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Abstract 

A common attribute of electric-powered aerospace vehicles and systems such as 

unmanned aerial vehicles, hybrid- and fully-electric aircraft, and satellites is that their 

performance is usually limited by the energy density of their batteries. Although lithium-

ion batteries offer distinct advantages such as high voltage and low weight over other 

battery technologies, they are a relatively new development, and thus significant gaps in 

the understanding of the physical phenomena that govern battery performance remain. As 

a result of this limited understanding, batteries must often undergo a cumbersome design 

process involving many manual iterations based on rules of thumb and ad-hoc design 

principles. 

A systematic study of the relationship between operational, geometric, 

morphological, and material-dependent properties and performance metrics such as 

energy and power density is non-trivial due to the multiphysics, multiphase, and 

multiscale nature of the battery system. To address these challenges, two numerical 

frameworks are established in this dissertation: a process for analyzing and optimizing 

several key design variables using surrogate modeling tools and gradient-based 

optimizers, and a multi-scale model that incorporates more detailed microstructural 

information into the computationally efficient but limited macro-homogeneous model. In 

the surrogate modeling process, multi-dimensional maps for the cell energy density with 

respect to design variables such as the particle size, ion diffusivity, and electron 

conductivity of the porous cathode material are created. A combined surrogate- and 

gradient-based approach is employed to identify optimal values for cathode thickness and 

porosity under various operating conditions, and quantify the uncertainty in the surrogate 

model. The performance of multiple cathode materials is also compared by defining 

dimensionless transport parameters. 

The multi-scale model makes use of detailed 3-D FEM simulations conducted at 

the particle-level. A monodisperse system of ellipsoidal particles is used to simulate the 
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effective transport coefficients and interfacial reaction current density within the porous 

microstructure. Microscopic simulation results are shown to match well with 

experimental measurements, while differing significantly from homogenization 

approximations used in the macroscopic model. Global sensitivity analysis and surrogate 

modeling tools are applied to couple the two length scales and complete the multi-scale 

model. 
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Chapter 1. 

Introduction 

1.1 Background and Motivation 

Lithium-ion batteries have attracted significant attention in recent years due to 

their high voltage and low weight, resulting in much higher achievable energy density 

than other battery technologies [1, 2, 3]. Their successful development and 

implementation in portable electronic devices has created further interest in their 

application in electric automobiles and aircraft, especially in light of increasing costs and 

dwindling supplies of fossil fuels. In fact, despite significant disparity in projections for 

oil prices and reserves, it is very likely that future oil prices will continue to increase and 

that production will decrease [4]. These effects are particularly important to the airline 

industry, which is a significant consumer of fossil fuel, with U.S. airliners alone 

consuming over 16.3 billion gallons of fuel (mostly Jet-A) at a cost of over $46.8 billion 

[5]. Furthermore, environmental concerns over the effect of carbon emissions on global 

climate change have also been a source of motivation for the development of lower-

emissions vehicles. Estimates for global emissions of carbon dioxide due to aviation 

alone range from 300 to 600 million metric tons by 2025, and 500 million to 1.1 billion 

metric tons by 2050 [6, 7]. In order to mitigate these effects, an enormous amount of 

research is currently being conducted on the science and engineering of renewable energy 

technologies. Although many renewable energy sources exist, each has its limitations and 

drawbacks, as documented by the United States Department of Energy [8]. 

A common limitation of many energy systems is that a device such as a battery, 

fuel cell, or mechanical flywheel is required when simultaneous energy extraction and 

consumption is not feasible. This is true of propeller-driven hybrid and fully electric 

aircraft that use electric motors to power the main shaft, as the electricity must be stored 

in a battery carried aboard the vehicle. Batteries are also required in aerospace 
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applications where combustion-based engines such as jets and rockets are not feasible for 

providing the required thrust for the vehicle, or power to the subsystems. Typically, this 

occurs due to size (mass or volume) or environmental (e.g., lack of oxygen) constraints. It 

is clear, therefore, that the performance of the battery has a critical impact on the overall 

performance of the system. 

 

Figure 1-1: Comparison of gravimetric and volumetric energy densities of 

various energy storage technologies 

 

As shown in Figure 1-1, lithium-ion batteries outperform their lead-acid and 

nickel-metal hydride counterparts, but still have energy densities that are two orders of 

magnitude lower than conventional fuels. Although part of the performance deficiency 

can be compensated for by the lower weight and greater efficiency of electric motors 

compared to combustion engines (90-100% for batteries and electric motors, 25-30% for 

gasoline engines, 50% for turbofan engines), it is nonetheless clear that significant 

improvements are needed in order for lithium-ion batteries to be considered a reliable 

power source in aerospace vehicles. The following sections include an overview of 

competing battery technologies, followed by several case studies to highlight the needs 

and potential of various electric-powered aerospace vehicles and systems. 
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1.2 Overview of Batteries 

Batteries can be broadly categorized as primary and secondary. In primary 

batteries, the electrode materials are consumed in the cell reaction and thus cannot be 

recharged. Primary batteries are commonly used to power the subsystems of launch 

vehicles, since they offer higher energy and power density (the common alkaline primary 

battery has a comparable energy density to the current state of the art lithium-ion 

secondary battery [9]), and are only required to last a few minutes. However, the majority 

of aerospace applications require batteries with long cycle life. As a result, current 

research is heavily focused on secondary batteries, which can be recharged by applying a 

large voltage in the opposite direction of the battery. Even for applications in which the 

battery cannot be charged while in operation, it is far more cost-effective to recharge a 

secondary battery than to replace an entire primary battery. Therefore, this dissertation 

focuses exclusively on secondary batteries. 

1.2.1 Past and Current Secondary Batteries 

Common secondary battery technologies used in the past include lead-acid, 

nickel-cadmium (Ni-Cd), and nickel-metal hydride (Ni-MH). Lead-acid was the first 

widely used, as the propulsion system in the earliest automobiles (before the advent of 

the gasoline engine cars). Lead-acid batteries are still used today to help initiate the 

ignition of the engine, due to their low cost and the relatively lax performance 

requirements. Ni-Cd batteries provide superior energy density performance, but like lead-

acid, they contain toxic materials. Ni-MH batteries have now replaced Ni-Cd almost 

completely, due to better safety and the lack of a memory effect, in which performance 

can be permanently reduced by charging at certain levels. They can also provide a high 

power density, which has made them a viable choice in early hybrid-electric vehicles. 

A rough comparison of past and current secondary batteries is summarized in 

Table 1-1. The technologies are listed roughly in chronological order, with lead-acid 

being the oldest and lithium-ion and lithium-polymer being the newest. The progressive 

improvement in battery performance, especially in terms of the energy density, can be 

observed. This trend is of critical performance since, as will be demonstrated in the case 
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studies contained in the following sections, energy density is the most critical 

performance requirement in many aerospace applications. 

 

Table 1-1: Comparison of past and current secondary battery technologies 

Type 

Cell Voltage Energy Density Power Cycle Life 

(V) (W-h/kg) (W-h/L) (W/kg) (cycles) 

Lead-acid 2.1 ~35 ~70 ~200 ~600 

Ni-Cd 1.2 ~35 ~100 ~150 ~1500 

Ni-MH 1.2 ~75
 

~240 ~500 ~500-1000
 

Li-ion 3.6 ~150
 

~400
 

~400 ~1000 

Li-polymer 3.7 ~170
 

~300
 

~400 ~750 

Zn-Air 1.6 ~150 ~160 ~200 400 hours 

1.2.2 Lithium-Ion Batteries 

From Table 1-1, it is easy to see why lithium-ion batteries have attracted 

significant interest. The well-known relationship between electrical power P, and current 

I and voltage V, is given by 

 ( ) ( ) ( )P t I t V t  (1) 

This equation demonstrates the importance of having a high cell voltage. Since the 

voltage of a battery cell is determined by the difference in electric potential between the 

two electrodes, and since lithium is the most electropositive element, cells making use of 

lithium-based electrodes are able to achieve high power performance. The energy 

supplied by the cell is equal to the accumulated amount of power over time, and thus the 

high cell voltage of lithium-ion batteries allows for high energy as well: 

 
0 0

( ) ( ) ( ) ( )
t t

t t
E t P d I V d        (2) 

Finally, since lithium has the lowest atomic mass of all metals, lithium-ion 

batteries have a lower weight than other types of batteries for a fixed amount of energy or 
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power, making them ideal in applications where mass is a critical design constraint. A 

schematic diagram of a battery cell is shown in Figure 1-2. 

 

Figure 1-2: Schematic diagram of lithium-ion battery cell during discharge; 

during charge the process is reversed 

A lithium-ion battery is a collection of individual lithium-ion cells connected in 

series, in parallel, or a combination of both. Single-cell batteries also exist, and are 

common for small-size applications such as portable electronics. A lithium-ion cell 

consists of a positive electrode (also called the cathode) and a negative electrode (anode) 

separated by a porous membrane called a separator. The electrodes are also porous, with 

electrolyte filling the pores and the solid consisting of active material in the form of 

microscopic particles, along with additives and binder materials. Each electrode is 

attached to a metal current collector containing the external tabs to which a load is 

connected. When the load is connected, a circuit involving the current collectors and 

electrolytes is completed, and the cell is discharged as electrons flow from the negative to 

the positive current collector, producing a current. To retain charge balance, positively 

charged lithium ions travel from the anode to the cathode via an electrolyte. The term 

“lithium-ion battery” typically refers to a case in which the electrolyte is a liquid 

containing lithium salt, while “lithium-polymer” or “lithium-ion polymer” refers to a case 
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where the electrolyte consists of a polymer gel material. Upon reaching the cathode, the 

ions are then intercalated (inserted) into the solid part of the cathode matrix. To charge 

the cell, an external voltage greater than the cell voltage is applied as the load, and the 

electrons and ions travel in the opposite direction. This is known as the “rocking chair” 

mechanism, as the ions travel back and forth between the electrodes as the cell is 

repeatedly charged and discharged. An important concept in the operation of a battery is 

known as the cycling rate (also known as C-rate), typically denoted in terms of a 

parameter C. A reference value of 1C corresponds to the rate at which the battery would 

be completely charged or discharged within one hour. Other C-rates are proportional to 

this reference value; rates less than 1C are commonly denoted as a fraction (e.g., C/2 = 2 

hours to charge/discharge). 

As will be discussed throughout this dissertaiton, the choice of electrode materials 

is an important decision in the design process. Due to the importance of cell voltage on 

both the power and energy of a cell, the cathode is typically a high potential transition 

metal oxide, while the anode is a low potential material such as a metal or graphite. The 

electrode materials should ideally also accommodate fast intercalation (insertion) and de-

intercalation of lithium ions, have a high electron conductivity, and low weight. The 

electrolyte should have a high ionic conductivity and have good thermal and mechanical 

stability. This dissertation focuses on lithium-ion batteries with the following 

configuration that satisfies these criteria: lithium manganese oxide cathode (LiMn2O4) 

and graphite (LiC6) anode, with an organic solvent consisting of a mixture of ethylene 

carbonate (EC) and dimethyl carbonate (DMC). The salt dissolved in the electrolyte is 

lithium hexfluorophosphate (LiPF6), and the positive and negative current collectors are 

aluminum and copper foil, respectively. Of course, this is by no means the only possible 

cell configuration, and the search for materials with better voltage, capacity, and 

reliability characteristics has motivated significant research into new materials. Since 

lithium-ion battery technology is relatively new compared to lead-acid and Ni-MN, there 

exists considerable room for improvement, and the currently achieved performance 

metrics given in Table 1-1 may be exceeded with the discovery of better materials and 

improvements to the manufacturing process (where nanotechnology is particularly 

promising). To address the uncertainty in material choice, this dissertation focuses on 
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generalized model development and analysis that can be readily conducted on batteries of 

different materials, as well as seeking to obtain better understanding of the battery 

physics that are relevant to all systems. Furthermore, Chapter 4 contains significant 

analysis comparing the performance of different electrode materials. 

1.2.3 Alternative and Future Batteries 

Although this dissertation focuses on lithium-ion batteries, it is important to note 

that other less mature battery technologies have shown significant promise and may 

become viable candidates for next generation energy storage applications to satisfy even 

higher performance requirements. These include lithium-metal, lithium-air, and organic 

batteries. 

A lithium-metal battery is a lithium-ion battery with lithium metal foil as the 

anode. Rather than the rocking chair mechanism in which lithium ions are inserted into 

opposite electrodes as the cell is charged and discharged, in a lithium-metal battery the 

anodic metal itself is consumed in the electrochemical reaction. Compared to the more 

commonly used graphite anode, lithium metal has a lower weight, lower electric potential, 

and higher electronic conductivity – superior performance in three important criteria 

discussed in Chapter 1.2.2. In fact, they have been demonstrated to provide energy 

density up to 230 Wh/kg [1], approximately 20% higher than the best lithium-ion 

batteries. Indeed, lithium metal is commonly used in applications requiring high energy 

without regard for cycling, such as primary lithium batteries. However, they suffer from 

poor cycle life due to uneven dendrite growth during charge cycles when the previously 

consumed lithium metal is restored to the anode. This dendrite growth leads to significant 

safety and reliability problems due to short-circuiting of the cell [10]. Nonetheless, there 

remains significant research interest in lithium-metal batteries, as recent efforts have 

attempted to circumvent the dendrite growth problem by replacing the liquid electrolyte 

with a solid-polymer material (the Li-SPE battery) [11, 12]. 

The lithium-air battery has been recently proposed as a candidate for achieving 

energy densities up to 1000 Wh/kg, more than five times that of a typical lithium-ion 

battery [13]. In a lithium-air battery, the anode consists of lithium metal and the cathode 
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is formed by the oxidation of lithium metal by oxygen, by exposing the metal to air. The 

previously successful zinc-air battery showed good stability in aqueous and alkaline 

electrolytes without significant corrosion, and has thus been used in small, high energy 

density applications with low cycling rates, such as hearing aids. Despite their high 

energy density, low cost, and long shelf life, lithium-air batteries have exhibited poor 

power output and a limited operating temperature range. In spite of significant recent 

research efforts to address these limitations [14], lithium-air batteries remain far from 

viable in large-scale applications. 

Finally, organic lithium batteries have been proposed not because of superior 

performance, but rather the recyclability and renewability of the electrode materials, thus 

reducing their carbon footprint. If effective processes can be developed, production costs 

could be lowered such that the electrodes could be synthesized from cheap, readily 

available materials. Although capacity and energy density are expected to be high, power 

rate is expected to be limited [2]. This will likely make organic lithium batteries 

unsuitable for automotive applications, but they may still be useful in certain aerospace 

applications such as long-endurance flyers or satellites where power is of lesser concern. 

1.3 Batteries in Aerospace Systems: Case Studies 

Recent advancements in materials science and the development of micro-electro-

mechanical systems (MEMS) have aroused the interest of engineers for the substitution 

of conventional combustion engines with battery-powered electric systems. Significant 

headway has been achieved in partially replacing the internal combustion engine with 

batteries in automobiles, such as in hybrid- and electric vehicles, but achievements in 

aerospace applications have been more limited. In this section, several case studies of 

hybrid or electric vehicles are presented to highlight important challenges related to the 

power and energy requirements in aerospace systems, as well as document the potential 

performance enhancements that can be enabled by improvements to battery technology. 

These case studies are also intended to demonstrate the shortcomings of current battery 

systems, thus motivating the need for the research featured in this dissertation. 

In much of this dissertation, a strong focus is placed on energy density, which as 
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discussed previously is the most critical performance metric in many applications. 

However, it is important to be aware of the other objectives that must be satisfied in 

battery design. Table 1-2 provides an overview of the requirements of various battery-

powered systems. 

Table 1-2: Comparison of battery requirements for various engineering 

systems 

Requirement Electronics Automotive 
Manned 

Aircraft 
UAV/MAV 

Satellites and 

Spacecraft 

Power 

Not important 

except in highly 

specialized 

devices 

Critically 

important 

Critically 

important for 

takeoff and climb 

Less important 

for hand-

launched vehicles 

Varies 

considerably 

depending on 

mission 

Weight 
Less important 

than volume 

Important for EV, 

less important for 

HEV 

Critically 

important 

Critically 

important 

Critically 

important 

Volume 

Depends on 

device, but 

typically the most 

critical limiting 

performance 

metric 

Moderately 

important; 

typically weight 

is limiting factor 

for Li-ion 

Moderately 

important; 

typically weight 

is limiting factor 

for Li-ion 

Less important 

than weight due 

to flexible cell 

geometry 

Typically less 

important than 

weight, but can 

be critically 

important 

Cycle Life 

Depends on 

device, but less 

important in 

designs with 

removable 

battery 

Critically 

important 

Not important 

except for very 

frequent flying 

Depends on 

mission, but 

typically not 

important 

Critically 

important for 

satellites; 

unimportant for 

planetary 

missions 

Sensitivity to 

Environment 

Not important 

except in highly 

specialized 

devices (e.g. 

implantable 

medical devices) 

Moderate 

temperature 

range capability 

required 

Low temperature 

capability critical 

due to altitude 

Depending on 

operating 

altitude, can 

range from 

negligible to 

similar to 

manned aircraft 

Critically 

important due to 

extreme 

temperatures and 

radiation; 

requires thermal 

regulation 

Scaling and 

System 

Integration 

Not important; 

single-cell may 

be sufficient 

Critically 

important 

Critically 

important 

Depends on size, 

but scaling is 

typically not a 

limitation 

Depends on 

system, but often 

critically 

important 
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Safety 

Important, but 

not as critical as 

in automobiles 

and aircraft 

Critically 

important due to 

high power rates 

Critically 

important high 

power at takeoff; 

motor failure 

could be 

catastrophic 

Desired but not 

critically 

important 

Critically 

important in 

manned 

spacecraft; 

unimportant in 

satellites 

 

It is immediately clear that in spite of some common objectives, battery systems 

in aerospace applications must be designed differently from those in automobiles or 

electronics, as certain irrelevant considerations in one application must be enforced as 

strict constraints in another. One example is weight, which is of less importance than 

volume in hybrid electric vehicles (HEV) that make efficient use of regenerative braking. 

On the other hand, the design of multifunctional materials with batteries embedded in the 

structure has reduced the importance of volume in applications such as UAV/MAV [15], 

while, as is demonstrated in Chapter 1.3.2, weight is of much greater importance. In yet 

other applications, such as satellites and spacecraft, both weight and volume are of 

critical importance, while power might not be. The complicated design process that 

results from needing to consider tradeoffs between multiple objectives, including those 

listed in Table 1-2 and those discussed in the following case studies, reinforce the need to 

better understand the physical processes that occur within a battery cell, and the interplay 

between performance criteria and design variables. This is especially true of new systems 

and vehicles that make greater use of electrical systems by using them to supplant less 

efficient, less robust mechanical systems. 

Notable examples of this trend include the Chevrolet Volt, a plug-in hybrid 

electric automobile, and the Boeing 787 Dreamliner, a mid-size long-range jet airliner. 

The 787 makes much greater usage of electrical systems than previous airliners, with 

generators producing electricity from the main engines and auxiliary power unit [16]. The 

reduced number of mechanical components improves overall efficiency and substantially 

reduces fuel emissions, especially during idling and taxiing, but places a much higher 

demand on the batteries and generators to supply sufficient electricity. Therefore, the 

overall cost reductions and other benefits of greater electrification are highly sensitive to 

the relative performance and efficiency of the electric and conventional systems. In the 

case of the 787, the greater electricity demand necessitates larger batteries, electric 
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motors, and generators, which all increase the total weight of the aircraft and thus reduce 

the overall fuel efficiency. Therefore, high-energy, high-power, low-weight batteries are 

of critical importance to achieving Boeing’s goals of long-term reductions in operating 

cost and fuel burn for the next generation of airliners. However, the recently discovered 

safety concerns regarding leaking in the 787’s battery packs [17] have also highlighted 

the importance of satisfying multiple objectives simultaneously. 

1.3.1 Solar-Powered Aircraft 

Solar power has become a leading candidate as part of a broad portfolio of green 

technologies that do not consume fossil fuels. In recent years, with the gradual 

improvement in photovoltaic cell efficiency and manufacturing capabilities [18], the 

extension of solar power to aircraft has been proposed and realized in a few applications. 

Perhaps the best-known examples in this category are NASA’s Pathfinder family of 

experimental unmanned aircraft, which includes the original Pathfinder along with the 

more recent models Pathfinder Plus, Centurion, and Helios. Like most solar-powered 

aircraft, they consist of a very long, high aspect ratio wing (AR = 31 for Helios), with a 

large array of photovoltaic cells on the upper surface. These provide power to electric 

motors that power propellers to generate thrust. The wings necessarily have a large 

surface area and high aspect ratio due to limitations in incident light and cell efficiency. 

The Pathfinders fly at very high altitudes: maximum altitude ranges from 65,000 feet for 

Pathfinder to over 96,000 feet for Helios, although optimal efficiency occurs at lower 

altitudes. For their high service ceiling and high efficiency, they are part of a class of 

vehicles known as high altitude long endurance (HALE) flyers. NASA’s stated long-term 

goal is to sustain long-term flight for atmospheric research purposes (as “atmospheric 

satellites”); therefore, nighttime flight will require battery power. For instance, a 24 hour 

non-stop flight with the Helios prototype requires approximately 1×10
5
 MJ of energy 

[19]. Current battery technology is insufficient for meeting this goal, so a second 

configuration for Helios, which includes an additional hydrogen-air fuel cell system, has 

been designed for maximizing endurance. 

A more recent project is the Solar Impulse, with the stated mission goal of 
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crossing the Atlantic Ocean in a single continuous flight, as well as making a trip around 

the world in segments lasting a few days at a time. Powered by 11,628 photovoltaic cells 

providing power to 4 10-horsepower electric motors during day and 400 kg of lithium-

polymer batteries at night, the aircraft is manned by a single pilot and has successfully 

completed a 26-hour flight that involved 9 hours of night-time flying. Battery 

performance is the most critical limiting factor to the aircraft performance, as the lithium-

polymer batteries that power the aircraft account for 25% of the total design mass of 1600 

kg. In fact, in a 2010 interview that has since been removed from their website, the Solar 

Impulse team confirmed that battery energy density was indeed the most critical 

limitation to vehicle performance: 

Question: What area still limits the plane’s performance? 

Answer: It is above all, the energy density of the batteries. 

Their stocking capacity is still limited and their influence 

has a great bearing on the total mass of the airplane. By 

doubling their storage capacity, it would be possible to 

allow a second person on board and therefore carry out 

longer flights. 

A critical reason why the stated trans-Atlantic goal has not been achieved in spite 

of the aircraft’s demonstrated capability of flying for a continuous 24-hour period is the 

physiological limitations on a single pilot. This is an excellent example to highlight the 

potential benefits of improving the energy density of current lithium-ion batteries. 

1.3.2 Unmanned Aerial Vehicles (UAV) 

The past decade has also seen a rapid incline in the capabilities and functionality 

of unmanned aerial vehicles (UAV). Since the first operationally significant Air Force 

UAV program, known as the Lightning Bug, came into inception, UAVs have primarily 

found applications in tactical reconnaissance. The turning point in the perception of these 

systems came in 1980s, when Israel deployed UAVs in the Bekaa valley to counter 

Syrian forces. After the Bekaa valley campaign, US purchased unmanned vehicles, such 

as ‘Pioneer’ and initiated a development program of its own that led to systems such as 
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RQ-1 predator (commonly known as “Predator A”). Subsequently, in 1998, RQ-4 (Global 

Hawk) accomplished its first flight, and has been flown for more than 7000 hours since. 

Small UAVs, such as Raven and Pointer, have also been developed and are man-portable, 

low-altitude, short-range systems that assist in reconnaissance and targeting. In addition 

to military uses, RPAs (Remote Piloted Aircraft) and UAVs have potential applications 

such as homeland defense (for example, in border-control and anti-drug warfare), civilian 

search and rescue, point-to-point cargo delivery, weather data collection, environmental 

monitoring and emergency management. Rapid recent advancements in aerospace and 

materials engineering have facilitated new RPA and UAV designs that make use of 

lighter and smaller sensor and weapon payloads (and hence a high capability per unit 

weight). Advances in UAV design also enable the operation of such systems in 

environments that are hazardous for humans, such as those contaminated by chemical, 

biological or radioactive agents. 

The term UAV encompasses a broad range of flyers of various configurations and 

sizes. Two notable subclasses of smaller flyers include miniature unmanned aerial 

vehicles (MUAV) and micro-air vehicles (MAV). Although unmanned flyers typically 

have greater endurance than manned systems due to the lack of payload, it is well known 

that energy and power generation become increasingly difficult as the size of the vehicle 

is decreased due to scaling differences between aerodynamics and weights [20]. In this 

section, a case study analyzing the performance gains for a MUAV that can be achieved 

with higher energy batteries is presented. Although no formal definition for MUAV 

exists, they are typically used for low-altitude reconnaissance, surveillance and target 

acquisition, and have a wingspan of a few feet (1-2 meters) and weight of a 2-3 kg. 

Examples include the Desert Hawk (Lockheed Martin), Aladin (EMT), and RQ-11 Raven 

(AeroVironment) models, the latter of which is the subject of this case study. 

The RQ-11 Raven is used by the U.S. Army, Air Force, Marine Corps, and 

Special Operations Command, in addition to military forces in 8 other countries. It can be 

controlled either remotely from a ground station, or autonomously using GPS waypoint 

navigation. The specifications for the vehicle are provided in Table 1-3, based on the data 

sheet available at the AeroVironment website [21]. 
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Table 1-3: Specifications for RQ-11 Raven (MUAV) 

Wingspan 4.25 feet 

Weight 4.2 lbs 

Endurance 80 minutes 

Range 6.2 miles (limited by communications) 

Cruise speed 60 mph 

 

The total energy requirement for this MUAV can be estimated by knowledge of 

the cruise speed, endurance time, and required thrust: 

 
cruise end

req

prop motor batt

TV t
E

  
  (3) 

The required thrust can be determined by estimating the lift-to-drag ratio. This 

case study assumes L/D = 9, a value typical of small aircraft [22]. The thrust can then be 

calculated by assuming that under cruise conditions, thrust must equal drag and lift must 

equal weight: 
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    (4) 

Based on Eq. (4) and the specifications in Table 1-3, the required thrust is about 

2.08 N. Assuming propeller, electric motor and battery efficiencies of 85%, 95% and 

90%, respectively, the total energy requirement calculated using Eq. (3) is about 3.68×10
5
 

J, or 102 Wh. For a typical battery energy density of 150 Wh/kg, the battery mass is 0.68 

kg, or 36% of the total vehicle mass. By increasing battery energy density from 150 to 

250 Wh/kg, the battery mass can be reduced by 0.27 kg, allowing the installation of a 

second payload device. Alternatively, for the same mass, the higher energy density 

battery would provide enough additional energy to extend the endurance by 53 minutes. 

1.3.3 Satellites and Spacecraft 

A third class of systems in which batteries play a critical role on the overall 

system level performance are satellites and spacecraft. Mass is a critical limitation in 

spacecraft design, with launch costs often estimated on a per-kilogram basis. Spacecraft 
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are one area where the superior energy density of lithium-ion batteries have not made 

much impact, as energy density is superseded by an even more important performance 

objective: cycle life. For this reason, Ni-H2 batteries are still commonly used, as they 

have proven to be highly reliable (the original Hubble Telescope batteries lasted 19 

years). Nonetheless, recent studies have shown that lithium-ion batteries hold great 

promise in this regard, as up to 30,000 cycles can be achieved for a battery cycled to 40% 

depth of discharge (DOD) [23]. For satellites in low earth orbit (LEO) such as the 

International Space Station, which experience 35 minutes of eclipse per 90 minute orbit 

cycle, this corresponds to about a 5 year lifetime, although more cycles can be expected if 

the depth of discharge can be reduced. Meanwhile, geostationary earth orbit (GEO) 

missions require 10+ year lifetimes due to the impossibility of periodic battery 

replacement. In this section, two case studies based on cost are considered: the Hubble 

Telescope in LEO, and a Boeing 702 communications satellite in GEO. 

According to data from the Hubble Telescope website [24], the satellite orbits at 

an altitude of 569 km at a 28.5 degree inclination, meaning it experiences 36 minutes of 

eclipse per 97 minute orbit. It is powered by 6 Ni-H2 batteries totalling 340 kg, which 

accounts for about 3% of its total launch mass of 11,110 kg. Since lithium-ion batteries 

typically offer about double the mass-specific energy density of their Ni-H2 counterparts, 

launch costs alone could be reduced by $1.7 million, based on the commonly quoted 

$10,000/kg launch cost for LEO satellites [25]. Boeing 702 is a large communications 

satellite that operates at GEO, used by DirecTV, XM Radio, and others. GEO has an 

altitude of 35,786 km, ensuring that the satellite orbits at the same rate as Earth. This is 

useful for communications purposes, as the satellite remains in the same position relative 

to the Earth. Unlike satellites in LEO, those in GEO only experience eclipse during two 

45-day periods per year, with a maximum duration of 72 minutes. However, launch costs 

are even greater, with estimates of $36,000/kg in 2002 and $20,000/kg in 2010 [26]. 

Although no data are available for total available energy, it is known that the Boeing 702 

satellites use Ni-H2 batteries rated at 328 Ah [27]. Assuming the same capacity-mass 

relationship as in the Hubble Telescope (450 Ah, 340 kg), converting to lithium-ion 

technology could reduce the satellite mass by 217 kg. At the 2010 specific launch cost to 

GEO, this corresponds to a savings of $4.3 million. If the projections of 60,000 cycles at 
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25% DOD at LEO conditions by Fellner et al. [23] can be validated for prismatic 

batteries, lithium-ion technology can substantially reduce launch costs and enable 

addition of more complex satellite subsystems. 

Another important challenge facing lithium-ion batteries in space applications is 

their relatively narrow operating temperature range compared to older nickel-based 

chemistries, which have all demonstrated a wide operating temperature range from at 

least -20 to 50°C [28]. While considerable ongoing research has shown promising results 

towards achieving a comparable operating range for lithium-ion batteries, a systematic 

method of analysis and optimization is necessary to properly incorporate them into the 

design the satellites and spacecraft [29, 30]. 

1.3.4 Hybrid Electric Aircraft Propulsion System 

This final case study presents a more detailed model for analyzing the 

performance of a hybrid-electric generation aviation aircraft. Specifically, the flight 

dynamics, engine, and battery of a hybrid version of a Cessna 172 are modeled by 

coupling it to a controller. Although several all-electric aircraft such as the PC-Aero 

Elektra One, Pipistrel Taurus Electro G2, and ElectraFlyer-C have been developed, their 

range is limited by the low energy density of the battery. In this study, a hybrid aircraft 

propulsion system is proposed, which couples a downsized version of the Cessna 172’s 

piston engine with a lithium-ion battery pack as the secondary energy storage system. In 

addition to reducing carbon emissions and fuel costs, the electric component of a hybrid 

system also does not lose power as altitude increases as air-breathing systems do. The 

additional cost of introducing a battery pack can also be mitigated if it is added to an 

existing aircraft configuration, as a $10,000 pack would only inrcrease the cost of a 

Cessna 172 by about 3%. This is a much lower percentage of the total vehicle cost than 

comparable hybrid-electric automobiles, and thus the hybridization of existing aircraft 

models holds significant prommise. However, the additional battery mass also results in 

reduced payload and fuel capacity, which could limit the benefits of hybridization. The 

purpose of this case study is to quantify these tradeoffs in greater detail using physics-

based models, in order to tradeoffs of costs and benefits of hybridizing a general aviation 
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aircraft. 

Three individual physical models for the aircraft, battery, and engine are included 

in the analysis. Additionally, a controller model regulating the inputs and outputs of these 

individual models is developed. Figure 1-3 contains a diagram showing how these 

models are linked. Note that a single global controller is used to control all individual 

models, which to not communicate with one another directly. 

 

Figure 1-3: Schematic of model hierarchy 

The baseline aircraft model is the Cessna 172 Skyhawk SP, a four-seat, single-

engine, fixed-wing aircraft that has been in production since 1955. According to the 

Cessna company website [31], more of this model have been build than any other aircraft. 

Since the goal of this study is not to design a hybrid aircraft, but rather to analyze its 

propulsion system and performance, no modifications are made to the aerodynamic 

properties of the aircraft. Some of the key parameters are listed in Table 1-4. The inputs 

to the aircraft model are the velocity, altitude, and vehicle mass (which gradually 

decreases as fuel is consumed). Based on these inputs, the model is able to calculate the 

corresponding forces acting on the aircraft (lift, weight, drag, and thrust), from which the 

required power from the engine can in turn be computed. Since the aircraft is not 

modified, existing aerodynamic data can be used in the aircraft model. 
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Table 1-4: Properties of Cessna 172 SP  

Wing area (m
2
) 16.2 

Empty weight (kg) 781 

Max take-off weight (kg) 1157 

Max fuel weight (kg/gal) 144 / 56 

Propeller diameter 1.92 

Max engine power (hp) 180 

Cruise speed (km/hr) 233 (75% power) 

Stall speed (km/hr) 99 

 

Figure 1-4 contains wind tunnel testing data for a Cessna 172 over a wide range 

of angles of attack (AOA), and shows that the maximum lift-to-drag ratio occurs at an 

angle of attack of 5 degrees. This is the design cruise condition for optimal fuel economy 

and maximum range. A detailed explanation of the equations of motion for maximizing 

range can be found in Appendix A. 

 

Figure 1-4: Lift, drag, and L/D as a function of AOA for Cessna 172 

The battery pack in this case serves two purposes: to provide additional power to 

the aicraft during periods of high power demand (i.e., takeoff), and to provide an efficient 

alternative to the engine while cruising. In this study, an equivalent-circuit (internal 

resistance) model is applied to LiNi1/3Mn1/3Co1/3 batteries, a type of lithium-ion battery 

commonly known as NMC. Relevant parameters for the battery pack are listed in Table 

1-5. 
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Table 1-5: Battery parameters at 22°C 

Capacity 56 A-hr 

Max Power 151 kW 

Min Voltage 374 V 

Max Voltage 412 V 

SOC Limit 0.2 

Mass 180 kg 

Internal Resistance 0.28 Ω 

Discharging Efficiency 0.97 

 

The battery pack is assumed to be thermally regulated with a constant temperature 

of 22°C, and includes 60 pouches with 100 layers in each pouch. The total power, voltage, 

and current of the battery pack can be calculated from the corresponding values for a 

representative cell, multiplied by the number of pouches and layers:  

 pack cell pouch layerW W n n    (5) 

 
pack cell pouchV V n   (6) 

 
pack cell layerI I n   (7) 

The rate of change in the state of charge (SOC) is calculated from the open circuit 

voltage, internal resistance, and battery capacity: 
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 
   (8) 

This quantity is outputted from the battery model to the controller, while the 

inputs are the current SOC and the required power. In this study, the SOC is tracked 

separately by the controller, so there is no need to integrate Eq. (8) within the battery 

model itself. In this analysis, no electric motor is considered. Instead, the motor 

efficiency is lumped together with the battery efficiency, and subsequent analysis 

assumes that the battery power is delivered directly to the vehicle with the lumped 
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efficiency. The mass of the motor is also lumped together with the battery pack. 

Most of the models of the Cessna 172 use one of the 360-class engines produced 

by Lycoming Engines. This study models the O-360-A model, a four-cylinder direct-

drive air-cooled piston engine that consumes 100LL, a type of aviation gasoline with 

similar properties to unleaded automobile gasoline. In order to model the power delivered 

for various throttle settings and engine speeds, as well as the fuel consumption at all 

engine operating points, torque and fuel maps need to be created. Since torque and fuel 

map data are not available for the O-360-A, available data for a Corvette engine are used, 

and scaled according to available Lycoming engine specifications. Although the accuracy 

of the simulated aircraft performance is reduced due to this simplification, the scope of 

this study is to establish a simulation framework and demonstrate the value of such 

modeling to systems-level design. The model can always be improved by substituting the 

data used in this study with those corresponding to the actual engine, with minimal 

modification to the framework. Specifications for the Lycoming Engine are as follows: 

the maximum power delivered is 180 horsepower at 2700 rpm. The model scales the 

torque map of the Corvette engine linearly based on this calibration point. Additionally, 

there are two calibration points used for the fuel consumption map: at an altitude of 8000 

feet, the Cessna-172 with the Lycoming O-360-A engine has a range of 580 nautical 

miles (nmi) and endurance of 4.8 hours, with the engine operating at 80% power. At 

10000 feet, the range and endurance are 687 nmi and 6.6 hours respectively, at 60% 

power. The fuel consumption map is scaled to fit through these two points via linear 

interpolation. For verification, the fuel consumption rate at zero-throttle is a small 

positive value at all engine speeds, ensuring physically realistic scenarios at all operating 

conditions. 

An additional consideration in the modeling of an aircraft engine is the effect of 

altitude on the engine performance. This is due to the change in ambient air properties at 

high altitudes. In this study, Eq. (9) from McCormick [22] is used to model the power 

delivered, for maximum sea level power P0,max = 180 hp. The efficiency η and throttle 

setting σ are accounted for in the torque map, and the air density ρ is found by linear 

interpolation using standard atmosphere tables: 
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As implemented in the current study, the engine model’s inputs are the engine 

speed and throttle setting, and the outputs are the delivered power and fuel consumption. 

In the aircraft model, there are several targets that the controller must consider. In 

addition to vehicle velocity, there are constraints on the altitude, flight angle, and angle of 

attack. Therefore, attempts at implementing an existing controller, such as MATLAB’s 

proportional-integral-derivative (PID) controller have been unsuccessful. Instead, a 

“target-based” controller is used in this study, which adjusts the engine throttle setting 

and battery power load based on the current vehicle state at each time step. The “target” 

vehicle state is the set of conditions that the vehicle would like to operate at based on 

cruise efficiency and the current vehicle state. At each time step, the throttle setting and 

battery load are adjusted based on the difference between the target and current states. 

The target conditions are calculated using the equations given in Appendix A. 

Table 1-6: Vehicle state variables and constraints 

State Symbol Units Constraint 

Distance x m - 

Altitude h m 0 ≤ h ≤ 4115 

Velocity V m/s 0 ≤ v ≤ 63.03 

Angle of Attack α degrees -5 ≤ α ≤ 16 

Flight Angle γ degrees - 

Vehicle Mass w kg w ≤ 1111 

Engine Power Pe W Pe ≤ 134226 

Battery Power Pb W Pb ≤ 60000 

Engine Speed s rpm 600 ≤ s ≤ 6000 

Throttle Setting Th percent 0 ≤ th ≤ 100 

Fuel f gallons f ≤ 3 

State of Charge SOC - 0.20 ≤ SOC ≤ 0.99 

 

Table 1-6 lists the vehicle state variables tracked by the controller model, as well 

as their constraints. Note that no explicit constraints are placed on the flight path angle, 
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allowing for potential instability in the controller if the angles become too large. Also 

note that no distance constraint is considered, since the range would be determined by the 

remaining vehicle states. The equations for adjusting the battery load and throttle setting 

at each time step are given in the following equations:  
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The term V
*
 in Eq. (12) is the target cruise velocity based on quasi-steady analysis. 

The remaining vehicle states are then updated using a forward Euler scheme, 

 1i i

i

y
y y dt

t
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where the state variable y can be any of the ones listed in Table 1-6. 

As shown in Figure 1-3, the individual aircraft, engine, and battery models do not 

interact with one another. Instead, each one supplies a set of outputs to the controller, 

which are then used to update the vehicle state. The controller then assigns new inputs to 

each of the individual models based on newly calculated target states. Superficially, the 

lack of communication between individual models seems like a disadvantage, as it does 

not maximize the use of globally available information about the vehicle state. However, 

there are important advantages to setting up the controller this way. For example, the 

vehicle state can be easily tracked at each time step, and that simple control schemes can 

be readily implemented and modified for each of the individual models. Another 

advantage is that each of the individual models can be easily substituted when more 

sophisticated models are available, such as torque and fuel maps based on actual data for 

the Lycoming engine, or more detailed battery models that account for physical 

phenomena not captured by the equivalent circuit model. 
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Figure 1-5: Time history plots of the vehicle state for hybrid and 

conventional systems 

In order to compare the relative performance of the hybrid and conventional 

systems, simulations of 20,000 time steps of 0.1 seconds are run for each system. Both 

simulations use the same initial takeoff condition, where the altitude is specified to be at 

sea level and the initial velocity is equal tot the takeoff velocity of a Cessna 172. Time 

history plots of important state variables for the two systems are shown in Figure 1-5. 

The extra power provided by the battery greatly improves the rate of climb, and the 

hybrid vehicle is able to reach the cruise altitude much more quickly. However, note that 

the fuel consumption and distance traveled show little difference between the two 

systems. To investigate why the two systems show such similar performance 

characteristics despite the additional power provided by the battery pack, it is useful to 

examine the engine and battery power for the hybrid system. The time histories of the 

two power sources are shown in Figure 1-6. 
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Figure 1-6: Time-averaged engine and battery power for hybrid system 

Note that the engine power greatly exceeds the battery power. Since the battery 

power comprises only a small proportion of the total power delivered, its effect on overall 

performance is limited. The final SOC after 2000 seconds is 0.63, for an average C-rate 

of about 0.65C. This suggests that most of the battery mass is essentially acting as 

deadweight, thus requiring even more power from the engine than for the conventional 

system. Increasing the maximum allowed power would make greater use of the hybrid 

propulation system. The velocity plot in Figure 1-5 also shows that the controller selected 

for this study is a critical factor in limiting the efficiency of the hybrid system due to the 

inability to achieve steady-state conditions without large fluctuations. 

Although significant difficulties with the controller has given results that do not 

indicate substantial differences in aircraft performance between a hybrid and a 

conventional propulsion system, the modeling framework established has been structured 

in a way that allows easy replacement with enhanced controller or component models. 

Another reason the hybrid system is not found to offer significant performance gains is 

the limited energy density offered by the batteries. Although LiNMC batteries can 

achieve higher energy density than most other battery technologies, they are still far 

below the levels attainable with conventional fuels such as 100LL. Nonetheless, Boeing 

has proposed a hybrid-electric airplane called Subsonic Ultra Green Aircraft Research 

(SUGAR) Volt, for which preliminary studies have identified a threshold energy density 
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value of 750 Wh/kg that would meet NASA’s N+3 goal of 70% reduction in fuel burn 

[32]. 

1.3.5 Summary of Case Studies 

Four specific classes of aerospace vehicles are presented in this chapter: solar-

powered aircraft which include both the unmanned HALE and manner Solar Impulse; 

unmanned aerial vehicles (UAV) which includes the subclasses MUAV and MAV; 

satellites/spacecraft in various orbits such as LEO and GEO; and a much more detailed 

model of the propulsion system of a hybrid-electric general aviation aircraft based on the 

Cessna 172. In all cases, the energy density of the batteries is found to be a critical 

limitation to the performance of the vehicle. In the Pathfinder family of HALE flyers, the 

stated goal of achieving 24 hour continuous flight with the Helios is not yet realizable 

because of insufficient battery energy density. Instead, Helios relies on hydrogen fuel 

cells to achieve continuous flight, which as shown in Figure 1-1 have energy density 

values over 400 Wh/kg, compared to 150-200 Wh/kg for state of the art lithium-ion 

batteries. The design of new lithium-ion cells with a comparable energy density would 

allow Helios to be powered by batteries instead of fuel cells, thus eliminating the need for 

hydrogen fuel. Similarly, although Solar Impulse has demonstrated the ability to fly 

continuously during the nighttime, the aircraft’s endurance is still limited by the need for 

the pilot to rest. A doubling of the battery energy density from 200 to 400 Wh/kg would 

allow a second person on board, allowing the aicraft to fly for much longer periods as the 

two pilots alternate. 

In contrast to Solar Impulse and Helios, the RQ-11 Raven, an example of a 

miniature unmanned aerial vehicle (MUAV), is able to meet its stated objectives, which 

is to provide 80 minutes of endurance at a cruise speed of 60 mph while being controlled 

from a portable ground station. In this class of vehicles, range is not of critical concern, 

since the radio transmission range is a greater limitation to range than the battery. 

However, as demonstrated in Chapter 1.3.2, improvements to energy density can still 

offer important advantages, such as extending the endurance by 53 minutes with an 

increase in energy density from 150 to 250 Wh/kg, or the capability to carry a second 
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payload device in addition to the on-board camera. Satellites and spacecraft are another 

class of vehicles whose performance is not limited by the energy density of lithium-ion 

batteries. In fact, they typically carry the older nickel metal hydride (NiMH) battery 

technology due to its superior cycle life. Therefore, the design goal of lithium-ion 

batteries for space applications is not the increase in energy density, but rather the 

extension of cycle life and calendar life. Low earth orbit (GEO) satellites require much 

greater cycle life due to the frequency of eclipses during which its solar photovoltaic cells 

are inactive, while geostationary earth orbit (GEO) satellites do not experience as many 

eclipses, but also cannot be serviced due to their high orbit altitude, and thus require 

batteries that can last its entire mission life of 10+ years. In addition, battery systems 

designed for space missions must meet additional environmental constraints, and 

appropriate design features such as radiation protection must be properly considered. 

In the final case study, the results are somewhat inconclusive due to the lack of a 

suitable controller model, resulting in unreliable results for a simulated flight mission. 

The inclusion of the battery in the hybrid configuration resulted in a greater rate of climb, 

thus allowing the vehicle to reach its cruising altitude about 500 seconds earlier. However, 

the decrease in the amount of fuel consumed by the combustion engine is very small, and 

does not demonstrate any major benefits of the hybrid configuration over the 

conventional configuration. As seen in Figure 1-6, this is due to the limited use of the 

battery by the controller, as the time-averaged power and total energy provided by the 

battery is several times less than that provided by the engine. Nonetheles, it is important 

to point out that the design of a battery with higher capacity would allow the controller to 

draw a greater proportion of the total system power from the battery while maintaining 

the same SOC, and thus improve the performance of the hybrid configuration. 

1.4 Objectives and Outline of the Dissertation 

The examples in Chapter 1.3 have been presented to demonstrate some of the 

potential gains that can be achieved with high energy batteries. However, the energy 

density of presently available battery systems is limited to about 200 Wh/kg, about half 

of what is required in several classes of vehicles. This is in large part due to a limited 
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understanding of battery physics and limited use of systematic modeling and optimization 

techniques in the battery design process. Therefore, there exists a need to apply efficient 

numerical methods to gain a better understanding of the relevant physical phenomena 

occuring within battery cells, in order to design and build higher energy and higher power 

batteries that can satisfy the vehicle performance requirements. This is compounded by 

the capabilities of existing battery models, which, as will be discussed in Chapters 2.2 

and 2.5, tend to be either overly simplified or computationally expensive. Specifically, 

the macroscopic cell models commonly used to study battery performance contain 

simplifications based on homogenization for important properties such as transport 

coefficients and interfacial reaction rates, which actually depend on the electrode 

microstructure. Therefore, the following objectives must be satisfied to to realize the 

potential gains in these vehicles: 

i. Develop a numerical framework based on surrogate-based analysis tools to 

systematically analyze the effect of multiple design variables such as 

operation, morphology parameters, and material properties on battery 

performance; 

ii. Apply dimensional analysis and optimization techniques to better understand 

the underlying physics that govern and limit battery performance; 

iii. Develop microscopic and multi-scale models that can accurately incorporate 

the effects of microstructure in simulating battery performance, to rectify 

limitations in the presently available homogeneous models. 

The research presented in this dissertation is motivated by the aerospace vehicles 

and systems discussed in Chapter 1.3. It is logical, then, to place emphasis on the 

implications of this research on the benefits that may be realized in the design of those 

systems. The term “battery performance” most frequently refers to energy density, as it is 

a critical performance objective in all of the case studies  shown in this chapter. However, 

some of the results must also be interpreted in the context of other relevant design 

objectives such as power density in high-power applications like hybrid-electric general 

aviation aircraft, and minimizing degradation for long cycle life applications like LEO 
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satellites. Where appropriate, the research presented in this dissertation seeks to address 

these other objectives in addition to energy density. 

In Chapter 2, the numerical tools used to obtain results in the following chapters 

of the dissertaiton are summarized. This includes the macroscopic homogeneous battery 

cell model, surrogate modeling framework, gradient-based optimization schemes, and 

microscopic modeling techniques. Governing equations and a comprehensive literature 

review for these methods is included, as well as important details about the numerical 

implementation of the tools. Where appropriate, examples are provided to highlight the 

capabilities of the methods, and to compare alternative approaches. 

In Chapter 3, surrogate-based analysis is applied to the macroscopic cell model, to 

study the effect of cycling rate, particle size, diffusivity, and conductivity on the cell 

energy density. The process of repeatedly refining the design space by introducing 

additional cell simulations is documented, along with shifts in surrogate model fidelity 

within the design space. A strategy for partitioning the design space based on global 

sensitivity analysis is presented, and the benefits of using multiple surrogates in different 

regions of the design space, compared to a single global surrogate, are discussed. The 

chapter concludes with an analysis of the tradeoff between energy and power. 

The surrogate-base analysis is continued in Chapter 4, with the introduction of 

additional design variables. In this chapter, optimization is performed using two different 

strategies: by applying the gradient-based optimizer directly to the cell model, and by 

applying the same optimizer to the surrogate model. The relative accuracy and 

computational cost of the two methods are compared. This chapter also examines the 

relative performance of several different electrode materials, in the context of 

dimensionless diffusivity and conductivity parameters obtained using dimensional 

analysis. 

Chapter 5 focuses on the modeling of material properties, namely the effective 

transport coefficients and interfacial electrochemical reaction current density, at the 

microscopic level using clusters of electrode particles. Results for effective transport rates 

calculated using graph analysis algorithms are also presented. Comparisons between the 

detailed 3-D FEM simulation results with the homogenization approximations used in the 

macroscopic models are made, and the microscopic modeling results are incorporated 
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into a multi-scale model, which uses surrogate modeling to couple the macroscopic and 

microscopic length scales. The multi-scale modeling section includes a survey of the 

literature and discussion of different multi-scale modeling strategies, followed by a 

discussion of numerical issues such as definition of the deriatives of state variables within 

the multi-scale model, and robustness of the coupling function. The chapter concludes 

with a comparison of the internal state of the battery modeled using multi-scale and 

homogeneous methods, and a discussion of the implications of the results on battery 

design. 
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Chapter 2. 

Methodology 

2.1 Introduction 

This chapter provides an overview of the numerical tools used in this research. 

These include the physical models for the battery cells and their components, the 

surrogate-based modeling and analysis framework and toolbox, and the gradient-based 

optimization methods. The numerical tools appear in this chapter in roughly the order 

they are utilized within the dissertation: the macroscopic battery cell model and surrogate 

modeling framework are presented first, followed by the gradient-based optimization 

methods, and finally microscopic models. 

2.2 Macroscopic Battery Cell Model 

Since the advent of lithium-ion batteries, various models have been developed to 

describe and simulate their behavior and performance. These include single-particle 

models [33, 34, 35], equivalent circuit models [36, 37], capacity-fade models [38], 

microscopic models [39, 40], 3-D models [41], and reformulated homogeneous models 

[42, 43]. In order to apply surrogate- and gradient-based analysis techniques to 

investigate the relationship between design variables related to the operation, 

manufacturing process, and configuration of battery cells and their performance, the 

macroscopic battery cell model must possess the following properties: 

i. Simulating the system-level behavior of the entire cell, and not just individual 

components; 

ii. Sufficient detail into the physical processes within the cell to capture the 
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effect of all specified input/design variables and provide modeling solutions 

with a reasonable level of accuracy;  

iii. And computational efficiency that allows for a large number of simulations to 

be conducted for design space sampling and optimization. 

Each of the class models listed above fails in at least one of these three criteria. 3-

D models are too computationally expensive to be feasible for problems in which 

hundreds or thousands of simulations need to be conducted, while microscopic models 

cannot be used to calculate the overall cell voltage or capacity. The remaining models are 

unable to accurately the effects of varying certain parameters due to excessive 

simplification of the model physics. 

Fortunately, a macroscopic homogeneous pseudo-2D model based on porous 

electrode and concentration theory is available. Developed by Doyle, Fuller, and 

Newman [44, 45], it models lithium ion diffusion and electron conduction in both the 

solid and liquid phases of the porous electrode matrix, which is assumed to be 

homogeneous. This model has been validated against experimental data [46], and is 

sufficiently detailed for analysis and optimization of a large number of variables. 

Furthermore, it retains good computational efficiency, with the available Fortran 

implementation (also called the dualfoil program) typically requiring tens of seconds 

to compute a single constant-current discharge cycle on a single-CPU computer. It has 

thus become a commonly used method for studying cell performance [47, 48]. However, 

numerical issues have been observed to cause convergence difficulties for certain cases 

with low diffusivity and a low discharge cutoff; for these cases alternative numerical 

platforms such as the COMSOL Multiphysics implementation of the model are preferred. 

The following is a summary of this model, which is used for all cell simulations in 

Chapters 3 and 4. In this dissertation, this model is sometimes referred to as the macro-

homogeneous model, or simply the cell model. 

The model is called a pseudo-2D because it models lithium ion and electric 

potential distributions along an axial dimension across the thickness of the cell, while 

accounting for the effect of particle size by applying the superposition principle to 

introduce a radial pseudo-dimension at each computational node to compute the rate of 
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ion diffusion within a spherical pseudo-particle. Along the axial dimension, the electric 

potential distribution in the solid and liquid phases is modeled using steady transport 

equations: 

  eff
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The axial dimension also models transient lithium ion diffusion in the liquid phase: 
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At the interfaces between electrodes and current collectors, fixed boundary 

conditions are applied: 
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Note that all three equations in the axial dimension involve an effective transport 

coefficient, which are calculated from bulk properties using the Bruggeman equation to 

account for electrode porosity ε: 
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The empirical value of α = 1.5 is most commonly used, although microscopic 

modeling results discussed in Chapter 5 suggest a different value. As mentioned, the 

second radial dimension models the time-dependent ion concentration distribution within 

spherical particles: 
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Boundary conditions for the temporal and spatial dimensions are applied at the 

center and surface of the sphere, respectively: 
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Note that the solid and liquid phases are coupled via the Butler-Volmer equation 

which models electrochemical kinetics at the interface between the phases based on the 

local surface overpotential η: 
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The exponential terms in Eq. (26) make the entire system of equations very 

sensitive to the overpotential, which in turn is sensitive to the open circuit potential UOCP. 

The open circuit potential is defined as the difference in potential between the two 

electrodes when no load is applied, and is a function of the SOC. Each electrode material 

has a unique open circuit potential function; in models such as this one, a curve fit of 

experimental measurements is typically used. For LiMn2O4, the most frequently used 

cathode material in this dissertation, the following equation based on empirical 

measurements is used: 
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With the inclusion of these equations, the system is fully coupled and can be 

solved for the four state variables (c1, c2, φ1, φ2). Note that although in this dissertation a 

single constant-current discharge cycle is simulated to calculate the energy and power 
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performance of the cell, the model is also capable of simulating arbitrary charge and 

discharge cycles. 

2.3 Surrogate Modeling Framework 

The concept of using systematic numerical tools in engineering analysis and 

design is quite common, as the notion of design variables influencing system 

performance can be found in numerous engineering systems. Nonetheless, many 

engineering system and modeling designs are still conducted as open loop, feed-forward 

processes involving many manual iterations in what is effectively a trial-and-error 

process. In order to make proper use of computational resources in addressing 

engineering challenges, a proper mathematical framework capable of simultaneously 

evaluating multiple variables and objectives is necessary. A good candidate for 

accomplishing this is the surrogate-based analysis framework, also known as surrogate 

modeling or metamodeling, which seeks to construct an approximation of the objective 

function (a “surrogate” for the true function) based on a finite number of discrete sample 

points obtained from experiments or numerical simulations. In this sense, it is similar to a 

set of curve-fitting tools, but has the following key advantages: 

i. Surrogate models do not require calculation of the local sensitivity of each 

design variable, making them useful for optimizing problems in which the 

objective function is not smooth; 

ii. Information collected from various sources and by different tools can be 

combined; 

iii. Optimization of multiple objectives and criteria can be performed by 

quantifying tradeoffs between multiple design points; 

iv. Tasks can be easily performed in parallel; 

v. Noise intrinsic to numerical and experimental data can be effectively filtered 

via smoothing parameters; 
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vi. And the surrogate models provide an approximation for functions that can be 

easily used to bridge disparate length or time scales in multi-scale problems. 

Each of these advantages is demonstrated in the following chapters of this 

dissertation. This section provides a summary of the underlying concepts and principles 

of the surrogate modeling framework with emphasis on the most commonly applied 

components in this dissertation, as well as the implementation details of the MATLAB 

toolbox developed within the research group. Surrogate modeling has been used in a 

variety of engineering problems, including estimation of intercalation-induced stress in 

lithium-ion battery electrode particles [40], tuning adjustable parameters in a cavitation 

model for cryogenic fluids [49], shape optimization of diffuser vanes in an engine pump 

[50], and aerostructural optimization of long-range aircraft [51]. Other examples of this 

framework can be found in the following references: [47, 52, 53, 54, 55, 56, 57]. 

2.3.1 Concepts 

A schematic diagram highlighting the key steps in the surrogate modeling process 

is shown in Figure 2-1. 
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Figure 2-1: Surrogate modeling process; steps shown in red are part of the 

surrogates toolbox while those in blue are problem-specific 

The process begins with constructing a set of numerical experiments to sample the 

design or parameter space, known as the design of experiments. In most problems the 

nature of the objective function is not known beforehand, so it may be simplest to use 

random sampling to avoid systematic bias. However, since computational resources 

typically limit the number of samples that may be selected, a more efficient strategy is 

desired. One improvement over pure random sampling is Latin Hypercube sampling 

(LHS), which provides a random sampling but ensures a stratified sample within the full 

range of each dimension of the sample space [58]. 

In many cases it is also desirable to have a deterministic sample that can be 

reproduced. Furthermore, LHS provides a limited sampling of the extrema of the design 

space, which may be of special interest. One deterministic sampling method considered 

in this study is the two-level face-centered composite design (FCCD), which includes the 

face-center points and vertices of the design hypercube [59]. Other deterministic 
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sampling methods also exist, such as multi-level factorial and Halton sequencing [60]. 

However, these are not used in this dissertation as a combination of LHS and FCCD was 

generally found to be adequate. 

A set of simulations are then conducted based on the design of experiments, and a 

surrogate function ŷ is used to approximate the true function y for a vector of design 

variables x. The next section discusses the different approaches for accomplishing this. 

2.3.2 Classes of Surrogate Models 

In general, different types of surrogate models should be attempted and compared 

if possible, since the best method is problem-dependent (and, as will be seen, region-

dependent within a single design space) and cannot be predicted beforehand. In this 

dissertation, four classes of surrogate models are considered: polynomial response 

surface (PRS), kriging (KRG), radial-basis neural network (RBNN), and weighted 

averaging of multiple surrogates (WAS). Other classes of surrogate models such as 

support vector regression and splines exist, but are not considered here. 

A polynomial response surface approximates the objective function as a linear 

combination of polynomial basis functions: 

 ˆ( ) ( )i i

i

y b fx x  (30) 

The basis functions include both first-order and cross terms, and the coefficient 

vector b is selected using a least-squares regression routine. Kriging models add a set of 

basis functions [61] that act as a systematic departure Z(x): 
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The systematic departure components are assumed to be correlated as a function 

of distance between the locations under consideration, and the maximum likelihood 

estimation is used to determine the parameter estimates [62]. In this study a variety of 

correlation functions are considered: Gaussian, linear, exponential, cubic, spline, and 

spherical. A detailed formulation of these correlation functions has been summarized by 

Lophaven et al. [63]. 
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A radial-basis neural network model approximates the objective function as a 

linear combination of radial basis functions, also known as neurons [50]. In this 

dissertation, the following form containing Gaussian radial basis functions is considered: 
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Note that the basis functions depend directly on the distance between the point x 

and the neurons. The number of neurons and associated weights are determined by 

satisfying the user defined error “goal” on the mean squared error in approximation. 

Figure 2-2 contains a graphical example of how different types of surrogate models fit an 

approximate function based on the discrete sample points shown. Note that the KRG and 

RBNN models fit the training data points exactly while interpolating between them, 

whereas the PRS does not. 

  

Figure 2-2: Surrogate models for an analytical function 

Finally, weighted averaging of multiple individual surrogate models can reduce 

uncertainties in selecting the best model based on limited validation criteria. Various 

weighting strategies are possible; in this dissertation a method based on the prediction 

error sum of squares (PRESS) value (defined in the following section) of individual 

surrogates is used. Further details of weighting strategies for multiple surrogates have 
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been summarized by Goel et al. [64]. 

2.3.3 Cross-Validation 

Despite the advantages listed above, an important challenge is the quantification 

of uncertainty in the surrogate model. Since a design of experiments consists of a limited 

number of samples, the surrogate model introduces an additional layer of error, known as 

the prediction error, to the uncertainty intrinsic to the simulation of the physical system 

(such as the macroscopic battery cell model). Error estimation is also important as a 

method for comparing the accuracy of multiple surrogate models. Various procedures for 

comparing error measures have been documented by Goel et al. [65]; this dissertation 

focuses on the following: 

i. Coefficient of determination (including the adjusted version) for polynomial 

regression models; 

ii. Prediction errors at independently sampled test points; 

iii. Prediction error sum of squares (PRESS). 

Both standard and adjusted coefficients of determination are considered in this 

dissertation: 
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Note that both measures are always less than or equal to 1, and that the equality 

condition is met when the approximate surrogate function ŷ matches the true function y 

exactly for all sampling points x. Therefore, a value closer to 1 indicates a more accurate 

surrogate model. Also note that the difference between the two measures is that the 

adjusted coefficient of determination includes a dependency on the number of sampling 
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points Ns and degrees of freedom Nβ. 

Like the coefficients of determination, PRESS is computed directly from the 

training data does not require independent test points. It is defined as the sum of the 

“leave-one-out” prediction errors at all data points, defined as the prediction error at a 

particular point using the surrogate model with the same input parameters constructed 

from all other data points. In a more general formulation allowing an arbitrary number of 

data points to be left out at a time, this parameter is known as the generalized mean 

square error (GMSE). Mathematically, PRESS is defined as follows: 

  
2

( )

1

1
ˆ

sN
i

i i

is

PRESS y y
N





   (36) 

Note that when Ns is sufficiently large, it is possible to calculate approximate 

PRESS values by leaving out more than a single point at a time. More details about these 

“leave-k-out” approaches can be found in work published by Meckesheimer et al. [66]. 

No formulas are included here for calculating prediction errors using independent test 

points, although the mean, RMS, and maximum errors are the most commonly used 

quantities in this dissertation. 

Each of these methods has its limitations: coefficients of determination are not 

useful for interpolation schemes such as kriging which match the training data from the 

design of experiments exactly, validation using test points requires the use of a second 

independent design of experiments in addition to the computational cost of conducting 

the corresponding simulations, and PRESS can be unwieldy and cumbersome to compute 

as the number of iterations scales with the square of the number of data points in the 

sample. Therefore, a comprehensive error assessment should consider multiple error 

criteria. 

2.3.4 Global Sensitivity Analysis with Surrogate Models 

Since the analytic function approximating the true objective function that can be 

evaluated much more quickly, surrogate models enable analysis techniques that require a 

large number of function evaluations. One example used in this dissertation is global 

sensitivity analysis, which quantifies the relative impact that each design variable has on 
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the objective function as it is varied. This is useful for identifying variables that little 

effect, as the problem dimensionality can be reduced by removing those variables from 

consideration. The following section summarizes Sobol’s method [67], which is 

employed in this framework. 

The function f as defined by the surrogate model can be decomposed as a linear 

combination of functions of subspaces of the design space, also known as additive 

functions. A generalized form of this decomposition can be written: 

 0 1 1( ) ( ) ( , ) ( , , )
v vi i ij i j N N

i i j

f f f x f x x f x x


     x  (37) 

The total variance V(f), defined as the expected value of the square of the 

summation of all non-zero order additive functions, can also be expressed as a sum of 

partial variances of individual variables and combinations of variables: 

 1

1

( )
v

v

N

i ij N

i i j

V f V V V
 

      (38) 

The partial variances are in turn defined in terms of the expected value of the 

additive functions: 
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The expected value of the additive functions and their variances can be expressed 

as integrals of the additive functions: 
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These integrals are estimated using numerical approximations. In this dissertation, 

three-point and five-point Gauss quadrature schemes are used, as well as a Monte Carlo 

method. The partial variances can then we used to compute main and total sensitivity 

indices: 
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Note that the difference between the main and total sensitivity indices is that the 

total index includes cross-terms between multiple variables; that is, the index for the i
th

 

variable includes all variance terms involving i. In comparison, the main index for the i
th

 

variable includes all variance terms involving only i. The relative importance of the 

design variables can be observed by comparing either their partial variances (main 

sensitivity indices) or their total variances (total sensitivity indices). The difference 

between the main and total sensitivity indices for each variable also gives an indication of 

the degree of interaction between variables. Note that Sobol’s method is just one of many 

available methods for quantifying the global sensitivity of a model output to multiple 

inputs. For example, Saltelli et al. have provided a comprehensive discussion of GSA 

theory and propose an alternative method based on the Fourier amplitude sensitivity test 

(FAST) [68]. 

2.3.5 Pareto Front 

The optimization of a single continuous objective function can be performed by 

simply searching the design space for the minimum or maximum value of the objective, 

using any established optimization method (see Section 2.4 for examples). However, 

many engineering problems involve multiple competing objectives, such as maximizing 

both energy and power in lithium-ion batteries. In such cases, there exists not a single 

optimal design, but many designs in which one objective can be improved at the cost of 

another [69]. A useful way to analyze these tradeoffs is to construct a Pareto front, i.e., 

the set of Pareto-optimal or Pareto-efficient solutions. The criterion for Pareto-optimality 

is based on the concept of dominated designs, per the following definition: A design or 

solution is said to be dominated if and only if the following conditions are satisfied: 

i. There exists another solution that is no worse in any objective; 

ii. And the other solution is better in at least one objective. 
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Thus, the Pareto front represents the set of all solutions that represent the 

optimum for some relative weighting of the objectives. Inspection of the Pareto front can 

be useful for revealing the existence of favorable tradeoffs between competing objectives, 

making it another useful tool in the design process. In the surrogate modeling framework, 

the Pareto front is constructed by training a separate surrogate model for each objective 

and then using them as data generators to populate the multidimensional objective space. 

2.4 Gradient-Based Optimization 

In a mathematical context, optimization is the process of identifying the minimum 

(optimum) value of a function. In a general optimization problem, the goal is to find the 

minimum of the objective function f(x) within the bounds xlower and xupper of n design 

variables, subject to m inequality constraints g(x) and k equality constraints x(h): 

minimize ( )f x  : nf   

(44) 

subject to ( ) 0

( ) 0

lower upperx x x

g x

h x

 
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n k
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Maximization problems (e.g., energy density) can be converted to minimization 

problems by defining the objective function as the negative or inverse of the quantity 

being optimized. Optimization algorithms can generally be classified into two groups: 

gradient-based and gradient-free. Most methods operate by iteratively improving the 

objective function by searching the design space, until some convergence criterion is 

satisfied. For gradient-based methods, the most common convergence criterion is the 

satisfaction of the KKT conditions [70], although other choices exist. Although gradient-

free methods such as Nelder-Mead (NM) simplex [71] and Particle Swarm Optimization 

(PSO) [72] have proven to be effective at locating optima for various well-defined 

problems, this dissertation focuses on gradient-based methods which are more efficient 

and capable of handling a larger number of design variables for smooth objective 

functions [73]. Specifically, the well-established sequential quadratic programming (SQP) 

is used as the primary gradient-based optimizer [74]. 
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This dissertation makes use of two different implementations of the SQP 

optimizer. When applied to a function supplied by a surrogate model operating in the 

MATLAB environment, the native MATLAB function fmincon is used. However, in 

other cases the optimizer is applied directly to the dualfoil program, which as 

explained in Chapter 2.2 is an executable written in the Fortran programming language. 

In this case, the Sparse Nonlinear OPTimizer (SNOPT) is selected, as it interfaces well 

with external executable programs [75]. In both cases, the SQP algorithm is a quasi-

Newton line-search method that determines the search direction by solving a series of 

quadratic programming (QP) subproblems. Each QP subproblem minimizes a quadratic 

approximation of the Lagrangian function corresponding to the optimization problem, 

subjected to linearized constraints. For the k
th

 QP problem, the Lagrangian function 

corresponding to the objective function fk and gradient vector gk is treated as the objective 

function to be minimized: 

minimize 1
2

( ) ( ) ( ) ( )T T

k k k k k kL x f g x x x x H x x       

(45) 

subject to ( ) 0k k kc J x x    

The second-order (Hessian) derivative matrix Hk is pproximated using the BFGS 

method [76]. An important challenge to gradient-based optimization methods, including 

SQP, is the computation of the derivatives (gradients) of the objective function. Although 

first-order finite-difference approximations are simple to program and easy to understand, 

they are subject to cancellation errors due to the subtraction operator in the formula that 

limit their numerical precision. To address this limitation, the complex-step derivative 

approximation [77] is used instead: 

 
2Im[ ( )]

( ) ( )
f x ih

f x O h
h


    (46) 

Note that unlike classical finite-difference formulas, Eq. (46) does not involve any 

subtraction operation and thus retains full numerical precision for arbitrarily small step 

size h. It is also important to note that the complex-step method requires complex 

arithmetic. The optimization methodology presented here has been applied to optimize 

cathode and anode material properties for a single lithium ion cell [78]. 
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2.5 Microscopic Models 

Although the macroscopic cell model is computationally efficient and satisfies the 

requirements listed in Chapter 2.2, it does suffer some limitations. In particular, note that 

the effective transport coefficients and interfacial reaction current density modeled in Eqs. 

(21) and (27), respectively, are based on homogeneous approximations that do not 

account for electrode microstructure. It has been well documented that the oversimplified 

treatment of these “closure terms” often does not accurately describe the effects of 

porosity and tortuosity on these quantities [57, 79, 80], and thus the utility of the 

surrogate modeling and optimization processes are limited. This problem can be 

addressed by conducting detailed 3-D simulations of the entire cell, but the computational 

cost of such an approach would be impractical for simultaneously analyzing and 

optimizing a large number of design variables. Therefore, as discussed in Chapter 1.4, a 

multi-scale modeling approach, in which microscopic simulations conducted on sample 

microstructures consisting of clusters of particles are used to model the closure terms, is 

taken in this dissertation. This section documents the concepts and numerical tools used 

to establish these models, which include the governing equations for the effective 

transport and reaction rate governing equations, the generation of sample microstructures, 

the voxel meshing algorithm, and finally the graph analysis algorithms based on graph 

and network theory. The microscopic simulations are conducted using COMSOL 

Multiphysics, a commercial FEM software package. COMSOL contains a variety of 

numerical solvers and preconditioners, which are discussed in greater detail in Chapter 5. 

The voxel meshing and graph analysis are performed in MATLAB, and as shown in 

Figure 2-3 the entire microscopic modeling process makes extensive use of the 

MATLAB-COMSOL interface, allowing a large number of REV to be simulated without 

manual iterations. 
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Figure 2-3: Numerical implementation of automated microscopic modeling 

procedure 

2.5.1 Concepts and Governing Equations: Effective Transport Coefficients 

The microscopic simulations are conducted on representative elementary volumes 

(REV). Each REV is generated by randomly packing a specified number of spherical or 

ellipsoidal particles into a cubic control volume using a molecular dynamics (MD) 

algorithm. The resulting geometry consists of two phases: active solid defined as the 

volume occupied by the particles, and liquid electrolyte defined as the void space in the 

remainder of the cubic volume. Further details of the REV generation and meshing can 

be found in the following sections. For the effective transport simulations, the state 

variable being solved is the ion concentration c, within the liquid phase. The effective 

transport coefficients are computed by solving the steady-state diffusion equation for a 3-

D REV: 

   0bulkD c    (47) 

Since the bulk transport coefficient D
bulk

 is independent of the concentration c, Eq. 

(47) reduces to the Laplace equation: 

 2 0c   (48) 

Dirichlet (fixed concentration) boundary conditions are applied to opposite ends 

of the REV. For simplicity, the values 0 and 1 are used for an REV of dimension L: 
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 0 0zc    (49) 

 
1z Lc    (50) 

Since no electrochemical reactions or ion transport are assumed to occur at the 

interface between the two phases, the interface is modeled as an insulated wall. From the 

computed steady-state solution, the effective diffusivity and conductivity can be obtained 

by integrating the concentration gradient over an arbitrary cross-section in the normal 

direction (for L = 1): 
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2.5.2 Concepts and Governing Equations: Interfacial Reaction Rate 

The interfacial reaction simulations involve simultaneously solving a set of four 

transport equations, two in each of the solid and liquid phases. Steady-state equations for 

ion concentration c and electric potential φ in each phase are solved: 

  1 0     (52) 
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As in the effective transport simulations, Dirichlet boundary conditions are 

applied at opposite ends of the REV for all four state equations. In this dissertation, the 

selection of boundary conditions is based on either the instantaneous, localized state 

variables from a macroscopic cell simulation, or on a design of experiments. The 

boundary conditions make use of both the concentration c1,i and its directional gradient in 
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the axial direction: 
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Analogous forms of the boundary conditions are used for the other state variables 

c2, φ1, and φ2. Note that aside from the liquid-phase concentration and potential, the state 

equations are not coupled. Also note that the electrochemical reaction kinetics at the 

solid-liquid interface is not modeled explicitly. In fact, the solid-liquid interface is 

modeled, as in the effective transport simulations, as an insulated wall. Instead, a 

localized version of the Butler-Volmer equation on the steady-state solution: 

    
0.50.5 0.5BVflux e t s sj kc c c c    (58) 

 
 BV exp exp

2 2

F F

RT RT
  

    
      

    
 (59) 

 1 2 OCPU      (60) 

 
 

s

s s flux

AA

F F
J D c ndA j A

V V 

      (61) 

Therefore, these simulations are an example of quasi-steady analysis. Since the 

electrochemical reactions occur much faster than the ion diffusion process within solid 

particles, the quasi-steady formulation can significantly reduce the computational 

expense of conducting a large number of simulations. A comparison of Eqs. (58)-(61) to 

(25)-(28) in the macroscopic model shows that homogenization is removed in the 

microscopic model by applying the Butler-Volmer kinetics computation to the locally 

refined ion and potential distribution, and integrating over the true interfacial surface area. 

Figure 2-4 summarizes the governing equations in the two phases for a sample REV, 

along with a visualization of the interface. 
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Figure 2-4: Summary of governing equations in solid and liquid phases for 

sample geometry (Case 1180) 

2.5.3 Microstructure Generation using Molecular Dynamics Simulations 

As previously mentioned, sample microstructures are generated based on the 

random packing of ellipsoidal particles. In the cases demonstrated in this dissertation, a 

fixed number of monodisperse prolate ellipsoidal particles with AR = 2 are packed using 

a molecular dynamics algorithm developed by Donev et al. [81]. Although the MD model 

is capable of handling polydisperse particles, this dissertation considers only a uniform 

particle size and shape since reliable data on size and shape distribution are not available. 

The aspect ratio is selected in order to minimize intercalation-induced stress, based on the 

results of Zhang et al. [40]. In this dissertation, three different REV sizes are considered: 

10 µm, 20 µm, and 40 µm, which contain 10, 80, and 640 particles respectively. By 

scaling the number of particles with the total volume of the REV, an approximately 

constant equivalent particle size of about 5 µm can be maintained. 

The MD simulation begins by randomly initializing the position and orientation of 

each particle, and sets the size of each particle to some infinitesimally small size. The 

size of the particles then proceeds to iteratively increase until they come into contact with 

one another, upon which they begin to translate and rotate based on a collision algorithm. 

This process continues until either the specified packing density (solid volume fraction) is 

reached, or a jamming condition is satisfied in which case the particles can no longer 
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move beyond some tolerance. At the end of the simulation, the particles are touching one 

another but do not overlap; in order to ensure that the particle cluster forms a single 

continuous solid object, the particle semi-axes are scaled by a constant overlap factor. 

Unless otherwise specified, an overlap factor of 1.1 is used in this dissertation. 

 

Figure 2-5: Sample packing geometry with 10 ellipsoidal particles 

A sample 10 µm REV containing 10 particles with an overlap factor of 1.1 is 

shown in Figure 2-5. As a result of overlapping and the random nature of the MD 

algorithm, the particle size cannot be controlled exactly. However, an inspection of cases 

for the same number of particles shows a size variation of less than 10%, which is 

considered acceptable given that sizes of particles found in real battery electrodes often 

span several orders of magnitude. Also note that no other phases beyond active solid and 

liquid electrolytes are modeled. Therefore, macroscopic simulations used to verify results 

against the microscopic models do not include any inert binder. To finalize the geometry, 

portions of the particle cluster protruding outside the cubic REV are removed. Although 

this can result in irregularly shaped particles at the boundaries, this treatment is necessary 

to ensure a robust method for defining boundary conditions for a large number of REV. 

In the subsequent chapters, a single REV is sometimes referred to as a realization of the 
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particle packing geometry. 

2.5.4 Voxel Meshing Algorithm 

Although many different meshing approaches have been developed, a Cartesian 

voxel method is found to be most suitable for both the effective transport and interfacial 

reaction rate simulations. This voxel method has been previously applied to various 

engineering problems, including FEM investigation of biomechanical stress [82] and 

seismic ground motion [83]. As shown in Figure 2-6, which contains a high resolution 

voxel mesh of the same sample REV as in Figure 2-5, the rectangular mesh elements are 

arranged uniformly. In this dissertation, cubic mesh elements are used since the REV are 

cubic, although the voxel method only requires that the elements be rectangular. This 

method is especially well suited for problems in which a uniform mesh quality is required 

within the entire geometry. It is also very robust, as it ensures a consistent mesh quality, 

eliminating problems related to sharp edges and corners which often lead to highly 

stretched mesh elements when other methods are utilized. 
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Figure 2-6: Voxel mesh of sample packing geometry with 10 particles 

The main drawback of this meshing approach is that smooth diagonal edges and 

surfaces are modified due to the shape of the mesh elements. Therefore, it is not suitable 

for problems where the surface geometry must be preserved, and converges to mesh-

independent solutions much more slowly than body-conforming meshing approaches. As 

an example, consider a single spherical particle inscribed within a cube. The volume 

fraction of the void around the sphere has an analytical solution: 

 1 1 0.4764
6

l


       (62) 

As shown in Figure 2-7, a triangular mesh converges more closely to this exact 

value at O(10
4
) elements than the voxel mesh does at O(10

6
). 
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Figure 2-7: Volume fraction convergence of voxel and triangular meshes for 

sphere inscribed in a cube 

This difference can be observed by comparing how the two meshing approaches 

manipulate the particle-void interface. In Figure 2-8, even for a quite fine mesh the cubic 

elements comprising the interface can be clearly seen. In contrast, at a comparable mesh 

resolution the triangular elements conform much more closely to the smooth spherical 

interface. 

 

Figure 2-8: Comparison of voxel (left) and triangular (right) meshes with 

O(10
5
) elements 

In spite of this inefficient convergence to mesh-independence and the loss in 
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precision, the robustness of the voxel meshing approach remains valuable, and 

compensates for its shortcomings. When body-conforming triangular meshes are applied, 

poor mesh quality at the interfaces between adjacent particles often requires considerable 

manual manipulation in the simulation setup process. Chapter 5.6 discusses the 

automated simulation framework that is enabled by the robustness of the voxel meshing 

approach. Except for in certain mesh sensitivity/convergence studies, a mesh resolution 

of 0.5 µm is used in this dissertation, which corresponds to a mesh size of 8.0×10
3
, 

6.4×10
4
, and 5.1×10

5
 mesh elements for the 10 µm, 20 µm, and 40 µm REV cases, 

respectively. 

2.5.5 Graph Analysis 

Graph analysis can be a useful tool to complement the FEM simulations, 

especially for the effective transport properties. Per Eq. (63), a graph is a mathematical 

structure comprising an ordered pair consisting of a set of vertices V, and edges E that 

connect them [84]: 

  ,G V E  (63) 

Mathematically, the voxel mesh structure can be readily treated as a graph, in 

which the mesh elements are the vertices and interfaces between orthogonally adjacent 

mesh elements are the edges. A key concept in graph theory is the adjacency matrix, 

which contains information about which vertices in the graph are connected (adjacent) to 

which other vertices. The adjacency matrix can be constructed using the following rules: 

 
,

,

1 if ,  are adjacent

0 otherwise

i j

i j

A i j

A




 (64) 

The adjacency matrix has the important property that ,

m

i jA  gives the number of 

paths of exactly length m between vertices i and j. Within the voxel mesh, two vertices 

are considered to be adjacent if their corresponding mesh elements are adjacent AND 

they are both of the same phase (solid or liquid). This can be demonstrated using a 

simplified 2-D example. 
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Figure 2-9: 2-D example of a microstructure graph 

Figure 2-9 depicts a mesh consisting of 9 square cells, with the highlighted cells 

being the liquid phase through which ions diffuse. The nodes are numbered, and located 

at the cell centers. By applying Eq. (64), the adjacency matrix A for this graph is obtained: 

 

0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0
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 
 
 
 
 
 
 
 

 (65) 

It can be verified by inspection that the property in Eq. (64) holds for this matrix 

and graph. Note that this matrix is symmetric, since the graph is bi-directional. It can also 

be readily seen that the shortest path from the top row to the bottom row has length 4, via 

the path 1→4→5→6→9. This path is also unique and thus the elements A
4
(1,9) and 

A
4
(9,1) should both be equal to 1. By computing the 4

th
 power of A, this can be verified 

by inspection: 
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Since Eq. (64) can be applied to define the adjacency matrix directly from the 

voxel mesh data, the number of paths between any two mesh elements within an REV 

can be determined by successively computing higher powers of the adjacency matrix. 

Note that the adjacency matrix has dimensions of N×N, where N is the number of graph 

nodes (mesh elements). Since N scales with the cube of the number of mesh elements 

along a single dimension in the REV, n, the adjacency matrix has dimensions n
3
×n

3
. Also 

note that in 3-D, the adjacency matrix is less sparse than in 2-D, as each non-boundary 

node is adjacent to 6 neighboring nodes, compared to 4 in 2-D. Due to the unfavorable 

computational scaling with problem size, the graph analysis is limited to 10-particle cases 

in this dissertation. In Chapter 5.3, graph analysis is used to calculate the minimum 

diffusion path length across an REV, as well as the number of diffusion paths available 

for some fixed path length. These and other parameters can be used to quantify tortuosity 

in the microstructure, which has been established to be an important parameter for 

properly characterizing diffusivity and conductivity [85]. 
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Chapter 3. 

Surrogate-Based Analysis of the Cathode Design Space: Cycling Rate, Particle Size, 

and Transport Properties 

3.1 Introduction 

As discussed in Chapter 1, a critical obstacle to the adoption of lithium-ion 

batteries in various aerospace applications is their limited energy density. In order to gain 

a better understanding of the physical phenomena governing the behavior and 

performance of lithium-ion batteries, a systematic study of several critical design 

variables such as particle size and diffusivity, is necessary. Although many experimental 

and numerical studies have investigated the dependence of battery and cell performance 

on various operational, morphological, and material-dependent variables, they typically 

consist of parametric sweeps that sequentially vary one variable at a time. Examples of 

experimental investigations include Lu and Lin [86], who found experimentally that the 

capacity and coulomb efficiency of lithium manganese oxide particles increase 

substantially as the particle size is reduced. Similarly, Drezen et al. found that the size of 

lithium manganese phosphate particles in a cathode has a critical influence on the cell 

performance [87]. Tran et al. investigated the effect of cycling rate on the measured 

capacity of graphite anode particles, concluding that the rate effect differs considerably 

for different-sized particles [88]. The effect of introducing conductive additives to alter 

the electrode material properties has also been investigated by Ahn et al. [89]. It was 

found that metal fibers helped enhance capacity and high rate capability, while exhibiting 

minimal capacity loss. 

Numerical simulations have also been used in similar studies, such as Garcia et al. 

[90], who used simulations to investigate the effects of particle size and diffusivity on 

cell performance. It was demonstrated that performance improves with increasing 
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diffusivity and decreasing particle size, and that the morphology of the particle 

aggregates also plays an important role. Darling and Newman also used simulations to 

examine the effect of particle size distribution [91]. A uniform size distribution was 

found to maximize capacity for different cycling rates. Zhang et al. have shown that 

larger particles and higher discharge rates lead to higher intercalation-induced stress [40]. 

Despite providing useful insight into the physical processes occurring within battery cells, 

these studies all employ inefficient methods and are tunable to account for nonlinear 

interactions between variables. Therefore, a proper multivariate analysis to study the 

complicated multi-physics phenomena within a lithium-ion cell is necessary. As 

described in Chapter 2.3, the surrogate modeling framework is ideal for this purpose. 

In this chapter, simulations based on the macroscopic homogeneous battery cell 

model are used in conjunction with the surrogate modeling framework to examine the 

effect of cycling rate and of cathode properties (namely, the particle size, diffusion 

coefficient, and electronic conductivity within the cathode) on energy and power density. 

The following sections document the problem formulation, including the definition of the 

design variables and objective functions, as well as the process for constructing and 

cross-validating the surrogate models. This is followed by a discussion of refining the 

design space, performing global sensitivity analysis, and partitioning of the design space 

based on the GSA results and dimensional analysis. Specifically, a dimensionless time 

parameter based on the relative characteristic time scales for the discharge and diffusion 

processes is shown to be an excellent indicator of cell performance within a diffusion-

limited operating regime. The chapter concludes with an analysis of the tradeoffs 

between the two objectives, energy and power. A significant portion of this chapter has 

been previously documented by Du et al. [47]. 

3.2 Problem Definition 

The focus of this study, so the design variables (particle size, diffusivity, 

conductivity) apply only to the cathode material. The design variables modeled and their 

ranges are summarized in Table 3-1. The range of cycling rates is selected to roughly 

correspond to requirements in aerospace applications: the maximum rate of 4C refers to a 
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high-power situation in which the battery would be completely discharged in 15 minutes, 

such as the takeoff and climb section of a hybrid-electric airplane. The minimum rate of 

C/10 refers to a long-range or long-endurance situation lasting 10 hours, such as the 

nighttime period of a continuously operating high altitude solar flyer. 

 

Table 3-1: Design variables and ranges for surrogate-based analysis 

Variable Symbol Minimum Maximum 

Cycling rate C C/10 4C 

Particle radius Rs,p 0.2 μm 20 μm 

Diffusion coefficient Ds,p 0.1×10
-13

 m
2
/s 10×10

-13
 m

2
/s 

Electronic conductivity σ 1 S/m 100 S/m 

 

Since the electrode can be assumed to be composed of multiple layers, the particle 

size range is selected to be an order of magnitude less than the electrode thicknesses, 

which are summarized in Table 3-2 along with other important simulation parameters. 

This range is also consistent with particle sizes found in real electrodes [92]. 

 

Table 3-2: Electrode materials and fixed simulation parameters 

Parameter Cathode Anode 

Material LiyMn2O4 LixC6 

Thickness 100 μm 100 μm 

Initial stoichiometric parameter 0.2 0.495 

Porosity (liquid volume fraction) 0.3 0.3 

Inert filler volume fraction 0.2 0.1 

Particle radius Variable 10 μm 

Diffusivity Variable 5.0×10
-13

 m
2
/s 

Electrical conductivity Variable 100 S/m 

 

Data reported in the literature for transport properties, such as solid-phase 

diffusivity and electronic conductivity, varies substantially as a result of experimental 
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uncertainty, differences in electrode microstructure, phase changes due to different states 

of charge, and differences in measurement techniques [93, 94, 95, 96]. Ultimately, the 

ranges for the transport coeffients in Table 3-1 are chosen to (a) cover the order of 

magnitude difference in the reported literature values, and (b) account for the geometric 

characteristics of the electrode. 

The primary objective function considered in this study is the energy density, also 

known as mass-specific energy or specific energy. The power density, also known as 

mass-specific power or specific power, is also considered in the context of tradeoffs 

between objectives. In this dissertation, the terms “energy density” and “specific energy” 

are used interchangeably, as are the terms “power density” and “specific power”. The 

following is a description of how these objectives are calculated from the cell simulation 

data. The total energy is obtained by integrating the voltage curve obtained from the 

simulation over time, and multiplying by the discharge current and other appropriate 

constants, as shown in Eq. (2). This is computed using the trapezoidal approximation: 

  1
1

1 2

tN

i i
sp i i

i

V V
E I t t






   (67) 

Dividing the total energy by the discharge time Tdis gives the time-averaged total 

power: 
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Finally, the mass-specific values of both quantities are obtained by dividing by 

the total cell mass, which includes the mass of the cathode, anode, separator, and current 

collectors: 

 0cell ccm m m m m      (69) 

In turn, the masses of each of these components can be calculated based on their 

thickness, and the volume fraction and density of their sub-components (solid, liquid, and 

inactive materials). Using the notation diagrammed in Figure 1-2: 

  , , , , , , , ,s l i s s l l i im m m m L                      (70) 
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 , , , , , , , ,s l i s s l l i im m m m L                      (71) 

 
0 ,0 0i lm m L    (72) 

 
, , , , , ,cc cc cc cc cc cc ccm m m L L           (73) 

The volume fractions and thicknesses are listed in Table 3-2, while the densities 

are found in the database in version 5.1 of the dualfoil program. A cut-off voltage of 

2.0 V is selected as the termination criterion for the simulations, in accordance with 

actual battery cycling in which deep discharge is avoided as it leads to permanent loss of 

performance due to irreversibility in the electrochemical reactions [97]. 

3.3 Error Estimation and Design Space Refinement 

Before attempting to construct high fidelity surrogate models for the four design 

variables considered in this study, it is worthwhile to examine their impact within the 

selected range based solely on FCCD sampling. In this case, it is found that varying the 

electronic conductivity by two orders of magnitude within the specified range has a 

negligible effect on the energy density as compared to the variation recorded for the other 

variables (less than 1%). As a result, the number of design variables can be reduced prior 

to proceeding with the surrogate modeling procedure, by removing conductivity from 

future consideration. A constant value of σ = 10 S/m is used for the subsequent 

simulations. 

An initial design of experiments of 50 design points consisting of a combination 

of 15 FCCD and 35 LHS points is selected. From these simulation data, a kriging model 

is found to have the lowest normalized PRESS from all 17 surrogate models considered. 

However, the PRESS value of about 20% is quite high, suggesting a need for design 

space refinement. A close inspection shows that of the 50 training data points, 3 outliers 

are located in the region with high cycling rate, large particle, size and low diffusivity, 

where a sharp gradient in the energy density is observed. This sparsely-populated 

“critical” region is populated by refining the design space such that an additional 100 
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design points are added to the original DOE. This is accomplished by applying a 

logarithmic transformation (base-10 log in this case) to the DOE sampling in linear space, 

leading to a concentration of sampling points near one extreme of the design space. For 

error estimation, 9 independent test points in the “critical” region are selected using the 

same logarithmic transformation, as well as 6 from other regions of the design space. A 

kriging model constructed from the data of the refined DOE (150 sampling points) 

exhibits a mean prediction error of 3.9% at the 9 transformed test points, a significant 

improvement compared to the 29.8% for the original DOE. However, its PRESS value is 

actually significantly increased compared to the original DOE, despite the refinement. 

This differing performance between the “critical” region and the rest of the design space 

suggests a shift in fidelity as a result of the domain refinement. 

In order to improve overall surrogate model accuracy within the entire design 

space, an additional 165 are selected using LHS without applying the logarithmic 

transformation. The resulting set of training data consists of 315 points distributed over 

three levels of refinement, with about 100 points concentrated in the “critical” region. 

Multiple kriging, RBNN, and PRS surrogate models are considered. An additional of 64 

test points are selected in a full factorial arrangement for a more detailed error assessment, 

and a modified definition of the relative prediction error definition is used to normalize 

the absolute error by a constant value, taken to be the mean value of all test data points: 

 
,

ˆ
i i test

i

test

y y
err

y


  (74) 

This formulation helps avoid deceptively large errors due to normalizing by 

different test data values. A comparison among different types of surrogate models 

reveals that the best kriging model, with a spline correlation function and 1
st
-order 

polynomial regression, outperforms any RBNN or PRS model. This kriging model yields 

a mean prediction error of 2.5% at the test points and PRESS of 3.0%. 

3.4 Global Sensitivity Analysis and Design Space Partitioning 

A preliminary GSA of the entire design space using the kriging model shows a 

comparable magnitude of impact from all three design variables. As seen in Figure 3-1, 
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similar results are found when the analysis is applied to other classes of surrogate models. 

 

Figure 3-1: Main and total sensitivity indices for 13 surrogate models 

In addition to performing GSA on the entire design space at once, it is also 

possible to compute local sensitivities by performing GSA on subsets of the data set. 

Figure 3-2 shows sensitivity indices computed on successively higher diffusivity ranges. 

It can be seen that the effect of diffusivity vanishes above a critical value of about Ds,crit = 

1.0×10
-13

 m
2
/s. This is consistent with what may be expected from physica intution: as 

the diffusivity is increased, eventually a critical point would be reached where the 

allowable diffusion rate exceeds that required by the discharge process. Beyond this point, 

further increases to the diffusion coefficient would not affect the diffusion rate in the 

battery, as diffusion is no longer a limiting mechanism for the transport of lithium ions. 
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Figure 3-2: Main and total sensitivity indices for various diffusivity ranges 

Since the effect of diffusivity is found to vanish beyond Ds,crit = 1.0×10
-13

 m
2
/s, 

the design space can be partitioned into diffusion-independent (Ds > Ds,crit) and diffusion-

dependent (Ds ≤ Ds,crit) regions. Given the difficulty of accurately mapping the design 

space with a single global surrogate model, this partitioning of the design space is useful 

for better characterizing battery performance by reducing the number of variables and 

prediction error using multiple surrogates. For instance, it is clear that the diffusivity can 

be neglected as a design variable in the diffusion-independent operating regime, thus 

reducing the number of variables from 3 to 2. 

Having identified one critical diffusivity value, it is natural to seek ways to further 

partition the design space. This can be accomplished by examining the dimensions/units 

in remaining design variables and applying dimensional analysis. Cycling rate has the 

same dimensions as frequency, or the inverse of time, while particle size is a measure of 

length. The diffusion coefficient includes both time and length, with dimensions of length 

squared divided by time. This suggests combining these quantities to obtain a physically 

meaningful dimensionless parameter. The diffusion coefficient Ds,p appears in Eq. Error! 

eference source not found. of the cell model, whose corresponding length scale, as 

shown in Figure 1-2, is the particle radius Rs,p. These two variables can be combined to 
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yield a characteristic time scale for the diffusion equation: 

 

2

,

,

s p

diffusion

s p

R
t

D
  (75) 

Physically, this quantity represents the approximate time it takes an ion to diffuse 

from the surface to the center of the spherical particle. Another important time scale is the 

time required to discharge the cell, which is estimated from the definition of cycling rate: 

 discharge

k
t

C
  (76) 

The constant k = 3600 seconds/hour ensures that the two length scales have 

consistent units. Eqs. (75) and (76) can thus be combined to define a dimensionless time 

parameter τ
*
 as the ratio of the two time scales: 
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2

,

discharge s p

diffusion s p

t kD

t CR
    (77) 

Physically, τ
*
 represents the relative speed of the diffusion and discharge 

processes. When the magnitude of τ
*
 is very large, ions travel much faster through the 

particle via diffusion than they are transferred across the cell. Conversely, when the 

magnitude of τ
*
 is very small, the cell utilization is limited by the diffusion rate. A plot of 

energy density against dimensionless time is shown in Figure 3-3, which only contains 

data points within the diffusion-dependent operating regime. 

 

Figure 3-3: Energy density vs. dimensionless time for diffusion-dependent 

regime (Ds < 1.0×10
-13

 m
2
/s) 
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Two distinct dimensionless time ranges can be identified in Figure 3-3. In the low 

τ
*
 range (left of the vertical line; τ

*
 ≤ 0.2), the specific energy increases monotonically 

with increasing τ
*
; this can be considered a diffusion-limited region since the energy is 

limited by the allowable diffusion rate. In the high τ
* 

range (τ
*
 > 0.2), the scatter in the 

energy values indicates that diffusion is no longer the sole determining factor, and that 

some interplay between variables is involved. This can be considered an intermediate 

region between the diffusion-limited and diffusion-independent regimes. Based on this 

observation, the diffusion-dependent region of the design space can be further partitioned 

into diffusion-limited and intermediate sub-regions. Figure 3-4 summarizes the final 

partitioning of the design space into three distinct operating regimes. 

 

Figure 3-4: Overall process to split the original 3-design variable problem 

into three distinct regions using global sensitivity analysis and based on a critical 

value diffusivity value Ds,crit = 1.0×10
-13

 m
2
/s 

In addition, note that two of the operating regimes have a reduced number of 

variables, facilitating the construction and error assessment of accurate surrogate models. 

And since the design space is split but not expanded, no new training data are required; 

the same design of experiments consisting of 315 training data points is sufficient to 

construct all three surrogate models. 

The diffusion-limited region includes 42 training data points. As seen in Figure 

3-5, a 4
th

-order PRS provides an excellent quality fit, with R
2
 = 0.994. 
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Figure 3-5: Polynomial regression fit for energy density with respect to 

dimensionless time parameter τ* in the diffusion-limited region 

Although the intermediate region retains full dimensionality, the ranges of the 

design variables are reduced, and model accuracy is improved considerably. As seen in 

the iso-surface plot in Figure 3-6, the energy density decreases considerably with 

increasing cycling rate and particle size, while the effect of diffusivity is reduced. The 

weaker effect of diffusivity can be expected since most of the global sensitivity with 

respect to this variable occurs in the diffusion-limited region. The kriging model has a 

PRESS value of 0.40%, and a mean test point prediction error of 0.30%, again indicating 

excellent accuracy. 
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Figure 3-6: Iso-surfaces for energy density with respect to 3 design variables, 

based on kriging model in intermediate diffusion-dependent region 

For the diffusion-independent regime, a reduced-order 2-variable surrogate model 

is constructed to fit the data in the range Ds > 1.0×10
-13

 m
2
/s, with the response surface 

plotted in Figure 3-7. The PRESS value in this case is 1.4%. 

 

Figure 3-7: Response surface for energy density with respect to 2 design 

variables, based on kriging model in diffusion-independent regime 

A summary of surrogate model quality based on PRESS is provided in Table 3-3. 
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It is clear that the design partitioning done in this study has greatly improved the quality 

of the surrogate model fit. 

Table 3-3: Comparison of PRESS for full and partitioned design space 

Surrogate Model 
# of design 

variables 

# of data 

points 
PRESS 

Unrefined 3 50 20% 

Full (refined) 3 315 3.0% 

D-limited 1 42 2.6% 

Intermediate 3 81 0.57% 

D-independent 2 32 0.40% 

3.5 Tradeoffs Between Energy and Power 

The results so far have focused exclusively on the energy density as the objective 

function, since as discussed that tends to be the most critical performance limitation in a 

variety of applications. However, power density can also be of great importance in 

applications such as electric automobiles and aircraft. Since the simulations thus far have 

been for a single discharge at constant current, the time-averaged power density is a good 

metric for characterizing power. Based on Eq. (68), which states that the power varies 

linearly with discharge current, the power can also be expected to have an approximately 

linear relationship with cycling rate since by definition the discharge current varies 

linearly with cycling rate. Given the previous results that energy density decreases with 

increasing cycling rate, power density and energy density thus form a pair of competing 

objectives in which a gain in one can only be achieved with a loss in the other. As 

discussed in Chapter 2.3.5, the tradeoff between these competing objectives can be 

analyzed using a Pareto front. Fortunately, Eq. (68) also provides an easy way to 

calculate power density from energy density, so no additional design of experiments or 

simulations are required. 
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Figure 3-8: Pareto front for power-energy tradeoff 

The Pareto front for quantifying tradeoffs between power and energy density is 

plotted in Figure 3-8. In order to properly populate the objective space, it is standard 

practice to use surrogate models as intermediate data generators for additional data 

samples. Approximately 6700 randomly sampled design points are used in this case. 

Specific energy data points are obtained using the surrogate models based on the split 

design space approach in Figure 3-4. Specific power data are generated using a separated 

surrogate model. A 4
th

-order PRS is found to have sufficient accuracy for this purpose, as 

its PRESS value is less than 0.4% and R
2
 is over 0.9999. Since the specific power is 

expected to be linearly dependent on the cycling rate, the Pareto inefficiency for the 

majority of designs is expected to be due to the other design variables. This is verified by 

selecting three cases at a fixed cycling rate but at different particle sizes and diffusivities, 

which are highlighted with a different color in Figure 3-8. In the three cases, the power 

level is approximately the same, confirming the dependence of the specific power on only 

the cycling rate. The specific energy is also found to be lower for larger particle radius 

and lower diffusion coefficient, which is consistent with previous results. 

The Pareto front shows stiffness in favor of high power, which can be achieved 

with relatively little sacrifice in energy. However, a greater amount of scatter in the 

specific energy data can also be observed as the specific power is increased, suggesting 

that the cell performance becomes increasingly sensitive to the other design variables as 

the cycling rate is increased, resulting in a greater penalty for large particle size or low 

diffusivity in the cathode. Furthermore, results for rates greater than 4C, shown in 
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Chapter 4.3, indicate that the relative sensitivity of power density and energy density to 

the cycling rate gradually decreases as the cycling rate is increased, and that at 

sufficiently high rates the Pareto front may become stiff in the other direction. This is 

consistent with typical Ragone plots for lithium-ion batteries [9], which plot the 

theoretical energy and power density of a battery or cell with fixed properties. The 

quantification of the shape of the Pareto front is important for designing battery systems 

for vehicles, as favorable tradeoffs between power and energy can be exploited via the 

configuration of individual cells within a battery pack (series for high voltage, parallel for 

high current). For example, if the power level required for the hybrid-electric 

configuration of the Cessna 172 in Chapter 1.3.4 is known, the Pareto front can be used 

to design the configuration of the battery back for maximizing energy density and aircraft 

range, for given constraints on the total weight. 

3.6 Summary 

In this chapter, the surrogate modeling framework presented in Chapter 2.3 is 

applied to the macroscopic homogeneous pseudo-2D porous electrode model, to study the 

effects of cycling rate, particle size, diffusivity, and conductivity on the energy and power 

density performance of a lithium-ion battery cell. The cell energy density is found to 

diminish with faster cycling rate, larger particles, and low diffusivity, which is consistent 

with experimental and numerical findings documented in the literature. A preliminary 

analysis based on FCCD sampling points is adequate for establishing that the electronic 

conductivity has a negligible influence on the cell performance within the 1-100 S/m 

range, allowing the number of design variables to be considered in subsequent analysis to 

be reduced. In addition to the initial design of experiments, two levels of refinement are 

required to properly distribute additional sampling points and achieve normalized PRESS 

and prediction errors of about 3%. The trends identified using the surrogate model 

suggest a link between the relative discharge and diffusion rate, and the utilization of the 

cell. This relationship is quantified in terms of the characteristic time scales. 

GSA performed on subsets of the simulation data is able to identify a critical 

value for the diffusion coefficient of Ds = 1.0×10
-13

 m
2
/s, above which the cell becomes 
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diffusion-independent. By defining a dimensionless time parameter τ
*
 as the ratio of 

characteristic time scales corresponding to the discharge and diffusion processes, the 

design space can be further partitioned to form three distinct operating regimes in which 

the principal mechanisms for limiting cell performance differ. In the diffusion-

independent region, cycling rate and particle size are sufficient to characterize the cell 

performance. Meanwhile, in the diffusion-limited regime where τ
*
 takes on values much 

less than unity, the energy density can be accurately calculated from τ
*
 alone since 

diffusion becomes the bottleneck to the entire coupled multiphysics system. Although the 

number of design variables cannot be reduced in the intermediate region, a much more 

accurate surrogate model can be constructed in comparison to the global design space. 

The improvement in surrogate model prediction accuracy in each of the design 

subregions illustrates the value of performing global sensitivity analysis and defining 

dimensionless parameters. This is especially apparent in the consideration of multiple 

objectives, as the accurate subregion surrogate models are used to construct a Pareto front 

to quantify the tradeoffs between energy and power density, from a much larger design of 

experiments. For this Pareto front, the power density shows a much greater sensitivity to 

cycling rate than the energy density, suggesting a favorable tradeoff in which significant 

gains in power density can be achieved with minimal sacrifice in energy density up to 

cycling rates of 4C. This is especially valuable for high power applications such as the 

takeoff phase for general aviation and the eclipse period for high-power satellites, since 

the Pareto front can be used to design the configuration of individual cells within a 

battery pack, for a given application’s energy and power requirements. 

Note that the energy density values (90-100 Wh/kg) obtained in this study are 

much lower than required by the systems discussed in Chapter 1 (200+ Wh/kg). This is 

due to the use of a limited SOC window for the simulations, and a lack of optimization 

for certain important properties such as porosity and thickness, or for anode properties. 

However, the surrogate model establishes a clear relationship between cycling rate, 

energy density, and power density, allowing simple sizing calculations to be made for the 

battery pack. For example, if the total required power for an aircraft or spacecraft is 

known, the minimum battery pack size required to achieve the appropriate cycling rate 

can be calculated from the definition of the dimensionless parameter τ
*
. Chapter 4 
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extends the analysis presented in this chapter, to analyze and optimize the cathode 

porosity and thickness, two variables that have much more complicated interactions with 

the other variables which lead to non-monotonic trends in energy performance. The 

anode thickness is also varied to achieve capacity balance in the two electrodes. The 

surrogate modeling framework is then applied again to compare multiple candidate 

cathode materials, and additional dimensionless parameters are defined to better 

characterize cell performance for multiple materials. 
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Chapter 4. 

Surrogate- and Gradient-Based Optimization of Multiple Cathode Materials 

4.1 Introduction 

In Chapter 3, it was found that energy density increases with lower cycling rate, 

smaller particle size, and higher diffusivity. Optimizing these variables would be a trivial 

task, as the optimized solution would converge to the bounds of the design space. These 

results are not surprising, as they make intuitive sense and have been established 

empirically. This does not mean that the results in that chapter are not meaningful; the 

error estimation and domain refinement for the surrogate models are non-obvious and 

useful results for understanding battery performance, as is the quantification of global 

sensitivities. Nonetheless, it would be useful to consider additional variables, especially 

those that are unlikely to converge to the bounds due to competing physical phenomena. 

The purpose of this chapter is to extend the analysis techniques from the previous chapter 

to obtain useful insights towards cell design. 

In this chapter, the porosity and thickness of the cathode are added to the design 

space, and the bounds on the previously considered variables (cycling rate, diffusivity, 

and conductivity) are extended for a more comprehensive analysis. Two gradient-based 

approaches are used to find the optima: applying the optimizer directly to the cell model, 

and applying it to the surrogate function. A comparison of the accuracy and 

computational cost of the two approaches is made based on three test cases representing 

distinct operating scenarios. Finally, it is important to keep in mind that cell design also 

involves the selection of materials for the electrodes. Therefore, the chapter concludes 

with a comparison of several cathode materials based on the definition of dimensionless 

parameters using dimensional analysis. The approach and results presented in sections 

4.1-4.3 and 4.4 of this chapter have been previously documented in references [98] and 
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[99], respectively. 

4.2 Optimization of Electrode Porosity and Thickness 

4.2.1 Problem Setup 

Unlike the design variables considered in Chapter 3, the effects of electrode 

porosity and thickness on cell performance are not monotonic due to the presence of 

competing phenomena. Specifically, Eq. (21) shows that a higher porosity allows for a 

higher ion and electron transport rate, which as shown in Chapter 3, improves the energy 

performance of the cell. However, since porosity is defined as the volume fraction of 

electrolyte in the porous matrix, an increase in porosity also leads to a decrease in the 

amount of active solid material, and thus a reduction in the total capacity of the cell. 

Similarly, a thick electrode may be favored to increase the capacity of the cell, but at high 

cycling rates the diffusivity of the material may be insufficient to utilize the additional 

material, resulting in insufficient gains in total energy to compensate for the additional 

mass. These competing non-linear effects suggest a greater need to properly identify 

optima in the design space using the gradient-based optimizer. 

To optimize electrode porosity and thickness, two different approaches are taken, 

although they make use of similar tools. As shown in Figure 4-1, a common gradient-

based optimizer is applied in two ways: directly to the cell model, and to a surrogate 

model trained from simulations using the cell model. Also note that global sensitivity 

analysis forms a continuous loop with the surrogate model, as the surrogate model can be 

successively refined based on the GSA results. 
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Figure 4-1: Process for combining analysis and optimization tools 

The two approaches each have their own merits and can provide different 

information. When the optimizer uses output directly from the cell model instead of 

relying on a surrogate approximation of the objective function, the solution has one fewer 

source of error. This is especially critical in this case due to the “curse of dimensionality” 

as the number of variables is increased, making it difficult to fit an accurate global 

surrogate model. Consequently, the direct approach provides much more accurate 

solutions. The drawback, however, of using the cell model directly for optimization is 

that the computational cost of each function evaluation is several orders of magnitude 

greater (O(10
1
-10

2
) vs. O(10

-1
) seconds). Additionally, in a design space with a large 

number of design variables each spanning a broad range of values, there are often 

multiple distinct physical situations of interest with unique constraints on the variables. A 

single surrogate model can be used for many such constrained design problems, further 

reducing the computational cost compared to repeatedly setting up a new constrained 

optimization problem using only the cell model. Therefore, an overall strategy of 

combining the two optimization approaches can be useful for taking advantage of the 

unique characteristics of the individual numerical tools, as well as providing a platform 

for comparing their accuracy and computational efficiency. Finally, combining the two 

approaches can improve the robustness of the optimization framework by identifying 

discontinuities and local optima in the design space that may cause the optimizer to 
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converge to the incorrect solution. 

As in Chapter 3, the objective function of interest is the energy density, or mass-

specific energy. The design variables and corresponding ranges considered in this study 

are summarized in Table 4-1. Note that compared to Table 3-1, the ranges for cycling rate 

and diffusivity have been significantly expanded and span two or more orders of 

magnitude. Therefore, they (along with particle radius) are normalized via a logarithmic 

transformation: 

 10( ) (log )f x g x  (78) 

This transformation allows the full range of magnitudes to be sampled and 

mapped. Also note that due to the homogenization assumptions in the cell model, 

porosity is defined as the volume fraction of liquid electrolyte in the cathode. 

 

Table 4-1: Design variables and ranges for cathode porosity/thickness 

optimization 

Design Variable Minimum Maximum 

Cycling rate* C/10 10C 

Particle radius* 0.2 μm 20 μm 

Diffusion coefficient* 1×10
-16

 m
2
/s 1×10

-11
 m

2
/s 

Electronic conductivity 1 S/m 10 S/m 

Electrode thickness 40 μm 150 μm 

Porosity 0.2 0.4 

* Design variables normalized via log-scale transformation 

 

The fixed simulation parameters used in this study are listed in Table 4-2. It is 

important to point out the differences between this problem setup and that in Chapter 3. 

Varying the cathode porosity and thickness alters the capacity, and suggests a need to 

vary the anode properties accordingly to retain charge balance. This is achieved in this 

case by fixing the anode porosity but varying the anode thickness to balance the 

theoretical charge capacities of the two electrodes based on their material properties (see 

Table 4-7). The reference current value used to convert between discharge current and C-



78 

 

rate is computed separately for each case based on the theoretical capacity of the solid 

electrode materials, solid volume fraction, and electrode thickness. A single constant-

current discharge cycle is simulated for each case, and a cut-off voltage of 3.0 V is used 

as the termination criterion. Note that this higher cut-off voltage value is necessitated by 

numerical convergence difficulties due to stiffness in the radial diffusion equation when 

the diffusion coefficient is very low. Although the Crank-Nicolson finite-difference 

method [100] works well in most cases, terminating the simulations at 3.0 V instead of 

2.0 V results in a significant reduction in computational time for the highly stiff cases 

while giving very similar results for the overall cell energy density.  

 

Table 4-2: Fixed cell simulation parameter values for cathode 

porosity/thickness optimization 

Parameter Value 

Initial stoichiometric parameter for anode (x in LixC6) 0.6 

Initial stoichiometric parameter for cathode (y in LiyMn2O4) 0.2 

Cut-off voltage 3.0 V 

Separator thickness 25 μm 

Positive current collector thickness 25 μm 

Negative current collector thickness 25 μm 

Initial salt concentration 1000 mol/m
3
 

Ambient temperature 298 K 

Diffusion coefficient in anode (solid; bulk) 5.0×10
-13

 m
2
/s 

Electronic conductivity in anode (solid; bulk) 100 S/m 

Particle radius in anode 10 μm 

Volume fraction of inert filler in cathode 0.1 

Volume fraction of inert filler in anode 0.05 

Anode material (solid) MCMB 2528 graphite 

Electrolyte material LiPF6 in EC:DMC 

Inert filler material PVDF 
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4.2.2 Surrogate Model Refinement and Parameter Optimization 

The initial design of experiments consists of 77 FCCD and 600 LHS points, for 

677 total training data points. For error assessment, 21 design points are chosen for the 

independent testing data set such that the distance between test points and training data 

points in the design space is maximized. This is equal to 10% of the number of 

coefficients in a 4
th

-order polynomial function in six design variables. The specific 

energy values range from a maximum of about 170 Wh/kg under ideal conditions 

(minimum cycling rate and particle size) to nearly zero for the opposite extreme 

(maximum cycling rate and minimum diffusivity). From among a total of 17 surrogate 

models (PRS, KRG, and RBNN), the kriging model with Gaussian correlation function 

has the best accuracy: normalized PRESS value of 8.81% and normalized RMS 

prediction error at the test points of 8.70%; these values are too high to conduct 

optimization and thus a refinement is needed. As in Chapter 3, GSA is performed to 

establish an effective strategy for refining the design of experiments. 

Main and total indices are shown in Figure 4-2, along with those from Chapter 3 

for comparison. Note that in both cases, the effect of conductivity is negligible, even 

though as shown in Table 4-1 the range for conductivity has been substantially expanded. 

Porosity is found to have a weak main effect, but strong higher-order effects. Based on 

these results, the conductivity is eliminated from consideration to reduce the problem 

dimensionality from six to five variables. 

 

Figure 4-2: Normalized sensitivity indices for 6- and 4-variable designs of 

experiments 

The error measures in Table 4-3 show that this simple problem reduction is able 
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to significantly able to improve the accuracy of the surrogate model, without the addition 

of any design points. For further refinement, an additional 381 points are added using a 

LHS filling strategy, to yield a total of 1024 training data points. Note that some of the 

FCCD points were removed due to redundancy resulting from the reduction in problem 

dimensionality. Due to the higher order of polynomials that can be fit with the refined 

design of experiments, another 81 independent test points are added, bringing the total to 

102. This corresponds to 10% of the size of the design of experiments. Comparing the 

“refined” and “initial” kriging models in Table 4-3 shows that the problem reduction and 

design space refinement together roughly cut all measures in half. 

 

Table 4-3: Error measures for kriging models based on different designs of 

experiments and refinement levels 

Design of 

Experiments/Model 
Initial Reduced Refined Optimized 

Number of design variables 6 5 5 5 

Refinement level Unrefined Unrefined Refined Refined 

Optimization None None None Optimized 

Number of data points 677 643 1024 1024 

PRESS (RMS) 0.0881 0.0655 0.0423 0.0375 

RMS test prediction error 0.0870 0.0637 0.0364 0.0311 

Maximum test prediction 

error 
0.2002 0.1646 0.1057 0.0681 

 

A final step to improve the surrogate model’s predictive capability can be taken 

without requiring any additional training data, by optimizing the parameters within the 

surrogate model. The Gaussian correlation function can be written: 

 
2

1

( ) exp( )
n

j j

j

R d


 x  (79) 

A constant value is typically used for the correlation coefficients θj: 

 
1

vN

j pN


  (80) 
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Although a routine exists within the MATLAB toolbox to automatically choose 

appropriate values of θj for each j [63], initial values must be specified by the user. It has 

been observed that the error measures are sensitive to these initial values, suggesting that 

improvements to model fit can be achieved by properly tuning them. To accomplish this, 

the MATLAB optimizer fmincon, which as explained in Chapter 2.4 is an 

implementation of the SQP method described in conjunction with the BFGS method for 

estimating the Hessian matrix [76], is applied to find optimal values for the coefficients 

by minimizing the following prediction error measure: 

     2

1

1

1
Error , , max

t

v

N

N i

itN
   



   (81) 

Note that this is simply a product of the RMS and maximum prediction errors ε at 

the t independent test points. This measure is selected to reduce both the RMS and 

maximum prediction errors, as these are two of the best indicators for surrogate model 

accuracy. Table 4-3 shows a continuation of the reduction in all three error measures with 

each iteration of the surrogate model. With RMS error measures of about 3%, this 

surrogate model is sufficiently accurate to proceed with the optimization of cathode 

porosity and thickness. 

4.3 Comparison of Surrogate- and Gradient-Based Methods 

It has been previously established that energy density improves with lower 

cycling rate, smaller particle size, and greater diffusivity due to improved material 

utilization and reduced impedance. However, the effects of electrode thickness and 

porosity are more complicated, since they involve competing phenomena. In addition to 

finding the maximum energy density value, the surrogate model is also used to explore 

the dependence of optimal values of certain design variables with respect to other 

variables. For instance, of interest is not only the single optimal electrode porosity or 

thickness value for a given set of constraints, but also the dependence of this optimum on 

varying constraints. 
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Figure 4-3: Dependence of optimal thickness on (a) cycling rate; (b) particle 

radius; (c) diffusion coefficient; (d) porosity 

As an example, Figure 4-3 contains four examples of the objective function 

plotted over 1-D sweeps of the design space for three discrete values of each design 

variable, generated using the most refined surrogate model. Although these plots only 

represent a few examples of the much larger multidimensional design space, it is clear 

that optimization an electrode’s thickness is difficult as the optimal thickness varies 

considerably with cycling rate. This means that, for example, a cell with a 150-µm 

cathode designed for maximum energy density at 1C operation would perform worse than 

one with a 100-µm cathode at higher cycling rates. As stated in section 4.2.1, this 

difficulty presents an excellent opportunity to demonstrate the benefits of combining 

available numerical tools, and to compare the relative merits of the two optimization 

approaches. 

Therefore, to demonstrate this modeling framework, and to further examine the 

relationship between optimal thickness and porosity and the values of the other design 

variables, both the direct gradient-based (SNOPT applied to the dualfoil program) 

and the surrogate-based (fmincon applied to the surrogate model) approaches are 
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applied to the three optimization cases summarized in Table 4-4 are selected. 

 

Table 4-4: Design conditions for optimization cases 

Case Number C-Rate Particle Radius 
Diffusion 

Coefficient 

1 C/10 0.2 μm 1×10
-12

 m
2
/s 

2 2C 2 μm 1×10
-14

 m
2
/s 

3 10C 2 μm 1×10
-14

 m
2
/s 

 

These cases correspond to three significantly different design scenarios: 

i. Case 1 is a situation in which the characteristic diffusion time scale, as defined 

in Eq. (75), is much smaller than the discharge time scale due to the small 

particle size and high diffusion coefficient, so the cell is not limited by the 

diffusion rate. Therefore, the cell is expected to have good utilization of a high 

electronic capacity. 

ii. Case 2 models a high cycling rate corresponding to a high performance 

situation in an electric vehicle, and with a much lower diffusion coefficient 

and larger particles, diffusion is expected to become a limiting factor in the 

cell performance. 

iii. Case 3 models the maximum discharge rate scenario, and capacity utilization 

is expected to be poor. 

Contour plots of the objective function over the 2-D thickness-porosity design 

space for Cases 1-3 are shown in Figure 4-4-Figure 4-6, respectively. The locations of the 

optimal designs identified by the two optimization approaches are also shown, as well as 

contour plots of the relative difference between the actual cell data and predicted output 

from the surrogate model. 
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Figure 4-4: Contour plot of energy density (Wh/kg) against cathode thickness 

and porosity for Case 1 (high diffusion, low C-rate) 

In Case 1, as shown in Figure 4-4, both optimization methods identify the 

optimum at the lower right corner. This indicates that the thickest electrode with 

minimum porosity (and thus maximum solid volume fraction) is preferred. Since the 

diffusion rate is not a limiting factor in this case, greater energy can be extracted by 

increasing the amount of active solid material in the electrode. However, it is important to 

note that although the two methods converge to the same solution in the design space, 

Figure 4-4 and Table 4-5 show that they yield objective function values that differ by a 

few percent. Case 1 demonstrates that even when the surrogate model can be used to 

predict the correct optimum, the function value still contains uncertainty due to prediction 

error in the surrogate model. 

 

Figure 4-5: Contour plot of energy density (Wh/kg) against cathode thickness 

and porosity for Case 2 (low diffusion, high C-rate) 

In contrast to Case 1, the diffusion rate is a limiting factor in Case 2. As shown in 

Figure 4-5, the lower-right corner, which was the optimal design region for Case 1, 
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shows poor performance in Case 2. In this scenario, the diffusion rate is insufficient to 

accommodate an electrode that is both thick and dense. Instead, the optimum is located in 

the upper-right region of the design space, where the electrode is thick but much more 

porous. Unlike in the previous case, the two methods converge to different solutions in 

the design space. However, despite this difference, Table 4-5 shows that the final energy 

density values again differ by only 2.5%, suggesting that the optimum lies in a flat region 

of the design space where the objective function is not sensitive to the design variables. 

This is supported by the distribution of contours in Figure 4-5, where a large region of the 

design space gives an energy density within about 10% of the maximum value of 143.2 

Wh/kg. In fact, reasonable performance can be achieved with a much lower porosity, as 

long as the thickness is reduced to about 100 µm. 

 

Figure 4-6: Contour plot of energy density (Wh/kg) against cathode thickness 

and porosity for Case 3 (low diffusion, maximum C-rate) 

Finally, Case 3 shows that for very high cycling rates, a much thinner electrode is 

required, and that porosity may be a limiting factor. As seen in Figure 4-6, the gradient-

based optimizer converges to the upper bound for porosity, suggesting even higher 

porosity levels for designing cells for high power applications. Note that the energy 

density values for Case 3 are much lower than in Case 2, which in turn are lower than in 

Case 1. This is consistent with the established understanding that energy performance 

diminishes with increasing discharge rate. Also note that in Figure 4-4-Figure 4-6, the 

contour lines are more vertical than horizontal. This is an indication that the objective 

function is more sensitive to thickness than to porosity, which is consistent with the 

global sensitivity analysis results in Figure 4-2. 
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Table 4-5: Comparison of optimal solutions obtained using surrogate- and 

gradient-based approaches 

Case 
Surrogate-Base Optimum Gradient-Based Optimum Normalized 

Difference δ (μm) ε E (Wh/kg) δ (μm) ε E (Wh/kg) 

1 150.0 0.200 181.4 150.0 0.200 170.4 +6.4% 

2 147.3 0.386 138.9 149.0 0.338 143.2 -2.5% 

3 71.2 0.371 80.6 81.5 0.400 94.1 -7.9% 

 

The accuracy of the surrogate model can be assessed by examining the relative 

error contours in Figure 4-4-Figure 4-6, as well as the optimal solutions tabulated in 

Table 1-1. Since the gradient-based approach uses the cell simulation directly, its 

optimization solution is considered the “exact” solution used to calculate errors. 

Generally, the surrogate model is able to provide solutions to within about 5%, although 

the error can exceed 10% in a few isolated pockets. The benefits of each method are thus 

demonstrated: the surrogate model provides computationally cheap approximations of the 

objective function, allowing for an efficient analysis of the full design space and a rough 

optimization. And although only three cases are shown, it is important to remember that 

the surrogate model maps the entire design space and is therefore able to optimize the 

porosity and thickness for arbitrary operating conditions. However, in cases where 

greater accuracy in the optimized solution is required, the gradient-based method must be 

used. In turn, a global mapping of the design space provided by the surrogate model 

complements the accuracy of the gradient-based optimizer to provide better insight into 

the physical phenomena being modeled. The optimization results are consistent with the 

established practice of using thick electrodes in high energy applications and thin 

electrodes in high power applications. 
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Figure 4-7: Power vs. energy Pareto fronts for 6 design variables (maximum 

cycling rate of 10C) and 4 design variables (4C) 

The gains in energy density resulting from the optimization of electrode thickness 

and porosity can be quantified by constructing a Pareto front using the same method as in 

Chapter 3.5. The Pareto fronts plotted in Figure 4-7 show that for a given power level, the 

cell energy can be improved by up to 40% when the electrode thickness and porosity are 

optimized compared to when they are fixed as in the problem with 4 design variables. 

The energy density values for the 4 design variable cases are taken from Figure 3-8 but 

linearly scaled to account for differences in SOC window. The impact of these 

optimization results on the aerospace vehicles discussed in Chapter 1.3 can be 

summarized as follows. Recall that the doubling of energy density is a critical goal that 

must be met in several of the case studies, including Helios, Solar Impulse, and RQ-11 

Raven. The 40% gain from adding just two additional design variables to the problem, 

with a simplified correction for anode properties based on matching total capacity, 

represents a significant step towards achieving this goal. Optimization results for an even 

greater number of design variables, including anode properties, have exhibited further 

improvements to energy density, up to 230 Wh/kg [78]. Figure 4-7 also shows that the 

tradeoff between energy and power no longer favors higher power at C-rates above 4C, 

with very sharp losses in energy density at power densities above about 1000 W/kg. The 

C-rate corresponding to this power level depends on the values of the electrode thickness 

and porosity, but is typically between 6C and 8C. The quantification of the relationship 
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between achievable power and energy is necessary for scaling the cell optimization to a 

pack-level optimization, as it provides guidelines for distributing the required current 

load among multiple cells. 

4.4 Dimensional Analysis: Parameterization 

Having performed a considerable amount of analysis and optimization for a 

battery cell with spinel lithium manganese oxide (LiMn2O4) as the cathode material, a 

logical next step would be to conduct a comparison of different candidate materials, as 

there are a large number of materials suitable for use in electrodes [101]. Previous studies 

comparing multiple electrode materials often focus on specific properties such as 

overcharge behavior [102] or thermal stability [103], and not on the overall cell 

performance. Rough (zero
th

-order) assessments of the cell performance can be made by 

simply comparing the material properties (mass-specific capacity and electric potential, 

listed in Table 4-7) of the different materials, as Howard and Spotnitz have done [104], 

but this type of analysis does not consider the effects of transport coefficients and particle 

size. Doyle and Newman [105] have used dimensional analysis to derive analytical 

solutions to characterize battery performance based on operating parameters. Three 

solutions based on different limiting phenomena were obtained, but a single global 

analysis without simplified physics is still missing. 

Recall that in Chapter 3, a dimensionless time ratio τ
*
 was introduced to partition 

the design space. Dimensional analysis entails modeling the output as a function of 

dimensionless parameters that combine multiple physical variables, and is a widely used 

technique in fields such as fluid mechanics and heat transfer for characterization and 

scaling analysis [106], and is especially well suited for problems with similar physical 

features but widely varying parameter values. In this section, dimensional analysis is 

extended to define additional dimensionless parameters to characterize the cell 

performance for multiple cathode materials. In addition to LiMn2O4, the following 

cathode materials are considered: lithium iron phosphate (LiFePO4), lithium cobalt oxide 

(LiCoO2), lithium vanadium oxide (LiV6O13), and lithium titanium sulfide (LiTiS2). The 

approach for comparing the materials is as follows: 
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i. Select a common design of experiments in normalized, dimensionless 

variables; 

ii. Convert the dimensionless design variables to physical variables based on 

cathode material property ranges obtained from the literature; 

iii. Conduct the simulations and define dimensionless parameters to characterize 

the cell performance. 

Table 4-6: Design variable ranges for five cathode materials 

Variable Minimum Maximum References 

Cycling rate C/10 10C  

LiMn2O4    

Particle size 5.0 µm 15 µm [92] 

Diffusivity 1.0×10
-15

 m
2
/s 1.0×10

-12
 m

2
/s [107, 108, 109] 

Conductivity 1.0×10
-6

 S/m 10 S/m [110, 95] 

LiFePO4    

Particle size 0.02 µm 8.0 µm [111] 

Diffusivity 1.0×10
-14

 m
2
/s 1.0×10

-11
 m

2
/s [112, 113] 

Conductivity 1.0×10
-5

 S/m 10 S/m [112, 114] 

LiCoO2    

Particle size 0.03 µm 6.0 µm [115] 

Diffusivity 1.6×10
-17

 m
2
/s 1.0×10

-11
 m

2
/s [116, 117, 118] 

Conductivity 20 S/m 5.0×10
4
 S/m [119] 

LiV6O13    

Particle size 1.0 µm 25 µm [120, 121] 

Diffusivity 5.0×10
-13

 m
2
/s 3.5×10

-12
 m

2
/s [122] 

Conductivity 1.0×10
-3

 S/m 1.0×10
-2

 S/m [122] 

LiTiS2    

Particle size 0.1 µm 10 µm  

Diffusivity 4.0×10
-17

 m
2
/s 5.6×10

-13
 m

2
/s [123] 

Conductivity 5.0 S/m 33.3 S/m [123, 124] 
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Table 4-6 lists the particle size, diffusivity, and conductivity ranges considered for 

each material, along with corresponding references. No literature on the size of LiTiS2 

particles is available, so bounds are selected to capture a wide range. Since the variable 

ranges again span several orders of magnitude in many cases, the logarithmic 

transformation in Eq. (78) is again applied to convert between the dimensionless 

variables in the design of experiments and the physical variables. Due to the number of 

materials considered, constant values for porosity and thickness are used, to simplify the 

analysis. Since the focus of this work is on comparing cathode materials, the electrolyte 

(1 M LiPF6 in EC:DMC) and anode material (MCMB graphite) remain the same for each 

set of analysis. In all cases the inert filler is PVDF, with a density of 1800 kg/m
3
. 

Additional electrode material properties, namely the mass density, specific capacity, and 

cut-off voltage for the simulations, are listed in Table 4-7. For a consistent comparison 

among materials, the same SOC window is used: the stoichiometric parameter x in LixC6 

ranges between 0.8 and 0.0, while the parameter y in LiyMn2O4, etc. range between 0.1 

and 1.0. 

Table 4-7: Electrode material properties 

Material Density (kg/m
3
) 

Specific capacity 

(mAh/g) 

Cut-off voltage 

(V) 

LiMn2O4 4280 148 3.0 

LiFePO4 3580 170 3.0 

LiCoO2 5010 274 3.0 

LiV6O13 3900 417 1.8 

LiTiS2 2285 225 1.6 

LiC6 2260 372 - 

 

A single design of experiments in normalized, dimensionless variables consisting 

of 1296 points in a LHS arrangement is used for all five cathode materials. As a 

preliminary step before proceeding directly to dimensional analysis, it is useful to again 

calculate the global sensitivity indices to check if any critical diffusivity and conductivity 

values can be identified, since the computational cost of performing the surrogate-based 

analysis and GSA is negligible compared to conducting the 1296 simulations. A similar 



91 

 

process for identifying these critical values as in Chapter 3.4 is used: the simulation 

results are sorted according to diffusivity magnitude, and a succession of data sub-sets are 

compiled for an increasingly narrower diffusivity range by increasing the lower bound. 

Independent surrogate models are constructed at each stage, and used to compute global 

sensitivity indices. In this manner, the critical value can be identified when the impact of 

diffusivity vanishes for a given lower bound. Figure 4-8 shows that for all materials 

besides lithium titanium sulfide, the effect of diffusivity is dwarfed by either conductivity 

or cycling rate. For lithium titanium sulfide, however, the effect of diffusivity is 

significant over the full range, and gradually decreases until becoming negligible at about 

2.4×10
-15

 m
2
/s. Since diffusivity can be determined as a function of lithium ion 

concentration [125] and voltage [126], quantifying this critical value establishes a 

benchmark to aim for when designing or processing materials with similar chemistry. 

The GSA results also demonstrate that in most cases, adequate cell energy performance 

can be achieved so long as conditions independent of the diffusivity are satisfied. 
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Figure 4-8: Main sensitivity indices for various cathode diffusivity ranges 

A similar analysis is performed for conductivity and the results are plotted in 

Figure 4-9. In the case of lithium cobalt oxide, lithium vanadium oxide, and lithium 

titanium sulfide, the lower bound for conductivity is sufficiently high to not significantly 

affect the cell performance. However, for lithium manganese oxide and lithium iron 

phosphate, conductivity is found to have a strong effect on performance, and critical 

values of about 0.01 S/m and 0.2 S/m are identified, respectively. Again, quantification of 

these values can provide guidelines for processing and manufacturing. For instance, these 

results, in conjunction with recent progress in modeling the influence of additives on 

conductivity [127], can be used to optimize the amount of conductive additive to 

introduce to the undoped cathode material. 
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Figure 4-9: Main sensitivity indices for various cathode conductivity ranges 

The quantification of critical diffusivity and conductivity values can be further 

analyzed in the context of dimensionless parameters. For convenience, the dimensionless 

time parameter τ
*
 defined in Eq. (77) is presented again: 

 
,*

2

,

discharge s p

diffusion s p

t kD

t CR
    (82) 

Recall that physically, τ
*
 represents the relative speed of the diffusion and 

discharge processes. When the magnitude of τ
*
 is very large, ions travel much faster 

through the particle via diffusion than they are transferred across the cell. Conversely, 

when the magnitude of τ
*
 is very small, the cell utilization is limited by the diffusion rate. 

Alternatively, it can be interpreted as a non-dimensionalized version of the solid-phase 

diffusion coefficient, and will be referred to as “dimensionless diffusivity”. Applying this 

parameter definition to the present problem, a log-scale plot of the computed specific 

energy against τ
*
 is shown in Figure 4-10. 
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Figure 4-10: Separation of operating regimes based on dimensionless 

diffusivity 

Aside from significant scatter in the data, two distinct regions can be identified: 

the maximum achievable energy increases monotonically in the low-τ
*
 range up to some 

critical point, beyond which it remains roughly constant. Performance in the low-τ
*
 

region is limited by poor ion transport via diffusion causing a depletion of salt in the 

electrolyte. This can be observed for three of the materials (LiMn2O4, LiCoO2, and 

LiTiS2), although the maximum energy levels differ. The boundary between these two 

operating regimes can be considered a critical point that must be satisfied when 

conducting cell design. In order to quantify this critical point, consider the Pareto front 

for each material, formed by defining the following two objectives: maximizing energy 

and minimizing τ
*
. While the majority of the data points, which form the scatter seen in 

Figure 4-10, are clearly dominated, there remain a set of data points representing the 

maximum achievable energy density for the corresponding value of τ
*
. The critical point 

can be defined as the minimum value of τ
*
 such that the (log-scale) slope of the Pareto 

front becomes less than some tolerance δ: 

  *

1

* min |crit

dy

dx
     (83) 
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*

1 10logx   (85) 

Using the definitions for transforming the specific energy e and the dimensionless 

time parameter τ
*
 in Eqs. (84) and (85), respectively, the slope of the Pareto front is 

estimated using the central-difference scheme: 
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The critical values of τ
*
 calculated using these equations are plotted as vertical 

lines in Figure 4-10. A tolerance value of δ = 0.1 is used for all materials. Recall again 

that four variables are considered in this study: cycling rate, particle size, diffusivity, and 

conductivity. The dimensionless diffusivity combines three of these, but note that in 

Figure 4-10, two materials (LiV6O13 and LiFePO4) do not demonstrate a clear separation 

of operating regimes based on τ
*
. Note that the conductivity has so far been excluded 

from consideration. Fortunately, it is possible to define a second dimensionless parameter 

based on conductivity. Since conductivity is the inverse of resistivity, by Ohm’s law it 

has dimensions of electrical current per unit voltage, per unit length. The dimensionless 

conductivity parameter σ
*
 can thus be defined as follows:  

 
*

0

coV

I L






  (87) 

where the reference voltage Vco is the cell potential at the end of discharge, the reference 

current I0 is the discharge current, and the characteristic length scale L+ is the electrode 

thickness. This dimensionless conductivity can be interpreted as a ratio of the material’s 

conductivity to the required conductivity for transporting electrons at the rate dictated by 

the discharge current. When the magnitude of this ratio is very small, the cell 

performance can be expected to be limited by conductivity. A plot of specific energy with 

respect to σ
*
 in Figure 4-11 shows that two distinct operating regimes can again be 

identified for some materials, including LiV6O13 and LiFePO4. Referring to the variable 

bounds listed in Table 4-6, it is easy to note that the lower bounds for these two materials 

are much higher than for the others. This suggests that within the selected parameter 
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space, the performance of LiV6O13 and LiFePO4 is limited by conduction but not 

diffusion. Similarly, Figure 4-11 shows that the relatively high conductivity range for 

LiCoO2 and LiTiS2 results in little variation in cell performance as σ
*
 is varied. 

 

Figure 4-11: Separation of operating regimes based on dimensionless 

conductivity 

As with τ
*
, critical values for σ

*
 are plotted as vertical lines in Figure 4-11, based 

on a similar definition applied to the set of points in the Pareto front: 

  *

2

* min |crit

dy

dx
     (88) 
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The same central-difference scheme is used to estimate the derivative, and the 

same tolerance of δ = 0.1 is used: 
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4.5 Dimensional Analysis: Energy Function 

Having identified two dimensionless parameters that characterize the conditions 

under which cell performance is limited by diffusivity and conductivity, it is logical to 

combine them in a way that accounts for the limiting effects of both processes. A simple 

way to do this is to define a new parameter x
*
 as base-10 logarithm the lesser of the two 

dimensionless parameters for each data point: 

  * * *

10log min ,x       (91) 

Physically, this can be interpreted as the numerical value corresponding to the 

most limiting dimensionless transport parameter. Next, consider the Pareto front 

discussed in section 4.4, which represents the maximum achievable energy performance 

of a cell for the dimensionless diffusivity and conductivity range. A distinctive shape for 

the Pareto front has been noted in Figure 4-10 and Figure 4-11, so it is logical to attempt 

to define this shape using a mathematical curve fit. First, it is a standard practice in 

dimensional analysis to use entirely dimensionless units, so the energy density is non-

dimensionalized: 

 
*

0

cell cell

active

E m

QV m
   (92) 

In this case, the energy density of the cell is normalized by the limiting capacity Q, 

initial cell voltage V0, and the mass ratio of active to total materials in the cell. Revisiting 

the notation used in Eqs. (69)-(71), the active mass is equal to the mass of active solid in 

the cathode and anode: 

 , , , , , ,active s s s s s sm m m L L               (93) 

The limiting capacity is defined as the lesser of the two electrode capacities based 

on the electrode thicknesses and values listed in Table 4-7: 

  , , , , , ,min ,s s s s s sQ L q L q            (94) 

A curve fit for characterizing the dimensionless energy function ε
*
 with respect to 

the parameter x
*
 can be obtained using the surrogate modeling techniques described in 
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Chapter 2.3, but in this case the Pareto fronts exhibit an “S-curve” shape that is better 

modeled using a class of functions called sigmoid functions, which have asymptotic 

bounds at their infinite limits. One useful instance of a sigmoid function is the 

generalized logistic function: 

 *
3

* 1
4

2

ˆ
1

k x

k
k

k e



 


 (95) 

This class of functions has been used in growth modeling [128], as its constants 

govern the shape of the curve in easily identifiable ways. It is readily applicable here as 

the energy curves shown in Figure 4-10 and Figure 4-11 share similar characteristics. In 

the limit as x
*
 approaches negative infinity, the exponential term in the denominator 

becomes unbounded, and thus the lower asymptote is equal to k4. In the present battery 

modeling problem, this corresponds to the limit of zero diffusivity and zero conductivity, 

in which case no ions or electrons could be transported, and thus no energy could be 

extracted. Therefore, physical consistency requires that k4 = 0, yielding a simplified form 

of the generalized logistic function with three constants: 
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 (96) 

In the infinite limit in the opposite direction, the exponential term vanishes and 

the function value reaches the upper limit value k1. The remaining constants k2 and k3 

govern the growth rate and location of growth, respectively. The three constants are 

determined by minimizing the curve fit prediction error, defined as the sum of the 

differences between the exact and approximate dimensionless energy function values 

given in Eqs. (92) and (96), respectively: 
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This is implemented using the MATLAB function minimizer fminunc, the 

unconstrained analogue to fmincon. Plots of the fitted generalized logistic functions 

along with the Pareto front for each material are shown in Figure 4-12, and the constants 

governing their shapes are given in Table 4-8, along with mean prediction errors. 
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Figure 4-12: Generalized logistic functions fitted for the dimensionless Pareto 

front of each material 

Note that LiFePO4 is not considered in this analysis, as its Pareto front contains an 

insufficient number of points to conduct a meaningful curve fit or error analysis. 

However, it is useful to note that for the remaining materials, the generalized logistic 

function provides an excellent description of the maximum achievable energy 

performance, with mean prediction errors typically about 1% of the normalized function 

value or less. 

Table 4-8: Mean prediction errors of generalized logistic functions 

 LiMn2O4 LiCoO2 LiV6O13 LiTiS2 

k1 1.080 0.563 0.578 0.826 

k2 0.0864 0.0045 0.0028 0.0398 

k3 2.737 3.585 5.535 2.887 

Mean error 0.0056 0.0084 0.0107 0.0081 

 

The value of this type of analysis can be demonstrated in Figure 4-13, where the 

maximum energy curve is fit using n randomly selected points from the Pareto front for 

LiMn2O4, where n can be 4, 10, or 24. For each value of n, 50 randomly combinations of 
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data points are selected. When only 4 points are chosen, the curves tend to deviate 

significantly from the remaining data. However, it is observed that when the number of 

sampling points is increased to 24, the original curve can be reliably obtained, with all 50 

curves closely matching the cell simulation data. These results demonstrate that 

dimensional analysis can be utilized to significantly reduce the number of total 

simulations needed to characterize the energy density of the cell. Whereas 1296 

simulations were selected in the original DOE, only 24 are needed when proper 

knowledge of the relationships among dimensionless parameters is established. 

 

Figure 4-13: Maximum energy curves fitted for 4, 10, and 24 randomly 

selected points on Pareto front for LiMn2O4 

Finally, it is useful to convert the maximum dimensionless energy (i.e., the k1 

value for each material) to physical quantities to compare these results with theoretical 
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predictions and experimental measurements. As in Chapters 3.5 and 4.3, the energy 

density values obtained here are generally lower than reported in the literature; for 

example, the values of 195.6 Wh/kg for LiCoO2 and 136.3 Wh/kg for LiMn2O4 are much 

lower than the respective theoretical limits of 272.1 Wh/kg and 223.2 Wh/kg for jellyroll 

format batteries [104]. Similarly, the maximum value of 109.8 Wh/kg for LiV6O13 is 

much lower than the 200-300 Wh/kg estimate for a thin film battery reported by Munshi 

and Owens [129]. For LiTiS2, the energy density value of 66.2 Wh/kg is within 11% of 

the 73 Wh/kg reported by Brandt [130]. Again, these discrepancies are due to the use of a 

limited SOC window and fixed anode properties. Despite these simplifications the 

relative cell-level energy density values are found to be consistent with the materials’ 

electric potential capacity, given in Table 4-7. 

4.6 Summary 

The analysis in this chapter provides two significant conceptual contributions: cell 

design via optimization of configuration and composition (thickness and porosity, 

respectively) for a given choice of material, and material choice via characterization of 

material properties using dimensionless diffusivity and conductivity parameters. 

Generally, the specific energy decreases with higher cycling rates, larger particle size, 

and lower diffusivity as was found in Chapter 3. The effect of electrode thickness is much 

more complicated, with an optimal thickness that varies greatly depending on the values 

of the other design variables. The porosity is found to have a lesser but non-negligible 

influence on the energy density, and its optimal value also strongly depends on the values 

of the other parameters. These complicated interactions between design variables 

illustrate the difficulty of cell optimization, and can help explain why even optimized 

cells may perform poorly under different operating conditions. The electrode thickness 

and porosity are optimized simultaneously using a gradient-based optimization method 

for three distinct physical situations, and the optimal thickness decreases substantially as 

the diffusivity is decreased and the cycling rate is increased. The proper quantification of 

the optima also eliminates the need to conduct cell design using overly simplified ad-hoc 

rules. However, these results also highlight the need to fully understand the system for 
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which the battery is designed. It is necessary to understand the full range of operating 

conditions that can be expected for the battery, so that a high-energy cell is not subject to 

repeated high power rates that will cause not only poor capacity utilization and energy 

performance, but also significant degradation that will render it unsuitable for automotive 

and space applications. 

A comparison between the optimization results obtained using surrogate-based 

and gradient-based methods shows that optimizing a surrogate function in lieu of the true 

objective function yields optimization solutions to within a 5% error margin. Although 

this is insufficient for many design problems, the ability to perform approximate 

optimization for a large number of design cases and multiple objectives, as well as 

constrain the design space via global sensitivity analysis, makes the surrogate method a 

valuable intermediate step between problem formulation and the final design 

optimization. Once the most important design cases have been identified, the gradient-

based optimizer can be applied directly to the physical model to obtain a much more 

accurate solution by using exact function and gradient information at each iteration, 

bypassing surrogate model prediction errors. Within the current modeling framework, the 

two optimization methods are complementary and can provide accurate optimized 

solutions for multiple distinct physical scenarios for a reasonable computational cost. The 

benefits of optimizing the two additional design variables are made clear when the Pareto 

front for the corresponding optimization problem is compared directly to that from 

Chapter 3. An increase in energy density is observed at all power density levels, with the 

greatest gains of 40% in energy density occurring at low power levels. In the context of 

the aerospace vehicles and systems discussed in Chapter 1.3, this represents a very 

significant step towards achieving the doubling in energy density required by solar flyers, 

UAV, and hybrid-electric general aviation aircraft. Further research involving the 

development of modeling and optimization frameworks for additional design variables 

such as anode properties and microstructure geometry, coupled with appropriate 

manufacturing capabilities, are necessary to fully bridge this gap between existing battery 

performance and the requirements of aerial vehicles. 

Despite significant differences in capacity and transport properties, the five 

cathode materials subject to dimensional analysis exhibit a similar performance 
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dependence on the two dimensionless parameters defined. Since these two parameters 

can be interpreted as ratios of transport rates (diffusivity and conductivity) to cell 

operating conditions (cycling rate and discharge current), these results suggest that 

regardless of material, ion transport via diffusion and electron transport via conduction 

are the two most critical limitations to cell performance. The critical points where cell 

performance becomes independent of the dimensionless parameters are also quantified, 

and found to be close to unity for all materials. This is again consistent with the physical 

interpretation that unity represents the point at which all transport rates are balanced with 

the cell operation. By combining the two dimensionless transport parameters into a single 

quantity, and non-dimensionalizing the energy density as well, a generalized logistic 

function is shown to describe the Pareto front well for all materials except LiFePO4, 

which displays excessive scatter and has an insufficient number of data points in the 

Pareto front. The generalized logistic function obtained in this study can be considered a 

type of reduced-order model, in which the maximum energy performance of a cell can be 

readily estimated with an analytical equation based on the material properties and 

composition of the electrodes, and the operational parameters of the cell. The 

methodology documented in this chapter can be readily utilized to analyze the 

performance of other types of cathode materials, and thus significantly improve the 

efficiency of the battery design process when multiple choices of materials must be 

considered. The understanding of relationships between dimensionless variables and 

energy performance that has been gained can also be used to significantly reduce the 

number of cell simulations required to properly characterize the performance of a 

selected electrode material. 

For both numerical and practical reasons, limited SOC windows are again 

considered in both the optimization of the LiMn2O4 cathode cell and the dimensional 

analysis of the other cells. As a result, the maximum energy density values reported in 

this analysis is typically lower than is observed in practical applications. Good data for 

the open circuit potential are generally not available at very high and very low SOC 

ranges, and a consistent SOC window is necessary to ensure a consistent comparison 

between optimization methods and between multiple materials. Despite the generally 

lower energy density values, the relative performance among different cathode materials 
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is consistent with their relative voltage and capacity. Additionally, since they are valid for 

all of the materials considered, the dimensionless relationships established provide useful 

guidelines for designing new materials with tunable properties. For example, insight into 

the effect of diffusivity under a wide range of cycling rates established in this study can 

provide guidelines for material processing to achieve the desired particle size distribution. 

Similarly, the quantification of critical conductivity levels can help determine the optimal 

amount of conductive additives to introduce in the manufacturing process [127]. 

There is also a good practical reason for using a limited SOC range, as well as a 

higher termination voltage of 3.0 V compared to the 2.0 V in Chapter 3. It is known that 

cell degradation is greater for a higher depth of discharge (DOD) [38], and the 

optimization results in this chapter reflect the energy density of batteries designed for 

long cycle life, such as those found in LEO satellites. The dimensional analysis results 

are applicable to the vehicles in which poor energy density under non-ideal conditions is 

of critical concern, like HALE and Solar Impulse, as the configuration of cells within the 

battery pack can be calculated based on the predicted average and instantaneous power 

demands of the vehicles, and the known properties contained in the dimensionless 

parameter definitions. 
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Chapter 5. 

Multi-Scale Modeling of Effective Transport and Electrochemical Kinetics 

Properties 

5.1 Introduction 

The physical phenomena in a battery cell occur at very different length scales. 

These range from mechanical stress and volume expansion at battery module/pack scale, 

to phase transition, ion dissolution, and fracture at the molecular scale. Even the 

macroscopic homogeneous model, which ignores molecular-level and pack-level effects, 

models processes at different length scales such as concentration and potential gradients 

driving ion transport (electrode/cell scale, O(10
-4

 m)), diffusion and conduction within 

the microstructure (multi-particle cluster scale, O(10
-5

 m)), and electrochemical reaction 

kinetics at the solid-liquid interface (single-particle scale, O(10
-6

 m)). Furthermore, while 

a typical battery cell has thickness of O(10
-4

 m), it can be hundreds or thousands times 

this size in the other dimensions, and is thus often modeled as an infinite plate. In 

addition to uncertainty in morphology, a battery is also an inherently multi-physics 

system, involving electrochemistry, thermodynamics, heat and mass transfer, and 

structural mechanics. It is clear, therefore, that a high-fidelity simulation of the entire cell 

is impossible due to geometric and physical complexity. 

In this dissertation, a multi-scale modeling approach is used, in which different 

physical phenomena are modeled at their appropriate length scales and the separate 

models are then linked to improve upon single-scale models. The macroscopic cell model 

based on homogenization of the microscopic scale material properties has already been 

discussed extensively. This chapter documents the development of the microscopic 

models, as well as the results that are used to build the multi-scale model. A discussion of 

the relevant numerical issues and the final implementation are also included. The 
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effective transport and interfacial reaction kinetics results have been presented at the 221
st
 

and 222
nd

 Meetings of the Electrochemical Society, respectively [131, 132]. 

5.2 Microscopic Modeling of Effective Transport Properties 

It has been well documented that mass transport via diffusion and conduction 

through porous media differs from diffusion in a single medium. Much research has 

attempted to quantify the effective transport properties in porous media using both 

experimental [79] and analytical/computational approaches [80, 133]. As discussed in 

Chapter 2.2, the existing macroscopic cell model uses a homogenization approach using 

Bruggeman’s equation, which is based on empirical measurements on simple porous 

materials such as sand [134]. Although porous in nature, these materials differ from the 

active electrode matrix, and thus a more accurate model for ion and electron transport 

within a battery electrode is required. The objective of this section is to apply the physics-

based modeling methodology outlined in Chapter 2.5.1 to derive equations for calculating 

the effective diffusivity and conductivity as a function of porosity. 

 

Figure 5-1: Sample ion concentration distribution for 80-particle case; REV 

dimensions are 20×20×20 µm and mesh resolution is 0.5 μm 
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The computational cost scales super-linearly with the size of the REV (and thus 

the number of particles), although the exact scaling relationship is dependent on the 

choice of solver and preconditioner. For most iterative solvers such as the generalized 

minimum residual (GMRES) [135], conjugate gradient (CG), and symmetric successive 

over-relaxation (SSOR) [136] methods, the computational cost scales with O(n
2
)×O(n

3
) = 

O(n
5
) for 3-D problems, where n is a one-dimensional length scale such as the REV 

dimension for a fixed mesh resolution. Meanwhile, the number of particles scales linearly 

with the number of mesh elements, i.e., O(n
3
). Thus, the computational cost is expected 

to scale approximately by O(n
5/3

) with the number of particles, although within the 

COMSOL environment it is closer to O(n
5/4

) due to overhead. Various solvers exhibit 

similar performance, so the conjugate gradient method is used as it is well suited for 

sparse systems of symmetric, linear equations [137]. An algebraic multigrid method [138] 

is also used for preconditioning. 

Using the automated simulation procedure outlined in Figure 2-3, a total of 2462 

REV realization cases are simulated, which includes 2300 with 10 particles (10 µm), 130 

with 80 particles (20 µm), and 32 with 640 particles (40 µm). This number of realizations 

is selected to balance the available computational resources with the need for a large 

number of realizations to ensure statistically significant averaging of the computed results. 

To compare the results to the Bruggeman equation used in the macro-homogeneous 

model, as well as experimental results in the literature, the tortuosity τ is also calculated 

based on the effective diffusivity and porosity ε: 

 
*

1 bulk

eff

D

D D




   (98) 

This equation is commonly used to characterize and analyze battery electrodes, in 

both experimental and numerical studies [139]. Figure 5-2 compares the porosity-

tortuosity relationship in the computed results with the Bruggeman equation, as well as 

two sets of experimental results by Kehrwald et al. [79] and Yu and Carter [140]. 
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Figure 5-2: Comparison of porosity-tortuosity results for 2462 REV 

realizations with experiments 

Generally, the Bruggeman equation underpredicts the tortuosity, and thus 

overpredicts the effective diffusivity. The difference between the microstructural 

simulation results and the Bruggeman equation also becomes greater at low porosity, 

when the effective transport is most limited. This confirms that the Bruggeman equation 

tends to overpredict the cell performance when applied to the macro-homogeneous model. 

The majority of the particle realizations fall in a higher porosity range than the 

experimental samples, but good agreement in tortuosity is found between simulations and 

experiments at common porosity levels. There is also good agreement in the porosity-

tortuosity relationship between the 80 particle and 640 particle cases, suggesting domain 

size independence. The simulations tend to predict lower tortuosity than the curve fit 

proposed Kehrwald et al., which contains significant uncertainty as it is based on only a 

few measurement samples. 

 

Figure 5-3: Diffusivity-porosity results for 2462 REV realizations, with 

proposed transport model and Bruggeman equation 
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The simulation results are plotted in the diffusivity-porosity axes in Figure 5-3, 

and a proposed value of α = 1.681 is shown to be able to model the effective diffusivity 

with a coefficient of determination of R
2
 = 0.8941. Although this value is lower than for 

the surrogate modeling studies presented in Chapters 3.3 and 4.2, significant scatter can 

be expected due to uncertainty stemming from the random nature of the microstructure 

generation. Note that a power of the same form as the Bruggeman equation is selected 

rather than any other class of function, as it satisfies two important boundary conditions: 

 
1

eff bulkD D
 

  (99) 
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  (100) 

These two boundary conditions ensure that the effective diffusivity for a single-

phase material matches the bulk diffusivity of the material, and that no transport occurs 

when there is no material available. This modified Bruggeman-type equation presents a 

significant step towards improving upon the macro-homogeneous model. 

5.3 Graph Analysis of Microstructure 

The previous section summarizes results obtained from a large number of steady-

state FEM diffusion simulations. For each case, the effective diffusivity is computed 

using a mesh structure depicting the microstructure generated via ellipsoidal packing. As 

discussed in Chapter 2.5.5, this microstructural information can be readily applied to 

graph analysis using algorithms based on graph and network theory to relate effective 

diffusivity to path length parameters in addition to porosity. This is important because in 

spite of the correction to the Bruggeman model shown in Figure 5-3, significant scatter in 

the computed diffusivity can be observed for all porosity levels, suggesting a strong 

dependence on other parameters related to the orientation and alignment of the particles. 

A proper consideration of these additional factors is necessary to ensure accurate 

modeling of battery physics during the design process. The first problem to consider is 

the minimum path problem, which is the identification of the shortest path between two 

nodes, and the quantification of the length of this path. For a given REV realization, this 
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problem can be solved by assembling the adjacency matrix corresponding to the voxel 

mesh structure, and successively computing increasing powers of the matrix until the 

element of interest becomes non-zero. In this problem, the two nodes can be any 

combination of nodes in which one node is on the top surface and the other is on the 

bottom surface (the two opposite ends where the Dirichlet boundary conditions are 

applied for the diffusion problem). For each additional power of the adjacency matrix that 

is computed, all matrix elements corresponding to combinations of these nodes are 

examined, and the computation continues until a non-zero value is found. As discussed in 

Chapter 2.5.5, computational costs limit the analysis to 10-particle REV realizations, with 

a graph size of 20×20×20 = 8000 nodes. The following non-dimensional path length 

parameters are used to normalize the path length L by the REV height δ, which in this 

case is 10 µm: 
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L
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For a perfectly straight diffusion path, this quantity is equal to unity. 

 

Figure 5-4: Non-dimensional effective diffusivity and path length for 72 REV 

realizations 

Results for 72 randomly selected 10-particle realizations are shown in Figure 5-4. 

Although a clear trend in which diffusivity decreases with increasing minimum path 
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length can be observed, a significant amount of scatter is also seen. Note that since the 

total number of steps in the path length L must be an integer, the non-dimensional path 

length can also only reflect discrete values. Additionally, the majority of the cases have a 

unity value, indicating that there exists at least a single diffusion path in most cases that is 

perfectly straight. As a result, the minimum path problem does not provide a good 

indicator of the effective transport properties of a given microstructure. 

An alternative problem to consider is the quantification of the total number of 

diffusion paths available. The physical reasoning for this is that a greater number of 

available paths for the ions allows for a greater diffusion flux across any cross-section in 

the normal plane, and thus a greater overall diffusion rate. To do this, a non-dimensional 

path number parameter N
*
 is defined by normalizing the number of path lengths N by the 

number of top-bottom node combinations: 

 
*

4

N
N

m
  (103) 

For an REV realization with m voxel cells in each spatial dimension, there are m
2
 

nodes in each of the bottom and top surfaces, and thus m
2
×m

2
 in total. For the cases 

presented, m = 20. A separate value of N
*
 can be determined for each path length value L, 

by computing the matrix A
L
 and summing the matrix entries corresponding to all top-

bottom node combinations. This process is then continued for successively higher powers 

of the adjacency matrix until the matrix entries corresponding to all top-bottom node 

combinations are non-zero. This allows every possible pathway for an ion to travel across 

the microstructure to be counted. 
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Figure 5-5: Distribution of path lengths for five sample REV realizations 

Figure 5-5 contains a plot of N
*
 against L

*
, showing the distribution of path 

lengths for five realizations with significantly different diffusivity values. It is 

immediately clear that, as would be expected by physical intuition, diffusivity increases 

with both a shorter mean path length (L
*
), and a greater number of total paths available 

(N
*
). The area under each distribution curve gives the total number of diffusion paths for 

each case, and this correlates slightly stronger to the effective diffusivity than the porosity 

does (ρ = 0.602 based on 72 cases, compared to ρ = 0.576 for porosity). However, the 

area under each curve only accounts for the number of paths, and essentially ignores the 

path length data exactly. Make use of both the number and length data, a different type of 

distribution can be plotted, which includes only the shortest path originating from each 

node in the top layer of the graph. This is accomplished by again computing successively 

higher powers of the adjacency matrix, and storing the lowest power for which the matrix 

entry for each top-bottom node pair becomes non-zero. Four realizations are selected to 

demonstrate the resulting distribution of minimum path lengths, plotted in Figure 5-6. 
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Figure 5-6: Distribution of minimum top-down path lengths for four sample 

REV realizations 

Once again, a clear trend can be observed that the mean value of the minimum 

path length distribution reduces the overall diffusivity of the microstructure. However, 

the this mean value is only a slightly stronger correlate than the area underneath the N
*
-L

*
 

curve (ρ = -0.654 based on 85 cases). While this parameter is better correlated to 

effective diffusivity than the porosity is, it is also more difficult to measure 

experimentally, and to incorporate into the multi-scale model. It is possible to model 

effective diffusivity as a function of multiple parameters, but this would also introduce an 

additional layer of uncertainty, and a quadratic regression fit is only able to yield a 

coefficient of determination of R
2
 = 0.444. Therefore, the multi-scale model documented 

in the following sections does not make use of the parameters defined using graph 

analysis. 

Although none of the path length parameters defined in this section is a 

sufficiently strong predictor of effective diffusivity to be worth incorporating into the 
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multi-scale model, they nonetheless provide valuable insight into the physical mechanism 

of ion transport within the electrode microstructure. Graph analysis can also be a useful 

technique for better characterizing materials whose microstructures can be visualized and 

digitalized from experimental samples using techniques such as scanning electron 

microscopy (SEM) [141]. Recall Chapter 4.4 establishes that diffusion and conduction 

are the two most limiting physical processes for cell energy density. Therefore, the graph 

analysis methodology and results presented here can be used to design new high-

diffusivity, high-conductivity porous materials with tunable morphology, which may be 

able to enable the necessary gains in energy density required by electric flyers and UAV. 

5.4 Microscopic Modeling of Electrochemical Kinetics at the Interface 

As mentioned in Chapter 2.5.2, values for the local ion concentration and electric 

potential, and their spatial derivatives, are required as boundary conditions for the 

microscopic simulations. In order to properly map the output of the microscopic 

simulations (the reaction current density) to the macroscopic state variables, the surrogate 

modeling framework is again used, with the local ion concentration and electrical 

potential, and their derivatives, as the “design variables”. A design of experiments which 

models these state variables as independent variables is necessary to ensure that all 

possible scenarios that may be experienced within the electrode during cell operation are 

adequately modeled. The corresponding ranges used in the design of experiments are 

summarized in Table 5-1. 

Table 5-1: Ranges of variables used in design of experiments for surrogate 

modeling of reaction current density 

Variable Symbol Minimum Maximum 

SOC 1c  0.2 0.9 

Electrolyte Li
+
 concentration 2c  600 mol/m

3
 

1000 

mol/m
3
 

Solid potential 1  3.0 V 4.15 V 

Electrolyte potential 2  -1.0 V 0 
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SOC gradient 1c

x




 -3500 m

-1
 0 

Electrolyte Li
+
 concentration 

gradient 

2c

x




 

-6.5×10
6
 

mol/m
4
 

0 

Solid potential gradient 1

x




 -40 V/m 0 

Electrolyte potential gradient 2

x




 -550 V/m 0 

 

As in Chapter 3, this space is populated with a combined FCCD and LHS 

sampling approach. However, an additional constraint on the overpotential is applied as a 

filter: 

 0.1 0    (104) 

This constraint is necessary, to ensure that the exponential terms in the Butler-

Volmer equation do not become unbounded. As shown in Figure 5-7, this constraint is 

not particularly restrictive as it significantly exceeds the operating space within the 

cathode for a sample discharge, but also serves a secondary purpose of reducing the 

number of samples required to train the surrogate model, and concentrating more data 

points within the relevant part of the design space. 
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Figure 5-7: Overpotential distribution within anode and cathode during a 

sample 16 A/m
2
 cell discharge, with the constraint space highlighted 

The FCCD and LHS sampling of the space within the bounds in Table 5-1, 

combined with the constraint in Eq. (104), yield a design of experiments of 635 points. 

This is the set of simulations that are conducted for each REV realization. As in the 

effective transport simulations, differences in microstructure can cause significant scatter 

in the results, so an averaging of a statistically meaningful number of realizations is 

necessary. However, since 635 simulations must be conducted for each realization, a 

much smaller number of REV can be considered. The computational cost of each 

simulation is also much greater since a set of four steady-state transport equations must 

be solved, in addition to a fifth equation at the interface. The results presented in this 

section are based on the averaging of 18 REV realizations with a solid volume fraction 

between 0.5995 and 0.6005. Although a general multi-scale model would ideally consider 

a range of porosity values, realizations with fixed volume fractions are considered here to 

retain computational feasibility. A sample result for one of the data points from the 

design of experiments, for one of the REV realizations, is shown in Figure 5-8. Note that, 

as described in Chapter 2.5.2, the interfacial reaction rate distribution is calculated using 

Eqs. (58) to (61), applied to the quasi-steady solution of the lithium ion concentration and 

electric potential in the two phases. 
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Figure 5-8: Sample interfacial reaction current density simulation result for 

10-particle case; REV dimensions are 10×10×10 µm and mesh resolution is 0.5 μm 

It is important to note that the 18 realizations have a solid volume fraction 

centered about 0.6, or a porosity value of 0.4. This is a result of the specific packing 

density in the MD model, and the overlap factor used in the meshing process. Of course, 

it would be preferable to build a multi-scale model that spans a wide range of volume 

fractions, but this would introduce an additional variable to a problem that already has 

non-trivial computational constraints due to the number of simulations required to 

populate the large design space, and the number of realizations that must be averaged to 

account for variation in microstructure. Preliminary results based on a small number of 

realizations centered at solid volume fraction levels of 0.435, 0.535, and 0.635 suggest 

little difference in the global sensitivity indices (discussed in the following chapter). In 

this chapter, a fixed solid volume fraction of 0.6 is used in both the macroscopic and 

multi-scale cell simulations. 

5.5 Comparison of Microscopic and Homogenized Material Properties 

A procedure for comparing microscopic simulation results with the homogenized 

Butler-Volmer reaction kinetics is illustrated in Figure 5-9. 
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Figure 5-9: Schematic for comparing results from two length scales 

A single cell discharge (in this case, at 1C which corresponds to a discharge 

current density of 16 A/m
2
) is performed, and the reaction current density distribution 

within the cathode is computed at specified time steps. The initial stoichiometric 

parameters of (x = 0.495, y = 0.2) are used. The solution for all other relevant state 

variables such as local ion concentration and electric potential in both phases, as well as 

their spatial derivatives, are also stored. A set of microscopic simulations are then 

conducted on the same 18 REV realizations from the previous section using the 

macroscopic state variables as boundary conditions, and the interfacial reaction current 

density is computed at each sample in time and space. Figure 5-10 compares the averaged 

results from the 18 realizations with those from the homogenized macroscopic model, at 

three locations within the cathode for every 60 seconds in a 3600-second cell discharge.   
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Figure 5-10: Comparison of local reaction kinetics computed using 

homogenized Butler-Volmer equation and microscopic simulations 

A clear difference can be observed between the results from the two length scales, 

with the microscopic simulations generally exhibiting greater variation than the 

homogenized equation. Note that the total reaction current integrated over space and time 

are not equal, because the microscopic simulations are conducted independently of one 

another and the coupling with the cell model is unidirectional. The surface area is also 

different, as the macroscopic results are normalized using Eq. (28) while the microscopic 

results are normalized using the surface area of the interface, based on the meshed 

geometry. As a result, it appears that the total charge in the electrode is not conserved; 

however this apparent problem is resolved when the bidirectional coupling of length 

scales is completed in the multi-scale model. 

Since the surrogate modeling framework is used to couple the length scales in the 

multi-scale model, it is important to assess the performance of the surrogate model. A 

kriging surrogate is found to have the lowest normalized PRESS value of 7.5%. Previous 

experience (from Chapters 3.3 and 4.2) indicates that this value is high enough that 

uncertainty in the surrogate is likely to undo the benefits of the microscopic models. It is 
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reasonable, then, to again perform global sensitivity analysis to reduce the dimensionality 

of the surrogate. 

 

Figure 5-11: Main and total sensitivities for reaction current density 

surrogate model (8 variables) 

Main and total sensitivity indices for the kriging model are plotted in Figure 5-11. 

It is immediately apparent that the variation in reaction current density is dominated by 

the magnitude of the two-phase electric potentials φ1 and φ2 (or, as denoted in Figure 

5-11, V1 and V2, respectively), and of the state of charge (c1). These results are consistent 

with the findings of Gupta et al. [57], who used a similar approach but with different 

surrogates, and a different design of experiments and choice of REV realizations. The 

dominant effect of the electric potentials can perhaps be explained by the functional form 

of the Butler-Volmer equation, in which the overpotential is embedded in the exponential 

terms while the ion concentration appears in the polynomial terms. Note that all four 

gradient terms are found to have negligible impact, a result that can be explained by the 

bounds in Table 5-1, and by the application of boundary conditions shown in Eqs. (56) 

and (57). The magnitude of the difference between the boundary conditions tends to be 

much less than the mean value within the REV, which has dimension L = 10×10
-6

 = 10
-5

 

m. For example, the SOC variation across the REV due to the spatial gradient is at most 

3500×10
-5

 = 0.035 V, which is 5% of the SOC range being modeled in the design of 
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experiments. The results in Figure 5-11 allow the surrogate model to be reduced from 8 

to 3 design variables, and as in Chapter 4.2.2, the reduction in the number of independent 

variables also improves the accuracy of the surrogate model in this case, reducing the 

PRESS value from 7.5% to 3.9%. To assess its accuracy, the surrogate model is used to 

evaluate the reaction current density at the same points as in Figure 5-10, and the results 

are plotted in Figure 5-12 with the averaged microscopic values. 

 

Figure 5-12: Local reaction kinetics computed for using microscopic 

simulations, and predicted by kriging surrogate with 3 variables 

The surrogate model matches the microscopic simulations very well until about t 

= 3100 seconds. It is unclear why the surrogate model suddenly deviates at this point, as 

the overpotential constraint in Eq. (104) is not violated. Regardless, the accuracy of the 

surrogate model in the first 3100 seconds is sufficient to proceed with coupling the length 

scales to complete the multi-scale model. 

5.6 Multi-Scale Modeling with Surrogate-Based Coupling 

It has been established that a high-fidelity simulation of the entire cell is 
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impossible due to physical and geometric complexity, and that a multi-scale modeling 

approach is needed. Multi-scale modeling refers to a class of modeling techniques that 

involve coupling the features of individual models from different length scales, and 

comprises a variety of different conceptual strategies and implementations. Several multi-

scale models have been developed to analyze battery and cell performance with respect to 

various physical phenomena. For example, Golmon et al. [142] have coupled the 

dualfoil macroscopic model with the electrochemical-mechanical stress model of 

Zhang et al. [39], using homogenization based on Mori-Tanaka effective field theory 

[143]. A subsequent study combined this multi-scale model with adjoint sensitivity 

analysis to optimize the porosity and particle size distribution within electrodes [144]. 

Another multi-scale model, developed by Xiao et al., has been used to study 

intercalation-induced and mechanical stress on separators, using a fixed 2-D 

representative volume element [145]. Various other approaches have been used in the 

multi-scale modeling of batteries [146, 147], as well as other engineering systems such as 

composite materials [148]. Recently, Franco has compiled a comprehensive review of 

advances in the multi-scale modeling of lithium ion batteries [149]. 

The approach adopted in this dissertation is to use create surrogate models based 

on the pre-computed 3-D simulations summarized in Chapters 5.2 and 5.4, which are then 

used to bridge the gap in the macroscopic homogeneous model. This approach differs 

from other multi-scale models in that the state variables are not explicitly coupled, but 

rather implicitly coupled via the surrogate presented in Chapter 5.5. The advantage of this 

method is that the computational cost of evaluating the surrogate function is negligible 

compared to the cost of conducting full 3-D simulations, and thus the computational cost 

of conducting a multi-scale cell simulation can be almost equal to that of the macro-

homogeneous model. However, the disadvantages of this approach include quantifying 

the error due to uncertainty in fitting the surrogate model, as well as some numerical 

issues related to the robustness of the surrogate bridge. Robustness is an especially 

important consideration in models used for design, as they must be capable of handling 

large perturbations to a large number of design variables. The following sections examine 

these numerical issues for the multi-scale model. 
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5.6.1 Numerical Issues: Derivative Definition and Robustness 

The open circuit voltage in Eq. (29) differs from that used in the COMSOL 

implementation of the cell model, which uses COMSOL’s own interpolation functions to 

generate a cubic curve fit on 42 discrete sampling points. In Figure 5-13, the two OCV 

curves follow a similar shape and have very similar magnitude, suggesting little 

difference in their influence on the electrode state variables and cell performance. 

However, this difference in fact leads to some interesting mathematical properties. 

 

Figure 5-13: LiMn2O4 open circuit voltage curves for analytical equation 

(dualfoil) and cubic curve fit (COMSOL) 

The Butler-Volmer equation used to model the interfacial electrochemical 

reaction kinetics originally shown in Eq. (26), is presented again for convenience: 

    0

,

exp expflux

s p

J
j i k k

a
        (105) 

 
F

k
RT


  (106) 

Note that the normalized reaction current density jflux does not depend explicitly 

on the state of charge or the open circuit voltage, but rather the overpotential. The 

overpotential supplies the necessary energy to overcome the thermodynamic barrier to 
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allow the electrochemical reaction to occur, and as shown in Eq. (28), is defined in terms 

of a potential difference between the cell and the open circuit voltage. During the 

discharge of the cell, the values of the electric potentials φ1 and φ2 are typically such that 

the overpotential is close to zero. This can also be seen in the design of experiments 

constraint in Eq. (104). Consequently, the small difference in OCV observed in Figure 

5-13 actually leads to significant differences in the overpotential, and thus reaction 

current density distributions within the electrode. 

 

Figure 5-14: Local overpotential (left) and reaction current density (right) at 

three locations within the cathode, based on analytical (dualfoil) and cubic fit 

(COMSOL) open circuit voltage curves 

This can be seen in Figure 5-14, which plots the overpotential and reaction current 

density within the electrode for a single cell discharge simulation. The cubic curve fit 

implemented in COMSOL has a slightly smaller potential difference between the two 

open circuit plateaus, and thus less overall variation in the cell state variables. It is 

interesting to note then, that despite the differences in reaction current density 

distribution and overpotential, Figure 5-15 shows very little difference in the discharge 

curve, and thus the total energy density. One explanation for this cell voltage insensitivity 

is that when the system of equations is closed, the total amount of charge being 

transferred at the interface (the local reaction current density integrated over the entire 

electrode) balances the discharge current of the cell. The total amount of charge being 
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transferred has a greater effect on the cell performance than the distribution of this charge 

within the electrode. 

 

Figure 5-15: Cell voltage for analytical equation (dualfoil) and cubic curve fit 

(COMSOL) 

For consistency with the macroscopic model, the analytically defined open circuit 

voltage in Eq. (29) is used in the multi-scale model implementation. An additional benefit 

is that its derivatives can be calculated exactly and do not require numerical 

approximations. This problem is prominently observed when attempting to build a multi-

scale model using non-smooth functions to couple the length scales. Specifically, 

although COMSOL is capable of handling the analytical Butler-Volmer function, the 

surrogate- or interpolation-based functions are problematic due to the derivative 

definition. As a test, a random perturbation is introduced: 

      0
ˆ 1 exp expfluxj Ab i k k        (107) 

A full cell simulation is then conducted to check for numerical instability or 

divergence. Note that the analytic gradients based on the standard Butler-Volmer 

equation (106) is still used by the numerical solver. In Eq. (107), A is the perturbation 

amplitude, fixed at a constant value for the simulation, and b is a random number in the 

range [-0.5,0.5] generated each time the function is called. This ensures an unbiased 

perturbation with each iteration and time step. Figure 5-16 plots the reaction current 

density time history at a fixed location x = 0.5 for a single discharge simulation. It can be 
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seen that while the analytical gradient might be sufficient when the perturbation 

amplitude is small (A = 0.3), for large perturbations the reaction current function becomes 

highly discontinuous and convergence problems can be expected. 

 

Figure 5-16: Reaction current density based on perturbed Butler-Volmer 

function 

This can be confirmed by examining the effect of perturbation amplitude on the 

CPU time required to conduct a single cell discharge simulation. It can be observed in 

Figure 5-17 that the computational cost can increase significantly with larger 

perturbations, regardless of the numerical solver used. Note that other solvers such as 

symmetric successive over-relaxation (SSOR) and conjugate gradient (CG) are ill-suited 

for this problem, and thus not considered. 

 

Figure 5-17: Computational time for a single cell simulation using perturbed 

Butler-Volmer reaction model, for direct and iterative solvers 

Thus, it is established that the definition of the gradient is of critical importance to 

the robustness and efficiency of the multi-scale model. This restricts the classes of 
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functions that can be used to couple the macroscopic and microscopic models: the 

MATLAB and COMSOL native interpolation functions lack explicitly defined gradients, 

and finite-difference approximations are insufficient due to their limited robustness. 

Although the classes of surrogate models discussed in Chapters 2.3 and 3.3 are smooth, it 

is difficult and tedious to extract their exact gradients. The logical choice, therefore, is a 

PRS surrogate, which has an explicitly defined, smooth gradient. 

5.6.2 Surrogate-Based Coupling of Length Scales 

A 4
th

-order PRS with two input variables (SOC and overpotential) of the 

following form yields a coefficient of determination of R
2
 = 0.9486: 

 

2 2
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 (108) 

The coefficients k1…k15 are contained in Table 5-2. 

Table 5-2: Polynomial coefficients of reaction current density surrogate 

k1 10.39 k6 14.90 k11 138.7 

k2 -87.43 k7 -316.2 k12 270.6 

k3 89.41 k8 478.5 k13 580.5 

k4 257.0 k9 678.9 k14 363.6 

k5 -298.4 k10 28656 k15 16256 

 

Although there are a sufficient number of data points to fit higher order PRS 

functions with higher coefficients of determination (5
th

-order gives R
2
 = 0.9590, 6

th
-order 

R
2
 = 0.9742), the number of polynomial terms increases dramatically, making the 

definition of analytical derivatives a very tedious process. Therefore, the multi-scale 

model in subsequent analysis uses the 4
th

-order PRS. An assessment of the surrogate 

model accuracy can be made by comparing the local reaction current density profiles 

predicted by the PRS and the 3-D microscopic simulations. 
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Figure 5-18: Local reaction kinetics predicted at three locations by the 

Butler-Volmer equation, linear interpolation of microstructural simulations, and 

PRS surrogate 

As shown in Figure 5-18, the surrogate follows a similar profile to the 

microscopic simulations, but some differences can be observed. Moreover, it has already 

been observed in Figure 5-12 that a kriging model is able to match the microscopic 

simulations much better than the PRS. This suggests a need to further refine the surrogate 

model, which, given the computational cost of conducting the 3-D simulations, would 

require additional computational resources. In the meantime, the PRS is used to 

successfully bridge the scale gap to complete the multi-scale model. 

5.6.3 Multi-Scale Analysis of Cell Performance 

A comparison of the discharge curves obtained using the multi-scale and 

macroscopic models is shown in Figure 5-19. 
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Figure 5-19: Comparison of multi-scale and macroscopic simulation results 

for a single discharge 

The cell performance is not very sensitive to the electrochemical kinetic profile, 

as a similar discharge curve is obtained despite noticeable differences observed between 

the macroscopic and multi-scale models. This suggests that the electrochemical reaction 

rate performs much like diffusion and conduction, in that it limits overall cell 

performance at low levels, but has little influence beyond some critical threshold value. 

The effect of low electrochemical reaction rate being an important performance barrier 

has been documented, for example by Yonemura et al. as a reason for LiMnPO4 being an 

unsuitable cathode material [150]. To confirm this similarity to diffusion and conduction, 

it is necessary to examine the operating regime for these cases, as was done in Chapter 

4.4. To do this, the Butler-Volmer equation can be scaled by a constant factor k: 

    0
ˆ exp expfluxj ki k k       (109) 

By artificially tuning k, the influence of electrochemical reaction kinetics on the 

cell performance can be modeled. Note that the macroscopic Butler-Volmer equation is 

used here as it is much more robust over a wide range of k values, but similar results can 

be obtained using the multi-scale surrogate equation. The influence of k on the cell 

voltage and reaction current density at a fixed point (x = 0.2) within the cathode are 

shown in Figure 5-20. 
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Figure 5-20: Cell voltage and reaction current density for perturbed Butler-

Volmer interfacial kinetics 

As k is decreased by orders of magnitude, the cell voltage noticeably drops due to 

greater internal resistance within the cell. This results in a loss in both power and energy 

based on Eqs. (1) and (2), as well as a further loss in energy since the cutoff voltage is 

reached sooner, leading to premature termination of the discharge. Large oscillations in 

the local reaction current density are also observed for low k, another highly undesirable 

effect as this would lead to increased heat generation and stress, which accelerate the 

degradation of the cell. However, a comparison of the k = 1 and k = 10 curves shows very 

little difference in both cell voltage and local reaction current density, indicating that in 

the k = 1 case, which corresponds to the cell under standard operating conditions, the 

electrochemical reaction at the interface proceeds is sufficiently quick to act as a buffer 

against small perturbations. The lowest value k = 0.001 plotted in Figure 5-20 is close to 

the minimum possible value of k, as the equations become too stiff below this threshold 

and the numerical solver is unable to converge. 

It may appear that the insensitivity of the overall cell performance to the 

electrochemical reaction model used at the interface should call into question the value of 

developing the multi-scale model. After all, if the Butler-Volmer equation used in the 

macro-homogeneous model is able to deliver almost the same cell performance 

prediction as the multi-scale model, it may seem that the multi-scale model provides very 

limited additional value. However, it is important to note that prior to obtaining these 

results, this insensitivity had not been previously established. Meanwhile, it had been 

established that the reaction current density distribution is very sensitive to several design 

and state variables. Therefore, the documentation of the comparison between the 
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macroscopic, microscopic, and multi-scale models, the exploration of numerical issues 

such as robustness and convergence rate, and the quantification of the sensitivity of the 

cell performance to perturbations in the Butler-Volmer equation, are all very meaningful 

contributions enabled by the multi-scale model. 

5.7 Summary 

This chapter documents the establishment of a multi-scale model for analyzing 

cell performance, which combines the computational efficiency of the macro-

homogeneous models employed in previous chapters with detailed physics-based 

microscopic models for important material properties. Namely, the material properties 

modeled using microscopic models are the effective transport coefficients in the diffusion 

and electric potential equations in the axial dimension of the macro-homogeneous model, 

and the volumetric electrochemical reaction term that couples the axial and radial length 

scales. Effective transport coefficient results obtained from 2462 REV realization cases 

are presented show that the Bruggeman equation used in the homogenized models 

consistently underpredicts the tortuosity in the porous medium, and thus overpredicts the 

diffusivity and conductivity. This can pose an important problem for batteries designed 

using simplified models, in which the overpredictions in diffusivity and conductivity lead 

to overpredictions in both energy and power performance. The battery pack may then 

have insufficient energy to meet the required range of the UAV, or insufficient power for 

the hybrid-electric aircraft to meet its rate of climb requirement. 

The microscopic simulation results match well with experimental data obtained 

using two different measurement techniques, and domain size independence is achieved 

due to good agreement between the 80 particle and 640 particle cases. A proposed 

adjustment to the Bruggeman equation by changing the power value to α = 1.681 is 

shown to match the simulation results with an R
2
 value of about 0.89. In the graph 

analysis, three parameters based on the path length data within the microstructure are 

defined, and two are shown to be more strongly correlated with the computed effective 

transport coefficient than the porosity is. While these parameters are not included in the 

multi-scale model due to numerical complexity and a lack of experimental validation, 
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they do contribute important understanding of the underlying physics of the ion transport 

process in a porous medium, and provide guidelines for the manufacturing of tailored 

electrode materials. These results also suggest future research on the optimization of 

electrode microstructures using nanotechnology and nanomanufacturing capabilities, 

which may sufficiently improve the diffusivity and conductivity of high-voltage, high-

capacity electrode materials to make them suitable for use in practical batteries. Such 

advances may allow significant gains in the effective transport coefficients, which as 

discussed in Chapter 4.5 are the fundamental mechanisms that govern battery 

performance. They are also a necessary supplement to cell-level optimization methods 

towards realizing the energy density values of 300-400 Wh/kg required to meet the 

performance goals documented in Chapter 1.3.5 of HALE flyers, hybrid-electric flyers, 

and UAV/MUAV/MAV, as well as reduce the weight and launch cost of LEO and GEO 

satellites. 

As discussed previously, the surrogate modeling framework is applied to study 

the electrochemical reaction kinetics at the solid-liquid interface. A constraint on the 

overpotential is applied to the 8-variable design of experiments, and the resulting 

constraint space is found to be sufficiently broad to accommodate a large number of 

operating scenarios to be modeled. 18 REV realizations are selected, for which the 

simulation results are averaged to construct surrogate models to bridge the gap between 

the macroscopic and microscopic length scales. The use of a fixed solid volume fraction 

of 0.6 is a limitation in the approach, although results on a smaller number of cases show 

little influence of volume fraction on the relative sensitivities to the individual state 

variables. GSA performed using the surrogate model shows that of the 8 variables in the 

DOE, only 3 have a non-negligible influence on the interfacial reaction rate, namely the 

two-phase electric potentials and the SOC (or solid-phase ion concentration). The 

elimination of the other variables not only simplifies the problem, but is also able to 

effective filter noise in the simulation data, thus reducing the PRESS value of the kriging 

surrogate model by roughly half. 

The chapter concludes with a demonstration of the completed multi-scale model 

and investigation of critical numerical issues. Due to numerical reasons related to the 

gradient definition, a PRS surrogate is used instead of the kriging model used to compute 
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the global sensitivity indices, although it is observed that the kriging model matches the 

microscopic simulations more closely. The reaction current density distribution within 

the electrodes is shown to be highly sensitive to the choice of open circuit voltage 

function due to the definition of the overpotential. However, this difference is shown to 

have little effect on the overall cell performance, as the total amount of charge within the 

electrode is conserved when the multi-scale model is completed (two-way coupling 

between the length scales). To further examine this effect, the Butler-Volmer equation is 

scaled by a constant factor k, with unity being the baseline case in the macro-

homogeneous model. It is found that cell performance is reduced as k is decreased, but 

that very little is gained by increasing k by an order of magnitude. This suggests the 

existence of an electrochemical analogue to the critical diffusivity and conductivity 

values documented in previous chapters, and that its value is close to that for the material 

properties of LiMn2O4. The numerical robustness of the model implementation is also 

investigated by introducing a random perturbation to the Butler-Volmer equation. The 

computational time required to converge to a solution is found to increase substantially 

for both iterative and direct solvers, and divergence occurs at a perturbation amplitude of 

about A = 0.6. 
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Chapter 6. 

Conclusions and Future Perspectives 

This chapter summarizes the main conclusions drawn in the preceding chapters, 

and discusses the contributions of this dissertation. Several future directions for 

continuing battery research are also proposed. 

6.1 Summary and Conclusions 

In this dissertation, macro-homogeneous models, microscopic models, surrogate-

based analysis, and gradient-based optimizers are applied towards meeting the objectives 

outlined in Chapter 1.4: to better understand the physical phenomena governing battery 

and cell performance by studying the relationship between battery operation, morphology, 

material properties, and energy density. In particular, this understanding is motivated by 

the performance requirements of several classes of aerospace systems such as hybrid-

electric aircraft, UAV/MUAV/MAV, and satellites/spacecraft. In each of these systems, 

the energy density (specific energy) of existing batteries is shown to be a crucial 

limitation to the performance of the vehicle, and case studies using simplified and 

subsystem-level analysis are used to demonstrate the following: 

i. A doubling of the energy density of the batteries from 200 to 400 Wh/kg 

would allow Helios to fly continuously without relying on hydrogen fuel 

cells, Solar Impulse to accommodate a second pilot for long-endurance 

missions, and the RQ-11 MUAV to carry a second payload device; 

ii. Significant launch cost savings (order of millions of dollars) can be 

achieved due to weight reduction resulting from the higher energy density 

of existing lithium-ion batteries over Ni-H2, but sufficient cycle life needs 
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to be proven; 

iii. A hybrid-electric general aviation aircraft based on the Cessna 172 can 

achieve greater rates of climb than the conventional configuration 

(reaching cruise altitude in 30% less time) due to the additional power 

provided by the battery, but very little fuel is saved due to limitations to 

the controller model used in the analysis. 

With the need for higher energy batteries for such aerospace systems established, 

and keeping in mind other design objectives such as power density and cycling life which 

may serve as constraints, the dissertation proceeds to address the objectives defined in 

Chapter 1.4 using surrogate modeling, optimization, and dimensional analysis tools. The 

key findings in Chapter 3 and Chapter 4 regarding battery physics are summarized here: 

iv. Between the values 1 S/m and 100 S/m, the electronic conductivity of the 

LiMn2O4 particles is shown to have negligible influence on the energy 

density of the cell, regardless of which other design variables are 

considered; 

v. The cell energy density becomes independent of the solid-phase diffusion 

coefficient in LiMn2O4 particles at a value of Ds,p = 1.0×10
-13

 m
2
/s, 

allowing the design space to be split and the diffusion-independent region 

to be accurately modeled by fewer variables; 

vi. Dimensionless parameters defined based on the solid-phase diffusivity and 

conductivity are able to characterize the maximum achievable energy 

density of multiple cathode materials (LiMn2O4, LiFePO4, LiCoO2, 

LiV6O13, and LiTiS2) using an analytic generalized logistic function, 

allowing the easy calculation of maximum cycling rate and discharge 

current to retain good cell performance, for a given electrode material; 

vii. The Pareto front quantifying the tradeoff between specific energy and 

specific power shows that power is much more sensitive to varying 

cycling rates than energy is, for cycling rates up to 4C (thus, moderately 
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high power can be achieved with little loss in energy) – however, at high 

cycling rates above 6C the trend is reversed, with incremental gains in 

power density accompanied by significant unavoidable losses in energy 

density; 

viii. The addition of cathode thickness and porosity as design variables 

increases the maximum achievable energy density at all power density 

levels, with gains of 40% in energy density at high power levels – the 

inclusion of additional design variables are needed to enable the doubling 

in energy density required by solar flyers, electric flyers, and UAV; 

ix. Global sensitivity analysis shows that from among the design variables 

considered, the cell energy density is most sensitive to the cycling rate, 

particle size and diffusivity, while porosity and thickness have a lesser but 

nonetheless still important effect; 

x. Optimization results using gradient-based and surrogate-based methods 

show that the optimal values for electrode thickness and porosity depend 

on the values of other parameters such as cycling rate, particle size, and 

diffusivity – as the ratio of discharge to diffusion speeds increases, a 

thinner and more porous electrode is required to achieve optimal cell 

energy density. 

These results provide contributions to several key steps of the design process of 

battery systems for aerospace vehicles, including the establishment and demonstration of 

systematic methods of comparing multiple electrode materials, quantifying the tradeoffs 

between multiple objectives such as energy and power, mapping the design space to 

determine the relationship between objective functions and design variables, and 

comparing the relative importance of multiple design variables on the objective function. 

However, for the objectives of this dissertation, these methods are limited by the 

homogenization simplifications in the existing macroscopic cell model, so Chapter 5 

documents the development of a multi-scale model and its microscopic sub-models. The 

main findings related to battery physics obtained using the multi-scale model can be 
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summarized as follows: 

xi. Microscopic simulation results from 2462 REV realizations of multiple 

domain sizes give consistent porosity-tortuosity relationships with two sets 

of experimental measurements, while showing that the Bruggeman 

equation used in the macro-homogeneous model consistently 

underpredicts tortuosity and thus overpredicts effective 

diffusivity/conductivity in the porous electrode; 

xii. Significant scatter can be observed in the porosity-tortuosity data, 

suggesting that other factors besides mean porosity, such as particle 

orientation and alignment which can be calculated using algorithms based 

on graph theory, play a significant role in determining the transport 

properties within porous media; 

xiii. A correction to the Bruggeman equation using a power α = 1.681 is 

proposed, which matches the data quite well (R
2
 =  0.8941) for the amount 

of scatter resulting from the different microstructures obtained by 

randomly packing ellipsoidal particles; 

xiv. Using GSA, the spatial gradients of the local state variables (ion 

concentration and electric potential in solid and liquid phases) have much 

less effect on the local electrochemical reaction current density at the 

solid-liquid interface, and thus a surrogate model with only 3 out of the 8 

variables can be used to couple the microscopic and macroscopic models; 

xv. Small differences in open circuit voltage lead to much larger differences in 

overpotential and local reaction current density, but the overall cell 

voltage is insensitive to these variations; 

xvi. The cell voltage (and thus energy and power density) is also insensitive to 

small perturbations in the Butler-Volmer equation, suggesting the 

existence of a critical value for the interfacial electrochemical reaction 

rate, although cell voltage does drop as the magnitude of the kinetics 
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equation is reduced by orders of magnitude. 

Throughout the processes of investigating the battery physics using surrogate-

based and optimization tools, and of developing the multi-scale model, useful insights 

into numerical issues are also obtained. The most of these include the following: 

xvii. Local refinement of a global surrogate model can merely shift model 

fidelity from one region to another, and for a large design space multiple 

local surrogates can provide much better accuracy than a single global 

surrogate; 

xviii. Surrogate model accuracy can be significantly improved with multiple 

strategies, including reduction in the number of variables to reduce noise 

in the data, refinement of the design space by introducing additional 

sampling data, and optimizing the coefficients within the surrogate 

function to minimize some error function; 

xix. The surrogate model is able to provide a computationally cheaper 

optimization solution than the gradient-based optimizer as it does not 

require conducting a cell simulation for each function evaluation, but its 

solution is only accurate to about 5-10% error; 

xx. Due to the need for estimating gradients, several solvers are found to have 

significant difficulty converging when a random perturbation is introduced 

to the Butler-Volmer equation; 

xxi. A kriging model is able to fit the microscopic simulation data for reaction 

current density with excellent accuracy but limited robustness, while a less 

accurate 4
th

-order PRS model is selected to complete the multi-scale 

model due to its smoothness and robustness. 

Ultimately, the most important contributions of this dissertation are the improved 

understanding of the physical phenomena that govern battery performance such as ion 

diffusion, electron conduction, electrochemical kinetics, and thermodynamics; and the 
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establishment and demonstration of frameworks for the efficient application of numerical 

tools to achieving further understanding of battery physics and improving battery design. 

It should be noted that these numerical frameworks are general and may be applied to 

other classes of batteries and battery materials, which may have higher capacity, higher 

voltage, or lower weight. One notable example is the lithium-metal battery in which the 

anode consists of a lithium metal foil, which has lower electric potential and weight than 

the graphite anode. Therefore, while the 750 Wh/kg energy density required by the 

NASA N+3 and SUGAR Volt programs is beyond the theoretical limits of the LiMn2O4 

and LiC6 electrodes, the insights obtained in this dissertation nonetheless represent an 

important step towards the complex process of achieving the necessary advances to meet 

the performance objectives for a range of aerospace vehicles and systems. 

6.2 Future Work 

The bulk of this dissertation focuses on improving the energy density of lithium-

ion battery cells. However, as mentioned in Chapter 1.3, there are many other design 

objectives that must be satisfied in practical applications, such as safety, stability in the 

presence of varying environmental conditions, and cycle life. Two notable shortcomings 

that remain in the current battery modeling efforts are cell degradation and uncertainty 

quantification. Although models for predicting cell degradation and cycle life have been 

recently developed [151], they are generally based on empirical estimations from test 

data rather than on physics-based first principles. Recent developments into the modeling 

of specific mechanisms of cell degradation such as electro-thermal capacity fade [152] 

and solid-electrolyte interface (SEI) growth [153] hold significant promise, although they 

too are derived from a large amount of experimental data. A proper degradation model 

should also be sufficiently flexible to handle arbitrary cycling conditions. This is because 

degradation is a complex phenomenon caused by a multitude of concurrent mechanisms 

such as undesired secondary electrochemical reactions and internal cell resistance 

increases due to mechanical and thermal stress. As a result, battery systems in real world 

applications must undergo extensive characterization and life cycle testing due to the 

limitations in current modeling capabilities. Improvements to the cycle life of lithium-ion 
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batteries would also make them feasible for long life applications such as in satellites and 

spacecraft, which are currently forced to use batteries with lower energy and power 

capability. The accurate modeling of cell degradation is also required in order to properly 

analyze the tradeoffs between design variables and constraints. A promising path towards 

realizing this goal is to develop physics-based models for various degradation 

mechanisms, and to combine them with the existing multi-scale model using surrogate-

based approaches. Such a model would allow numerical optimization methods to provide 

a much better starting design, thus substantially reducing the amount of testing required 

and improving the efficiency of the design process. 

In addition to cell degradation, there exists considerable uncertainty in the 

quantification of certain material properties required by battery models, with 

experimental measurements for ion diffusivity and electron conductivity often  differing 

by several orders of magnitude [94, 96]. While the approach used in this dissertation of 

simply ignoring this uncertainty and considering a wide range of values in the surrogate-

based analysis can be used to efficiently identify a single optimum design, it provides 

limited information about how the battery would perform under non-ideal conditions. A 

probabilistic model that produces a range of expected performance outcomes based on 

uncertainty quantification of the input and design variables would provide a significant 

supplement to the existing tools in the design process. Improvements to the 

microstructure generation methodology would also be a valuable addition to the existing 

multi-cell model. Although the quasi-steady FEM simulations can be justified based on 

the relative magnitude of the relevant time scales for diffusion, conduction, and reaction, 

the present model does not account for the evolution of the microstructure which can 

result from mechanisms such as SEI growth and particle fracture as the battery is 

repeatedly cycled. This limitation would most likely also be best addressed using a 

probabilistic approach, in which a range of effective transport properties and morphology 

parameters are modeled. 

Finally, the microscopic modeling efforts in this dissertation aim to generate 

realistic microstructures without any attempt to tailor the microstructure to aid in 

diffusion or interfacial reaction. Recent advances in the design of piezoelectric ceramic 

microstructures hold significant promise if similar techniques can be extended to battery 
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electrode materials [154]. The potential gains are especially significant if supplemented 

with advances in nanotechnology and manufacturing capabilities, and in fact it is widely 

believed that lithium-ion batteries based on nanomaterials will be the next step towards 

achieving the necessary performance improvements in the next generation of batteries [2]. 

The development of accurate modeling capabilities for arbitrary classes of 

microstructures (including those with polydisperse or non-ellipsoidal particles) would 

represent a critical step towards designing new high-capacity materials capable of 

achieving the necessary energy densities for future vehicle applications. 
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Appendix A. 

Aircraft Kinematics and Flight Dynamics 

A.1 Aerodynamic Forces 

This appendix summarizes the aircraft kinematics and flight dynamics equations 

used to model the conventional and hybrid Cessna 172 configurations in Chapter 1.3.4. 

These equations are taken from McCormick [22] and Anderson [155], who have also 

provided a more detailed derivation of these equations and discussions of their relevance. 

The lift force L is related to the lift coefficient CL by Eq. (A1). 

 
21

2
LL V SC  (A1) 

The quantity 21

2
V is known as the dynamic pressure (where ρ is the air density 

and V is the aircraft velocity), and S is the reference area, which for an aircraft is typically 

the area of the wing. The lift coefficient has a linear dependence on the aircraft angle of 

attack α: 

 
0L L LC C C


   (A2) 

CL0 is the lift coefficient at zero angle of attack. A similar equation to (A1) can be 

written for the drag D: 

 
21

2
DD V SC  (A3) 

Drag on an aircraft comes from two sources: parasitic drag due to skin friction 

and pressure, and induced drag due to lift. Hence the drag coefficient can be 

approximated by Eq. (A4). 
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0

2

D D LC C KC   (A4) 

The constant K is determined empirically. For a Cessna 172, the values CD0 = 

0.03 and K = 0.0373 are used. 

A.2 Equations of Motion for Steady Flight 

An aircraft can be described as a rigid body, and in this analysis the steady flight 

is considered such that the aircraft remains in a fixed vertical plane (steady longitudinal 

flight). There are four forces acting on an aircraft in steady longitudinal flight: lift, drag, 

thrust, and weight. The angle of attack α is defined as the angle between the thrust vector 

and the velocity vector, and the angle between the velocity vector and the horizontal axis 

(parallel to the ground) is the flight path angle γ. Assuming steady flight conditions, the 

sum of the forces along the velocity vector and parallel to the velocity vector must be 

zero, yielding Eqs. (A5) and (A6). 

    cos sin 0T D mg     (A5) 

 
   sin cos 0T L mg     (A6) 

A.3 Steady Cruise 

Under steady cruise conditions, the flight path angle is zero, and thus the above 

equations simplify to (A7) and (A8). 

 D T  (A7) 

 
L mg  (A8) 

Eqs. (A4) and (A8) can be combined to express the drag coefficient as a function 

of the aircraft weight: 
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2
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D D

K mg
C C

V S
   (A9) 

From Eq. (A7), the power required to maintain steady level flight can also be 

obtained: 

 
 

0

2

3
21

2
D

K mg
P V SC

VS



   (A10) 

Note that both terms in Eq. (A10) include the velocity V, suggesting a minimum 

power requirement with respect to V. By taking the derivative of (A10), the minimum 

power required, and the velocity for which this occurs, can be found: 

 
 

0

3

3

min

24
3

3
D

mg
P K C

S
  (A11) 

 
0

2

3 D

mg K
V

S C
  (A12) 

Maximum range occurs when the ratio of lift to drag is maximized. By taking the 

derivative of Eq. (A4) with respect to CL and setting to zero, the cruise condition in terms 

of CL is obtained: 

 0D

L

C
C

K
  (A13) 

Finally, the velocity and corresponding power at cruise conditions are given by 

Eqs. (A14) and (A15). 

 
0

* 2

D

mg K
V

S C
  (A14) 
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0

3

3
2

4
3

D

mg
P K C

S
  (A15) 

A.4 Steady Climb 

In order to achieve the maximum rate of climb, the engine must be able to 

produce power in excess of the amount necessary to overcome drag. Therefore, it follows 
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that the maximum climb rate occurs when the maximum amount of power is provided by 

the engine, and the power required to overcome drag is minimized. From the analysis in 

the previous section, the power required to overcome drag is minimized at the velocity 

given in (A12). The maximum rate of climb is thus given by the excess power divided by 

the weight of the aircraft: 

 

 
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3
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