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ABSTRACT

Symmetry in Finite Combinatorial Objects:
Scalable Methods and Applications

by

Hadi Katebi

Chair: Karem A. Sakallah

Symmetries of combinatorial objects are known to complicate search algorithms, but

such obstacles can often be removed by detecting symmetries early and discarding

symmetric subproblems. Canonical labeling of combinatorial objects facilitates easy

equivalence checking through quick matching. All existing canonical-labeling software

also finds symmetries, but the fastest symmetry-finding software does not perform

canonical labeling. In this thesis, we describe highly scalable symmetry-detection

algorithms for two widely-used combinatorial objects: graphs and Boolean functions.

Our algorithms are based on a decision tree that combines elements of group-theoretic

computation with branching and backtracking search. Moreover, we contrast the

search for graph symmetries and a canonical labeling to dissect typical algorithms

and identify their similarities and differences. We develop a novel approach to graph

canonical labeling where symmetries are found first and then used to speed up the

canonical-labeling routines. Empirical results are given for graphs with millions of

vertices and Boolean functions with hundreds of I/Os, where our algorithms can often

find all symmetry group generators or a canonical labeling in seconds.
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CHAPTER I

Introduction

Finite combinatorial objects in computer science are viewed as means for creat-

ing, modeling, and advancing computational problems. Examples of such objects

are graphs, hypergraphs, and Boolean functions, which arise in various branches of

computer science, including Very-Large-Scale Integration (VLSI), Computer Aided

Design (CAD), networks and Artificial Intelligence (AI). In representative applica-

tions, graphs can model the backbone of the Internet [60], hypergraphs can help

solve VLSI cell partitioning [15], and Boolean functions can represent inputs to CAD

tools [9].

Any combinatorial object is associated with an underlying variable set, to which

one can apply arbitrary permutations or value substitutions. For example, a directed

graph is defined by a set of vertices V and a set of edges E ⊆ V × V , an undirected

hypergraph is similarly defined by its hyperedges E ⊆ 2V , and a Boolean function is

defined by its input set X and minterms M ⊆ 2X .

Enumerative combinatorics is a branch of combinatorics concerned with counting

objects or their certain properties. For example, counting the number of different

orderings of a deck of cards, or enumerating the number of permutations of a graph

are both enumerative combinatorial problems.

Solving a combinatorial problem often involves the use of algebraic methods, in
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particular, group theory. Group theory is a branch of abstract algebra that studies

the algebraic structures known as groups. A group comprises a non-empty set of

elements with a binary operation that is associative, admits an identity element, and

is invertible. For example, the set of integers with addition forms a group.

Given a combinatorial object, one enumerative combinatorial problem that re-

quires group-theoretic treatment is finding the symmetries of the object. A symmetry

of an object is defined as a permutation of its variables that leaves the object un-

changed. For example, a symmetry of a graph is a permutation of the graph’s vertices

that preserves the graph’s edge relation, and a symmetry of a Boolean function is a

permutation of the function’s inputs and outputs, with their possible negation, that

preserves the value of the function for all input combinations.

The set of all symmetries of a combinatorial object forms a group under functional

composition. This group is referred to as the symmetry group of the object. In general,

the order (size) of the symmetry group of an object is exponential in the number of

its variables. Nevertheless, all symmetries of an object can be generated from just a

subset of its symmetries. This is accomplished by repeatedly composing the elements

of that subset under functional composition. Such a subset is called a symmetry group

generating set and each of its elements is called a (group) generator.

In the remainder of this thesis, we study symmetries of two widely-used combi-

natorial objects: graphs and Boolean functions. Our interest in these two objects

is justified by the fact that they can compactly and conveniently model many com-

putational problems. For instance, a graph can be used to encode a Conjunctive

Normal Form (CNF) formula, which is then passed to a graph symmetry-detection

program to find a set of generators for the formula’s symmetry group. These symme-

tries are subsequently used to augment the original formula with symmetry-breaking

predicates that preclude a Boolean Satisfiability (SAT) solver from redundant search

in symmetric portions of the solution space.
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To find the symmetries of a graph, we develop scalable algorithms, named saucy,

through nested partition refinement. The goal of partition refinement is to prune

away unpromising branches of the permutation space. We then incorporate group-

theoretic techniques to avoid explicit enumeration of the possibly exponential number

of symmetries. As the outcome of the search, saucy returns a set of generators for

the symmetry group of the graph, finds the group’s orbit partition (defined later),

and reports the order of the group.

Closely related to graph symmetry detection is the problem of canonical labeling

which assigns a unique signature to a graph that is invariant under all possible label-

ings of its vertices. Symmetry detection and canonical labeling are both related to

the structural or functional properties of the combinatorial objects in question. An

important remark is that the symmetries of a graph map each labeling to the same

labeling. Therefore, if all symmetries are known, it may be sufficient to visit only

one labeling from each equivalence class. As a result, all existing graph canonicaliza-

tion tools, such as nauty [43], bliss [34, 35], traces [50] and nishe [55], also find

symmetries along the way during the search.

Unlike the canonical-labeling packages, which also produce symmetries as a byprod-

uct, saucy’s algorithms and data structures are optimized to just finding a set

of symmetry group generators. This is accomplished through searching the space

of permutations, as opposed to the space of labelings, which subsequently enabled

saucy to incorporate three major enhancements, namely, simultaneous partition re-

finement, non-isomorphic OPP pruning, and matching-OPP pruning (all explained

later). These enhancements delinked the search for symmetries from the search for

a canonical labeling, and yielded a remarkable 1000-fold improvement in runtime

for many large sparse graphs with sparse symmetry generators, i.e., generators that

“move” only a tiny fraction of the graph’s vertices.

In order for the existing graph canonical-labeling packages to benefit from the scal-
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ability of the grah symmetry-detection algorithms, we propose a two-pass canonical-

labeling approach that first finds symmetries, and then uses them to expedite the

search for a canonical labeling. In other words, our approach uses the efficiency of

saucy symmetry-finding algorithms as a pre-processing step for canonical-labeling

frameworks. Extensive empirical results convincingly demonstrate the benefits of our

canonical-labeling approach.

To discover symmetries of other combinatorial objects, such as a Boolean function,

we adjust our proposed framework for finding symmetries of graphs to consider the

specifics of the new object in question. For example, we have to be aware of the fact

that the symmetries of a Boolean function are different from those of a graph, since

they are related to the functional, and not structural, properties of the function. Note

that althogh it is possible to encode a Boolean function as a graph and then invoke a

graph symmetry-detection tool to find its symmetries, we refrain from this approach,

since it is not complete, i.e., the structural symmetries of a Boolean function might

be just a subset of its functional symmetries.

Symmetries of Boolean functions have numerous applications in logic synthesis

and verification. One common application is in Boolean matching, where functional

equivalence of two Boolean functions under permutation (and negation) of their inputs

and outputs is investigated [37, 2]. Other applications include BDD minimization [53]

and circuit power optimization [17].

Most existing symmetry-detection algorithms for Boolean functions only look for

classical symmetries, i.e., symmetries that include just a single swap of variables [61,

53]. As the number of such symmetries is at most quadratic in the number of a

function’s inputs, they can be evaluated one by one and explicitly enumerated. The

caveat of these algorithms, however, is that they overlook symmetries that involve

more than two variables. For example, a 4-to-1 multiplexer exhibits 16 symmetries

under the permutation and negation of its inputs and output (see Figure 1.1), but
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MUX: z = a0s
′
1s
′
0 + a1s

′
1s0 + a2s1s

′
0 + a3s1s0

γ1 : ι

γ2 : (a0, a2)(a′0, a
′
2)(a1, a3)(a′1, a

′
3)(s1, s′1)

γ3 : (a1, a2)(a′1, a
′
2)(s0, s1)(s′0, s

′
1)

γ4 : (a0, a1, a3, a2)(a′0, a
′
1, a
′
3, a
′
2)(s0, s1, s′0, s

′
1)

γ5 : (a0, a1)(a′0, a
′
1)(a2, a3)(a′2, a

′
3)(s0, s′0)

γ6 : (a0, a3)(a′0, a
′
3)(a1, a2)(a′1, a

′
2)(s0, s′0)(s1, s′1)

γ7 : (a0, a2, a3, a1)(a′0, a
′
2, a
′
3, a
′
1)(s0, s′1, s

′
0, s1)

γ8 : (a0, a3)(a′0, a
′
3)(s0, s′1)(s′0, s1)

γ9 : (a0, a
′
0)(a1, a

′
1)(a2, a

′
2)(a3, a

′
3)(z, z′)

γ10 : (a0, a
′
2)(a′0, a2)(a1, a

′
3)(a′1, a3)(s1, s′1)(z, z′)

γ11 : (a0, a
′
0)(a1, a

′
2)(a′1, a2)(a3, a

′
3)(s0, s1)(s′0, s

′
1)(z, z′)

γ12 : (a0, a
′
1, a3, a

′
2)(a′0, a1, a

′
3, a2)(s0, s1, s′0, s

′
1)(z, z′)

γ13 : (a0, a
′
1)(a′0, a1)(a2, a

′
3)(a′2, a3)(s0, s′0)(z, z′)

γ14 : (a0, a
′
3)(a′0, a3)(a1, a

′
2)(a′1, a2)(s0, s′0)(s1, s′1)(z, z′)

γ15 : (a0, a
′
2, a3, a

′
1)(a′0, a2, a

′
3, a1)(s0, s′1, s

′
0, s1)(z, z′)

γ16 : (a0, a
′
3)(a′0, a3)(a1, a

′
1)(a2, a

′
2)(s0, s′1)(s′0, s1)(z, z′)

Figure 1.1: Symmetries of a 4-to-1 MUX under permutation and negation of its I/Os.
A rotational symmetry of the form (a1, a2, a3, ..., an) maps a1 to a2, a2 to a3, ..., and
an to a1. Also, ι denotes the identity.

none of those symmetries would be found this way.

Higher order symmetries, formed by simultaneous swaps of variables, have also

been addressed in the literature. For example, the algorithm in [39] captures higher

order symmetries (under permutation and negation of inputs) by performing hier-

archical partitioning on the set of variables of a netlist. This algorithm, although

capable of reporting symmetries beyond classical, does not always find all symme-

tries of a Boolean function.

Furthermore, most symmetry-detection algorithms only allow permutation of in-

puts, but not permutation of outputs [61, 39]. Such algorithms report symmetries

of a multi-output function by isolating each output one at a time. Nevertheless,

symmetries that are formed by simultaneous permutations of inputs and outputs are

beneficial in EDA. For instance, [17] uses such symmetries to enhance post-placement
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algorithms. It, however, performs an exhaustive search for symmetries, and hence,

can only handle small (sub)circuits.

In this thesis, we propose new algorithms for detecting symmetries of Boolean

functions under permutation (but not negation) of inputs and outputs. Our algo-

rithms take a Boolean function in the form of an And-Inverter Graph (AIG), con-

struct a complete permutation tree, and systematically prune it by integrating group-

theoretic (and other) techniques. To accomplish this, they build several graphs based

on functional dependency and random simulation, and use them to refine the search

space. They also take advantage of satisfiability to test functional equivalence un-

der candidate permutations, and learn from satisfiability counterexamples to avoid

recurring conflicts.

To assess the performance of our proposed symmetry-detection algorithms for

graphs and Boolean functions, we assembled a collection of benchmarks containing

graphs and combinational circuits from a wide range of applications. We also test

the efficiency of our proposed graph canonical-labeling approach on the subset of the

graph benchmarks that are very large and very sparse. Furthermore, we encode the

Boolean matching problem as a symmetry-detection problem, and report the results of

applying our symmetry-detection algorithms for Boolean functions to several Boolean

matching instances.

Key contributions of our work are summarized in three categories. These cate-

gories and their contributions are:

− Symmetries of graphs:

1. Proposing symmetry-detection algorithms for graphs that search the space

of permutations (as opposed to the space of labelings).

2. Allowing a more powerful partitioning through simultaneous refinement.

3. Avoiding futile branches of the search through isomorphic-OPP pruning.
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4. Finding symmetries earlier in the search through matching-OPP pruning.

− Canonical labeling of graphs:

1. Developing a two-pass canonical labeling algorithm that first finds graph

symmetries, and then uses them to expedite the search for a canonical

labeling.

− Symmetries of Boolean functions:

1. Proposing novel symmetry-detection algorithms for Boolean functions based

on group-theoretic concepts.

2. Allowing permutations of both inputs and outputs.

3. Learning from satisfiability counterexamples to avoid recurring conflicts.

4. Formulating Boolean matching instances as symmetry-detection problems,

and invoking our algorithms to solve them.

The remainder of this thesis is organized as follows. Chapter II provides necessary

definitions and notation, and discusses preliminary work. Chapter IV describes saucy

graph symmetry-discovery algorithms. Chapter V explains our proposed two-pass

graph canonical-labeling approach. Chapter VI describes our symmetry-discovery al-

gorithms for Boolean functions, and discusses our formulation of Boolean matching

as a symmetry-detection problem. Chapter VII validates our symmetry-detection

and canonical-labeling techniques in experiments, and reports the results of solving

Boolean matching instances. Finally, Chapter VIII discusses conclusions, and pro-

vides future directions for our work.
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CHAPTER II

Definitions and Notation

This chapter provides necessary definitions and notation.

2.1 Partitions

We assume familiarity with basic notions from set theory, including such concepts

as sets, subsets, set membership, set operations, etc. More information on different

set-theoretic concepts is available in many abstract set theory texts such as [27].

Definition II.1. A set A = {a1, a2, ..., an} is a collection of members (or elements)

a1, a2, ..., an. A set B is a subset of set A if and only if every element of B is also an

element of A.

The cardinality of set A is dented by |A|. Set membership is denoted by ∈, and set

non-membership is denoted by 6∈. The set that contains all objects is the universal

set, and is denoted by U . The set that has no elements is the empty set, and is

denoted by ∅. If set B is a subset of set A, we write B ⊂ A. If set B is a subset of

set A or is equal to A, we write B ⊆ A.

There are several ways to operate on given sets and produce new sets. Among the

most common set operations are:

Union: A ∪B = {a | a ∈ A or a ∈ B}
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Intersection: A ∩B = {a | a ∈ A and a ∈ B}

Difference: A−B = {a | a ∈ A and a 6∈ B}

Complement: A′ = U − A = {a | a 6∈ A}

Cartesian Product: A×B = {(a, b) | a ∈ A and b ∈ B}

Two sets A and B are said to be disjoint if A ∩ B = ∅. A collection of sets is

pair-wise disjoint if every pair of the collection is disjoint.

Definition II.2. A partition π = {W1,W2, · · · ,Wm} of set A is a list of non-empty

pair-wise disjoint subsets of A whose union is A, i.e.,
m⋃
i=1

Wi = A, and for all i, j,

1 ≤ i, j ≤ m and i 6= j, Wi ∩Wj = ∅.

The subsets Wi are called the cells of the partition.

Definition II.3. An ordered partition π = [W1|W2| · · · |Wm] of set A is a partition of

A where cells Wi are ordered.

Ordered partition π is said to be unit if m = 1 (i.e., W1 = A) and discrete if

|Wi| = 1 for i = 1, · · · ,m.

Example II.4. The following are example ordered partitions on set A = {1, 2, 3, 5, 7}:

Ordered partition: π = [1, 5 | 2, 3, 7]

Unit partition: π = [1, 2, 3, 5, 7]

Discrete partition: π = [2 | 7 | 3 | 1 | 5]

Definition II.5. An Ordered Partition Pair (OPP) Π of set A is specified as

Π =

 πT

πB

 =

 T1 |T2 |· · · |Tm

B1 |B2 |· · · |Bk


where πT and πB are ordered partitions of A.
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Ordered partitions πT and πB are referred to, respectively, as the top and bottom

partitions of Π. OPP Π is isomorphic if m = k and |Ti| = |Bi| for i = 1, · · · ,m;

otherwise it is non-isomorphic. In other words, an OPP is isomorphic if its top and

bottom partitions have the same number of cells, and corresponding cells have the

same cardinality. Isomorphic OPP Π is matching if its corresponding non-singleton

cells are identical, i.e., contain the same elements. Isomorphic OPP Π is discrete

(resp. unit) if its top and bottom partitions are discrete (resp. unit).

Example II.6. The following are example OPPs on set A = {1, 2, 3, 5, 7}:

Isomorphic OPP:

 1, 3, 5

1, 5, 7

∣∣∣∣∣∣∣
2, 7

2, 3



Matching OPP:

 1, 3, 5

1, 3, 5

∣∣∣∣∣∣∣
2

7

∣∣∣∣∣∣∣
7

2



Discrete OPP:

 1

2

∣∣∣∣∣∣∣
2

3

∣∣∣∣∣∣∣
3

7

∣∣∣∣∣∣∣
5

5

∣∣∣∣∣∣∣
7

1



Unit OPP:

1, 2, 3, 5, 7

1, 2, 3, 5, 7



Non-isomorphic OPP:

1, 3, 5 | 2, 7

1, 7 | 2, 3, 5



2.2 Boolean Functions

A Boolean domain is a set consisting of exactly two elements: 0 (representing

false) and 1 (representing true). A Boolean variable is a variable that takes values

from a Boolean domain.

There are 16 (= 222
) ways to define operations on two Boolean values a and b.
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The most common operations are:

Conjunction (AND): a ∧ b, which is 1 if and only if a = 1 and b = 1.

Disjunction (OR): a ∨ b, which is 1 if and only if a = 1 or b = 1.

Negation (NOT): ¬a, which is 1 if and only if a = 0.

Exclusive disjunction (XOR): a⊕ b, which is 1 if and only if a = 1 and b = 0 or

a = 0 and b = 1.

Definition II.7. A Boolean function F with n inputs and m outputs is a function

F : Bn 7→ Bm where B = {0, 1} is the Boolean domain.

The set of all inputs of F is the input set of F . Likewise, the set of all outputs of

F is the output set of F . We denote the input set of F by X = {x1, ..., xn} and its

output set by Z = {z1, ..., zm}.

Definition II.8. The positive (negative) cofactor of Boolean function F with regard

to input x ∈ X, denoted by Fx (Fx′), is the function that fixes the value of x to one

(zero).

Example II.9. The positive cofactor of the Boolean function z1 = x1 ∧ x2 and

z2 = x1 ∨ x2 with regard to x1 is: z1 = x2 and z2 = 1, and the negative cofactor of

that function with regard to x1 is: z1 = 0 and z2 = x2,

Definition II.10. The support of output z ∈ Z, denoted by supp(z), is the set of all

inputs x ∈ X that functionally affect z, i.e, supp(z) = {x ∈ X |Fx 6= Fx′ for z}.

Example II.11. For the Boolean function in Example II.9: supp(z1) = supp(z2) =

{x1, x2}.

A Boolean function can be expressed as a propositional formula in Conjunctive

Normal Form (CNF ). A CNF formula is a conjunction of clauses, where a clause is

a disjunction of literals. A literal is an input of the Boolean function or its negation.

Example II.12. The following are CNF formulas on input set X = {x1, x2, x3, x4}:
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x1 ∧ x2 ∧ x3 ∧ ¬x4

¬x1 ∧ (x2 ∨ x3 ∨ ¬x4)

(x1 ∨ x2) ∧ (¬x3 ∨ ¬x4)

2.2.1 Boolean Simulation

Boolean simulation refers to the act of monitoring the output values of a Boolean

function under a given vector of input values. Boolean simulation may be used as

part of the verification process in designing hardware.

Definition II.13. An input vector P = 〈p1, · · · , pn〉 of F assigns value pi ∈ {0, 1} to

input xi ∈ X. The output vector R = 〈r1, · · · , rm〉 that corresponds to input vector

P is the result of simulating P with F , where ri ∈ {0, 1} holds the simulation result

for output zi ∈ Z.

Definition II.14. An input xi ∈ X is observable to output zj ∈ Z (or output zj

is controllable by input xi) with regard to input vector P = 〈p1, · · · , pn〉 and its

corresponding output vector R = 〈r1, · · · , rm〉, if flipping pi ∈ P flips rj ∈ R.

Intuitively, an input is observable to an output, if the value of that output can be

changed just by changing the value of that particular input.

Example II.15. For the Boolean function z = (x1 ∨ ¬x1) ∧ x2 ∧ x3, input x1 is not

observable to output z, since x1 ∨ ¬x1 = 1, and hence, z = x2 ∧ x3.

Definition II.16. Input vector P = 〈p1, · · · , pn〉 is said to be proper with regard to

partition π = [W1| · · · |Wt] of input set X, if it assigns the same value to all inputs in

the same cell of π, i.e., for all i and j, pi = pj if xi, xj ∈ Wl, for some l.

Example II.17. For input set X = {x1, x2, x3}, input vector P = 〈0, 0, 1〉 is proper

with regard to partition π = [x1, x2|x3], but not proper with regard to partition

π′ = [x1|x2, x3].
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Definition II.18. Two input vectors P = 〈p1, · · · , pn〉 and Q = 〈q1, · · · , qn〉 are said

to be consistent with regard to isomorphic OPP of input set X

Π =

 πT

πB

 =

 T1

B1

∣∣∣∣∣∣∣
T2

B2

∣∣∣∣∣∣∣
· · ·

· · ·

∣∣∣∣∣∣∣
Ts

Bs


if P is proper with regard to πT , Q is proper with regard to πB, and P and Q assign

the same value to all inputs in the same-index cells of πT and πB, i.e., for all i and j,

pi = qj if xi ∈ Tl and xj ∈ Bl, for some l.

Example II.19. For input set X = {x1, x2, x3}, input vectors P = 〈0, 0, 1〉 and

Q = 〈1, 0, 0〉 are consistent with regard to the following isomorphic OPP:

Π =

 x1, x2

x2, x3

∣∣∣∣∣∣∣
x3

x1


2.3 Graphs

Definition II.20. A graph G is composed of a non-empty finite set of vertices V

together with a set of edges E containing pairs of vertices, i.e., E ⊆ V × V .

A multigraph is a graph which is permitted to have parallel edges, i.e., edges that

have the same end nodes.

Graph vertices are also called nodes or points, and edges are also called lines or

arcs. If (a, b) ∈ E, we say that vertices a and b are neighbours or are adjacent to each

other. A loop (also called a self-loop) is an edge that connects a vertex to itself. The

degree (or valency) of a vertex is the number of edges adjacent to that vertex. Graph

G is directed if its edges have associated directions, and undirected otherwise. Graph

G is colored if its vertices have associated colors.

From the data structure standpoint, a graph can be represented by either an

adjacency matrix or an adjacency list. The adjacency matrix of an n-vertex graph
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Figure 2.1: A bipartite graph with 5 vertices.

is an n × n (0, 1)-matrix where entry ai,j of the matrix is 1 if and only if vertex i

is adjacent to vertex j. The adjacency list of an n-vertex graph is a collection of n

unordered lists L1, ..., Ln, where list Li contains all the vertices that are adjacent to

vertex i.

Adjacency matrix allows constant-time lookup for checking the presence or ab-

sence of an edge, but takes linear time to iterate over all edges. On the other hand,

adjacency list is fast in iterating over all edges, but slow in checking the presence or

absence of an edge. In terms of memory, adjacency matrix takes quadratic space,

but adjacency list uses memory in proportion to the number of edges. In general,

adjacency matrix is more suitable to represent dense graphs, while adjacency list is

more appropriate for sparse graphs.

2.3.1 Bipartite Graphs

Definition II.21. A bipartite graph is a graph that divides the set of vertices into

two disjoint subsets, such that no two vertices in one subset are adjacent.

Example II.22. Figure 2.1 demonstrates an example of a bipartite graph with 5

vertices.

2.3.2 Miyazaki Graphs

Miyazaki graphs is a family of colored graphs that were introduced by [46] to

impede the state of the art in graph symmetry detection. Subsequently, Miyazaki

graphs have been used to measure the performance of graph symmetry-detection
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Figure 2.2: Multigraph Y2 which will be used to construct a Miyazaki graph.

(a) F3 (b) F3 rotated 180 degrees

Figure 2.3: Fürer gadgets F3.

algorithms. In this section, we discuss the construction of Miyazaki graphs.

Let Yk(V,E) be a multigraph where V and E are defined as:

V = {vi : 1 ≤ i ≤ 2k},

E1 = {el, er : el = {v1, v1}, er = {v2k, v2k}}, the self-loops,

E2 = {ei, e′i : ei = e′i = {v2i+1, v2i+2} for 1 ≤ i ≤ k − 1}, the cycles,

E3 = {ei : ei = {v2i−1, v2i} for 1 ≤ i ≤ k}, the bridges, and

E = E1 ∪ E2 ∪ E3.

Based on the above definition, multigraph Yk consists of two self-loops (one at

each end), and a series of k − 1 cycles connected to each other via bridges.

Example II.23. Figure 2.2 shows multigraph Y2 which consists of four vertices and

six edges (two self-loops, one cycle, and two bridges).

Miyazaki graphs are constructed by replacing each odd vertex in Yk by Fürer

gadgets F3, and each even vertex by 180-degree rotated F3. Figure depicts F3 and

180-degree rotated F3. The Miyazaki graph constructed from Yk has 20k vertices and

30k edges.
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Figure 2.4: Mizayaki graph constructed from multigraph Y2.

Example II.24. Figure 2.4 shows the Miyazaki graph that is constructed from Y2.

This graph has 40 vertices and 60 edges.

2.3.3 Trees

Definition II.25. A path in a graph is a sequence of edges which connect a sequence

of vertices. A path with no repeated vertices is called a simple path.

Definition II.26. A tree is an undirected graph in which any two vertices are con-

nected by exactly one simple path.

In a tree, a leaf is a node whose degree is one. Any node that is not a leaf is an

internal node.

Definition II.27. A rooted tree is a tree that has one of its vertices designated as

the root.

In a rooted tree, the parent of a vertex is the vertex connected to it on the path

to the root. Every vertex except the root has a unique parent. A child of a vertex v

is a vertex of which v is the parent. Every vertex except tree leaves has at least one

child. A vertex v is an ancestor of a vertex u if it exists on the path from the root to

vertex u. The vertex u is then a descendant or a successor of vertex v. The root is

the ancestor of all vertices.

Example II.28. Figure 2.5 depicts a 6-vertex rooted tree with vertex 0 as the root.

In this tree, vertices 1, 3, 4 and 5 are the leaves, and vertices 0 and 2 are internal
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Figure 2.5: A 6-vertex rooted tree with vertex 0 designated as the root.

nodes. The children of vertex 0 are vertices 1, 2 and 3. The parent of vertices 1, 2

and 3 is vertex 0. Vertex 4 is a descendant of vertex 0, and vertex 0 is an ancestor of

vertex 4.

Definition II.29. The depth (level) of a node v in a rooted tree is the length of the

path from v to the root. The height of v is the length of the longest downward path

from v to a leaf.

The height (resp. depth) of a rooted tree is the height (resp. depth) of its root.

Example II.30. For the tree of Figure 2.5, the height and depth of node 1 are zero

and one, respectively, while the height and depth of node 2 are both one.

Definition II.31. The diameter of a tree is the length of the longest path in the

tree. A center of a tree is a vertex v such that the longest path from v to a leaf is

minimal over all vertices in the tree (i.e., half of the diameter).

A tree has either one center or two centers.

Example II.32. The diameter of the tree in Figure 2.5 is 3. This tree has two

centers: vertex 0 and vertex 2.

2.4 Homomorphism

Definition II.33. A homomorphism is a function between two combinatorial objects

that respects their structure.
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For every combinatorial object, there is an underlying notion of variables set (for

example, the vertex set of a graph and the input/output set of a Boolean function).

Homomorphism of two combinatorial objects is, in fact, a mapping between their

variable sets that respects their structure.

Example II.34. A graph homomorphism is a mapping between two graphs that

respects the edge relation of the graphs.

Two important types of homomorphism are isomorphisms and automorphism.

The next two subsections discuss these two homomorphisms.

2.4.1 Isomorphism

Definition II.35. An isomorphism is a bijective homomorphism.

If an isomorphism exists between two combinatorial objects A and B, the two

objects are called isomorphic, and is denoted by A ' B.

To better understand isomorphism in combinatorial objects, we need to define the

notion of permutations.

Definition II.36. Let X = {x1, ...xn} denote the variable set of a combinatorial

object. A permutation γ of the object (or the variable set X of the object) is defined

as a bijection from X to X.

Similar to the above definition, a permutation from one object with variable set

X to another object with variable set Y is a bijection from X to Y .

Example II.37. A permutation of a graph with vertex set V is a bijection from V

to V .

Example II.38. A permutation of a Boolean function with input set X and output

set Z is a bijection from X to X and Z to Z. A permutation of a Boolean function

might also consider the negation of inputs and outputs. In that case, a permutation
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of a Boolean function with input set X and output set Z is a bijection from X ∪X ′

to X ∪X ′ and Z ∪ Z ′ to Z ∪ Z ′, where X ′ denotes the set of negated inputs and Z ′

denotes the set of negated outputs.

Permutations can be expressed in a tabular or a cycle notation. A tabular no-

tation is in a form of a discrete OPP, while a cycle notation comprises a number of

simultaneous rotations. The permutation that maps each variable to itself is called

the identity, and is denoted by ι.

Example II.39. The following are example permutations in tabular and cycle nota-

tion on variable set X = {x1, x2, x3, x4}:x1

x1

∣∣∣∣∣∣∣
x2

x2

∣∣∣∣∣∣∣
x3

x3

∣∣∣∣∣∣∣
x4

x4

 = ι

x1

x1

∣∣∣∣∣∣∣
x2

x3

∣∣∣∣∣∣∣
x3

x2

∣∣∣∣∣∣∣
x4

x4

 = (x2 x3)

x1

x2

∣∣∣∣∣∣∣
x2

x3

∣∣∣∣∣∣∣
x3

x1

∣∣∣∣∣∣∣
x4

x4

 = (x1 x2 x3)

x1

x2

∣∣∣∣∣∣∣
x2

x1

∣∣∣∣∣∣∣
x3

x4

∣∣∣∣∣∣∣
x4

x3

 = (x1 x2)(x3 x4)

For two combinatorial objects, an isomorphism is a permutation (from the variable

set of one object to the variable set of the other object) that respects the structure

of the two objects.

Example II.40. An isomorphism between two graphs is a permutation of vertices

that respects the edge relation of the graphs.

Example II.41. An isomorphism of a Boolean function is a permutation of inputs
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Figure 2.6: The “square and triangle” graph with 7 vertices and 7 edges.

and outputs (with their possible negation) that respects the value of the functions for

all input combinations.

2.4.2 Automorphism (Symmetry)

Definition II.42. An automorphism (symmetry) is an isomorphism of a combinato-

rial object to itself.

In fact, an automorphism is a permutation that leaves the object unchanged.

Example II.43. A symmetry of a graph is a permutation of the graph’s vertices that

preserves the graph’s edge relation. For example, permutation (0 2) is a symmetry of

the square and triangle graph of Figure 2.6.

Example II.44. A symmetry of a Boolean function is a permutation of the function’s

inputs and outputs (with their possible negation) that preserves the value of the

function for all input combination. For example, permutation (x1 x2) is a symmetry

of the Boolean function z = (x1 ∨ x2) ∧ x3.

2.5 Permutation Group Theory

We assume familiarity with basic notions from group theory, including such con-

cepts as subgroups, cosets, group generators, group action, orbit partition, etc. We

review most of these concepts here, but additional information on them can be found

in standard textbooks on abstract algebra, e.g. [28].
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2.5.1 Groups

Definition II.45. A group is a set G together with a binary operation · that satisfies

the following four group axioms:

1. Closure: for all elements a, b ∈ G, a · b ∈ G.

2. Associativity: for all elements a, b, c ∈ G, (a · b) · c = a · (b · c).

3. Identity Element: there exists an element e ∈ G such that for every element

a ∈ G, e · a = a · e = a.

4. Inverse Element: for every element a ∈ G, there exists an element a−1 ∈ G such

that a · a−1 = a−1 · a = e.

Example II.46. The set of all integers Z with addition forms a group, since:

For all integers i, j ∈ Z, i+ j ∈ Z.

For all integers i, j, k ∈ Z, (i+ j) + k = i+ (j + k).

The identity element is 0: for all i ∈ Z, 0 + i = i+ 0 = i.

The inverse element for i ∈ Z is −i: i+ (−i) = (−i) + i = 0.

Definition II.47. A generating set S for group G is a subset S ⊂ G such that every

element of G can be expressed as the combination (under the group operation) of

finitely many elements of S.

Example II.48. The set S = {−1, 1} is a generating set for the group from Exam-

ple II.46, since:

0 = 1 + (−1)

For integer i > 0, i = 1 + 1 + ...+ 1︸ ︷︷ ︸
i

For integer i < 0, i = (−1) + (−1) + ...+ (−1)︸ ︷︷ ︸
i
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Definition II.49. A subgroup H of group G is a subset of G that forms a group under

G’s binary operation.

Example II.50. Let set Z2 = {2 × i | i ∈ Z} = {...,−2, 0, 2, ...}, where Z is the set

of all integers. Set Z2 with addition forms a group. This group is a subgroup of the

group from Example II.46.

Definition II.51. For group G and its subgroup H, the (right) coset of H containing

element a ∈ G is the set {h · a | h ∈ H}.

Based on the above definition, any coset element can generate the entire coset by

composing that element with the elements of H. Choosing one element from each

coset yields a set of coset representatives. The set of all cosets of H in G partitions

G into equally-sized subsets.

Example II.52. Let Z2 be the group from Example II.50, and Z be the group from

Example II.46:

The coset of Z2 in Z containing integer 0 is the set {2 × i | i ∈ Z} =

{...,−2, 0, 2, ...}, and

The coset of Z2 in Z containing integer 1 is the set {2 × i + 1 | i ∈ Z} =

{...,−3,−1, 1, 3, ...}.

Definition II.53. For a group G and a set X, the group action of G on X is a

function ∗ : G ×X 7→ X that satisfies the two following axioms:

1. Identity: for all x ∈ X, e ∗ x = x.

2. Associativity: for all a, b ∈ G and all x ∈ X, (a · b) ∗ x = a ∗ (b ∗ x).

Example II.54. The trivial action of any group G on any set X is defined by a∗x = x

for all a ∈ G and all x ∈ X.
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Definition II.55. For a group G that acts on set X, the stabilizer subgroup of x ∈ X

is Gx that fixes x, i.e., Gx = {a ∈ G | a ∗ x = x}

Example II.56. For the trivial action of group G on set X (see Example II.54), the

stabilizer subgroup of any x ∈ X is G.

Theorem II.57. Let G be a group that acts on set X. For x1, x2 ∈ X, let x1 ∼ x2

if and only if there exists a ∈ G such that a ∗ x1 = x2. Then, ∼ is an equivalence

relation on X.

The equivalence relation ∼ partitions X into a so-called orbit partition Θ. The

cell of the orbit partition that contains x ∈ X is called the orbit of X, and is denoted

by Θx.

Example II.58. For the trivial action of group G on set X = {x1, x2, ..., xn} (see

Example II.54), the orbit partition of set X is the discrete partition on set X, i.e.,

Θ = {x1, x2, · · · , xn}.

2.5.2 Permutation Groups

Definition II.59. A permutation group is a group G whose elements are permutations

of a variable set X, and whose group operation is a functional composition.

Example II.60. The set of all permutations of any set X forms a permutation group.

For X = {x1, x2, x3}, this group consists of 6 permutations:

{ι, (x1 x2), (x1 x3), (x2 x3), (x1 x2 x3), (x1 x3 x2)}

Examples of functional composition on this permutation group are:

ι ◦ (x1 x2) = (x1 x2)

(x1 x2) ◦ (x1 x2) = ι

(x1 x2) ◦ (x1 x3) = (x1 x3 x2)

(x1 x2 x3) ◦ (x1 x2 x3) = (x1 x3 x2)
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2.5.3 Symmetry Groups

The set of all symmetries of a combinatorial object forms a group under functional

composition. This group is referred to as the symmetry group of the object.

Example II.61. The set of all symmetries of a square graph of Figure 2.6 contains:

{ι, (0 2), (1 3), (0 2)(1 3), (0 1)(2 3), (0 3)(1 2), (0 1 2 3), (0 3 2 1)}

This set forms a group under functional composition.

A symmetry group of an object acts on the object’s variables, and partitions the

variable set of the object (i.e., orbit partition).

Example II.62. The orbit partition for the symmetry group of Example II.61 is

{0, 1, 2, 3}.
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CHAPTER III

Previous Work

In this section, we review previous work relevant to this thesis.

3.1 And-Inverter Graphs

An AIG is a directed acyclic graph that represents the functionality of a Boolean

function. The nodes of an AIG are two-input “And” gates, and its edges are optionally

marked to indicate “Not” gates.

Example III.1. Figure 3.1 shows two structurally different AIGs for the function

z = x2 ∧ (x1 ∨ x3).

Modern logic synthesis tools, such as ABC, use AIGs as alternatives to Binary

Decision Diagrams (BDDs), since AIGs are more memory efficient, and are faster in

performing logic simulation. Unlike BDDs, AIGs are not canonical, but are struc-

turally hashed to be partially canonical [45].

3.2 Boolean Satisfiability

Boolean satisfiability (SAT ) is the problem of determining if there exists a vari-

able assignment to a Boolean formula that makes the formula evaluate to true. A
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Figure 3.1: Two structurally different AIGs for the function z = x2 ∧ (x1 ∨ x3).

Boolean formula is said to be satisfiable if such an assignment exists, and unsatisfiable

otherwise.

Example III.2. The following are examples of satisfiable and unsatisfiable CNF

formulas on variable set X = {x1, x2, x3}:

x1 ∧ x2 ∧ x3: satisfiable under x1 = 1, x2 = 1, x3 = 1

¬x1 ∧ (x2 ∨ ¬x3): satisfiable under x1 = 0, x2 = 1, x3 = 1

x1 ∧ ¬x1 ∧ (x2 ∨ x3): unsatisfiable

The first algorithms to solve the satisfiability problem were introduced in the early

1960s. These algorithms are now referred to as the DPLL search framework [23, 22].

DPLL consists of three main features: branching, backtracking, and unit propaga-

tion. Branching is essential to move forward in the search space, and backtracking

is used to retreat from futile branches of the search. Unit propagation expedites the

search by detecting futile branches early (based on the decisions taken) and triggering

backtracking.

Modern SAT solvers, such as MiniSAT [24], augment DPLL with the following

concepts:

− Clause learning : it is likely for basic DPLL to encounter the same chain of

conflicting assignments multiple times during the search. To avoid such redun-

dancy, SAT solvers analyze each conflict to identify a small set of assignments
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that are sufficient to expose that conflict. These assignments form a new clause,

which is saved (learned) by the solver and used by the propagation process to

avoid the same conflict in the future [54].

− VSIDS adaptive branching : VSIDS is a low-overhead branching heuristic that

attempts to satisfy (the most recent) conflict clauses [47].

− Watched literals : two-literal watching refers to a data structure and related

algorithms that speeds up unit propagation [47].

− Random restarts : using restarts is a typical strategy to escape from futile parts

of the search space [31].

3.3 Combinational Equivalence Checking

Equivalence checking of two combinational circuits is the problem of checking

whether two circuits are functionally equivalent, i.e., they exhibit the same output

values under combinations of all input values.

One way to prove functional equivalence of two combinational circuits is to use

SAT. This is accomplished by building the miter (see below) of the two circuits and

passing it to a SAT solver.

The miter of two circuits is a single-output circuit constructed by combining inputs

with the same name, feeding outputs with the same name to two-input XOR gates,

and connecting the outputs of the XOR gates to one multi-fanin OR gate. Figure 3.2

visualizes miter construction for two logic circuits C1 and C2 with input sets X =

{x1, ..., xn}, and output sets Z = {z1, .., zm} and W = {w1, ..., wm}, respectively.

If the miter of two circuits is unsatisfiable, the circuits are equivalent. If not, the

circuits are not equivalent, and the satisfiable assignment serves as a counterexample.

This is due to the property of the two-input XOR gate, which produces 1 if and only

if the two input values are the same.
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Figure 3.2: Miter of two n-input m-outputs logic circuits.

3.4 Software Tools for Graph Symmetry Detection and Canon-

ical Labeling

Graph symmetry and canonical labeling have been extensively studied over the

past five decades. The nauty program [43] pioneered the first high-performance al-

gorithms that inspired all subsequent tools. The nauty algorithms used a depth-first

branching and backtracking framework which integrated group-theoretic techniques

to facilitate the search. Those algorithms were primarily designed to search for a graph

canonical labeling, but were also able to report graph symmetries as a by-product.

Closely following nauty’s canonical-labeling algorithms were three other tools,

namely, bliss [34, 35], traces [50] and nishe [55]. The search routines in bliss

improved the handling of large and sparse graphs, since the algorithms in nauty were

mostly designed to target small dense graphs. The breadth-first scan of branching

choices in traces allowed early identification and elimination of futile branches of

search. The branching heuristics in nishe facilitated a polynomial-time solution for

a family of graphs known as Miyazaki [46], which had been shown to impede nauty

algorithms.

In addition to the above software packages, another software package, called saucy

(presented in this thesis), was optimized to only look for symmetries of graphs. The
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first version of saucy was motivated by the observation that the graphs of typical

CNF formulas were too large (hundreds of thousands to millions of vertices) and

unwieldy for nauty which was more geared towards small dense graphs (hundreds of

vertices). The obvious remedy, changing the data structure for storing graphs from

an incidence matrix to a linked list, yielded the saucy system which demonstrated

the viability of graph automorphism detection on very large sparse graphs [20].

The next version of the saucy tool [21] introduced a major algorithmic change

that delinked the search for symmetries from the search for a canonical labeling. This

yielded a remarkable 1000-fold improvement in run time for many large sparse graphs

with sparse symmetry generators, i.e., generators that “move” only a tiny fraction of

the graph’s vertices.

In this thesis, we take a fresh look at saucy algorithms. We explain different

aspects of saucy search tree by viewing permutation sets as ordered partition pairs.

We also introduce the third version of saucy which uses simultaneous partition re-

finement to anticipate and avoid conflicts that might arise during the search. The

saucy search algorithms are presented in Chapter IV.

3.5 Computational Complexity of Graph Automorphism

The graph isomorphism problem belongs to the class NP of computational com-

plexity. This is justified by the fact that the “Yes” answer to graph isomorphism (i.e.,

whether two graphs are isomorphic or not) can be verified in polynomial time on a

deterministic Turing machine. The graph isomorphism problem, although in NP, is

one of few standard problems in computational complexity theory that is not known

to be either in P or NP-complete.

The following problems are polynomial-time equivalent to graph isomorphism [12,

42], and hence, all arguments on the computational complexity of graph isomorphism

hold for them as well:
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1. finding a set of generators for the automorphism group of a graph,

2. computing the size of the automorphism group of a graph, and

3. finding the orbits of the automorphism group of a graph.

While no polynomial-time algorithm is known to solve the isomorphism problem

for general graphs, some progress has been made towards polynomial-time algorithms

for special cases. Examples of such cases include planar graphs [33], graphs of bounded

genus [26, 44], bounded degree graphs [41], graphs with bounded eigenvalue multi-

plicities [8], and trees [3].

Furthermore, strong evidence against NP-completeness of graph isomorphism has

been provided in the literature. For instance, Mathon [42] has shown that counting

the number of graph isomorphisms is polynomial-time equivalent to deciding the

existence of an isomorphism. This is while the counting version of a typical NP-

complete problem tends to be much harder than its decision version.

Regarding the current state of knowledge on the complexity of graph isomorphism,

it seems that if graph isomorphism belongs to either P or NP-complete, it is more

likely to be in P than NP-complete. This conjecture is also somewhat validated by

today’s fast and highly scalable graph isomorphism (and automorphism) packages.

3.6 Symmetry Breaking for Boolean Satisfiability

One known source of deficiency in modern SAT solvers is their tendency to explore

symmetric portions of the search space [51, 19, 4, 7, 29, 30]. Triggered by this

observation, Crawford et al. [19] established the theoretical framework that breaks

all the symmetries of a CNF formula. The idea is to use symmetries to augment the

formula with a set of Symmetry-Breaking Predicates (SBPs). These predicates do not

change the formula’s satisfiability, but help the solver prune away symmetric portions

of the search space. Since this type of symmetry breaking refines SAT search space

30



 

Symmetry 
Breaking 
Predicates 

Symmetry 
Generators 

Graph 
Model Graph 

Encoder 

Saucy 
Symmetry 
Detection 

Tool 

CNF 
Formula 

Static 
Symmetry 
Breaking  

 

SAT 
Solver 

+  

Figure 3.3: The shatter static symmetry-breaking flow.

by modifying the input formula and not the SAT algorithms, it is referred to as static

symmetry breaking.

It quickly became apparent from theory that generating an SBP for every symme-

try of a formula was impractical, since the number of the formula’s symmetries can

be exponential in the number of its variables. Therefore, Aloul et al. [5] proposed

partial symmetry breaking by generating SBPs for just a subset of all symmetries.

The rationale is that 1) it is not necessary to break all symmetries to rule out all

symmetric solutions, and 2) a small number of symmetric solutions can be tolerated.

The subset they used was the formula’s symmetry group generators which was read-

ily available from running a common symmetry-detection tool. Further advances in

symmetry breaking were reported by Aloul et al. in [4] and [6], including an SBP-

augmented CNF formula whose number of SBPs grew linearly with the number of

variables of the original formula. An automated static symmetry-breaking framework

that integrated the most optimized symmetry-breaking algorithms was implemented

in a tool called shatter [4].

The shatter static symmetry-breaking flow is depicted in Figure 3.3. This flow

consists of four consecutive steps. First, the input CNF formula is modeled as a

graph. Then, the modeled graph is passed to a graph symmetry-detection tool to

find the formula’s symmetry generators. Next, symmetry-breaking routines generate

a set of symmetry-breaking predicates based on the formula’s symmetry information.
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φ = (a ∨ b) ∧ (a′ ∨ b′) ∧ (a ∨ b′ ∨ c) ∧ (a′ ∨ b ∨ c) ∧ (a ∨ b′ ∨ c′) ∧ (a′ ∨ b ∨ c′)

Figure 3.4: A 3-variable 6-clause CNF formula φ along with its modeled graph G.

Finally, the original formula, augmented with SBPs, is handed off to a SAT solver.

Given a CNF formula, its modeled graph is constructed as follows. A vertex is

added for each clause and each literal of the formula. Clause vertices are colored

differently than literal vertices, since clauses should only map to clauses and literals

to literals. An edge is added between clause vertex i and literal vertex j, if and only if

clause i contains literal j. An edge is also drawn between each literal and its negation.

Example III.3. Figure 3.4 depicts an example of a 3-variable 6-clause CNF formula

φ, along with its modeled graph G. Vertices 1 to 6 correspond to φ’s clauses (from

left to right, respectively), and the remaining vertices are labeled with φ’s literals.

A symmetry-breaking predicate is a lex-leader predicate that evaluates to true for

at least one element from each orbit of the formula’s symmetry group [6]. In other

words, it picks one representative assignment from each orbit.

Example III.4. For the formula φ of Figure 3.4, permutation γ = (a b) forms

a symmetry. This symmetry indicates that the value of φ stays the same under

assignment a = 0, b = 1, and assignment a = 1, b = 0. The SBP that corresponds to

γ is a′ ∨ b, which only allows one of the two above assignments, i.e., a = 0 and b = 1.

Formula φ, when augmented with this SBP, is:

φ = (a ∨ b) ∧ (a′ ∨ b′) ∧ (a ∨ b′ ∨ c) ∧ (a′ ∨ b ∨ c) ∧ (a ∨ b′ ∨ c′) ∧ (a′ ∨ b ∨ c′) ∧ (a′ ∨ b)
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CHAPTER IV

Graph Symmetry-Discovery Algorithms

In this chapter, we describe our symmetry-detection algorithms for graphs. The

collection of our algorithms is implemented in the saucy 3.0 graph symmetry-detection

software. Throughout this chapter, we assume that the input to saucy is an n-vertex

undirected colored graph G with vertex set V = {0, 1, ..., n− 1}.

4.1 The Permutation Search Space

All graph symmetry-detection software packages, except for saucy, are primarily

designed to solve the canonical labeling problem. Examples of such packages include

nauty [43], bliss [34, 35], traces [50] and nishe [55], which explore the space of graph

labelings, and find symmetry group generators as a byproduct. These packages employ

group-theoretic pruning heuristics to narrow the search for the canonical labeling of

an input graph. The detection of symmetries benefit from these pruning rules, but

also help prune the canonical-labeling tree, since symmetric graphs yield the same

labeling.

Unlike graph canonical labelers which search the space of labelings, saucy finds

symmetries by exploring the space of permutation. In fact, it builds a complete

permutation search tree, and prunes its futile branches using algorithmic and group-

theoretic techniques. The data structures and algorithms in saucy are optimized to
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implicitly encode and manipulate sets of permutations. They take advantage of both

the sparsity of an input graph and the sparsity of its symmetries to attain scalability.

4.2 Implicit Representation of Permutation Sets

To represent sets of permutations, saucy uses a data structure that encodes or-

dered partition pairs (OPPs). The goal of this data structure is to provide a compact

and implicit representation of sets of permutations. Specifically, a discrete OPP rep-

resents a single permutation, whereas a unit OPP represents all n! permutations of

the vertices. In general, an isomorphic OPP

Π =

 T1

B1

∣∣∣∣∣∣∣
T2

B2

∣∣∣∣∣∣∣
· · ·

· · ·

∣∣∣∣∣∣∣
Tm

Bm

 (4.1)

represents
∏

1≤i≤n |Ti|! permutations. On the other hand, note that it is not possible

to obtain well-defined mappings between the top and bottom partitions of a non-

isomorphic OPP. Thus, non-isomorphic OPPs denotes empty sets of permutations.

Example IV.1. Here are several example OPPs and the permutation sets that they

encode.

Discrete OPP:

 2

1

∣∣∣∣∣∣∣
0

2

∣∣∣∣∣∣∣
1

0

 = {(0 2 1)}

Unit OPP:

 0, 1, 2

0, 1, 2

 = {ι, (0 1) , (0 2) , (1 2) , (0 1 2) , (0 2 1)}

Isomorphic OPP:

 2

1

∣∣∣∣∣∣∣
0, 1

2, 0

 = {(1 2) , (0 2 1)}
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Matching OPP:

 1

3

∣∣∣∣∣∣∣
0, 2, 4

0, 2, 4

∣∣∣∣∣∣∣
3

1

 = (1 3) ◦ {ι, (0 2), (0 4), (2 4), (0 2 4),

(0 4 2)}

Non-isomorphic OPPs:

 0, 2| 1

1| 2, 0

 = ∅,

 2| 0| 1

1| 2, 0

 = ∅

4.3 Basic Enumeration of the Permutation Search Space

The basic skeleton of saucy’s permutation enumeration algorithm is formed by

extending isomorphic OPPs, since isomorphic OPPs encode non-empty sets of per-

mutations. The root of the permutation tree is a unit OPP which encodes all possible

permutations of an input graph.

An isomorphic OPP is extended by the routine shown in Figure 4.1. This routine

first picks a non-singleton cell (target cell) from the top partition. It then picks a

vertex (target vertex) from the target cell, and maps the target vertex to a vertex

(candidate vertex) from the corresponding cell of the bottom partition.

The mapping step is accomplished by splitting the target cell so that the target

vertex is in a cell of its own. The corresponding cell of the bottom partition is

split similarly, placing the vertex to which the target vertex is mapped in a new

singleton cell. Given the isomorphic OPP in (4.1), Figure 4.2 symbolically illustrates

the mapping procedure. It assumes that the ith cell is the target cell, j ∈ Ti is the

target vertex, and j is mapped to k ∈ Bi. This mapping refines the m-cell OPP Π to

the (m+ 1)-cell OPP Π′.

Using the mapping procedure illustrated in Figure 4.2, saucy’s enumeration algo-

rithm constructs a complete permutation tree. The structure of this tree is depicted

in Figure 4.3. For this figure, assume that the vertex set is V = {v0, v1, ..., vn−1}.

At each level of the permutation tree, a target vertex is picked and mapped to all
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Inputs: Π
Outputs: Π̃

1. Set πT to the top partition of OPP Π.
Set πB to the bottom partition of OPP Π.

2. Choose a non-singleton cell CT (the target cell) from partition πT .
Set cell CB to the corresponding cell of CT on partition πB (i.e., the cell that
goes under CT on the bottom partition).

3. Choose a vertex v from target cell CT (the target vertex).

4. Map target vertex v to a vertex u (the candidate vertex) from cell CB and save
the result in Π̃ (see Figure 4.2 for the pseudocode of mapping).

5. return Π̃.

Figure 4.1: The basic skeleton for saucy’s permutation enumeration algorithm.

Π′ =
[
T ′1
B′1

∣∣∣∣ T ′2
B′2

∣∣∣∣ · · ·· · ·
∣∣∣∣ T ′i
B′i

∣∣∣∣ T ′i+1

B′i+1

∣∣∣∣ · · ·· · ·
∣∣∣∣ T ′m+1

B′m+1

]
where

T ′l = Tl B′l = Bl l = 1, · · · , i− 1
T ′i = Ti − {j} B′i = Bi − {k}
T ′i+1 = {j} B′i+1 = {k}
T ′l = Tl−1 B′l = Bl−1 l = i+ 2, · · · ,m+ 1

Figure 4.2: The results of refining the OPP Π in (4.1) assuming that the ith cell is
the target cell, j ∈ Ti is the target vertex, and j is mapped to k ∈ Bi.

possible candidate vertices. For example, the target vertex at level 1 is vi, at level 2 is

vj, ..., and at level n−1 is vk. The mapping procedure continues until a discrete OPP

(i.e., a leaf) is reached at level n − 1. Note that mapping beyond level n − 1 is not

possible, since a discrete OPP does not have any non-singleton cells. The permuta-

tion enumeration ends when all possible mappings are exhausted. In implementation,

a depth-first traversal of the permutation tree is performed.

Once the basic enumeration is complete, all n! permutations of the graph are

visited at the leaves. These permutations can then be checked to see if they form
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Figure 4.3: The structure of saucy’s permutations search tree.

symmetries of the input graph. It is important to point out that the choice of target

vertex at each tree node and the order in which each of its possible mappings are

processed does not affect the final set of permutations produced at the leaves of

the search tree. It does, however, alter the order in which these permutations are

produced.

As an example, consider the search tree in Figure 4.4(a) which enumerates all

permutations of V = {0, 1, 2}, and checks which are valid symmetries of the indicated

3-vertex 2-edge graph. Each node of the search tree corresponds to an OPP whose

cells contain the vertices of the graph. For example, the root of the tree is a unit

OPP that represents all 6 permutations on 3 vertices. Each non-discrete OPP is the

root of a subtree that is obtained by mapping a target vertex in all possible ways.

For example, the unit OPP at the root of the search tree is extended into a 3-way
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Figure 4.4: Search trees for the automorphisms of a 3-vertex “line” graph. The target
vertex (“decision variable”) at each tree node is highlighted. (a) without partition
refinement. (b) with partition refinement.

branch by mapping target vertex 1 to 0, 1, and 2.

4.4 Partition Refinement

The saucy permutation search tree can be pruned significantly by performing

partition refinement [3, 20, 43] before selecting and branching on a target vertex.

The goal of partition refinement is to propagate the constraints of the graph (i.e, the

graph’s vertex colors, vertex degrees, and edge relation) until the partition becomes

equitable.
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Inputs: G, π = [W1|W2| · · · |Wt]
Outputs: π̃

1. Set partition π̃ to π.
Set integer m to 1.

2. If π̃ is discrete or m > t, then return π̃.

3. Set cell W to Wm.
Increment m.
Set integer k to 1.
Suppose that π̃ = [V1|V2| · · · |Vr] at this point.

4. Define Vk = |X1|X2| · · · |Xs| such that for any x ∈ Xi and y ∈ Xj , the number
of neighbors of x in W is smaller than the number of neighbors of y in W if and
only if i < j.

5. If s == 1, go to 7.

6. Let z be the smallest integer such that |Xz| is maximum for 1 ≤ z ≤ s.
If Wj == Vk for some j (m ≤ j ≤ t), set Wj to Xz.
For 1 ≤ i < z, set Wt+i to Xi.
For z < i ≤ s, set Wt+i−1 to Xi.
Set t to t+ s− 1.
Update π̃ by replacing cell Vk with cells X1, X2, ..., Xs in that order.

7. Increment k. If k ≤ r, go to 4.

8. Go to 2.

Figure 4.5: Pseudocode for refining partition π = given graph G.

Definition IV.2. Partition π = [W1|W2| · · · |Wt] is said to be equitable (with respect

to a given graph) if, for all vertices v1, v2 ∈ Wi (1 ≤ i ≤ t), the number of neighbors

of v1 in Wj (1 ≤ j ≤ t) is equal to the number of neighbors of v2 in Wj.

Figure 4.5 shows the pseudocode for partition refinement (as described in [43]).

This pseudocode takes a graph G and an ordered partition π = [W1|W2| · · · |Wt],

and produces equitable ordered partition π̃ from π with respect to G. An example of

partition refinement is illustrated in Figure 4.4(b) where vertex 2 is split from vertices

0 and 1 because it has a different degree.

In the early versions of saucy, partition refinement was applied separately to the

top and bottom partitions of an OPP. In implementation, saucy first refined the top
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Figure 4.6: Structure of the permutation search tree.

partition until it became equitable, and recorded where the cell splits occurred. Then,

it refined the bottom partition, and compared the splitting locations of the bottom

to the top (i.e., checked the isomorphism of the two partitions).

In saucy 3.0, however, partition refinement is applied simultaneously to the top

and bottom partitions. This new refinement scheme (explained in detail in Sec-

tion 4.8) has the extra advantage of anticipating conflicts that might be overlooked

by conventional refinement.

4.5 Group-Theoretic Pruning

There are two primary pruning mechanisms anchored in group theory: coset

pruning and orbit pruning. These pruning techniques are routinely employed by

symmetry-detection and canonical-labeling algorithms, such as saucy.

To enable these pruning mechanisms in saucy, we re-structure the permutation

search tree so that each tree level represents a subgroup of the graph’s symmetry

group along with its potential cosets. Figure 4.6 illustrates this re-structuring. For

this figure, assume that the symmetry group of the input graph is G which is shown at
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Figure 4.7: A coset level of the permutation search tree.

the root. The “decisions” along the left-most tree path map each selected target vertex

to itself. In other words, this path corresponds to a sequence of subgroup stabilizers

ending in the identity. This phase of the search is called subgroup decomposition, and

the sequence of the mappings on the left-most path is called the stabilizer sequence. In

the following sub-sections, we explain how the new re-structuring of the permutation

tree (as shown in Figure 4.6) can help us find a set of generators for the symmetry

group of the graph.

4.5.1 Coset Pruning

Consider the level of the search tree in Figure 4.6 where vertex i is mapped

to vertices i, i1, i2, · · · , ix. This part of the search is illustrated in more details in

Figure 4.7. The permutation subset corresponding to mapping i to itself is Gi, the

stabilizer subgroup of i. The other subsets, denoted by Hi 7→ij , correspond to those

permutations that, among other things, map i to ij.

To find a set of generators for G in Figure 4.6, we must “solve” up to x independent

problems where problem ij seeks to determine whether the set of permutations Hi 7→ij

is a coset of Gi. This is accomplished by searching Hi 7→ij for a single permutation that

satisfies the graph edge relation, i.e., a permutation that is an automorphism of the

graph. If no such permutation exists, then Hi 7→ij is empty, i.e., it is not a coset of Gi.

41



4

6 5

10

23

?

[
1, 2, 3, 4, 5, 6
0, 1, 2, 3, 5, 6

∣∣∣∣ 0
4

]
⇒
[

2, 4, 5, 6
0, 1, 2, 3

∣∣∣∣ 1, 3
5, 6

∣∣∣∣ 0
4

]
⇒
[

4, 5, 6| 2
0, 1, 2, 3

∣∣∣∣ 1, 3
5, 6

∣∣∣∣ 0
4

]

Figure 4.8: Example of non-isomorphic refinement. Attempting to map vertex 0 to
vertex 4 causes the top and bottom partitions to split non-isomorphically into 4 and
3 cells, respectively.

4.5.2 Orbit Pruning

Let permutation ηi 7→ij denote the “solution” to problem ij (see Figure 4.6). Clearly,

ηi 7→ij serves as a coset representative for Hi 7→ij and can be added to the set of gener-

ators for G. Additionally, vertices i and ij must now be in the same orbit. Thus, if

the orbit of ij contains vertex il with l > j, then problem il can be skipped since its

corresponding coset must necessarily contain redundant generators.

4.6 OPP-Based Pruning

The search algorithms in saucy incorporate two algorithmic pruning techniques

that are enabled due to the OPP encoding of permutation sets: non-isomorphic OPP

pruning and matching OPP pruning.

4.6.1 Non-isomorphic OPP pruning

Once partition refinement is complete (i.e., the top and bottom partitions of an

OPP are equitable), saucy checks whether the resulting OPP is isomorphic or non-

isomorphic. A non-isomorphic OPP reflects a conflict, which can be interpreted as
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a violation of the graph’s edge relation. Such an OPP allows early elimination of

the subtree rooted at the current tree node, since that subtree does not contain valid

permutations (or in fact, a symmetry of the graph).

To illustrate, consider the 7-vertex graph in Figure 2 and assume that the decision

to map vertex 0 to vertex 4 has just been made. This decision triggers partition

refinement which causes the top and bottom partitions of the OPP to refine non-

isomorphically, proving that there are no automorphisms of this graph that map

vertex 0 to vertex 4.

4.6.2 Matching OPP pruning

A key pruning mechanism enabled by the OPP encoding of permutation sets is

the quick discovery of candidate coset representatives. This occurs when the OPP at

a given tree node is matching. A matching OPP corresponds to a permutation that

maps the vertices in matching cells identically.

Example IV.3. The matching OPP

 1

3

∣∣∣∣∣∣∣
0, 2

0, 2

∣∣∣∣∣∣∣
4, 6, 7

4, 6, 7

∣∣∣∣∣∣∣
3

5

∣∣∣∣∣∣∣
5

1


encodes the permutation (1 3 5).

Let Π be a matching OPP, and let α be the permutation that maps the vertices

in the non-singleton cells of Π identically. It can be shown that α always forms

a symmetry of the graph (see Lemma IV.4 in Section 4.8.3). Hence, when saucy

encounters OPP Π, it prunes the entire subtree rooted at Π, since symmetry α serves

as a coset representative for the subtree rooted at Π.
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Inputs: G
Outputs: S

1. Perform recursive subgroup decomposition.
Assume that vl is the target vertex at level l.

2. For each level l of the permutation tree:

3. For each candidate vertex u of target vertex vl at level l:

4. Continue if vl and u share the same orbit (orbit pruning).

5. Continue if we already explored the mapping of vl to a vertex w, while
w and v share the same orbit (orbit pruning).

6. Map vl to u.
Assume that Hvl 7→u contains the set of all permutations that map vl to u.

7. Search Hvl 7→u for a coset representative.
Within this search, apply the following three pruning mechanisms:
− coset pruning,
− matching OPP pruning, and
− non-isomorphic OPP pruning.

8. If Hvl 7→u contains a coset representative α, add α to set of generators S.

9. return S.

Figure 4.9: The outline of the saucy symmetry-detection algorithm.

4.7 The Graph-Symmetry Discovery Algorithm

The saucy graph symmetry-detection algorithm is outlined in Figure 4.9. This

algorithm performs a depth-first traversal of the permutation search tree. This is ac-

complished by first performing a phase of subgroup decomposition, and then searching

the subspaces that map the target vertex at each level to the candidate vertices. Each

subspace is pruned by systematic application of the following four pruning rules:

− Coset pruning which terminates the search in a coset subtree as soon as a

coset representative is found.

− Orbit pruning which avoids searching the subtree of coset Hi 7→j if j is already

in the orbit of i.
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− Non-isomorphic OPP pruning which indicates that there are no permuta-

tions in the subtree rooted at that node which are symmetries of the graph.

− Matching OPP pruning which can identify a candidate permutation at a

tree node without the need to explore the subtree rooted at that node.

At the end, saucy returns the set of found coset representatives as the generating set

for the symmetry group of the graph.

It is important to note that coset and orbit pruning are, in some sense, intrinsic

and should be viewed as part of the “specification” of the automorphism problem.

In other words, any graph automorphism algorithm must return a set of irredun-

dant generators, and thus, must employ coset and orbit pruning. The two other

pruning rules, based on the OPP encoding of permutation sets, represent algorithmic

enhancements that assist in eliminating unnecessary search.

Finally, it is interesting to note that in addition to finding a set of generators

for G, symmetry-detection algorithms can also compute the order of G using the

orbit-stabilizer and Lagrange theorems [28]: |G| = |Gi| · |Θi|.

An example graph along with its search tree constructed by saucy are depicted

in Figure 4.10. This search tree exhibits all four pruning mechanisms. Below is the

trace of saucy algorithms for the example graph of Figure 4.10.

– Initialization: Θ = {0| 1| 2| 3| 4| 5| 6}, Z = ∅.

1. Fix vertex 3 and refine

2. Fix vertex 5

3. Fix vertex 6

4. Fix vertex 2; G2 = ι
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Figure 4.10: Search tree for graph automorphisms of the “square and triangle” graph
and relevant computations at each node. The shaded region corresponds to subgroup
decomposition.

5. Search for representative of coset H2 7→0;

Found representative of coset H27→0;

Z = {(0 2)}; Θ = {0, 2 | 1 | 3 | 4 | 5 | 6}; |G6| = |G2| × |Θ2| = 1× 2 = 2

6. Search for representative of coset H6 7→4;

Matching OPP pruning: found representative of coset H67→4;

Coset pruning: no need to explore since we have already found a coset repre-

sentative for H67→4;
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Z = {(0 2), (4 6)}; Θ = {0, 2 | 1 | 3 | 4, 6 | 5}

7. Search for representative of coset H5 7→4

8. Map vertex 4 to vertex 5;

Matching OPP pruning: found representative of coset H57→4;

Coset pruning: no need to explore since we have already found a coset repre-

sentative for H57→4

Z = {(0 2), (4 6), (4 5)}; Θ = {0, 2 | 1 | 3 | 4, 5, 6}

9. Orbit pruning: no need to explore since 6 is already in the orbit of 5;

|G5| = |G6| × |Θ6| = 2× 3 = 6

10. Non-isomorphic OPP pruning: 3 cannot map to 4

11. Orbit pruning: no need to explore since 5 is already in the orbit of 4

12. Orbit pruning: no need to explore since 6 is already in the orbit of 4

13. Search for representative of coset H3 7→0

14. Map vertex 0 to vertex 3;

Matching OPP pruning: found representative of coset H37→0.

Coset pruning: no need to explore since we have already found a coset repre-

sentative for H37→0

Z = {(0 2), (4 6), (4 5), (0 3)(1 2)}; Θ = {0, 1, 2, 3 | 4, 5, 6};

|G3| = |G5| × |Θ5| = 6× 2 = 12

15. Orbit pruning: no need to explore since 1 is already in the orbit of 3

16. Orbit pruning: no need to explore since 2 is already in the orbit of 3
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4.8 Conflict Anticipation via Simultaneous Refinement

The early versions of saucy (i.e., saucy 2.1 and earlier) applied partition refine-

ment separately to the top and bottom partitions of an OPP. In implementation,

they first refined the top partition until it became equitable, and recorded where

the cell splits occurred. Then, they refined the bottom partition, and compared the

splitting locations of the bottom to the top (i.e., checked the isomorphism of the two

partitions). We refer to this refinement scheme as conventional refinement.

In this section, we argue that the conventional partition refinement (as explained

above) might overlook certain conflicts. In particular, we demonstrate cases where

an OPP is found isomorphic by conventional refinement, but still violates the edge

relation of the graph. We illustrate such a case, and explain why conventional re-

finement fails to detect the conflict in that case. We then present a simultaneous

partition refinement procedure that detects such cases and does not explore them.

We discuss the impact of our refinement procedure on the search tree constructed for

our example.

4.8.1 Simultaneous vs. Conventional Refinement

Consider the 20-vertex 46-edge graph shown in Figure 4.11. The search tree

generated by saucy 2.1 for this graph is shown in Figure 4.12. This search tree

produces 16 conflicts, indicated by red-shaded nodes. In the remainder, we focus on

the path from the root that maps 11 7→ 0 and then 14 7→ 4. The OPPs in Figure

4.13, labeled with (4.2), (4.3) and (4.4), represent the nodes of the search tree at the

root, after mapping 11 7→ 0, and after mapping 14 7→ 4, respectively.

In saucy 2.1, the isomorphic OPP (4.4), obtained after mapping 14 7→ 4, is not

considered to be a conflict and triggers further vertex mappings (namely, 4 7→ 14,

4 7→ 12, 4 7→ 13, and 4 7→ 15). However, this OPP violates the edge relation of the

graph in Figure 4.11. To see this, consider the edge that connects 13 to 16. This
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Figure 4.11: A 20-vertex 46-edge graph with symmetry group of size 32.

root

11→11 11→1 11→0

14→4

4→14 4→12 4→13 4→15

14→2

7→19 7→16

14→3

8→16 8→19

14→5

7→16 7→19

11→10

4 gens 1gen Orbit pruned

9→18 9→17 6→17 6→18 9→17 9→18 6→18 6→17 6→17 6→18 9→18 9→17

Figure 4.12: The search tree constructed by saucy 2.1 for the graph in Figure 4.11.

edge, according to OPP (4.4), should be mapped to another edge that connects 3

to 7, since OPP (4.4) maps 13 7→ 3, and 16 7→ 7. Nevertheless, no such edge exists

between 3 and 7 in Figure 4.11, and hence, OPP (4.4) is a conflict.

The question now is why the refinement procedure failed to detect the above con-

flict? Or, in other words, why was OPP (4.4) found to be isomorphic? To answer this

question, we should follow the trace of the refinement procedure which is performed

on OPP (4.3) to get OPP (4.4) after mapping 14 7→ 4. As elaborated earlier, saucy

2.1 first refines the top partition until it becomes equitable, then refines the bottom

partition and checks the isomorphism of the bottom to the top whenever a new split

occurs. The step by step refinement of the top and bottom partitions when 14 7→ 4

is shown in Figure 4.14 and Figure 4.15, respectively.

The refinement on the top starts by first making 14 a singleton cell (partition

(4.5)). According to the graph of Figure 4.11, 14 is connected to 12,15,18 and 19, but
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[
11, 10, 1, 0
11, 10, 1, 0

∣∣∣∣ 15, 12, 14, 13, 5, 2, 4, 3
15, 12, 14, 13, 5, 2, 4, 3

∣∣∣∣ 18, 19, 17, 16, 8, 9, 7, 6
18, 19, 17, 16, 8, 9, 7, 6

]
(4.2)

[
0
11

∣∣∣∣10
1

∣∣∣∣ 1
10

∣∣∣∣11
0

∣∣∣∣14, 12, 13, 15
4, 3, 5, 2

∣∣∣∣ 2, 4, 5, 3
13, 14, 12, 15

∣∣∣∣17, 18
9, 6

∣∣∣∣ 8, 7
19, 16

∣∣∣∣ 6, 9
18, 17

∣∣∣∣16, 19
7, 8

]
(4.3)

[
0
11

∣∣∣∣10
1

∣∣∣∣ 1
10

∣∣∣∣11
0

∣∣∣∣13
3

∣∣∣∣12
2

∣∣∣∣15
5

∣∣∣∣14
4

∣∣∣∣ 2, 4, 5, 3
13, 14, 12, 15

∣∣∣∣17
6

∣∣∣∣18
9

∣∣∣∣ 8, 7
19, 16

∣∣∣∣ 6, 9
18, 17

∣∣∣∣16
7

∣∣∣∣19
8

]
(4.4)

Figure 4.13: The search nodes of the tree in Figure 4.12. OPP (4.2) is at the root,
OPP (4.3) is after mapping 11 7→ 0, and OPP (4.4) is after mapping 14 7→ 4.

[
0 10 1 11 12,13,15 14 2,4,5,3 17,18 8,7 6,9 16,19

]
(4.5)[

0 10 1 11 13 12,15 14 2,4,5,3 18 17 8,7 6,9 16 19
]

(4.6)[
0 10 1 11 13 12 15 14 2,4,5,3 18 17 8,7 6,9 16 19

]
(4.7)

Figure 4.14: The refinement of the top partition of OPP (4.3) to get OPP (4.4).

[
11 1 10 0 3,5,2 4 13,14,12,15 9,6 19,16 18,17 7,8

]
(4.8)[

11 1 10 0 3 5,2 4 13,14,12,15 9 6 19,16 18,17 7 8
]

(4.9)[
11 1 10 0 3 2 5 4 13,14,12,15 9 6 19,16 18,17 7 8

]
(4.10)

Figure 4.15: The refinement of the bottom partition of OPP (4.3) to get OPP (4.4).

not to 13, 17 and 16. Hence, refinement separates 12 and 15 from 13 (this makes 13 a

singleton cell), 18 from 17, and 19 from 16 (partition (4.6)). The refinement continues

by looking at the connections of one of the newly created cells. Here, saucy 2.1 picks

the singleton cell 16. According to the graph, 16 is connected to 11,13,15,17,18 and

19. This separates 15 from 12 (partition (4.7)). The top partition is now equitable,

i.e., no further refinement is implied.

After refining the top partition, saucy 2.1 starts refining the bottom partition.
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This is done by first making 4 a singleton cell (partition (4.8)). Since 4 is connected

to 2,5,8 and 9, refinement separates 2 and 5 from 3 (this makes 3 a singleton cell),

9 from 6, and 8 from 7 (partition (4.9)). Note that, at this point, partition (4.9) is

isomorphic to partition (4.6), i.e., no conflict is detected. This time saucy 2.1 picks

the singleton cell 7, since it had previously chosen 16 from the top, and 7 is at the

same index on the bottom as 16 on the top. According to the graph, 7 is connected to

0,2,5,6,8 and 9. Since 7 is connected to both 2 and 5, no further refinement is implied.

At this point, saucy 2.1 should detect the conflict that 16 on the top separated 15

from 12, but 7 on the bottom did not distinguish 2 from 5. However, since no new

cell is created on the bottom, saucy 2.1 does not invoke the isomorphism check, and

falsely assumes that the bottom stays isomorphic to the top. Note that the failure to

detect this conflict is not a bug in refinement, saucy’s refinement procedure refines

one partition at a time, and checks isomorphism once both partitions are equitable.

After refining based on 7, saucy 2.1 refines based on 6. Vertex 6 is connected to

1,3,5,7,8 and 9. Since 6 is connected to 5 but not 2, it separates 5 from 2 (partition

4.10). The bottom partition is now equitable and isomorphic to the top.

After the refinement procedure ends, saucy 2.1 builds isomorphic OPP (4.4), and

starts exploring it by mapping 4 to 14, 12, 13, and 15. However, this phase of the

search is superfluous, since we know that OPP (4.4) violates the graph’s edge relation,

and its further exploration will always result in conflicts. Another case of a conflict-

ing isomorphic OPP is when two corresponding singleton cells of the top and bottom

partitions have different connections to the other singleton cells of their own parti-

tion. In this case, the conflict is again overlooked by saucy’s conventional refinement

procedure, since singleton cells cannot be partitioned to smaller cells (i.e., no new cell

splitting occurs), and hence, the top and bottom partitions remain isomorphic after

this step of refinement.
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root

11→11 11→1 11→0

14→4 14→2 14→3 14→5

11→10

4 gens 1gen Orbit pruned

Figure 4.16: The search tree constructed by saucy 3.0 for the graph in Figure 4.11.

4.8.2 Simultaneous Partition Refinement

To detect the conflicts that might remain undetected during partition refinement,

we enhanced saucy’s partition refinement in two ways; 1) the isomorphism of the bot-

tom partition to the top is checked after each refinement step, rather than after each

time a new split occurs, and 2) in addition to the isomorphism check, we also ensure

that the connections of each newly created cell on the bottom match the connections

of its corresponding cell on the top. These two new checks verify that the top and

bottom partitions remain isomorphic and conforming (according to the graph’s edge

relation) after each refinement step. In our implementation, the overhead of the first

check is negligible, as it is performed within the main refinement loop, but the second

check requires an extra iteration over the outgoing edges of the vertices of the newly

created cells. We would like to emphasize that our enhancement is enabled by the

OPP-encoding of permutations that is unique to saucy’s search for automorphisms.

Figure 4.16 shows the search tree for the graph in Figure 4.11 when our new

simultaneous refinement is invoked. Comparing this search tree to that in Figure

4.12, the number of conflicts is reduced from 16 to 4.

4.8.3 The Validity of Matching OPP Pruning

When matching OPP Π is encountered in the search, saucy constructs a permuta-

tion α from Π by mapping the vertices in matching cells identically. It then prunes the

entire subtree rooted at this OPP by assuming that α is a symmetry of the graph,

and hence can be returned as a coset representative. In this subsection, we prove
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that such an assumption is correct when Π is found matching by our simultaneous

partition refinement.

Lemma IV.4. If saucy’s simultaneous partition refinement finds OPP Π matching,

permutation α that corresponds to Π is always an automorphism of graph G.

Proof. When OPP Π is found matching by saucy’s simultaneous refinement, Π

is equitable, isomorphic, matching, and conforming according to G’s edge relation.

Furthermore, permutation α that corresponds to Π maps the vertices in Π’s non-

singleton cells identically. To show by contradiction that α is a symmetry of G,

assume that it is not. Then, there must be an edge in Gα that does not exist in G (or

vice versa). Assume that this edge connects v1 to v2. Trivially, both v1 and v2 cannot

be mapped identically in α, otherwise, an edge between v1 and v2 in G would map to

the exact same edge in Gα. Hence, permutation α either maps v1 to v′1 (v1 6= v′1), or

v2 to v′2 (v2 6= v′2), or both. We first consider the case where v1 is mapped to v′1 but

v2 is mapped identically (this is similar to the case where v2 is mapped to v′2 but v1 is

mapped identically). This case contradicts our assumption that Π is equitable, since

v1 and v′1 were both singleton cells of Π, and having an edge between v1 and v2 but

not between v′1 and v2 would imply further refinement on Π. Now consider the case

where v1 is mapped to v′1 and v2 to v′2. This case contradicts our assumption that Π

is conforming according to G’s edge relation, since v1, v2, v
′
1 and v′2 were all singleton

cells of Π, and having an edge between v1 and v2 but not between v′1 and v′2 would

violate G’s edge relation.

4.9 The Complexity of Our Algorithm for Trees

In this section, we analyze the runtime of saucy for trees. To be more specific, we

show that saucy takes linear time to find the orbits of the automorphism group of

a given tree. We then show that finding the orbits of a tree is linear-time equivalent
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to the tree isomorphism problem, concluding that saucy solves tree isomorphism in

linear time.

The first linear-time algorithm to solve the tree isomorphism problem was intro-

duced by Aho, Hopcroft and Ullman [3]. This algorithm is referred to as the AHU

(graph isomorphism) algorithm. The AHU algorithm, in fact, solves the isomorphism

problem for rooted trees but can also be easily adapted to unrooted trees.

To prove that saucy takes linear time to solve the tree isomorphism problem,

we first discuss the difference in checking isomorphism of rooted trees vs. unrooted

trees. We then explain the AHU tree isomorphism algorithm, and show that saucy

essentially performs the same algorithm as AHU for checking the isomorphism of

rooted trees.

4.9.1 Isomorphism of Rooted Trees vs. Unrooted Trees

Any tree isomorphism algorithm for rooted trees should map roots to roots.

Example IV.5. The two trees in Figure 4.17 are isomorphic as unrooted trees but

not as rooted trees.

�� ��

Figure 4.17: T1 and T2 are two trees whose roots are colored as red. These trees are
isomorphic as unrooted trees but not as rooted trees.

Lemma IV.6. If there exists a linear-time isomorphism algorithm for rooted trees,

there exists a linear-time isomorphism algorithm for unrooted trees.

Proof. Assume that ISO ROOTED(T1, r1, T2, r2) is a linear-time procedure that

verifies the isomorphism of two trees T1 and T2 with roots r1 and r2, respectively. In
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fact, this procedure returns true if rooted tree T1 is isomorphic to rooted tree T2, and

false otherwise. We describe procedure ISO(T1, T2) which verifies the isomorphism

of two unrooted trees T1 and T2 as follows. We find the centers of T1 and T2, and

based on that, do one of the following:

1. if T1 has one center c1, and T2 has one center c2,

return ISO ROOTED(T1, c1, T2, c2)

2. if T1 has two centers c1 and c′1, and T2 has two centers c2 and c′2,

return ISO ROOTED(T1, c1, T2, c2) or ISO ROOTED(T1, c
′
1, T2, c2)

3. If T1 and T2 have different number of centers,

return false

The procedure ISO(T1, T2) takes linear time if finding tree centers takes linear time.

The following procedure finds the centers of a tree in linear time:

1. Choose a random root r.

2. Find a vertex v1 — the farthest from r.

3. Find a vertex v2 — the farthest from v1.

4. Centers are the median elements of the path from v1 to v2.

4.9.2 The AHU Tree Isomorphism Algorithm

Given two rooted trees T1 and T2, the AHU algorithm determines the isomorphism

of T1 and T2 as follows [3] (pages 84-86):

1. Assign to all leaves of T1 and T2 the integer 0.

2. Inductively, assume that all vertices of T1 and T2 at level i+1 have been assigned

integers. Assume L1 is a list of the vertices of T1 at level i + 1 sorted by non-
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decreasing value of the assigned integers. Assume L2 is the corresponding list

for T2.

3. Assign to the non-leaves of T1 at level i a tuple of integers by scanning the list

L1 from left to right and performing the following actions: for each vertex on

list L1, take the integer assigned to v to be the next component of the tuple

associated with the parent of v. On completion of this step, each non-leaf w of

T1 at level i will have a tuple (i1, i2, ..., ik) associated with it, where i1, i2, ..., ik

are integers, in non-decreasing order, associated with the sons of w. Let S1 be

the sequence of tuples created for the vertices of T1 on level i.

4. Repeat step 3 for T2 and let S2 be the sequence of tuples created for the vertices

of T2 on level i.

5. Sort S1 and S2 lexicographically. Let S ′1 and S ′2 respectively be the sorted

sequences of tuples. Call these sorted tuples AHU signatures.

6. If S ′1 and S ′2 are not identical then halt; the trees are not isomorphic. Otherwise,

assign the integer 1 to those vertices of T1 on level i represented by the first

distinct tuple on S ′1, assign the integer 2 to the vertices represented by the

second distinct tuple, and so on. As these integers are assigned to the vertices

of T1 on level i, make a list L1 of the vertices so assigned. Append to the front

of L1 all leaves of T1 on level i. Let L2 be the corresponding list of vertices of

T2. These two lists can now be used for the assignment of tuples to vertices of

level i− 1 by returning to step 3.

7. If the roots of T1 and T2 are assigned the same integer, T1 and T2 are isomorphic.

The AHU tree-isomorphism algorithm runs in linear time if lexicographical sorting

of tuples (line 5) takes linear time. A sorting algorithm with such a runtime is

described in [3] (pages 80-84).
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Example IV.7. Figure 4.18 illustrates the assignment of the AHU signatures to the

vertices of two isomorphic trees.

0 0 0

0 0 0 0

0
(0,0) (0,0)

(0,0,0) (0,1,1)

1 1

1 2
(1,2)

1

0 0 0

0 0 0 0

(0,0) (0,0)

(0,0,0)(0,1,1)

1

12

0

1

(1,2)
1

level 0

level 1

level 2

level 3

level 0

level 1

level 2

level 3

Figure 4.18: The assignment of the AHU signatures to the vertices of two isomorphic
trees.

4.9.3 Tree Automorphisms

In this sub-section, we discuss automorphisms of rooted trees.

Lemma IV.8. There exists a symmetry that maps node v to node w only if the

subtree rooted at node v is isomorphic to the subtree rooted at node w.

proof A symmetry that maps node v to node w should map the connections of v

to the connections of w (in order to respect the edge relation of the tree). In other

words, such a symmetry should map the children of v to the children of w, the children

of the children of v to the children of the children of w, and so on until leaves are
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reached. Such a level-by-level mapping is possible only if the subtree rooted at node

v isomorphic to the subtree rooted at node w.

Lemma IV.9. There exists a symmetry that maps node v to node w only if v and w

have the same height.

proof This is trivial according to Lemma IV.8; two trees are isomorphic only if they

have the same height.

Definition IV.10. The Lowest Common Ancestor (LCA) of two nodes v and w is

the deepest node that has both v and w as its descendants.

Example IV.11. In Figure 4.19, the LCA of node v and node w is node z.

�

�

� �

Figure 4.19: Example sub-tree rooted at node z.

Definition IV.12. Given two nodes v and w, the maximal subtree of v excluding w,

denoted by MSv−w, is the largest subtree that contains v but not w.

Example IV.13. In Figure 4.19, the maximal subtree of v excluding w is the subtree

rooted at node y.

Lemma IV.14. The maximal subtree of v excluding w is the subtree rooted at the

child of the LCA of v and w that has v as its descendant.
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Proof. Let z denote the LCA of v and w. We know that z is the deepest node

that has both v and w as its dependents. This means that all the nodes that are

shallower than z which have v as a descendant, also have z, and subsequently w, as

descendants. Thus, we conclude that the MSv−w is rooted at a node deeper than z.

Since z is the LCA of v and w, there should always exists two children of z that one

has v and the other has w as a descendant. Suppose that Cv is the child of z that

has v (but not w) as its descendant. Since Cv is only one level deeper than z, we

conclude that Cv is the maximal subtree of v excluding w.

Lemma IV.15. There exists a symmetry that maps node v to node w only if the

maximal subtree of v excluding w is isomorphic to the maximal subtree of w excluding

v.

Proof. A symmetry that maps v to w is a permutation that maps v to w and keeps

the edge relation of the tree. In the proof of Lemma IV.8, we only considered the

edges that connect v and w to their children. Here, we focus on the connections of v

and w to their parents. We assert that a symmetry that maps v to w should map the

parents of v to the parents of w, the parents of parents of v to the parents of parents

of w and so on. This mapping continues until the LCA of v and w is reached, since

beyond that point, the ancestors of v and w are single nodes. Such a level-by-level

mapping exists only if MSv−w is isomorphic to MSw−v.

Lemma IV.16. Node v can be mapped to node w by a symmetry only if v and w

have the same depth.

Proof. According to Lemma IV.15, there exists a symmetry that maps v to w only if

MSv−w is isomorphic to MSw−v. According to Lemma IV.9, two trees are isomorphic

only if they have the same height. Hence, MSv−w is isomorphic to MSw−v only if they

have the same height, say h. Likewise, the subtree rooted at v is isomorphic to the
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subtree rooted at w only if they have the same height, say h′. Now, let d = h−h′+1.

Note that d corresponds to the distance of the path from v (or w) to the LCA of v

and w. Also, let d′ denote the depth of the LCA of v and w. It is easy to see that

the depth of v (or w) is d+ d′, i.e., v and w have the same depth.

Theorem IV.17. There exists a symmetry that maps node v to node w if only if the

subtree rooted at v is isomorphic to the subtree rooted at w, and the maximal subtree

of v excluding w is isomorphic to the maximal subtree of w excluding v.

Proof. The ”only if” case: See the proof of Lemma IV.8 and Lemma IV.15.

The ”if” case: The subtree rooted at v is isomorphic to the subtree rooted at w;

so, the edge relation of the tree is maintained for all the nodes that are deeper than

v and w who have v or w as their ancestor. Furthermore, the maximal subtree of

v excluding w is isomorphic to the maximal subtree of w excluding v; so, the edge

relation of the tree is maintained for all the nodes that are shallower than v and w

and have the LCA of v and w as their ancestor. All the other nodes (that do not

have v or w as their ancestor or successor) are not moved by a potential symmetry

that maps v to w. Since the edge relation of the tree is maintained for all the nodes,

we conclude that there exists a symmetry that maps v to w.

The following is a restatement of Theorem IV.17 based on the definition of sig-

nature in the AHU algorithm (see Section 4.9.2): there exists a symmetry that maps

node v to node w, if v and w have the same AHU signature, and all the same-level

ancestors of v and w (up to the LCA of v and w) have the same AHU signature as

well.

4.9.4 Orbit Partition vs. Initial Equitable Partition

Here, we show that the initial equitable partition resulted from saucy’s partition

refinement for a rooted tree corresponds to the orbit partition of the tree. Recall
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that partition π = [W1|W2| · · · |Wt] is said to be equitable (with respect to a given

graph) if, for all vertices v1, v2 ∈ Wi (1 ≤ i ≤ t), the number of neighbors of v1 in Wj

(1 ≤ j ≤ t) is equal to the number of neighbors of v2 in Wj. Also, recall that two

vertices are in the same cell of the orbit partition, if there exists a symmetry that

maps one vertex to the other.

Given a rooted tree, saucy’s partition refinement distinguishes the root, since it

has a unique color. It also distinguishes all the leaves, since they all have degree

1. Then, it propagates the edge relation of the tree until an equitable partition is

obtained.

Lemma IV.18. Two nodes v and w are in the same cell of equitable partition π,

only if they have the same height and the same depth.

Proof. The initial refinement distinguishes the root and the leaves. Then, it prop-

agates the edge relation of the tree from the root down to the leaves, and puts two

vertices in one cell only if they have the same depth. Next, it propagates the edge

relation from the leaves up to the root, and puts two vertices in one cell only if they

have the same height. Therefore, two nodes are in the same cell of the equitable

partition, only if they have the same height and the same depth.

Lemma IV.19. Two nodes v and w are in the same cell of equitable partition π,

only if they have the same AHU signature.

Proof. Assume that v and w are in the same cell of π, but have different AHU

signatures. We know that:

1. π is equitable; so, v and w have the same number of connections to all cells of

π, and

2. the AHU algorithm computes the signatures of v and w from the signatures of

the children of v and w.
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According to (1) and (2), v and w can have different signatures only if (at least) one

child of v and one child of w are in the same cell of π but have different signatures. If

we recursively continue this argument, we finally reach the leaves (note that v and w

have the same height according to Lemma IV.18), where we assert that there exists

two leaves, one as a descendant of v and the other as a descendant of w, that are

in the same cell but have different signatures. According to the AHU algorithm,

however, all the leaves are assigned the signature 0, and this is a contradiction with

our assertion. So, we conclude that our initial assumption was wrong, i.e., v and w

are in the same cell of π, only if they have the same signature.

Lemma IV.20. Two nodes v and w are in the same cell of equitable partition π,

only if all the same-level ancestors of v and w (up to the LCA of v and w) have the

same AHU signature.

Proof. Let p and q denote two same-level ancestors of v and w, respectively, where

p 6= q, and p and q have different signatures. According to Lemma IV.19, p and q

cannot be in the same cell of π, since they do not have the same signature. If we

now propagate the edge relation of the tree from p and q downward to the leaves, we

distinguish those descendants of p from those descendants of q that are at the same

level, including v and w. This suggests that if p and q do not have the same signature,

then v and w cannot be in the same cell.

Theorem IV.21. Two nodes v and w are in the same cell of equitable partition π,

if and only if they have the same AHU signature, and all the same-level ancestors of

v and w (up to the LCA of v and w) have the same AHU signature as well.

Proof. The ”only if” case: See Lemma IV.19 and Lemma IV.20.

The ”if” case: Assume that v and w are not in the same cell of π, but have the

same AHU signature, and all the same-level ancestors of v and w have the same AHU
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signature as well. There are two remarks:

1. since v and w are not in the same cell, there does not exists any symmetry that

maps v to w, and

2. according to Theorem IV.17, there exists a symmetry that maps v to w, since

v and w have the same signature, and all the same-level ancestors of v and w

(up to the LCA of v and w) have the same signature as well.

It is easy to see that (1) and (2) contradict each other, i.e., our initial assumption was

wrong. In other words, v and w are in the same cell of π, if they have the same AHU

signature, and all the same-level ancestors of v and w have the same AHU signature

as well.

Theorem IV.22. The initial equitable partition of a rooted tree corresponds to the

orbit partition of the tree’s automorphism group.

Proof. This can be deducted trivially from Theorem IV.17 and Theorem IV.21.

4.9.5 Calculating the Orbit Partition

Here, we show that saucy takes linear time to compute initial equitable partition

of a given rooted tree. We show this by arguing that saucy’s partition refinement is

essentially performing the same algorithm as the AHU tree isomorphism.

Given a rooted tree T and the unit partition π of its vertices, saucy’s partition

refinement executes the following steps:

1. Distinguish leaves from other vertices in π by putting them in their own cell

(the AHU algorithm distinguishes leaves by assigning them the signature 0).

2. Inductively, assume that C1, C2, ..., Cn are the newly created cells at level i+ 1,

and all the vertices in cell Ck (1 ≤ k ≤ n) have the same AHU signature, say k.
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3. Refine the cells of π that contain the vertices at level i by scanning C1, C2, ..., Cn

from left to right and performing the following actions: For each vertex in Ci,

look at the connections of that vertex to the vertices at level i, bucket sort the

vertices at level i based on their number of connections to the vertices in Ci,

and refine π based on the computed buckets, i.e., put two vertices in the same

cell of π only if a) they are currently in the same cell of π, and b) they belong

to the same bucket. On completion of this step, two vertices at level i are in

the same cell if and only if they have the same number of connections to each

Ck (1 ≤ k ≤ n), i.e., they have the same tuple of the form (i1, i2, ..., in) where ik

denotes the number of connections to cell Ck. Let’s call these tuples refinement

tuples.

4. Refinement tuples have a one-to-one correspondence with the AHU signatures as

indicated by the following procedure: Replace each ik in a refinement tuple with

ik copies of integer k; the resulting tuple is the corresponding AHU signature.

This procedure can be done in reverse to obtain refinement tuples from AHU

signature. On the completion of step 3, we conclude that two vertices at level

i are in the same cell of π if only if they have the same AHU signatures.

5. Repeat step 3 until the root is reached. At this point, two vertices are in the

same cell of π if only if they have the same AHU signature.

6. We now perform another round of partition refinement, but this time, we prop-

agate the edge relation from the root to the leaves. Inductively, assume that

C1, C2, ..., Cn are the cells that contain the vertices at level i− 1.

7. Refine the cells of π that contain the vertices at level i by scanning C1, C2, ..., Cn

from left to right and performing the exact same actions as discussed in step 3.

On the completion of this step, two vertices at level i are in the same cell of π

if and only if their same-level ancestors are in the same cell of π.
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8. Repeat step 7 until the leaves are reached. At this point, two vertices are

in the same cell of π if and only if they have the same AHU signature, and

their same-level ancestors have the same AHU signature as well. According to

Theorem IV.21, π is now equitable.

The above algorithm takes linear time, since it scans the tree once from the leaves

to the root and once from the root to the leaves, and bucket sort takes linear time.

4.9.6 Checking Tree Isomorphism

In Section 4.9.5, we showed that saucy finds the orbit partition of the auto-

morphism group of a rooted tree in linear time. Here, we show that verifying the

isomorphism is linear-time equivalent to finding the orbit partition (the other way

around requires quadratic time), concluding that saucy solves tree isomorphism in

linear time.

The following procedure checks the isomorphism of two rooted trees T1 and T2

with roots r1 and r2, respectively, using a procedure that finds the orbit partition:

1. Build rooted tree T by (a) putting T1 and T2 side by side, (b) adding a vertex

r with unique color to T , and (c) connecting vertex r to the roots of T1 and T2

(i.e., r1 and r2).

2. Find the orbit partition π of the automorphism group of tree T .

3. Return true if r1 and r2 are in the same cell of partition π.

4. Return false.

The above procedure uses the orbit partition to check whether there exists a

symmetry that maps tree T1 to tree T2 (line 3). It concludes that T1 and T2 are

isomorphic if such a symmetry exists, and non-isomorphic otherwise. Since saucy

takes linear time to find the orbit partition of a rooted tree, it takes linear time to

solve tree isomorphism as well.
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CHAPTER V

Two-Pass Graph Canonical-Labeling Algorithms

In this chapter, we contrast the graph symmetry-detection and canonical-labeling

problems, and dissect typical algorithms to identify their similarities and differences.

In particular, we compare the algorithms in saucy (for graph symmetry detection)

with those in bliss (for graph canonical labeling). We then develop a novel approach

to canonical labeling where symmetries are found first and then used to speed up the

canonical-labeling algorithms. To justify the effectiveness of our approach, we analyze

the runtime complexity of saucy and bliss in detecting symmetries of an example

graph. Throughout this section, we assume that the input to saucy and bliss is an

n-vertex undirected colored graph G with vertex set V = {0, 1, ..., n− 1}.

5.1 Symmetry Finding vs. Canonical Labeling

In this section, we highlight the similarities and differences between the search for

symmetries and a canonical labeling by focusing on the algorithms implemented in

saucy 3.0 and bliss 0.72. While we chose bliss as a reference, our comparison can be

extended to other nauty-based canonical-labeling tools. In the following subsections,

we distinguish the search nodes of the trees constructed by saucy and bliss, explain

what they represent, and show that the search trees used by these tools are funda-

mentally different. Furthermore, we discuss and compare the pruning techniques and

66



[6,5,4|2|3,1|0]

[6,5|4|2|3,1|0]

[6|5|4|2|3,1|0]

[6|5|4|2|3|1|0] [6|5|4|2|1|3|0]

[5|6|4|2|3,1|0]

[6,4|5|2|3,1|0]

[6|4|5|2|3,1|0]

[6,5,4|3|0,2|1]

[6,5|4|3|0,2|1]

[6|5|4|3|0,2|1]

[6|5|4|3|2|0|1]

[2,0,1,3|6,5|4]

//

// // // //

(1 3)

(5 6) (4 5)

(0 1)(2 3)

0

4

5

1 3

6

5

4

6

1

4

5

0

2 3 4 5 6

≈

≈ ≈

[2|3,1|0|6,5|4] [0|3,1|2|6,5|4]

[2|3|1|0|6,5|4]

[2|3|1|0|6|5|4]

[0|3|1|2|6,5|4]

1

0

5

2

1

�

(0 3 1 2)(4 6)

[0,1,2,3,4,5,6]

1 14

2

3

4 5

6

7

8

9

10

11

12

13

15 16

17

18

19

20

21

22 23

0 1

3 2 6 5

4

Pruning Rules Legend:

≈ Coset Pruning

// Orbit Pruning

� Better Certificate

Figure 5.1: bliss canonical-labeling tree for the example graph of Figure 4.10.

branching mechanisms in saucy and bliss. We also point out an intrinsic limitation

of the branching procedure in bliss, and show that this limitation does not apply

to saucy search for automorphisms. To better understand and compare saucy and

bliss baseline algorithms, Figure 5.1 depicts the bliss tree for the example graph

of Figure 4.10. Throughout this section, we refer to the trees of Figure 4.10 and

Figure 5.1 to illustrate saucy and bliss algorithms.

5.1.1 Search Trees

The nodes of the search tree in saucy are ordered partition pairs, each encoding

a set of permutations. This set of permutations might be empty (non-isomorphic
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OPP), might have only one permutation (discrete OPP), or might consist of up to n!

permutations (unit OPP). We discussed in Section 4.2 that, in general, an isomorphic

OPP represents a non-empty sets of permutations. For example, the root of the tree

in Figure 4.10 is a unit OPP encoding all 7! = 5040 permutations on 7 vertices, and

the OPP at node (7) is an isomorphic OPP representing the 4-element permutation

set {(4 5), (4 5)(0 2), (4 6 5), (4 6 5)(0 2)}.

In contrast, the nodes of the search tree in bliss are single ordered partitions,

each representing a (partial) labeling. A labeling in bliss is obtained by renaming

each vertex with the position of that vertex in the ordered partition. The ordering

of vertices in the partition suggests a permutation that, when applied to the graph,

produces the labeling encoded by that partition. For example, at node (19) of Figure

5.1, vertices 0,1,2,3,4,5,6 are at indices 3,2,0,1,6,5,4, respectively, and hence, node

(19) represents the labeling obtained by the permutation (0 3 1 2)(4 6).

To compare labelings, each node in bliss is associated with a certificate. A certifi-

cate is a function that assigns a certain value to an ordered partition according to the

graph’s connection. Node certificates are computed as follows. Given an equitable

partition (which is returned by partition refinement), bliss first makes a list of edges

that connect singleton cells to other cells of the partition. For example, singleton cells

{2} and {0} of the partition at node (1) of Figure 5.1 are connected to cell {1, 3},

and hence, the list of edges associated with node (1) is {{2, 1}, {2, 3}, {0, 1}, {0, 3}}.

Then, bliss generates the certificate by renaming each vertex in the list of edges with

the index of that vertex in the partition. In our example, vertices 0,1,2,3 are at indices

6,5,3,4 of the partition at node (1), respectively, and hence, the certificate of node (1)

is {{3, 5}, {3, 4}, {6, 5}, {6, 4}}. Two ordered partitions produce the same certificate

if they are isomorphic to each other. For example, nodes (1) and (10) of Figure 5.1

have the same certificate, but the certificate of node (1) is different from that of node

(16).
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To discard numerous impossible permutations and invalid labelings, saucy and

bliss invoke partition refinement. Nevertheless, partition refinements in bliss is ap-

plied to one partition at a time, while saucy’s refinement benefits from simultaneous

comparison of the top and bottom partitions, a concept which is unique to the OPP

representation of permutations. Simultaneous refinement allows saucy to anticipate

and avoid certain conflicts, which can lead to an exponential speed-up in run time

[38].

5.1.2 Search Algorithms

In saucy, the search for symmetries is performed by constructing a permutation

tree, and traversing it in a depth-first manner. The depth-first traversal is accom-

plished by mapping target vertices to candidate vertices. For example, the target

vertex at level 2 (nodes (2), (7), and (9)) of Figure 4.10 is vertex 5, which is mapped

to vertices 5, 4, and 6. Partition refinement is invoked after each mapping to prune

away invalid permutations. The mapping procedure continues until the OPP be-

comes discrete, matching, or non-isomorphic (e.g., nodes (5), (6), and (10) of Figure

4.10, respectively). A discrete or matching OPP represents a symmetry, while a non-

isomorphic OPP indicates a conflict. The search ends when all possible mappings are

exhausted.

The root of the canonical-labeling tree in bliss is a unit ordered partition which

is initially refined. The depth-first traversal of permutation space starts by choosing

a non-singleton cell, and individualizing all the vertices in that cell one at a time.

For example, at level 2 (nodes (2), (7) and (9)) of Figure 5.1, all the vertices in

the first non-singleton cell of the partition at node (1), i.e., vertices 4, 5, and 6,

are individualized one after the other. Each vertex individualization is followed by

partition refinement to reflect the consequences of the branching decision.

Individualization in bliss continues until the partition becomes discrete, i.e., the
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first leaf node is reached (node (4) of Figure 5.1). This leaf node is saved as a

reference to compare certificates. A symmetry is found if another node during the

search produces the same certificate as the first leaf node1 (e.g., node (13) of Figure

5.1). The symmetry associated with such a node is the permutation that maps the

partition at that node to the partition at the first leaf node. For example, the partition

at node (13) of Figure 5.1 encodes symmetry (0 1)(2 3), since it can be obtained from

the partition at node (4) by swapping vertex 0 with vertex 1 and vertex 2 with vertex

3. Furthermore, the canonical certificate is initialized to the certificate of the first

leaf node, and is updated whenever a better certificate (based on any well-defined

criterion, such as lexicographic ordering) is found during the search (e.g., node (19)

of Figure 5.1). The canonical labeling of the graph is returned as the labeling of the

node with the best certificate.

5.1.3 Pruning Techniques

Similar to saucy, the search algorithms in bliss exploit two group-theoretical

pruning mechanisms: coset pruning and orbit pruning. These two pruning mecha-

nisms follow similar routines in both saucy and bliss.

Coset pruning is based on the concept of coset representatives, i.e., one genera-

tor per coset is sufficient to generate all symmetries in the coset. For example, the

symmetries found at node (8) of Figure 4.10 and (13) of Figure 5.1 are coset repre-

sentatives of their corresponding subtrees rooted at node (7) and (10), and hence,

those subtrees are coset pruned.

Orbit pruning relies on orbit partition to eliminate redundant generators. For

instance, node (9) of Figure 4.10 is orbit pruned since vertices 5 and 6 share the

same orbit. Similarly, node (9) of Figure 5.1 is orbit pruned since vertices 4 and

6 share the same orbit. The algorithms for coset and orbit pruning follow similar

1Obtaining symmetries at non-leaf nodes will be discussed in Section 5.1.3.
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implementations in saucy and bliss.

To enable coset and orbit pruning, the left-most path of both saucy and bliss

search tree corresponds to a sequence of subgroup stabilizers. In saucy, stabilizers

are maintained by mapping each vertex to itself (fixing each vertex) until the identity

is reached. For example, the tree of Figure 4.10 fixes vertices 3, 5, 6 and 2 to reach

the identity at node (4). In bliss, subgroup decomposition individualizes vertices one

at a time until the partition is discrete. In the tree of Figure 5.1, stabilizer subgroups

of 0, 4, 5 and 1 result in a discrete partition at node (4).

In addition to the above group-theoretic pruning techniques, the data structures in

saucy and bliss allow additional pruning mechanisms. One such pruning technique

in saucy is non-isomorphic OPP pruning (see Section 4.6.1); For instance, the OPP

at node (10) of Figure 4.10 is non-isomorphic, which indicates that the mapping

of 3 to 4 is a conflict. Similarly, bliss identifies futile branches of the search by

comparing the certificates of search nodes. Specifically, bliss prunes a subtree if the

certificate of the root of the subtree 1) does not match the certificate of the node

on the left-most path of the tree at that level (i.e., the subtree does not yield any

symmetry), and 2) is not better than the current best certificate (i.e, the subtree does

not include the canonical labeling). For example, node (16) of Figure 5.1 produces

a different certificate than node (1), but the partial certificate associated with node

(16) is better than the current best certificate (i.e, the certificate of node (4)), and

hence, the subtree rooted at node (16) is explored.

Another OPP-based pruning technique in saucy is matching OPP pruning (see

Section 4.6.2). Recall that a matching OPP is a non-discrete OPP in which cor-

responding non-singleton cells contain the same elements. The significance of this

OPP is that it represents an early automorphism constructed by mapping the ver-

tices of non-singleton cells identically. This automorphism can be returned as the

coset representative of the current subtree, which exempts the search from exploring
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the remaining permutations in that subtree. For example, the OPPs at nodes (6), (8)

and (14) of Figure 4.10 are found matching, and are returned as the coset represen-

tatives of the subtrees rooted at nodes (6), (7) and (13), respectively. Until recently,

no pruning mechanism in bliss had the same effect as the matching OPP pruning. In

fact, all symmetries in bliss were found at leaf nodes. However, recent advances in

bliss algorithms (version 0.72) exploit component recursion to enable early detection

of symmetries without reaching the leaves. This is accomplished by comparing the or-

dered partitions at each level to the left-most ordered partition at the same level. For

example, partitions (6) and (3) of Figure 5.1 both contain an identical non-singleton

cell {3, 1}. This suggests that node (6) represents the symmetry (5 6), since partition

(6) can be obtained from partition (3) by swapping vertex 5 with vertex 6. Although

matching OPP and component recursion both aim to find symmetries early up in the

tree, they are conceptually two distinct mechanisms, and impact the search trees in

different ways.

The bliss algorithms use additional heuristics to facilitate the search for a canon-

ical labeling. For example, bliss stores recently discovered symmetries to (partially)

detect and prune fruitless symmetric branches of the search. It also uses a method-

ology to propagate conflicts beyond the most recent branching points, which helps it

expedite automorphism search by pruning away subtrees that yield the same conflict.

These two pruning techniques are not implemented in saucy 3.0, but our on-going

research is investigating their possible incorporation.

5.1.4 Branching Decisions

Branching heuristics highly affect the performance of combinatorial search algo-

rithms, including symmetry detection and canonical labeling. In saucy, branching is

performed by choosing a target cell and a target vertex from the top partition. On

the left-most tree path, saucy chooses the first non-singleton cell as the target cell,
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and the first vertex in that cell as the target vertex (see nodes (1) to (4) of Figure

4.10). In the remaining parts of the tree, saucy looks for swaps of vertices, i.e.,

whenever it maps vertex v1 to vertex v2, it tries to map v2 to v1 right after. Note that

this is not always possible as partition refinement might preclude the mapping of v2

to v1. In that case, saucy picks the first vertex of any non-singleton cell of the top

partition which is not identical to its corresponding cell of the bottom partition. The

vertex-swap heuristic can also be viewed as a mechanism to maximize the occurrence

of matching OPPs. For example, node (13) of Figure 4.10 maps 3 to 0, and right

after, node (14) maps 0 to 3. This consequently results in a matching OPP at node

(14), representing the symmetry (0 3)(1 2). In practice, this heuristic is most effective

when symmetry generators are sparse.

The branching procedure in bliss consists of a cell-selector function. Given graph

G and partition π, cell-selector function S(G, π) returns a non-singleton cell of π such

that S(G, π)γ = S(Gγ, πγ) for all γ ∈ G (G denotes the symmetry group of graph

G). The cell selector’s latter condition ensures that the search trees constructed

for isomorphic graphs are also isomorphic. In implementation, bliss picks the same

sequence of cells in all the paths from the root to the leaves. For example, the

search tree of Figure 5.1 always individualizes the vertices in the first non-singleton

cell of the partition. The default branching heuristic in bliss selects the maximum

nonuniformly joined cell, i.e., the first non-singleton cell which is nonuniformly joined

to the maximum number of cells (two cells are nonuniformly joined if the vertices in

one cell have both neighbors and non-neighbors in the other cell). In the search tree of

Figure 5.1, maximum nonuniformly joined cells happen to be the first non-singleton

cells of the partition.

Considering the structures of the search trees in saucy and bliss, saucy’s branch-

ing procedure does not have the limitations of bliss’s cell-selector function, since it

can choose any target cell and target vertex at each step of the search. This con-
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Figure 5.2: Our proposed canonical-labeling framework.

sideration raises the possibility of improving the branching heuristic in saucy. As

mentioned, the default vertex-swap heuristic is effective when the input graph pro-

duces sparse generators. Our experimental results show that this is usually the case

when the input graph is large and sparse. For other graphs, however, the vertex-swap

heuristic does not necessarily produce the best results. We plan to explore other

branching heuristics, and desirably, seek a methodology that adapts the branching

heuristic to the characteristics of the input graph in our future research.

5.2 New Canonical-Labeling Procedure

In previous sections, we pointed out that saucy algorithms and data structures

were optimized to solve the graph automorphism problem, whereas, bliss routines are

mainly focused on finding a canonical representation. In this section, we propose a

novel approach that takes advantage of saucy’s efficiency in finding graph symmetries

to speed up the search for a canonical labeling. We show that once the symmetries

are found, canonical labeling can be performed much faster using this information by

pruning the canonical-labeling tree.

Our proposed graph canonicalization flow is depicted in Figure 5.2. It starts by

launching bliss to perform subgroup decomposition. Once decomposition is complete,

it temporarily interrupts the search, passes the sequence of stabilizers obtained from
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subgroup decomposition to saucy, and waits for saucy to compute and pass back the

graph’s symmetry information. At the other end, saucy’s decomposition routines use

bliss’s sequence of stabilizers to generate the subgroups. In other words, the left-most

path of the tree in saucy is forced to match the one in bliss. As saucy looks for

symmetries, it records the orbit partition at each level (i.e., the orbit partitions of the

stabilizer subgroups). At the end of the search, it hands the computed orbit partitions

over to bliss. The canonical-labeling algorithms in bliss then resume the search, but

incorporate two major modifications: 1) the level-by-level orbit partitions computed

by saucy are used to prune isomorphic subtrees, and 2) the search for symmetries

is disabled in all expanded subtrees. Another way to say this is that a subtree

that contains a symmetry will produce labelings that were previously examined, and

hence, can be entirely pruned. On the other hand, a subtree that does not include

any symmetry might lead to a better labeling (possibly, the canonical labeling), and

hence, should be explored.

As elaborated above, our graph canonicalization approach divides the search into

two phases: the search for symmetries and the search for a canonical labeling. In

practice, this approach is effective when the input graph is highly symmetric, and the

canonical-labeling algorithms spend a lot of time looking for symmetries (instead of

a canonical labeling). Our experimental results show that this logic applies when the

input graph is large and sparse.

5.3 Case Study: Analyzing Runtime for an Example Graph

This section analyzes and compares the run times of saucy and bliss in the

search for the symmetries of an example graph shown in Figure 5.3. This graph has

n vertices, n/2 edges, average degree of 1, and the symmetry group size of 2n/2(n/2)!

The search trees generated by saucy and bliss for this graph are demonstrated in

Figures 5.4 and 5.5, respectively. The black nodes in these two trees correspond to
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Figure 5.3: An n-vertex (n/2)-edge graph with symmetry group size of 2n/2 × (n/2)!
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Figure 5.4: Symmetry search tree constructed by saucy for the graph of Figure 5.3.

OPPs/permutations. It is evident that saucy explores fewer nodes than bliss, as it

finds symmetries up in the tree without reaching the leaves. A detailed analysis of

run time complexity of saucy and bliss for this graph is presented next.

The saucy search tree shown in Figure 5.4 produces n/2 levels after subgroup

decomposition. The number of OPPs explored by saucy at level l is 3 for 2 ≤ l ≤

(n/2), 2 for l = 1, and 1 for l = 0 (root of the tree). The summation of all explored

nodes over n/2 levels is:

∑n/2
l=2 3 + 2 + 1 =

∑n/2
l=1 3 = 3n/2

The bliss search tree shown in Figure 5.5 produces n/2 levels after subgroup

decomposition. The number of permutations explored by bliss at level l is n for

l = n/2, and 2l + 1 for 0 ≤ l < n/2. The summation of all explored nodes over n/2
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Figure 5.5: Symmetry search tree constructed by bliss for the graph of Figure 5.3.

levels is:

n+
∑n/2−1

l=0 (2l + 1) = n+ 2
∑n/2−1

l=0 l + n/2 = 3n/2 + (n/2− 1)(n/2) = n2/4 + n

The analysis above shows that saucy takes Θ(n) time to find the symmetries of

the graph of Figure 5.3, while bliss takes Θ(n2). The combination of saucy and

bliss takes Θ(n) time to canonically label the graph, due to the fact that all the n

vertices of the graph share the same orbit, and hence, all the subtrees encountered

during bliss canonical-labeling search can be skipped. Our analysis discussed here

matches empirical data presented next.
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CHAPTER VI

Symmetry-Discovery Algorithms for Boolean

Functions

In this chapter, we introduce our symmetry-discovery algorithms for Boolean for-

mulas. Our algorithms modify the saucy framework (see Chapter IV) to construct

a search tree that explores permutations (but not negations) of inputs and outputs

of a Boolean formula. They prune away unpromising branches of search by building

several abstraction graphs and using them to perform partition refinement. When

refinement is exhausted, they resort to SAT to test candidate permutations for sym-

metry. They learn from SAT counterexamples to avoid similar conflicts.

Figures 6.1, 6.2, and 6.3 illustrate Boolean formulas along with corresponding

search trees constructed by our symmetry-detection algorithms. In these figures,

down arrows refer to refinement steps. Each refinement step uses a different set of

graphs shown next to it. Throughout this chapter, we refer to these examples to

illustrate our algorithms.

We assume that our algorithms take an n-input m-output Boolean function F in

a form of and And-Inverter graph. Furthermore, we assume that the input set of F

is X = {x1, ..., xn} and its output set is Z = {z1, ..., zm}.
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Figure 6.3: A 4-to-1 multiplexer which has 2 symmetries.
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6.1 Functional Symmetries in Boolean Functions

Our symmetry-finding algorithms for Boolean functions construct a permutation

search tree whose OPPs contain inputs and outputs of a Boolean function. They

explore the space of permutations using the branching and backtracking framework

that was introduced by saucy. Unlike saucy algorithms, they look for functional

symmetries of a Boolean formula whereas saucy seeks structural symmetries of a

graph.

To search for functional symmetry of a formula, and yet exploit the saucy frame-

work, our algorithms model partial functionality of the formula by several abstraction

graphs. These graphs are used by partition refinement to prune away permutations

that do not yield any symmetry. Nevertheless, refinement by these graphs per se does

not prove functional equivalence. This is due to the fact that these graphs capture

just partial functionality of Boolean formulas, and hence might cause refinement to

report false positives. In other words, a permutation that is not a symmetry of an

abstraction graph is not a symmetry of the Boolean function, but a symmetry of

abstraction graphs does not necessarily form a symmetry of the Boolean function.

To confirm functional equivalence when refinement is exhausted, our algorithms

invoke SAT. If SAT disproves functional equivalence, i.e., detects a functional conflict,

a counterexample is returned. These counterexamples are learned by our algorithms

to avoid recurring conflicts.

In the remainder of this chapter, we first explain abstraction graphs and their role

in partition refinement. Then, we discuss SAT-based symmetry verification and pro-

pose a learning mechanism from SAT counterexamples to avoid recurring conflicts.

Next, we provide an outline of our symmetry-detection algorithms for Boolean func-

tions. At the end, we formulate Boolean matching as a symmetry-detection problem.
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6.2 Abstraction Graphs

Abstraction graphs are two-colored bipartite graphs constructed to partially cap-

ture the functionality of a Boolean function. These graphs are used by partition

refinement to prune the permutation space. Here, we introduce three types of ab-

straction graphs; one based on functional dependency, and two based on random

simulation.

6.2.1 Dependency-Based Abstraction Graph

The dependency graph of a Boolean function encodes the supports of the function

as a graph using the following procedure. A red vertex is added for each input, and

a blue vertex for each output. An edge is added between input x and output z if and

only if x ∈ supp(z).

For the functions of Figures 6.1, 6.2, and 6.3, the dependency graphs are depicted

where refinement is labeled with “Dep”. In Figure 6.1, the dependency graph encodes

the fact that output x is dependent on inputs a and b, and output y is dependent on

inputs b and c. Likewise, the dependency graph in Figure 6.2 encodes the fact that

outputs x and y are dependent on inputs a, b, and c, and the dependency graph in

Figure 6.3 shows that output z is dependent on all inputs of the multiplexer.

We build dependency graphs to distinguish outputs (resp. inputs) that have dif-

ferent functional dependency (resp. influence). For example, at node (2) of the tree

in Figure 6.1, input b is separated from inputs a and c, since the degree of b in the

dependency graph is different from that of a and c.

6.2.2 Simulation-based Abstraction Graphs

We construct two types of simulation graphs based on proper random input vec-

tors. Intuitively, a proper random input vector assigns the same value to all inputs

that are not yet distinguished. For the functions of Figures 6.1, 6.2, and 6.3, type-1
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and type-2 simulation graphs are depicted where refinement is labeled with “Sim 1”

and “Sim 2”, respectively. These graphs are built based on proper input vectors that

are shown next to them.

Given a proper input vector P = 〈p1, ..., pn〉 (with regard to partition π of input

set X) and its corresponding output vector R = 〈r1, ..., rm〉, we build two types of

simulation graphs as follows:

− Simulation Graph Type 1 : We add a red vertex for each input, and a blue vertex

for each output. We add an edge between zi ∈ Z and all inputs x ∈ supp(zi), if

and only if ri = 1. For example, the simulation graph at node (2) of the tree in

Figure 6.1 encodes the following: if a = c = 0 and b = 1, then x = 0 and y = 1.

− Simulation Graph Type 2 : We add a red vertex for each input, and a blue

vertex for each output. We then flip each pi ∈ P , one at a time, and save the

resulting n input vectors in P1, ..., Pn. We simulate P1, ..., Pn and record the

resulting n output vectors in R1 = 〈r1
1, ..., r

1
m〉, ..., Rn = 〈rn1 , ..., rnm〉. We add

an edge between zj ∈ Z and xi ∈ X, if and only if rij 6= rj. For example, the

simulation graph at node (7) of the tree in Figure 6.3 encodes the following: if

a1 = a2 = s0 = a0 = a3 = 0 and s1 = 1, flipping a2 flips z.

We build type-1 simulation graphs primarily to distinguish outputs. Once outputs

are distinguished, inputs might be distinguished as well. For example, at node (3)

of the tree in Figure 6.1, output y is separated from output x, and subsequently,

input c is separated from input a. Furthermore, we build type-2 simulation graphs

to distinguish inputs (outputs) that have different observability (controllability). For

example, at node (7) of the tree in Figure 6.3, input a2 is separated from input a1,

since the observability of a2 is different from that of a1 (with regard to the given

random input vector).

83



6.3 Refinement by Abstraction Graphs

In the saucy framework, partition refinement is applied simultaneously to the top

and bottom partition of an OPP, until 1) both partitions become equitable and the

resulting OPP is isomorphic, or 2) the resulting OPP is non-isomorphic indicating

an empty set of permutations (i.e., a conflict). In implementation, it first refines

the top partition until it becomes equitable, and records where the cell splits occur.

Then, it starts refining the bottom partition, and compares the splitting locations of

the bottom to the top (i.e., checks the isomorphism of the two partitions) after each

refinement step. It also ensures that the connections of each newly created cell on

the bottom match the connections of its corresponding cell on the top.

Similar to saucy, our algorithms invoke two separate refinement routines for the

top and bottom partitions. Nonetheless, our algorithms refine the permutation space

based on several abstraction graphs, while refinement in saucy uses only one global

graph throughout the search. We explain the refinement procedure based on multiple

graphs in this section.

Figure 6.4 demonstrates the refinement routine for the top partition. This routine

primarily refines the top partition by the dependency graph (lines 1-2). It then

generates a number of proper input vectors with regard to the subset of the top

partition that includes just the inputs of the function (lines 3-6 and 10). Next, it

builds type-1 simulation graphs based on the generated input vectors (line 7), and

uses them to refine the top partition (line 8). It refines once more by dependency

graph if new cells were induced at the previous step (line 9). It also saves the bit

vectors whose corresponding simulation graphs caused further refinement (line 9).

These vectors will later be used by the refinement of the bottom partition to generate

consistent input vectors. This routine ends by following similar refinement steps (as

explained above) for type-2 simulation graphs (line 11).

Figure 6.5 demonstrates the refinement routine for the bottom partition. This
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Inputs: Π, GD
Outputs: L1, L2

1. Set πT to the top partition of OPP Π.

2. Refine partition πT by dependency graph GD.

3. Build ordered partition π = [W1| · · · |Wt] ⊂ πT by removing the cells of πT that
contain the outputs.

4. Set counter i = 0.

5. Generate random bit vector B = 〈b1, ..., bt〉, where bi ∈ {0, 1}.

6. Generate proper random input vector P = 〈p1, ..., pn〉 with regard to π, where
pi = bj if input xi ∈Wj .

7. Generate type-1 simulation graph G that corresponds to input vector P .

8. Refine πT by simulation graph G.

9. If new cells are induced at line 8, refine πT by dependency graph GD, save bit
vector B in list L1, and set counter i = 0.

10. Increment i. Go to line 5 if i < 200.

11. Repeat lines 4-10, but this time generate type-2 simulation graph G at line 7,
and save bit vector B in list L2 at line 9.

Figure 6.4: Pseudocode for refining the top partition of OPP Π.

routine resembles that of Figure 6.4, but with two main differences. First, it does not

generate new random bit vectors. Instead, it uses the ones generated by Figure 6.4 to

make pairs of consistent input vectors (lines 5-6). In other words, it assigns the same

Boolean value to all potentially mappable inputs of the top and bottom partitions.

Second, it checks OPP isomorphism during refinement, and returns 0 if a conflict is

detected (lines 8-9).

In the tree of Figure 6.3, refinement at node (8) assigns the same Boolean value

to all inputs in the same-index cells of the top and bottom partitions. It then refines

the OPP using type-2 simulation graph. The result of refinement is the isomorphic

OPP at node (9).
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Inputs: Π, GD, L1, L2

Outputs: 0 or 1

1. Set πB to the bottom partition of OPP Π.

2. Refine partition πB by dependency graph GD.

3. Build ordered partition π = [W1| · · · |Wt] ⊂ πB by removing the cells of πB that
contain the outputs.

4. Set counter i = 0.

5. Set bit vector B = 〈b1, ..., bt〉 to the i-th element of list L1.

6. Generate proper random input vector P = 〈p1, ..., pn〉 with regard to π, where
pi = bj if input xi ∈Wj .

7. Generate type-1 simulation graph G that corresponds to input vector P .

8. Refine πB by simulation graph G. Return 0 if a conflict is detected.

9. Refine πB by dependency graph GD. Return 0 if a conflict is detected.

10. Increment i. Go to line 5 if i < size(L1).

11. Repeat lines 4-10, but this time set bit vector B to the i-th element of list L2 at
line 5, generate type-2 simulation graph G at line 7, and check i < size(L2) at
line 10.

12. Return 1.

Figure 6.5: Pseudocode for refining the bottom partition of OPP Π.

6.4 Checking Functional Equivalence by SAT

A candidate symmetry (returned by refinement) needs to be verified by SAT,

since refinement by abstraction graphs per se does not prove functional equivalence.

Figure 6.6 shows the routine that performs this verification. This routine first du-

plicates the function (line 1), and permutes the I/Os of one function according to

the candidate symmetry (line 2). It then builds the miter of the original and per-

muted functions (line 3), and hands it off to SAT (line 4). If SAT finds the miter

unsatisfiable, a symmetry is found; otherwise, a functional conflict is detected, and a

counterexample is saved (line 5). In Figures 6.1, 6.2, and 6.3, no functional conflict
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Inputs: γ, f
Outputs: 0 or 1, C

1. Duplicate function f and save it in function g.

2. Permute g’s I/Os according to permutation γ.

3. Build miter φ of f and g.

4. Pass φ to SAT.

5. If φ is unsatisfiable, return 1. Otherwise, save SAT counterexample in input
vector C and return 0.

Figure 6.6: Pseudocode for checking functional equivalence by SAT.

is detected, i.e., all discrete OPPs form symmetries of the corresponding functions.

6.5 Learning From SAT Counterexamples

Partition refinement typically reduces the number of possible matches from n!m!

to hundreds or less, often making exhaustive search (with SAT-based equivalence

checking) practical. However, this phase of search can be significantly improved by

learning from SAT counterexamples.

A SAT counterexample is in the form of an input vector that forces the miter of the

original function and the permuted function to be satisfiable. Our algorithm learns a

collection of such input vectors, along with their corresponding output vectors, and

uses them to backjump to the tree level where functional conflicts are resolved.

Figure 6.7 shows the routine that learns from a SAT counterexample. This routine

makes two copies of the counterexample (lines 1-2), and permutes one copy based on

the candidate symmetry (line 3). It then simulates the function with the two copies,

and saves the results in simulation pairs of the form 〈input vector, output vector〉

(lines 4-6). It attaches the two simulation pairs to the database of simulation pairs,

and set their activities to zero (lines 7-8). The activity of a simulation pair quantifies

its participation in conflict detection. This routine ends by potentially reducing the
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Inputs: γ, f , C, DB
Outputs: None

1. Set input vectors P to SAT counterexample C.

2. Set input vectors Q to SAT counterexample C.

3. Permute input vector Q based on permutation γ.

4. Simulate function f with input vector P and save the simulation result in output
vector R.

5. Simulate function f with input vector Q and save the simulation result in output
vector U .

6. Build simulation pairs 〈P,R〉 and 〈Q,U〉.

7. Check if simulation pair 〈P,R〉 already exists in database DB. If no, add 〈P,R〉
to DB, and set the activity of 〈P,R〉 to 0.

8. Repeat line 7, but this time for simulation pair 〈Q,U〉.

9. If size(DB) > 50, reduce DB.

Figure 6.7: Pseudocode for learning from a SAT counterexample.

database (line 9) by finding the median of the activities of all simulation pairs and

deleting pairs whose activities fall below the median.

Once a functional conflict is detected, our backjumping routine backtracks one

level up at a time, checks the current OPP for functional conflicts, and returns once

the OPP is found free of conflicts.

Figure 6.8 shows the routine that checks for a functional conflict in an OPP. This

routine searches the database of simulation pairs for two consistent input vectors (lines

1-13). Suppose that it finds input vectors P and Q consistent with regard to the OPP,

and suppose that 〈P,R〉 and 〈Q,U〉 are the simulation pairs that correspond to P and

Q. This routine counts the number of outputs in each cell of the top (resp. bottom)

partition whose values in R (resp. U) is one (lines 14-15). It declares a conflict, if

two same-index cells of the top and bottom partitions have different counters (line

16). In fact, it anticipates that such a pair of cells will eventually map two outputs
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whose simulation values (i.e., functional behaviors) are different under P and Q. At

the end, it increases the activity of 〈P,R〉 and 〈Q,U〉 to credit their participation in

conflict detection (line 16).

Figure 6.9 shows an example of learning when refinement is disabled.1 For this

example, our algorithm encounters functional conflicts at nodes (4) and (6). While

backtracking from node (6), it finds that node (5) has a functional conflict under

simulation pairs Γ3 and Γ4. Hence, it backtracks from node (6) to node (8), and skips

node (7).

6.6 Symmetry Discovery for Boolean Functions

Similar to saucy, our proposed symmetry-detection algorithms for Boolean func-

tions traverse the space of permutations in a depth-first manner. They enable coset

and orbit pruning by performing a phase of subgroup decomposition on the left-most

tree path. In other words, “decisions” along that path map each selected target I/O

to itself.

Partition refinement by abstraction graphs is invoked before selecting and branch-

ing on a target I/O. The tree is pruned by systematic application of four pruning rules:

− Coset pruning which terminates the search in a coset subtree as soon as a

coset representative is found.

− Orbit pruning which avoids searching the subtree of the coset that maps I/O

i to I/O j, if j is already in the orbit of i.

− Non-isomorphic OPP pruning which indicates that there are no permuta-

tions in the subtree rooted at that node which are symmetries of the Boolean

function.

1A search tree that could illustrate learning and perform partition refinement was too large to
fit in this thesis.
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Inputs: Π, DB
Outputs: 0 or 1

1. Set ordered partition πT and ordered partition πB to the top and bottom parti-
tions of OPP Π, respectively.

2. Build two ordered partitions πiT and πoT from partition πT , where πiT contains
cells of πT that have inputs, and πoT contains cells of πT that have outputs.

3. Repeat line 2, but this time for partition πB, and save the resulting sub-partitions
in πiB and πoB.

4. Set counter i = 0.

5. Return 1 if i ≥ size(DB).

6. Set simulation pair 〈P,R〉 to the i-the element of database DB.

7. Check if input vector P is proper with regard to partition πiT . If no, increment
i, and go to line 5.

8. Set counter j = 0.

9. Check j ≥ size(DB). If yes, increment i and go to line 5.

10. Set simulation pair 〈Q,U〉 to the j-the element of database DB.

11. Check if input vector Q is proper with regard to partition πiB. If no, increment
j, and go to line 9.

12. Build OPP Πi by putting partitions πiT and πiB as the top and bottom partitions
of Πi, respectively.

13. Check if input vectors P and Q are consistent with regard to Πi. If no, increment
j, and go to line 9.

14. Set cell Ck to the k-th cell of πoT . Set Nk to the number of outputs in Ck whose
value in R is 1. Do this for all 1 ≤ k ≤ size(πoT ).

15. Set cell Ck to the k-th cell of πoB. Set Mk to the number of outputs in Ck whose
value in U is 1. Do this for all 1 ≤ k ≤ size(πoB).

16. Check if Nk 6= Mk for some k. If yes, increase activity of pairs 〈P,R〉 and 〈Q,U〉,
and return 0.

17. Return 1.

Figure 6.8: Pseudocode for checking functional conflicts in isomorphic OPP Π.
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Figure 6.9: An example function with its partial search tree built by our symmetry-
detection algorithm when refinement is disabled.

− SAT-based pruning which uses SAT to backtrack from functional conflicts,

and uses SAT counterexamples to avoid recurring conflicts later in the search.

Our symmetry-detection algorithms here disable matching OPP pruning; a prun-

ing technique that was introduced in the saucy framework. This is due to the fact

that partition refinement by abstraction graphs might produce false positives, which

can be in the form of matching OPPs. Note that disabling matching OPP pruning

forces our algorithms to find potential symmetries at the leaves.

To reduce the branching factor of our permutation tree, our branching procedure

first maps outputs and then inputs. Our experiments show that once outputs are

distinguished, inputs can be distinguished quickly. Furthermore, it picks the first

smallest non-singleton cell whose outputs (inputs) have the highest functional de-
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pendency (influence). Its rationale is that, once such I/Os are separated, partition

refinement can use them to effectively distinguish more I/Os.

Below is the trace of our symmetry-detection algorithms for the 4-to-1 multiplexer

of Figure 6.3:

– Initialization: Θ = {a0| a1| a2| a3| s0| s1| z}, Z = ∅.

1. Separate inputs of the multiplexer from its outputs

2. Refine the OPP by the dependency graph

3. Set all inputs to 1 and simulate the multiplexer;

Build the type-2 simulation graph;

Refine the OPP by the type-2 simulation graph

4. Set all inputs except a3 to 0 (set a3 to 1) and simulate the multiplexer;

Build the type-2 simulation graph;

Refine the OPP by the type-2 simulation graph

5. Set all inputs except a0 and a3 to 0 (set a0 and a3 to 1) and simulate the

multiplexer;

Build the type-2 simulation graph;

Refine the OPP by the type-2 simulation graph

6. Fix input s0

7. Set all inputs except s1 to 0 (set s1 to 1) and simulate the multiplexer;

Build the type-2 simulation graph;

Refine the OPP by the type-2 simulation graph;

Gs0 = ι

8. Search for representative of coset Hs0 7→s1
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9. On the top partition, set all inputs except s1 to 0 (set s1 to 1) and simulate the

multiplexer;

On the bottom partition, set all inputs except s0 to 0 (set s0 to 1) and simulate

the multiplexer;

Build the type-2 simulation graphs;

Refine the OPP by the type-2 simulation graphs;

Verify the candidate symmetry by SAT;

Found representative of coset Hs0 7→s1 ;

Z = {(a1 a2)(s0 s1)}; Θ = {a0 | a1, a2 | a3 | s0, s1 | z}; |Gs0| = |Gs0| × |Θs0| =

1× 2 = 2

6.7 Case Study: Checking for PP-Equivalence

The PP-equivalence checking problem seeks functional equivalence of two func-

tions under permutation of their I/Os (the first P stands for permutation of inputs

and the second P stands for permutation of outputs) [37, 2]. In other words, PP-

equivalence checking verifies the isomorphism of two functions under permutation of

I/Os. Here, we explain how our symmetry-detection algorithm can be modified to

solve the PP-equivalence checking problem.

An automorphism of a Boolean function is an isomorphism to itself. Hence, one

can check isomorphism of two functions by putting them side by side, and passing

them to an automorphism-detection algorithm that incorporates the two following

modifications.

− The isomorphism-checking algorithm only needs to look for permutations that

map one function to the other. In other words, it immediately prunes subtrees

that (partially) map one function to itself.

− The isomorphism-checking algorithm only needs to find one symmetry to con-
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firm isomorphism.

The isomorphism-checking algorithm described above does not perform subgroup

decomposition, since subgroup decomposition maps a graph to itself. Furthermore, it

does not use coset or orbit pruning, since it terminates the search as soon as it finds

one symmetry.
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CHAPTER VII

Empirical Evaluation

In this chapter, we test the performance of saucy symmetry-detection algorithms,

namely, saucy, on a collection of graph benchmarks, including those from the SAT

2011 competition, verification, place and route, and networks. We examine the per-

formance of our proposed canonical-labeling approach on the subset of the graphs

that are very large and very sparse. Furthermore, we test the performance of our

algorithms on a collection of benchmarks from ISCAS’85, ISCAS’89, MCNC, and

ITC’99.

7.1 Empirical Results for Graph Symmetry Detection

Table 7.1 lists the families of the graph benchmarks in our collection. It includes

1439 benchmarks drawn from a wide variety of application domains. These bench-

marks are divided into four families:

− saucy benchmarks: this set contains 92 very large and very sparse graphs first

assembled to test saucy’s scalability. This suite represents graphs from logic

circuits and their physical layouts [57, 1], Internet routers [18, 32], and road

networks in the US states and its territories [16].

− SAT 2011 benchmarks: this set consists of 1200 SAT 2011 competition CNF
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Table 7.1: Families of graph benchmarks.

Family Inst. Smallest Instance Largest Instance Description

vertices edges vertices edges

circuit 33 3,575 14,625 4,406,950 8,731,076 saucy

router 3 112,969 181,639 284,805 428,624 graphs

roadnet 56 1,158 1,008 1,679,418 2,073,394

Application 300 453 859 32,813,545 65,487,132 SAT 2011

Crafted 300 105 320 776,820 3,575,337 CNFs

Random 600 1,165 5,375 310,000 680,000

binnet 27 1,000 720 9,000,000 658,675 networks

mz 25 40 60 1,000 1,500 Miyazaki

cmz 46 120 90 200 1,900 graphs (mz),

mz-aug 25 40 92 1,000 2,300 and their

mz-aug2 24 96 152 1,200 1,900 variants

benchmarks [52]. These benchmarks are divided into three categories: Appli-

cation (300 benchmarks), Crafted (300 benchmarks), and Random (600 bench-

marks). The CNF benchmarks are modeled as graphs using the procedure

explained in Section 3.6.

− binary networks: this set includes graph benchmarks proposed to test community-

detection algorithms [40]. We generated 27 undirected and unweighted binary

networks using the implementation of the procedure described in [40] (available

at [10]). We set the number of nodes to {1, ..., 9} × {103, 104, 105}, but fixed

the average degree to 2, the max degree to 4, the mixing parameter to 0.1, the

minimum community size to 20, and the maximum community size to 50 in all

instances.
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− Miyazaki graphs: this set comprises Miyazaki graphs [46, 36] and their variants

designed to mislead the bliss cell selector. It consists of 120 graphs, of which

25 are the original Miyazaki graphs and the remaining are their variants.

We ran symmetry detection using saucy 3.0 on the complete set of benchmarks in

Table 7.1. All our experiments were conducted on a SUN workstation equipped with

a 3GHz Intel Dual-Core CPU, a 6MB cache and an 8GB RAM, running the 64-bit

version of Redhat Linux. A time-out of 1000 seconds was applied to all experiments.

The runtime results are shown in Figure 7.1. In total, 1432 out of 1439 bench-

marks were solved within a 1000 seconds time-out limit. All the 7 unsolved bench-

marks belonged to the Crafted category of the SAT 2011 competition benchmarks. In

general, SAT 2011 benchmarks were more challenging for saucy than the remaining

benchmark families.

Of the 92 saucy benchmarks, all were solved in less than 5 seconds. The largest

runtime for those graphs was 4.26 seconds, which was reported for the largest graph

with more than 4.4 million vertices.

Of the 1200 SAT 2011 benchmarks, only 7 were reported unsolved. Of the remain-

ing 1191 benchmarks, 1157 were completed in less than a second (279 Application,

278 Crafted, and all 600 Random benchmarks). There were only two benchmarks

(both from the Crafted category) that took more than 100 seconds to complete. In

general, instances from the Crafted category were more challenging for saucy than

similarly-sized instances from the Random or Application suites.

Of the 27 binary networks, all were processed in less than two seconds. The largest

runtime for these graphs was 1.6 seconds, which was reported for the largest binary

network with 9 million vertices.

Of the 120 Miyazaki graphs, all were solved in less than a second. Miyazaki graphs

are fairly small graphs, but are known to impede leading graph symmetry-detection

algorithms. The results here show that those graphs are not challenging for saucy.
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(c) Runtime results for binary networks

Figure 7.1: This figure continues on the next page.
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(d) Runtime results for Miyazaki graphs

Figure 7.1: saucy 3.0 runtime, in seconds, as a function of graph size for the (a)
saucy benchmarks, (b) SAT 2011 CNFs, (c) binary networks, (d) Miyazaki graphs.
A time-out of 1000 seconds was applied.

It can also be inferred from Figure 7.1 that there is a weak trend towards larger

runtimes for larger graphs (this trend is much stronger for binary networks and saucy

graphs). However, runtime seems to also depend on other attributes of a graph besides

its absolute size (number of vertices.) In any case, saucy is extremely fast, finishing

in less than one second on 96% (1391) of all benchmarks.

The “amount” of symmetry present (order of the automorphism group) in each

benchmark is shown in Figure 7.2. This figure depicts the base-10 logarithm of

symmetry group order as a function of graph size. In total, 508 out of 1439 (35%)

benchmarks exhibited non-trivial symmetry. These included all saucy benchmarks,

binary networks, Miyazaki graphs, and 269 out of 1200 SAT 2011 CNF instances (153

from Application and 116 from Crafted). All Random CNF instances showed only

one trivial symmetry, and hence, are not listed in Figure 7.2. The order of the largest

automorphism group was an astronomical 4×103232782, reported for a graph from the

saucy suite. Note that the 7 SAT 2011 benchmarks that were reported unsolved are

not listed in Figure 7.2.
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(b) Group Order for SAT 2011 CNFs
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(c) Group Order for binary networks

Figure 7.2: This figure continues on the next page.
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(d) Group Order for Miyazaki graphs

Figure 7.2: saucy 3.0 group order, as a function of graph size for the (a) saucy
benchmarks, (b) SAT 2011 CNFs, (c) binary networks, and (d) Miyazaki graphs.

Figure 7.3 shows the relation between the order of the automorphism group and

the number of generators returned by saucy for the 508 benchmarks that exhibited

non-trivial symmetry. Symmetry-detection algorithms, including saucy, guarantee

to produce no more than n − 1 generators for an n-vertex graph. The number of

reported generators in these results is significantly less than n− 1. This, however, is

not inconsistent with the well-known fact that the number of (irredundant) generators

is exponentially smaller than the order of the corresponding symmetry group.

In order to evaluate the performance of saucy 3.0 versus state-of-the-art graph

automorphism tools, we ran bliss (version 0.72, available at [11]) on all the 1439

benchmarks listed in Table 7.1, and compared its runtimes to those obtained from

saucy 3.0. This comparison is shown in Figure 7.4.

Of the four Miyazaki graph families, bliss showed difficulties in processing the in-

stances of cmz (took up to 856 seconds to complete all those instances), but processed

the remaining three families in less than a second. In particular, bliss spent from 10

to 856 seconds to solve 14 out of the 46 cmz instances, but managed to solve the rest

in less than 10 seconds. In contrast, saucy solved all Miyazaki graphs in less than a

second.
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Figure 7.3: This figure continues on the next page.
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Figure 7.3: saucy 3.0 group order, as a function of number of generators for the
(a) saucy benchmarks, (b) SAT 2011 CNFs, (c) binary networks, and (d) Miyazaki
graphs.

Furthermore, bliss timed out on 8 and 3 out of 33 and 56 instances of the circuit

and roadnet families, respectively, but solved the remaining instances of those two

families and all 3 instances of router in 550 seconds. This was while saucy solved

all the 92 instances of these three families in 5 seconds.

For the CNF benchmarks, saucy and bliss showed mixed results. Of the 600

Crafted and Application instances, bliss failed to process 4 Crafted and 3 Appli-

cation instances, whereas, saucy failed to process 17 Crafted instances, but solved

all Application instances. The 4 Crafted benchmarks that were unsolved by bliss

were also unsolved by saucy. This means that bliss solved 13 Crafted instances that

saucy failed to process, and saucy solved 3 Application instances that bliss did not

solve. Of the remaining Crafted and Application benchmarks, bliss solved 541 (287

Crafted and 254 Application) in less than 10 seconds, and 52 (9 Crafted and 43 Ap-

plication) in 366 seconds, while saucy solved 577 (278 Crafted and 299 Application)

in less than 10 seconds, and 6 (5 Crafted and 1 Application) in 300 seconds. Both

saucy and bliss solved all Random benchmarks in less than a second. Overall, the

results in Figure 7.4 indicate that saucy outperformed bliss on the majority of SAT
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Figure 7.4: Runtime of saucy 3.0 versus bliss 0.72. A timeout of 1000 seconds was
applied.

2011 benchmarks.

For binary networks, saucy consistently produced better results. Specifically,

saucy solved all 33 instances of binnet in 14 seconds (the largest runtime was 13.67

seconds which was reported for the largest instance of this family with 6×106 vertices),

but bliss timed out on 19, and solved the remaining in 727 seconds.

7.2 Empirical Results for Graph Canonical Labeling

We tested the performance of our proposed canonical-labeling approach on a sub-

set of the benchmarks in Table 7.1 which were very large and sparse. This subset

contained 432 benchmarks, which included all saucy benchmarks and binary net-
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works, and the subset of the SAT 2011 competition CNFs [52] that had more than

10,000 variables (of the 1200 CNF instances, 313 had more than 10,000 variables).

The choice of 10,000 was based on our observation that the modeled graphs for CNF

benchmarks with that many variables tend to be very large and sparse.

All our experiments were conducted on a SUN workstation equipped with a 3GHz

Intel Dual-Core CPU, a 6MB cache and an 8GB RAM, running the 64-bit version of

Redhat Linux. A time-out of 1000 seconds was applied to all experiments.

According to the results in Figure 7.1, 268 out of 432 large and sparse graphs

exhibited non-trivial symmetry. These 268 benchmarks included all saucy graphs,

all binary networks, and 149 out of 313 CNF instances. It should be mentioned that

all the 268 graphs with at least one non-trivial symmetry were highly symmetric. Of

those 268 graphs, 203 (75%) had group order of larger than 1010.

To determine the amount of time that canonical-labeling algorithms spend on

finding automorphisms, we ran bliss 0.72 [11] under two configurations; once, to

just search for symmetries, and once, to also look for a canonical labeling. Figure

7.5 depicts the results. It can be seen that the extra cost imposed by looking for a

canonical labeling is negligible. In other words, the canonical-labeling routines spend

most of their time searching for symmetries.

To assess the performance of our proposed canonical-labeling approach versus

state-of-the-art canonical labelers, we compared the results of our approach to that

obtained from bliss 0.72 [11], nauty 2.4 (r2) [48], nishe 0.1 [49], and traces Nov09

[56]. Figure 7.6 depicts the results. These results clearly state that the combination of

saucy and bliss, denoted by saucy+bliss, outperforms all the other four canonical

labelers. Of the 432 total benchmarks, saucy+bliss solved 417, while bliss solved

404, nauty solved 58, nishe solved 130, and traces solved only 18. Furthermore, of

the 432 benchmarks, 388 were solved by saucy+bliss in less than 10 seconds, while

this number was reported to be 319 for bliss, 18 for nauty, 38 for nishe, and 7 for
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Figure 7.5: Runtime comparison of bliss symmetry detection vs. bliss canonical
labeling.

traces. Note that the 164 benchmarks that exhibited only one trivial symmetry did

not benefit from our proposed canonical-labeling approach. Nevertheless, the extra

overhead imposed by those benchmarks was insignificant, as they were all processed

by saucy in less than 4 seconds.

The detailed comparison between saucy+bliss and each of the four mentioned

canonical-labeling tools is provided below:

− Figure 7.6a compares the runtime of saucy+bliss to bliss. In total, bliss timed

out on 28 benchmarks. (12 from the saucy suite, 3 from SAT11 benchmarks,

and 13 from binary networks). Of those 28, saucy+bliss managed to solve

13. (8 saucy graphs, 2 SAT11 CNFs, and 3 binary networks). The remaining

404 benchmarks were solved by both bliss and saucy+bliss. Of those 404

benchmarks, 137 experienced a speed-up by saucy+bliss, whereas, 223 went
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Figure 7.6: This figure continues on the next page.
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Figure 7.6: Runtime comparison of our canonical-labeling approach (see Figure 5.2)
vs. (a) bliss 0.72, (b) nauty 2.4 (r2), (c) nishe 0.1, and (d) traces Nov09.
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through a slow-down (slow-down for 164 benchmarks with symmetry group of

size 1 was expected). The highest speed-up was 1334x, which was reported

for the binary network with 50,000 vertices (runtime was improved from 734

seconds to 0.55 seconds). The largest slow-down was 9x, which was reported

for a saucy graph.

− Figure 7.6b compares the runtime of saucy+bliss to nauty. In total, nauty

processed 58 benchmark (30 saucy graphs, 18 SAT11 CNFs, and 10 binary

networks), but timed out or returned dynamic allocation failure on the remain-

ing 374. All 58 benchmarks that were solved by nauty were also solved by

saucy+bliss. The largest reported runtime from nauty for those benchmarks

was 956 seconds. This was while saucy+bliss processed all those benchmarks

in less than a second.

− Figure 7.6c compares the runtime of saucy+bliss to nishe. In total, nishe

failed to process 302 benchmarks, on which it either timed out, or returned

a segmentation fault. These benchmarks included 59 saucy graphs, 18 binary

networks, and 225 SAT11 CNFs. Of these 302 benchmarks, saucy+bliss solved

287, but failed to process 4 saucy benchmarks, 10 binary networks, and one

SAT11 CNF. All the benchmarks that were solved by nishe were also solved

by saucy+bliss, but the runtimes of saucy+bliss were superior (speed-up of

up to 36650x was reported). There was only one benchmark from the saucy

suite which was processed by saucy+bliss in 0.93 seconds, but was completed

by nishe in 0.38 seconds.

− Figure 7.6d compares the runtime of saucy+bliss to traces. Of the 432 bench-

marks, traces only solved 18, all from the saucy suite. The poor performance

of traces was due to the fact that it could not handle graphs with more than

18,000 vertices, and only 36 graphs in our suite (26 from saucy benchmarks,
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and 10 from binary networks) exhibited less than 18,000 vertices. The 18 bench-

marks that were processed by traces were also processed by saucy+bliss, but

a speed-up of up to 16025x was observed in saucy+bliss runtimes.

In summary, the number of instances solved by each of the discussed canonical-

labeling tools suggests the following ordering of performance: saucy+bliss > bliss

> nishe > nauty > traces. This ordering is obtained by testing each tool on a

considerable number of large and sparse graphs. However, such an ordering is subject

to a change if graphs with fewer vertices and higher edge concentration are used for

benchmarking.

7.3 Empirical Results for Finding Symmetries of Boolean

Functions

We integrated our proposed symmetry-detection algorithms for Boolean functions

in the ABC package [9]. We tested the performance of our algorithms on a collection

of benchmarks from ISCAS’85 [14], ISCAS’89 [13], MCNC [58], and ITC’99 [25]. We

also invoked our algorithms to solve several instances of Boolean matching.

Our experiments were conducted on an HP workstation equipped with a 3.2GHz

Intel Quad-Core CPU, an 8MB cache and an 8GB RAM, running 64-bit Windows 7.

We applied a time-out of 2000 seconds to all our experiments.

Table 7.2 demonstrates the runtime results. In this table, the first column lists

the name of the benchmarks. The next three columns list the number of inputs,

number of outputs, and the size of AIG for each benchmark, respectively. Column

#Symms shows the order of symmetry group, and Column #Gen shows the number

of generators. Information on constructed search trees, such as the number of nodes,

number of levels, and number of conflicts, are drawn in Columns #Node, #Lev, and

#Conf, respectively. The last column shows the runtimes in second.
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Table 7.2: The results of our symmetry-detection algorithm for Boolean functions.

Circuit #I #O |AIG| #Symms #Gen #Node #Lev #Conf Time (s)

mux-4∗ 6 1 19 2 1 3 2 0 0.01

mux-8 11 1 57 6 2 7 3 0 0.02

mux-16 20 1 158 24 3 13 4 0 0.05

mux-32 37 1 419 120 4 21 5 0 0.10

mux-64 70 1 1085 720 5 31 6 0 0.28

mux-128 135 1 2777 5040 6 43 7 0 1.10

mux-256 264 1 7044 40320 7 57 8 0 5.85

adder-1∗ 3 2 19 6 2 7 3 0 0.01

adder-16 33 17 144 196608 17 307 18 0 0.19

adder-40 81 41 760 3.298535E12 41 1723 42 0 1.63

b01 6 7 25 2 1 3 2 0 0.01

b02 4 5 20 1 0 1 1 0 0.01

b03 33 34 84 3.185050E7 15 273 17 1 0.15

b04 76 74 443 1.000000E7 0 1 1 0 0.11

b05 34 70 793 1.741824E7 12 211 15 2 0.20

b06 18 15 19 2880 7 57 8 0 0.02

b07 49 57 351 24 3 13 4 0 0.28

b08 29 25 154 1 0 3 2 1 0.03

b09 28 29 84 3.556874E14 16 273 17 0 0.15

b10 27 23 176 1 0 1 1 0 0.02

b11 37 37 610 1 0 1 1 0 0.04

b12 125 127 1002 960 7 57 8 0 1.08

b13 62 63 256 6 2 7 3 0 0.07

b14 276 299 6061 2.652529E32 29 871 30 0 7.08

b15 484 519 8384 2.652529E32 29 871 30 0 267

b17 1451 1512 27514 1.493036E98 90 8191 91 0 1843

b18 3357 3343 71878 9.802584E259 234 54991 235 0 1488

b20 521 512 12186 7.035908E64 58 3423 59 0 73

b21 521 512 12743 7.035908E64 58 3423 59 0 76
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b22 766 757 18450 3.732589E97 88 7833 89 0 138

c499 41 32 400 384 4 64 5 37 0.30

c880 60 26 327 16 4 21 5 0 0.06

c5315 178 123 1773 5.662310E8 24 601 25 0 0.67

c7552 207 108 2074 1.460814E19 45 2376325 60 533198 1141

s953 45 52 347 2.585202E22 22 553 24 1 0.22

s1423 91 97 462 2 1 3 2 0 0.19

s5378 214 228 1389 1.431598E22 49 2551 51 1 2.28

s9234 247 250 1958 2.626993E29 50 83070 59 15541 370

s13207 700 790 2719 1.291078E213 294 86731 295 0 56

s15850 611 684 3560 3.759006E87 112 663078 114 4756 165

s38584 1464 1730 12400 8.200341E116 253 198045 255 2415 141

9symml 9 1 211 362880 8 73 9 0 0.12

apex6 135 99 659 2 1 7 3 1 0.07

cht 47 36 185 120 4 21 5 0 0.02

frg2 143 139 1164 240 5 43 7 1 0.13

i2 201 1 232 2.038573E222 180 42343 184 8985 3.83

i7 199 67 904 3.850825E66 62 3907 63 0 1.54

i10 275 224 1818 1658880 13 183 14 0 1.25

k2 45 45 1998 4 2 13 4 1 0.12

lal 26 19 109 768 5 31 6 0 0.05

pm1 16 13 47 864 7 57 8 0 0.06

rot 135 107 550 1658880 15 241 16 0 0.38

term1 34 10 311 480 6 43 7 0 0.11

vda 17 39 924 6 2 13 4 1 0.06

x1 51 35 377 8 3 13 4 0 0.04

x2 10 7 54 2 1 3 2 0 0.03

x3 135 99 833 2 1 3 2 0 0.03

x4 94 71 439 7257600 12 157 13 0 0.19

∗ mux-n is an n-to-1 multiplexer, and adder-n is an n-bit ripple-carry adder with a carry in.
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Table 7.3: The results of solving the PP-equivalence checking problem.

Circuit #Node #Lev #Conf Time (s) Time (s) from [37]

mux-64 68 13 32 0.29 2.51

mux-128 4144 17 754 46 22

adder-16 141 36 36 0.11 0.05

adder-40 333 84 84 1.02 0.84

b05 161 26 86 0.22 0.19

b12 75 16 30 2.32 > 2000

b14 1057 62 874 12 10

b20 2096 119 1742 190 126

b21 2096 119 1742 210 145

s5378 272730 104 6785 173 1.45

s13207 11201 609 9377 78 > 2000

s15850 4893 232 4200 83 > 2000

s38584 5459 514 3504 188 > 2000

frg2 60 13 24 0.24 0.47

i10 166 30 79 3.25 2.20

rot 206 35 104 0.75 0.4

The symmetry group orders in Table 7.2 range from one trivial symmetry up

to approximately 10260 symmetries. The largest group order was reported for b19,

i.e., the largest benchmark in our collection. In our experiments, we observed that

the number of symmetries of an n-to-1 multiplexer was reported to be (log n)! This

number corresponds to all permutations of the multiplexer’s control signals.

The largest runtime in Table 7.2 is 1843 seconds (reported for b17). Of the 55

total benchmarks, only 3 took more than 1000 seconds to finish. The remaining were

solved in less than 400 seconds (including s38584 which has more than a thousand

I/Os). The least challenging benchmarks were those with less than a hundred I/Os,

which were all processed in less than two seconds. All benchmarks with less than a
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hundred I/Os were processed in less than two seconds. We also observed that b19

was not processed within the time-out limit. This is the reason why b19 is excluded

from Table 7.2.

In our experiments, the majority of the benchmarks (76%) did not encounter any

conflict. This suggests that our refinement techniques were effective enough to prune

away unpromising branches of search. We also assessed the effect of learning by dis-

abling it, and re-running our algorithm on all benchmarks that showed conflicts. We

observed that, without learning, our algorithm failed to solve 61% of the benchmarks

that showed conflicts.

As part of our study, we encoded several Boolean-matching benchmarks as symmetry-

detection instances, and used our algorithm to solve them. Table 7.3 demonstrates

the results, and compares the runtimes of our matcher to that proposed in [37]. All

the results in Table 7.3 are averaged over 10 re-runs, where each re-run 1) randomly

permuted I/Os of the circuits, and 2) reconstructed the circuits using ABC’s synthesis

commands to ensure structural difference.

Of the 16 benchmarks in Table 7.3, our Boolean matcher managed to solve all

16 in less than 210 seconds, but the matcher from [37] failed to process 4 within

the time-out limit. On the other hand, the matcher from [37] solved one instance

(s5378) in less than 2 seconds, but our matcher took 173 seconds to process it. For

the remaining benchmarks, both matchers exhibited comparable results.
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CHAPTER VIII

Conclusions and Future Work

In this chapter, we provide a summary of our work, and discuss conclusions. We

also provide future directions for our work which can benefit from our previous work,

and can have impact on both academic research and industrial applications.

8.1 Summary and Conclusions

In this thesis, we proposed scalable algorithms to detect symmetries of graphs.

Our algorithms, referred to as saucy, find a set of generators for the symmetry group

of a given graph, and return the size of its symmetry group. They accomplish this

by refining the graph permutation space through nested partition refinement. They

expedite the search by performing simultaneous partition refinement which allows

conflict anticipation and early termination of futile subtrees. Furthermore, they in-

corporate four different pruning techniques; two algorithmic, namely, non-isomorphic

OPP pruning and matching OPP pruning, and two group-theoretic, namely, coset

pruning and orbit pruning. Our empirical results confirmed that saucy algorithms

were scalable to graphs with million of vertices and edges.

Moreover, we proposed a new graph canonical-labeling approach that separated

the search for symmetries from that for a canonical labeling. Our work was motivated

by the observation that publications on graph automorphism and canonical labeling
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typically focused on one of these problems and neglected the other. Canonical-labeling

algorithms produce symmetries as a byproduct, but are not as efficient as graph-

automorphism algorithms, which however, do not produce canonical labelings. We

presented comparative analysis of relevant algorithms, highlighting the differences

and exploring possible synergies. In particular, we showed that canonical-labeling

algorithms can be more effective when symmetries are found in one dedicated pass

and conveyed to these algorithms. We therefore developed an appropriate group-

theoretic interface between saucy — the fastest symmetry finder — and bliss — the

fastest canonical labeler. Extensive empirical results convincingly demonstrated the

benefits of our approach.

Furthermore, we proposed new algorithms that searched for symmetries of Boolean

functions under permutation of inputs and outputs. We used functional dependency,

random simulation and satisfiability to facilitate the search. Specifically, we built a

number of abstraction graphs that partially captured the functionality of the Boolean

function, and used those graphs to prune unpromising branches of the search. Once

refinement was exhausted, we invoked SAT to test candidate permutations for sym-

metries. In cases where SAT disproved functional equivalence under candidate per-

mutations, we learned from SAT counterexamples to avoid similar conflicts in the

future. As part of our study, we formulated instances of PP-equivalence checking as

symmetry-detection problems, and invoked our algorithms to solve those instances.

Empirical results confirmed the scalability of our proposed algorithms to combina-

tional circuits with hundreds of I/Os.

8.2 Future Work

With the contributions of the current work, there are still unanswered questions

that can give direction to our future research. Some promising directions include:
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1. Learning from conflicts that arise in the search for graph symmetries:

Our experimental results show a correlation between conflicts that arise during

the search for graph symmetries. Specifically, they show that, in many cases,

the number of constraint propagations before reaching a conflict is the same

for different conflicts. By identifying such a correlation, one can develop a

mechanism that helps avoid similar conflicts during the search.

2. Devising an adaptive branching heuristic: Branching heuristics signifi-

cantly affect the performance of branching and backtracking algorithms, in-

cluding the ones presented in this thesis. By examining the effect of different

branching heuristics, one can develop a mechanism that chooses the “best”

heuristic based on the properties of the combinatorial object in question. More

ideally, one can devise an adaptive branching heuristic that analyzes conflicts

and learns isomorphism invariants along the way during the search.

3. Parallelizing graph symmetry-detection algorithms: The sub-problems

that arise in the search for graph symmetries are independent from each other.

This suggests that we can parallelize the execution of such sub-problems, and

gain instant speedup in runtime. The main challenge of such an algorithm is

to identify the data structures that should be duplicated for each thread. It

also needs to orbit prune (i.e., stop) the execution of the threads that lead to

redundant generators based on the generators that are found by other threads.

4. Detecting symmetries of Boolean functions under permutation and

negation of I/Os: Our proposed symmetry-detection algorithms for Boolean

functions only allow permutation of I/Os. One can extend those algorithms to

find symmetries under the permutation and negation of I/Os. Developing such

algorithms can help solve the general Boolean matching problem [2], and reduce

samples for logic simulation [59].
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