty in penalized logistic regression models. Incorpo-

rating this penalty into the estimation encourages strongly correlated variables to be

either in or out of the model together. In addition to the spatial correlation structure,

it is also known that voxels can be partitioned into different groups. For example,

the cerebral cortex can be divided into a number of regions according to the structure

or cytoarchitectonics (Garey, 2006). Regularization via the elastic net is not able to

reveal the underlying group structure in its solution and, thus, is not an optimal ap-

proach in the situation where identifying the predictive groups is of concern. Liu et al.

(2012) applied the tree-guided group lasso (Kim and Xing, 2009) which can account

for the hierarchical spatial relationships of the voxels, in order to identify grouped

voxels for brain disease classification. Although this method is shown to improve the

interpretation of identified voxels, it assumes that the group structure information

is unknown. Usually when this information is available, it would be beneficial to

incorporate group selection into variable selection. As this information is available

in the present work, we propose to account for it using groupwise regularization,

with the underlying assumption that only a few brain areas (also referred to as the

“groups”) are truly predictive of the outcome and within each selected group, maybe

only part of it are truly predictive. Given this group-wise and within group sparsity
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assumption, the sparse group lasso penalty can be implemented into the estimation

(Friedman et al., 2010; Simon et al., 2012). Zhou et al. (2012) considered a similar

assumption and developed the fused sparse group lasso method for longitudinal voxel

selection, with the sparse group lasso as a special case at one single time point.

Unlike the above-mentioned sparse modeling techniques, we investigate the use of

sparse group lasso penalized estimation in the context of functional regression mod-

els by viewing each 3D brain image as a 3D functional predictor, where the sparsity

is imposed on the coefficients from expanding the regression coefficient function in

terms of some basis functions. The reason why we view the image as a 3D functional

predictor and impose sparsity of the coefficients is that we intend to preserve the

spatial information of the images, which is not accounted for by the above-mentioned

sparse modeling techniques while achieving desirable sparse estimation. In functional

regression models it is important to choose proper basis functions to represent the

functional predictor and the regression coefficient function. Considering both sparsity

and spatial correlation among voxels, we choose to apply the 3D Haar wavelet trans-

form on the images due to its attractive properties. These properties are twofold: (i)

the discontinuity of Haar wavelet basis functions not only allows spatial localization

of the predictive voxels, but also enables sparse estimation of the voxel-level effects;

(ii) the averaging and differencing operations from the Haar wavelet transform can

alleviate the problem caused by ignoring the correlation among voxels. In presence of

the group structure among voxels, we consider a multiple functional regression model

which allows us to perform the wavelet transform on each group respectively rather

than the whole image in order to define groups easily for the coefficients obtained

from the wavelet transform. In this manner, the group-level and within group effects

can be estimated in a more flexible way. As sparsity is achieved by incorporating

regularization into the model estimation, we call our approach regularized multiple

functional regression to distinguish from other existing sparse modeling techniques.
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We evaluate the performance of the proposed approach on classification tasks of

PET imaging data obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database. One of the primary goals of ADNI has been to test whether serial

PET images can be used to measure the progression of mild cognitive impairment

(MCI) and early AD and finally aid the researchers and clinicians to treat the disease

in a more effective way. The participants of ADNI were classified into three groups

at their initial visits: AD, MCI and Normal Control (NC). Many existing studies of

ADNI have been focused on the pairwise classifications among three groups (AD vs

NC, AD vs MCI, and MCI vs NC), however, there has been a growing interest in

studying the clinical change of MCI patients to assist in the early diagnosis of AD, in

particular, to predict the conversion from MCI to AD using the brain imaging data

(Misra et al., 2009; Davatzikos et al., 2011; Zhang and Shen, 2012; Eskildsen et al.,

2013). During the follow-up (from 6 months up to 84 months), some of the MCI

patients have converted to AD, while others have not. They are referred to as MCI

converters (MCI-C) and MCI non-converters (MCI-NC), respectively. In the present

work, our main objective is to predict the conversion at future time points using the

baseline PET imaging data of MCI subjects.

The rest of this chapter is organized as follows. In Section 4.2, we propose the

regularized multiple functional regression model. In Section 4.3, we illustrate the

performance of the proposed approach through simulation studies and compare it to

other methods. We then validate the approach by applying it to the MCI conversion

data obtained from the ADNI database. Finally, we conclude with a discussion in

Section 4.4.

4.2 Materials and Methods

In this section, we mainly present in detail the proposed regularized multiple

functional regression approach that accounts for the group structure of the voxels.
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Moreover, we consider an ad hoc approach, namely that of applying the regularized

logistic regression on the voxels directly without treating the images as functional

observations.

4.2.1 Haar-wavelet-based regularized multiple functional logistic regres-

sion (HW-RMFLR)

To preserve the spatial information of the imaging data, we treat each subject’s

image as a realization of 3D functional predictor Xi(u, v, w), and assume that Yi

takes values either 0 or 1, indicating the disease status of subject i. In Chapter III,

we proposed the 3D functional logistic regression model as follows:

log

(
πi

1− πi

)
= β0 +

∫ ∫ ∫
Xi(u, v, w)β(u, v, w) dudvdw (4.1)

where πi = P (Yi = 1|Xi) for subject i and β(u, v, w) is the 3D regression coefficient

function. For simplicity, we assume that 0 ≤ u, v, w ≤ 1.

In order to achieve sparse estimation and identify the correlated voxels together,

we consider 3D Haar wavelets as the basis functions to decompose Xi(u, v, w) and

β(u, v, w). 3D Haar wavelets are tensor products of 1D Haar wavelet basis functions.

1D Haar wavelets are given by a pair of so-called father wavelet function φ(t) and

mother wavelet function ψ(t), where φ(t) is given by

φ(t) =

 1 if 0 ≤ t < 1,

0 otherwise,

and ψ(t) is given by

ψ(t) =


1 if 0 ≤ t < 1/2,

−1 if 1/2 ≤ t < 1,

0 otherwise.
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All 1D Haar wavelets are obtained by applying translations and dilations on the

above functions:

ψj,k(t) =
√

2jψ(2jt− k), φj,k(t) =
√

2jφ(2jt− k),

where j = 0, 1, · · · and k = 0, 1, · · · , 2j − 1. Index j refers to dilations whereas index

k refers to translations, and
√

2 is the normalizing factor. The functions φj,k(t) and

ψj,k(t) are usually considered as averaging and differencing operations respectively.

The tensor products are constructed by three elements, each of which can be φ(t)

or ψ(t). The 3D version of the father wavelet function φ(u, v, w) is given by the

tensor product of three 1D functions φ(u)φ(v)φ(w). 3D mother wavelet functions

are designed as the other seven combinations of tensor products accounting for all

cross-spatial horizontal, vertical and diagonal directions. The operations such as

translations and dilations can be adapted to the 3D functions accordingly. For more

details about the construction of 3D Haar wavelets, see Muraki (1992).

Since it is known that the cerebral cortex can be partitioned into a number of pre-

defined regions, a group structure exists among voxels. It is impossible to account for

the group structure among voxels if the entire image Xi(u, v, w) is decomposed by one

set of 3D Haar wavelets. Hence, we propose the multiple functional regression model

which allows us to account for the group structure by applying a wavelet transform to

each group. Assuming that the cerebral cortex is divided into G regions, we rewrite

model (4.1) into the multiple functional regression model as follows:

log

(
πi

1− πi

)
= β0 +

G∑
g=1

∫ ∫ ∫
Xi,g(u, v, w)βg(u, v, w) dudvdw. (4.2)

In model (4.2), we decompose Xi,g(u, v, w) and βg(u, v, w) in region g by the same
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set of 3D Haar wavelet basis functions denoted by Bg(u, v, w):

Xi,g(u, v, w) = CT
i,gBg(u, v, w), βg(u, v, w) = Bg(u, v, w)Tηg. (4.3)

Plugging (4.3) into (4.2), the model can be re-expressed as:

log

(
πi

1− πi

)
= β0 +

G∑
g=1

∫ ∫ ∫
CT
i,gBg(u, v, w)Bg(u, v, w)Tηg dudvdw

= β0 +
G∑
g=1

CT
i,gηg, (4.4)

where the integral cancels because wavelet basis functions are orthogonal, and ηg, g =

1, ..., G is the wavelet coefficient vector to be estimated in region g.

To account for both group-wise and within-group sparsity of η, η = [η1, ..., ηG], we

incorporate the sparse group lasso penalty into the following objective function:

max
η

1

n

n∑
i=1

{Yilog πi+(1−Yi)log (1−πi)}+λ1
G∑
g=1

√√√√ωg

pg∑
j=1

η2gj+λ2

G∑
g=1

pg∑
j=1

|ηgj| , (4.5)

where λ1 > 0 and λ2 > 0 are tuning parameters and ωg is a weight coefficient

indicating the group size. It can be seen that the penalty is a mixture of `1 and `2

penalties, where `2 penalty identifies the important groups and `1 penalty eliminates

unimportant variables within identified important groups. We implement the state-

of-the-art software SLEP 4.1 (Liu et al., 2009) to solve (4.5). After obtaining η̂, we

then derive β̂g(u, v, w) of region g by Bg(u, v, w)T η̂g.

In practice, the 3D functional predictor X(u, v, w) is observed over a fine 3D grid.

We apply the 3D Haar wavelet transform to Xg(u, v, w), g = 1, ..., G, respectively.

One of the practical considerations is that each brain region has an irregular shape.

For the ease of application, we consider the smallest cuboid that contains the region

g and set the voxels outside of the region but in the cuboid to zero, then apply
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the wavelet transform on the cuboid. After obtaining β̂g(u, v, w), we only record

it at the locations (u, v, w) where Xg(u, v, w) is nonzero, and combine the recorded

β̂g(u, v, w) into the whole coefficient function β̂(u, v, w). In addition to λ1 and λ2,

we also include the level of decomposition of the 3D Haar wavelet transform as a

third tuning parameter. Ideally, the optimal level of decomposition could be different

across regions. But in consideration of the computational feasibility in practice, we

assume it to be the same.

4.2.2 Sparse group lasso regularized logistic regression (SGL-RLR)

An alternative approach is to estimate β directly from the following logistic re-

gression model:

log

(
πi

1− πi

)
= β0 +

∑
u,v,w

Xi(u, v, w)Tβ(u, v, w)

= β0 +
G∑
g=1

∑
u,v,w∈Rg

Xi,g(u, v, w)Tβg(u, v, w),

where (u, v, w) are integers indicating the location of the voxel in region g, denoted by

Rg. Each βg(u, v, w) is treated as a regression parameter and the sparse group lasso

penalty is implemented directly on these parameters. It should be noted that it is

different from the proposed approach in Section 4.2.1 where we implement the sparse

group lasso penalty on the coefficient η. Regression parameters β can be obtained by

maximizing the regularized log likelihood function,

max
β

1

n

n∑
i=1

{Yilog πi + (1− Yi)log (1− πi)} − Pλ1,λ2(β), (4.6)

where Pλ1,λ2(β) = λ1
∑G

g=1

√
ωg
∑

u,v,w∈Rg βg(u, v, w)2+λ2
∑G

g=1

∑
u,v,w∈Rg |βg(u, v, w)|

is the sparse group lasso penalty with tuning parameters λ1 and λ2, and a weight co-

efficient ωg indicating the group size.
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A similar approach is considered in Zhou et al. (2012), where the fused sparse

group lasso is developed for the longitudinal voxel selection and the sparse group lasso

is included for variable selection as a special case. Here we evaluate the performance

of the sparse group lasso penalty in the regularized logistic regression and compare it

to the proposed approach HW-RMFLR.

4.2.3 PET imaging data

PET imaging data used in this work were obtained from the ADNI database

(adni.loni.ucla.edu). The ADNI project was launched in 2003 by the National Insti-

tute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the

Food and Drug Administration, private pharmaceutical companies and non-profit or-

ganizations, as a $60 million, 5-year public-private partnership. The primary goal of

ADNI has been to test whether serial magnetic resonance imaging (MRI), PET, other

biological markers, and clinical and neuropsychological assessment can be combined

to measure the progression of MCI and early AD. Determination of sensitive and spe-

cific markers for disease progression in very early AD is intended to aid researchers

and clinicians to develop new treatments and monitor their effectiveness, as well as

lessen the time and cost of clinical trials. The Principal Investigator of this initiative

is Michael W. Weiner, MD, VA Medical Center and University of California - San

Francisco. ADNI is the result of efforts of many co-investigators from a broad range

of academic institutions and private corporations, and subjects have been recruited

from over 50 sites across the U.S. and Canada.

Participants in the ADNI study were classified into three groups during their

initial visits: AD, MCI and NC based on the baseline diagnosis. The data set used

in the present work consists of 203 MCI subjects’ baseline FDG PET scans. Details

about how PET imaging is performed on each participant can be found on the ADNI

website (http://www.loni.ucla.edu/ADNI/Data/ADNI Data.shtml). Briefly, multiple

60



PET frame scans were acquired to show the brain activity 30-60 minutes after the

injection of FDG. These scans were co-registered to the first scan and averaged to a

single averaged scan which was then reconstructed on a standard 160×160×96 voxel

grid with 1.5 mm cubic voxels along the anterior commissure-posterior commissure

(AC-PC) plane. The final images were obtained after smoothing each of the above-

mentioned image to produce a uniform isotropic resolution. PET images used in this

work are segmented by Brodmann areas (Garey, 2006), as a result, the voxels in the

brain are grouped into 106 Brodmann areas, which constitutes the group structure of

the voxels. The voxels not indexed by Brodmann areas are not used in the analyses

in this work. Brodmann areas have been widely used in the study of pathological

process of AD, and many Brodmann areas are demonstrated to be related to AD

(Galton et al., 1999; Querbes et al., 2009; Fouquet et al., 2009).

4.3 Numerical Results

All the numerical experiments in this section are carried out by Matlab 2011b.

The wavelet transforms are performed by the Matlab Wavelet Toolbox.

4.3.1 Simulations

In this subsection, we perform simulation studies to validate the proposed ap-

proach, and compare it to several other sparse modeling methods. Particularly, we

compare the performance in identifying predictive voxels among HW-RMFLR, SGL-

RLR, and Haar-wavelet-based regularized functional logistic regression (HW-RFLR)

introduced in Chapter III. 2D simulations are performed based on one slice for conve-

nience. For each subject i, we select the same axial slice (the dimension is 160× 160)

and treat it as Xi(u, v), and fit the following 2D multiple functional logistic regression
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model:

log

(
πi

1− πi

)
= β0 +

G∑
g=1

∫ ∫
Xi,g(u, v)βg(u, v) dudv. (4.7)

We apply the 2D Haar wavelet transform to each region on the slice. Based on

the Brodmann areas, voxels on the selected slices can be grouped into 18 regions,

i.e. G = 18, see Figure 4.1 (a) for the region segmentation on the selected slice.

We consider the case of β(u, v) where part of the voxels in two regions are assumed

to have nonzero effect ( see Figure 4.1 (b). For subject i, the disease status Yi is

generated by drawing a random uniform number u on the interval [0, 1], and denote

Yi = 1 if πi < u and Yi = 0 otherwise. As it is a classification problem, the minimum

error achievable is referred to as Bayes error rate (Fukunaga, 1990). We set it about

0.28 in this work, as the prediction of conversion to AD from MCI is known to be

a difficult task. In the simulations, we keep the case-to-control ratio around 0.5.

Note that the scale of βg(u, v) and the intercept β0 can be adjusted to satisfy these

requirements. We apply the five-fold cross validation to select the optimal set of

tuning parameters. We consider two criteria: cross-validated deviance (CV-DEV),

and cross-validated area under the ROC curve (CV-AUC). In order to evaluate the

performance in identifying zeros and nonzeros of β(u, v), we perform the five-fold

cross validation on the data set to select the tuning parameters, and then obtain

β̂(u, v). We generate the binary outcome Yi 10 times to obtain 10 data sets due to

the high computational cost. We repeat the whole procedure for each data set and

then obtain the median estimate of β̂(u, v). The median estimates derived from all

the methods under two criteria are presented in Figure 4.2. We also present the

average percentages of correctly identified zeros and nonzeros over 10 simulations in

Table 4.1, showing that in general, the proposed approach HW-RMFLR achieves the

highest rates in correctly identified nonzeros among three methods, with no sacrifice

in identifying zeros.

The average ten-fold cross-validated AUCs of the three methods, however, are
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a b

Figure 4.1: (a) Region segmentation on the selected slice; (b) true β(u, v).

a b c

d e f

Figure 4.2: Median estimates of β̂(u, v) over 10 simulations. (a) HW-RMFLR with
CV-DEV; (b) HW-RFLR with CV-DEV; (c) SGL-RLR with CV-DEV; (d) HW-
RMFLR with CV-AUC; (e) HW-RFLR with CV-AUC; (f) SGL-RLR with CV-AUC.

quite similar (all of them are about 0.77), showing that they have similar classification

performance under this simulation setting.

4.3.2 Predicting MCI-to-AD conversion using ADNI FDG PET images

In this subsection, the three methods considered in Section 4.3.1 are applied to the

classification of two types of MCI subjects from the ADNI data set. We also include

the principal component based logistic regression (PC-LR) proposed in Chapter III.
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Approach Criterion Zeros Nonzeros

HW-RMFLR
CV-DEV 97.9% 74.3%
CV-AUC 98.5% 67.9%

HW-RFLR
CV-DEV 99.6% 21.2%
CV-AUC 99.7% 18.9%

SGL-RLR
CV-DEV 97.9% 43.0%
CV-AUC 98.1% 40.9%

Table 4.1: Average percentages of correctly identified zeros and nonzeros over 10
simulations.

To reduce the computational cost, we reduce the dimension of the images from 160×

160 × 96 to 80 × 80 × 48 by combining every two neighboring voxels. The reduced

dimensional images are also segmented by Brodmann areas correspondingly.

In the ADNI procedure, PET scans and clinical diagnosis were performed at base-

line, 6 months, 12 months, 18 months, 24 months, 36 months for MCI subjects. With

additional funding, in the form of a Grand Opportunities grant, the ADNI study

moved into the ADNI GO study in 2010 for an additional 2-year period. Moreover,

while the ADNI GO project continues, ADNI began its third phase in 2011, which is

known as ADNI 2, to further identify who may be at risk of developing AD. Therefore,

the MCI subjects continued to receive follow-up at 48 months, 60 months, 72 months

and 84 months when our data were acquired in March 2013. In this work, we focus

on the prediction of MCI-to-AD conversion using baseline scans. The status of AD

conversion was observed at each of the follow-up time points. Predicting the conver-

sion has been studied in recent years. Misra et al. (2009) applied a high-dimensional

pattern classification method based on regional volumetric features to predict the

MCI-to-AD conversion using MRI scans in the ADNI database. As their study was

finished in 2008, the average follow-up time of the subjects included in the study was

only 15 months, but they reported high predictive performance (AUC=0.77) using the

leave-one-out cross validation. Although this result is promising, they only observed
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27 MCI-C, which may cause difficulty in comparing with other studies that have been

published more recently with longer term follow-ups. Davatzikos et al. (2011) consid-

ered MRI imaging data together with many other biomarkers and clinical variables.

Although they reported an AUC of 0.734 using the five-fold cross validation, their

method is not able to select important regions as a derived measure from the whole

brain was used. Zhang and Shen (2012) investigated the prediction of conversion at

different time points using both baseline and longitudinal multi-modality data includ-

ing MRI, PET and cognitive scores. They focused on the longitudinal changes of the

brain regions in addition to prediction of the conversion and the subjects included

in their work must have all imaging data at five different time points (baseline, 6

months, 12 months, 18 months and 24 months), which reduced the sample size (only

88 subjects were included) as there are many dropouts in the ADNI study. They

reported an AUC of 0.768 from the leave-one-out cross validation using both baseline

and longitudinal multi-modality data and an AUC of 0.676 using PET imaging data

only. Eskildsen et al. (2013) considered the conversion at a number of time points

prior to the diagnosis: 6 months, 12 months, 24 months and 36 months, using MRI

scans, and further examined the classification between MCI-C and MCI-NC at these

time points separately. In their study, subjects who did not convert to AD over the

course of the ADNI study were considered as MCI-NC and baseline scans were used

for MCI-NC. For those converters, scans at time point T prior to the conversion were

used in the analysis at T . A potential drawback of this study is that the images from

converters and non-converters were obtained at different time points. For example,

the scans used in the analysis at 6 months prior to the conversion consist of baseline

scans of MCI-NC and the scans obtained at 6 months prior to conversion for MCI-C.

In other words, the images represent two extreme classes, which largely improves the

classification accuracy and yields a high AUC of 0.81. This method is not applicable

in practice to predict future conversions. To overcome this potential drawback, we
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consider the prediction of conversion at multiple time points in a different way and

only use MCI subjects’ baseline PET imaging data. For example, if we consider the

conversion at the time point T , subjects dropping out without conversion before T

are excluded from the study; subjects having not converted to AD at T are classified

as MCI-NC; and subjects who converted to AD by T are considered as MCI-C. Since

there are more dropouts after 48 months, we only consider four time points in this

work: 12 months, 24 months, 36 months and 48 months. The number of subjects

who exhibited conversion or not at these time points are summarized in Table 4.2. It

can be seen that the total number of eligible subjects decreases at later follow-ups.

The frequencies of all MCI subjects’ follow-up time are presented in Figure 4.3. The

maximum follow-up time is 84 months, and the mean follow-up time is 42.4 months.

It is also worth noting that a collection of recent findings in prediction of MCI-to-

AD conversion are reviewed in Eskildsen et al. (2013), where Misra et al. (2009) and

Davatzikos et al. (2011) are among the best results in terms of AUC.

Months Number of MCI Number of MCI-C

12 months 186 24

24 months 172 58

36 months 160 77

48 months 137 86

Table 4.2: Summary of conversion at different time points.

We use the ten-fold cross validation to evaluate the performance for the classi-

fication tasks at the four time points. Cross-validated ROC curves with AUCs are

presented in Figure 4.4. It indicates that the classification performance is slightly in-

creased at later follow-ups. This makes sense since MCI-NC defined in the proposed

way are more likely to be real non-converters (i.e. stable MCI) and more different from

MCI-C, if they have not converted after a long period. Moreover, in most cases, the

proposed approach HW-RMFLR achieves the best classification performance among

66



0 06 12 18 24 36 48 60 72 84
0

5

10

15

20

25

30

35

40

45

50

Time points

N
um

be
r 

of
 S

ub
je

ct
s

Figure 4.3: Histogram of subjects’ last observed time points.

the four methods. We achieve an AUC of 0.749 under CV-DEV for the classifica-

tion between MCI-C and MCI-NC at 48-month time point, which is comparable to

previous studies using multi-modality data, given that we only use PET imaging

data. In the ADNI data set, the baseline clinical variables including apolipoprotein

E4 (APOE4) allele frequencies and mini mental state exam (MMSE) scores, and de-

mographic variables, such as age, education (in years) and gender, are also available.

We reanalyze the data by including these additional variables into the functional lo-

gistic regression model at 48-month time point using the CV-DEV as the criterion

to select tuning parameters. We also conduct an analysis using only these additional

variables in the logistic regression model. It should be noted that the model can be

fit directly without tuning parameter selection as there are only five covariates. The

classification performance is evaluated using the ten-fold cross-validation procedure.

The results are presented in Figure 4.5, showing the ROC curves from the analyses

using PET images and other variables, PET images only, and other variables only,

respectively. The corresponding AUC values are 0.764, 0.749 and 0.676, showing that

the AUC can be slightly improved by including other variables, and imaging analysis

does provide added value in the prediction of AD conversion.
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Figure 4.4: ROC curves and their AUCs for four classification methods (red curve:
HW-RMFLR; magenta curve: HW-RFLR; blue curve: SGL-RLR; green curve: PC-
LR) at four time points. Left panel: CV-DEV; right panel: CV-AUC. (a) and (b) 12
months, (c) and (d) 24 months, (e) and (f) 36 months, (g) and (h) 48 months.
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As the classification performance under the criterion CV-DEV is in general better

than that under CV-AUC, we present the voxels identified under the criterion CV-

DEV at different time points in Figure 4.6, and the 3D views of the identified voxels

in Figure 4.7. It can be seen that many regions are identified at more than one

time points, suggesting a strong association with the prediction of conversion to AD

from MCI. These regions include posterior cingulate cortex, superior temporal gyrus,

inferior temporal gyrus, primary visual cortex and cerebellum. The present findings

are also largely consistent with previous research studies mentioned above.
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Figure 4.5: ROC curves and their AUCs at 48 months (solid line: PET images only;
dashed line: PET images and other variables; dotted line: other variables only).

4.4 Discussion

In this chapter, we propose a regularized multiple functional regression approach

via Haar wavelets to identify the predictive voxels of the classification tasks of interest.

Simulation results show that this approach can improve the accuracy in identifying

the truly predictive brain areas. We then apply this approach to the prediction

of conversion to AD among MCI subjects. In the real application, the proposed

approach is shown to achieve better classification performance and offer an effective

way to identify the predictive brain areas to the conversion.
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It should be noted the this conversion exhibits a complex mechanism and our

analysis has limitations. Firstly, subjects dropping out without conversion to AD

before our selected time points are excluded, as it is not clear if these subjects are

MCI-C or MCI-NC. Secondly, we observe that 10 out of 203 MCI subjects have

exhibited reversion to normal cognition during the follow-up, but in this work we

treat them as MCI-NC. Thirdly, subjects have different follow-up times, and the

conversion occurs at different time points. We should note that the use of survival

analysis by treating the conversion time as the time-to-event variable may overcome

some of the limitations of recent studies.

We demonstrate the performance of the proposed approach on the classification

tasks between MCI-C and MCI-NC using baseline PET images from ADNI. The

model can be naturally applied to the classification using MRI images, or even multi-

modality imaging data where higher predictive performance is expected.
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Figure 4.6: Voxels identified using the proposed approach HW-RMFLR under CV-
DEV criterion at four time points. (a) 12 months, (b) 24 months, (c) 36 months, (d)
48 months.
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Figure 4.7: 3D sagittal views of the voxels identified using the proposed approach
HW-RMFLR under CV-DEV criterion at four time points. (a) 12 months, (b) 24
months, (c) 36 months, (d) 48 months.
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CHAPTER V

Conclusions and Future work

This chapter summarizes the contributions of this dissertation and discusses future

directions.

5.1 Conclusions

The goal of the dissertation is to develop new approaches for analyzing large-

scale brain imaging data to assist the diagnosis of Alzheimer’s disease (AD). The

dissertation demonstrates that the proposed approaches can overcome the limitations

of existing methods, and significantly improve performance in prediction of the disease

status and identification of the predictive brain areas.

This dissertation concerns some Haar wavelet-based regularized functional regres-

sion models for the analysis of 3D brain imaging data by treating each 3D image as a

realization of a 3D functional predictor. All the models are developed in the context

of functional data analysis. It is important to choose proper basis functions in func-

tional data analysis. We use the Haar wavelet transform because of the attractive

characteristics of Haar wavelets which can account for the spatial correlations among

voxels and achieve sparse estimation. It should be noted that the underlying assump-

tion of the proposed models is that only a few brain areas are truly predictive of the

outcome of interest, while most existing methods fail to provide sparse estimates of
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the voxel-level effects.

Chapter II focuses on the regularized functional linear regression via Haar wavelets.

Analysis of the PET imaging data obtained from the ADNI database shows that the

proposed approach is useful in identifying the most relevant voxels for cognitive im-

pairment in elderly people. The response variable used here is the MMSE score which

is obtained from questionnaires. The most predictive voxels are located in the brain

regions that are found to be related to the progression of AD in many previous stud-

ies. Chapter III concentrates on the classification problem and develops regularized

functional logistic regression via Haar wavelets. As there are three groups of subjects

in the ADNI database: AD, MCI and NC. The proposed approach is applied to all

the three pairwise classifications. The results demonstrate that the approach not

only achieves higher classification accuracy rates than other classification methods,

but also identifies the most predictive voxels of the classification. Chapter IV also

focuses on the classification problem, in particular, the classification of two types of

MCI subjects: one exhibits conversion to AD during follow-up and the other does not.

This classification problem is the most difficult one among the classification problems

considered in the dissertation, which has also attracted a lot of attention in recent

years. To improve the performance, regularized multiple functional regression that

can account for the group structure among voxels is developed. It is different from

previous chapters in that the Haar wavelet transform is applied within each brain

region instead of the whole brain. The results indicate that the proposed approach

yields an AUC which is comparable to AUCs reported in previous studies using a va-

riety of biomarkers, clinical measures as well as imaging data, given that the proposed

approach has only used the PET imaging data as the predictors.

The major contributions of the dissertation are threefold. First, the proposed

approaches in this dissertation can preserve the spatial information among voxels by

treating each image as a 3D functional observation. Second, the proposed approaches
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offer an effective way in identifying the most predictive voxels of the outcome by using

Haar wavelets as basis functions in functional regression models. Third, the under-

lying assumption is that only a few brain areas are truly predictive of the outcome,

while most of the brain areas are not predictive of the outcome. By imposing the

sparsity assumption into the estimation, these areas can be identified. The proposed

approaches are different from traditional methods for analyzing brain imaging data.

For example, the massive association discovered by the traditional univariate analy-

sis or principal component analysis could probably be caused by the high correlation

among voxels. Because the human brain has a very complex structure, and every

small part of it can have different functions, the proposed approaches can play a very

influential role in brain imaging studies.

5.2 Future work

We want to re-emphasize the practical application of the prediction of MCI to AD

conversion in Chapter IV, since the scientific discoveries in this kind of research have

great potential for early diagnosis of AD. As discussed in Section 4.4, the conversion

exhibits a very complex mechanism due to various conversion time points and the

inevitable loss to follow up. In this dissertation, the subjects who drop out of the

study without conversion are excluded from the analysis which could lead to bias

in the estimation. This limitation can be overcome by using survival analysis for

censored times. However, there is still an issue that some of the subjects may not be

at risk of conversion at all, and in this case, the cure model may be a useful tool (Sy

and Taylor, 2000).

The methods developed in this dissertation also point to other directions for future

work, including the extension to analysis of imaging data obtained from other modal-

ities. Large-scale neuroimaging data are very common nowadays in brain imaging

studies, such as magnetic resonance imaging (MRI), functional MRI (fMRI) and elec-
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troencephalography (EEG). In fact, the models developed in this dissertation can be

directly extended to structural MRI data. Both fMRI and EEG data consist of a time

series at each voxel. Because each time series can also be treated as 1D functional

data, we can still apply functional regression models to estimate the parameters of

interest. Overall, the proposed regularized functional regression models provide an

effective way for analyzing large-scale imaging data.
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APPENDIX A

Proofs of Theorems II.1, II.2 and II.3

Proof of Theorem II.1

Let η̂ be the lasso solution given in (2.6) with λ = aσ1

√
log p
n

, a > 2
√

2. In

order to prove Theorem II.1, we need the following Lemma 1, which is modified from

Lemma B.1 of Bickel et al. (2009). The proof of Lemma 1 follows similarly and thus

is omitted.

Lemma 1. Assume the same assumptions as in Theorem II.1, then with probability

at least 1− p1−a2/8 we have

∥∥∥∥∥∥
T∫

0

X(t)β̂(t) dt−
T∫

0

X(t)β(t) dt

∥∥∥∥∥∥
2

n

+ λ‖η̂ − η‖1

≤

∥∥∥∥∥∥
T∫

0

X(t)e(t) dt

∥∥∥∥∥∥
2

n

+ 4λ
∑
j∈Aη

|η̂j − ηj|

≤

∥∥∥∥∥∥
T∫

0

X(t)e(t) dt

∥∥∥∥∥∥
2

n

+ 4λ
√
s

√∑
j∈Aη

|η̂j − ηj|2

where e(t) is the approximation error in (2.2) and ‖ · ‖n is the empirical norm, which

is defined as ‖g‖n =
√

1
n

∑n
i=1 g

2
i
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The result in (2.11) is obtained immediately by applying Theorem 5.1 in Bickel

et al. (2009). Now we only need to prove (2.12).

By assumption RE(s, 3 + 4/θ), we have

κ2‖δAη‖22 ≤
1

n
‖Cδ‖22

=
1

n
(η̂ − η)TCTC(η̂ − η)

= ‖Cη̂ − Cη‖2n

≤

∥∥∥∥∥∥Cη̂ −
T∫

0

X(t)β(t) dt

∥∥∥∥∥∥
n

+

∥∥∥∥∥∥
T∫

0

X(t)e(t) dt

∥∥∥∥∥∥
n

2

. (A.1)

Lemma 1 implies,

∥∥∥∥∥∥
T∫

0

X(t)β̂(t) dt−
T∫

0

X(t)β(t) dt

∥∥∥∥∥∥
2

n

=

∥∥∥∥∥∥Cη̂ −
T∫

0

X(t)β(t) dt

∥∥∥∥∥∥
2

n

≤

∥∥∥∥∥∥
T∫

0

X(t)e(t) dt

∥∥∥∥∥∥
2

n

+ 4λ
√
s‖δAη‖2. (A.2)

Combining (A.1) with (A.2) , we find

κ‖δAη‖2 ≤

∥∥∥∥∥∥Cη̂ −
T∫

0

X(t)β(t) dt

∥∥∥∥∥∥
n

+

∥∥∥∥∥∥
T∫

0

X(t)e(t) dt

∥∥∥∥∥∥
n

≤

√√√√√
∥∥∥∥∥∥

T∫
0

X(t)e(t) dt

∥∥∥∥∥∥
2

n

+ 4λ
√
s‖δAη‖2 +

∥∥∥∥∥∥
T∫

0

X(t)e(t) dt

∥∥∥∥∥∥
n

. (A.3)

Subtracting the second term of (A.3) from both sides, and then squaring both bides,
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we have

κ‖δAη‖2 −
∥∥∥∥∥∥

T∫
0

X(t)e(t) dt

∥∥∥∥∥∥
n

2

≤

∥∥∥∥∥∥
T∫

0

X(t)e(t) dt

∥∥∥∥∥∥
2

n

+ 4λ
√
s‖δAη‖2. (A.4)

To solve the quadratic inequality for ‖δAη‖2, we first need to expand the left side of

(A.4), which yields

κ2‖δAη‖22 − 2κ‖δAη‖2

∥∥∥∥∥∥
T∫

0

X(t)e(t) dt

∥∥∥∥∥∥
n

≤ 4λ
√
s‖δAη‖2.

This implies

‖δAη‖2 ≤
4λ
√
s+ 2κ

∥∥∥∫ T0 X(t)e(t) dt
∥∥∥
n

κ2

≤ 4λ
√
s+ 2κMω

κ2
.

We also observed that the following relations hold with k0 = 3 + 4/θ:

‖δ‖1 = ‖δAη‖1 + ‖δAcη‖1 ≤ (1 + k0)‖δAη‖1 ≤ (1 + k0)
√
s‖δAη‖2.

Then we have,

‖δ‖1 ≤ (4 + 4/θ)
√
s

{
4λ
√
s+ 2κMω

κ2

}
.

Now let D be a diagonal matrix with
√∑n

i=1C
2
ij as the jth diagonal element. We

can then rewrite model (2.5) as

Y = β0 + Cη + ε∗ = β0 + C
(√

nD−1
)( 1√

n
D

)
η + ε∗ = β0 + C̃η̃ + ε∗, (A.5)
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where C̃ = C (
√
nD−1) and η̃ =

(
1√
n
D
)
η. Then the diagonal elements of the matrix

C̃T C̃
n

are equal to 1. Therefore, we obtain

∣∣∣β̂(t)− β(t)
∣∣∣ ≤ ∣∣∣β̂(t)−B(t)Tη

∣∣∣+ |e(t)|

=
∣∣B(t)T η̂ −B(t)Tη

∣∣+ |e(t)|

≤
√
n‖B(t)TD−1‖1‖ˆ̃η − η̃‖1 + ω

= γ(t)‖ˆ̃η − η̃‖1 + ω

≤ γ(t)(4 + 4/θ)

4asσ1

√
log p
n

+ 2κ
√
sMω

κ2

+ ω,

where ˜̂η = ( 1√
n
D)η̂ and γ(t) =

√
n‖B(t)TD−1‖1 =

∑p
j=1

∣∣∣∣ bj(t)√
1
n

∑n
i=1 C

2
ij

∣∣∣∣ .
Proof of Theorem II.2

If we assume that ε∗i ∼ N(0, σ2
2) in model (2.5), then this model is the special case

in Section 6 of Bickel et al. (2009). Let η̂ be the corresponding lasso solution with

λ = aσ2

√
log p
n

, a > 2
√

2, then Lemma 2 here is obtained directly from their Theorem

6.2.

Lemma 2. Assume the same assumptions as in Theorem II.2. Then under assumption

RE(s, 3), with the probability at least 1− p1−a2/8 we have

‖η̂ − η‖1 ≤
16asσ2
κ2

√
log p

n
, (A.6)

‖C(η̂ − η)‖22 ≤
16a2sσ2

2

κ2
log p, (A.7)

where κ = κ(s, 3).
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It follows from (A.7) that

‖C(η̂ − η)‖n =
1√
n
‖C(η̂ − η)‖2 ≤

4aσ2
κ

√
s log p

n
.

We then have∥∥∥∥∥∥
T∫

0

X(t)β̂(t) dt−
T∫

0

X(t)β(t) dt

∥∥∥∥∥∥
n

≤ ‖C(η̂ − η)‖n +

∥∥∥∥∥∥
T∫

0

X(t)e(t) dt

∥∥∥∥∥∥
n

= ‖C̃(ˆ̃η − η̃)‖n +

∥∥∥∥∥∥
T∫

0

X(t)e(t) dt

∥∥∥∥∥∥
n

≤ ‖C̃(ˆ̃η − η̃)‖n +Mω

≤ 4aσ2
κ

√
s log p

n
+Mω.

By Lemma 2, we have

‖ˆ̃η − η̃‖1 ≤
16asσ2
κ2

√
log p

n
.

Therefore, we obtain

∣∣∣β̂(t)− β(t)
∣∣∣ ≤ ∣∣∣β̂(t)−B(t)Tη

∣∣∣+ |e(t)|

=
∣∣B(t)T η̂ −B(t)Tη

∣∣+ |e(t)|

≤
√
n‖B(t)TD−1‖1‖ˆ̃η − η̃‖1 + ω

= γ(t)‖ˆ̃η − η̃‖1 + ω

≤ γ(t)
16asσ2
κ2

√
log p

n
+ ω.
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Proof of Theorem II.3

Proof. From (2.12), we have

∣∣∣β̂(t)− β(t)
∣∣∣ ≤ 4

κ2n,p∗
γn,p∗(t)(4 + 4/θ)s

3
2
p∗aσ1

√
log p∗

n
+ { 2

κn,p∗
γn,p∗(t)(8 + 8/θ)sp∗M + 1}ωp∗

≤ O(n−
1
2 ) +O(2−J

∗m)

Note that
γn,p∗ (t)

κ2
n,p∗

and
γn,p∗ (t)

κn,p∗
are bounded for large n by C.3 and C.4. sp∗ is bounded

by C.2.

If n→∞ and 2Jn →∞ (pn →∞),

∣∣∣β̂(t)− β(t)
∣∣∣ ≤ 4

κ2n,pn
γn,,pn(t)(4 + 4/θ)s

3
2
pnaσ1

√
log pn
n

+ { 2

κn,pn
γn,pn(t)(8 + 8/θ)sp∗M + 1}ωpn

≤
√

log n2Jnbt√
n

{ 4

κ2n,pn
2−Jnbtγn,,pn(t)(4 + 4/θ)S

3
2aσ1

√
log pn√
log n

}

+

√
log n

√
n√

n2Jn(m−bt)
{ 2

κn,pn
2−Jnbtγn,pn(t)(8 + 8/θ)SM + 2−Jnbt}ωpn2Jnm√

log n

=

√
log n2Jnbt√

n
K1 +

√
log n

√
n√

n2Jn(m−bt)
K2

=

√
log nn

bt
2m

√
n

{( 2Jn

n
1

2m

)btK1 +
n
m−bt
2m

2Jn(m−bt)
K2}

= O(

√
log n

n
m−bt
2m

)

By C.1, C.2, C.3 and C.5, K1 and K2 are bounded, and by 2Jn = O(n
1

2m ), ( 2Jn

n
1

2m
)btK1

and n
m−bt
2m

2Jn(m−bt)K2 are bounded.
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APPENDIX B

Detailed Explanation for Choosing Haar Wavelets

The functional linear regression model is written as:

Y = β0 +

T∫
0

X(t)β(t) dt+ ε. (B.1)

In many cases, the response variable Y is determined only by a small region of the

predictor X(t). The approaches developed in this dissertation can provide us with a

sparse solution of β(t), as if β(t) is zero in many regions, the Haar wavelet coefficients

of β(t) are usually sparse too. Therefore, we apply the variable selection methods,

such as the lasso, to select the nonzero wavelet coefficients in order to achieve sparse

estimation.

Now we want to illustrate this by a simple example. Suppose that β(t) is a 1D

signal and collected at 8 time points. β(t) = [β(t1), ..., β(t8)] = [0, 0, 4, 6, 5, 5, 0, 0].

Applying level-1 Haar wavelet transform to β(t), we will obtain the wavelet coefficient

vector c1. The Haar transformation matrix for this case is shown below:
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H1 =
1√
2



1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1



βHT
1 =

1√
2

[
0 0 4 6 5 5 0 0

]



1 0 0 0 1 0 0 0

1 0 0 0 −1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 −1 0 0

0 0 1 0 0 0 1 0

0 0 1 0 0 0 −1 0

0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 −1



= c1

in which 1√
2

is the scaling factor and c1 = [0, 5
√

2, 5
√

2, 0, 0,−
√

2, 0, 0] is the wavelet

coefficient vector. Conversely, we have this relationship: c1H1 = β. The first four

coefficients in c1 corresponding to the first four rows of H1 are called approximation

coefficients (a1), and the last four coefficients in c1 corresponding to the last four

rows of H1 are called detail coefficients (d1). The first, third and last elements of

d1 are zero, meaning that there are no changes between the first two, third two and
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last two elements of β(t). The first and last elements of a1 are zero, indicating that

the averages of the first and the last two elements of β(t) are zero. This example

shows that zeros in the detail coefficients do not always indicate zeros in the original

signal, but no change between the two neighboring elements (for level-1 Haar wavelet

decomposition). If the corresponding approximation coefficients are also zero, then

some neighboring points are exactly zeros in the original signal. In this case, the first

and the last elements of both a1 and d1 are zero, showing that the first and the last

two elements of the original signal are zero.

Similarly, the applications of Haar wavelet transform at other levels to β(t) are

shown below. Let H2 denote the level-2 Haar wavelet transform matrix, and H3

denote the level-3 Haar wavelet transform matrix.

H2 =



1
2

1
2

1
2

1
2

0 0 0 0

0 0 0 0 1
2

1
2

1
2

1
2

1
2

1
2
−1

2
−1

2
0 0 0 0

0 0 0 0 1
2

1
2
−1

2
−1

2

1√
2
− 1√

2
0 0 0 0 0 0

0 0 1√
2
− 1√

2
0 0 0 0

0 0 0 0 1√
2
− 1√

2
0 0

0 0 0 0 0 0 1√
2
− 1√

2


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βHT
2 =

[
0 0 4 6 5 5 0 0

]



1
2

0 1
2

0 1√
2

0 0 0

1
2

0 1
2

0 − 1√
2

0 0 0

1
2

0 −1
2

0 0 1√
2

0 0

1
2

0 −1
2

0 0 − 1√
2

0 0

0 1
2

0 1
2

0 0 1√
2

0

0 1
2

0 1
2

0 0 − 1√
2

0

0 1
2

0 −1
2

0 0 0 1√
2

0 1
2

0 −1
2

0 0 0 − 1√
2



= c2

where c2 = [5, 5,−5, 5, 0,−
√

2, 0, 0].

H3 =



1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2

1
2
√
2
− 1

2
√
2
− 1

2
√
2
− 1

2
√
2
− 1

2
√
2

1
2

1
2

−1
2
−1

2
0 0 0 0

0 0 0 0 1
2

1
2

−1
2

−1
2

1√
2
− 1√

2
0 0 0 0 0 0

0 0 1√
2
− 1√

2
0 0 0 0

0 0 0 0 1√
2

− 1√
2

0 0

0 0 0 0 0 0 1√
2

− 1√
2


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βHT
3 =

[
0 0 4 6 5 5 0 0

]



1
2
√
2

1
2
√
2

1
2

0 1√
2

0 0 0

1
2
√
2

1
2
√
2

1
2

0 − 1√
2

0 0 0

1
2
√
2

1
2
√
2
−1

2
0 0 1√

2
0 0

1
2
√
2

1
2
√
2
−1

2
0 0 − 1√

2
0 0

1
2
√
2
− 1

2
√
2

0 1
2

0 0 1√
2

0

1
2
√
2
− 1

2
√
2

0 1
2

0 0 − 1√
2

0

1
2
√
2
− 1

2
√
2

0 −1
2

0 0 0 1√
2

1
2
√
2
− 1

2
√
2

0 −1
2

0 0 0 − 1√
2



= c3

where c3 = [5, 0,−5, 5, 0,−
√

2, 0, 0].

By observing the structures of different levels Haar wavelet transform, we find

that the numbers of nonzero elements in the wavelet coefficient vectors are different.

It is not surprising to see that β̂(t) is often piece-wise constant after applying the lasso

method for the selection of important elements of wavelet coefficients because small

detail coefficients are set to zero. Moreover, higher-level Haar wavelet transform tends

to give us piecewise constant solutions on a coarser scale. Considering all of the above,

it would be natural to assume that there exists an optimal wavelet decomposition level

for a given signal in terms of measures of prediction accuracy in the regression setting,

therefore, we set it as one of the tuning parameters in this dissertation.
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