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Abstract 

In this study, issues and techniques related to the parallel processing of the 

Eulerian-Lagrangian method for multi-scale moving boundary computation are 

investigated. The scope of the study consists of the Eulerian approach for field equations, 

explicit interface-tracking, Lagrangian interface modification and reconstruction 

algorithms, and a cell-based unstructured adaptive mesh refinement (AMR) in a 

distributed-memory computation framework. We decomposed the Eulerian domain 

spatially along with AMR to balance the computational load of solving field equations, 

which is a primary cost of the entire solver. The Lagrangian domain is partitioned based 

on marker vicinities with respect to the Eulerian partitions to minimize inter-processor 

communication. Overall, the performance of an Eulerian task peaks at 10,000-20,000 

cells per processor, and it is the upper bound of the performance of the Eulerian-

Lagrangian method. Moreover, the load imbalance of the Lagrangian task is not as 

influential as the communication overhead of the Eulerian-Lagrangian tasks on the 

overall performance. To assess the parallel processing capabilities, a high Weber number 

drop collision is simulated. The high convective to viscous length scale ratios result in 

disparate length scale distributions; together with the moving and topologically irregular 

interfaces, the computational tasks require temporally and spatially resolved treatment 

adaptively. The techniques presented enable us to perform original studies to meet such 

computational requirements. Coalescence, stretch, and break-up of satellite droplets due 
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to the interfacial instability are observed in current study, and the history of interface 

evolution is in good agreement with the experimental data. The competing mechanisms 

of the primary and secondary droplet break up, along with the gas-liquid interfacial 

dynamics are systematically investigated. This study shows that Rayleigh-Taylor 

instability on the edge of an extruding sheet can be profound at the initial stage of 

collision, and Rayleigh-Plateau instability dominates the longitudinal disturbance on the 

fringe of the liquid sheet at a long time, which eventually results in primary breakups. 
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Chapter 1. 

Introduction 

1.1 Background and motivation 

Multiphase flows involving moving gas-liquid interfaces are abundant in nature, 

such as ocean waves, rain, melting ice. They are also ubiquitous in various industrial 

applications where working fluids are subjected to free surfaces. In many cases, non-

linearity, instabilities, multiple-length-scale features, or vaporization and condensation 

accompany the transport of fluids. These processes are some of the most concerned 

mechanisms that engineers use to control fluid dynamics, facilitate functionalities of 

specific fluid devices, or improve efficiency of reacting flows. For example, from the fuel 

storage, delivering, injection to combustion phase, designs of the propulsion system of an 

astronautic vehicle cannot do without the consideration of the multiphase flow 

phenomena. Under microgravity condition, surface tension forces significantly affects the 

transportation of fuels in the pipes, storage, and delivering rate of fuel [1]. The boiling of 

cryogenic fluid due to heat absorption from the tank sidewall increases the pressure in a 

tank which results in the loss of available fuel [2]. Furthermore, the cavitation effects of 

cryogenic fluids at the transportation process is another issue for designing fluid 

machines [3]. The fuel injector of rocket engine combustors is one of the most critical 

components affected by multiphase phenomena. The size distribution of atomized 

droplets produced by the impingement of liquid jets determines the speed of vaporization, 
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and thus the chemical reaction rate and combustion stability [4]. Understanding the 

interfacial dynamics of jet atomization is crucial for the performance improvement of the 

reacting flows. However, it is challenging to analyze the sophisticated morphologies of 

gas-liquid boundaries by experimental approaches since the interfaces are usually 

wiggled, corrugated, and unstable, as shown in Figure 1-1(a). The spreading interfaces 

generated by liquid jet impingement under high Weber and Reynolds number develop 

considerable characteristics in multiple length scales. The instabilities induced by the 

combined viscous, capillary and inertia forces on a moving sheet are highly complicated 

(Figure 1-1(b) [5]). These delicate structures result in shape and topological changes of 

the interface, with the latter accompanied by a cascading process of kinetic energy that 

drives an initially smooth interface to disintegration. The characteristic sizes of 

disturbance on the interfaces vary greatly. A full-scale assessment of all features of the 

fluid boundaries and flow field is challenging. 

For moving boundaries under such conditions, direct numerical simulation can 

provide detail morphologies. An abundance of information is accessible through a series 

of simulations on a range of non-dimensional variables to help the verification of 

empirical scaling. However, numerical simulations of multiphase flows remain tenacious 

challenges in terms of computational cost and accuracy [6]. In addition to the 

computation of governing equations of continuous phases, more efforts are required to 

capture and identify fluid boundaries. Furthermore, the modeling task requires the 

treatment of distinct physical properties across the fluid boundaries, and interfacial 

dynamics, including surface tension and phase change effects. In order to perform 

satisfactory numerical simulation, interface evolution in time and space needs to be 
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resolved, which places high demand on the computational algorithm as well as on 

computational resources. 

 

 

(a)  

 

(b)  

Figure 1-1. The structures of gas-liquid fronts (a) Paired liquid jet 
impingement at increasing jet velocity. Reprinted from Yamamura et  al. [7] with 
permission from Elsevier. (b) Disintegration of planar liquid jet. Reproduced from 
Dombrowski [5]. 

The goal of the current study is to develop a computational platform to handle 

multi-scale simulation along with moving fluid boundaries with satisfactory parallel 

processing capabilities. Specifically, the previously developed techniques based on the 
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Eulerian-Lagrangian interface tracking method, presented by Singh and Shyy [8], 

Uzgoren, Sim, and Shyy [9], and Sim and Shyy [1], are further developed in a 

distributed-computation framework with a parallel adaptive mesh refinement technique to 

reduce the computational requirement. We document the challenges associated with the 

parallel implementation of the Eulerian-Lagrangian method and detail the cell-based 

unstructured adaptive mesh refinement techniques. We address the key components of 

the computational algorithm in the distributed computation context, including interface 

tracking based on the Lagrangian framework, incompressible Navier-Stokes computation 

in the Eulerian approach utilizing the Cartesian grid, communication between Eulerian 

and Lagrangian approaches, interface reconstruction techniques, and parallel cell-based 

unstructured adaptive mesh refinement (AMR). 

1.2 Literature overview 

1.2.1 Computational modeling of moving fluid boundaries 

Numerical representations of fluid boundaries can be a cell-averaged scalar 

function to denote the volume fraction of a specific fluid, a distance function to describe 

boundary contour, or an explicit mesh as fluid boundaries. We use advection schemes to 

update the spatial distribution of the numerical representation of fluid boundaries. 

Nowadays, popular advection schemes to model multi-fluid boundaries are in three main 

families: the volume of fluid methods (VOF), the level-set methods (LS), and the front-

tracking methods. For the purpose of distinguishing the challenges of parallel 

implementation and comparing these advection schemes with the Eulerian-Lagrangian 

interface tracking method used in present work, the review of these advection schemes 

focuses on issues related to parallel implementation. A comprehensive review of moving 
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boundary modeling for fluid interfaces can be found in the book of Tryggvason et al. [6]. 

For VOF methods first introduced by Hirt and Nichols [10], one reconstructs the 

interface based on the cell-averaged volume fraction, named color function C, and then 

the color function is advected by the underlying, prescribed velocity field in a 

conservation form. 

 ( ) 0C UC
t x

∂ ∂
+ =

∂ ∂
 (1) 

Here U is the prescribed velocity field. The VOF scheme can naturally preserve 

the mass of a specific fluid if the velocity field is treated with a conservative formulation. 

Reconstruction is an operation to adjust the orientation of the line segments representing 

the interface to physically represent the fluid volume. An interface reconstruction method 

influences the accuracy of interface geometries. A VOF method without an appropriate 

reconstruction algorithm may produce unphysical interface distortion or breakup. 

Promising reconstruction algorithms such as the modified piecewise linear interface 

calculation (PLIC) [11, 12] originated by Youngs [13], least squares volume-of-fluid 

reconstruction algorithm of Pilliod and Puckett [14], cubic spline interpolation of Lopez 

et al. [15], and others extensions [16] have been proposed to improve the quality of fluid 

boundaries. However, the balance between the accurate reconstruction of interface shapes 

and the conservation of the key physical quantities such as volume and mass can be a 

challenge. Figure 1-2 shows reconstructed interfaces based on an initial volume fraction 

field with the Hirt-Nichols method [10], simple line interface calculation method (SLIC) 

of Noh and Woodward [17], and piecewise linear and interface calculation method (PLIC) 

of Youngs [13]. Although the advection of volume fraction is straightforward, 
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reconstruction methods for accurate representation of fluid interfaces dramatically 

increases the  complexity of implementation, especially in 3D spaces. Topology changes 

of VOF method are handled in the advection scheme implicitly. The breakup and merge 

of interfaces need no additional treatment. 

    

Actual fluid shape Hirt-Nichols [10] SLIC in X axis [17] PLIC [13] 

Figure 1-2. Two-dimensional interface reconstruction based on the scalar 
field of volume fraction by Hirt-Nichols, SLIC, and PLIC methods. Reproduced 
from Rudman [11] with permission of John Wiley and Sons.  

Level-set methods originally proposed by Osher and Sethian [18] define the 

interfacial boundaries on the zero level of a smooth distance function F, which evolves 

according to the velocity field by the advection equation. 

 0F FU
t x

∂ ∂
+ =

∂ ∂
 (2) 

Level set methods are relatively simple in terms of implementation. One can 

obtain accurate results when the interface is parallel to one of the coordinate axes. 

However, in cases where the interface is largely deformed, level set methods suffer from 

a loss of volume. Therefore, the interface is not simply propagated by fluids. A process to 

reinitialize interfaces at every time step is necessary to conform the gradient of distance 

function F with the phase boundaries [19]. The original level set method is attractive for 

its simplicity of interface-capturing scheme. Furthermore, its latter extensions add more 

complicity for improving the mass conservation, such as using the couple level-set VOF 
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method [20], and reducing spurious velocity due to surface tension computation [20-22]. 

 

Figure 1-3. An illustration of a front-tracking method for a bubble swarming 
problem. Gas-liquid boundaries are represented by Lagrangian markers and 
triangular elements, while field equations are solved on the Eulerian grid (Cartesian 
grid). Computed by using the present adaptive Eulerian-Lagrangian interface 
tracking method. 

Both VOF and level-set methods are the front-capturing method, which identifies 

interfaces by the procedure “reconstruction” according to the cell-averaged functions, and 

belong to the class of Eulerian methods [23]. Instead of using scalar function to locate 

interfaces, front-tracking methods use markers that move with the velocity field as a 

surface mesh to represent moving boundaries [24-28]. The set of markers are on a 

Lagrangian frame, and field equations are solved on the underlying Eulerian grid (Figure 

1-3). Therefore, a front-tracking method stores variables on Eulerian and Lagrangian 

coordinates with a different data structure. Variables on the Lagrangian interfaces and 

Eulerian grid are coupled with cross-domain interpolation. The size and frequency of 

information exchanged between Lagrangian markers and the Eulerian grid depend on the 
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modeling formulation of fluid boundaries and procedures of solving field equations. 

Continuous interface methods model the fluid boundaries as smoothing transition of fluid 

properties at the boundaries [29, 30]. The spreading of material properties and force 

terms for the enforcement of boundaries condition demands more information of 

communication than sharp interface methods [26, 29, 31, 32]. In addition, the Lagrangian 

interface requires a remeshing technique to maintain the quality of the triangular surface 

mesh. Moreover, direct advection of interfaces does not change the interface topology. 

That is, the breakup and merging of interfaces requires special treatment on the 

connectivity of Lagrangian markers. Bo et al. presented a front-tracking technique with a 

local grid-based method to treat topological changes [33], but generally, complex 

interface deformation remains challenging for the front-tracking family. In summary, 

front-tracking methods have more algorithm complexities in three aspects: cross-domain 

data interpolation, Lagrangian remeshing, and topology change algorithm. However, the 

explicit representation of interfaces provides excellent accuracy of boundary geometries, 

such as curvature computation, which is one of its most appealing features. Such 

advantage is influential on the study of interfacial instability. Table 1-1 is a comparison 

between VOF, LS, and front-tracking methods in terms of numerical methods, algorithm, 

and recent advancements. We have to emphasize that recent algorithms have improved  

some of the disadvantages of the LS or VOF methods, such as the mass loss of the LS 

method and the numerical diffusion of the VOF methods. These additional techniques 

add much complexity to their conceptually-simple origins in 3D domain such that the 

gaps of algorithm complexity between these three types are not as large as before. 
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Table 1-1. A comparison of VOF method, level-set method, and front-
tracking method on accuracy, algorithm complexity, data structure, recent 
advancement in multiphase flow applications, and parallel implementation. 

 VOF Level-set Front-tracking 

Development  

Hirt and Nicols [10] 

Youngs (PLIC) [13] 

Rudman [11] 

Osher and Sethian [18] 

Sussman et al. [19] 

Osher and Fedkiw [21] 

Peskin and McQueen [24] 

Unverdi and Tryggvason [25] 

Udaykumar et al. [26] 

Ye et al. [27] 

Glimm et al. [28] 

Features  
Eulerian computation 

(Advection of volume 
fraction) 

Eulerian computation 

(Advection of distance 
function) 

Eulerian-Lagrangian computation 

(A mesh moves based on equation 
of motion.) 

Advantage 

Mass conservation Robust computation 
for interface 
deformation and 
topological change 

Accurate curvature computation 

Concerns 

Numerical diffusion for 
early versions such as 
SLIC method 

Merging and breakup of 
interfaces occur 
automatically. 

Mass loss (non- 
CLSVOF type)  

Merging and breakup 
of interfaces occur 
automatically. 

Implementation difficulties 

Algorithm 
complexity 

Medium:  

Reconstruction of 
interface in 3D 

Medium:  

Re-initialization of 
interface 

High:  

1. Cross-domain interpolation 

2. Lagrangian remeshing algorithm 

3. Topology change algorithm  

Data structure As single phase solver As single phase solver Two sets of data structure 

 

Recent 
advances 

Popinet [34] 
- Balanced-force 
/continuum-surface-
force surface-tension 
formulation and height-
function curvature 
estimation 

Agbaglah et al.  [35] 
- Octree adaptivity with 
VOF 

Sussman [20] 
- Couple Level-set 
VOF (CLSVOF) 
method 

Yokoi [22] 
- Density-based CSF 
model 

Wang et al. [36] 
- A second order 
hybrid level set-
volume constraint 
method 

Tryggvason et al. [32] 
- A 3D front-tracking by solving 
one-set of governing equations 

Singh and Shyy [8] 
- A 3D volume-conservative 
interface tracking method 

Bo et  al. [33] 
-  Ghost fluid method with locally 
grid based reconstruction method 
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Parallel 
implementation 

Agbaglah et al. [35] 

Espostiongaro et al. 
[37] 

Sussman [38] 

Rodriguez et al. [39] 

Kuan et al. [40, 41] 

1.2.2 The Eulerian-Lagrangian interface tracking method 

In the current study, the Eulerian-Lagrangian interface tracking method is a front-

tracking method that uses a set of connected Lagrangian markers representing moving 

phase boundaries. The Lagrangian markers primarily move with the underlying velocity 

field on an Eulerian grid where field equations are solved. The Eulerian-Lagrangian 

method tracks interface explicitly, and provides outstanding in-cell interface resolution 

when compared with pure Eulerian methods such as the volume of fluid method and 

level-set method [8, 9, 32]. Due to explicit interface representation, it does not 

reconstruct interfaces from cell-averaged functions for which it provides accurate 

computation on morphology-related variables such as surface tension. The Eulerian-

Lagrangian method presented in this work uses a continuous interface method to model a 

material jump around fluid boundaries and a sharp interface method to accommodate no-

slip boundary conditions of solid boundaries [42]. Furthermore, it has a dynamic contact-

line-force algorithm to model moving fluid-fluid interfaces on arbitrary solid boundaries. 

This Eulerian-Lagrangian method has been successfully applied to many practical 

engineering problems, such as binary droplet collision at low Weber number, cryogenic 

fuel sloshing in spacecraft fuel tanks, and free surface instability [1, 8, 42]. Moreover, 

accurate surface tension representation avoids spurious velocity as computations are 

carried out at the high Laplace number regime. It is an effective approach for moving 

boundary computations, but inherently it incurs significant challenges toward a parallel 

implementation. There are two necessary features to consider on the perspective of 



11 
 

parallelization. First, the Eulerian-Lagrangian method is a dual-domain technique. The 

Lagrangian data is stored in dynamic arrays on a triangular surface mesh, as opposed to 

flow data on an Eulerian frame. Partition strategies must consider the distribution of 

workload on both domains. Second, data on an Eulerian grid cell and a Lagrangian 

marker interact frequently in a computational time step. Strong data dependency in time 

between Eulerian and Lagrangian domains imposes restrictions on the choice of 

parallelisms for scalability. 

Since the data structure of Eulerian methods is similar to traditional single-phase 

flow solvers, the parallel implementation of Eulerian methods is straightforward and 

usually accomplished by a spatial domain decomposition. Several large-scale geological 

simulators using VOF methods have been successfully applied on distributed memory 

machines [35, 37, 38]. Sussman presented a parallelized Cartesian grid solver using a 

coupled level-set/VOF method for flows in general geometries [38]. In contrast, only 

certain problems such as conditions with the uniform distribution of Lagrangian elements 

have applied to parallel Eulerian-Lagrangian frameworks. No studies have systematically 

discussed arbitrary moving boundaries with the consideration of domain decomposition 

due to case-dependent performance and the difficulty of parallel implementation. 

Capecelatro and Desjardins reported a particle-laden flow solver with a parallelism under 

the Eulerian-Lagrangian framework [43]. Darmana et al. presented an Euler-Lagrange 

model to track swarming bubbles in columns. They introduced a mirror domain 

parallelism to decompose Lagrangian particles while the Eulerian domain was uniformly 

partitioned along the z-axis [44]. Herrmann used the Eulerian method to capture 

interfaces and described the under-resolved liquid volume with Lagrangian particles [45]. 
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These studies showed favorable parallel performance, which is likely due to the 

Lagrangian data being loosely coupled with the Eulerian data, and the Lagrangian objects 

being individual particles (no connectivity) and uniformly distributed in the Eulerian 

domain. However, for many practical problems, the Lagrangian objects’ frequent 

interaction with the Eulerian grid and their spatial distribution is non-uniform with 

respect to the Eulerian domain. Nkonga and Charrier reported a parcel method for a 

dispersed spray in a turbulent flow of piston engines [46]. The Lagrangian parcels are 

used to describe dispersed spray particles moving on a two-dimensional Eulerian 

unstructured mesh. They discussed the load imbalance due to the non-uniform 

distribution of parcels in a domain and the result showed that the parallel efficiency is 

problem dependent. In summary, the challenges of the Eulerian-Lagrangian methods in 

terms of parallelization are load balance for both Eulerian and Lagrangian domains and 

communication strategies. A load-balanced parallelism for both Eulerian and Lagrangian 

computations may be possible only with a compromise in communication overhead. The 

parallelisms adopted determine the frequency and data size of cross-processor 

communication. Minimizing communication overhead may be achievable only by using a 

parallelism having an imbalanced computation load on one of the two domains. We 

discuss possible parallelisms for the Eulerian-Lagrangian method, and have chosen a 

spatial domain decomposition for the Lagrangian domain because of the concern with 

data locality. 

1.2.3 Adaptive mesh refinement 

This work incorporates the Eulerian-Lagrangian method with a parallel AMR 

technique to maintain grid efficiency and solution accuracy for multi-scale problems. 
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Dynamic grid adaptation methods provide the efficient management of grid resolution, 

but incur considerable challenges in parallel implementation, especially in the aspects of 

load balance and remeshing. The spatial range of adaptation and data structures generally 

categorize them as: block-AMR, cell-based tree AMR, and cell-based unstructured AMR. 

The inherent data structure and the scale of problems determine the performance of these 

AMR approaches. Moreover, the data structure adopted also affects the complexity of the 

algorithm and domain decomposition strategies. 

Of the many parallel AMR methods proposed, the most popular one is the block-

based AMR family. The block-based AMR applies finer grid blocks upon regions 

demanding higher resolution. Each individual block is typically a uniform Cartesian grid, 

which is highly structured. The entire domain is composed of overlapping multiple 

blocks and domain decomposition is based on block units, as shown in Figure 1-4. 

Domain decomposition is usually based on the block units. At runtime, the refinement 

blocks are continually applied over old coarser blocks [47-49]. SAMRAI [47] based on the 

Berger-Rigoutsos algorithm [50], which is one of the most popular block-based AMR 

libraries. An immersed boundary solver, IBAMR developed by Griffith et al. utilizes 

SAMRAI for multiphase flow simulations of blood vessels [30]. Zuzio and Estivalezes 

[51] used PARAMESH developed by MacNeice et al. [16] for the simulation of a two-

phase interfacial flow. In general, adaptive blocks could be non-overlapping. The block-

tree type AMR, reported by Jablonowski et al. [52] refines a set of grid block by bisecting 

a parent block in each coordinate direction to generate children blocks with higher level 

refinement, and demonstrates high scalability on thousands of CPU cores for solving 

MHD equations [53]. The block-based AMR has an adequate cache hit rate due to the 
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structured data format and the more regular partition boundaries when compared with a 

cell-based AMR, which may reduce the data size of cross-boundary communications. 

Moreover, a block-based AMR tends to over-refine the grid, which results in an 

exceeding demand of computation and memory. Data interpolation between overlapping 

blocks requires additional cross-processor communication in the flow solver phase.  

 

Figure 1-4. The patch block AMR. Reprinted from Gunney et al. [47] with 
permission from Elsevier. 

 

 

Figure 1-5. Simulation of corona on the magnetosphere of the earth by the 
block AMR method. Adopted from the book section of Adaptive Mesh Refinement – 
Theory and Applications [53] with permission from Springer. 

Figure 1-5 is an example of a numerical simulation with a block-based adaptive 
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grid for a steady corona on the magnetosphere [53]. The grid along the sun to earth is 

adapted gradually by various levels of blocks and leads to 14 million cells in total.   

In contrast, a cell-based tree AMR utilizes quad-tree or octree data structures to 

accommodate a hierarchy of sub-grids [35, 54, 55]. The tree structure forms a cell-based 

object containing information of the coarsest to finest levels of cells for a desired spatial 

resolution and parent-children relationship. Figure 1-6 is an example of a tree-based grid. 

Parent cell 1 in the tree structure directly accesses family members 5-8 which are 

unavailable for the other parent cells 2-4. The parallelism of tree-based AMR is usually 

the coarsest-level grid decomposition for simplicity [34, 35]. Decomposition is executed 

on the coarsest-level cells by balancing the total children cell count in each partition. A 

parallel sharp interface fix-grid method using a tree-based local refinement for moving 

boundary problems was developed by Udaykumar et al. [55]. Agbaglah et al. 

decomposed the computational domain based on the graph of the coarsest-level cells with 

weighting function to adjust load balance for dynamic AMR operation at run time [56]. 

Burstedde et al. presented library p4est, a scalable algorithm for parallel adaptive mesh 

refinement based on the concepts of forest octrees and the z-shaped space-filling curve 

between octrees [54]. Although the cell-based tree AMR provides flexible refinement 

regions and organized data structure, the computational speed is degraded due to frequent 

pointers traveling in-and-out of the tree hierarchy when searching for data. 
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Figure 1-6. The quad-tree AMR and its corresponding hierarchy.   

 

Figure 1-7. Simulation of primary atomization by VOF method and oct-tree 
AMR. Reprinted from Fuster et al. [57] with permission from Elsevier. 

Various studies have proved the effectiveness of tree-based AMR. For example, 

Fuster et al. modeled primary atomization by VOF method with octree AMR. The surface 

instabilities on liquid-gas boundaries induced by aerodynamic shear stress were captured, 

as shown in Figure 1-7 [57]. The equivalent grid size of a uniform grid with the same 

resolution of this computation requires 512x128x128 points in 3D. 

While both block-based and cell-based tree AMRs may tend to waste data storage 

and computing power by over-refining the grid or maintaining hierarchy information 

from the coarsest to the finest cells. A cell-based unstructured AMR, which has no 

hierarchy information, can be an alternative in merits of spatial flexibility and compact 

data storage. It shows outstanding performance in serial computations [1, 8, 42]. 
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ParFUM is a typical example in this category [58]. The data is unstructured, which 

means the grid is an unstructured graph as shown in Figure 1-8. An explicit list of 

neighbor vertices is required to maintain graph connectivity. The development of a 

scalable parallel AMR for these methodologies is challenging, especially for a large 

number of CPU computation. This is due to the explicit storage of the global graph. 

Choices of domain decomposition approach may be limited due to the absence of a 

systematic grid structure. Using heuristics partition libraries is a relatively popular 

approach for accomplishing the partitioning of the unstructured AMR [58, 59]. A cell-

based unstructured AMR has flexible refinement regions and better grid efficiency in 

terms of performance, especially for problems with complex moving boundaries. It has a 

consistent data-fetching rate and no level-level interpolations such that the performance 

of field equation solvers is independent of the number of refinement level. Using 

heuristic partition libraries for load balance is favorable in complex domains. The current 

work adopts the cell-based unstructured AMR method. We believe the cell-based 

unstructured AMR has the benefits on the aspect of solver performance as listed below. 

(1) There is no grid hierarchy, nesting, overlapping, and no level-level 

interpolation in a time step, which means no cross-processor communication is needed 

due to inter-level interpolation. 

(2) Data fetching rate is constant for all levels of grid. 

(3) Load balance is independent of the number of refinement level. 

(4) Flexible refinement provides better grid efficiency for complex interface. 

A comparison of different AMR approaches is summarized in Table 1-2.  
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Figure 1-8. The cell-based unstructured AMR and its corresponding graph.   

 

Table 1-2. A comparison of block-based, cell-based tree, and cell-based 
unstructured AMR. 

 Block-based Cell-based tree 
Cell-based  

unstructured 
(present) 

Domain 
decomposition 

Block decomposition      - 
an algorithm  to distribute 
block units to processors 

Coarse-grain based 
decomposition with 
space-filing curves 

Heuristic domain 
decomposition 
algorithm 

Data structure Structured Cartesian grid Tree- hierarchy Unstructured grid 

Leading memory 
cost 

Data in distributed blocks Data of leaves cells for 
all distributed trees 

Global unstructured 
graph 

Interpolation in 
a time step 

Inter-level interpolation -
required inter-processor 
communication 

N/A N/A 

Caching rate Good Low Fair, and constant 
for all levels 

Refinement 
flexibility 

Over-refined Flexible Flexible 

Example 

Guenny et al. (SAMARI) 
[47] 

MacNeice et al. 
(PARAMESH) [48] 

Popinet et al. (Gerris) 
[35] 

Burstedde et al. (p4est) 
[54] 

Lawlor et al. 
(ParFum) [58] 

Kuan et al. [41] 
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1.2.4 Droplet collision at high weber number regimes 

Atomization is a process in various engineering applications that defragments 

liquid sheet/thread and ends up with finely dispersed droplets. This process usually starts 

with an ejection of liquid jets that drives the gas-liquid interface to be unstable and finally 

breaks up into smaller liquid fractions, ligaments, and micro-droplets. For decades, the 

design of atomizers and spray nozzles mostly relied on empirical estimations, or the 

knowledge of breaking mechanisms based on observations and physical reasoning. 

Detailed gas-liquid interface instabilities are hard to access, by either numerical or 

experimental approaches, since instabilities usually evolve rapidly in space from a meter 

to micrometer scale.  

For this reason, to improve the understanding of gas-liquid instabilities, we apply 

the current numerical framework to model the classic binary droplet collision cases, 

which is a fundamental process in spray environments. In such a case, the primary 

dimensionless parameter is the Weber number, a ratio of inertia force to surface tension 

forces (Table 1-3). For a Weber number below 200, head-on, off-axis, and equal/unequal-

size droplet collisions have been addressed numerically in extensive research [8, 60, 61]. 

Computation at high Weber number regimes (from 200 to thousands) is inevitably costly 

because gas-liquid interfaces appear multiple order of length scale after collision. 

Numerical simulation for such cases is absent now, and even experimental work is 

limited. Pan et al. reported head-on droplet collision at Weber number 200 to 5000 in 

2009, and summarized the collision regimes as fingering, fingering and separation, 

breakup, and prompt splattering [62]. This study follows the operation conditions in the 

work of Pan et al. to demonstrate the computational capability of present parallel adaptive 
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Eulerian-Lagrangian method. Rayleigh-Plateau [63], Rayleigh-Taylor instabilities [64] 

and end-pinching at the end of a jet sheet (as known as Taylor-Culick rim [65]) are 

observed in current simulations. The interface evolution is summarized with a focus on 

surface instabilities, and the phenomena observed are compared with theoretical and 

experimental work. Physical insights based on numerical results are provided in the 

discussion.  

Relevant non-dimensional parameters of multiphase flow problems used in 

current case studies are listed in Table 1-3. In the droplet collision problems, Reynolds, 

Weber, and Ohnesorge are key parameters used in determining the results. The Weber 

number is used broadly in characterizing thin film, droplets, and sprays. For a free 

surface with small a Weber number, gas-liquid boundaries tend to be stable in spherical 

shapes. Gas-liquid boundaries are unstable in case of a large Weber number. They easily 

form ligaments and break up [66].  

The Ohnesorge number was originally introduced to describe the modes of 

droplet breakup due to aerodynamic force by Hinze [67]. The breakup regimes of 

droplets were determined based on the Weber and Ohnesorge numbers by the extensive 

experimental work of Hsiang and Faeth [68]. For a small Ohnesorge number (Oh < 0.1), 

observations show the breakup modes of droplets are almost independent of the 

Ohnesorge number [66]. The inverse square of the Ohnesorge number, the Laplace 

number, describes the ratio of two competing mechanisms: surface tension forces and 

damping effect of viscosity. For numerical computation of surface tension-dominant 

flows, the Laplace number is a scale of instability. Inaccurate computation of surface 

tension forces could cause serious spurious velocity and breaks down an entire flow 
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solver at a large Laplace number condition. Here, the Laplace number in numerical 

exercises of Chapter 5 is O(105-106), which demonstrates accuracy and robustness of 

surface tension force computation in the current framework. The Eötvös number and 

Motron number are combinations of viscosity, density, surface tension of carrier fluids, 

and gravitational acceleration. They are two dimensionless parameters that determine the 

results of rising bubbles [69] and used in the validation cases of section 4.1.3. The 

Rayleigh number is a ratio of the buoyancy force induced by the thermal expansion of 

fluids to viscous force, and is adopted to define the condition of the natural convection 

flow in section 4.1.1. 
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Table 1-3. Relevant non-dimensional parameters used in the analysis of 
multi-fluid, moving boundary problems. 

Dimensionless parameters Definition 

Reynolds number 𝑅𝑒 =
ρ𝑈0𝐷0
𝜇

 

Weber number 𝑊𝑒 =
ρ𝑈0

2𝐷0
𝜎

 

Ohnesorge number 
Viscous forces/surface tension force 

𝑂ℎ =
𝜇

(ρ𝐷0 𝜎)1/2 

Laplace number 
Surface tension force/momentum transport 𝐿𝑎 =

ρ𝐷0 𝜎
𝜇2

= 𝑂ℎ−2 

Eötvös number 𝐸𝑜 =
∆𝜌𝑔𝐷02

𝜎
 

Motron number 𝑀 =
𝑔𝜇𝑙4∆𝜌
𝜌𝑙2𝜎2

 

Rayleigh number 𝑅𝑎 =
𝑔𝛽(𝑇𝑠 − 𝑇∞)𝑙3

𝜈𝛼
 

Density ratio (liquid/gas) 𝜌𝑙 𝜌𝑔⁄  

 

1.3 Objectives 

Three objectives of the present study are summarized. 

a. A parallel Eulerian-Lagrangian method: This dissertation presents a 

parallel implementation of the Eulerian-Lagrangian method for multi-

scale moving boundary computations. The study incorporates the 

Eulerian-Lagrangian interface tracking method, Lagrangian interface 

modification (smoothing/coarsening/refining), reconstruction algorithm, 

and the cell-base unstructured adaptive mesh refinement technique in a 

distributed-memory computation paradigm. 

b. Cell-based unstructured adaptive mesh refinement: This parallel cell-

based unstructured adaptive mesh refinement technique brings substantial 
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computational power to the dynamic computation of moving boundary 

problems. Current work describes the parallel remeshing, data 

redistribution, and domain decomposition. The performance of the 

Eulerian computation, Lagrangian interface tracking method, and cell-

based unstructured AMR is presented separately. 

c. High Weber number droplet collision simulation: The parallel 

adaptive Eulerian-Lagrangian method developed here is applied to 

simulations of binary droplet collision at a high-density ratio O(103), the 

Weber number O(102-103), and Laplace number O(105). The 

effectiveness of the current parallel adaptive framework is shown for 

multi-scale moving boundary computations. 

1.4 Outline 

The present study is outlined as follows.  

Chapter 2 addresses the numerical framework of the three-dimensional Eulerian-

Lagrangian interface tracking method. Chapter 3 describes the parallelisms used for the 

Eulerian and Lagrangian domains. Challenges of achieving high performance are 

addressed. Detail algorithms of domain decomposition, communication strategies, 

parallel Lagrangian surface modification, and reconstruction algorithms are discussed. 

Implementations of the cell-based unstructured adaptive mesh refinement including 

parallel remeshing, load balancing, data redistribution are illustrated comprehensively. 

In chapter 4, code validations are presented for the parallel implementation of the 

sharp interface method for solid boundaries, and continuous interface method of moving 

fluid boundaries. The performance studies cover the scalability of the field equation 

solver, adaptive mesh refinement, and overall performance of the Eulerian-Lagrangian 

method. 
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In chapter 5, droplet collisions at a higher Weber number regime are 

demonstrated. Numerical results are compared with experimental work, and a grid 

dependency study is presented. Dynamics of surface instabilities on gas-liquid boundaries 

are addressed, and the mechanisms of droplet defragmentation are discussed. 
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Chapter 2. 

Governing equations and numerical methods 

2.1 Introduction 

The Eulerian-Lagrangian method resolves velocity field on the Eulerian grid, and 

treats the interfaces separating different phases by Lagrangian surface meshes. Figure 2-1 

shows an illustration of the present method. A basic geometrical unit of interfaces is a 

line-segment in two-dimensional and a triangular element in three-dimensional domains. 

Both fluid and solid interfaces are in the Lagrangian frame. The no-slip boundary 

condition of solid interface is enforced by the ghost cell method as shown in Figure 

2-1(c). Velocity, pressure, and temperature reconstruction in a ghost cell is extrapolated 

from the fluid side along the local norm of the solid boundary (Figure 2-3).  

  

Figure 2-1. The Eulerian-Lagrangian method. (a) Two-dimensional 
Lagrangian markers (red) on the stationary Cartesian grid. (b) Three-dimensional 
illustration: a liquid interface in a spherical container. Field equations are solved on 
the Eulerian Cartesian grid (red). Fluid interfaces are represented by moving the 
Lagrangian mesh (green), and solid boundary (gray) is embedded with the ghost cell 
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method for boundary condition enforcement. 

The following sections will focus on the fluid interface since its dynamic behavior 

induces issues on parallelism. More detailed numerical methods of the Eulerian-

Lagrangian method can be found in literature [1, 8, 41]. 

2.2 Governing equations 

On the Eulerian domain, the governing equations are mass, momentum and 

energy conservation equations for incompressible Newtonian fluids. We account 

interfacial dynamics as source terms at the right hand side of the momentum and energy 

equation. The momentum forcing term,  fF  accounts for the effect of the surface tension 

of fluid interfaces. The forcing function sF  represents no-slip condition on the solid 

interfaces. The energy source term, fQ   is latent heat effects around fluid interface. Here, 

V  is the velocity vector, and ρ , µ  and p are the density, viscosity, and pressure, 

respectively. Non-dimensional zed parameters are Reynolds (Re), Froude (Fr), Weber 

(We), and Prandtl (Pr) number. 
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We solve Eqs. (3)-(5) by a finite-volume projection method on a staggered grid. 

The intermediate velocity field is computed first, and then, projected onto a divergence-
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free space to satisfy the mass conservation equation. The convection term is discretized 

by the third order ENO scheme in space and second order Runge-Kutta integration in 

time. The viscous term uses the central difference discretization in space and Crank-

Nicholson integration in time. With the phase change model, the divergence-free 

condition is modified by accounting the amount of mass transfer across the interface. 

Across fluid interface, the pressure and viscous stresses show discontinuities due 

to surface tension force. The jump condition of the flow properties in the normal 

direction ( n ) can be computed from the surface tension (σ ) and the curvature (κ ) in Eq. 

(6). On the solid phase boundary, the no-slip condition is implemented with the 

prescribed velocity of the moving solid geometries. 

 2 1 2 1( ) ( )p p τ τ σκ− − ⋅ − ⋅ =n n  (6) 

2.3 Indicator function 

At the vicinity of an interface, we calculate an indicator function I, a discrete form 

of the Heaviside step function, obtained by integrating the 1-D form of the approximate 

Dirac delta function ( hδ ) from liquid to gas phase as shown in Eq. (7).  

 ( )( )I( ) H ( )
r

hr h dhδ
−∞

= = ⋅ − = ∫x n x X
 (7) 

The approximate Dirac delta function, originally proposed by Peskin [29], is 

calculated over finite thickness of four-cell width as in Eq.  (8). 
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The r  is the distance from an Eulerian cell center to the nearest Lagrangian 

element or vertex. Figure 2-2 is a 1-D illustration of the discrete Dirac delta function and 

indicator function across a fluid boundary at x = 0. 

                 

Figure 2-2. Indicator function is integrated from the discrete Dirac delta 
function across the interface. Reproduced from Sim [70]. 

The 3D extension of the Dirac delta function can be obtained by the 

multiplication of the Dirac delta function of each coordinate by Eq. (9)  [29].  

 
1 ( ) ( ) ( )h x y zr r r

x y z
δ δ δ δ=

∆ ∆ ∆  (9) 

The indicator function at the interface is 0.5, and varies from 0 to 1 smoothly 

across the interface. This approach is known as being more general than the Poisson 

equation solver method since it requires only distance information from the interface, and 

thus gives accurate values even at the boundaries [42]. This indicator function maps 

discontinuous material properties into a continuous form so that we can use a single set of 

equations to describe all fluid phases in the domain with smoothed-out material 
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properties across the interface. 

The smoothed fluid properties are computed by the indicator function in Eq. (10). 

Here, ϕ  can be material properties such as density ρ , kinematic viscosity /ρ µ , heat 

capacity Cρ , and thermal diffusivity /k Cρ . 

 ( )2 1 2 Iϕ ϕ ϕ ϕ= + −  (10) 

2.4 Interface tracking 

Lagrangian interfaces are a set of triangular elements formed by Lagrangian 

markers with connectivity. The location of a marker, denoted by X  in a Lagrangian 

frame is updated based on the marker velocity ( )V X , given by the equation of motion as 

 ( )
t

∂
=

∂
X V X

 
(11) 

The forward Euler method is used to update marker location. The velocity of a marker is 

a projection from the resolved velocity field on the underlying Eulerian grid to the 

Lagrangian frame, as shown in Eq. (12). The approximate Dirac delta function, hδ , is 

employed for transforming the Eulerian velocity field, v(x) , to Lagrangian marker 

velocities ( )V X . The interface velocity is a function of the Eulerian velocity field and 

mass transfer rate m  on the Lagrangian domain in case of phase change. 

 ( ) ( ) ( )h
fV

mdVδ
ρ

= − −∫V X v x x X
   (12) 

2.5 Contact line force 

When a fluid-fluid interface intersects a solid surface, the treatment of the tri-
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junction locations, called contact lines, is required to account for the presence and 

interactions of the gas, liquid, and solid phases. Modeling contact line force and imposing 

no-slip condition for velocity in Navier-Stokes equations lead to a non-integrable 

singularity in stress. Here, the contact line force is imposed with a local slip condition to 

overcome this singularity issue. The contact line force, which is computed from the 

present contact angle and the given equilibrium contact angle, is implemented as surface 

tension forces and makes the interface approach the static contact angle asymptotically. 

In the local slip model, a perfect slip is applied exactly on the contact line by assuming 

infinite slip length, and a partial slip is applied within two-cell distances with the help of 

the approximated Dirac delta function as continuous fluid interface is diffused. This local 

slip condition is implemented with the previously-mentioned sharp solid interface method 

by interpolating velocities of solid points (SP) on the solid surface (including contact line 

velocity) from the known fluid velocity fields and weighing them with the approximate 

Dirac delta function. The details can be found in our previous work [1]. 

2.6 Interfacial dynamics modeling 

On the Eulerian grid, the discontinuities of surface tension and heat transfer from 

a Lagrangian marker are treated diffusively in finite-width variations. At the vicinities of 

the Lagrangian interfaces, we use the approximate Dirac delta function to convert 

Lagrangian quantity ( )F X  to Eulerian quantity ( )f x , as shown in Eq. (13).  

 ( )
( )

( ) ( ) h
t

f F dδ
Γ

= − Γ∫x X x X   (13) 

For surface tension forces exerting on a Lagrangian element, the Lagrangian data 

is σκ , where κ is the local curvature of the Lagrangian element. By a line integral form 
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shown in eq. (14) with normal and tangent vectors instead of a direct curvature 

computation, the surface force on a discrete Lagrangian element is computed. Curvature 

computation using interpolation-based methods is numerically sensitive and often 

requires some form of data smoothing, and does not enforce surface tension conservation 

on a closed surface. 

 ( ) A ( )
A S

f d dS
δ

δ σ σ= ×∇ × = ×∫ ∫n n t n   (14) 

When phase change is considered, the latent heat is computed by Eq. (15), where 

 is mass transfer per unit area across the interface due to phase change and L  is the 

latent heat at the saturation temperature. 

 ( )
( )

f f h
t

Q m L dδ
Γ

= − Γ∫ x X  (15) 

The mass transfer rate across the interface is computed from heat transfer 

relations in Eq. (18) based on the Stefan condition using the temperature gradient with 

discontinuous material properties. Here, L is the latent heat, k is thermal conductivity, and 

q1 and q2 are heat flux vectors transporting across interfaces. The interface temperature is 

assumed to be equal to the saturation temperature which is an adequate assumption in 

macroscopic problems.  

 1 2
1 2

( )ff
T Tm L k k
n n

∂ ∂
= − ⋅ = − +

∂ ∂1 2q q n  (16) 

For more detail implementation and formulations of phase change models, please 

refer to the work of Sim and Kuan [71]. Here, we address phase change modeling briefly 

for comprehensively documenting capabilities of this multiphase flow code, and phase 
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change is not in the scope of the current dissertation.  

The accuracy of the current implementation was shown in the work of Singh [8] 

for a static bubble problem. The non-dimensional spurious velocity (Capillary number) 

due to numerical error on interface curvature computation is in the order of 10-4 and 

insensitive to Laplace number up to 105, while VOF and LS methods usually produce 

spurious velocity in order of 10-2 and cannot sustain high Laplace number computation 

without sophisticated interface reconstruction algorithms.  

2.7 The ghost cell method for solid boundary condition 

We use the sharp interface method to model the solid boundaries and enforce the 

boundary conditions by reconstructing solution fields with the given boundary condition 

on the solid phase. Velocity is reconstructed in ghost cells, which are defined as solid 

cells adjacent to any fluid cell. In this sharp interface method, the accuracy of a solid 

boundary condition depends on the reconstruction scheme of solution fields at ghost cells, 

and thus, the accuracy of interpolations at imaginary points. An imaginary point IP is 

built by extending the normal of the local solid boundary from the center of a ghost cell 

toward the fluid phase with a constant interval, while the solid point (SP) is the 

intersection point of the normal vector and solid interface. An appropriate reference 

length is the minimum cell width as the interval for SP to IP. Figure 2-3 is an illustration 

of reconstruction stencil.  
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Figure 2-3. Schematics of reconstruction stencil of the two-dimensional linear 
reconstruction scheme with imaginary point (IP) and solid point (SP). 

A linear interpolation is applied to determine the values at the imaginary point as 

shown in Eq. (17) which requires four fluid cells in three-dimensional domains.  

 0 1 2 3IP c c x c y c zφ = + + +   (17) 

A quadratic interpolation as Eq. (18) can be used such that seven fluid cells are 

needed for the interpolation in a three-dimensional domain. Other types of quadratic 

formulation can be found in [27]. 

 0 1 2 3 4 5 6IP c c x c y c z c xy c yz c xzφ = + + + + + +  (18) 

For a second-order accurate finite volume flow solvers, quadratic interpolation of 

flow variables at the wall may retain second-order accuracy of the scheme. A comparison 

of interpolation schemes for ghost cell immersed boundary methods by Tseng and 

Ferziger showed improvement on L∞ error norm by using a quadratic interpolation, but 

overall performance of the solver is not affected greatly by using a linear interpolation 

scheme [72], and a similar observation was reported by Kao et al. [73]. Iaccarino and 

Verzicco concluded that a linear reconstruction is applicable for laminar flows or for high 
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Reynolds number flows when the image point is in the viscous sub-layer [74]. In our case 

studies, whenever adaptive mesh refinement is applied around the solid interfaces, a grid 

size is adopted that ensures the boundary layer is well resolved such that image points 

always stay in the laminar regions. A concern of quadratic interpolations is that more 

than seven points in the fluid phases are required to obtain the reconstruction coefficient. 

This requirement is sometimes difficult for ghost cells at large-curvature solid boundaries 

such that the stencil may be in a skew shape, which results in a stiff linear system of 

equation. As a result, using linear interpolation scheme for the reconstruction of variables 

on image point is a reliable and robust approach for complex geometry cases. 

Another issue mostly discussed for modeling a sharp interface is mass/energy 

conservation on the boundary cells. A solid boundary that does not conform with the 

computational grid causes confliction between the no-slip condition on the surface and 

the mass conservation of boundary cells. Many researchers implemented a finite 

difference method instead of a finite volume method in order to detour such an issue [75]. 

A mass/energy source/sink approach was proposed to compensate the non-divergence 

free condition of boundary cells, but it just guarantees the convergence of the pressure 

Poisson solver, and the mass is still not conserved with computed no-slip conditions [76]. 

Local correction method, which is our previous approach, is also a kind of mass 

source/sink method, and has same issues on the accuracy [42]. When the Reynolds 

number is small and grid is fine, the velocity fields have small values around a solid 

surface, and the error can be negligible. However, high Reynolds or Rayleigh number 

flow exacerbates the accuracy. 

Present approach imposes Neumann pressure boundary condition implicitly in 
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Poisson equation. When solving the pressure Poisson equation, the pressure of ghost cells 

is used to enforce zero normal pressure gradients at the immersed solid wall. The zero 

normal pressure gradients is equivalent to a non-permeable wall, and thus mass 

conservation should be satisfied for fluid cells if ghost cell pressure is updated 

consistently. For each ghost cell, a Neumann condition implies ghost cell pressure is 

equal to pressure at its respective imaginary point. Hence, the ghost cell pressure of an 

imaginary point could be determined by a weighting combination of multiple fluid cells 

adjunct to its respective image point. In a three-dimensional domain, the linear 

relationship of pressure at an imaginary point and its surrounding fluid cells can be 

represented by a coordinate vector [1 x y z] and the interpolation coefficient [c0 c1 c2 c3]t.  
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In the iterative solving procedure of pressure Poisson equation, the pressure P1 to 

P4 are objects at the linear system equation of discretized Poisson equation. With the 

inverse of the coordinate matrix [1 X Y Z], a ghost cell pressure is associated linearly to 

its respective fluid cells with zero wall normal derivative enforced. 
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Then the ghost cells are embedded in the linear system of discretized pressure 

Poisson equation. Since the coefficient matrix of the linear system with embedded 

Neumann BC is not symmetric and positive, the entire linear system is solved by a bi-

stabilized conjugate gradient solver or GMRES solver of PETSc [77] with Jacobi, 

BoomerAMG or ParaSAILS preconditioner of hypre [78]. Sim [70] showed that the 

current field equation solver with the ghost cell reconstruction for solid boundary 

conditions has grid convergence between first and second order accuracy for a natural 

convection problem (Figure 4-2) with an adaptive grid.  

2.8 Summary of the Eulerian-Lagrangian method 

This numerical framework utilizes the stationary (Eulerian) frame to resolve the 

flow field, and the marker-based triangulated moving (Lagrangian) surface meshes to 

treat the phase boundary interfaces. Both continuous and sharp interface methods are 

implemented in a unified framework. The source terms in the governing equations 

computed at the vicinity of the interface are transferred between Eulerian and Lagrangian 

frame through the discrete Dirac delta function. For moving contact line treatment, local 

slip condition is applied around the contact line. The large-deformable fluid boundaries 

are modeled using a continuous interface method, and the surface tension between fluid 

interfaces is smeared within finite distance. The solid boundaries are treated by a sharp 

interface method along with the ghost cell method by reconstructing the solution on the 

ghost cell based on the known solid boundary condition. The pressure boundary 
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condition of a sharp interface method at solid boundaries is embedded in the linear 

system of discretized pressure Poisson equation. 
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Chapter 3. 

Parallelism 

Figure 3-1 describes the tasks of the Eulerian-Lagrangian interface tracking 

method in a single time step. Tasks are placed in the Eulerian or Lagrangian frame to 

show the space of computation with arrows to indicate data dependency between tasks. In 

a single time step, we have four times of cross-domain communication through the Dirac 

delta function. Strong data dependency between the Eulerian and Lagrangian domains 

implies data locality is a primary factor determining the parallel performance. For a serial 

computation, solving field equations on the Eulerian domain usually costs more than 60% 

of wall-clock time. Therefore, the load balance on the Eulerian computation is a priority, 

but appropriate decompositions of the Lagrangian or Eulerian-Lagrangian computation 

are also required for overall efficiency. This is non-trivial to achieve because the size and 

location of the Lagrangian mesh vary in time and space. 

 
Figure 3-1. Procedures of the Eulerian-Lagrangian interface tracking 

method. 
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3.1 Eulerian domain decomposition including sharp interface method 

A partitioning methodology of Eulerian domain needs to consider the following 

issues; load balance, communication cost, and data dependency arising from ghost cell 

methodology. Among many approaches for the spatial decomposition of a graph, the 

most popular two methods are space-filling curve methods and heuristic methods such as 

partitioning libraries ParMETIS[79]. A space-filling curve traverses an N-dimensional 

graph and maps it bijectively to a one-dimensional array. The ordered array is then 

broken into p parts, where p is the total number of distributed computational elements. 

Consequently, the load balance is satisfied, but the total edges cut, that is, the size of 

partition boundary requiring information exchange, is not an objective of a space-filling 

curve method. On the other hand, graph partitioning packages such as ParMETIS using 

k-way multilevel heuristic approach as partitioning algorithm usually provide satisfactory 

load balance and fewer edges cut compared with the space-filling curves methods [80]. 

Moreover, it provides flexible weighting function to manipulate a preferred partition 

scenario.  

The graph-partitioning package ParMETIS is used to handle the Eulerian domain 

decomposition in the present study. Figure 3-2(a) is an illustration of an Eulerian domain 

decomposition. This experiment models the liquid sloshing of the cryogenic fuel in a 

liquid hydrogen tank of a Saturn V/S-IVB rocket. We use dynamic material tags to 

distinguish gas, liquid, and solid phase as shown in Figure 3-2 (b). Because the ghost 

cells in the solid boundary are not evenly distributed among partitions, the workload of 

ghost cell boundary condition method is not balanced. However, since the computational 

time of this operation contributes very little to the total runtime, we do not observe 

overhead due to load imbalance in the ghost cell method. Between adjacent partitions, we 
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build overlapping layers. The overlapping zone serves as a buffer region for the 

synchronization of information on the boundaries of two adjacent partitions. Suppose that 

an Eulerian domain Ω is already decomposed into n  non-overlapping partitions pΩ , i.e.,  

 
1

n

p
p=

Ω = Ω   (22). 

Here p is the processor ID and n is number of processors. We define a sub-domain, psΩ ,  

 ,
1

( )
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p p p i
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=

Ω = Ω     (23). 

It is a union of an individual partition pΩ  and regions of a finite width away from the 

partition pΩ  overlapping with its adjacent partitions.  

   

(a) (b) (c) 

Figure 3-2. The Eulerian domain decomposition of a liquid fuel tank with a 
free boundary of the gas-liquid interface. (a) Partitions are represented in different 
colors. (b) The material tags of gas phase (white), liquid phase (yellow), and solid 
phase (blue). (c) Decomposition of the solid boundary according to the Eulerian 
partitions. 

The term, ,p iI   represents the overlap of the sub-domain psΩ  with its neighbor 

partition, iΩ . A sub-domain psΩ  has its own local grid connectivity. The overlapping 
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zones, ,p iI  purely serve as ghost cells for the storage of data from processor i through 

communication routines. They are also the buffer zones to perceive influences from 

moving Lagrangian markers, which is addressed in the next section. 

3.2 Lagrangian domain decomposition 

The information on the Eulerian and the Lagrangian domain is highly coupled in a 

single time step. From the step of Lagrangian mesh advection to intermediate velocity 

field computation on the Eulerian grid, procedures on both domains have prerequisite 

procedures on their domain counterparts, as shown in Figure 3-1. For the parallelisms of 

Lagrangian interface, three approaches can be considered: task parallelisms, atomic 

decomposition, and spatial decomposition. An example in Figure 3-3 illustrates how four 

processors could decompose a problem with Lagrangian markers denoted in circle dots 

superposing on an Eulerian Cartesian grid. 

Task parallelisms reserve some specific processors to exclusively deal with 

Lagrangian computations and use other processors for the calculation of Eulerian data. 

This approach takes advantage of the concurrency between Eulerian and Lagrangian 

tasks to accelerate computation. However, there is very little concurrency between 

Eulerian and Lagrangian procedures. Because the Lagrangian and Eulerian procedures 

need information on their domain counterparts beforehand, it is difficult to overlap the 

Lagrangian and Eulerian computation in an efficient manner, which excludes the 

effectiveness of task parallelisms. We consider data parallelism to balance the Lagrangian 

computation. We may distribute Lagrangian markers evenly over all processors 

regardless of their location in the Eulerian domain as the atomic decomposition approach 

of Figure 3-3(c). This straightforward approach achieves the load balance of Lagrangian 
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computation automatically and may perform well in small problems. For larger grid size 

problems, there is an increasing amount of data needed to transfer across processors 

because the information required for computation is unavailable in the local memory of a 

processor. The communication overhead will be the dominant bottleneck and the worst 

case is deadlock when data to be sent is much larger than the system buffer. Furthermore, 

the communication pattern will be very dynamic and complicated. Therefore, we have to 

consider the data locality to minimize the communication overhead. 

  
  

(a) (b) (c) (d) 

Figure 3-3. Strategies of decomposition of Lagrangian interface (a) A 2D 
Lagrangian mesh on Eulerian domain (b) task parallelism (c) atomic decomposition 
(d) spatial decomposition 

A spatial decomposition assigns the Lagrangian markers to a processor based on 

the spatial inhabitation of markers. In Figure 3-3(d), the Lagrangian markers 

encompassed by an Eulerian sub-domain owned by a particular processor should be 

assigned to this processor. This approach takes the advantage of data locality that 

prerequisite information for computation is available in the local memory of each 

processor such that the frequency and size of communication can be minimized. The load 

balance of Lagrangian computation may not be satisfied but reasonable scalability is 

expected in general cases since the cost of pure calculation of Lagrangian data is much 

smaller than the cost of the flow solver.  
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We define a Lagrangian partition of a processor by including all Lagrangian 

markers inhabiting in its Eulerian partition. Markers in a Lagrangian partition are defined 

as “active” because the host processor will manage the advection and computation of 

these active markers. Note that Eq. (13) transfers Lagrangian quantity to the Eulerian grid 

through the approximate Delta function. In other words, a Lagrangian element disperses 

its impact on the Eulerian grid in a finite-diameter spherical space. The sphere centers at 

the Lagrangian marker with the cut-off length of the approximate Dirac delta function as 

radius. As a result, to ensure the Eulerian partition receives correct influences from the 

Lagrangian interface, a processor includes extra Lagrangian markers out of its Eulerian 

domain, which may have influence on any cells of the Eulerian partition. They are 

defined as “passive” because neighbor processors host their advection. 

Locating Lagrangian markers on a local Eulerian partition can be expensive. We 

employ the following procedures to accomplish this work. After defining the Eulerian 

partition at the procedure of “Load Balance” in the AMR method, a processor defines the 

Eulerian overlapping zone in a range that can accommodate possible passive markers. 

Defining the overlapping zone requires searching reachable vertexes (cells) in a finite 

distance from a root vertex on the global Eulerian graph. The root vertex is a cell on 

partition boundaries, and the searching direction points to neighbor partitions. We 

explore cells in neighbor partitions by the breadth-first search (BFS) technique to 

determine overlapping zones. The BFS function defines the cells of a neighbor partition 

that are in a designated distance from a starting point. The distance of searching is the 

cut-off length of the approximate Dirac delta function such that any marker that enters the 

overlapping zones will exert influence on certain cells in a partition. Figure 3-4 illustrates 
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this algorithm.  

1 Given Eulerian partition pΩ   and a global Eulerian graph G(V,E), where V is the 

vertex and E is the edge. 

2 lcut-off  : the cut-off length of the Dirac delta function 

3 u[ ]    : a returned list of the breadth-first function 

4 DO neighbor partition ID = i 

5 DO boundary cell next to i partition   

6 CALL breadth-first search function BSF(lcut-off  ,  G(V,E), u[ ] ) 

7 Add u to overlapping zone ,p iI  ,  ,p iI ← u[ ] 

8 END DO 

9 Remove duplication cells in ,p iI  

10 END DO neighbor partition 

11 define the Eulerian sub-domain of processor p, ,
1

( )
adj

p p p i
i

s I
=

Ω = Ω    

Figure 3-4. Eulerian sub-domain algorithm 

With the overlapping zones and the Eulerian partition, each processor can safely 

determine passive and active markers at every time step. The set of active markers form a 

Lagrangian partition, ( )n
pL t , and the union of active and passive markers comprise a 

Lagrangian sub-domain ( )n
pLs t at time step tn. Figure 3-5 shows the Lagrangian sub-

domain algorithm. This approach has several merits. First, it reduces required Eulerian-

Lagrangian messages because of data locality. Second, we store only the mesh 

connectivity of the global Lagrangian interface, and all other Lagrangian data are 

distributed into processors having interface dwelling in their Eulerian partitions. Though 
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the Lagrangian computation is not perfectly balanced, we at least maintain scalability for 

large problems. Figure 3-6 shows an example of Lagrangian sub-domain with respect to 

the Eulerian partition. 

 

1 Project velocity from Eulerian partition pΩ  to Lagrangian marker i
pM , 

( )i n
p pM L t∈  

2 advect markers for all i
pM , ( )i n

p pM L t∈  

3 conduct surface modification for all i
pM , ( )i n

p pM L t∈  

4 smoothing/refining/coarsening 

5 locality_tag [ ] : locality tag of markers 

6 DO active Lagrangian marker i
pM  

7 searching the location of i
pM  

8 IF( i
pM  is in partition kE )  locality_tag [i] ← k 

9 END DO 

10 communicate locality_tag  with neighborhood partitions for ( )i n
p pM L t∈∂  

11 re-define active and passive markers on ( )i n
p pM Ls t∈∂  

12 re-define Lagrangian partition 1( )n
pL t + and subdomain 1( )n

pLs t +  

Figure 3-5. Lagrangian sub-domain algorithm. 
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Figure 3-6. Illustration of Lagrangian domain decomposition. (a) An 
elongated droplet stays in several Eulerian partitions. (b) Markers dwelling in an 
Eulerian partition are flagged as active (green mesh). Passive markers (shaded in 
grey) are markers that possibly scatter source terms on the grid cells in the current 
Eulerian partition. Surface tension forces and other source terms are computed 
both on active and passive markers by the host processor. The active and passive 
markers constitute a Lagrangian sub-domain. 

3.3 Lagrangian interface modification 

3.3.1 Smoothing, refining, and coarsening 

Lagrangian markers move with carrier fluids. However, with the direct 

propagation of interfaces according to the equation of motion, markers on the Lagrangian 

interfaces may form unfavorable distribution. To maintain the consistent accuracy of the 

interface-related computations, the spacing between the markers is rearranged by adding 

or removing markers whenever markers are too close or too distant from others. We 

employ three techniques—smoothing, refining, and coarsening—to organize marker 

distribution. These operations are based on the volume-conserved surface mesh 

restruction of Singh and Shyy [1]. The decision to activate a mesh modification is 

evaluated by comparing local space between markers with the resolution of the 
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underlying Eulerian grid. For a 2-D Eulerian cell with inhabiting Lagrangian interfaces, it 

should contain at least one and at most three markers within its volume in order to 

maintain continuous representation for transferred quantities like surface tension force. 

This constraint is used to determine criterion distance between two adjacent markers i 

and j with respect to Eulerian grid spacing, x∆ , as shown in Eq. (24).  

 
if      , coarsening

3

if       , refining

i j

i j

x

x
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≤

≥ ∆

X - X

X - X
  (24) 

 

Figure 3-7. Refine and coarsen operation on Lagrangian mesh. (a) Refine: 
long edges are divided by adding a marker in the middle of edges; new elements are 
constructed in the original element. (b) Coarsen: two very close makers p1 and p2 
collapse into p3. Adopted from Singh [81]. 

Figure 3-7 is an illustration of refine and coarsen based on the method of Singh [81].  

Parallelizing the smoothing operation is relatively straightforward because the 

connectivity of a Lagrangian mesh is not changed. A processor applies smoothing on the 

markers of its Lagrangian partition and then exchanges new marker coordinates with its 

neighbor partitions. In contrast, the refining and coarsening operations change the 

connectivity of a Lagrangian mesh. Without constrains, we have to remesh the interior of 
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a Lagrangian partition and partition boundaries separately with communications to 

coordinate modification on partition boundaries. Here, we limit the coarsening and 

refining operation to the interior of Lagrangian partition such that communication is 

avoided during these two operations. After local refining and coarsening operations, the 

global connectivity of the Lagrangian mesh is updated by a collective communication. 

3.3.2 Reconstruction for topology change 

Unlike VOF and level-set methods, the Eulerian-Lagrangian interface tracking 

method needs special treatment for topology change. The topology reconstruction 

algorithm has two steps: topology change detection and surface mesh reconstruction. We 

use a norm-based probe method to identify the necessity of interface merge and breakup. 

Along the interface norm of a marker, we examine the material tags at probes on each 

side of the interface. If the material tags at two probes refer to the same material, 

topology reconstruction is necessary. The detection process is handled in parallel. Each 

processor executes topology change detection on its Lagrangian partition, and flags 

Lagrangian bodies that need topology reconstruction. Once the reconstruction flags of all 

Lagrangian bodies are determined, we temporarily reserve the information of the 

Lagrangian bodies that are free from merge and breakup at this moment, and then execute 

surface mesh reconstruction algorithm on the flagged bodies.  

The level-contour-based interface reconstruction technique is implemented to 

create new surface mesh of reconstructed bodies. Indicator function is recomputed for 

flagged bodies by integrating the Dirac delta function in parallel, and then new interface 

is created on indicator function I = 0.5 contour in serial. The overhead of creating new 

Lagrangian mesh is not a primary concern because usually the topology reconstruction is 
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invoked at tens of time steps if required. After new Lagrangian meshes are generated and 

the body tags are defined, reserved Lagrangian bodies are combined with new 

Lagrangian bodies. Finally, the Lagrangian sub-domain algorithm is invoked to re-

determine the Lagrangian partitions. 

3.4 Communication strategy 

 

Figure 3-8. An example of a concatenated array of data in overlapping zones 
of processor ID 1 for a four-processor computation. 

Data in overlapping zones of a sub-domain are frequently exchanged with 

neighbor sub-domains when solving field equations and propagating the Lagrangian 

markers. For a point-to-point communication, i.e., a sub-domain synchronizing data in 

overlapping zones with neighbor partitions, the non-blocking send and receive are used to 

avoid blocking delay. The send-out data of a sub-domain is collected and concatenated 

into a 1D array on an add-up manner. Figure 3-8 illustrates how the data in overlapping 

zones are grouped in a chunk of continuous memory. Assume a problem is executed with 

four processors, and partition 1 is adjacent to partition 0, 2, and 3. There are 3, 4, and 5 

entries of data in the overlapping zones that need to send to neighbor partitions 0, 2, and 
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3, respectively. A temporary array is then created to accommodate the concatenation of 

prepared data. The pointer of this array is passed to a subroutine for exchanging data with 

neighbor partitions, which uses the non-blocking send and receive to post the 

communication requests. The procedure of receiving data from neighbor partitions is 

preallocating 1D array beforehand for arriving data. An MPI_WAIT is placed at the end 

of the initialization of send and receive subroutines to check if procedures are completed 

correctly. The pseudo code of the communication procedure is shown in Figure 3-9. 

The performance of our methodology is evaluated with a one-million-cell 

problem. The problem is executed on the NYX machine in the Center of Advance 

Computing of the University of Michigan. The nodes used are comprised of Intel 

Nehalem Xeon E5540 CPU and InfiniBand networking whose latency is about 10-6 

second. Each Intel Xeon E5540 CPU has four cores with 8M bytes L3 shared cache and 

total memory available per CPU is 12G bytes. The averaged data size exchanged in a 

process of communication is from 108K to 41K bytes on 4 to 96 processors. The start-up 

time represents the preparation and calling of MPI_ISEND and MPI_IRECV procedures, 

and the time to finish synchronization stands for time staying on MPI_WAITALL. The 

cost of one data synchronization is in order of 2×10-5 second and nearly independent of 

number of processers used. This test suggests the communication strategy used in present 

work has low overhead for these cases. This communication design is applied to data 

exchange across partition-boundaries for both Eulerian domain and Lagrangian domain in 

the present work.  
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1 accumulate_send = 0; accumulate_recv = 0 

2 number_of_recv[k] : number of entries received from partition k 

3 number_of_send[k] : number of entries sent to partition k 

4 DO index0 = 0, total number of processors - 1 

5 IF NOT neighbor partition, CYCLE  

6 accumulate_recv = accumulate_recv + number_of_recv[index0] 

7 recv ← recv_data[accumulate_recv] 

8 source = index0  

9 tag1 = processor_id  

10 CALL MPI_IRECV(recv, # of receive, type, source , tag1, comm., reqs) 

11 accumulate_send = accumulate_send + number_of_send[index0] 

12 send ← send_data[accumulate_send] 

13 tag2 = index0;  dest. = index0 

14 CALL MPI_ISEND(send, # of send    , type, dest.   , tag2, comm, reqs)  

15 END DO 

16 Any computation work that does not require coming data can be placed here. 

17 CALL MPI_WAITALL(reqs, stat, comm)  or MPI_TEST(reqs, stat, comm) 

Figure 3-9. A non-blocking send/receive communication algorithm for 
exchanging data with neighbor partitions. 

Similar efficient communications are achieved for most of point-to-point, cross-

partition-boundary communications. In case of the size of send-out data larger than 10M 

bytes a time, a significant delay of the process completion is observed. This is primarily 

due to the saturation of communication buffer on a computational node. Using a buffered 

send MPI_BSEND can alleviate this problem, and insert more computation work in 
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between the request of send/receive and MPI_WAITWALL can hide this communication 

overhead. A more proactive strategy is using non-blocking call MPI_TEST to check 

whether data arrive for certain requests, and proceeding possible computation that is not 

dependent on incoming data. 

Table 3-1. Communication cost for velocity field in a one-million-cell 
problem. 

# of processors 4 8 16 64 96 

Start-up time [sec] 3.0×10-5 2.4×10-6 2.0×10-5 2.1×10-5 2.1×10-5 

Time to finish synchronization (sec) 9.5×10-6 9.7×10-6 9.5×10-6 1.0×10-5 1.1×10-5 

Averaged data size exchanged  

(K Bytes) 
108 105 84 50 40.5 
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3.5 Cell-based unstructured AMR 

The AMR method utilizes a cell-by-cell isotropic adaptation. The Eulerian 

domain consists of Cartesian cells, while the connectivity is in unstructured data format. 

Figure 3-10 shows an example of Cartesian grid with cell indices and its corresponding 

graph G(V,E), where V is the vertex (cell) and E is the edge (face) of a graph element. 

The graph represents the connectivity of the global Eulerian grid. Due to lack of a logical 

structure for a vertex to refer neighborhood by indexing, an unstructured domain usually 

preserves neighborhoods’ connectivity for the load balance procedure to simplify the 

implementation complexity. Since a global Eulerian graph is maintained in each 

processor, memory requirement may be a concern. The information of global Eulerian 

graph contains information of a cell’s surrounding faces and a face’s adjacent cells. 

Figure 3-10 gives an estimation of the memory cost of our design. N is the grid size and p 

is the number of processors used in a computation. Storing global Eulerian graph is the 

leading cost of the system memory. The connectivity of a global Eulerian graph costs 

85N bytes, and 905 N/p bytes of memory goes to variables and data belonging to a local 

Eulerian sub-domain. For example, a distributed memory system equipped with 3G bytes 

RAM per processor can spend 1700M bytes storing global connectivity for a 20 million 

grid points problem and the rest of memory storing local, distributed variable arrays. 

Although memory requirement constrains the applicability of a current design to very 

large problems, the cell-based unstructured AMR has advantages of no cross-processor 

communication for inter-level interpolation, constant data-fetching rate for all levels of 

grid, and flexible refinement area. These properties make the field equation solver 

favorably efficient regardless of the number of refinement levels applied on the complex 

Lagrangian interfaces. 
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Figure 3-10. Memory cost of the Eulerian-Lagrangian method with cell-
based unstructured AMR method. 

3.5.1 Adaptation criteria 

Grid adaptation is based on the location of interfaces and solution gradient on the 

Eulerian partitions. The geometry-based adaptation promotes grid around the 

neighborhood of interfaces to a designate level of resolution. The range of refinement 

around interface determines frequency of AMR required. In our design, the highest-level 

Cartesian grid must encompass interfaces all the time. With a wider range of refinement, 

interface stays in the highest-level grid longer such that the execution frequency of AMR 

can be reduced. However, larger refinement area may introduce inefficient mesh usage. 

In current study, the width of the highest refinement region is five times that of the finest-

cell width on each side of interfaces. Cells far away from the interface are adapted based 

on the solution of the flow field. The decision to refine or coarsen a cell is determined by 

comparing the vorticity of a cell to standard deviations of vorticity of the entire Eulerian 

domain, as show in Eq. (25). 
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If the energy equation is solved, temperature gradient is another adaptation 

criterion. Adaptation flag “-1” is assigned to “coarsening” candidates and “1” to “refining” 

candidates; otherwise it is “0”. 

 

1 Create an temporary sub-domain connectivity '
p ps sΩ = Ω  

2 adaptation_flag [ ] = adaptation flag that has been assigned by previous adaptation 

check subroutines 

3 DO WHILE any of the adaptation_flag of pC  is equal to 1,  p pC s∀ ∈Ω  

4 DO i = 1, number of cells in psΩ   

5 IF adaptation_flag[ i ]  =  1 THEN 

6 IF any neighbor of  is on lower grid level THEN 

7 adaptation_flag[ neighbor] ← 1 

8 CYCLE 

9 ELSE 

10 Split cell  into 8 children; modify grid connectivity on '
psΩ  

11 adaptation_flag [ i ] ← 0 

12 END IF 

13 END DO 

i
pC

i
pC
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14 END DO WHILE 

15 DO i = 1, number of cell in pΩ  

16 IF adaptation_flag [ i ] = -1 AND not at partition boundary THEN 

17 IF all neighbors are on coarser or the same grid level THEN 

18 Merge cell with corresponding siblings and modify grid 

connectivity on '
psΩ  

19 adaptation_flag [ i ] ← 0 

20 END IF 

21 END IF 

22 END DO 

Figure 3-11. Grid generation algorithm. 

3.5.2 Parallel grid generation 

Figure 3-11 illustrates the local grid generation algorithm. The grid adaptation is 

applied on the Eulerian sub-domain psΩ , but only the grid generated in a partition pΩ  is 

adopted as a new grid. The reason for applying refinement on the overlapping zones is for 

the recursive refinement procedure as shown in Figure 3-12. Any refinement-flagged cell 

has to be refined for encompassing the Lagrangian interfaces with the finest resolution. 

Since we do not refine a target cell with a coarser neighbor, the coarser neighbor has to 

be refined beforehand and then the target cell can be refined. This rule results in the 

scheduling of splitting cells on consecutive cells. Extending the refinement to the 

overlapping region can guarantee consistent refinement results on partition boundaries. 

The coarsening process is applied on a partition and avoids two scenarios: a cell having 

i
pC



57 
 

neighbors on higher grid level and at partition boundaries. At the beginning of grid 

refinement, a set of a local grid p
′Ω  is created, including cells tagged with the refinement 

flag and their neighboring cells. This local grid contains partial grid connectivity of the 

sub-domain psΩ  which the tentatively modified connectivity due to refining and 

coarsening operation can be placed on. The refinement routine recursively operates over 

this local grid to generate new cells and faces on new graph of p
′Ω . Whenever the rules 

are followed, the coarsening operation merges cells and faces that originally exist in the 

finer resolution level. The indices of the cells and faces designated to merge are 

deactivated. Then the modified connectivity of the merged cells is placed on p
′Ω . 

For a refining operation, the cell-centered pressure and temperature and face-

centered velocity of new cells and faces are constructed linearly by the information of 

surrounding cells. The variables of merging cells due to coarsen operation are averaged 

using the corresponding cell-centered or face-centered values of original cells. The 

discretization of convection term and Poisson equation on hanging nodes are treated by 

the approach of Singh and Shyy

The grid generation algorithm generates a new Eulerian grid independently on 

each processor. In case of an even distribution of refinement-tagged cells among all 

processors, this procedure is load balance. For Lagrangian interfaces staying at certain 

Eulerian sub-domains, the refinement is applied to those sub-domains alone, which 

induces load imbalance. However, at this worst scenario it is not helpful to adopt other 

parallelisms such as task (procedural) decomposition because procedure dependency of 

AMR avoids possibilities of task overlapping. Although the load imbalance of grid 
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generation is inevitable for extreme cases, moderate scalability is still expected. 

This size of the pre-refinement region allows user-defined and could be treated as 

an accommodation buffer for evolving interfaces that may reduce the frequency of 

required AMR operations. 

3.5.3 Global indices and connectivity construction  

The new graph information is localized before this step. A new graph of an 

Eulerian sub-domain after local mesh generation is independent and is not known by its 

neighbors. For example, a shared face on partition boundaries is broken due to the cell 

refinement in processor 1 but is intact in processor 2. However, the new local graph of 

the sub-domain 1sΩ and 2sΩ are legislative individuals, it is required to coordinate the 

modified information of this face for updating the global Eulerian graph and domain 

decomposition. This process of connectivity synchronization is a typical challenge of 

parallel grid generation in terms of efficiency since synchronization and index ordering 

relies on either intensive communication or serialization. For instance, some approaches 

remesh the partition boundaries faces before or after remeshing the interior regions, 

which increases the ratio of serial operation in an AMR implementation [82]. The 

construction of the global indices and connectivity for new graph in parallel requires all-

to-all data exchange. In current study, we accomplish this task by three steps: an add-up 

indices function to give global order of the created cells and faces in each Eulerian 

partition, an all-to-all communication to collect connectivity of modified cell-face 

relationships, and then an update of global graph by the collected information. 

We separate the indices generation and connectivity process by facilitating two 
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data classes containing the modified cells and faces information to accomplish the 

construction of a new global graph ''Ω . The data classes store modified cells and new 

generated faces during the refining and coarsening processes. The data structure of 

modified cells pMc possesses the original global indices of the broken and merged cell 

kc  and its sibling cells. Eq. (26) is the data structure pMc  on two-dimensional Eulerian 

domains. 

 

{ }1 2

3 1 3 2 3 3

2 3 4

, ,..., ,   

[ , , , ] ,  for spliting operation
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=

arent cell i
 is the index of new children cells  due to refinements

 (26) 

Because sibling cells’ global indices are unknown beforehand, temporal, sub-

domain based indices as denoted by ks  are assigned to them. In case of cell merging 

operation, negative signs are symbolically used to the global index of parent cell ig , 

which will be the resulting index representation after the merge operation. The other three 

or seven original (on 2D and 3D domain) cells denoted in kc will be deactivated. The 

other data structure called new face information pNf  contains all faces that are generated 

during the refining process in the partition pΩ . 

 { }1 2, ,..., ,  m is the number of new faces in processor p m p
Nf f f f p=  (27) 

It possesses a new face’s orientation, side cells index, and parent face index if 

generated through splitting a face. In case new faces are bounded by new cells just 
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generated, we refer the cell index to the coordinate of pMc . New faces generated at 

partition boundary are pre-processed by a founction reconstructing broken faces pairs. 

The routines go through all boundary face i
p pf ∈∂Ω  and check the “broken” status of 

their corresponding face in adjacent partitions. For a face pair, both of which are marked 

in new face data array pNf , only the primary processor (lower rank ID) creates new 

global index that avoids the duplication of the face index. 

An all-to-all collective communication is used to broadcast pMc and pNf  to all 

other processors so that every processor has the collection of pMc  and pNf  from all 

processors. The collection of pMc  and pNf  is in the concatenated arrays as show below.  

 1 2

1 2

( , ,.., )
( , ,.., )

n

n

Mc Mc Mc Mc
Nf Nf Nf Nf

=
=

 (28) 

Once each processor has a full knowledge of the number of added and merged 

cells, we assign the global indices to new cells due to refinement operation in an add-up 

sequence by looping through Mc  array. For example, the number of added cells on a 

three-processor computation is [10 11 9], and the original total size of cells is 50, the new 

global indices of new cells are [51:60 61:71 72:80]. Thus, the assembled contiguous 

indices can be used to update the cell connectivity by renumbering the obtained local 

arrays. In case of merged cells, inactive tags are assigned to them. Inactive cells and faces 

do not participate in the following load balance operation and the solution marching 

process. The face indices are assigned by the similar add-up method. The final procedure 

to grid up a new global graph is collecting those faces composing a global cell to form a 

cell-face list.  
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After the creation of Mc  and Nf  by all-to-all collective communication, every 

processor operates on an identical set of new grid data. As a result, the updating of 

connectivity of global Eulerian graph is a serial computation. In addition, it requires two 

times of all-to-all communication to accomplish the updating of global connectivity with 

the present algorithm. Performance deterioration due to frequent communication during 

the adaptive refinement process is minimized in the current approach. Furthermore, we 

do not grid up the boundary and interior of a partition separately, but single-time grid 

generation on each partition is satisfactory. 

The entire process of remeshing has two advantages: First, it is a fully decoupled 

method when generating a new grid on a sub-domain such that communication is not 

used in the local grid generation. The remeshing of the interior and boundaries of a 

partition is applied at the same time, which avoids the sequential update of the interior 

and boundaries of a graph [82, 83]. Second, the updating of connectivity of the global 

Eulerian graph concentrates on the adaptation-affected regions, which is effective in 

terms of computation. 

  

(a) (b) 

 
 

(c) (d) 
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Figure 3-12. An example of the geometry-based grid refinement using two 
processors. (a) Eulerian partition Ω1 and Ω2 are denoted in red and blue grid with 
an airfoil-shape immersed boundary. (b) Eulerian sub-domain Ωs1 and Ωs2. Shaded 
cells are overlapping zones of each sub-domain. (c) The recursive refinement is 
applied to the Eulerian sub-domains. (d) The grid generated in the overlapping zone 
is discarded. An algorithm corrects and synchronizes the global face indices at 
partition boundary. 

3.5.4 Domain re-decomposition and data migration 

We rebalance the Eulerian computation after the grid adaptation by the heuristic 

partitioning library, ParMETIS. It handles multiple objectives optimization on 

redistribution cost, load balance, and number of edge-cut together. Because the new 

global grid needs a set of global ordered index in CSR format as the input of ParMETIS, 

we use a reorder routine assigning natural index system to active cells in each partition 

and then combine the assignments from all processors to form a new set of global index 

system. An “active” cell means a cell staying in a partition domain and being an effective 

identity. An inactive cell is a discarded index referring to an obsolete cell due to the 

coarsening operation as shown in Figure 3-13. The deactivation approach is convenient 

for data structure operation at this stage. A memory adjustment operation will remove 

inactive index pointers in the latter procedure.  

Before discarding the original sub-domain, information such as cells’ coordinate, 

level, cell-centered material, pressure, and temperature are collected in a set of data 

arrays for redistribution. Data redistribution may be communication-intensive when an 

original partition barely overlaps with the new partition. If the AMR is performed at an 

adequate interval, a re-partition operation should return a new partition with little change. 

Diffusive scheme of re-partition routines ParMETIS_V3_AdaptiveRepart usually leads to 

moderate data migration cost based on our experience. 
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Figure 3-13. Cell order and deactivation of the current cell-based 
unstructured AMR. Splitting one cell and adding three more indices to three 
children cells for the refining operation and merging four cells by deactivating three 
cell indices for the coarsening operation. 

We organize cell-centered and face-centered data to arrays of user-defined types. 

As a result, two messages (one for cell-centered and one for face-centered data) are 

enough to accomplish data migration between two processors. These data chunks are 

exchanged by the non-blocking send/receive communication addressed in section 3.4. 

Once the redistribution of data is completed, we discard the original Eulerian sub-

domains, and then construct new Eulerian sub-domains and all variables. The Lagrangian 

sub-domains are redefined based on the new Eulerian sub-domains. 

3.6 Scaling of computation and communication cost 

Computation-to-communication ratio primarily determines the parallel 

performance of procedures. We summarize the computation and communication cost in 

Table 3-2 to illustrate how procedures scale with problem size. Here, N is the grid size of 

a problem. There are four categories of the procedure types: Eulerian task, Eulerian-

Lagrangian task, Lagrangian task, and AMR. The Eulerian tasks refer to the computation 

on the Eulerian frame, such as the field equation solver. The leading cost of the Eulerian 

computation is solving the linear sparse matrix of pressure Poisson equation, which is, at 

most proportional to O(N3). Communication required for Eulerian tasks are data at 
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partition boundaries, which are in the size of “surface” and proportional to O(N2/3). For 

Lagrangian tasks, computation and communication scale with the Lagrangian surface 

area O(N2/3). For AMR using geometry-based refinement, the computation scales with 

O(N2/3), and the data needed to exchange is as large as the volume of an entire domain at 

the process of constructing global grid connectivity and reordering. As a result, for a 

fixed-size problem, Eulerian tasks have the highest computation-to-communication ratio 

and AMR has the least among all. Tasks such as surface tension calculation involve 

Eulerian-Lagrangian interactions have computation cost between O(N) and O(N2/3). 

While the communication cost of the Eulerian-Lagrangian tasks is proportional to O(N1/3) 

with the current Lagrangian domain decomposition method, it can be more than O(N) by 

adopting a load-balanced decomposition without considering the data locality of 

Lagrangian markers. 

Table 3-2. Scaling of computation and communication cost of the parallel, 
adaptive Eulerian-Lagrangian interface tracking method. 

 Computation Communication 

Eulerian tasks O(N2~N3) O(N2/3) 

Eulerian-Lagrangian tasks O(N~N2/3) O(N1/3) 

Lagrangian tasks O(N2/3) O(N1/3) 

AMR O(N2/3) (geometry-based) O(N) 

 

 

3.7 Solving procedure 

The procedures of the parallel Eulerian-Lagrangian method are summarized in 

Figure 3-14. Note that the operations denoted in italics involve both Eulerian and 
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Lagrangian variables. First, the initialization of simulation creates a Cartesian grid to 

encompass solid interface and refine it adaptively to designated resolution with the 

identification of ghost cells. The Eulerian domain is then partitioned by ParMETIS, and 

the Lagrangian domain is spatially decomposed based on marker’s locality. In the time 

integration loop, a marker is updated to new position by a velocity field interpolated from 

the Eulerian domain and re-meshing may be applied to interface whenever needed. The 

updated interface renders a new distribution of fluid properties that inter-processor 

communications are needed to update fluid density, viscosity, and thermal conductivity at 

overlapping zones of sub-domains. Source terms surface tension and mass transfer across 

the fluid interface distribute their impact to cells at a fixed distance. The velocity field is 

updated with the Runge-Kutta/Crank-Nicolson integration by the projection method. 

Based on the predicted velocity field v* and the prescribed execution period, dynamic 

AMR invokes subsequent procedures: parallel mesh generation, domain re-

decomposition, data migration, and generation of new Eulerian and Lagrangian sub-

domains. The detail of parallel adaptive mesh refinement is explained in previous 

sections. PETSc and hypre are both implemented as the linear solver for the discretized 

Poisson equation. Once the divergence-free velocity field is obtained on an Eulerian 

domain, velocity is projected to Lagrangian markers by the discrete Dirac delta function. 

The topology reconstruction is invoked when required. 
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1 Initialization 

2 Eulerian domain decomposition (ParMETIS) 

3 Lagrangian domain decomposition 

4 Time integration loop :  

5 Marker movement 

6 Interface modification: smooth, refine, coarsen 

7 Lagrangian domain decomposition 

8 Determine cell-centered material and properties 

9 Source term computation: surface tension and mass transfer/ heat flux 

10 Intermediate velocity *v  by RK-CN integration 

11 IF : Dynamic adaptive mesh refinement 

12 Parallel mesh generation 

13 Domain re-decomposition(ParMETIS) 

14 Data migration 

15 Rebuild Eulerian sub-domain and Lagrangian sub-domain 

16 Pressure Poisson equation  hypre/PETSc  

17 Corrected velocity 1n+v   

18 Energy equation by RK-CN integration 

19 Velocity interpolation to Lagrangian markers  

20 Topology change test  

21 IF merge or breakup : Topology reconstruction of the Lagrangian interfaces 

Figure 3-14. The solving procedure of parallel Eulerian-Lagrangian method 
with cell-based unstructured AMR. 
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Chapter 4. 

Validation and performance 

4.1 Validation 

The parallel, adaptive Eulerian-Lagrangian solver is validated for the 

implementation of the ghost cell reconstruction of the sharp interface method and moving 

boundary tracking with continuous interface method. The computations involving the 

sharp interface method include internal, isothermal and thermal flows and external flows. 

Moving boundary computations are validated for single bubble rising and binary droplet 

collision at low Weber number. Results of the current approach are compared with the 

solutions from literature. All of the cases shown here are solved with the third-order ENO 

scheme around the fluid boundaries and the second-order central difference scheme in the 

rest regions.  

4.1.1 Cavity flow 

The first case is a lid-driven cavity flow at Reynolds number 1000 with grid size 

80 x80x80. The computational setup is presented in Table 4-1. We use a 3-D domain to 

simulate the 2-D flow by assigning periodic boundary condition at the front and back of 

the cube. The solid boundary conditions are enforced by the ghost cell reconstruction of 

the sharp interface method. Figure 4-1(a) shows partitions and streamline at a certain time 

step. The steady state solution from a 32-processor computation is given in Figure 4-1(b) 
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together with a benchmark work of Ghia et al. [84].  

Table 4-1. Computational setup of validation on cubic cavity flows 

 Lid-driven flow Natural convection flow 

Non-dimensional parameter Re = 103 Ra = 105 

Grid  Uniform 80x80x80 Uniform 40x40x40 

Solid boundary conditions Sharp interface method  

# of processors 32 16 

 

  

(a) (b) 

Figure 4-1. Lid-driven cavity flow at Re = 1000. (a) Stream line of a 16-
processor test at the developing stage of recirculation. The colored blocks represent 
different partitions. (b) Velocity component at x and y coordinates at the central 
vertical line and central horizontal line of cavity.  

A test of natural convection driven by buoyancy force is presented in Figure 4-2 

to validate the parallel implementation of the energy equation. The fluid is initially static 

in the cavity with a high-temperature side wall at left, low-temperature side wall at right, 

and adiabatic wall at top and bottom. The sharp interface method including the 

reconstruction of temperature and velocity and pressure at the ghost cells is used as the 

enforcement of the boundary condition of solid interface. For such a case, the Rayleigh 
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number is 105, and the resulting temperature distribution at a steady state is shown in 

Figure 4-2(a) for temperature contour and Figure 4-2(b) for temperature profile at the 

horizontal and vertical center of the cavity. Computational results confirm the solution 

produced by a parallel code is consistent with the solution from Sim [70] in an error 

range of 10-7, which is the convergence criterion of the pressure Poisson equation.  

 
 

(a)  (b)  

Figure 4-2. Natural convection in square cavity at Rayleigh number 105 on a 
16-processor computation. (a) Temperature contour of natural convection. (b) 
Temperature along vertical center and horizontal center of the cavity.  

4.1.2 Ghost cell method: Uniform flow past a circular cylinder/sphere 

We validate the embedded pressure boundary condition and the ghost cell 

reconstruction at solid boundaries for problems of an immersed circular cylinder and 

sphere in the uniform flow. The tests of the uniform flow past a cylinder is at Reynolds 

number 40, 100, and 200 with static adaptive grid around solid interface on 32 processors. 

Table 4-2 is the computational setup, where D is the diameter of the circular cylinder or 

sphere. 
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Table 4-2. Computational setup of uniform flow past objectives. 

 Flow past circular 
cylinder Flow past a sphere 

Reynolds number 40, 100, 200 200 

Grid  
D/Δx=32 (5 levels)  

D/Δx=64  (6 levels)  
D/Δx=80 (6 levels)  

Domain 30Dx20D 50Dx30Dx30D 

Solid boundary conditions Sharp interface method  

# of processors 32 64 

 

The drag and lift coefficient, separation angle, length of recirculation zones, and 

Strouhal number are tabulated in Table 4-3. Here, results from references [27, 76, 85-87] 

are computed by immersed boundary method and reference [88] is from a body-

conforming grid. At Reynolds number 40, the computed drag coefficient is 1.52 and the 

length of circulation zone is 2.23, which agree with the results from literature. At 

Reynolds number 100 and 200, the vortex shedding behavior is captured and non-

dimensional parameters, Strouhal number, and periodic fluctuation of drag and lift 

coefficient are tracked in Figure 4-3. The computed Strouhal numbers are 0.164 and 

0.192 for Reynolds number 100 and 200 with lift coefficient 0.31 and 0.68 respectively. 

Our results agree well with previous studies [85, 87] using immersed boundary method.  

The sequential pictures in Figure 4-4 show histories of evolving vortex in the 

wakes behind the cylinder and a snapshot of adaptive grid configuration is presented in 

Figure 4-5. Highest-level grid dynamically follows the high vorticity regions. This 

simulation was computed on a 350x250 base grid with five levels of refinement that 

provides maximum spatial resolution 1/160 cylinder-diameter around the immersed solid 

boundary.  
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(a) (b) 

Figure 4-3. Lift and drag coefficient of uniform flow past a circular cylinder. 
(a) Re = 100. (b) Re = 200. 

Table 4-3. Comparison of drag coefficient, length of the recirculation zone 
(computed from rear end of cylinder), separation angle, lift coefficient, and Strouhal 
number. 

Re 40 
 CD θ L/D Grid and resolution Δ = 

Fornberg [88] 1.52 55.6 2.24 Body conforming grid 
Ye [27] et. al. [27] 1.52 -- 2.27 -- 

Taira and Colonius [85]  1.54 53.5 2.30 1/50D 
Kim  et. al. [76] 1.51 -- -- 1/30D 

Colonius and Taira [86] 1.55 -- 2.20 1/50D 
Linnick and Fasel [87] 1.54 53.6 2.28 1/87D 

Current 1.60 51.8 2.06 1/32D 
1.54 53.6 2.23 1/64D 

 

Re 100 200 Resolution 
Δ = 

 CD CL St CD CL St  
Fornberg [88] 1.058 -- -- 0.829 -- -- Body conf. 

Taira and Colonius [85] 1.34±0.048 ±0.068 0.197 1.35±0.048 ±0.68 0.196 1/50D 
Kim et. al. [76] 1.33 0.32 0.165 -- -- -- 1/30D 

Colonius and Taira [86] 1.34±0.045 ±0.068 0.195 -- -- -- 1/50D 
Linnick and Fasel [87] 1.34±0.009 ±0.333 0.166 1.34±0.044 ±0.69 0.197 1/87D 

Current 1.33±0.017 ±0.116 0.152 1.300±0.028 ±0.48 0.176 1/32D 
1.33±0.010 ±0.31 0.164 1.326±0.043 ±0.68 0.192 1/64D 
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Figure 4-4. Vorticity contour of uniform flow past a circular cylinder at Re = 
200. 
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Figure 4-5. Dynamic mesh refinement based on vorticity. 

Next validation is uniform flow past a sphere with 3-D AMR computation. At Re 

= 200, a steady recirculation is observed behind the sphere as shown in Figure 4-6. 

Features of a flow field at a steady state are compared with the results from body-

conforming grid computation of Johnson and Patel (1999) in Table 4-4. We observe a 

smaller recirculation zone with the separation point slightly far than the results of 

Johnson and Patel. This difference may come from the ghost-cell reconstruction for 

enforcing boundary condition of immersed boundaries. This computation has a six-level 

refinement, and the resolution at the neighborhood of immersed boundaries is 1/80 

diameter of the sphere. The problem size grows from 1.4 million to 5.5 million cells on a 

64-processor computation. The pressure field is contoured on the sphere surface. 

Table 4-4. Drag coefficient Cd, separation angle θ, length of the recirculation 
zone (Xs), center of recirculation zone (Xc, Yc) at Re = 200. 

 θ Xs Xc Yc Cd 
Johnson and Patel [89] 115 1.46 0.885 0.358 0.775 

Present 118 1.42 0.836 0.345 0.756 
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Figure 4-6. Pressure contour on a sphere and streamlines at Re = 200. 

4.1.3 Moving boundary 1: Rising bubbles 

In this section, several cases are presented to validate the interface-tracking 

algorithm with a dynamic adaptive refinement. These cases are buoyancy-driven bubbles 

with three sets of parameter combination between Morton number and Eötvös number. 

Computational setup is listed in Table 4-5. Here, D0 is the initial drop diameter. 

Table 4-5. Computational setup of rising bubble problems. 

 Rising bubble problem 

Morton number 0.1-103 

Eötvös number 9.71-97.1 

Density and viscosity ratio 100 

Grid  D0/Δx = 19.2 (3 levels) 

Domain 10D0x5D0x5D0 

Boundary conditions Slip boundary condition at side and bottom walls; 
Outlet boundary condition for top wall. 

Fluid boundary condition  Continuous interface method  

Lagrangian mesh modification Smoothing/refining/coarsening 

# of processor 8 
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We replicate three rising bubble computations in Singh [81] and Annaland et al.  

[90] to validate our parallel implementations, and compare terminal rising Reynolds with 

the experimental result of Grace [91]. For these cases, Morton number ranges from 0.1 to 

103 and Eötvös number from 9.71 to 97.1, which cover three types of morphological 

deformation: ellipsoidal, dimpled ellipsoidal and skirted. 

 

Table 4-6. Computation of rising bubbles: terminal shape of bubbles and 
rising Reynolds number.  

 Parameter Terminal shape Rise Reynolds number 

 M Eo  Grace 
[91] 

Annaland et 
al. [90] 

Singh 
[81] present 

(a) 1.0x10-1 9.71 Ellipsoidal 4.6 4.3 4.6 4.6 
(b) 1.0x103 97.1 Dimpled ellipsoidal 1.7 1.7 1.7 1.7 
(c) 9.71x10-1 97.1 Skirted 20 18 17.8 17.8 
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Singh [81] Present result 

Figure 4-7. Indicator function contour, mesh and bubble shape, and 
streamlines of CASE (c). 

These cases result in constant velocity, steady movements under the balance of 

buoyancy force and fluid drag. A rise Reynolds number can be defined based on the 

rising velocity and fluid properties. In Figure 4-7, indicator function at I = 0.5, mesh and 

streamlines from Singh [81] and current results are compared side by side at a steady 

movement stage of case (c). In Table 4-6, the rise Reynolds number of cases (a) and (b) is 

consistent with experimental results. For these three cases, averaged problem size is 

about 120,000, which is quite a small computation load for eight processors. 

4.1.4 Moving boundary 2: Binary droplet collisions 

These two demonstrations are cases adopted from Qian and Law [92]. Weber 

number and Reynolds number are similar between two cases but the histories of 

morphological change are very different due to impact factor. The impact factor is a ratio 

of the distance between the center of two droplets along the direction of movement and 

droplet diameter, which describes how off-axis of a collision is. Table 4-7 shows the 

detail setup of these validations. Note that four different grid resolutions are used in case 
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(a) for a grid sensitivity study. 

Table 4-7. Computational setup of droplet collision at low Weber number. 

 Case a Case b  

Weber number 61.4 60.1 

Reynolds number 296.5 302.8 

Impact factor 0.06 0.55 

Density and viscosity ratio 666.081 and 179.28 

Grid  

D0/Δx = 16 (3 levels) 

D0/Δx = 32 (4 levels) 

D0/Δx = 64 (5 levels) 

D0/Δx = 128 (6 levels) 

D0/Δx = 32 (4 levels) 

Domain 9D0x4.5D0x4.5D0 

Boundary conditions Outlet boundary condition for all sides; 

Fluid boundary condition  Continuous interface method  

Lagrangian mesh 
modification 

Smoothing/refining/coarsening and topological 
reconstruction 

# of processor 32 32 

 

Case (a) is a near head-to-head collision. The droplets merge into a single droplet 

and then the merged body breaks into three secondary droplets after a cycle of radical-to-

axial deformation. Figure 4-8(a) shows the history of interfaces during the collision. The 

second case is off-axis collision. Two droplets coalesce into a single body. It stretches 

and twists for a while, then evolves into a two-head body with an elongating ligament 

connecting the two bulkheads and ends up with seven secondary droplets. Two primary 

bulk bodies are at the end sides and a centralized body sits in the center. There are two 

smaller satellites from the ligament in between the center body and the primary bulk 

bodies. The debris having a characteristic length as the width of a local Eulerian grid may 

shrink or disappear if reconstruction is applied again. This is an inherent consequence of 
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calling the reconstruction algorithm without enough resolution on the Eulerian grid. 

When the Weber number increases further, the interfaces present much smaller, subtle 

structures that such resolution cannot resolve interface features properly. This situation 

will be shown again in chapter 5 in detail. The collision histories of case (a) and (b) from 

experiments and computations are shown at the left and right columns respectively with 

real-time notation in Figure 4-8. The difference between experimental and numerical 

results is most likely because the collision plane is not parallel to camera plane in 

experimental works such that elongating bodies rotate with respect to the observing plane 

and other axis as well. 

(a) 

 
 

(b) 

  

Qian and Law [92] Present results 
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Figure 4-8. Binary droplet collision history at (a) We = 61.4, Re = 296.5 and 
impact factor 0.06. (b)We = 60.1, Re = 302.8, and impact factor 0.55. 

A plot of Lagrangian interface, velocity vector and adaptive grid on plane y = 0 at 

non-dimensional time T* = 15.0 is shown in Figure 4-9. The adaptive grid effectively 

promotes grid around interfaces and high vorticity regions to the highest level in which 

the resolution Δx is D0/64. 

 

Figure 4-9. Top view of Lagrangian interface (grey), adaptive grid with 
velocity vector at T* = 15.0. 

The grid sensitivity analysis repeats case (a) for four sets of grid resolution D0/Δx 

= 16, 32, 64, and 128. The interface profiles from resolution level at cut plane y = 0 are 

shown together to show discrepancies. Numerical error is evaluated by comparing the 

characteristic thickness, length and width of interfaces from the results of D0/Δx = 16, 32 

and 64 with the results of the finest grid D0/Δx = 128 at three time snapshots, T* = 3.0, 

5.0, and 7.0. Arrowed markers in Figure 4-10 denote the characteristic size used in the 

error estimation. For T* = 3.0, discrepancy on the neck thickness of the lamella is 
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evaluated by  

 128 128Error abs( ) /h h h= −  (29) 

, where h128 is the neck thickness of solution with D0/Δx = 128. Similar way of error 

computation is used for thickness at the center of the merged body at T* = 5.0 and length 

and width of interface profiles at T* = 7.0. The errors from different grid resolutions are 

compiled in Table 4-8 and Figure 4-11. Based on the table we can find errors of D0/Δx = 

64 are mostly under 1% except the center thickness at T* = 5.0. From these three sets of 

numerical error, it is concluded that the simulation of this off-axis droplet collision at low 

Weber number generally converges with accuracy between first and second orders. 
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Figure 4-10. Interface profiles of case (a) on y = 0 cut plane at T* = 3.0, 5.0, 
and 7.0. Results from four resolution setups are represented by red, blue, green, and 
black lines for the finest grid D0/Δx = 16, 32, 64, 128, respectively. 
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Table 4-8. Error in the neck of the merged body at T* = 3.0, thickness at the 
center of lamella at T* = 5.0, and length and width of the merged body at T* = 7.0. 
Error is defined in Eq. (29). 

Error types D0/Δx=16 D0/Δx=32 D0/Δx=64 

Neck thickness at T* = 3.0 0.542 0.121 0.006 

Thickness at the center of the merged body  

at T* = 5.0 
0.680 0.150 0.058 

Length of the merged body at T* = 7.0 0.052 0.012 0.002 

Width of the merged body at T* = 7.0 0.039 0.010 0.004 

 

 

Figure 4-11. Error of the neck thickness and length of the merged body. 
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4.2 Performance 

We first investigate the parallel performance of the field equation solver, the 

standalone strong and weak scalabilities of the cell-based unstructured AMR method, and 

then the overall performance of the present approach for a practical problem. These 

numerical experiments were conducted on the NYX machine with the machine 

specification as addressed in section 3.4 of communication strategies.  

4.2.1 Performance of the field equation solver 

The performance of the field equation solver is evaluated by computing the 

classic lid-driven cavity flow on three grid sizes—1.6×105 cells, 1.0×106 cells, and 

4.0×106 cells—without dynamic AMR. The linear solver used here is the PETSc 

conjugate gradient method with Jacobi preconditioner [77]. Since the graph of a linear 

system of the discretized Poisson equation changes with the partitions, the iteration 

number reaching a constant rounding-error varies with the number of processors used. In 

order to control the workload spent on solving a linear system on a varying number of 

processors, the execution time of solving the Poisson equation is under the basis of the 

fixed iteration number of the linear solver. The number of iterations of the Poisson 

equation solver is fixed at a number such that the normalized residual is ensured to be 

less than 10-6. The time spent on the solver is evaluated based on a wall-clock time of 10 

time-step computation. The speedup is evaluated against a single processor computation 

for grid size 1.6×105 and 1.0×106, and an eight-processor computation for grid size 

4.0×106. A summary of information about the performance test of the field equation 

solver is shown in Table 4-9. 
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Table 4-9.  Performance test of field equation solver 

Problem definition Lid-driven cavity flow with ghost cell method for solid 
boundary conditions 

Grid size 6×105, 1.0×106, and 4.0×106 

Iteration number of 
Poisson equation solver 200, 700, and 1000 for the three sets of grid, respectively 

Time recorded Wall-clock time of 10 time-step computation 

 

Overall, parallel performance is dominant by the efficiency of linear solver, which 

is controlled by two factors: the computation-to-communication ratio and shared cache 

size per CPU. For a fixed-size problem, increasing the number of processors decreases 

computation-to-communication ratio, and results in the slowdown of speedup. In case of 

shared cache effect, its impact on the parallel performance is related to the size of the 

working data in solving a linear system. A typical parallel program assigns a fraction of 

the entire data to each processor. However, the entire data set does not fit into the cache 

on a single processor execution but a parallel run executing with the same problem on 

multiple processors may have working data assigned to each processor that can fit in its 

local shared cache. In case of a computation having fully cached decomposed working 

data, a high hit rate and super-linear speedup are achieved. 

Figure 4-12 shows the speedup of three cases. Favorable speedup is observed. 

Due to decreasing computation-to-communication ratio, speedup slows down with the 

increasing number of processors on 16 processors and 80 processors for grid sizes 

1.6×105 and 1.0×106, respectively. For grid size 4.0×106, we see a large processor count 

outperform a small processor count because of cache effect. For an eight-processor 

execution, this problem has the working data of linear system solver excessively larger 

than the 8M-bytes L3 cache and results in a significantly low cache hit rate that 
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overestimates the speedup of multiple-CPU computation. The deterioration of efficiency 

arising from the decreasing computation-to-communication ratio is not observed in the 

scope of 240 processors. 

 

 

Figure 4-12. Speedup of the field equation solver for grid sizes 1.6×105, 
2×106 ,and 4×106.  

Figure 4-13 is the parallel efficiency based on the number of cells per processor. 

The flow solver has the best efficiency of 1.0-2.0×104 cells per processor. A degrading 

efficiency due to a decreasing computation-to-communication ratio is around 1.0×104 

cells per processor. Using a large number of cells per processor has the efficiency around 

1 but has an unfavorable cache hit rate for the procedure of solving the Poisson equation. 
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Figure 4-13. Parallel efficiency with respect to the number of cells per 
processor. The best usage of computational power of field equation solver is at 
10,000 to 20,000 cells per processor. This range is determined by two factors: the 
computation to communication ratio and cache size of a system. 

4.2.2 Performance of cell-based unstructured AMR 

We study the parallel performance of AMR by conducting both strong and weak 

scaling studies for the present AMR approach. The refinement (or coarsening) is applied 

on an initial uniform grid by the random assignment of adaptation flags on every partition. 

We use a random assignment of the adaptation flag such that run time spent on the 

repartition is small and consequently data redistribution is not dominant. Each partition 

obtains 2% of cells having refinement flags that produce 14% of grid size increment, and 

the spatial distribution of the applied refinement is arbitrary. In the strong scalability test, 

we start with a grid size 8.19×106 and then reach about 9.3×106 after AMR. Because the 

data packing of our approach is unstructured and cell-based, the number of refinement 

levels in a domain will not affect the data-fetching rate theoretically. Hence, this 

experiment is considered one level of refinement. The characteristic of performances is 
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applicable to cases having multiple-levels refinement. Table 4-10 summarizes  the setup 

of AMR performance test. 

Table 4-10. The setup of strong and weak scaling tests of AMR 

 Strong scaling Weak scaling 

Problem definition Random-assigned refinement 
2% of Eulerian cells are refined. 

Procedures involved Adaptive flag assignment, remeshing, data redistribution, 
load balance, reorder cell, sub-domain construction 

Grid size (cells) 8.19×106  9.3×106 6.4×104/processor 

# of processor used 8-192 8-128 

 

Three primary sub-procedures compose an AMR operation: adaptation flag, 

remeshing, and construction of a new sub-domain. Remeshing includes the parallel local 

grid generation and updating of the global Eulerian graph (connectivity). The 

construction of new sub-domains includes reordering of cells, load balancing by 

ParMETIS, defining the overlapping zone between partitions, data redistribution, and 

defining new sub-domain data/variables. We investigate the strong scalability on the last 

two primary procedures, remeshing and sub-domain construction. Figure 4-14 presents 

the overall strong scalability of remeshing and sub-domain construction. These two sub-

procedures of AMR contribute comparable wall-clock time in all cases. The speedup of 

the AMR slows down around 64 processors and then levels off at 128 processors. The 

overall efficiency of AMR is 0.68 at 128 processors. The cause of slow down on 

remeshing is mainly due to serial operation on updating the global Eulerian graph. Other 

overheads in AMR come from all-to-all communication. All-to-all communication is 

used by the reordering cell in the sub-domain construction. When it is used to scatter 

large data, it causes a significant deterioration of performances, and even worse deadlock. 
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Figure 4-14. Wall-clock time of an AMR operation on strong scaling basis. 
The original grid size is 8.19×106, and 2% of grid points are refined. Remeshing and 
sub-domain construction scale up to 128 processors with efficiency about 0.68. All-
to-all communication is the major cause of overhead in the remeshing and 
reordering procedures.  

We study the weak scalability of the AMR by fixing the grid size per processor to 

6.4×104. A weak scalability can provide a useful understanding on the feature of the 

current cell-based unstructured AMR. Especially, a program using intense far-end 

communication, such as all-to-all communication, should show an unfavorable weak 

scalability. This type of communication is adopted in updating the global Eulerian graph 

and reordering the cell of an entire domain. On the other hand, tasks involving near-end 

communication are generally free from communication overhead, and thus favorable 

weak scalability is expected. 

In this experiment, the number of processors involved spans from 8 to 128, which 

has a total grid size range from 5.12×105 to 8.192×106. When doubling the number of 

processors used, we double the width of the computational domain in one spatial 

direction. We utilize ParMETIS to initialize grid decomposition, and it results in a nearly 
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identical grid size per partition. Every processor assigns an adaptation flag randomly on 2% 

of the cells in its own partition. Each experimental test is repeated five times, and an 

averaged wall-clock time is recorded. We calculate the time required to complete the 

following procedures: adaptation flag, local grid generation, update global grid, reorder 

cell, load balance, data redistribution, and sub-domain construction. The efficiency is 

calculated based on an eight-processor computation. 

Overall, the efficiency of AMR is 0.99, 0.73, 0.48 and 0.26 at 16, 32, 64, and 128 

processors (Figure 4-15). However, when looking at each procedure, adaptation flag and 

data redistribution scale to 128 processors. These two procedures have communication 

only with its neighbors. The efficiency of local grid generation and sub-domain 

construction reaches 0.5 at 128 processors. As the number of processors is increased, 

“update global grid” and “reorder cell” become the most inefficient procedures. Serial 

computation and communication overhead are primary sources of overhead in these two 

procedures. We use serial operations on some part of updating the global grid, and all-to-

all communication to renew the global indices. Because of using the all-to-all 

communication, we observed that majority of communication overhead comes from the 

saturation of system send buffer. Due to the large amount of data and message counts, a 

“send” may be idle on waiting for an available system buffer. Even with the non-blocking 

communication routines, messages are delayed due to insufficient system buffer memory. 

In some cases, we can alternatively circumvent the requirement of all-to-all 

communication by serial computation on the global grid data in every processor, but this 

approach incurs serialization such that it hampers the speedup. Using user-provided 

buffering, such as the MPI_Bsend, may amortize this problem. 
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Figure 4-15. The efficiency of an AMR operation on a weak scaling basis. 
The total wall-clock time of one AMR operation is 2.79, 2.83, 3.85, 5.74, and 10.83 
seconds for 8 to 128 processors respectively. The procedures “Adaptation flag, ” 
“Local grid generation, ” “Data redistribution, ” and “Sub-domain construction” 
using the near-end communication pattern scale better than those counterpart 
procedures using all-to-all communication, such as “Updating global grid” and 
“Reorder cell. ” Updating global grid is the major performance hurdle due to 
serialization and communication overhead. 

 

Figure 4-16. Breakdown of an AMR operation under a weak scaling basis. 
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4.2.3 Strong scaling on a practical problem: An off-center binary droplet collision 

We use a practical example, the binary droplet collision to illustrate the overall 

performance of the parallel adaptive Eulerian-Lagrangian method. This investigation 

concentrates on the parallel performance of the AMR, interface tracking method and field 

equation solver. The performance is highly dependable on the effectiveness of the 

decomposition of the Eulerian and Lagrangian domains and communication. The 

computational setup is listed in Table 4-11.  

Table 4-11. Conditions and parameters of the performance test using 
adaptive Eulerian-Lagrangian interface tracking method. 

Problem definition Off-axis binary droplet collision; 
Re = 302.8, We = 60, and  impact factor 0.55 

Resolution D0/Δx = 128 (six-level refinement) 

Grid size Eulerian cells: 2.2×106; 
Lagrangian marker : 3.9×105 

# of processors used 8-192 

Time recorded Wall-clock time of 62 time-step computation 
including 18 times of AMR 

Procedures involved 

Field equation solver (Eulerian) 
Interface tracking (Eulerian-Lagrangian) 
Lagrangian mesh modification (Lagrangian) 
AMR 

 

Figure 4-17 is a snapshot of interfaces with a sliced view of adaptive Cartesian 

grid at Weber number 60, Reynolds number 302, and impact factor 0.55. The AMR 

algorithm effectively refines the grid at the fluid boundaries and coarsen the grid where 

grid resolution is not demanding. 
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Figure 4-17. Two droplets collide eccentrically to each other at We = 60.1 and 
Re = 302.8 with six-levels of refinement. Initial grid size is 2.2×106 cells. This 
computation involves moving interface tracking, Lagrangian mesh modification 
(coarsen, smooth, and refine), interfaces reconstruction algorithm, and AMR 
techniques. This simulation takes about 4 days to complete a serial computation. 
With the parallel implementation on 32 processors, it takes about 3.5 hours. 

In this experiment, the wall-clock time for the 62 time-step computation is 

recorded, while the AMR is applied 18 times. The AMR operation invokes geometry-

based adaptation around moving Lagrangian interfaces at every 4 time-steps and 

solution-based adaptation at every 20 time-steps. This setup is for evaluating the 

performance of the AMR, but usually, we use larger spatial range of refinement to ease 

the need of the geometry-based adaptation or less AMR check frequency to maintain a 

favorable overall efficiency. We evaluate the strong scalability for an initial grid of 

2.2×106 cells with a six-level refinement. The problem is run on 8 to 192 processors. 

Figure 4-18 and Figure 4-19 describe the execution time of these primary procedures. We 

categorize these procedures according to their computation frame: interface shape 

modification (Lagrangian); surface tension computation, marker movement and material 

determination (Eulerian-Lagrangian); Cartesian grid solver (Eulerian); and AMR. AMR 

shows the least speedup, which levels off after 32 processors. The reason for the low 

AMR efficiency is a consequence of load imbalance due to localized adaptation around 

the interface and the least computation-to-communication ratio. Frequent request of 
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AMR also increases the ratio of serial computations in the simulation. The computation 

time of AMR is 4% to 13 % of the total wall-clock time. Even with such frequent calling 

of the AMR algorithm, the field equation solver still uses the majority of the wall-clock 

time.  

The Lagrangian procedure, which is the interface modification including 

smoothing, refining, and coarsening of the Lagrangian interface occupies a nearly 

constant portion of the total wall-clock time among all the test runs, and its speedup 

levels off at 128 processors. Of all the tests, every processor has a partial of the 

Lagrangian interface, but the load of the Lagrangian computation is not ideally balanced. 

This is one of the reasons for the quick slowdown of its speedup. 

We observe that surface tension computation costs 20% to 23 % of the wall-clock 

time, while the Eulerian-Lagrangian computation uses 40% to 43 % of the wall-clock 

time. Overall, the Eulerian procedures scale well as we observed in the standalone test of 

the field equation solver, and the Eulerian-Lagrangian procedure shows a lower parallel 

performance than the Eulerian procedures, which is mainly due to the lower computation-

to-communication ratio. The influence of load imbalance on the performance of the 

Eulerian-Lagrangian tasks is not as much as that of the computation-to-communication 

ratio since the trend of wall-clock time descends in a similar rate as the Eulerian task. The 

slowdown is a consequence of frequent data exchange between the Eulerian and the 

Lagrangian domains. This observation implies that without the decomposition of the 

Lagrangian interfaces based on the locality of markers, the Eulerian-Lagrangian tasks 

will suffer with more severe communication overhead, and have worse performances for 

cases using a large number of processors. 
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Figure 4-18. Execution time of the Eulerian-Lagrangian method for a binary 
droplet collision computation. The original grid size is 2.2×106. Overall efficiencies 
are 0.65 and 0.48 at 64 and 128 processors, respectively. Procedures are categorized 
into four task groups. Eulerian (E): the field equation solver; Eulerian-Lagrangian 
(E-L): the marker movement, cell material determination, and surface tension 
computation; Lagrangian (L): the interface shape modification; AMR: the adaptive 
mesh refinement. 

In summary, the parallel performance of each group is proportional to its 

computation-to-communication ratio, in a descending order as Eulerian, Eulerian-

Lagrangian, Lagrangian and AMR. This observation suggests that for a fixed-size 

problem, the Eulerian-Lagrangian method has a performance upper bound, which is the 

performance of the Eulerian tasks. Of course, the parallel performance of the Eulerian-

Lagrangian method is dependent on the size and distribution of the Lagrangian interfaces 

in an Eulerian domain, but the overall efficiency will not exceed the efficiency of the 

field equation solver regardless of the parallelism adopted for the Lagrangian interfaces. 

An ideal load-balanced algorithm for the Lagrangian interfaces will not benefit the 

overall performance so much due to its low computation-to-communication ratio. In 

contrast, the communication due to Eulerian-Lagrangian interactions is the primary 
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overhead for large problems or processor counts. 

 

Figure 4-19. Breakdown of execution time of the Eulerian-Lagrangian 
method for a binary droplet collision computation. Eulerian (E): the field equation 
solver; Eulerian-Lagrangian (E-L): the marker movement, determination of cell 
material, and surface tension computation; Lagrangian (L): the interface shape 
modification; AMR: the adaptive mesh refinement. 
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Chapter 5. 

Droplet collision at high Weber number regime 

We are interested in the breakup of droplets and liquid jets at higher Weber 

number regimes to understand the competing mechanisms behind the morphology and 

develop more accurate atomization models. Qian and Law [92] were the first to 

experimentally determine the collision regimes according to the impact factor at low 

Weber number, as shown in Figure 5-1. The range of Weber number is below 100. Later 

many numerical studies were conducted to replicate droplet collisions at the same 

conditions of Qian and Law [8, 61, 93, 94]. Studies using VOF [94], level-set [93] and 

front-tracking methods [8] can successfully resolve most features of interfaces which 

have been shown in the experimental works. 

 

Figure 5-1. Binary droplet collision regimes as function of the impact factor 
and Weber number Morphologies at high Weber number regime are still unclear. 
Reproduced from Qian and Law [92]. 

Pan et al. [62] presented experimental measurements of higher speed, binary 
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head-on collision at Weber number ranging from 200 to 5000. The experiments show 

interface expansion, fingering, retreating and prompt splattering as Weber number 

increased. The collision outcome is similar to the droplet splashing on solid plates 

without the surface roughness and wetting effect of the solid phases. Due to high speed 

and small length scale, the experimental images provide little information for the 

understanding of interface breakup mechanisms. The colliding droplets experience 

coalescence, violent deformation, and then breakup. The size of shattered satellite 

droplets is dramatically reduced such that a multi-scale resolution is necessary. Three-

dimensional numerical solution for high Weber number collision is also absent in the 

present time since considerable computational power and modeling accuracy are required. 

As a result, by using the parallel adaptive Eulerian-Lagrangian method, this study aims to 

simulate some of droplet collision cases at this Weber number regime, tries to provide 

insightful detail of interface instabilities, and addresses the competing mechanisms 

defining the primary breakup. 

Table 5-1. Conditions of droplet collision including We, Re, Oh, morphology. 

 We Re Oh 
Morphology 

Rim on the 
sheet 

Rim 
detachment Fingering Breakup Aggression 

1 210 2982 0.0049 √    √ 
2 277 4686 0.0036 √  √ √ √ 
3 442 6207 0.0034 √  √ √  
4 688 6207 0.0042 √  √ √  
5 878 6650 0.0045 √  √ √  
6 1176 7700 0.0045 √ √  √  
7 1520 8750 0.0045 √ √  √  

Table 5-1 tabulates the dimensionless parameter based on the initial droplet size 

and collision velocity, and collision results. The two phase are air at room temperature 
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and water with surface tension coefficient 0.065 N/m, density 998 kg/m3, viscosity 0.01 

N/m2-s. The range of Weber number is from 200 to 1500 and Reynolds number is from 

2x103 to 8x103. The Ohnesorge number is in the order of 10-3, which implies the viscous 

effect is a minor factor of the global collision outcome, and inertia and surface tension 

forces are dominant. For Oh < 10, a thin liquid sheet always has a rim attached to its edge 

due to the surface tension forces [95]. Free surface instability is observed on the toroid 

rim. 

Table 5-2. Velocity, physical length, and time scale of the experiments, and 
numerical resource used in the computation. 

We Collision 
velocity 

Initial 
diameter D0 

time 
scale 

Averaged 
secondary 

droplet size 

Baseline grid 
size 

Max total 
grid size 

Resolution, 
D0/Δx 

210 3.89 m/s 1.0 mm 

0.1-1 ms 

N/A 

E : 2.4x106 
L : 2.9x105   E: 2.2x107  

L: 2.5x106  

128 
277 4.26 m/s 1.1 mm 523 μm 
442 5.13 m/s 1.2 mm 428 μm 
878 9.50 m/s 0.7 mm 108 μm 
1176 11.0 m/s 0.7 mm 28.7 μm E : 5.5x106 

L : 6.7x105   
192 

1520 12.5 m/s 0.7 mm 16.0 μm 192 

Assessing interface evolution under these conditions is extremely challenging 

because of the time and length scales of collision processes. Table 5-2 shows the physical 

time and length scales, velocity in the experiments, and numerical resources used in the 

computation. Droplet diameter in the experiments is about 1 mm while the collision 

velocity is in the range of 4-12 m/s. The time from droplet coalescence to the primary 

breakup is less than one millisecond. Both experimental and numerical results show that 

the secondary droplet size is reduced as Weber number is increased. For Weber number 

1520, the averaged secondary droplet diameter is 16 micrometer and the size distribution 

is 4-25 micrometer, which is close to the finest grid width in this computation (equivalent 
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to 3.6 μm). The physical time scale is about 0.1 millisecond from coalescence to primary 

breakup. 

The cell-based unstructured AMR effectively manages the computational 

resources with moving boundaries during the computation. Figure 5-2 shows that the 

Eulerian grid size dynamically increases from 2.4 million to 12 million for case 3 (We = 

442 and Re = 6207) as the circular disk diameter expands. In case of We 1520, the size of 

the initial Eulerian grid and Lagrangian markers are 5.5x106 and 6.7x105 respectively, 

and they increase to 2.2x107 and 2.5x106 in the end of simulation. This case uses seven-

level refinement on a 20D0x20D0x20D0 domain, where D0 is the diameter of a droplet. 

For equivalent spatial resolution, a simulation using a uniform grid would require 

approximately 56 billion cells - more than an order of magnitude larger than the largest 

grid with AMR. This clearly shows the advantage of adaptivity for multi-scale, moving 

boundary problems. 

 

Figure 5-2. Grid size and dimensionless circular disk diameter (normalized 
by the initial droplet diameter) with respect to the dimensionless time T* = tU0/D0. 
The growth rate of grid size follows the size of the interface. 
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Figure 5-3. Interfaces, adaptive grid with seven-level refinement, and 
pressure contour on z = 0 and r-z cut-planes of case 7 (We = 1520) at T* = 0.084 ms.  

Figure 5-3 (a) and (b) are the interfaces, adaptive Cartesian grid, and pressure 

contour on z= 0 and r-z cut-planes of the We=1520 case. This snapshot is after the 

breakup of the detached rim (see Appendix Case 7). The rim separation from the circular 

sheet and wavy structures are observed along the circumference of the rim. This rim 

breaks into hundreds of satellite droplets similarly to a single water jet breaking up after 
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coming out of a faucet. The end-pinching effect generates another rim on the liquid sheet 

again. Pressure inside liquid droplets is higher than surrounding environment due to the 

surface tension force. 

5.1 Collision history 

Figure 5-4 shows snapshots of the interfaces after the collision for the simulation 

along with experimental images. The impinging flow from both sides of two droplets 

extrudes a circular sheet at the waist of the merged body and expands with a growing rim 

at the fringe of the sheet. When the circular sheet is expanding, perturbations along the 

periphery of the rim (longitudinal direction) are observed. Thinning and necking effects 

may generate finger-like structures and further break the rim into satellite droplets. The 

diameter of the extruding sheet, instability pattern, size and distribution of satellite 

droplets are qualitatively matched with experiments. More detailed collision histories for 

case 1, 2, 3, 5, and 7 are available in Appendix A. 
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(a) Case 1: We = 210, Re = 2890 
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(b) Case 2: We = 277, Re = 4686 
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(c) Case 3: We = 442, Re = 6207 

 

(d) Case 5: We = 878, Re = 66650 
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(e) Case 7: We = 1520, Re = 8750 

Figure 5-4. Collision history of different conditions. Numerical works are 
shown underneath experimental pictures at the corresponding physical time. 
Experiment pictures adopted from Pan et al. [62]. 

5.1.1 Breakup diameter of circular sheet 

Figure 5-5 shows the breakup diameter normalized by initial droplet diameter D0 

versus Weber number. The breakup diameter measures the distance from the circular 

sheet to the collision center when the primary (first-time) disintegration of the merged 

droplet happens. The result from case 7 (We = 1520) has larger breakup diameter than the 

experiment result since in our simulation the prompt splattering is not observed. Apart 

from this, the breakup diameter is consistent with experimental results. Computation of 

case 7 uses a grid with resolution Δx = D0/192. A finer grid such as Δx = D0/256 should 

be tested to see if the prompt splattering can be captured.  

The distribution of breakup diameter of the experimental work fluctuates for 

Weber number less than 1200. It may be due to the difficulties to control exact head-to-

head collision. The droplet diameter in experiments is 0.7mm~1mm and droplets are 

accelerated by high-speed impinging air with velocity 4-12 m/s. It is challenging to 

control head-on collision precisely under those conditions. The uncertainty of 
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experimental values is shown in the figure. 

 

Figure 5-5. The breakup diameter versus Weber number. Experimental data 
reproduced from Pan et al. [62]. 
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5.2 Observation of interface evolution 

The result of the droplet collision is coalescence of the impacting droplets for all 

conditions at the beginning of the interface interaction. Bouncing back does not happen 

since surface tension is relatively small at higher Weber number regimes. As the droplets 

merge and continue to squeeze each other, a circular sheet is extruded like a jet. The 

circular sheet expands in a nearly axisymmetric manner with small perturbations on its 

periphery. A circular rim at the fringe of the circular sheet gradually grows due to the 

end-pinching effect of the surface tension force, which is so called Taylor-Culick rim (TC 

rim) [64, 65, 96]. Figure 5-10 shows the structure of the TC rim with the circular sheet. 

Disturbances along the rim are progressively amplified at the same time. For lower inertia 

conditions, such as We < 1000, the diameter of the rim increases as long as the circular 

sheet is connected with it, and thinning and necking effects happen due to the surface 

tension forces along the longitudinal direction shape the Taylor-Culick rim to be a 

nodule-like structures. This is a typical process of Rayleigh-Plateau instability [63, 97]. 

Furthermore, the rim and sheet may retreat at later time, and the retraction of the circular 

sheet together with the necking effect on the rim isolate the nodule-like structures, which 

is so called “fingering” (Figure 5-4(c) and Appendix Case 3). The result of fingering is 

that the rim breaks into liquid ligaments or smaller secondary droplets. In case of high-

inertia collision, such as case 6 and 7, the rim separates from the circular sheet at very 

early times since surface energy force cannot hold the inertia of the rim. Retraction and 

the fingering effect are not observed for these two cases, and Rayleigh-Plateau instability 

alone determines the evolution of breakup process (Figure 5-4(e) and Appendix Case 7). 

A summary of the overall interface evolution for Weber number from 200 to 1500 is in 

Figure 5-6.  
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Generally, the processes of droplet collision are coalescence, deformation, and 

breakup. The global outline of the merged droplet linearly evolves with respect to time at 

the initial coalescence stage, especially before the extrusion of the circular sheet. 

Roisman et al. concluded that for high-enough Weber and Reynolds numbers, the flow 

far from the sheet edge generated by droplet collision is universal, almost independent of 

Weber and Reynolds number, and the characteristics of Taylor-Culick rim and circular 

sheet are determined by the edge effects such as end-pinching [98].  

 

Figure 5-6. Summary of interface evolution. 

Our results qualitatively agree with this conclusion. In the past, models 

simplifying the shape of the merged body as a pancake and using the energy conservation 

between surface energy and kinetic energy [62, 99] are not suitable approximations for 
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high Weber number droplet collision. In the high-inertia situation, the liquid sheet is very 

thin with a bulk rim attached, which invalidates the usage of the pancake model. The 

disintegration of the merged droplets is our primary interest. We will focus on the 

dynamics of the rim and instabilities for the determination of the size and distribution of 

the secondary droplets. 

5.3 Nonlinearity of disturbances 

The longitudinal instability on the Taylor-Culick rim is nonlinear at high Weber 

number regimes. There are two numerical factors affecting the instantaneous amplitude 

of disturbances: grid resolution and convergence error. Grid resolution effects include the 

discretization error and numerical accuracy of Lagrangian interfaces. The convergence 

error refers to residual errors of solving pressure Poisson equation, which combines 

effects of different linear system of equation due to different processor/node combination 

(the graph of linear system), round-off errors, and the usage of AMR in the computation. 

In this section, we first look at the effect of grid resolution on the evolution of the circular 

sheet and the disturbance on Taylor-Culick rim, and then exam the influence of the 

convergence error to the disturbances. 

5.3.1 Grid dependency 

The grid resolution effect is investigated by varying the finest-level grid size 

(D0/Δx = 64, 128, and 192) and fixing the processors used and convergence criterion of 

the pressure Poisson equation in the computation. The interface profiles of case 1 (We = 

210 and Re = 3890) at the r-z cut-plane are provided in Figure 5-7. Profiles from results 

of different grid resolutions are superimposed on each other for showing grid dependency. 
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Before T* = 3.0, the interfaces from the finest and median resolution grid are nearly 

overlapped, but solutions from the coarsest grid show delay of circular sheet expansion. 

At time T* = 4.0, the amplitude of longitudinal disturbances of the finest grid are stronger 

than the median and coarsest grid. Note that T* = 4.0 is already at rim retraction stage. 

More profound delay of interface propagation and diffusion of instabilities are observed 

for the two coarser grid at T* = 5.0. Since the continuous interface method is used for 

modeling the discontinuity of phase boundaries, a finer grid gives shaper presentation of 

surface tension forces such that shaper surface tension force induces higher amplitude of 

instabilities and faster circular sheet retraction. Numerical viscosity also smears the 

disturbances on the TC rim. Figure 5-8 is the interface profiles on z = 0 cut-plane at T* = 

1.0, 3.0, and 5.0 and wavenumbers per radian on the periphery of the circular sheet at T* 

= 5.0. At T* = 5.0, the disturbances at the fringe of the circular sheet from the finest-grid 

solution is smaller than results from the coarser grids. It is due to the fact that the circular 

sheet already retreats to smaller radius, which may suppress the growth of disturbances 

on the rim as concluded by Agbaglah et al. saying that thicker rim attenuates the 

instabilities [100]. 

The normalized power versus wavenumbers of three resolution level at T*=5.0 

shows no trend of convergence, but the range of wavenumbers are consistent. One of the 

reasons of this inconsistency is the resolution of surface tension force. The amplification 

of the interface instability is driven by surface tension force, whose sharpness is 

determined by the grid resolution. As the surface tension force is smeared to 4-cell width 

across the interfaces due to the continuous interface method, the amplitude of 

wavenumber may evolve to a different pattern due to surface tension forces varying with 
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grid size. This speculation can be validated by using the sharp interface method for 

moving fluid boundaries with increasing resolution level to see whether the wave 

amplitude converges.  
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Figure 5-7. Interface profiles on r-z cut plane of case 1: We = 210 and Re = 
3890. T* is dimensionless time as T* = tU0/D0. 
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Figure 5-8. Interface profiles on z = 0 cut-plane and normalized power of 
wavenumbers per radian at T* = 5.0.  

5.3.2 The effect of residual error 

In addition to the grid resolution effect, the convergence error of the pressure 

Poisson equation can change from computation to computation. Varying residual of 

solving different linear system of equation of pressure Poisson equation results in 

different instantaneous disturbance pattern under the high Weber number condition. It is 

difficult to verify whether the AMR gird, round-off error from different processors, or 

different linear system for the Poisson equation is the deterministic factor to the growth 
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of the disturbances, but all of these factors contribute to numerical error in the iterative 

solver. Here we use an experiment to show how the residual errors affect the disturbance 

on the Taylor-Culick rim. Two problems with identical grid configuration and conditions 

(case 4, We 688) are solved by two computational setups, a 192-processor and a 224-

processor run. The convergence criterion of the linear solver is 10-6. Disparities of the 

disturbance on Taylor-Culick rim are shown in Figure 5-9(a). At T* = 2.4 (the 2063rd 

time step), the ranges of spectrum are similar, but the power spectrum of 192-processor 

computation is more even than that of the 224-processor computation. This example 

shows that the instantaneous distribution of the longitudinal instability is sensitive to the 

residual error at the evolving phase. In addition, the maximum amplitude of the 

instabilities from two computational setups has similar magnitude as shown in Figure 

5-9(b). This observation suggests that the residual error influences the spatial distribution 

of the disturbances, but the overall instability growth rate in two computational setups is 

similar. Therefore, the computational setup is not influential to the timing of the primary 

breakup (or the breakup diameter of Figure 5-5). In summary, although the computational 

setup of a simulation affects the spatial distribution of the disturbances, the current 

numerical framework can reasonably resolve the dynamics of the nonlinear disturbances 

under the high Weber number conditions. 
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192 processor 

 

 

224 processor 

(a) 

 

(b) 
Figure 5-9. Disturbances on the Taylor-Culick rim for case 4, We 688: (a) 

interfaces and spectra (b) amplitude of disturbance represented by the radius from 
the circular sheet fringe to the collision center of 192-processor and 224-processor 
computation at T* = 2.4. 
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5.4 Droplet disintegration 

5.4.1 Dimensionless analysis 

The variables in the following context are normalized by the diameter of the 

original droplet D0, collision velocity U0, and the time-scale of 0 0 0/D Uτ = . Inertia and 

surface tension are the main competing forces on the dynamics of the TC rim and the 

circular sheet. Ohnesorge number of these cases based on global length scale D0 is about 

O(10-3) (shown in Table 5-1). Viscous resistance is relative insignificant with respect to 

the surface tension forces globally. Other variables used in the following context are the 

rim velocity rimU  and diameter rimD , sheet thickness h  and velocity sheetU  at the neck of 

liquid sheet (indicated in Figure 5-10), the distance of TC rim to the droplet center rimR , 

and maximum rim distance maxR , which are all normalized by D0 and U0, as shown in 

Table 5-3. These dimensionless variables used are illustrated in Figure 5-11 to Figure 

5-19.  

Table 5-3. Relevant dimensionless parameters used in the analysis of binary 
droplet collision flows. 

parameter Definition 

0D =1 Initial droplet diameter 

0U =1 Initial collision velocity 

0 0 0/D Uτ =  Time scale of collision 
*

0/  rim rimD D D=  Diameter of the Taylor-Culick rim 
*

0h = /h D  Sheet thickness at rimD  away from the inner edge of the rim 
*

0/sheet sheetU U U=  Sheet velocity at rimD  away from the inner edge of the rim 
*

0/rim rimU U U=  Velocity at the center of the Taylor-Culick rim 
*

0/TC TCU U U=  Normalized Taylor-Culick velocity on the TC rim 
*

0/rim rimR R D=  Rim distance, from the droplet center to the center of the rim 
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*
max 0/maxR R D=  Maximum distance from the collision center to the rim  

 

A characteristic velocity, called Taylor-Culick velocity in Eq. (30) is the 

asymptotic, retreating velocity of a free liquid edge in the long time limit [65], and 

independent of viscosity [83].  

 2
TCU h

σ
ρ=  (30) 

In our cases, the normalized Taylor-Culick velocity, *
0/TC TCU U U= , based the circular 

sheet thickness at the neck of the rim, is around 0.5 to 0.6. We measure the circular sheet 

thickness at the neck of the Taylor-Culick rim and found that it is nearly constant at the 

circular sheet expansion phase. 

The other characteristic time scale cτ  is liquid capillary time scale based on the 

sheet thickness h and Taylor-Culick velocity, as shown in Eq. (31). 

 3 /c hτ ρ σ=  (31) 

This capillary time scale ranges from 0.01 to 0.04. It is relatively small compared with 0τ . 

In the interface profile plot of Figure 5-7 (T*=5.0), we can observed the capillary wave 

disturbance on the circular sheet. Capillary time scale of the current system implies that 

the capillary wave propagates from one end to the other end of the interfaces in a very 

short time (much faster than the collision process). 
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Figure 5-10. Movements and instabilities on the Taylor-Culick rim and the 
circular sheet. 

5.4.2 Dynamics of the Taylor-Culick rim and the circular sheet 

The flow field far away from the edge of the extruding sheet is universal, but the 

rim diameter, distances from the original droplet center, and sheet thickness are 

dependent on Weber and Reynolds numbers. This observation is consistent with the 

conclusion by a similarity approach of Roisman et al. [98]. Figure 5-11 to Figure 5-13 

show the time history of variables for case 3 (We 442), 5 (We 878), and 6 (We 1176). 

These cases present typical phenomena including the TC rim expansion and retraction 

(Figure 5-11 and Figure 5-12) and detachment of the rim from the circular sheet with 

instabilities resulting in primary breakup (Figure 5-13). In case 3, the TC rim and the 

circular sheet experience expansion and retraction while the corrugations on the rim are 

onset. Case 5 shows the amplification of the disturbances on the TC rim and breakup of 

TC the rim before the retraction phase. Case 6 has the TC rim separated from the circular 

sheet at T* = 0.77 due to high inertia. 

During the collision, the circular sheet is continually thinning, expanding with 

decreasing velocity. As shown in Figure 5-11 and Figure 5-12, the circular sheet 

approaches a nearly constant thickness at its neck. This interesting observation is 
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analogous to a thinning sheet of a droplet colliding upon a solid wall. Egger et al. [101] 

stated that a droplet impacting on solid surface stops thinning when the free surface meet 

the boundary layer. The thickness of the thin film is proportional to 2/5Re− as boundary 

layer thickness. 

 2/5
0 / Refh D≈  (32) 

Note that fh represents the thinnest thickness of an impacting droplet on the solid 

wall. In case of two droplets impinging each other, there is no boundary layer to be the 

thickness limit of liquid sheet. In Figure 5-11 and Figure 5-12, the circular sheet reaches 

a nearly constant thickness at the neck of the rim right after the spreading of the circular 

sheet. There seems to be an equilibrium status around the connecting point between the 

liquid sheet and the TC rim. It can be a consequence of force balance between the surface 

tension force from end pinching effect and momentum transportation via the viscous 

force. When the sheet thickness h at the neck (definition of h is illustrated in Figure 5-10) 

is plotted against We·Re, an inverse linear relationship is shown in Figure 5-14. A linear 

fit is provided as 

 1.012(We Re)h −∝  (33). 

We don’t know the exact reasons behind this observation yet. Further investigation is 

needed to explain this relationship. 

In Figure 5-11 and Figure 5-12, the velocity difference between the TC rim and 

the circular sheet approaches a constant value. If the velocity of the rim is observed on 

the frame of the circular sheet, nearly constant speed of the rim is observed. This is 

similar to the model of a static liquid film retraction from Culick’s analysis. We may 



120 
 

compare the velocity difference with the Taylor-Culick velocity defined in Eq. (30). 

Figure 5-15 is the relative velocity of the TC rim and the liquid sheet together with 

Taylor-Culick velocity based on the thickness of the sheet of case 3. The TC velocity are 

0.53 based on sheet thickness 0.016 in case 3 (Figure 5-11). The deviation between the 

rim-to-sheet velocity and the Taylor-Culick velocity is about 0.2. Discrepancy may come 

from incompatibilities of the assumptions. The sheet thickness is a function of space and 

time in the computational results and is inconsistent with the assumption of static, 

constant and infinite flat sheet as in the analysis of Culick [65]. 
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Expansion phase at T* = 4.0 

 

Onset of retraction at T* = 6.0 

 

Retraction phase at T* = 8.0 

Figure 5-11. Distance, thickness, and velocity of the rim and the sheet of case 
3. Three representative snapshots at T*=4.0, 6.0, and 8.0 show the location of TC 
rim and longitudinal instabilities on the rim. 
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Expansion phase at T* = 2.3 

 

Expansion phase at T* = 3.3 

 

Onset of retraction at T* = 4.3 

Figure 5-12. Distance, thickness, and velocity of the rim and the sheet of case 
5. Snapshots of the expansion phase at T*=2.3, 3.3 and the onset of retraction at T* 
= 4.3 are shown. 
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Figure 5-13. Distance, thickness, and velocity of the rim and the sheet of case 
6. A top view of the circular sheet, TC rim, and detached rim at T* = 1.5 is shown. 
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Figure 5-14. Sheet thickness as a function of We*Re. 

 

 

Figure 5-15. Velocity difference between the TC rim and the circular sheet 
and Taylor-Culick velocity estimated by instantaneous sheet thickness of case 3. 
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The TC rim is subject of three phenomena. First, the TC rim expands for a while, 

and then retracts back by surface tension forces if the rim still attached to the circular 

sheet. Second, the diameter of the TC rim grows as it propagates. The increasing size of 

the TC rim is related to the velocity difference at the center of the rim and the sheet 

velocity. The TC rim moves slower than the sheet that results in liquid accumulation in 

the TC rim. Third, there is longitudinal instability on the TC rim. The evolution of the 

longitudinal (along-the-edge) disturbances can be anti-symmetric perturbations as 

Rayleigh-Taylor (RT) instability and symmetric perturbations governed by the Rayleigh-

Plateau (RP) instability [63, 100].  

Acceleration of the TC rim results in RT instability. As a result, the origin and 

amplification of RT instability can be qualitatively argued by checking the magnitude of 

acceleration at the front edge of the circular sheet. A head-on droplet collision generates a 

radial jet as the redirection of impinging flow at the initial stage. This axi-symmetric jet 

then rapidly decelerates due to volume expansion and surface tension forces (see velocity 

profile of liquid sheet for T* < 0.5 in Figure 5-11 to Figure 5-13). In the expanding and 

retracting phases of the circular sheet, the deceleration is proportional to the surface 

tension force, which is relatively small compared with liquid inertia under the high 

Weber number regimes. As a result, the magnitude of acceleration of the rim is strong 

only in the initial stage of collision, which suggests that RT instability may only have 

profound impact on the longitudinal disturbances at the early stage of the circular sheet 

development. 

The Rayleigh-Plateau instability describes the instability of free liquid stream, 

film, or thread. Free surface can wiggle and then defragment as smaller ligaments by 
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surface tension forces. Rayleigh used a linear stability analysis with periodic, initial 

perturbation for an infinite liquid thread to examine the most unstable modes of 

disturbances [63]. Applicability of the linear analysis to describe the instability on TC rim 

of the present cases is questionable. In Rayleigh’s analysis, for a uniform circular liquid 

thread with diameter d, the possible wavelength that destabilizes the entire system is λ > 

πd, and the fastest-growing wave length is λmax = 4.51d. 

In literature regarding the instabilities on free surfaces, Krechetnikov provided 

quantitative information of wavenumber and growth rate on inviscid liquid sheets by 

theoretical models [102]. He concluded that RT and RP instabilities are interacting 

components of the instability, and cannot be considered as linear superposition. In 

addition, the attached circular sheet may affect the amplitude of the perturbation. The 

morphology on the Taylor-Culick rim has similarities as the instability of crown splash 

from droplet impingement on a liquid film. Zhang et al. studied the instability of 

splashing crown generated by falling droplets on liquid films [97]. A conclusion from 

Zhang et al. is that the peak wavenumber at any given time is determined by not only the 

instantaneously most rapid growing mode but also by the history of the other modes. 

They found the amplification of the dominant modes is consistent with the prediction of 

linear stability (Rayleigh-Plateau), and maximum number of secondary droplets can be 

determined by the most unstable wavelength. This summary suggests that we may 

determine the secondary droplet sizes by the diameter of the TC rim and the dominant 

wave number. More recent work by Agbaglah et al. [100] used a long wavelength 

approximation model to analyze the transverse instability of a rim on a receding sheet. 

They concluded RT instability is due to retracting velocity and RP instability takes over 
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the instability when the rim radius is larger with respect to the sheet thickness. The 

growth rate of RP instability is ~ 2RP kω , and RT instability is 1/4~ ( 2 / )RT v kω π−  , 

where k is the wavenumber and v is the acceleration. Our cases show the deceleration at 

the retracing phase of liquid sheet is much smaller than the deceleration at the beginning 

of the sheet-extruding phase while the periodic wavy structures on the edge is not 

observed yet. Therefore, we can preliminarily conclude that the RT instability is in 

charge of small disturbance only at the initial colliding stage, otherwise RP instability 

decide the wavenumber on the rim at the moment of breakup. Another observation from 

Agbaglah et al. is that the rim diameter grows almost linearly in time after a transient 

period, which agrees with the results showing in Figure 5-12. Furthermore, the growth 

rate of instability on the TC rim increases when the acceleration term is negative. It 

means fingering effect promotes the disturbance, and instability is attenuated by the 

forward acceleration. As a result, we observe the disintegration of a rim happens mostly 

around the onset of rim retraction. The last relevant remark from the work of Agbaglah et 

al. is that wave with the highest growth rate is not affected by the aspect ratio of the rim 

diameter and the sheet thickness. In the present numerical results, sheet thickness of case 

3 (Figure 5-11) and case 5 (Figure 5-12) are almost constant in time while the diameter 

the TC rim is growing, and the most profound wavenumbers on the TC rim of these cases 

are almost fixed as shown in Figure 5-16 and Figure 5-17. This observation is consistent 

with the conclusion of Agbaglah et al.. The diameter of the Taylor-Culick is less relevant 

to the wavenumber, but the sheet thickness can be correlated with the final wavenumber 

on the rim and the size of secondary droplets. 
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5.4.3 Spectra on the Taylor-Culick rim 

The wavenumber on the TC rim of Case 3, 5, and 6 are presented in Figure 5-16, 

to Figure 5-18 respectively. These results provide an insight of how the wave number of 

perturbations on the TC rim evolves with the dynamics of the TC rim. The spectra on the 

edge of the TC rim are calculated by Fourier transform on the distance from the rim edge 

to the collision center for 360 discretized points. The wavenumber per radian is plotted 

with normalized power amplitudes at dimensionless time T*. Red text denotes the 

corresponding wavenumber per radian of the fastest-growing wavelength λmax predicted 

by the linear stability analysis of Rayleigh and instantaneous averaged rim diameter rimD . 

 max/ / 4.51rim rim rimk R R Dλ= =  (34) 

Figure 5-16 to Figure 5-18 show discrepancy between the most profound 

wavenumber at different time instances and fastest-growth wavenumber predicted based 

on Rayleigh’ theoretical analysis. The largest wave does not match with the fastest-

growth wave predicted by Rayleigh’s analysis since the spectra on the rim are continuous 

evolution of varying wavenumbers and initial conditions. In addition, theoretical work of 

Rayleigh considers a uniform perturbed circular thread, which is not the case of realistic 

problems present here. We have argued that RT instability determines the initial 

disturbances at the initial stage of the sheet expansion. Furthermore, expansion of the TC 

rim may affect the growth rate of perturbation. The expanding sheet attached to the TC 

rim also reduces the amplitude of instability [100]. However, a comparison between 

current results and the theoretical work of Rayleigh can verify whether the current 

numerical method resolves the trend of RP instability in a reasonable way. 

In case 3, the TC rim is growing at T* = 2.0, and the amplitude of the 
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disturbances is relatively small compared to the rim distance. Between T* = 4.0 and 6.0, 

the diameter of the TC rim is nearly constant since it is the onset of retracing. The largest 

wave is at k = 3.8 Hz/rad, which is smaller than the fastest-growth wave k = 4.3 Hz/rad 

from theoretical prediction. At T* = 8.0, the rim is receding, and two peak at k = 

2.5Hz/rad and 3.8Hz/rad is presented with a wider spectrum. 

In case 5, the primary breakup happens before the rim recedes. The profound 

waves gradually shift from low wavenumber to higher wavenumber. This phenomenon 

implies wavenumbers around k = 7 to 10 Hz/rad are the fastest-growth group amplified 

by RP instability. Again, the spreading spectrum is observed as the rim expands. Top 

views of interfaces show more structures are generated in between old nodule-like 

structures as the rim and liquid sheet start to recede at T* = 4.3. This observation suggests 

that the fingering effect enhanced by the receding of rim produces more nonlinearity. 

These new structures will be the dominant structures as the old nodule-like structures 

detach from the TC rim. 

In case 6, the rim detaches from the sheet at T* = 0.77. After T* = 0.77, the rim is 

a constant volume toroid. There is no impact from the sheet. We can obtain the most 

unstable wave k = 8.76 Hz/rad based on the rim diameter at T* = 0.77. A profound and 

persistent wave at k = 7.0 Hz/rad are observed all the time on the TC rim, which is close 

to the theoretical, fast-growth wave at k = 8.76 Hz/rad. A group of diminishing waves is 

at the low wavenumber regime.  

The evolution of wavenumbers on the TC rim is summarized in Table 5-4. As the 

TC rim connects with the circular sheet, the peak wavenumbers slightly shift to higher 

wavenumbers at the expansion phase, and migrate to smaller wavenumbers at the 
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retraction phase. The largest amplitude wavenumber on the TC rim is determined at the 

early stage of the expansion phase, and does not change very much with time. It implies 

the elongation of the TC rim is not influential on the growth rate of each wavenumber. 

The rim retraction enhances the aggregation of nearby perturbations such that the peak 

waves become smaller. In case of a detached rim, the migration to higher peak 

wavenumber is more obvious than that of an attached rim. We may conclude that the 

circular sheet attenuates the growth rate of RP instability. For all conditions, the range of 

spectrum broadens with time. The widening spectra exhibit the fact that longer time 

allows the system to grow more nonlinearity. 

Table 5-4. Summary of the wavenumber evolution on the Taylor-Culick rim. 

 Rim growth Peak wavenumber Range of spectrum 

Attached rim 
Expansion phase Yes Slightly shift to higher 

wavenumbers Widening 

Retraction phase Yes Shift to smaller wavenumber Widening 

Detached rim Expansion phase No Shift to higher wavenumbers Widening 
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Figure 5-16. Wavenumber on the Taylor-Culick rim: case 3. Red lines are the 
fastest-growth wavenumber based on Rayleigh’s theoretical work and the 
instantaneous rim diameter. 
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Figure 5-17. Wavenumber on the Taylor-Culick rim: case 5. Red lines are the 
fastest-growth wavenumber based on Rayleigh’s theoretical work and the 
instantaneous rim diameter. 
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Figure 5-18. Wavenumbers on the Taylor-Culick rim: case 6. The red line is 
the fastest-growth wavenumber based on Rayleigh’s theoretical work and the rim 
diameter at the moment of separation. 
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5.5 Secondary droplet size 

Figure 5-19 is the size of secondary droplet of the primary breakup. The size of 

secondary droplet is calculated by measuring droplet diameter directly. When a droplet is 

an ellipsoid, we calculate an equivalent diameter of droplet by measuring its three semi-

principle axes based on volume equivalence. The diameter of secondary droplets and log 

scale Weber number is nearly in a linear correlation. 

In cases of a uniform liquid jet, the surface tension forces break the liquid thread 

into a series of main secondary droplets and liquid ligaments between the main drops. 

These ligaments become spherical eventually. One can use the most pronounced 

wavenumbers on liquid thread and volume conservation to estimate the droplet size 

distribution [103]. Zhang et al. [97] suggested the secondary droplet size for crown 

splashing problems can be correlated with the dominant wavenumber on the rim. Ashgriz 

and Mashayek investigated the viscous effect on the satellite droplet size of liquid jets. 

They concluded that for Ohnesorge numbers less than 0.1, there is no significant 

dependence of satellite droplet size with Ohnesorge number [104]. As a result, in present 

cases, where Ohnesorge number is in the order of 10-2~10-3, the deterministic factor for 

the size of secondary droplet size is the wavenumber on the TC rim. In some cases, the 

TC rim may start to breakup while the attached circular sheet is receding. The interaction 

of the receding sheet and Rayleigh-Plateau instability is the fingering effect. A finger 

structure may coalesce with its nearby structures, which results in more complex 

scenarios than a simple breakup based on wavenumbers of the TC rim. This is the 

primary reason that in case 3 (We 442), which has profound fingering effects, the 

standard deviation of the size of the secondary droplets is the largest among all cases. 

Overall, the size of the secondary droplet correlates with the most dominant wavenumber 
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on the TC rim, however, the factor deciding the most dominant wavenumber on the TC 

rim is unclear. For a simplified problem as considered by Rayleigh, dominant 

wavenumbers on a circular thread due to surface tensions forces is a function of the 

diameter of the rim. In present cases, it is shown that Rayleigh’s linear instability model 

cannot predict the dominant wavenumber accurately. In addition, the diameter of the TC 

rim is time dependent and the onset timing of Rayleigh-Plateau instability is unclear. As a 

result, the deterministic factors to the dominant wavenumber of Rayleigh-Plateau 

instability are unclear. Further investigations are necessary to clarify this issue.  

 

Figure 5-19. Secondary droplet size with respect to Weber number. 

Dimensionless parameters based on the averaged length and velocity of the 

secondary droplet at the moment of the primary breakup may provide insight to breakup 

phenomena. Wes, Res, and Ohs are listed in Table 5-5. Wes of these cases is from 6.4 to 

51.1, and the increment in Wes is primarily due to higher kinetics energy left in the 

secondary droplets for the higher We cases. Especially for the cases with high, initial 
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kinetic energy (case 5, 6, and 7), the disintegration happens at the sheet expansion phase. 

At the expansion phase, the secondary droplets contain more kinetics energy than 

secondary droplet  generated at the retraction phase (case 2 and 3). Ohs is five thousandth 

for case 2 and 3, and jump to order of 10-2 for higher Weber number cases. It is still in the 

regime that viscous resistance is insignificant to surface tension force, but viscosity is 

gradually more influential to the morphology of phase boundaries. We may observe more 

viscous effect for higher-speed droplet collision. In summary, inertia forces and surface 

tension forces are still dominant in the small scale, but the nonlinearity of the surface 

instability results in difficulties for conclusive correlation between the global collision 

parameter We, Re, and Oh and collision consequence such as secondary droplet diameter. 

Table 5-5. Weber, Reynolds, and Ohnesorge number based on the secondary 
droplet scale at the moment of primary breakup. 

 Based on initial droplet size/velocity Based on secondary droplet size/velocity 
Case We Re Oh Wes Res Ohs 

2 277 4686 0.0036 6.4 515 0.005 
3 442 6207 0.0034 1.3 223 0.005 
5 878 6650 0.0045 20.1 333 0.014 
6 1176 7700 0.0045 51.1 272 0.027 
7 1520 8750 0.0045 51.1 203 0.036 

 

5.6 Summary 

We summarize the observations of the instabilities for the head-on droplet 

collision under the high Weber number regime. At the initial stage of collision, the 

merged body ejects a high-speed liquid sheet radially on the impinging plane. This 

circular jet quickly decelerates as it expands further, and the disturbances on the edge of 

the sheet are amplified by Rayleigh-Taylor instability. The Taylor-Culick rim grows and 

propagates at lower speed than the circular sheet. In the long time, Rayleigh-Plateau 
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instability takes over the growth of the longitudinal disturbances since the growth rate of 

Rayleigh-Plateau type is much faster than Rayleigh-Taylor type. After the onset of 

Rayleigh-Plateau instability on the rim, the largest-amplitude wave number will not 

change a lot, and eventually determine the number of secondary droplets of the primary 

breakup. An illustration of this process is in Figure 5-20. 

 

Figure 5-20. Interface evolution: instabilities on the edge of the circular 
sheet. 
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Chapter 6. 

Conclusions 

6.1 Summary 

The motivation of the current work is to develop a distributed, computational 

platform for the multi-scale moving boundary problems. There are two primary objects 

accomplished in this thesis. 

(i) Development of a parallel, adaptive Eulerian-Lagrangian method for moving 

boundary computations 

(ii) Simulation of multi-scale droplet collision at a high Weber number regime for in-

depth understanding of the interface instability and breakup mechanisms 

The development of the parallel, adaptive Eulerian-Lagrangian interface tracking 

method is extremely challenging for a scalable implementation on distributed-memory 

systems. The interactions between the Eulerian and Lagrangian domains bring difficulties 

on load balance and communication complexity. The communication overhead is more 

severe with increasing grid size and number of processing units. Our concern is the data 

locality for the Eulerian-Lagrangian interpolation. Without it, a computation shows no 

scalability. As a result, we decompose Lagrangian domain according to the marker 

vicinities with respect to an Eulerian partition. Moreover, we introduce a parallel, cell-

based unstructured mesh refinement method to bring substantial computational power to 

handle the multi-scale feature of the fluid boundaries. This numerical framework is an 
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integration of multiple algorithms including distributed computation of the front-tracking 

method, the Lagrangian mesh modification and reconstruction algorithms, and the 

parallel cell-based unstructured AMR. We highlight the performance study and 

applications as below.  

(iii) The current field equation solver achieves the most efficient computation in the 

range of 10,000 to 20,000 cells per processor. This range is determined by the 

computation-to-communication ratio and the shared cache size per CPU. 

(iv) The cell-based unstructured AMR shows standalone efficiency of 0.66 at 128 

processors for a grid size of 8.19×106 cells. For a moving boundary simulation on 

a grid size 2.2 million cells, the overall efficiency of this parallel framework is 

0.48 by using 128 processors. Based on a fixed-size problem, the performance 

each task group shows a descending trend as Eulerian, Eulerian-Lagrangian, 

Lagrangian, and AMR. This trend is consistent with decreasing value of the 

computation-to-communication ratio of each task group. 

(v) The computation-to-communication ratio is the dominant factor on the efficiency 

of the parallel Eulerian-Lagrangian method. The load balance of the Lagrangian 

markers is not so influential on the overall performance due to the relative low 

computation load on the Lagrangian domain. Moreover, the decomposition 

approach for the Lagrangian interfaces used in the current work requires the least 

number of messages and the smallest size of send/receive data for Eulerian-

Lagrangian interactions, which ensures scalability in a practical way. 

For the computation of droplet collision at the high Weber number regime, here is 

a summary. 

(i) The simulation of binary droplet collision carried on high-density ratio (O(103)), 

high Weber number, and high Laplace number O(105-6) demonstrates the 

capability of the present framework on multi-scale moving boundary 
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computations. The grid size of Eulerian domain is up to 22 million and the 

corresponding size of the triangular, Lagrangian mesh is 2.5 million. 

(ii) The merge, expansion of the circular sheet, Taylor-Culick rim generated by the 

end pinching effect, longitudinal instabilities, fingering effect incurring by the 

sheet retraction, and breakup of droplets are successfully resolved for Weber 

number 210 to 1520. The histories of the interface evolution and breakup 

diameter are in good agreements with experimental results qualitatively and 

quantitatively. 

(iii) Results shows details evolution of interfacial structures, which can provide rich 

information to elucidate previous arguments based on theoretical and 

experimental works. The conclusions regarding interface evolution are as follows. 

a. For such high inertia flows, the gas-liquid boundary of the merged body 

far from the edge of the circular sheet evolves linearly with time and is 

independent of Weber number and Reynolds number. This is consistent 

with theoretical work using similarity analysis. In contrast, the 

developments of the rim and circular sheet are dependent on inertia, 

surface tension forces, and viscosity. The circular sheet has nearly 

constant thickness at the connecting point with the Taylor-Culick rim as 

it expands.  

b. Rayleigh-Taylor and Rayleigh-Plateau instabilities coexist at the edge of 

the circular sheet. Rayleigh-Taylor instability is significant at the initial 

deceleration phase of the circular sheet right after droplet coalescence. 

Later Rayleigh-plateau instability takes over the growth of disturbances 

on the Taylor-Culick rim. 

c. Rayleigh’s linear stability analysis cannot accurately approximate the 

dominant wavenumber on the Taylor-Culick rim. The profound 

wavenumber on the Taylor-Culick rim is relevant to the rim diameter and 

possibly dependent on the sheet thickness. Propagation of the circular 



141 
 

sheet also affects the spectra. The retraction of the circular sheet enhances 

disturbances on the Taylor-Culick rim as the fingering effect, and 

broadens the spectrum of the disturbances. The size of secondary droplets 

is dependent on the dominant wavenumber and rim diameter at the 

moment of primary breakup. 

6.2 Future Work 

This work presents the distributed computation of an adaptive three-dimensional 

Eulerian-Lagrangian interface tracking method. The results shown have established the 

effectiveness of the method for multi-scale moving boundary problems in a parallel 

processing framework. 

So far, the largest problem we have solved has 23-million grid points. Beyond 

that, memory requirement exceeds the physical capacity of the computational nodes (3G 

bytes/processor). A primary issue is the storage of the Eulerian graph. To simplify the 

procedure of the load balancing and defining Eulerian and Lagrangian partitions, the 

unstructured graph of the entire Eulerian domain is retained in all the processors. It is 

possible to decompose global Eulerian graph to several distributed pieces, and collect 

each single piece of information from other processors when needed. However, a 

sophisticated data structure and a complex algorithm are necessary to do so. One of the 

approaches is using a “localized Eulerian graph.” This approach designs an abstract map 

of the Eulerian partitions. The partitions are vertices and spatial boundaries between 

partitions are edges connecting vertices. We decompose this abstract map into a number 

of groups and build a localized Eulerian graphs based on the collection of partitions in 

each group. As a result, a processor possesses a local Eulerian graph (connectivity) for 

cells in a collection, but not cells out of this collection. Restrictions are required for 
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remeshing and load balancing. Remeshing is applied on each group individually and the 

load-balancing algorithm can only relocate a cell to its group. This approach can free 

memory bottleneck and greatly reduces the far-end communications required in the 

current design. 

The other issue is the robustness of interface reconstruction for the topology 

change. The current framework can handle the topology changes of multiple interfacial 

bodies at the same time. However, some of the breakup or merge scenarios may generate 

mesh debris in the level-contour reconstruction. Further improvements on this algorithm 

are need for the robustness and accuracy. The locally grid-based method for the surface 

mesh reconstruction developed by Bo et al. [33] is an appropriate direction for future 

improvement of the present reconstruction algorithm. 

No turbulence modeling is included in this work yet. It should be implemented in 

the future. Voluminous studies of turbulence flows with the immersed boundary methods 

have been reported (Iaccarino and Verzicco [74], Yang and Balaras [105], and Gilmanov 

and  Sotiropoulos [106] ). The wall boundary treatment should be considered along with 

the ghost cell reconstruction of the sharp interface method as used in [72].  

More case studies of binary droplet collision of high Weber and Reynolds 

numbers are desirable. These computations can clarify the mechanisms initializing 

interface stabilities, the effect of rim retraction to the longitudinal disturbance, or the 

defining factors for the size of secondary droplets of the primary breakup. Computations 

with gird resolutions higher than D0/Δx = 192 are necessary to capture the secondary 

droplet breakup at Weber number more than 1500. Significant efforts will be required to 

realize the entire process of prompt splashing. 



143 
 

Appendix A. 

Droplet collision history 

A.1 Case 1 
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A.2 Case 2 
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A.3 Case 3 
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A.4 Case 5 
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A.5 Case 7 
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A.6 Case 7: Breakup of the detached TC rim under Rayleigh-Plateau instability 
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