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ABSTRACT 

 

Three Essays on Job-Trainee and Employee Behavior: Experimental 

Evidence from Malawi 

by 

Susan Godlonton 

 

Co-Chairs: Jeffrey Smith and Rebecca Thornton 

 
 

In the first chapter I examine the relationship between employment risk and job seeker 

performance. To induce exogenous variation in employment risk, I randomize outside options for 

job seekers undergoing a real recruitment process. I do this by assigning job seekers a 0, 1, 5, 50, 

75 or 100 percent chance of real alternative employment of the same duration and wage as the 

jobs for which they are applying. I find that job seeker performance is highest and effort is lowest 

among those assigned the lowest employment risk (a guaranteed alternative job), and 

performance is lowest and effort highest among those facing the highest employment risk (those 

without any job guarantee). My findings are consistent with a framework that ties together 

insights from economics and psychology; performance is an increasing function of effort and an 

inverse u-shaped function of stress.  

 

In the second chapter I exploit the experiment used in chapter one and estimate the 

employment and wage effects of a short term job.  I find the following key results. First, there is a 

10.6 to 13.9 percentage point increase in average employment during the eight months following 

the job. Second, there is a sizeable increase in wages. Individuals earn approximately 60 to 67 

percent more per day. There is suggestive evidence that individuals are switching into
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different occupations particularly clerical and related work away from agricultural based 

activities. Lastly, the estimated returns to the job are larger among those who perform worst on a 

high stakes numeracy and literacy test. 

In the third chapter, examines corrupt behavior by interviewer employees working on 

short term contracts in a developing country. Specifically, I measure how employees change the 

extent to which they steal from the firm in response to varying degrees of monitoring in the work 

force. I find that decreasing the monitoring rate by ten percentage points increases the likelihood 

of money being stolen by approximately four percentage points; and the amount stolen by 

between five and eight percent on baseline theft. I also observe the relationship between the 

monitoring rate and employee crime to be non-linear. 
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Chapter 1  

Employment Risk and Performance 

 

1.1 Introduction 

Risk matters. We study behavioral responses either in reaction to the realization of a risky 

process, or in response to underlying risk, which typically take the form of risk coping or 

risk mitigation.
1
 The same framework characterizes most studies of employment risk:  the 

emphasis is on understanding either the consequences of a job gain or job loss, or on 

coping strategies for mitigating income uncertainty.
2,3

 However, we know little about 

how risk might affect performance in the job seeking process or ultimate chance of 

securing employment.
4
 Given high and rising employment uncertainty (ILO, 2012) it is 

important to understand the process through which risk may affect employment, as well 

as the extent to which risk has heterogeneous effects across job-seekers. In this paper, I 

                                                           
1 An extensive literature documents how individuals account for risk in their decisions related to many domains for 

example: insurance and contracting (Arrow, 1971; Grossman and Hart, 1983).  
2 The World Development Report (2013) provides an extensive overview of the individual and social consequences of 

employment. One key strand of literature focuses on the impact of gaining or losing work. Often this empirical work 

uses an exogenous shock that results in job loss such as plant closures and retrenchments to examine both short term 

and long term effects on future employment and earnings (Stevens, 1997; Chan and Stevens, 2001; Ruhm (1991; 

1994); Topel, 1990; Schoeni and Dardia, 1996; Gregg and Tominey, 2005; Couch, 2001). 
3 A second strand of relevant literature examines risk coping mechanisms and their impacts in the labor market. This 

literature has examined the roles of unions (Magruder, 2012), unemployment insurance (Gruber, 1997; Green and 

Riddell, 1993), and informal networks (Burns, et al. 2010; Beaman and Magruder, 2012) and how individuals use these 

support structures to mitigate risk of unemployment.   
4 As discussed in-depth in Fafchamps (2010), shocks and risk are often used interchangeably despite being distinct. He 

highlights the lack of research on the impact of any type of risk in the empirical development literature, which has 

instead focused on the effects of shocks, ignoring the anticipatory nature of the shocks. This is in contrast to older 

theoretical work that explicitly addresses this and shows that risk aversion should lead to underinvestment and 

underproduction (Sandmo, 1971).    
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explicitly examine the relationship between employment risk and job-seeker performance 

and employment. 

Typically the causal effect of employment risk on performance cannot be 

estimated because of challenges in measurement and identification. First, measuring 

employment risk is difficult. For example, research examining the relationship between 

risk and savings use proxies such as variability in household income, variability in 

expenditures, or, in more recent work, the probability of a job loss (Caroll, 1994; Dynan, 

1993; Lusardi, 1998). An appropriate proxy when measuring employment risk might be 

the probability of a job gain rather than a job loss. Still, none of these proxies provide a 

direct measure of risk. An alternate approach is to measure decision making in response 

to experimentally-induced risk in a laboratory setting. However, while such experiments 

provide useful insights about potential mechanisms, it is often unclear whether evidence 

from lab-based experiments will translate into real world behavior.  This is especially true 

when trying to predict the behavior of individuals in developing countries, who face far 

different overall levels of risk and income, and have very different levels of education 

and experience, than the university students who are typical subjects of laboratory 

experiments.  Second, even if one could directly measure employment risk, it is usually 

endogenous to the outcome of interest. For example, in the case of job seeker 

performance, individuals of higher ability are likely to face lower employment risk, yet 

also perform better on average, making it hard to establish causality. Lastly, while effort 

and performance are key mechanisms through which risk affects employment, these 

concepts are also difficult to measure due to self-reporting biases and lack of good quality 

data.  
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In this paper, I overcome these challenges by explicitly varying employment risk 

using a field experiment to examine the impact of employment risk on performance. I 

randomize job seekers’ outside options during a real recruitment process, working in 

collaboration with a real recruiter offering short term jobs. I randomly assign 268 job 

seekers a probabilistic chance (0, 1, 5, 50, 75 or 100 percent) of an alternative job. This 

reduces the downside risk of performing poorly during the recruitment process. For those 

with a guaranteed outside option, employment risk is zero. To examine the relationship 

between employment risk and job seeker performance, I utilize both objective and 

subjective performance assessments from administrative data. To measure effort, I use 

indicators from both administrative and self-reported data sources.  

I find that improving a job seeker’s outside option leads to improved performance 

while effort declines. Job seekers assigned a guaranteed outside option performed 

approximately 0.45 standard deviations better on recruiter-administered tests of 

knowledge taught in training than did those who received no outside option. Moreover, I 

observe that the relationship between risk and performance is highly non-linear. These 

findings are confirmed using the quality of active participation in job training as a 

measure of performance. I find higher quality average engagement in training by those 

assigned high outside options compared to those assigned no outside option. For effort 

indicators, I find the reverse; that is, I find that job seekers assigned the highest 

probability of outside option put forth the lowest effort, while those assigned the lowest 

outside option put forth the most effort. In terms of punctuality, job seekers assigned a 

guaranteed outside option were 9.3 percentage points more likely ever to arrive late 

during the three-day training conducted during recruitment, as compared to those 
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assigned no outside option; however the difference is not statistically significant. I do 

find large, robust, and statistically significant differences in self-reported effort. 

Individuals assigned a guaranteed outside option spend 25 minutes less per day studying 

training materials compared to job trainees assigned no outside option. In sum, I find that 

performance is highest and effort is lowest among those assigned the lowest employment 

risk, and performance is lowest and effort highest among those facing the highest 

employment risk. These results are robust to a number of different specification checks 

including using multiple observations per person, as well as to a host of robustness 

checks, such as weighted regressions and Lee bounds, which address concerns arising 

from differential survey non-response.  

While this is the first study, to my knowledge, to examine this question in labor 

markets, my results are consistent with laboratory experiment findings conducted by 

Ariely et al. (2009).
5
 They conducted laboratory experiments among 76 participants in 

rural India, offering either a high, medium, or low incentive for meeting a performance 

target on six different games testing concentration, creativity, or motor skills.  These 

performance incentives are in some sense the inverse of the variation in my experiment: 

while I decrease risk, high-powered incentives increase it. They consistently find that 

performance in the group assigned the high incentive (400 Indian Rs, equivalent to a 

month’s salary) was lowest. With the exception of one task, differences in performance 

between the low incentive group (4 Indian Rs per game) and the medium incentive group 

(40 Rs per game) were not statistically significant.  

                                                           
5
 Psychologists have extensively studied conditions under which increased pressure to perform has resulted in 

“choking.” Seminal work is presented in Baumeister (1984) and Baumeister and Showers (1986). More recently, 

Beilock (2010) provides a comprehensive review of this literature, covering performance in sports, academic 

environments, and professional settings. 
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My findings, then, are consistent with Ariely et al.’s in the sense that performance 

is negatively correlated with risk. My contributions go beyond affirming this finding, 

however. I document that the relationship between risk and performance in this context is 

highly non-linear. I extend the experiment from the risk associated with wage incentives 

to study employment risk, a distinct though clearly related construct with potentially 

larger welfare consequences.  I also extend the literature from the lab to the field. The 

variation in risk in laboratory studies is artificial and over windfall income, but in my 

setting, the variation is over risk in securing real, meaningful employment equivalent to 

that for which subjects have chosen to apply through a competitive and arduous process. 

To my knowledge, no evidence in a real-world setting has illustrated the link between 

risk, performance, and effort, and as Kamenica (2012) notes, it was uncertain whether the 

previous findings would extend.  

Additionally, I collect rich baseline and outcome data in order to incorporate an 

important strand of the psychology literature that studies the mechanisms through which 

risk and uncertainty affect behavior. Many previous studies in economics have only 

identified the reduced-form relationship between uncertainty or risk and performance, 

though Angelucci et al. (2012) measure cortisol levels in a laboratory study of how stress 

affects entrepreneurship. The data I collect allow me to rule out alternative mechanisms. 

There are a number of behavioral theories that are consistent with the key result that 

individuals facing a lower incentive to perform (having improved outside options) exhibit 

higher performance. I attempt to shed light on the underlying mechanism for the observed 

results. I explore stress, gift exchange, nutritional wage, and stereotype threat as potential 

mechanisms.  
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The stress mechanism draws on economic and psychological insights. By 

improving a job seeker’s outside options, the incentive to exert effort during recruitment 

is reduced. Therefore, as outside options increase, effort in the recruitment process should 

decline, and therefore so too should performance. I refer to this as the incentive effect. 

However, at the same time, improving a job seeker’s outside options, also reduces the 

stress experienced during the job-seeking process, a premise that is supported by 

psychology and public health literature that finds that uncertain employment prospects 

are stressful (Feather, 1990; de Witte 1999, 2005; Burgard et al., 2009). This reduction in 

stress likely has performance implications as Yerkes-Dodson (1908) show that 

performance has an inverse u-shaped correlation with arousal (stress). Therefore, as stress 

decreases due to improved outside options, performance could increase or decrease. I 

refer to this as the stress effect. The resulting predictions suggest that, as risk declines, so 

too should effort, but it is ambiguous whether performance would increase or decrease. 

The impact of stress on performance is under-studied within economics. The research 

that does exist focuses on how stress affects performance in professional activities, sports 

performance, and academic settings.
6,7,8  

In fact, in Kamenica’s recent (2012) review 

                                                           
6 In the public health and industrial psychology literatures, stress has been shown to be correlated with performance 

among nurses, medical doctors, policemen, and teachers (Jamal, 1984; Motowidlo, 1986; Sullivan and Bhagat, 1992; 

Band and Manuele, 1987).  
7 The literature on sports performance presents relatively mixed results. Primarily, this literature has looked at the 

probability of scoring penalty kicks in professional soccer. Dohmen (2008) finds that, when the importance of scoring 

is greatest, individuals tend to score. Apesteguia and Palacios-Huerta (2010) find that players who shoot second in a 

penalty shoot-out lose the game 60.5 percent of the time. They argue that this is driven by increased pressure to 

perform, and identification is achieved because the order of the shoot-out is determined randomly from a coin flip. 

However, Kocher et al. (2011) fail to replicate these findings using an extended dataset. Paserman (2010) examines 

performance in tennis and sets up a structural model. He finds that individuals would be substantially more likely to 

win if they could score when it mattered most.  
8 The literature examining high-stakes academic testing also finds mixed evidence. Ors et al. (forthcoming), find that 

women perform worse than men on a high-stakes entrance exam for an elite university despite higher performance on 

other low-stakes exams in France. In the education literature more broadly, testing anxiety has been widely observed 

and studied. Evidence shows that test anxiety can both increase and decrease performance (Sarason and Mandler, 1952; 

Tryon,1980 provide extensive reviews). 
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article, he states that “overall, to date there is no compelling empirical evidence that 

choking plays an important role in any real-world labor market.” My results fill this gap. 

There are a number of other behavioral theories that are consistent with the key 

result that individuals facing a lower incentive to perform (better outside options) exhibit 

higher performance. Gift exchange is one possibility and would require the performance 

results to be driven by increased effort. However, I find that individuals assigned a high 

probability of an outside option exert less effort in studying for the tests during 

recruitment, suggesting that gift exchange is not the mechanism driving the observed 

performance results. Second, the nutritional-wage hypothesis might be a possibility. 

However, I do not observe differences in food expenditures by treatment group during the 

training, so it is unlikely that this is the driving mechanism. Third, stereotype threat might 

be the driving mechanism. However, I find that job trainees’ perceptions about their own 

likelihood of being hired by the recruiter do not significantly differ across treatment 

groups, suggesting that stereotype threat is an unlikely mechanism. While my results are 

consistent with a stress response, I cannot rule out that there is some other psychological 

consideration that operates in a similar way to stress. Moreover, I cannot identify the 

mechanism through which stress might act to impair performance.
 

In my study, the finding that performance is highest among individuals with 

guaranteed outside options has important policy implications. In this study, differences in 

employment rates by treatment status show that individuals assigned a 75 or 100 percent 

chance of alternative jobs were twice as likely to be employed by the recruiter compared 

to those in the other treatment groups. I also examine heterogeneity of the employment 

impacts by mental health status and ability. I find no differential employment effects by 
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mental health status. I do find suggestive evidence that the reduction in employment risk 

has the greatest impact on individuals in the middle of the ability distribution.  

Perhaps the broader implications of these results are that individuals with greater 

income support through employment guarantees, cash transfer programs, family support, 

or employment income are likely to perform better. This may have positive feedback 

effects. Poor initial employment probabilities can induce stress-related performance 

reductions resulting in poverty persistence across individuals, communities, or countries. 

Lastly, the results yield insights into what types of people are more likely to be hired with 

different recruitment strategies. For example, individuals exposed to higher employment 

risk have a greater chance of employment in hiring processes that place greater emphasis 

on effort than on performance.  

There are some limitations to my findings. First, this study was conducted using 

short term job opportunities; the effects of longer term job security cannot be assessed in 

this context. Second, the experiment was conducted among a sample of relatively well-

educated men in the capital city of Malawi. This paper cannot speak to how other groups 

might respond. Third, it would have been better to have biomarker indicators to measure 

stress (e.g. cortisol) directly but due to logistical and budgetary limitations this was not 

feasible. Fourth, while I do examine the heterogeneity of the performance and 

employment results and find that risk matters most for those in the middle of the ability 

distribution and has limited differential effects by mental health status, my ability to draw 

robust conclusions about heterogeneous effects is limited by my sample size.  

The remainder of the paper proceeds as follows: Section 1.2 provides contextual 

information about labor markets and recruitment in Malawi and presents the experimental 
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design. Section 1.3 outlines the different data sources used. Section 1.4 presents the 

estimation strategy, and Section 1.5 presents and discusses the results. Section 1.6 

concludes.  

1.2 Experimental Design  

To examine the relationship between employment risk and job trainee 

performance, I vary individuals’ outside options during a real recruitment process. In the 

absence of this intervention, the distribution of job seekers’ outside options is correlated 

with their own ability, prior work experience, and social networks. I offer job trainees a 

randomly assigned probability of an alternative job with the same wage and duration as 

the job for which they have applied. I work in collaboration with a real recruiter and 

embed the experimental component into an already existing recruitment process. In this 

section, I provide some background about the experimental setting, outline the details and 

timeline of the recruitment process, and provide details of the intervention.  

1.2.1 Setting 

Developing country urban labor markets are characterized by high unemployment 

and underemployment, as well as high job instability (WDR, 2013). In many respects, 

these labor markets are similar to low-income labor markets in developed economies. 

High rates of in-migration to urban areas in developing countries suggest these problems 

are likely to increase and that rural labor markets are worse. Malawi, the fourth-fastest 

urbanizing country in Africa (HDR, 2009), is no exception. Data from the nationally 

representative Integrated Household Survey shows that only 39.8 percent of urban 

Malawian men aged 18-49 report ever being employed for a wage, salary, or commission 

in the last 12 months. When examining activity in the last seven days, 29.6 percent report 
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engaging in household agricultural activities; running or helping to run household small 

businesses; engaging in day labor (known as “ganyu”); or being employed for a wage, 

salary, or commission. Incidence of job turnover and the prevalence of short term 

contracting are not well measured. However, sectors that are characterized by high 

turnover, fixed term contracts, and seasonality are the most common among urban 

residents. For example, 7.9 percent report working in construction and 46.8 percent in 

community, social, and personnel services (IHS2010/11).
9
   

Due to the recruiter’s eligibility restrictions, the sample in this paper is restricted 

to men aged 18 and older who had completed secondary schooling. Approximately 39 

percent of urban men aged 18 to 49 have completed secondary schooling in Malawi. 

However, they too face high rates of unemployment: only 52.5 percent had worked in the 

past year (IHS, 2010/11).
10

 Due to their relative higher social status, these men also bear 

considerable financial responsibility not only for their immediate families but often for 

extended family members. On average, these men report sending 10 percent of their wage 

income to other households (IHS2010/11).  

1.2.2 Recruitment Process and Timeline  

The sample of respondents is drawn from a recruitment process hiring 

interviewers for a health survey.
11

 Contract work on survey projects for government or 

international organizations, research projects, or NGOs is quite common in the capital 

city. Data collected by Chinkhumba et al. (2012) which samples approximately 1200 men 

                                                           
9 The community, social, and personnel services sector also includes teachers, whom I have excluded when calculating 

the fraction working in this sector because teaching, while low-paying, is a stable profession in this context.  
10 When examining responses regarding activities in the past 7 days among men with completed secondary school 

resident in urban areas in the IHS2010/11 data, 1 percent report working in household agricultural activities; 6.2 

percent had run or were helping to run small household businesses; 1.95 percent were engaged in ganyu/day labor; and 

21.7 percent had been employed for a wage, salary, or commission. 
11 The recruiter conducts independent consulting within Malawi and has, for several years, implemented various 

randomized controlled trials and other data collection efforts in Malawi for universities and other international NGOs. 
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aged 18 to 40 in the Malawian capital finds that one in ten individuals had ever worked as 

an interviewer; of those who had completed secondary schooling, the number was one in 

four.
12

 This data set also provides some descriptive data on hiring practices.
13

 A total of 

23 percent report having taken a test for their most recently held job. Approximately half 

(51.5 percent) report being interviewed for their most recently held job. One third report 

attending job-specific training for their most recently held job.
14

  

The jobs offered by the recruiter are relatively high paying, offering 

approximately three times the average wage for men who have completed secondary 

school.
15

  However, the wages offered by this recruiter are comparable to those offered 

by other employers hiring for this type of work.
16

 

The recruitment process timeline is presented in Figure 1.1. There are three 

phases of the recruitment process: pre-screening; training and screening; and final 

selection. The experimental component was conducted during the training and screening 

phase.  

                                                           
12 These numbers are high and deserve explanation. First, the census of Malawi took place in 2010. Many individuals 

are likely to have worked for the census as the National Statistics Office hired extensively. Second, 65 percent of 

individuals only report working once as an interviewer. Third, interviewer is likely broadly interpreted including work 

individuals may have conducted as market research or other non-research that involved interviewing others.  
13 Unfortunately the Integrated Household Survey, which would provide nationally representative data, asks only a 

single question related to job search. Individuals who had not worked in the past 7 days are asked whether or not they 

looked for work in the past four weeks. Moreover, firm level data on hiring practices is not available. 
14 These numbers come from the authors’ own tabulations from unpublished data collected by Chinkhumba, 

Godlonton, and Thornton (2012).  
15 The mandated monthly minimum wage at this time for urban individuals was only $24 per month. However, more 

relevant wage information regarding comparable wages can be obtained using the Integrated Household Survey 

(2010/11). The average wage among 18 to 49 year old urban men who had completed secondary schooling is 

approximately $4.75 per day, the median is somewhat lower at $2.02.  
16 Wages at institutions hiring interviewers regularly (such as Innovations for Poverty Action, the National Statistics 

Office and others) ranged from $15 to $32 per day for urban interviewers. Wages offered in this case are on the low 

end for this type of work at $15.  
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Recruitment Process: Pre-screening 

To advertise positions, advertisements are placed in multiple public places.
17

 The 

placement was determined and conducted by the recruiter and followed their standard 

protocol. The public advertisements for the job included eligibility requirements and the 

application procedure. To apply, each individual was required to take a pre-screening 

assessment test and submit a copy of his resume.
18

 The written assessment included 

numeracy and literacy modules and a brief background module. A total of 554 applicants 

took this written assessment test. Based on the numeracy and literacy scores, the recruiter 

selected the top 278 applicants to advance to the job training phase of the recruitment 

process. Individuals selected were screened based on a clear cut-off using the numeracy 

and literacy test administered. The distributions of these scores are presented in Figures 

1.2.a, 1.2.b, and 1.2.c. Given this selection criterion, the sample of interest is a non-

representative sample of applicants. However, it is representative of the individuals who 

were selected for training by the recruiter and therefore captures the population of interest 

relevant to the research question.  

Recruitment Process: Training 

The 278 job seekers who advanced to job training attended a pre-training 

information session. During this session, job trainees were provided with materials 

required for training and logistical information related to the training process. They were 

also informed about the opportunity to participate in this research study. A total of 268 

applicants of the applicant pool opted to participate (95 percent). This constitutes the 

main sample. Consenting participants were asked to self-administer a baseline 

                                                           
17 These include public libraries, educational institutions, public notice boards, and along streets. 
18 Individuals were encouraged to bring their resumes. Most (95 percent) did bring a resume. Those who did not bring a 

resume were not prevented from taking the pre-screening assessment test. 
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questionnaire after which they were issued their randomly assigned probabilistic job 

guarantee. Details related to the nature and assignment of the probabilistic job guarantees 

are discussed in Section 1.2.3.  

All 278 job trainees were invited to attend three days of full-time training and 

further screening. They were paid a wage equivalent to half of the daily wage of the 

employment opportunity for each day of training attended. During training, applicants 

were monitored for their punctuality and the quantity and quality of active participation 

in the job training in which they learned about the health survey for which they were 

being trained. Individuals were also tested on materials taught. Summary statistics and 

details related to these administrative data are discussed in Section 1.3.  

Also, for the purposes of this study, on each day of training, respondents were 

asked to self-administer a survey questionnaire. The recruitment team did not know who 

chose to participate in the research, what alternative job probabilities were assigned, or 

which participants completed the daily questionnaires. Moreover, the recruiter did not get 

access to the survey questionnaires. This was carefully explained to the respondents and 

monitored to ensure confidentiality regarding participation in the research study.  

At the end of the final day of training, the alternative job draws were conducted, 

and participants learned their alternative job employment realization. The recruiting team 

was not present at this time, and they were not at any point informed as to who received 

an outside job offer. 

Recruitment Process: Selection by Recruiter 

Two days after completing the training, the successful applicants for the job advertised by 

the recruiter were contacted.  
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1.2.3 Intervention: Probabilistic Outside Employment Options 

During the information session prior to the commencement of the job training, job 

trainees were randomly assigned some probability of employment via a job guarantee for 

an alternative job. There were six different probabilistic guarantees – 0, 1, 5, 50, 75, and 

100 percent chance of an alternative job.
19

 Thus, the intervention experimentally altered 

individuals’ outside options.  

The alternative jobs were constructed to mimic as closely as possible the jobs 

offered by the recruiter. The alternative jobs were for the same duration and pay as the 

job being offered by the recruiter. They were real jobs, requiring real effort and paying 

real wages. While the recruiter was hiring for interviewer positions, the alternative jobs 

were other research jobs. In both cases, individuals were working for research projects 

for the same university albeit on different projects and performing different types of 

research tasks. The alternative jobs included data entry, translation, transcription, and 

archival research.
20

  

Individual treatment status was blind to the research and recruitment team but 

known to the job trainee. Each job trainee was given an envelope with his employment 

ID written on it. Inside the sealed envelope was an employment contract stating which 

probabilistic job guarantee he had received.
 21

 Job trainees assigned a 0 percent chance of 

an alternative job also received an envelope. Randomization was conducted at an 

individual level and stratified on quintiles of baseline ability and an indicator variable for 

                                                           
19 In a pilot version of this experiment, there also existed a 25 percent chance of a job guarantee. However, given the 

results of the pilot, the sample size required to detect reasonable effect sizes was larger than the financial constraints of 

this project would allow. While I would have liked to have included a 99 percent chance of a job guarantee to test 

differences in small changes in risk at different points in the distribution (specifically 0 to 1 percent and 99 to 100 

percent) due to budgetary limitations, it was not possible to implement this. I hope to explore this in future work. 
20

 If individuals were selected by the recruiter, and also received an alternative job they were required to take the 

recruiter’s job and not the alternative job. 
21 Individuals could choose to reveal their contract to anyone within or outside of the group but they were not required 

nor encouraged to do so. 
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whether or not they had ever worked for the recruiter.
22

 Baseline ability was determined 

using participants’ scores from the numeracy and literacy components of the pre-training 

assessment test. The distribution of the probabilities was pre-assigned to the 278 

applicants invited to attend the training stage of the recruitment process. Ten individuals 

opted not to participate in the research project or in the recruitment process. These 

participants made their decision before knowing to which treatment group they had been 

assigned. In the final sample of the 268 male participants, the distribution of the 

probabilistic job guarantees is similar to the intended assignment (Table 1.1, Panel A). 

The distribution of treatment allocated approximately 20 percent of the sample to 

each of the 0, 1, 5, and 50 percent chance groups and approximately 10 percent of the 

sample to each of the 75 and 100 percent chance groups.
23

 Respondents were informed 

about the distribution of the alternative job probabilities prior to learning their own 

treatment assignment, so as to ensure that all participants had the same beliefs about the 

distribution. Had respondents not been told the underlying distribution, then individuals 

would have variable information, which would be endogenous to the truthfulness, candor, 

and size of their social network among other job trainees.  

Job trainees were also informed that their treatment assignment would not be 

revealed by the research team to the recruitment team or anyone else. It was consistently 

emphasized that their probability of an alternative job would have no direct bearing on 

their probability of being hired by the recruiter. To ensure individuals were clearly 

informed about how the probabilities worked and how the draws would be conducted, 

they were discussed in detail and demonstrations were conducted to illustrate the process. 

                                                           
22 “Ever worked for the recruiter” is broadly defined. That is, even individuals who had attended a prior job training 

session held by the recruiter but had never successfully been employed are included in this category.  
23 While equal proportions across groups was desirable, this was not feasible due to budgetary limitations.  
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The draws were conducted in the following way: if a job applicant received a 

probabilistic job guarantee of 75 percent, then after the conclusion of the final day of 

training, he faced a bag of 100 bottle tops. In the bag, there were 75 red bottle tops and 25 

green bottle tops. If the individual drew a red bottle top, he would receive an alternative 

job; if he selected a green bottle top, he would not. Corresponding procedures were used 

for the other treatment groups. 

An important concern is whether individuals actually understood the probabilistic 

nature of the alternative job offers.
24

 After the treatment was explained, but before 

individuals learned their own probability, we surveyed participants to elicit their 

perceptions related to their understanding of these probabilities. Participants were asked 

for each treatment arm what they expected the realization of alternative jobs to be. For 

example: “If 60 participants received the 50 percent job guarantee, how many of them are 

likely to receive an alternative job.”
 
The modal response by participants was fairly 

accurate. For the 5 and 50 percent treatment groups the modal response translated into 5 

and 50 percent respectively. For the 1 percent group the modal response was 1.6 

percent.
25

 For the 75 percent treatment group the modal response translated into an 83 

percent chance, which is a slight overestimate. In general, it seems reasonable to assume 

that participants understood the assigned outside options.
 26, 27

  

                                                           
24 Although the sample is relatively well-educated, mathematical literacy, particularly related to probability, is not 

universal. For example, one of the numeracy questions during the selection screening test asks: “To pass an exam 

which comprises a part A, B, and C, a person needs to pass not less than 40 percent in A, not less than 30 percent in B 

and not less than 30 percent in C. If A, B, and C have 50, 30 and 20 marks respectively, what is the minimum mark to 

pass the exam?” Only 45 percent of the sample of job trainees answered this question correctly.  
25 Given the phrasing of the question for the 1 percent chance treatment group, it was impossible for individuals to 

select an integer that would map into 1 percent of the distribution getting alternative jobs. The modal response was 1 

person, which maps to the 1.6 percent. The second most frequent response recorded was 0.  
26 These prior perceptions are not differential across treatment status.  
27 Open ended questions on the survey asked respondents to explain how they understood the job probabilities. The 

responses in general suggest they understood how this worked. For example: “The probability criteria are dependent on 

the chance and not merit of a person in terms of experience and qualification.”;  “Those that have 75% chance have 

higher chances as compared to those that have 1% chance.”; “It's a good idea after all if you are guaranteed a 100% 
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1.3 Data  

I use two sources of data in this paper. Primarily, I use administrative data collected by 

the recruiter. I supplement this with survey data I collected for this project using 

respondents’ self-administered questionnaires.  

1.3.1 Baseline Data  

Pre-screening assessment test (administrative data): From the recruiter, I have 

data from the pre-screening assessment test conducted to select the job trainees. This test 

consists of numeracy, literacy, and background information modules.
28

 Among the 554 

job applicants, the average numeracy score was 52.5 percent, and the average literacy 

score was 70.3 percent. For the sample of short-listed candidates, the sample frame for 

this paper, the average numeracy score was 63 percent, and the literacy score was 80 

percent. The ability score that will be referred to throughout the remainder of the paper is 

a composite measure of the individual’s numeracy and literacy scores equal to the sum of 

the two scores. The distribution of the numeracy, literacy, and composite ability scores 

are presented in Figures 2a, 2b and 2c.  

                                                                                                                                                                             
probability you don’t have to worry about the other job.” “Those who have 100%, 75%, 50% have a high chance of 

getting an alternative job whilst those who have a 5% and 1% have a low chance.” 
28 During the pilot, a similar standardized test of literacy and numeracy was used, but the literacy component was 

slightly too easy, and this was adjusted for the population in this implementation. The literacy module comprises 

questions taken from the South African Cape Area Panel Study Wave 1 survey and is supplemented with additional 

more difficult literacy questions. A large proportion of the numeracy module used comes from the South African 

National Income and Dynamics Survey wave 1 survey. Additional questions come from previous recruitment tests used 

by the recruiter as well as other survey implementers in the country, such as the Malawi National Statistics Office.  
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Baseline questionnaire (survey data): To supplement this administrative data, I 

conducted a baseline questionnaire. The survey instrument was self-administered during 

the information session to consenting participants before the commencement of training. 

It includes questions about previous work experience, employment perceptions and 

attitudes, physical and mental health indicators, time use, and a work and health 

retrospective calendar history.  

1.3.2 Training and Post-Training Data  

I use administrative data collected during the training as well as the hiring 

decisions made by the recruiter to construct the key outcome variables of interest used in 

the analysis. I supplement this with daily follow-up survey questionnaires that were also 

conducted after each day’s training.  

Participation in training: Table 1.1 Panel B presents the participation rates of the 

268 consenting participants. Most of the selected job trainees opted to participate in the 

training – 94 percent attended training every day. There is no statistically significant 

difference in training participation across treatment groups. 

Punctuality records: Recruitment staff recorded daily attendance including job 

trainee arrival times. Participants were required to sign in when they arrived to determine 

to which classroom they had been assigned for the day. When participants signed in, their 

arrival times were recorded. I use the sign-in times to measure punctuality as an effort 

indicator. 
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Room assignment: Participants were randomly assigned to one of three training 

rooms on day one. On day two they were randomly assigned one of the other two rooms, 

and on the third day they were assigned to the remaining room.
29

 

Test scores: On each training day, a test was administered to job trainees by the 

recruiter. These test trainees’ comprehension of the materials taught during the training 

sessions and are the most important observable performance indicator used by the 

recruiter in making employment decisions. Refer to Appendix A for a detailed discussion 

on the determinants of hiring decisions.  

Contribution records: Recruitment staff also recorded the verbal contributions 

made by job trainees. These records enable me to construct a performance indicator of 

engagement. Similar measures of engagement have been used in the education literature, 

typically in the context of teacher evaluations of student engagement (e.g. Dee and West, 

2011; Friedricks et al. 2004 reviews the education literature pertaining to student 

engagement). I also construct a subjective assessment of the quality of the contribution 

made. The quality scale is graded as Good, Neutral or Bad. In some cases, multiple 

members of the recruitment team were documenting these contributions. To eliminate 

double counting, I count a contribution only once assuming that it came within five 

minutes of a second contribution. In instances where a contribution is recorded twice and 

the two records differ, I use the lowest quality assessment. The double counting allows 

                                                           
29 This ensures that all participants were in a different room on each training day. Although the same materials were 

taught simultaneously across training rooms, the recruiter felt it was necessary for the participants to be exposed to all 

the different trainers. All three training rooms were at the same venue. Participants were free to sit as they desired 

within the assigned room; their seating choice was recorded by the recruitment team. These records are used in later 

analysis. 



 

20 
 

me to assess the correlation in subjective assessments made. In 61.5 percent of cases, the 

two separate records were in agreement.
30

  

Employment records: I obtain the employment records of the consenting job 

trainees.  For each trainee, I have a binary indicator of whether or not he was offered a 

contract by the recruiter.   

Daily survey questionnaires: I supplement these administrative data sources with 

daily self-administered follow-up questionnaires. While respondents were completing 

these surveys in private, all recruitment staff left the training venue. Research staff were 

available to address any questions. Participants were asked to drop their completed 

questionnaires in a sealed drop box at the venue. The daily questionnaire asked about 

time use and mental and physical health, as well as employment attitudes and beliefs.  

Table 1.1 Panel B presents survey data completion rates. There is some evidence 

of differential non-response with the follow-up questionnaires by treatment status.
31

 Only 

83 percent of the participants who received no chance of an alternative job completed the 

follow-up survey questionnaire every day compared to 96 percent among those who were 

assigned a 100 percent chance of an alternative job. This difference of 13 percentage 

points is significant at the five percent level.
32

 I primarily use the follow-up data to 

examine the impact of the outside options on self-reported effort as well as to shed light 

on the potential mechanism driving the performance results. To address the differential 

non-response in the survey data, I conduct a number of specification checks that are 

                                                           
30 Additionally, in 26.5 percent of cases, one record reports the contribution as good while the other rates it as neutral. 

In 9.64 percent of cases, one record reports the contribution as neutral and the other rates it as bad. Finally, in only two 

cases in which the quality assessments differ does one report assess it as good and the other as bad.  
31 Completing the daily questionnaires was not a condition of receiving the alternative job. 
32 Differential completion rates are largest on day 1 and decline across time. By day 3, there is no differential attrition 

across treatment status for the follow-up survey completion. One possibility is that any resentment towards the research 

project due to being assigned a low probability of an alternative job declined over time. This is consistent with the 

happiness literature that shows that shocks to happiness are mitigated across time (Kimball, 2006). 
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discussed in Section 1.4. The results are presented in Section 1.5.3 and in general show 

that the results are robust to these checks.   

1.3.3 Sample 

The sample used in the analysis in this paper comprises the 268 consenting job 

trainees.
 
Table 1.2 presents summary statistics about the sample. On average, respondents 

are 25 years old, and 18 percent are married. Approximately 17.6 percent of the men in 

the sample had at least one child. Because of the recruiter’s secondary schooling 

requirement, respondents are relatively well educated for Malawi, with an average of 13 

years of education.
33

 Respondents report earnings of approximately $220 over the last 

three months. 

Most of the men, 86.9 percent, report having worked previously. Although most 

men (86.1 percent) had worked at some point during the previous six months, they had 

only worked, on average, 2.7 months of the preceding six months.
34

 Individuals who had 

previously worked were asked a series of questions about their three most recent jobs. 

For their most recent job, 58 percent report competing for it, 26.8 percent were required 

to take a test as part of the hiring process, almost 70 percent were required to attend an 

interview, and slightly more than half were required to complete some job training prior 

to employment.
35

 In sum, the process is not atypical of hiring processes in this context.  

1.4 Estimation Strategy  

                                                           
33 Although this is relatively high for Malawi in general, it is not atypical for a representative sample of men in urban 

Malawi. In another survey (Chinkhumba, et al. 2012) that randomly selected men, the average was 11 years of 

schooling.  
34 The sample used here is similar to the nationally representative integrated household survey sample in terms of key 

work-related characteristics. For instance, respondents in the IHS10/11 had worked, on average, 5.6 months out of the 

previous 12 months.   
35 Averages across the three most recent jobs are similar (results not shown). 



 

22 
 

In this section, I discuss the key outcome variables of interest followed by the 

main estimating equation. I then discuss the validity of the random assignment in the 

sample. Lastly, I briefly discuss key alternative specifications implemented as robustness 

checks.  

1.4.1 Key outcomes 

To measure performance, I rely on administrative records only. I use test scores 

from the training assessment tests, as well as engagement in training. I use both quantity 

and quality measures of engagement in training: cumulative number of contributions; 

total number of good contributions; total number of neutral contributions; and total 

number of bad contributions. I construct a performance index measure as a summary 

index of these performance indicators. The index is constructed as the average of the 

normalized values of each of these measures (Kling, Liebman and Katz, 2007). 

To measure effort, I use both administrative data and survey data. From the 

administrative data, I use the rich arrival data and construct measures of punctuality: ever 

late; always late; and how early or late. Using the survey data, I use the self-reported time 

use diaries to measure the average number of hours per day spent studying training 

materials and the number spent on leisure activities (watching television, listening to 

radio). I construct an effort index as a summary measure of effort using the average of the 

normalized values of the minutes arrived late and time use variables. 

Lastly, I examine employment outcomes using data from the recruiter on which 

respondents were hired. 

1.4.2 Main empirical specification 
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The experimental design of the study permits a relatively straightforward analysis. 

To estimate the differential performance, effort, and employment by treatment group, I 

estimate the following regression:  

                                                        
               (1) 

where: Yi indicates job trainee i’s average performance or effort. The average for each 

indicator is constructed using data from three observations per individual. In the case of 

missing data, the average is constructed from the observations available. The indicators 

T0, T1, T5, T50, T75 and T100 are binary variables equal to one if the individual received 

a 0, 1, 5, 50, 75 or 100 percent chance of an alternative job, respectively, and zero 

otherwise. Rather than assuming a linear relationship, I specifically allow a flexible non-

linear relationship between the probabilistic job guarantees and the outcome variables of 

interest. This allows me to examine the reduced form relationship between employment 

risk and performance and effort.  

Lastly, Xi is a vector of covariates including stratification cell fixed effects, ability 

score, previous experience with the recruiter, age, and other background characteristics. 

To facilitate easier interpretation of the coefficients, I demean all control variables, so 

coefficients are interpretable as group means at the mean of all controls in the regression. 

Unlike many program evaluation randomized controlled trials, there is no clear control 

group in my sample. Although being offered no outside option is akin to what individuals 

would face in the absence of this experiment, this is not a clean control group as these 

individuals are allocated a poor draw for the purposes of the research. 

My main comparison of interest is between those assigned no outside option (T0), 

and those assigned the alternative employment guarantee (T100), removing all risk from 
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the job application process. While employment risk is decreasing in the magnitude of the 

outside option, uncertainty of the alternative jobs is highest among those in the 50 percent 

group. I do, however, present the average performance, effort, and employment results 

for all treatment groups, yielding insights into the relationship of these outcomes across 

the distribution of the outside options assigned.  

Given the random assignment of individuals to the different treatment groups, the 

identification assumption that assignment to treatment group is orthogonal to the error 

term should hold. One test of this assumption is to compare observable characteristics 

across the different treatment arms. Table 1.2 shows that the different treatment arms 

appear to be balanced when examining multiple baseline characteristics. In most cases, I 

cannot reject the null hypothesis that the means are jointly equal across all the treatments. 

Similarly, for most pair-wise comparisons, I cannot reject that equality of the means. As 

assignment was predetermined, no strategic behavior to change treatment status was 

possible. Controls will be included in the results that follow, but the results are robust to 

whether or not controls are included. 

1.4.3 Alternative specifications 

I conduct a host of robustness checks. First, for binary performance or effort 

indicators, I use probit specifications. Second, to address any remaining concerns 

regarding imbalance of treatment assignment, I present the analysis with and without 

controls; I also construct a measure of the extent to which omitted variable bias would 

have to differ in unobservables relative to observables to explain away the observed 

differences in performance and effort by treatment group (Altonji et al., 2005; Bellows 

and Miguel, 2008). Third, I address missing data in the administrative records and 
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differential non-response in survey data records. I use three strategies to address both of 

these concerns. I follow Fitzgerald, Gottschalk and Moffitt (1998) and present weighted 

results. I then present conservative bounded results where I implement min-max bounds 

(Horowitz and Manski, 1998). Lastly, I restrict the sample to the 0 and 100 percent 

treatment groups and estimate Lee (2009) bounds on the average treatment effect of the 

100 percent group relative to the 0 percent treatment group. I discuss the implications of 

each of these robustness checks for the performance and effort indicators in Section 1.5.3. 

1.5 Results  

First, I present the performance results using administrative data including 

training test scores and measures of engagement in training. Second, I present and discuss 

the effort results using indicators from both administrative data (e.g. punctuality) and 

self-reported data (e.g. time spent studying training materials). Third, I present a broad 

set of robustness checks for the performance and effort results. Fourth, I discuss potential 

mechanisms that may be driving the performance and effort results. Fifth, I present the 

welfare implications of employment risk by examining differences in employment by 

treatment group. Lastly, I discuss heterogeneity of the performance and employment 

results by baseline mental health status and ability. 

1.5.1 Performance Indicators 

I use two key indicators of performance in the analysis: job trainees’ performance 

on administered tests and engagement in the training. To measure engagement in training, 

I examine differences across treatment groups in the quantity and quality of verbal 

contributions.  
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Administrative Training Tests 

The most important assessment tool used by the recruiter for hiring decisions is 

the performance of the job trainees on the written tests administered during the job 

training. The correlation between performance on these tests and the probability of being 

hired by the recruiter is 0.60. The R-squared of a univariate regression of employment on 

the standardized average test score is 0.357, and the coefficient in this case is 0.225 

(standard error is 0.0311). Therefore, for every additional standard deviation in test score, 

an individual is 31 percentage points more likely to be hired. The determinants of hiring 

are presented in Appendix Table A.1 and discussed in detail in Appendix A.  

Figure 1.3 and Table 1.3 present the main test results using the average 

performance on the standardized test scores as the dependent variable. I find that job 

trainees assigned no outside option performed significantly worse than those assigned a 

100 percent outside option. The magnitude of the difference ranges from 0.438 to 0.451 

standard deviations depending on the set of controls used and is consistently significant at 

the 10 percent level. The magnitude of these effect sizes is quite large. Perhaps the best 

way of contextualizing the effects is to compare them to education interventions that aim 

to impact test scores in developing countries. Kremer and Holla (2008) review 

randomized controlled trials of education interventions conducted in developing 

countries. Test score effect sizes from the 26 papers reviewed range between zero and 

0.46 standard deviations, with the exception of a technology assisted education 

intervention in Nicaragua that found large effects of 1.5 standard deviations (Heyneman, 

1981). The median effect size from this review was 0.16 standard deviations.  

Figure 1.3 and Table 1.3 also show suggestive evidence in support of an 

increasing trend of performance as a function of employment risk. One exception to this 
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trend is the relatively poor performance of those assigned the 75 percent chance of an 

alternative job. There is considerable variation in the performance of this group, which I 

explore further in Section 1.5.6 when examining heterogeneity of the impacts. Moreover, 

the results show that there are substantial non-linearities in the performance-risk 

relationship.  

Verbal Contributions 

Next, I examine differential performance across treatment groups for verbal 

contributions made during the training sessions monitored by the recruitment team.  

Appendix A highlights the importance of good quality engagement during training as it is 

a key predictor of employment in the current context.
36

 

 I construct both a quantity and quality measure of trainee engagement. More than 

half of the participants (67 percent) made a contribution at least once during the course of 

training. Individuals who contributed did so an average of 2.3 times. Approximately 46 

percent of the contributions made were classified as good, 39 percent as neutral and 15 

percent as bad. 

Table 1.4 presents the regression results that control for covariates and 

stratification cell fixed effects, although the results are robust to excluding covariates 

(Appendix Table B.3). The performance indicators used here aggregate performance 

                                                           
36 Classroom behavior in schools has also been shown to be important for labor market success (Segal, 2008, 2012, and 

forthcoming). I do have a similar measure of behavior to that used in this literature. However, in my setting, training 

classroom behavior was not an important predictor for determining employment outcomes (See Appendix A). 

Recruitment staff recorded disruptions by participants during the training sessions. Disruptions include answering 

phone calls, exiting and re-entering the room, making jokes, and chatting to other trainees, among other things. Almost 

half of the participants (47.1 percent) were recorded as being disruptive at some point during the training. The total 

average number of disruptions made was 2.11, conditional on making any disruption. In 47 percent of the cases, the 

disruptive behavior relates to making noise, chatting with friends, banging on desks etc; in 42 percent of the cases, the 

disruptive behavior relates to unnecessary moving around the room, or entering and exiting the training room; and in 11 

percent of cases relates to participants answering cell phones during training. Using this data, I construct measures of 

whether the job trainee was ever disruptive, the number of times he was disruptive and the number of each type of 

disruption. I do not observe statistically significant differences across treatment groups (See Appendix Table B.2).  
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across the three training days. Column 1 shows that job trainees receiving the 100 percent 

chance of the alternative job were 11.2 percentage points more likely to make any type of 

verbal contribution. Probit results are broadly consistent. While these differences are 

quantitatively large, they are not statistically significant. The total number of 

contributions is an alternative measure of the quantity of engagement. Table 1.4 Column 

2 shows that job seekers assigned a guaranteed outside option make 0.744 more 

contributions than those assigned no outside option.  

In determining employment decisions, a key dimension is the subjective quality 

assessment of engagement. Appendix A shows that making a good contribution impacts 

the probability of being hired. Participants receiving the 100 percent job probability make 

0.410 additional good contributions relative to those in the 0 percent job probability 

treatment group. This difference is statistically significant at the 10 percent level. In fact, 

individuals in the 0 percent group are the least likely of all groups to make a good 

contribution (only 0.528 contributions on average).
37

 This is consistent with the test 

performance results, which showed that individuals in the 0 percent group performed the 

worst on average, and those in the 100 percent treatment group performed the best (Table 

1.4, Column 3). Similarly, job trainees assigned to the 100 percent treatment group are 

the most likely to make neutral contributions, but the difference is not statistically 

significant (p=0.127). 

Performance index 

To address the issue of multiple inferences, I create a performance index. This 

index is the mean of the normalized value of the average test score and all the verbal 

                                                           
37 This also goes against a story where the zero probability group is more risk averse and as a result set a higher bar on 

their ex-ante beliefs about contribution quality. This implies fewer but higher average quality of contributions from the 

zero probability group. 
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engagement measures (Kling, Liebman and Katz, 2007). Table 1.4 Column 6 presents 

these results. Individuals assigned no outside option perform 0.369 standard deviations 

worse than those assigned the guaranteed outside option. The difference is statistically 

significant at the five percent level. It is also interesting to look beyond the mean and 

consider the performance index distribution. Figure 1.4 presents the distribution of this 

index for individuals assigned no outside option (T0) and those assigned the employment 

guarantee (T100). This figure shows that the performance distribution for those 

guaranteed outside employment is shifted quite significantly to the right. The p-value 

associated with a Kolmogorov-Smirnov distribution test of equality is 0.043. This figure 

shows that the average performance result is not driven by outliers but rather a shift in the 

distribution.  

In sum, I find that performance is highest among those assigned a guaranteed 

outside option and lowest among those assigned the lowest outside options. Differences 

are large in magnitude and often statistically significant. This suggests that reducing 

employment risk can, at least in this context, result in overall higher performance. Next, I 

examine effort indicators to assess whether these results are driven by changes in effort. 

1.5.2 Effort Indicators 

To measure effort, I use administrative data to measure punctuality, as well as self-

reported data to observe time use. I also combine these data to construct an effort index 

as a summary measure of effort.  

Punctuality 

One potentially important indicator of effort is punctuality. On average, job trainees 

arrived 21 minutes prior to the beginning of the training start time. Approximately 16 
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percent arrived late on the first day, 11 percent on the second, and only five percent on 

the final day (results not shown).  Evidently, job trainees realized that their punctuality 

was being recorded and altered their behavior over time.
38

  

  To measure punctuality, I use three measures: ever late, always late, and average 

minutes early/late across the three training days. Table 1.5 shows that individuals 

assigned to the 100 percent treatment group are 9.3 percentage points more likely to ever 

arrive late and 6.3 percentage points more likely to be always late compared to those 

assigned no outside option. These difference are large in magnitude but are not 

statistically significant (p=0.34; p=0.271). Probit results are broadly consistent. 

Table 1.5 Column 3 presents average minutes arrived early or late. I do not observe 

statistically significant differences in arrival times. To explore this further, I use 

Kolmogorov-Smirnov distribution tests of equality. I cannot reject at any reasonable level 

of significance that the distributions of arrival times on each day comparing any two 

treatment groups are the same (Appendix Table B.2). 

Time use 

A second dimension is self-reported effort. As part of the daily follow-up 

questionnaires, individuals report activities in a time use module. I focus on two key 

categories: time spent studying training materials and leisure time spent listening to the 

radio or watching television. I construct a measure of the average number of hours spent 

on each of these activities per training day. 

Table 1.5 Column 4 presents the mean number of hours spent studying the training 

materials for each treatment group. Those with the guarantee of employment report 

                                                           
38 An alternative explanation is that individuals learned across time how long it would take them to get to the venue as 

most relied on public transportation that can be very unreliable. 
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spending the least amount of time studying the training materials, as much as 25 minutes 

less per day than those who received no chance of alternative employment.
39

 Moreover, 

Table 1.5 Column 5 indicates that individuals in the 100 percent chance treatment group 

spent 53 more minutes watching television or listening to the radio than those assigned no 

outside option. These results suggest individuals are substituting time spent studying the 

training materials for leisure time.  

Effort index 

I create an effort index similar to the performance index. As with the performance 

index, this index is the mean of the normalized value of the average minutes arrived early 

or late; number of hours spent studying the training materials; and number of hours spent 

watching television and listening to the radio (Kling, Liebman and Katz, 2007). The 

results are presented in Table 1.5 Column 6. I find that those assigned no outside option 

exert 0.587 standard deviations more effort compared to those assigned a guaranteed 

outside option. Figure 1.5 presents the distribution of this index for the no outside option 

(T0) and the employment guarantee (T100) groups. This figure shows that the effort 

distribution for those guaranteed outside employment is shifted to the left. The p-value 

associated with a Kolmogorov-Smirnov distribution test of equality is 0.005.  

 In sum, I find that individuals assigned high outside options exert lower levels of 

effort whereas those assigned poor outside options exhibit higher effort. Therefore, the 

poorer performance among those with poor outside options is not driven by lower effort. 

These results taken together are interesting, and in the Section 1.5.4, I outline potential 

mechanisms that may be driving these results.  

                                                           
39 (1.179 – 0.750)*60 
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1.5.3 Robustness  

There are a number of specification checks that can be conducted to test the 

robustness these findings about the effect of employment risk on performance and effort. 

First, I discuss additional checks related to covariate imbalance across treatment status. 

Second, I attempt to address issues of missing data and differential survey response.  

Covariate imbalance specification checks 

Although treatment was randomly assigned and covariates appear to be balanced 

at baseline, given the relatively small sample there may still be persistent concerns 

regarding omitted variable bias. Adding covariates does not substantively alter the results 

further suggesting that imbalance is not a serious concern (Appendix Tables B.4 and 

B.5). However, as more formal specification check, I construct a ratio that measures the 

extent to which selection on unobservables would need to exceed selection on 

observables to explain away the coefficient (Altonji et al., 2005; Bellows and Miguel, 

2008). A larger ratio implies that the relative omitted variable bias from unobservables 

relative to observables is greater, and therefore estimated effects are less likely to be 

explained away. 
 
Appendix Table B.5 presents the ratios for each of the performance and 

effort indicators for which significant differences between those assigned no outside 

option and those guaranteed an outside option exist. 

For the case of this key performance result, the required ratio is 68, which means 

that the selection on unobservables would have to be 68 times greater than selection 

based on observables controlled for. For engagement indicators, the ratios are negative 

which suggests that the omitted variable bias results in an underestimate of the treatment 

effect rather than an overestimate. Similarly, the effort indicators suggest that selection 
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on unobservables would have to be much larger than the selection based on observables, 

by ratios ranging from 7 to 9.7. 

Missing administrative data and differential non-response in survey data  

Though they come from administrative data, there are missing values for some of 

the performance and engagement indicators. For example, a subset of test score 

observations are missing (5.2 percent). These data are missing for various reasons 

including misplaced test papers; illegible or incorrect employment IDs on submitted tests; 

and partial training attendance that resulted in some individuals not taking all tests.
40, 41

 

Given that the participation rates in training are not differential across treatment groups, 

we would not expect the missing data to affect the results. A distinct missing data 

concern, as noted in Section 1.3.1 and presented in Table 1.1 Panel B, is the differential 

survey data completion rates. Differential completion rates by treatment group may bias 

the observed results where survey data were used. Conducting robustness checks in this 

case is particularly important.  

I use the same strategies to address the concerns arising from both missing 

administrative data and differential non-response in the survey data. First, I present 

weighted results (Fitzgerald, Gottschalk and Moffitt, 1998). To do this, I first predict the 

probability of non-completion. Using these predicted probabilities, I construct propensity 

score weights for each individual. I then rerun the regressions using these weights. 

                                                           
40 Recall that participation rates were not 100 percent across all training days (Table 1.1). 

41 One potential behavioral response in this setting is that job trainees assigned poor outside options reduced their 

participation in training, instead opting to increase external job search effort. Recall that individuals were paid for 

participation during the training, at a wage that is relatively competitive in this environment. While there is some 

evidence supporting lower attendance of individuals in the 0 percent treatment group relative to the 100 percent 

treatment group, the difference is neither large (4 percentage points) nor statistically significant (although the p-value is 

0.147). Job search among those who attended training would have been difficult. Participants spent approximately 8 

hours per day in training, and report another 1.6 hours in transit, and 6.8 hours sleeping (on average). Moreover, the job 

training period was conducted over a relatively short time frame, and delaying job search by three days would not be 

seen to be costly. 
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Second, I present conservative bounded results in which I implement min-max bounds 

(Horowitz and Manski, 1998). I impute the maximum test score for all treatment groups 

except for the 100 percent treatment group, for which I impute the minimum test score. In 

a second regression, I impute the minimum test score for all treatment groups except the 

100 percent treatment group, for which I impute the maximum test score. Lastly, I restrict 

the sample to the 0 and 100 percent treatment groups and estimate Lee (2009) bounds on 

the average treatment effect of the 100 percent group relative to the 0 percent treatment 

group. As discussed below, these robustness checks suggest that missing data do not pose 

serious concerns for interpreting results for the performance and effort indicators. 

Performance indicators: Appendix Table B.6 presents these results. Columns 1, 

4, 7, and 10 present the weighted regressions. Columns 2, 5, 8, and 11 present 

conservative minimum bounds, and Columns 3, 6, 9, and 12 present conservative 

maximum bounds. Appendix Table B.7 Panel A presents the Lee bounds.  

Overall, my three specification checks have similar findings to the main results 

for test scores.  Point estimates from weighted results for test scores are very similar to 

the main results. Using the conservative min-max bounds, the differential testing 

performance between individuals receiving a 0 and a 100 percent chance of an alternative 

job is no longer statistically significant. However, the differential effect remains positive, 

albeit considerably smaller (Appendix Table B.6, Column 2). The Lee bounds for the 

average test performance results are presented in Table 1.8. In this case, I restrict the 

analysis to only the 0 and 100 percent treatment groups and estimate a lower bound of the 

performance improvement of the T100 group (compared to the T0 group) at 0.346 

standard deviations and the upper bound at 0.492 standard deviations. 
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The results for engagement indicators are similarly robust.   As for performance, 

the weighted results for engagement indicators are similar to the main results. Using the 

conservative bounding approach does not affect the direction of the coefficients, although 

the magnitude of the differences is muted. In addition, for the number of good 

contributions, the difference between T0 and T100 is no longer statistically significant at 

the 10 percent level (p=0.249). The Lee bounds for the key engagement variable, the 

number of good contributions, comparing the 0 and 100 percent treatment groups are 

0.413 and 0.509. 

 Effort indicators: Appendix Table B.8 presents the robustness checks for the 

effort indicators. Columns 1, 4, and, 7 present the weighted regressions. Columns 2, 5, 

and 8 present minimum bounds, and Columns 3, 6, and 9 present maximum bounds. Lee 

bounds are presented in Appendix Table B.7. In all cases, including the time use 

indicators, the results discussed are robust to these rigorous specification checks. Even 

using the most conservative bounds for the time use results, the difference between the 

amount of time spent by T0 and T100 remains quantitatively large and statistically 

significant at the five percent level. Those assigned the job guarantee (T100) spend 19 

minutes less studying the training materials, and 41 minutes more watching television or 

listening to the radio relative to those assigned no outside option. Particularly important 

in the case of the time use data, the Lee bounds show that those assigned a guaranteed 

outside option study the training materials less and watch more television. The upper and 

lower bounds are statistically significant and consistently show large differences between 

those assigned the job guarantee (T100) and those assigned no additional probability of 

outside employment (T0). 
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In sum, the results are generally robust to a number of alternative specifications 

and bounding exercises. I consistently find that performance is highest among those with 

guaranteed outside options and lowest among those assigned no outside option. However, 

effort is highest among those assigned no outside option and lowest among those with the 

guaranteed outside options.   

1.5.4 Potential Mechanisms 

The results presented thus far examine the reduced form impact of employment 

risk on trainees’ performance and effort during the recruitment process. Contrary to the 

predictions of a standard economic model where performance is a decreasing function of 

the value of the outside option, here performance is highest among those with the best 

outside option (those facing no employment risk) and it is not driven by effort. In this 

section, I explore the alternative mechanisms that are potentially driving these results.  

Essentially, the variation in outside options generated by the experiment changes 

the incentive to perform. Absent the outside options, performance is rewarded with 

employment for individuals who reach the threshold. Standard economic theory predicts 

that reducing the incentive to perform (by offering the outside options) should lead to 

decreased effort. Economic models typically assume that performance is monotonically 

increasing in effort, so reducing the incentive to perform should also reduce performance. 

Prendergast (1999) reviews the literature, which largely finds that incentives have the 

intended effect on the incentivized outcome, particularly in the case of simple tasks. This 

review touches on some cases in which incentives fail to lead to the intended outcome, 

and Kamenica (2012) reviews the more recent literature focusing on the empirical 

evidence in which incentives have anomalous effects. A number of behavioral theories 
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have been put forth to explain these anomalous incentive effects. In this section, I discuss 

behavioral theories relevant to my findings and try to rule out some of the competing 

explanations that might be driving my results.    

1.5.4.1 Incentives and stress: potential for choking under pressure 

In addition to reducing the incentive to perform by increasing the value of the 

outside option, reduced employment risk is also likely to make the recruitment process 

less stressful to job seekers. The combination of reduced incentives and reduced stress 

leads to ambiguous predictions for performance when outside options improve. 

Incentive effect  

Intuitively, an improvement in an individual’s outside option reduces the marginal 

benefit of any particular employment opportunity. Therefore, the optimal level of effort 

should decline as outside options improve, assuming that the cost of effort is not zero. If 

performance is increasing in effort, then as outside options improve, performance will 

decline.  

In the recruitment setting I study, assume that p is the probability of being hired in 

the current recruitment process, and w is the wage associated with the recruiter’s job. The 

probability of being hired is assumed to be a positive and monotonically increasing 

function of performance (a realistic assumption for this recruiter’s hiring process); it 

follows that performance and employment are also positive and monotonically increasing 

functions of effort. Also, 1-p is the probability of not being successful in the recruitment 

process, and  b is the expected value of the individual’s outside option (i.e. his probability 

of outside employment multiplied by the expected wage of outside employment). Finally, 

assume that effort is costly. Therefore an individual selects effort level e* to maximize: 
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          (   )   ( ) 

subject to: 

   ( )   ( )           ( )    

 ( )      ( )           ( )    

As expected, performance and employment are both rising in effort, while effort 

is declining in the job seeker’s outside option. 

Stress effect 

 A second key channel through which employment risk may affect performance is 

through its impact on stress. Extensive literatures in both psychology and public health 

show that unemployment is stressful, as is perceived job insecurity (Feather, 1990; de 

Witte 1999, 2005; Burgard et al., 2009). Therefore, it is reasonable to assume that stress 

is a decreasing function of an individual’s outside options, i.e. s= s(b), and     . 

Therefore, reducing the risk of unemployment should reduce stress.  

The Yerkes-Dodson law (1908) maps the relationship between stress and 

performance, and performance has been shown to be inverse u-shaped in stress. As stress 

increases, performance improves up to a bliss point beyond which performance declines 

as stress continues to increase (Figure 1.6.a). Incorporating this prediction means that 

performance is a function of not only effort but also stress, i.e. p = f(e,s). Also,      varies 

by s.  

 As outside options improve (b increases), stress (s) should decline, but the impact 

on performance is ambiguous. Therefore, the stress effect induced by reduced risk should 

either always be positive or negative; or else it should first increase and the decrease 

across the risk distribution depending on the underlying values of s.  
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Resulting predictions combining incentive and stress effects  

Because risk affects performance through both the incentive and stress channels, the 

predicted relationship between risk and performance is ambiguous. The sign of the net 

effect of employment risk on performance depends on the relative size of the incentive 

and stress effects, and on whether the level of risk puts the individual in the increasing or 

decreasing portion of the Yerkes-Dodson curve. Effort is unambiguously decreasing as 

the value of the outside option increases. Thus, there are three possibilities when 

employment risk declines: 

 Performance and effort decline: 

If the stress effect leads to a performance decline, then the stress and incentive 

effects work in the same direction and effort and performance should decline. 

Alternatively, if the stress effect leads to a performance improvement but this is 

smaller in magnitude than the negative incentive effect on effort, then effort and 

performance will both decline. 

 No change to performance, but effort declines:  

If the stress effect leads to a performance improvement that exactly offsets the 

negative incentive effect on effort, then we will observe no net effect of 

employment risk on performance, for a lower level of effort. 

 Improved performance, but effort declines: 

If the stress effect leads to a performance improvement that exceeds the 

magnitude of the incentive effect’s reduction in effort, then we will observe effort 

declining and performance improving.  

The results from my experiment fall into the third case:  I find performance 

improving and effort declining as outside options improve.  The remaining challenge is to 
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determine whether improved performance does, indeed, operate through the stress effect 

or whether some other mechanism is responsible for the change in performance.  We are 

interested in explaining the mechanism behind the performance result, and the findings 

about effort can help distinguish between different possible mechanisms though not 

provide a conclusive test. The effort results are consistent with the presented stress 

mechanism but will also help to disentangle other potential mechanisms. 

  Ideally, to determine whether the stress effect really is the driver of the observed 

performance effects, biomarker data collection (e.g. cortisol) would have been optimal. 

Unfortunately, due to budgetary and logistical restrictions, this was not possible. 

However, in a pilot that I conducted in a similar setting, I collect four heart rate readings, 

at the same time of day on four different days.  Two of these were taken on training days 

that occurred before job probabilities had been announced and the other two were taken 

on training days after the announcement.  The repeated measurement is an attempt to 

reduce measurement error associated with collecting heart rates.  I compare the average 

of the post-announcement heart rates to the average of the pre-announcement heart rates 

for individuals assigned job guarantees compared to those given very low chances of 

outside job options.  Individuals assigned a guaranteed outside option experienced a 6.4 

point greater decline in their heart rate (se=3.25) compared to those assigned a 1 percent 

outside option (in the pilot, the “no outside option” did not exist). This provides further 

support of a reduction in stress driven by the assigned job guarantee.  

While biomarker data collection would yield insight into the presence of a biological 

stress response, it would not address outstanding questions regarding how stress acts to 

inhibit performance. Psychological research has identified many factors that contribute to 
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sub-optimal performance, including the mere presence of an audience, public speaking, 

and public announcements about performance (Baumeister and Showers 1986; and 

Beilock, 2010). The psychological literature moves beyond identifying factors that affect 

performance in this way and examines precise mechanisms related to how effects on 

working memory lead to sub-optimal performance. In my setting, it could be that job 

seekers assigned the low outside option over-think their performance such that paying too 

much attention actually becomes counterproductive (Beilock et al, 2002). Another 

possibility is that individuals assigned no outside option experience an increase in 

distracting thoughts and worries related to their likely continued unemployment, which 

prevents them from focusing on the important information (Hayes, Hirsh and Matthews, 

2008). This study is not designed to determine the precise mechanism through which the 

stress may operate to impair performance.  

While my results are consistent with the theory that a reduction in stress leads to 

increased performance, there are a number of alternative behavioral theories that might 

explain the performance results.  Not all of these alternatives speak to my findings on 

effort. These possibilities include gift exchange; stereotype-threat; the nutritional 

efficiency-wage hypothesis; and alternative psychological considerations. I discuss each 

of these in turn.  

1.5.4.2 Gift exchange 

A model of reciprocity provides one alternative explanation. The gift exchange 

hypothesis presented in seminal work by Akerlof (1982) and built upon by Akerlof and 

Yellen (1988 and 1990) relies on the key assumption that there is a positive relationship 

between wages and worker effort. This relationship explains higher than market-rate 
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clearing prices, wherein workers reciprocate higher wages with more effort. There is 

substantive lab experimental evidence in support of the gift exchange model. Fehr, 

Kirchsteiger and Riedl (1993) provide some of the first evidence, and Fehr and Gaechter 

(2000) provide a survey of the reciprocity literature more generally. Recently, Gneezy 

and List (2006) tested the gift exchange model in the field and find only short term 

evidence in support the gift exchange model. They find that offering workers higher 

wages led to increased effort only in the first couple of hours, after which positive 

reciprocity was not observed. 

In my setting, job trainees may feel rewarded by the recruiter when allocated a 

high outside option and may reciprocate by exerting more effort that, in turn, increases 

performance. However, although a gift exchange hypothesis yields similar performance 

predictions, in order for gift exchange to be the key driving mechanism, effort indicators 

should increase as outside options increase. I find the opposite results for effort 

indicators. Therefore, the higher observed performance among those assigned high 

outside options cannot be explained by the gift exchange mechanism. 

1.5.4.3 Efficiency wage hypothesis 

 Another framework that would yield similar predictions for the performance 

results is the efficiency wage hypothesis. This hypothesis has been extensively researched 

(Liebenstien, 1957 and 1958; Stiglitz, 1976; Deolalikar, 1988). Improved nutritional 

intake improves both physical and mental well-being, which translates into increased 

productivity.  

 In the experimental setting, individuals who were guaranteed an alternative job 

may have been able to borrow against this guarantee and improve their nutritional intake. 
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The results in this paper may be attributable to better nutrition over this short period. 

While a comprehensive caloric intake daily roster was not administered, I did collect 

information on daily expenditures on food. This includes expenses on food consumed at 

home and away from home. Table 1.6 Columns 1 and 2 present these results. I find that 

food expenditures are relatively consistent across the treatment groups. I do not observe 

statistically significant differences in expenditures between the 0 percent and 100 percent 

treatment groups. When accounting for the differential survey non-response (Appendix 

Tables B.10) using weighted and conservative bounds, I still cannot reject that the 0 

percent and 100 percent treatment groups spent equal amounts on food.
42

  

Given these findings, it is unlikely that nutritional intake change is the key driver 

for the results observed.   

1.5.4.4 Stereotype threat 

The final potential explanation I consider has its origins in psychology. Steele 

(1997) defines stereotype threat as “the event of a negative stereotype about a group to 

which one belongs becoming self-relevant, usually as a plausible interpretation for 

something one is doing, for an experience one is having, or for a situation one is in, that 

has relevance to one's self-definition.” A substantive literature addresses stereotype threat 

and test performance (Spencer et al., 1997, Maas and Cadinu, 2003; Inzlicht and Ben 

Zeev, 2000; Steele and Aronson, 1995).  

In my setting, job trainees may perceive their outside option as a signal of their 

ability. Although assignment does not reveal information regarding an individual’s ability 

or performance relative to the other participants, job trainees may still believe that 

                                                           
42 There is one exception. However, the exception suggests that those assigned no outside option spend more on food as 

compared to those assigned the employment guarantee. This exception also works against the possibility that the 

observed results are driven by increased nutritional intake.  
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assignment is correlated with their ability.
43

 In this case, performance of individuals 

could be driven by self-fulfilling perceptions of their own ability. This hypothesis 

predicts that individuals assigned low outside options are likely to perform worse, 

consistent with my findings.  

To test whether this is the mechanism driving the performance results, I examine 

the extent to which job trainees updated their beliefs about getting the recruiter’s job by 

treatment status. Respondents were asked “What percentage chance do you think you 

have of getting one of the available positions for the recruiter’s project?” with the 

following options: No chance of getting a job; Less than 25 percent; Between 25 and 50 

percent; 50 percent; Between 50 and 75 percent; Between 75 and 99 percent; and Certain 

about employment with recruiter. To create a measure of the likelihood of employment, I 

assign the mid-point to categories that are brackets to construct a continuous variable. For 

this outcome, I do not observe statistically significant differences among most groups, 

except for those in the 75 percent treatment group, who do report significantly higher 

expectations about their chances of getting a recruiter’s job compared to all other groups 

including the guaranteed outside option group (Table 1.6, Column 4).  

I also examine how the distribution of perceptions among the different treatment 

groups compares across time. Using Kolmogorov-Smirnov distribution tests of equality, I 

find that the distribution of perceptions using this measure are not different when 

comparing those assigned no outside option and those assigned a guaranteed outside 

option. In fact, with the exception of the distribution of the 50 percent probability group, 

none of the pairwise distribution comparisons between the various treatment groups are 

                                                           
43 From open-ended questions on the survey, it is evident that respondents understood that the assignment of the outside 

options was not correlated with ability. For example, “The probability criteria are dependent on the chance and not 

merit of a person in terms of experience and qualification.”; or “It is about chances.”; or “Simply it’s about luck”. 
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statistically significant. Given the large number of pairwise comparisons, caution should 

be exercised in interpreting this result.  

These results do not, however, suggest that individuals were not updating their 

beliefs as they underwent the recruitment process, just that individuals did not update 

their beliefs differentially by treatment status. 

However, again the starkest key performance differential is observed between 

individuals in the 0 percent treatment group and those in the 100 percent treatment group, 

and this does not seem to be driven by stereotype threat, as there are not large differences 

in these two groups’ perceptions of their chance of being of being hired for the recruiter’s 

job. 

Neither gift exchange mechanisms, nor efficiency wages, nor stereotype threat 

can explain the full pattern of my results.  Instead, it seems that the most plausible 

mechanism driving the performance and effort results is a framework in which the varied 

outside options reduce effort, and simultaneously reduce stress, enabling a higher return 

to effort.  

1.5.5 Welfare Implications: Employment  

It is important to assess the welfare implications of the observed performance 

response to employment risk. To do this, I examine employment outcomes.
44

 As 

discussed in Appendix A, while the performance indicators do a relatively good job of 

                                                           
44 There are a number of on-the-job performance measures that can be constructed, i.e. performance on-the-job when 

successfully hired and working for the recruiter. On-the-job performance was not measured during the alternative jobs, 

however the long term impacts of being assigned an alternative job on future employment and wages are presented in 

Godlonton (2013). Recall that job trainees were hired as interviewers for a health survey. Therefore, to measure on-the-

job performance, one can use survey data from the health survey. For example, one can measure the number of skip 

rules incorrectly followed and the number of inconsistencies by interviewer. For these indicators, there is little 

difference by treatment group. A summary measure of performance is whether the recruiter offers an individual a 

renewed short term employment contract. The recruiter had three waves of contract renewals. In general, the likelihood 

that individuals in the 75 and 100 percent groups are hired in each subsequent round is about twice the employment 

rates of the other groups. Differences are often not statistically significant due to limited power.     
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predicting performance, there is still a large unobserved component determining 

employment outcomes.  

 Figure 1.7 depicts the share of job trainees hired by the recruiter by treatment 

group. About 25 percent of trainees in the 75 and 100 percent groups were offered 

employment by the recruiter.
45

 Thirteen percent of individuals who received no chance of 

an alternative job were hired by the recruiter. Those individuals who received a 50 

percent chance of an alternative job were the least likely of all treatment groups to be 

hired by the recruiter – only 11 percent of these participants were hired by the recruiter, 

making them half as likely to be hired relative to those who knew they had high chances 

of alternative employment.  

Table 1.7 Panel A presents the OLS results for employment as depicted in Figure 

1.7. Table 1.7 Panel B presents the probit results. The marginal effects reported are the 

partial derivatives evaluated at the mean of the covariates. Given the performance 

indicator results, it seems reasonable to use the 100 percent treatment group as the 

omitted category. The results are similar in the full sample as compared to a restricted 

sample that consists only of trainees who attended training every day. Individuals in the 

0, 5, and 50 percent chance of alternative work treatment groups are less likely to be 

employed by the recruiter by between nine and 11 percentage points. These impacts are 

statistically significant and are large in magnitude, as they translate to a 50 percent lower 

chance of being hired than those in the 100 percent treatment group.  

Two other results are worth noting. First, individuals assigned to the 75 percent 

treatment group are no less likely than those in the 100 percent group to be hired by the 

                                                           
45 Note that only one participant who was offered a position by the recruiter opted not to take the job. As such the offer 

of a job and the record of who got hired are approximately the same. 
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recruiter. Recall that, on average, this group did not perform well on the written tests, but 

there is considerable heterogeneity in their performance both by mental health status and 

ability (see Section 1.5.6). Second, there is suggestive evidence that the individuals in the 

1 percent treatment group are more likely to be recruited than those in the 0 percent 

treatment group. Although there is insufficient power in the current sample to determine 

this, it is interesting to note that a small change potentially has large impacts.  

1.5.5.1 Potential confounders for employment results 

One threat to the interpretation of the employment results is the potential of 

strategic behavior by the recruiter in his hiring decisions in response to treatment 

assignments. However, the recruitment team had no knowledge of the specific alternative 

job probability assigned to each participant. The only way the recruitment staff would 

know of a trainee’s alternative job probability is if that participant directly informed a 

recruiter. Anecdotally there are no reports of this occurring.  Even if it did, one would 

expect that it would bias the results in favor of higher employment rates for those 

assigned lower alternative job probabilities. Given that I observe lower employment rates 

in this group, if such strategic behavior had been present, my results are a downward 

biased estimate.  

Another concern is that, assuming that the recruiter did learn of a trainee’s 

alternative job probability, he may have (incorrectly) inferred that a high probability of an 

alternative job implied something about the ability of the trainee. The recruiter has 

implemented randomized controlled trials for a number of years within Malawi and 

understands the concept of random assignment. Moreover, the recruiter provided the 

ability scores in order that random assignment of treatments was stratified across 
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baseline. As such, strategic behavior from the recruiter’s perspective based on the random 

assignment is unlikely whether or not the trainees tried to lobby in any particular way. 

1.5.6 Heterogeneity of Performance and Employment Differences 

Thus far, we have established that reduced employment uncertainty improves 

welfare by increasing the chance of being hired, which is unsurprising given that reduced 

uncertainty also leads to higher performance.  I turn now to examining heterogeneous 

responses to employment risk.  Understanding the heterogeneity in the effect of 

uncertainty on performance and employment may have important policy considerations 

or distributional implications.  

Heterogeneity may arise for a number of reasons. Job seekers likely face different 

cost of effort functions. For example, the cost of effort may be dependent on ability, 

resulting in differential effort responses to reductions in risk.   

Also, research in psychology finds that individuals differ in their responses to 

stress (Hobfoll, 2004). Specifically, there is likely to be heterogeneity in the stress effect 

induced by the reduction in employment risk for two different reasons. First, there is 

variation in baseline stress, and previous literature shows that the response to stress is 

non-linear. For example, compare individuals at     and        on the Yerkes-Dodson curve 

illustrated in Figure 1.6.a. A reduction in stress of amount s results in differential changes 

in performance for these individuals. Second, even among individuals with the same 

baseline stress level, extensive research shows that individuals differ in their ability to 

cope with stress (Ditzen et al., 2008; Fiocco, Joober and Lupien, 2007). Therefore, the 

same change in employment risk may yield differential stress reductions across 

individuals. For example, consider two different individuals at     in Figure 1.6.b. For 
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one individual, the employment guarantee may reduce stress by s. For a second 

individual, it may reduce stress by   , resulting in different implications for performance.  

Clearly, there are multiple sources of potential heterogeneity. While I cannot, in 

this setting, separately measure the extent to which there is heterogeneity in the stress and 

the incentive effects, I can show how the reduced form relationship between employment 

risk, performance, and employment differs for different types of job seekers. I focus on 

how performance and employment differ by baseline mental health status and ability. It is 

important to highlight that my power to detect differences is limited and results should be 

interpreted with caution. I first adopt a simple approach by classifying individuals as 

exhibiting high/low mental health and, separately, high/low baseline ability. I then plot 

the average performance and employment by treatment group for these groups. Then I 

present regression results from the following regression:  

                                                                  

                                                                   

       
               (3) 

where: all treatment dummy indicators are interacted with a job seeker attribute (Het). In 

one set of results, the Het variable is a measure of baseline mental health. I present 

specifications using a binary measure of good mental health as well as a standardized 

continuous mental health score.  Similarly, in the second set of results, Het measures 

baseline ability using either an indicator of high ability or a standardized measure of 

baseline ability. This approach assumes that any risk-performance differences are linear 

in ability or mental health. To explore whether this is a problematic assumption, I present 

non-parametric regressions of the difference between individuals assigned a guaranteed 
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outside option and no outside option across the mental health and baseline ability 

distribution. The assumption seems reasonable for the mental health results but not for 

the ability results. To allow more flexibility for the risk-performance relationship to vary 

across ability, I split the sample into three ability groups – low ability, medium ability, 

and high ability and present the treatment group averages for each group.  

Mental health  

I examine variation by baseline mental health status as there is extensive research 

showing that long term and short term stressors have different impacts and interact in 

important ways. Individuals with better mental health are better able to cope when faced 

with employment uncertainty and, in this case, may incur a smaller benefit from the stress 

reduction of the employment guarantee. However, given that mental health and stress are 

highly correlated, individuals with better mental health may exhibit lower baseline stress 

levels and therefore may benefit more from the stress reduction due to the concavity of 

the Yerkes-Dodson curve. Therefore, it is ambiguous how effects may differ across 

groups that differ by mental health status.  

To measure mental health status, I use the SF-36 instrument that maps into eight 

health indicators. Four pertain to mental health and can be used to construct a composite 

mental health summary measure; four pertain to physical health (Ware and Sherborne, 

1992; Ware, Kosinski, and Keller, 1994 and 1995). This instrument has been widely used 

worldwide and validated in other African countries (Wagner et al. 1999; Wyss et al. 

1999). Because the mental health composite measure has been shown to predict mental 

health problems as well as or better than the individual mental health indices (Ware et al., 

1995), I use the composite index. The mental health index takes on values from zero to 
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100 where a higher number represents better mental health. In the sample, I observe a 

range of 39 to 81. I also construct a binary indicator of “good” mental health, which is 

equal to one if the individual scores above the mean mental health score in the sample.  

Figure 1.8 presents a bar graph of the average performance by mental health type 

(good or poor) and treatment group. First, on average, individuals exhibiting poorer 

mental health perform worse than those with better mental health, regardless of their 

assigned outside option.
46

 Second, among those who exhibit good mental health, 

performance increases in the probability of the outside option.  However, for those with 

poorer mental health status, the relationship between performance and risk is non-

monotonic.  

Table 1.8 presents regression results controlling for covariates and shows that the 

gap between the performance of individuals with better mental health (compared to those 

with poorer mental health) is weakly larger when assigned the guaranteed outside option 

compared to no outside option. To illustrate this, consider the following test:       

       . The p-value associated with this test is 0.099. However, this result is not 

robust to using a binary indicator of “good” mental health (p=0.377). 

Figure 1.9 presents the fan regression of the difference between the performance 

among those assigned a guaranteed outside option and those assigned no outside option, 

across the mental health distribution. This graph is trimmed to achieve common support 

on either end of the mental health distribution among the two treatment conditions. 

However, this graph merely serves to illustrate that there do not seem to be significant 

                                                           
46 This relationship is not driven by correlation between ability and mental health. Although Figure 1.8 does not control 

for any covariates, Table 1.8 does, and this relationship persists.  
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differences in the performance differential when eliminating risk across the mental health 

distribution. Therefore, the imposed linearity in Table 1.6 seems appropriate.  

While test performance was the most important predictor of employment, it is 

useful to examine heterogeneity in employment outcomes by mental health status. Figure 

1.10 presents the average employment rate by mental health type and treatment group. 

Across most of the treatment conditions, the differences by mental health status in the 

fraction employed are mostly small and statistically insignificant. Only in the case of the 

group assigned the 75 percent chance of outside employment do we observe marginally 

significant (although quantitatively large) differences. In sum, although there appear to be 

large differences in test scores by mental health status, these do not translate into 

differential employment outcomes in this sample. It is beyond the scope of the current 

experiment to determine how individuals with lower mental health are able to 

compensate for their poor test performances and achieve equal probability of 

employment by the recruiter, but this is an important avenue for future research.  

Baseline Ability 

Next, I turn to examining heterogeneity by baseline ability. Given that I stratified 

treatment assignment by ability and prior work experience with this recruiter, these are 

two obvious dimensions to explore heterogeneity of the performance and employment 

impacts. My power to detect differences by familiarity with this specific recruiter is 

limited, since only 10 percent of the sample (26 individuals) had prior work experience 

with the recruiter. 
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Figure 1.11 presents the test results by ability type and treatment group 

graphically.
47

 I find that among low ability types, reducing the risk of unemployment 

generally increases performance.  The extremely poor performance by those assigned a 

75 percent chance of an alternative job is hard to explain and may simply be an artifact of 

the data. The relationship between risk and performance is non-linear among the high 

ability types.   

Table 1.8 presents the average performance by treatment group from the 

regressions, controlling for other covariates, and the results support the interpretation of 

the graphs. As with the mental health results, these specifications assume a linear 

relationship across the ability distribution. Unlike with the mental health results, the fan 

regression (Figure 1.12) plotting the difference in performance for those assigned the 

guarantee versus no outside option across the ability distribution suggests that this linear 

assumption is not consistent with the data. This figure suggests that the largest 

differences are incurred by the job seekers in the middle of the ability distribution. I 

therefore split the sample into three groups – low ability, medium, and high ability – and 

present the performance and employment differences for these three types.  

Figure 1.13 presents the average performance by ability type using these three 

categories. I find the increasing trend in performance for the high and low ability types 

(with the exception of the 75 percent treatment group for the low ability types). I also 

find that the relationship is non-linear for those in the middle of the ability distribution.  

Figure 1.14 presents the average employment outcomes using this three ability 

type classification. Here we observe large differences in employment across the different 

                                                           
47

 For the purposes of examining stress or choking under pressure, this selection test is not a good measure of ability as 

it too was a high stakes test, and individuals prone to choking under pressure may have performed sub-optimally on this 

test.  
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treatment groups. High ability types are the most likely to be hired, and their employment 

rates are least affected by the varied employment risk. The risk appears to affect 

individuals in the middle of the distribution most dramatically: this group benefits the 

most from the eliminated employment risk (the guaranteed outside option). While 

reduced risk also benefits low ability types, those differences are marginal.  

These results suggest that individuals at either end of the distribution are the least 

affected by changing employment risk, in terms of employment losses, and individuals in 

the middle of the ability distribution are the most susceptible to such risk.  

1.6 Conclusion  

I find that job seeker performance during recruitment is highest and effort is lowest 

among those assigned the best outside employment options, while the converse is true for those 

assigned the worst outside options. The latter group of job trainees both perform better on tests of 

materials taught during training and are more actively engaged in the recruitment process. 

However, these improvements are not driven by changes in effort, and are not linear in the 

probability of outside employment.  

These findings are consistent with prior laboratory evidence (Ariely et al. 2009) that 

observed lower performance under high stake incentives. However, I observe this relationship in 

a real environment where the risk I study is real. The variation in risk in laboratory studies is 

artificial and over windfall income, but in my setting, the variation is over risk in securing real, 

meaningful employment equivalent to that for which subjects have chosen to apply through a 

competitive and arduous process. To my knowledge, no evidence in real-world settings has 

illustrated the link between risk, performance, and effort, and I provide the first evidence that 

previous findings do extend beyond the laboratory into real-world labor markets, something noted 

as an open question as recently as Kamenica (2012). There are many possible extensions to this 
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research now that I have moved it to a real-world setting. My results examine performance during 

recruitment; how performance may be affected on-the-job is an important and interesting avenue 

for further research. Also, my results are obtained in a context in which cognitive performance is 

important. Whether such results will be observed in manual rural labor markets is also interesting, 

both theoretically, as it pertains to the mechanism through which uncertainty affects performance, 

and practically because of its policy relevance to the large fraction of adults in developing 

countries who do manual labor. 

My paper also contributes to conceptual questions about the relationship between risk and 

performance. My results suggest considerable non-linearities in the relationship between 

performance and risk, which deserve further attention. Because realized outcomes are binary, 

studies conducted using secondary data typically do not observe the full distribution of 

uncertainty between an event occurring with probability zero and it occurring for certain. My 

results suggest that conclusions about the relationship between risk and performance are sensitive 

to the range of risk observed. Moreover, the observed relationship between risk and performance 

also has implications for how to model behavior under uncertainty. Typically, when we consider 

risk in theoretical models, it is modeled as a parameter of the utility function. My results do not 

reject this approach, but they do imply that we should also consider risk in production functions. 

While the reduced-form effect of risk on performance is interesting in its own right and 

has real-world welfare implications, I also explore the mechanisms that might be driving the key 

results I observe. Using rich baseline and outcome data, I combine economic and psychological 

insights to explore potential mechanisms through which risk and uncertainty affect behavior. My 

findings suggest that the relationship between risk and performance is likely driven by a stress 

response. However, unlike laboratory evidence that directly measures stress using biomarkers 

such as cortisol (for example, Angelucci, et al. 2012), I was not able to measure hormonal stress 

in this manner. That said, my results do not seem to be driven by models of reciprocity, the 
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efficiency-wage hypothesis, or stereotype threat. I cannot rule out that some other psychological 

consideration that operates similarly to stress is driving the result. Moreover, I cannot determine 

the precise psychological mechanism through which stress operates, i.e. distraction or over-

thinking. Future research that more precisely measures stress would be a natural extension of this 

work.  

Finally, while my paper is most closely tied to the laboratory experiments about the effect 

of risk and stress on performance, my study also speaks to the growing literature about the effect 

of high-stakes testing. In my study, performance under high stakes (low probability of an outside 

job) is worse than performance under low stakes (high probability or guarantee of an outside job). 

There is a growing body of literature demonstrating heterogeneous responses to high stakes vs 

low stakes settings. For example, Ors et al (forthcoming) show large gender disparities in low 

stakes vs high stakes testing situations. In low stake testing environment females outperform 

males; however, the same females perform sub-optimally and, on average, worse than the males 

on a high stakes entrance exam to an elite university. I have limited power to detect differences 

by ability and mental health status. My results suggest that performance differences differ by 

mental health status, but these differences do not translate into differential employment outcomes. 

However, differences by ability are important for employment outcomes; in particular, 

individuals in the middle of the distribution are the most affected by the reduction in risk. 

Understanding which types of individuals are most susceptible to risk-related performance 

declines could have substantive policy implications for job training or recruiting processes and 

deserves further attention in future research. 
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Figure 1.1: Timeline of recruitment and research activities 

 

Note: Items in blue indicate research activities conducted for the purposes of this study. Items in black 

indicate standard recruitment activities performed by the recruiter. 

Figure 1.2: Distribution of numeracy, literacy and ability scores 

a: Distribution of numeracy scores     b: Distribution of literacy scores 
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c: Distribution of baseline ability score 

 

 

Figure 1.3: Average standardized test score by treatment group 

 

Note: This figure presents the estimated group means controlling for covariates and stratification cell fixed 

effects.  
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Figure 1.4: Performance Index Distribution 

 

 

Figure 1.5: Effort Index Distribution 
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Figure 1.6: Yerkes-Dodson (1908): Relationship between Stress and Performance 
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Figure 1.7: Fraction employed by recruiter by treatment group 

 

Note: The dotted line represents the fraction that would have been hired in the absence of the experiment.  

 

Figure 1.8: Average standardized test score by treatment group and mental health status 
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Figure 1.9: Fan regression of difference between guaranteed outside option and no 

outside option across the mental health distribution 

  

Figure 1.10: Average employment by recruiter by treatment group and mental health 

status 
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Figure 1.11: Average performance by treatment group and baseline ability  

 

Figure 1.12: Fan regression of difference between guaranteed outside option and no 

outside option across baseline ability distribution 
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Figure 1.13: Average standardized test score by treatment group and baseline ability 

 

 

Figure 1.14: Average employment by recruiter by treatment group and baseline ability 
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Panel A: Sample (pre-treatment): Treatment Assignment

All 0% 1% 5% 50% 75% 100%

N 278 55 56 56 56 28 27

% 0.198 0.201 0.201 0.201 0.101 0.097

N 268 53 56 52 54 28 25

% 0.198 0.209 0.194 0.201 0.104 0.093

Panel B: Training Participation and Survey Data Completion

0% Job Guarantee

1% Job Guarantee

5% Job Guarantee

50% Job Guarantee

75% Job Guarantee

100% Job Guarantee

Avw of dep variable

N

p-values of F-tests:

All (jointly equal)

0% and 1%

0% and 100%

1% and 100%

50% and 100%

75% and 100%

Notes:

The sample frame consists of 278 participants that were short-listed for training by the recruiter. 

0.055

0.049

0.865

[0.048]

0.870

[0.046]

0.221

0.893

[0.059]

0.960

0.786

0.888

268

Pre-treatment

0.079

268

0.031

0.220

1.000

Post-treatment

0.830

[0.052]

0.142

(4)

[0.040]

0.940

268

0.810

0.220

0.339

Table 1.1:  Sample and attrition

Sample frame 

(Intended)

Main Sample   

(Actual)

Survey Questionnaires

[0.030]

Baseline

(2)

0.981

[0.019]

0.946

[0.030]

At least once

(3)

0.906

[0.041]

0.964

Administrative Data

[0.025]

Every day

(1)

0.906

0.946

Every day

0.942

[0.033]

1.000

[0.000]

268

0.068

0.334

0.981

[0.019]

0.944

[0.032]

0.964

[0.035]

1.000

[0.000]

0.955

[0.000]

0.973

1.000

[0.000]

[0.040]

Panel A shows intended and actual assignment of the job probabilities. These distribtuion differ due to 10 

participants that opted out of the research study (prior to learning their treatment status) or opted out of the 

training prior to the commencement of training. The main sample used in this paper consists of 268 

Panel B presents average participation rates in training and survey data completion rates by treatment 

group.  A partial set of p-values from pair-wise comparisons of treatment group means are presented. All 

those that are not presented have p-values greater that 0.10.  The full set of results is available on request. 

0.936 .

0.319

0.080

.

0.315 0.346

0.021

0.1560.927

0.759

Attended training

0.964

[0.025]

0.923

[0.037]

0.944

[0.032]

0.964

[0.035]

0.960

[0.041]
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N 0% 1% 5% 50% 75% 100% F-stat
1

(1) (2) (3) (4) (5) (6) (7) (8)

Demographics:

Age 268 25.887 25.893 24.865 25.463 26.464 25.240 0.757

[-5.176] [-4.735] [-4.334] [-3.490] [-5.903] [-4.612]

Married 268 0.189 0.250 0.135 0.093 0.250 0.120 0.207

[-0.395] [-0.437] [-0.345] [-0.293] [-0.441] [-0.332]

# of children 250 0.388 0.431 0.277 0.132 0.560 0.200 0.154

[-0.909] [-0.922] [-0.743] [-0.520] [-1.083] [-0.577]

225 181.72 247.12 167.54 199.88 294.96 282.83 0.240

[-203.65] [-272.13] [-187.69] [-203.72] [-299.11] [-342.76]

Education, Ability and Experience:

Years of schooling 268 13.264 13.071 13.115 13.130 13.107 13.600 0.277

[-0.858] [-0.931] [-1.041] [-0.953] [-0.786] [-1.000]

Ability (standardized) 268 -0.075 -0.006 -0.020 0.034 0.116 0.010 0.978

[-0.960] [-1.021] [-0.989] [-1.063] [-0.992] [-1.013]

Ever worked 268 0.906 0.857 0.750 0.944 0.929 0.840 0.083

[-0.295] [-0.353] [-0.437] [-0.231] [-0.262] [-0.374]

Worked last month 252 0.600 0.647 0.638 0.577 0.536 0.792 0.357

[-0.495] [-0.483] [-0.486] [-0.499] [-0.508] [-0.415]

252 0.780 0.902 0.894 0.808 0.893 0.958 0.137

[-0.418] [-0.300] [-0.312] [-0.398] [-0.315] [-0.204]

252 2.820 2.922 2.468 2.538 2.429 3.083 0.759

[-2.371] [-2.226] [-2.155] [-2.313] [-2.116] [-2.225]

p-values associated with F-tests for joint significance of covariates
3

:

Compared to all other groups 0.175 0.395 0.400 0.060 0.146 0.223

Compared to 0% 0.006 0.397 0.098 0.210 0.014

Compared to 1% 0.782 0.009 0.559 0.147

Compared to 5% 0.468 0.405 0.772

Compared to 50% 0.078 0.025

Compared to 75% 0.004

Notes:

1
 These p-values correspond to the joint F-test of the means/proportions being equal across all treatment groups. 

Treatment Assignment

Any work in past 6 

months

Months worked   

(max. 6)

Income (in USD, 3 

months)

Table 1.2: Summary statistics and balancing tests

The table reports group means or proportions (where applicable, e.g. married). Standard deviations are reported in 

parentheses.  The main sample of 268 participants is used here. Data used here comes from both the baseline self-

administered questionnaire and administrative data collected by the recruiter. Income is measured in USD and includes all 

self-reported income from the last three months including the following explicit categories: Farming; Ganyu (piece-work); 

Formal employment; Own business; Remittances; Pension; and Other. The ability scores are a composite measure of 

literacy and numeracy scores and are presented in standardized units. See Figures 1.3a, 1.3b and 1.3c for the distribution of 

these scores. 

2 
This refers to the number of pairwise comparisons between treatment groups that are statistically significant at the 5 

percent level. A total of 15 comparisons are made for each variable.
3 

These F-statistics report the p-value from the joint F-test for whether all the covariates listed are jointly equal in 

predicting assignment to the treatment group.

Baseline 

Characteristics:
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(1) (2) (3)

0% Job Guarantee -0.176 -0.19 -0.177

[0.147] [0.142] [0.142]

1% Job Guarantee -0.015 -0.009 -0.005

[0.136] [0.126] [0.126]

5% Job Guarantee 0.041 0.066 0.04

[0.132] [0.113] [0.119]

50% Job Guarantee 0.041 0.039 0.031

[0.124] [0.119] [0.122]

75% Job Guarantee -0.039 -0.037 -0.028

[0.241] [0.209] [0.207]

0.259 0.261 0.261

[0.195] [0.200] [0.198]

Observations 258 258 258

R-squared 0.01 0.19 0.2

Stratification cell fixed effects? No Yes Yes

Includes controls? No No Yes

p-values of F-tests:

0% and 100% 0.076 0.069 0.073

Notes:

100% Job Guarantee

Average training test score

Table 1.3: Average performance on training tests by treatment group

This table presents mean performance on the recruiter adminstered training tests by treatment group. The average 

standardized test score is constructed by taking the average of the standardized test score from the three tests. 

Individual tests are standardized by using the sample mean and standard deviation for the relevant test. Treatment 

status was randomly allocated and stratified by ability quintile and prior work experience with the recruiter. The 

stratification cell fixed effects include a set of dummies for each stratification cell. The set of additional covariates 

include: a dummy variable for whether the individual has worked before, marital status, age,  and the individuals' 

standardized ability score. For covariates with missing observations the variable is assigned the mean value of the 

variable and an indicator variable is included for whether or not that particular variable is missing. Robust standard 

errors are presented. 
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Dependent Variable: Any # total # good # neutral # bad 

Performance 

Index

(1) (2) (3) (4) (5) (6)

0% Job Guarantee 0.649 1.503 0.528 0.612 0.363 -0.118

[0.071] [0.226] [0.099] [0.130] [0.108] [0.080]

1% Job Guarantee 0.608 1.574 0.795 0.585 0.195 -0.006

[0.067] [0.259] [0.134] [0.126] [0.090] [0.079]

5% Job Guarantee 0.723 1.604 0.690 0.705 0.209 0.043

[0.063] [0.220] [0.156] [0.129] [0.059] [0.081]

50% Job Guarantee 0.641 1.377 0.767 0.386 0.224 -0.060

[0.069] [0.212] [0.135] [0.095] [0.064] [0.069]

75% Job Guarantee 0.720 1.258 0.705 0.480 0.072 -0.004

[0.087] [0.232] [0.155] [0.123] [0.050] [0.091]

0.761 2.247 0.938 1.035 0.273 0.251

[0.082] [0.418] [0.193] [0.244] [0.112] [0.134]

Observations 262 268 268 268 268 268

R-squared 0.690 0.493 0.415 0.354 0.170 0.078

Stratification cell FE's? Yes Yes Yes Yes Yes Yes

Includes controls? Yes Yes Yes Yes Yes Yes

p-values of F-test:

0% and 100% 0.310 0.119 0.058 0.127 0.571 0.018

Notes:

100% Job Guarantee

Engagement in training (contributions)

This table presents mean performance as measured by engagement recorded by the recruiter by treatment group. "Any 

contribution" is a binary indicator if the job trainee ever engaged verbally in training. The "total number of contributions" 

is the cumulative number of contributions made by the job trainee during the three days of training, and then separated out 

by quality as determined by the recruitment staff. The performance index is a summary measure of the performance 

indicators. It is constructed by taking the average of the normalized values of "Average test score", "Any contribution", 

"Total number of contributions", "Number of good contributions", "Number of neutral contributions", and "Number of bad 

contributions".  Treatment status was randomly allocated and stratified by quintile ability and prior work experience with 

the recruiter. The stratification cell fixed effects include a set of dummies for each stratification cell. The set of additional 

covariates include: a dummy variable for whether the individual has worked before, marital status, age,  and the 

individuals' standardized ability score. For covariates with missing observations the variable is assigned the mean value of 

the variable and an indicator variable is included for whether or not that particular variable is missing. Robust standard 

errors are reported. 

Table 1.4: Average performance (engagement in training) by treatment group
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Dependent Variable Ever late

Always 

late

Mins early 

or late

Studied 

(Hours)

Radio/TV 

(Hours)

Effort 

index

(1) (2) (3) (4) (5) (6)

0% Job Guarantee 0.183 0.017 -24.400 1.179 1.155 0.214

[0.053] [0.020] [2.156] [0.131] [0.123] [0.083]

1% Job Guarantee 0.185 0.001 -21.405 1.148 1.582 0.000

[0.052] [0.003] [1.856] [0.110] [0.132] [0.079]

5% Job Guarantee 0.321 0.020 -19.187 0.951 1.356 -0.088

[0.065] [0.021] [2.394] [0.100] [0.160] [0.090]

50% Job Guarantee 0.175 0.019 -21.747 1.096 1.512 0.017

[0.056] [0.020] [2.146] [0.099] [0.133] [0.069]

75% Job Guarantee 0.254 0.039 -19.846 1.139 1.408 0.026

[0.087] [0.039] [3.177] [0.140] [0.166] [0.118]

100% Job Guarantee 0.276 0.080 -19.179 0.750 2.037 -0.373

[0.091] [0.055] [4.153] [0.079] [0.247] [0.144]

Observations 259 259 259 254 254 259

R-squared 0.270 0.070 0.657 0.689 0.707 0.104

Stratification cell FE's? Yes Yes Yes Yes Yes Yes

Includes controls? Yes Yes Yes Yes Yes Yes

p-values of F-test:

0% and 100% 0.340 0.271 0.247 0.005 0.002 0.001

Notes:

Administrative Data Survey Data

Table 1.5: Mean effort by treatment group

This table presents the average effort by treatment group using both administrative data and survey data. "Always late" is 

a binary indicator equal to 1 if the job trainee always arrived late for training. "Ever late" is a binary indicator equal to 1 

if the job trainee ever arrived late to training. "Minutes early/late" is a continuous variable recording the minutes early (-) 

or late (+) job trainees arrived at training. Time use in columns 4 and 5 comes from survey data and is the average hours 

reported by respondents across the 3 observations for each activity.  The effort index is a summary measure of the effort 

indicators. It is constructed as the average of the normalized values of: "Minutes early/late", " Hours studying training 

materials", "Hours watching television/listening to the radio". Treatment status was randomly allocated and stratified by 

ability quintile and prior work experience with the recruiter. The stratification cell fixed effects include a set of dummies 

for each stratification cell. The set of additional covariates include: a dummy variable for whether the individual has 

worked before, marital status, age,  and the individuals' standardized ability score. For covariates with missing 

observations the variable is assigned the mean value of the variable and an indicator variable is included for whether or 

not that particular variable is missing. Robust standard errors are presented. 
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Average

Food 

Expenditures (in 

MKW)

Eat out 

Expenditures (in 

MKW)

(1) (2) (3)

0% Job Guarantee 349.479 124.151 73.058

[77.118] [16.339] [3.557]

1% Job Guarantee 425.084 165.495 73.538

[98.487] [15.067] [2.996]

5% Job Guarantee 372.697 154.952 76.109

[92.836] [21.179] [3.170]

50% Job Guarantee 439.111 147.49 72.706

[97.689] [20.097] [2.343]

75% Job Guarantee 335.364 183.878 83.596

[74.342] [27.507] [3.376]

100% Job Guarantee 328.482 123.887 77.596

[79.742] [23.159] [3.553]

Observations 256 256 256

R-squared 0.36 0.6 0.94

p-values of F-test:

0% and 100% 0.797 0.543 0.363

Notes:

Perceived chance 

of employment 

with recruiter

 Treatment status was randomly allocated and stratified by ability quintile and prior work experience 

with the recruiter. The stratification cell fixed effects include a set of dummies for each stratification 

cell. The set of additional covariates include: a dummy variable for whether the individual has 

worked before, marital status, age,  and the individuals' standardized ability score. For covariates 

with missing observations the variable is assigned the mean value of the variable and an indicator 

variable is included for whether or not that particular variable is missing. Robust standard errors are 

presented.

Table 1.6: Alternative explanations?

This table presents the treatment group means for each outcome. 

"Perceived chance of employment with recruiter" is constructed using the following question: “What 

percentage chance do you think you have of getting one of the available positions for the 

RECRUITER’S PROJECT?” with the following options: No chance of getting a job; Less than 25 

percent; Between 25 and 50 percent; 50 percent; Between 50 and 75 percent; Between 75 and 99 

percent; and Certain about employment with recruiter. To create a measure of the likelihood of 

employment I assign the mid-point to categories that are brackets and creating a continuous variable. 

Food Expenditures (in MKW) is the average amount spent on food reported by the respondent 

across the 3 training days. "Eat out expenditures (in MKW)" is similar except measures food 

expenditures for food consumed away from the home.
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Panel A: OLS Regressions

(1) (2) (3) (4) (5) (6)

0% Job Guarantee 0.132 0.126 0.133 0.137 0.129 0.136

[0.047] [0.045] [0.046] [0.049] [0.047] [0.047]

1% Job Guarantee 0.196 0.195 0.197 0.2 0.198 0.197

[0.054] [0.051] [0.051] [0.055] [0.052] [0.052]

5% Job Guarantee 0.135 0.139 0.136 0.137 0.143 0.141

[0.048] [0.043] [0.044] [0.049] [0.043] [0.045]

50% Job Guarantee 0.111 0.114 0.108 0.118 0.117 0.11

[0.043] [0.043] [0.044] [0.046] [0.046] [0.047]

75% Job Guarantee 0.250 0.241 0.238 0.259 0.256 0.251

[0.083] [0.074] [0.071] [0.085] [0.075] [0.073]

0.240 0.250 0.256 0.240 0.25 0.255

[0.086] [0.091] [0.089] [0.086] [0.091] [0.089]Stratification cell fixed 

effects? No Yes Yes No Yes Yes

Includes controls? No No Yes No No Yes

Observations 268 268 268 260 260 260

R-squared 0.18 0.28 0.29 0.18 0.29 0.3

p-values of F-tests:

0% and 100% 0.274 0.224 0.221 0.314 0.241 0.238

Table 1.7: Employment (with recruiter) by treatment group

100% Job Guarantee

Full sample Attend all training days
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Panel B: Probit Regressions

(1) (2) (3) (4) (5) (6)

0% Job Guarantee -0.088 -0.095* -0.090* -0.085 -0.094* -0.090*

[0.065] [0.054] [0.051] [0.068] [0.056] [0.054]

1% Job Guarantee -0.034 -0.048 -0.051 -0.032 -0.048 -0.052

[0.075] [0.064] [0.060] [0.077] [0.067] [0.062]

5% Job Guarantee -0.085 -0.093* -0.093* -0.085 -0.094* -0.093*

[0.065] [0.052] [0.049] [0.068] [0.055] [0.052]

50% Job Guarantee -0.106* -0.104** -0.109** -0.103 -0.104* -0.109**

[0.061] [0.051] [0.046] [0.064] [0.053] [0.049]

75% Job Guarantee 0.008 -0.024 -0.031 0.015 -0.014 -0.022

[0.094] [0.073] [0.067] [0.099] [0.080] [0.073]Stratification cell fixed 

effects? No Yes Yes No Yes Yes

Includes controls? No No Yes No No Yes

Observations 268 268 268 260 260 260

Notes: 

Full sample Attend all training days

Treatment status was randomly allocated and stratified by quintile ability and prior work experience with the recruiter. 

The stratification cell fixed effects include a set of dummies for each stratification cell. The set of additional covariates 

include: a dummy variable for whether the individual has worked before, marital status, age,  and the individuals' 

standardized ability score. For covariates with missing observations the variable is assigned the mean value of the 

variable and an indicator variable is included for whether or not that particular variable is missing. Robust standard 

errors are presented.  *** indicates significance at the 1% level, ** indicates significance at the 5% level, * indicates 

significance at the 10% level

Columns 1 through 3 present results for the full sample, while Columns 4 through 6 exclude those that did not attend all 

training days. 

Panel B presents the partial derivative at the mean of the covariates of employment of the 0-, 1-, 5-, 50-, 75- job 

probabilities treatment compared to the 100 percent treatment group where employment risk is 0.  

Panel A presents employment rates (with recruiter) by treatment group. 
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Dependent Variable: 

Standardized average test 

score

Mental health 

(standardized)

Mental 

health 

(above)

Ability 

(standardized)

High 

Ability

(1) (2) (3) (4)

0% Job Guarantee -0.213 -0.418 -0.157 -0.371

[0.153] [0.237] [0.141] [0.199]

1%  Guarantee 0.099 -0.044 -0.009 -0.235

[0.153] [0.225] [0.130] [0.194]

5%  Guarantee -0.036 -0.276 0.054 -0.298

[0.159] [0.222] [0.117] [0.162]

50% Job Guarantee -0.017 -0.113 0.020 -0.214

[0.143] [0.152] [0.113] [0.152]

75% Job Guarantee 0.213 -0.369 -0.106 -0.534

[0.291] [0.312] [0.189] [0.301]

0.211 -0.084 0.257 0.147

[0.205] [0.294] [0.191] [0.347]

0% Job Guarantee X Het 0.273 0.510 0.327 0.443

[0.111] [0.297] [0.155] [0.291]

1%  Guarantee X Het 0.193 0.269 0.314 0.476

[0.121] [0.306] [0.100] [0.266]

5%  Guarantee X Het 0.379 0.679 0.449 0.864

[0.150] [0.305] [0.106] [0.235]

50% Job Guarantee X Het 0.105 0.243 0.338 0.520

[0.155] [0.315] [0.123] [0.241]

75% Job Guarantee X Het 0.680 1.030 0.836 1.114

[0.329] [0.602] [0.167] [0.435]

0.368 0.621 0.264 0.235

[0.251] [0.409] [0.156] [0.381]

Observations 202 202 258 258

R-squared 0.120 0.092 0.195 0.117

p-values of F-tests:

0.133 0.187 0.176 0.243

. 0.099 0.377 0.083 0.198

Notes:

100% Job Guarantee

100% Job Guarantee X Het

This table presents treatment group means and their interaction with different baseline covariates. Treatment status 

was randomly allocated and stratified by ability quintile and prior work experience with the recruiter. The 

stratification cell fixed effects include a set of dummies for each stratification cell. The set of additional covariates 

include: a dummy variable for whether the individual has worked before, marital status, age,  and the individuals' 

standardized ability score. For covariates with missing observations the variable is assigned the mean value of the 

variable and an indicator variable is included for whether or not that particular variable is missing. Robust standard 

errors are presented. 

Table 1.8: Heterogeneity in test performance
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Chapter 2  

Employment Exposure: Experimental Evidence on 

Employment and Wage Effects 

 

 

2.1 Introduction 

Understanding the key determinants of wage growth can inform policy interventions that 

reduce poverty. A number of competing wage determination theories exist. First, a long 

empirical literature supports the notion that educational attainment is an important 

determinant of wages.  Second, both firm-specific and general work experience are 

particularly important determinants of wage growth.  Lastly, the quality of a job-match is 

an important determinant of wage growth. There is debate, however, about whether job 

turnover increases or decreases wages. One hypothesis is that job-turnover results in 

reduced wages; an alternative claims that job-shopping may result in a better match and 

therefore higher wages. The empirical literature finds stronger support for the latter.
48

  

While the determinants of wages have been extensively studied in the United States and 

other developed country settings, much less evidence exists for developing countries. 

One exception to this is the extensive literature examining the returns to schooling.

                                                           
48

 The empirical literature on the effects of job stability/mobility is extensive. Devine and Kiefer (1991) provide a 

review of this literature. 
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This literature shows that the returns to schooling are larger for females, and in 

countries with lower GDP per capita (Psacharopoulus, 1973, and 1994).  An explanation 

for the higher returns is the scarcity of skilled labor (Mwabu and Schultz, 2000). 

Heterogeneous initial conditions in terms of the stock of skilled labor and other factors 

that affect the productivity of labor may imply that the determinants of wages differ 

across countries. Identifying the importance of factors such as experience, tenure and job 

mobility (or stability) is therefore important to understanding wage growth in different 

contexts. In this paper, I study the effect of experience on employment and wages in 

urban Malawi.  

A key challenge in estimating the impact of work experience is that experience is 

endogenous and likely to be correlated with other factors that affect employment or 

wages. For example, individuals who acquire work experience may exhibit better non-

cognitive skills not observable in the data. Several papers have shown that non-cognitive 

influence labor market outcomes (Bowles, Gintis, and Osborne 2001; Jacob 2002; 

Heckman, Stixrud and Urzua, 2006). Because so many characteristics are likely 

correlated both with past acquired work experience and future labor market outcomes, the 

assumptions for selection on observables are unlikely to be satisfied even when high 

quality survey or administrative data are available. Estimating the returns to work 

experience in developing countries is further constrained by the dearth of detailed labor 

force and panel data, particularly in Africa. Even though the prevalence of labor force 

panel studies is increasing they often lack detailed retrospective employment histories or 

sufficient detail on jobs to accurately measure acquired work experience. To circumvent 

this data limitation, most existing studies use a measure of “potential experience” that is 
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the difference between an individual’s age and his years of schooling in estimating the 

employment and wage effects of experience. However, the prevalence of interrupted or 

delayed schooling and periods of unemployment renders potential experience a poor 

proxy for actual experience in developing countries.   

In this paper I overcome the identification challenge by exploiting an unusual source 

of random variation in short term employment.  I also collect data that  contain more 

detailed information about employment history than typically available, and  measure 

actual rather than potential work experience. The exogenous variation I exploit derives 

from an experimental study conducted in Malawi and discussed in detail in Godlonton 

(2013). Specifically, job-trainees were randomly allocated a probabilistic chance of short 

term employment in a real job. There were six treatment groups. Individuals were 

assigned to receive a 0-, 1-, 5-, 50-, 75- or 100-percent chance of employment in research 

assistance activities at the completion of the training and recruitment process (even if 

they were not hired by the recruiter). These probabilistic chances of jobs can be used as 

an instrument for short term work experience. I have rich baseline data, including a 

baseline survey and resume for each of the 268 job trainees.  Outcome data come from a 

follow-up survey that collects data on retrospective work histories for the eight month 

period following the experiment.  

 By instrumenting for an individual’s work experience using his randomly-

assigned chance of gaining experience from the short term job, I am able to estimate the 

effect of short term work experience on employment and job search strategies. First, the 

estimated impact on employment after eight months is positive, though imprecisely 

estimated. Individuals offered an alternative job were between 10.6 and 13.9 percentage 
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points more likely to be employed on average during the post-intervention. The estimated 

impact of experience on the probability of job search and the likelihood of holding 

multiple concurrent jobs across the eight month period following the intervention is 

positive but not statistically significant.   

 Second, I do find a sizeable wage return to work experience. Individuals who 

were assigned to receive work experience earn on average approximately $3.80 to $4.19 

more per day, as estimated in specifications that do not condition upon employment. This 

is a large return representing a 75 to 83 percent increase in daily wages. In specifications 

that exclude the unemployed and use logged wages, the estimated effect is only 

somewhat smaller, with experience increasing wages by between 60 and 67 percent. 

Some of the increase in the wage may be attributed to an increase in the number of hours 

worked as this increases by approximately four hours per week (although the effect is not 

statistically different from zero). Another mechanism for the increase in wages is changes 

in occupation. I find that the short term research assistance experience prompts a shift 

away from agriculture and related occupations and towards clerical and related 

occupations. I examine a number of potential mechanisms through which experience 

causes wage increases.  The data do not support the hypotheses that expanded social 

networks, signaling of ability from letters of reference, or increased reservation wages are 

behind the increase in wages.  Indirect evidence is most consistent with the idea that 

experience facilitates skill acquisition, and skill is rewarded in the external labor market. 
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Furthermore, there is interesting heterogeneity in the employment and wage effects. 

Specifically, individuals of lower ability (as assessed by a numeracy and literacy test) 

benefit the most from the work experience.  For this subgroup, the effect of experience on 

the probability of employment is statistically significant. Although the small sample size 

limits statistical precision, there is suggestive evidence that the employment effects are 

more are in fact growing over time for low ability types.  

Overall, the results in this paper suggest substantial wage returns to even very limited 

work experience. The results are large when compared to non-experimental estimates that 

rely on variation in potential experience. However, making direct comparisons to the 

non-experimental estimates is difficult given the lack of variation in the amount of 

experience acquired for those induced to work by the experiment. The impacts are also 

large relative to experimental estimates of job training programs, which typically find 

modest effects at best (Heckman, Lalonde, Smith, 1999; Kluve, 2006). However, in this 

paper I study a very different context where the returns to experience may be 

significantly larger due to the scarcity of skills. Also, unlike most job training programs 

in developed countries, experience in this context is actually targeted to relatively skilled 

individuals, and individuals possibly gain general skills.  

The paper is organized as follows. Section 2.2 provides background information both 

on related literature, relevant aspect of Malawian urban labor markets where this study is 

conducted and a description of the intervention. Section 2.3 describes the data used and 

Section 2.4 presents the empirical strategy. Section 2.5 presents and discusses the results. 

Section 2.6 concludes.  
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2.2 Context and data  

2.2.1 Malawi: Education, experience and earnings in wage employment 

Like much of Sub-Saharan Africa, the majority of Malawians depend primarily on 

subsistence agriculture.  Internal migration to urban centers is high and rising (HDR, 

2009), however. The trend towards urbanization means that understanding wage growth 

is particularly important in order to inform labor policies targeted to the growing urban 

labor force.  

Previous studies of the return to education in Malawi estimate wage increases of 

between six and ten percent per additional year of schooling (Chirwa and Zgovu, 2001; 

and Chirwa and Matita, 2009). These estimates of returns to each additional year of 

schooling are consistent with relatively high point estimates of the effects of completing 

primary, secondary and tertiary (Psacaharopoulos and Patrinos 2002; Castel, Phiri and 

Stampini, 2001). One study has estimated the Mincerian return to experience for Malawi, 

finding that every additional year of potential experience is associated with a wage 

increase of approximately five percent (Chirwa and Matita, 2009). A five percent return 

to each year of experience is high relative to the marginal value of education in other 

countries; King, Montenengro and Orazem (2012) review Mincerian estimates of the 

return to experience from 122 datasets across 86 developing countries and find estimates 

between -1 and 4.25 percent per additional year of experience. 

However, using potential experience as a measure of accumulated experience has 

been widely criticized, particularly in labor markets where there is high job turnover and 

general employment instability. Light and Ureta (1995) use work history data from the 

United States to show that specifications using cumulative experience and potential 
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experience produce misleading estimates of the returns to tenure and experience in the 

United States. Using potential experience to measure work experience is particularly 

flawed in low-income countries due to high rates of grade repetition in school; exit and 

re-enrollment in schooling; and long spells of unemployment (Lockheed, Verspoor, et al. 

1991; Lam, Ardington and Leibbrandt  2011; and Pugatch, 2013).    

In this paper, I exploit the experimental variation from a randomized controlled trial 

conducted in urban Malawi discussed in greater detail in Godlonton (2013). The 

exogenous variation in work experience generated by that experiment provides the 

opportunity to examine the causal impact of a short term work opportunity on later labor 

outcomes.  

2.2.2 Experimental variation 

This paper makes use of the exogenous variation in work experience generated by 

a randomized controlled trial that offered individuals undergoing a real recruitment 

process a probabilistic chance of an alternative employment opportunity. Individuals 

were assigned a 0-, 1-, 5-, 50-, 75- or 100-percent chance of alternative employment in 

the event that they failed to secure employment through the recruiter’s competitive hiring 

process.  Thus, the probabilistic job guarantee provides a lower bound on the probability 

that an individual had the opportunity for employment at the conclusion of the recruiting 

process. The randomization was stratified by ability and prior experience with the 

recruiter. The alternative employment opportunity offered the same duration and wage as 

the standard employment offer from the recruiter. Individuals were still able to earn a job 

through the recruitment process by performing well during the job training, and those 

who secured both jobs were required to take the recruiter’s job or turn down both job 
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offers. Given that the recruiter’s job and the alternative jobs were of equal duration and 

paid the same wage, those who became employed through the project acquired the same 

amount of work experience at the same pay whether they ultimately worked for the 

recruiter or in the alternative job. Estimation of the effect of the probabilistic job 

guarantee must account for the fact that the probabilistic jobs increased the likelihood of 

both being selected for the recruiter’s job and being eligible for the alternative job (see 

Godlonton, 2013 for details). 

The work experience acquired is short term. The job provided individuals with 

five days of paid work experience. The recruiter’s job was for employment as an 

interviewer. The alternative jobs were different research assistant tasks, including 

archival research, data entry, and translation and transcription of qualitative interviews. 

Many of these tasks may embody some real acquisition of new and transferable skills for 

the participants. Upon completion of the job, participants a generic letter of reference.  

Once the recruitment process was completed, the probabilistic chances of 

employment were realized. For individuals assigned a 1-, 5-, 50- or 75 percent chance of 

an alternative job; random draws were conducted. For example, an individual assigned a 

75-percent chance of an alternative job drew a token from a bag that contained 75 red 

tokens and 25 green tokens. If the individual drew a red token then he was offered the 

alternative job; if he drew a green token, he was not. Similar draws were conducted by 

each individual, with token distributions adjusted for his randomly-assigned probabilistic 

treatment groups. Individuals assigned a 0-percent chance knew with certainty they were 

not eligible for  alternative jobs and those assigned a 100-percent chance knew they were 

guaranteed alternative jobs, so no draws were conducted in those cases.  
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I use the treatment assignment (i.e. the probability of an alternative job) to instrument for 

acquired short term work experience. This unusual random determination of employment 

allows a unique opportunity to measure the causal effect of short term work experience 

on future labor market outcomes. 

2.3 Data 

Figure 2.1 outlines the timeline of the data used in this paper. The sample of 

respondents is drawn from a recruitment process hiring male interviewers, during which 

trainees also participated in an experiment that offered randomly determined probabilistic 

jobs. Data come from a baseline survey collected prior to the start of the recruitment 

process, administrative records about treatment assignment and employment realizations 

for both probabilistic alternative jobs and hiring by the recruiter, and a follow-up survey 

that was conducted nine months after the completion of the work opportunities presented 

by the experiment. 

Baseline data: Prior to the start of the recruitment process, respondents completed  

numeracy and literacy tests and submitted their resumes. Using the numeracy and literacy 

scores I construct an ability measure.  In addition to this information a baseline survey 

was conducted. The baseline survey collected information on basic demographics, 

general education and work experiences, as well as mental and physical health. The 

baseline survey was self-administered by respondents.   

Probabilistic alternative job offers: I use both the assignment to treatment 

records, as well as the realization of the probabilistic draws (i.e. whether or not each 

participant was actually offered a job, conditional on the distribution he was randomly 

assigned to). Assignment to an employment probability was stratified by baseline ability 
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quintile and prior experience with the recruiter. In Godlonton (2013) it is shown that the 

treatment assignment is balanced; in other words, there are no systematic differences in 

covariates between the different treatment groups.  

Follow-up survey data: A follow-up survey was conducted nine months after the 

implementation of the experiment. While the reference period for the survey questions is 

the nine months following the completion of the work experience opportunities, some 

participants erroneously report work tied to the experiment.  To deal with this survey 

recall error, I exclude the first month of recall data and rely only on the eight month 

period beginning one month after the completion of the work experience opportunities.  

The follow-up survey was conducted by phone and included an extensive module on job 

search, labor market perceptions (current and future likelihood of finding employment), 

current employment and employment experiences over the last eight months, current and 

past wages as well as a mental health module.  

Table 2.1 shows that attrition was not statistically significantly associated with the 

treatment status. A total of 84.7 percent of the sample was successfully interviewed at 

follow-up. The attrition rate was lowest among participants who had received the 75-

percent job guarantee (7.1 percent). Individuals assigned a 0-percent chance of an 

alternative job have the highest rate of attrition (18.9 percent). The difference in attrition 

between these two groups, although large, is not statistically significant (p=0.168).  

Moreover, the probability of receiving an alternative job does not predict the probability 

of being interviewed at follow-up (coeff. = 0.049, p-value = 0.433).  
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Table 2.2 shows that there is not differential attrition for other baseline 

characteristics including age, education, ability and previous work experience (Column 

5). Respondents of the Ngoni tribe and those that had worked in the six months prior to 

baseline are slightly less likely to attrit (significant at the 5 percent level and 10 percent 

level respectively). However, these differences are not large in magnitude. Moreover, 

there is no systematic differential attrition by treatment status (i.e. the probability of the 

alternative job) that is correlated with baseline characteristics. To test this, I regress an 

indicator for being in the follow-up sample on the probability of being assigned an 

alternative job, the baseline characteristic of interest, and that probability interacted with 

the baseline characteristic (Appendix Table C.1).   

The final analytical sample includes the 227 respondents found at follow-up. The 

average respondent in this sample is approximately 26 years old and 17.2 percent are 

married. Approximately 16.7 percent of the sample have at least one child, and of those 

that do have at least one child they have an average of 1.8 children. Respondents are 

relatively well educated for Malawi with an average of 13 years of education, but this is 

driven by the eligibility criteria of the recruiter which required individuals to have at 

minimum completed their secondary school education. Despite being relatively well-

educated for Malawi all these men were actively seeking work at the time of the baseline 

sample and they reported earnings of only approximately $210 per month over three 

months prior to the experiment (Table 2.2, Column 2). 
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2.4 Empirical strategy 

If experience was randomly assigned across individuals, then we could estimate the 

average treatment effect of experience on employment and wages using ordinary least 

squares (OLS). In that case, one would estimate the following regression equation: 

              
      (1) 

where yi = employment (or wages) for individual i, Ti is a dummy indicator for whether 

or not the individual received a job, and Xi is a set of individual characteristics. However, 

in this setting work experience was not itself randomly assigned. Instead, individuals 

were randomly assigned different probabilities of obtaining work experience.  These 

probabilistic job guarantees affected their likelihood of obtaining experience from one of 

two different types of jobs – the recruiter’s job and the alternative job. I therefore 

implement an instrumental variables approach. The system of equations then estimated is: 

                  
            (3) 

                                               
               (4) 

where     measures whether individual i was offered a short term job; P1i , P5i , P50i , P75i 

, P100i  indicates the binary indicators for the treatment arms; and Xi represents a set of 

covariates. The set of covariates used is the same as those used in equation (2) and listed 

above. I also include stratification cell fixed effects to account for the fact that treatment 

assignment was stratified by ability and prior work experience with the recruiter. The key 

coefficient of interest is β1.  Yi measures labor market outcomes of interest to examine 

both the intensive and extensive margins. To examine changes at the extensive margin I 

measure the impact the probability of being employed nine months after the experiment, 
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and the fraction of months in which individuals are employed in the eight months 

following the intervention. To measure impacts at the intensive margin, I examine the 

average daily wage earned by individual i across that the eight month period. I allow for 

possible heteroskedasticity in the error terms by using heteroskedastic-robust standard 

errors.  

For the probability of assignment to the alternative job to serve as a valid 

instrument for work experience, it needs to satisfy two conditions: i) the instrument must 

be correlated with the endogenous variable; ii) the probabilistic job offers must not affect 

later labor market outcomes except through the acquired work experience. 

The first condition implies that assigned probability of alternative employment 

should predict whether or not the job-seeker acquired any job (recruiter or alternative job) 

through this intervention. Estimating the first stage relationship shows that the instrument 

is, indeed, relevant: 

                                               
               (2) 

In the equation above,         is defined as a binary indicator equal to one if the 

respondent either received a randomly determined job or a recruiter’s job. I use indicator 

variables for each of the treatment arms.     equals one if the individual received a one-

percent probabilistic chance of a job, and                           are similar 

indicator variables for the 5-, 50-, 75- and 100-percent treatment arms. The omitted 

category is the group who received no chance of an outside job. Xi represents a set of 

covariates and includes: age, marital status, education dummies, a dummy indicator for 

whether the respondent has any children, the number of children that the respondent has, 
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ability score (a composite measure of numeracy and literacy scores), dummy indicators 

for tribe, a dummy indicator if the respondent has any work experience, reports any work 

in the past month and any job search in the past month, and the number of months in the 

last six months he has worked.  

Table 2.3 presents the first stage estimates. The first stage results show that the 

probabilistic jobs strongly predict the probability participants received any job (recruiter 

or alternative). This expected result derives mechanically from the assignment of 

alternative jobs, as well as through a behavioral response by participants to the job 

guarantees. As shown in Godlonton (2013) the probability of being hired by the recruiter 

was higher among those who received the 75- or 100- percent chance of an alternative 

job, likely because the improved outside option lowered stress and increased performance 

during the recruiting process.  Both mechanisms work in favor of a higher probabilistic 

job guarantee causing a higher chance of subsequent employment. Table 2.3 Column 1 

confirms this hypothesis. A total of 16.3 percent of individuals assigned a zero chance of 

an alternative job got a job. Individuals assigned a 1- or 5- percent chance of an 

alternative job are not more likely than those who were assigned a 0-percent chance to 

get any job. The coefficients are positive as predicted, though the standard errors are 

large. Individuals assigned a 50-, 75- and 100- percent chance of an alternative job are 

respectively 40.2, 56.8 and 83.7  percentage points more likely to get any job than those 

with no chance of the alternative job. The first stage F-statistic is 101.11, far above the 

rule of thumb threshold for weak instrument concerns.  These results are robust to the 

inclusion of stratification cell fixed effects (column 2) and additional covariates (column 

3).  
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The exogeneity condition for the IV strategy requires that, conditional on baseline 

characteristics, the probabilistic job offers do not affect later employment outcomes 

independently of acquiring a job through the experiment (recruiter or alternative). 

Monotonicity would have been violated if higher probabilistic job offers had reduced the 

likelihood of acquiring the recruiter’s job. However, as shown in Godlonton (2013) this is 

not the case. In fact, individuals assigned a 75- or 100 –percent chance of an alternative 

job were about twice as likely to be hired by the recruiter as those who were not eligible 

at all for alternative jobs. A second concern is that the probabilistic job offers may have 

affected individuals’ perceptions about their own ability to find employment. Results in 

Godlonton (2013) show that there is no effect of the probabilistic job offers on perception 

of ones’ own likelihood of employment.  

A third concern is that the probabilistic job offers affected skill acquisition during 

training, and that skill was subsequently rewarded by the labor market.   The finding in 

Godlonton (2013) that individuals perform differentially on recruiter administered 

training tests during the recruitment process may initially heighten that concern.  

However, it is unlikely that there were general benefits to this training.  The training 

conducted by the recruiter and evaluated in the performance tests was tailored to the 

specific needs of that particular recruiter’s temporary job, interviewer positions for a 

health survey. Participants worked systematically through the questionnaire the recruiter 

planned to administer, in order to understand the terminology of and instructions for 

filling in each item.  Participants were given systematic explanations about how to 

interpret questions, but the training was very specific to the survey in question. Skills 

related to this particular questionnaire are highly firm-specific and are unlikely to be 
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marketable to the labor market. Moreover, for the training to have an impact in the labor 

market the differential performance of the participants needs to be observable to future 

employers. Individuals did not receive their grades on these assessment tests and letters 

of reference only described the nature of the job but not the employee’s specific 

performance.  As such, the only way for the differential performance during training to 

affect subsequent employment and earnings in the outside labor market after the 

intervention is for outside employers to value the specific content of the training 

conducted by the recruiter during the experiment. Given the nature of the recruiter’s 

training, this is unlikely.
49

 Generally, in this context when individuals apply for a new 

interviewer position even within the same firm they still are required to undergo the same 

training for each new survey as the content of each training and skills taught are specific 

to that survey. In other words, experienced and novice interviewers undergo the same 

training for each survey they work on.  

Conditional on instrument validity,     captures the local average treatment effect 

(LATE) of the short term job on labor market outcomes – employment and wages. 

2.5 Results 

Work experience may affect employment at the extensive margin, by changing the 

probability of employment, and the intensive margin, changing wages conditional on 

employment.  In this section, I use the variation generated by the experiment to study the 

return to experience at each of these margins. 

                                                           
49 I restrict the analysis by excluding those assigned the 100-percent treatment group; and those assigned the 0-percent 

treatment group. These sub-groups show that the results are slightly smaller and in some cases lose statistical 

significance which is not surprising as the sample sizes are small. These estimates also show that the results are not 

eliminated by dropping either of these groups which suggests that the results are not driven by differential learning 

(results not shown). 



 

96 
 

2.5.1. Returns to experience 

Table 2.4 presents the impact of the short term work experience on job search, 

employment, and the concurrent number of jobs held. This table uses data aggregated by 

individual across the eight month post-intervention time period. The employment 

variable used is the probability of employment during this timeframe. This is constructed 

by calculating the fraction of months that the individual is employed over the eight 

months following the intervention. Similarly, the job search variable is defined as the 

average probability an individual actively sought work (whether or not they were 

employed). Again, like the employment variable this is constructed as the fraction of 

months an individual actively sought work in the post-intervention period. The measure 

of concurrent number of jobs held is constructed as the average number of concurrent 

jobs held during the last eight months.   

Work experience increases the probability of employment by all three measures.  

The short term work experience provided by the experiment increased the probability of 

subsequent by 10.6 to 13.9 percentage points. The estimated coefficients increase in 

magnitude and precision when we include stratification cell fixed effects (column 2) and 

covariates (column 3). The estimated effect is large, representing a 25 to 33 percent 

increase in the probability of being employed. To explore the time dynamics behind the 

average effect estimated in Table 2.4, Figure 2.2 plots the estimated employment impacts 

of the job separately for each of the eight months following the intervention. Although 

the one-month estimates are imprecise, the effects are positive in each of the eight 

months and statistically different from one another.  
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Work experience also increases the probability of searching for a job (column 4) 

and the number of concurrent jobs held (column 7).  These estimates are robust to 

including controls for stratification cell fixed effects and covariates.  

Another margin along which employment may adjust is the number of days 

worked. Underemployment in Malawi is high, and there is plenty of scope to increase 

labor supply along the intensive margin. Data from a nationally representative household 

survey shows that urban men who have completed secondary school, the relevant 

comparison group for the experimental sample, work only 23.4 hours per week 

conditional on being employed. The follow up survey uses the standard labor supply 

survey instrument (2010/2011 IHS), so it measures hours of work rather than days of 

work in the past week. While I cannot measure the change in days of work, I can examine 

the change in the number of hours worked, and compute the implied average wage per 

hour. These results are also presented in Table 2.5. I find that among the employed, 

individuals are working approximately 40 percent more hours per week.  In the local 

context, however, individuals are more likely to be able to adjust their labor supply at the 

daily than hourly margin, and they are paid per day rather than per hour. It is probably 

more accurate to interpret differences in hours as indicative of differences in the 

responsibilities of the job.  Therefore, the results for hourly wage should be interpreted 

with caution.  These estimates and show no statistically significant impact on the hourly 

wage (Table 2.5 columns 4 through 6). The magnitude of the coefficient indicates an 

increase of $0.72 per hour which is large in magnitude but it is not statistically 

significant.  
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Before turning to the mechanisms behind the increase in employment, Table 2.5 

explores the impact of work experience on wages. The outcome measure is the 

individual’s average daily wage over the eight-month follow up period.  This measure is 

not conditional on employment, so periods when the individual is unemployed are 

included (as zeros) in the average.  Daily wages – rather than the hourly wages used in 

much of the related literature – are the relevant unit in this context.  Institutionally, all 

Malawian labor policies pertain to daily employment; for example, the minimum wage 

law is with respect to daily wages, not hourly wages. Daily or even more highly 

aggregated wages are also salient to respondents. The follow-up survey allowed 

individuals to choose the time unit for reporting their wages, with, 75.8 percent of 

respondents reporting monthly wages and 18.5 percent reporting daily wages. Therefore, 

while the literature about employment in developed countries uses hourly wages as the 

primary outcome of interest, daily wages are a more appropriate measure in this context.  

Table 2.5 shows that individuals who gained work experience as a result of the 

experiment earn $3.80 to $4.19 more per day (Columns 7 through 9). This estimated 

effect is large relative to the average daily wage of approximately $5.08 among the 

control group. The estimated impact represents a 75 to 83 percent increase in daily 

wages. As we did with the extensive margin effects, we can also consider the effect on 

wages separately for each of the eight months in the follow up period. Month-by-month 

estimates are plotted in Figure 2.3. In all months, the effect on daily wages is positive; it 

ranges between approximately one and six dollars.  

The estimated wage impacts are surprisingly large and deserve further discussion. 

First, these results are not conditional on being employed; the outcome measure 
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incorporates periods of unemployment as wages of zero. Therefore, part of the increase in 

wages is attributable to the gains in employment as shown in Table 2.4.  Logged wages 

drops the unemployed, these results are present in Table 2.5 columns 10 through 12. The 

positive wage results persist, but are as expected the estimated coefficients are smaller in 

magnitude. However it is still large - the impact on the daily wage is 60 to 67 percent. 

These large point estimates are not driven by outliers. Figure 2.4 documents the wage 

distributions for those who did and did not receive a job and shows that the wage 

distribution among those who received a job is shifted to the right.  

2.5.2 Mechanisms  

 Understanding the mechanisms may be helpful in reconciling the effects in this 

experiment with the much smaller effects estimated from non-experimental Mincerian 

estimates in Malawi and other settings. I find that only five days of work experience 

results in a 57 to 63 percent increase in subsequent earnings. This is equivalent to 

approximately ten years of experience in the Malawi non-experimental estimates (Chirwa 

and Matita, 2009). There are many reasons why the non-experimental estimates may be 

substantially smaller. First, the non-experimental study also uses an inferior measure of 

work experience.  Potential experience overstates the amount of accumulated experience 

(considerably) in this context. Second, the type of experience studied by the experiment 

may be of higher quality than experience otherwise available to even educated Malawian 

men.  While the experience provided through the experiment was short term, it was with 

a private, international employer. It is unlikely that five daysworth of work in the civil 

service will yield impacts similar to that observed here.  Finally, the non-experimental 

estimates represent average returns to experience for a population that is less educated 
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than the highly-skilled men included in the experiment.  While the experimental subjects 

still experience frequent periods of unemployment, they may experience substantively 

different returns than a less educated counterpart.  

There are many theoretical reasons to expect that experience (even short term 

informal work experience) leads to increased employment and wages. In this section, I 

discuss a number of these possibilities and discuss which might be most relevant in the 

current context. The particular mechanisms that I consider include changes in job search 

strategies or occupational choice; changes in contract type, altered social networks; skills 

acquisition; altered wage expectations; and human capital accumulation. The 

experimental setting was not designed to test these mechanisms directly. However, I 

present suggestive evidence against the backdrop of these outlined mechanisms, before 

turning an exploration of heterogeneity in the return to experience. 

Shifts in occupation 

One possibility is that individuals change their occupation if they are induced to 

receive a job. Using the retrospective calendar job histories, I classify each job according 

to the standard two-digit ILO occupation classification codes (using the ISCO-08 

classification system). I then analyze employment in each industry separately, using three 

measures of occupation-specific employment.  The first is a binary indicator for whether 

each individual ever worked in a given occupation.  The second is the total number of 

months the respondent worked in each occupation.  The third indicator is a binary for the 

respondent’s modal occupation over the eight month follow up period. 

In Table 2.6, each row reports the effect of work experience on employment in a separate 

occupation from an IV regression. The left hand panel corresponds to the binary ever-
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worked outcome; the middle panel is the number of months in the occupation; and the 

right hand panel is an indicator for modal occupation, as described above.  Increased 

work experience as a result of the experimental variation caused increases in employment 

in the following occupations: administrative and managerial; and clerical and related 

worked. The same pattern is observed for the modal occupation held. Individuals were 

also more likely to have recent experience as professional, technical or related 

occupations but this pattern does not hold for the modal occupation. For clerical and 

related occupations the effect is large large, with the 13.1 percentage point increase in the 

probability of working in clerical or related occupations representing a 62 percent 

increase in the probability of employment in that field.  Individuals appear to be 

switching from agriculture related, service and production and related occupations, but 

stronger claims are limited by the lack of statistical precision.  

Employment contract type 

 Another mechanism through which experience may have affected wages is by 

altering the type of wage contract individuals secured after the intervention.  Jobs vary in 

their duration, and short term positions are common in Malawi.  I do not directly observe 

the duration of contracts in the follow up survey, but I can use information from the unit 

in which individuals reported their current job as a proxy for contract duration. 

Individuals self-reported the unit of payment for their current (primary) job at the daily, 

weekly, fortnightly or monthly level.  I infer that lower-frequency reporting levels 

correspond to longer duration contracts, and construct a frequency of payment variable 

equal to one if the individual reports daily remuneration, two if weekly, three if 

fortnightly and four if monthly remuneration is reported. Table 2.7 reports effects of 
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work experience on this proxy for job permanence. The estimated impact of work 

experience on payment frequency is -0.7. Individuals induced to receive work experience 

through the experiment appear to be working in less permanent positions.  In this context, 

the change is consistent with higher wages, because wages for short term positions as 

research assistants or consultants on projects for international NGOs or donor agencies 

are often much higher than wages paid for the longer-term work offered by local 

employers or government agencies. 

Social networks 

Social networks have been touted as an important mechanism through which 

individuals acquire employment opportunities.
50

 There are several theoretical reasons for 

why social connections are important in accessing employment. For the job-seeker, social 

connections can reduce search costs and lead to better quality matches (Calvo-Armengol, 

2004; Mortensen and Vishwanath, 1994; Galeotti and Merlino, 2009).  

Simply participating in jobs provided by this experiment may have facilitated new 

social connections between participants.  These social connections may increase 

employment opportunities independently of the experience accrued. Unlike the 

experiments undertaken by Beaman and Magruder (2012) and Beaman et al. (2013) that 

are specifically set up to test various aspects regarding the role of social connections in 

job referrals, this experiment was not designed to induce variation in social connections 

or to test specific manner in which social connections might matter. However, I do 

measure the prevalence of social interactions that may have facilitated employment, such 

as whether individuals heard about job opportunities through individuals they met during 

                                                           
50 See for example Beaman (2010) and Granovetter (1973). 
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the job opportunity, and whether the jobs they held during the eight month period 

following this job opportunity were a direct result of a referral.  

Table 2.8 panel A shows that individuals who received work experience as a result of 

the experiment are 23.4 percentage points more likely to have heard about a work 

opportunity through someone they met during this intervention. However, while 

individuals claim to hear more about job opportunities, they are not more likely to secure 

employment through one of the new connections. Individuals are 12.6 percent less likely 

to report securing a job through someone they met during this intervention, but the 

estimate is not statistically significant at conventional levels.  

In sum, while the broadened network does suggest a modest impact on information 

about job opportunities, this information does not translate into employment and 

therefore does not explain the effect of experience in this experiment. 

Signaling 

Another mechanism is signaling of worker quality to employers (Spence, 1973). In 

this case it is possible that employers do not infer any inherent value of the work 

experience on worker productivity, but merely interpret it as a signal of ability. Upon 

completion of the work experience all participants received a standard letter of reference, 

which described the job in general terms but did not provide information about 

individual-specific performance. Given that these letters came from an international 

employer, however, employers may value the letter as a signal of underlying ability, 

rather than certification of skills acquired through experience.  
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Table 2.8 panel B shows that those who received work experience as a result of the 

experimental treatment were actually 7.4 percentage points less likely to use the reference 

letter than to those who did not receive a job.
51

 Therefore, employers would not have 

received any signal about worker ability from the reference letters, and these letters are 

unlikely to have contributed later labor market outcomes. However, it may still be 

possible that individuals put the work experience on their resume and this acts as a signal 

of ability.  

Wage expectations 

The job may have altered individuals’ wage expectations and reservation wages, 

with implications for job search strategies, duration of unemployment, and match quality. 

The wages paid during this experiment may have been higher than reservation wages at 

baseline. If individuals updated their expectations by increasing their reservation wage, 

then the estimated impact on the employment effect might be muted, as individuals may 

be searching longer and differently for better paying jobs.  

I examine this mechanism by looking at self-reported reservation wages. Table 

2.8 Panel C presents the results from this exercise. The impact of receiving a job on the 

monthly reservation wage is $121.25, but it not statistically significant at conventional 

levels. More generally, the reported reservation wages are high, approximately 1.5 times 

higher than the average monthly income earned at baseline. Self-reported reservation 

wages also high relative to wages reported in the follow up survey.  Transforming 

reported wages into full-time equivalent salaries with the assumption that individuals 

                                                           
51 Individuals who received work in the alternative job and those who worked for the recruiter received reference letters 

as such it is possible that individuals who did not receive the randomly determined job used a reference letter. 

However, the large difference is not too surprising as a low fraction of those who received no alternative job offer 

worked for the recruiter, and therefore did not receive any reference letter that could be used for this purpose. 
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worked 20 days per month, then the average monthly wage earned at follow up was 

approximately $240,  higher than at baseline but considerably lower than the reported 

reservation wage. While measurement error in the reservation wage complicates the 

interpretation of these results, there is no evidence that an increase in reservation wages is 

an important mechanism.  

Human capital accumulation 

A final potential mechanism is that individuals acquired skills attributable to the work 

experience induced by the experiment. Individuals who secured a job either worked as an 

interviewer or were assigned to data entry; data transcription or translation; or archival 

research jobs.  

The results discussed in section 2.5.2 and presented in Table 2.6 show a change in 

occupational type. Individuals who received work experience are less likely to be 

employed in agriculture and more likely to be employed in clerical activities. 

Furthermore, individuals are 18.1 percentage points more likely to report having worked 

as a research assistant, the specific occupation in which they acquired experience.  This is 

suggestive evidence that the work experience provided through the experiment generated 

occupation-specific skills that were rewarded by future employers.  

While the data do not permit a direct test of the mechanism through experience 

increases which wages and employment, the indirect evidence suggests individuals may 

have acquired skills that are rewarded by the external labor market.    

Heterogeneity 

Understanding heterogeneous returns to work experience can help us interpret the 

large average effects and design policies to use work experience to improve employment 
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outcomes.  I explore heterogeneous returns by ability, work experience and education. To 

do so, I interact an indicator variable for having received an alternative job (JOi) with the 

baseline characteristic of interest (Basei*JOi), using the set of treatment dummies as 

instruments for work experience. In this specification I instrument the endogenous 

regressors with the probability of an alternative job and this probability interacted with 

the baseline characteristic. Therefore, to examine the heterogeneity of the impacts I 

estimate the following set of equations: 

                                         
             (5) 

              
                                                                  (6) 

                              
                                (7) 

where: Basei is, in turn, the baseline ability score as determined by numeracy and literacy 

tests; a binary indicator for having completed college; and measures of current and 

cumulative labor market work experience.  

Table 2.9 Panel A examines the heterogeneity of impacts by ability. To measure 

ability, I use test scores from a numeracy and literacy test administered to the respondents 

at baseline. I use a composite measure of ability that combines the numeracy and literacy 

test scores.
52

  The estimated impacts are larger for individuals at the lower end of the 

ability distribution. To see this, consider an individual at the 25
th

 percentile and the 75
th

 

percentile of the ability distribution.  Individuals at the 25
th

 percentile were 25 percentage 

points more likely to be employed if they were induced to receive job experience through 

the experiment, and they earn approximately $11.01 more per day. On the other hand, 

                                                           
52  The results are similar when using the numeracy and literacy scores separately. 
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individuals at the 75
th

 percentile were 1.5 percentage points less likely to be employed, 

though they earn approximately $2.20 more per day.  

Figure 2.5 plots the average post-treatment employment rate by month for low 

and high ability types. Individuals are classified as low ability if they scored below the 

mean on the composite literacy and numeracy test; and as high ability otherwise. The 

small sample limits the precision of the estimates by ability level, but the pattern is 

informative. The estimated impact on employment for low ability types is increasing over 

time, while there is no consistent pattern for the high ability types. The pattern for wages 

is relatively constant across the time period (not shown). This pattern of results suggests 

that the low ability types not only gain the most from the job but also that the 

employment returns are increasing over time.  

 Education and experience can serve as substitutes or complements in a Mincerian 

model. To examine the relationship in this context I consider heterogeneity by whether or 

not the respondent has a degree (Table 2.9 panel B). Due to sample restrictions imposed 

by the recruiter, the sample is composed entirely of individuals who have completed 

secondary schooling. Therefore, there is limited variation in educational attainment. The 

results show that the estimated impacts are largest for those without a university degree 

and are actually negative for those who have completed university.  

Lastly, one possible reason that the estimated impacts are so large is that the experience 

provided in the experiment is the first job held by respondents. Table 2.9 Panels C and D 

explore the heterogeneity of the impacts with respect to work experience. Panel C uses 

recent job market attachment defined as whether the respondent was working a month 
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prior to baseline; and Panel D uses an indicator for whether the individual has ever 

worked. Roughly 15 percent of the sample had no previous work experience.  Perhaps 

surprisingly, the effects of work experience on subsequent employment do not differ by 

pre-experimental work experience. 

 2.6 Conclusion 

This paper uses a novel experiment that generated exogenous variation in short term 

work experience in order to estimate the effect of such experience on employment in 

wages. The return to experience is large, with a 10.6 to 13.9 percentage point increase in 

post-intervention employment for those who received experience through the experiment 

relative to those who did not. Not only does experience increase the probability of being 

employed, but also, it has a sizeable effect on wages. Individuals who received work 

experience earn approximately 60 to 67 percent more per day than those who did not, 

with results concentrated among lower-ability individuals. This return to work experience 

is present in each of the eight months of the follow up period, and the average effects are 

larger than in previous estimates of the returns to experience in Malawi and other 

settings. Individuals shifted away from agricultural based occupations and into clerical 

and related work; they worked more hours per day and on contracts with shorter 

durations.  

 These results add to the policy debate about active labor market programs, which 

are designed to improve employment outcomes by providing participants with work 

experience.  Proponents of work based programs believe that any job is a good job, and 

that getting a job will lead to job advancement and wage growth (Holcomb et al., 1998). 

However, the empirical evidence provides mixed results. In systematic reviews of the 
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literature, the key take away is that the impact of job-training programs are modest at best 

(Heckman, Lalonde, Smith, 1999; Kluve, 2006). However, just like the returns to 

education, the impacts of such programs might be larger in low income countries. 

Betcherman, Olivas and Dar (2004) review the literature about impact evaluations of job 

training programs and find only 19 studies (none of which are in Africa) conducted in 

developing countries. In both this review and in another, by Nopo and Saavedra (2003) of 

the non-experimental literature in Latin America, the estimated impacts of job training 

programs appear to be larger in developing than developed countries.   

The results may not be generalizable to a less skilled population within Malawi, 

or to a country whose underlying skill distribution and labor market conditions are 

different from Malawi. Even within Malawi, the treatment provided in the experiment is 

not available through any current public or private sector job training initiatives. Because 

the job opportunity provided within the experiment was of uniform duration, we cannot 

extrapolate from these results to the return to a longer period of experience. Lastly, the 

general equilibrium effects of such a program are not estimated. Given the small size of 

this intervention, it is not possible to determine if and the extent such a program if rolled-

out would have on those individuals not participating. It is not clear if non-participants 

would be crowded out of the labor market or whether the returns are driven by increases 

in wages earned through entrepreneurship activities which would result in a net increase 

in employment.  

While these caveats cannot be dismissed, the results presented here do provide the 

first experimental evidence about the effect of work experience on subsequent 

employment outcomes in a developing country.  The effects are substantial, suggesting 
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that short term training or employment programs that include work experience have 

transformative potential, and providing justification for further research on the topic. 
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Figure 2.1: Timeline of experiment, and data collection activities 

 

Eligible men apply for a job 
(N=554) 

(Eligibility criteria: men, aged 
18+, completed secondary 

schooling) 

Selected for training (N=278) 

* Based on ability test 

Participate in research (N= 268) 

* Baseline survey 

* Assigned probabilistic chance of 
alternative job offer 

 

Offered a randomly 
determined job 

[N=78] 

Offered job with recruiter  

* Based largely on training 
performance 

[N=18] 

Not offered a randomly 
determined job offer 

[N=190] 

Offered job with recruiter  

* Based largely on training 
performance 

[N=21] 

Not selected for training 

(N=276) 

* Based on ability test 

* Excluded in all analysis 
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Figure 2.2: Estimated employment impact of job offer by month (IV estimates) 

 

Figure 2.3: Estimated wage impact of job offer by month (IV estimates) 
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Figure 2.4: Distribution of wages 

 

Figure 2.5: Estimated employment impact by ability of job offer by month (IV estimates) 
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N Mean SD

Treatment conditions: (1) (2) (3)

0% Probability 53 0.811 0.395

1% Probability 56 0.857 0.353

5% Probability 52 0.827 0.382

50% Probability 54 0.852 0.359

75% Probability 28 0.929 0.262

100% Probability 25 0.840 0.374

Full sample: 268 0.847 0.361

p-value of F-test of joint significance:

0% = 1% = 5% = 50% = 75% = 100% 0.827

p-values of t-tests of pair-wise differences:

1% 5% 50% 75% 100%

0% 0.510 0.826 0.564 0.168 0.745

1% 0.666 0.939 0.396 0.844

5% 0.724 0.233 0.882

50% 0.364 0.893

75% 0.376

Notes:

Table 2.1: Sample size and attrition

Individuals were assigned to one of the six treatment groups. If they received a 0-

percent chance of an alternative (i.e. in 0% probability treatment group) then they 

had no chance of receiving the alternative job. If they were assigned to the 1% 

probability group then they had 1 percent chance of receiving an alternative job. 

Similarly for the 5-, 50-, 75- and 100 percent probability groups. There were twice 

as many assigned to the high probability groups as compared to the lower groups 

due to budgetary considerations. The p-values denote the p-value associated with 

the F-test of whether the mean finding rate is the same in all treatment groups or in 

the case of the table the pair-wise t-test of differential attirion rates. 
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Mean SD Mean SD

(1) (2) (3) (4)

Demographics:

Age 25.604 4.638 25.718 4.662 -0.114

Married 0.172 0.378 0.172 0.378 0.000

Any child? 0.164 0.371 0.167 0.374 -0.003

Number of children 0.299 0.784 0.313 0.811 -0.014

Number of fin dependents 7.959 9.355 8.264 9.406 -0.305

Years of education 13.183 0.940 13.220 0.938 -0.037

Income (USD, 3 months) 206.123 228.803 210.617 237.777 -4.494

Ability score -0.001 1.003 0.030 1.017 -0.031

Tribe:

Chewa 0.310 0.463 0.300 0.459 0.010

Lomwe 0.108 0.311 0.110 0.314 -0.002

Ngoni 0.164 0.371 0.181 0.386 -0.016 **

Tumbuka 0.190 0.393 0.189 0.393 0.001

Other 0.201 0.402 0.198 0.400 0.003

Education and Work:

Ever worked? 0.869 0.338 0.863 0.344 0.006

Ever worked with recruiter? 0.104 0.306 0.097 0.296 0.008

Any work in last month 0.646 0.479 0.665 0.473 -0.020

Any work in last 6 months 0.869 0.338 0.890 0.314 -0.020 *

Frac of 6 mths worked 2.657 2.176 2.727 2.175 -0.070

Any job search last month 0.116 0.320 0.110 0.314 0.006

Notes:

The baseline sample consists of 268 individuals who participated in the recruitment process and 

experiment discussed in Section 2. The follow-up sample (227 respondents) is the main sample used in 

this paper. The ability score is determined prior to the experiment. It consists of a numeracy and literacy 

component, and has been standardized.  

(5)

Table 2.2: Sample and Attrition

N=268 N=227 Difference   

(3) - (1)

Follow-UpBaseline
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Dependent Variable: 

(1) (2) (3)

1% Job Guarantee 0.025 0.030 -0.004

[0.081] [0.078] [0.083]

5% Job Guarantee 0.047 0.045 0.038

[0.085] [0.079] [0.085]

50% Job Guarantee 0.402*** 0.423*** 0.439***

[0.094] [0.090] [0.093]

75% Job Guarantee 0.568*** 0.543*** 0.565***

[0.105] [0.104] [0.108]

100% Job Guarantee 0.837*** 0.860*** 0.866***

[0.057] [0.055] [0.067]

Constant 0.163*** 0.804*** 0.544

[0.057] [0.153] [0.370]

Observations 227 227 227

R-squared 0.327 0.382 0.431

Stratification cell FE's No Yes Yes

F-stat (of instruments) 101.11 87.47 76.79

Average of dep variable

Notes:

The sample used here is the sample of 227 men found at follow-up. The zero percent chance 

of alternative employment treatment group is the omitted category in these regressions. The 

dependent variable "Got a job" is whether or not the individual received an alternative job 

offer.  Stratification cell fixed effects are included as the randomization was conducted by 

stratifying on baseline ability and whether the individual had ever worked with the recruiter 

previously. The set of covariates includes: age, marital status, education dummies, a dummy 

indicator for whether the respondent has any children, the number of children that the 

respondent has, ability score (a composite measure of numeracy and literacy scores), dummy 

indicators for tribe, a dummy indicator if the respondent has any work experience, reports any 

work in the past month and any job search in the past month, and the number of months in the 

last six months he has worked.*** denotes statistical significance at the 1 percent level, ** 5 

percent level, and * 1 percent level. Robust standard errors are reported. 

Table 2.3: First Stage: Using dummy indicators for each treatment group to 

predict any job offer (recruiter or random job) 

Job offer or recruiter's job offer

0.361
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Dependent Variable: 

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.106 0.128 0.139* 0.084 0.105 0.113 0.079 0.098 0.071

[0.086] [0.086] [0.076] [0.091] [0.090] [0.079] [0.082] [0.081] [0.072]

Constant 0.376*** 0.538*** -0.015 0.395*** 0.520*** 0.043 0.597*** 0.754*** 0.024

[0.041] [0.128] [0.349] [0.043] [0.140] [0.355] [0.038] [0.114] [0.275]

Stratification cell FE's No Yes Yes No Yes Yes No Yes Yes

Other covariates? No No Yes No No Yes No No Yes

Observations 227 227 227 227 227 227 227 227 227

R-squared 0.087 0.282 0.085 0.279 0.019 0.047 0.249

Ave of dep variable (no job)

Notes:

Table 2.4: Returns to Work Experience: Extensive Margin

Frac. months employed Frac. months looked for work Ave # concurrent jobs

Got a job or recruiters job 

offer (IV)

The regressions are IV estimates, where dummy indicators for the treatment assignment (i.e. assignment to a 0-, 1-, 5-, 50-, 75-, or 100-percent 

chance of employment) are used to instrument for the binary indicator got a job offer from recruiter or through random determination.

 The fraction months employed variable is calculated as the number of months the individual was employed over the last 8 months, divided by 8. 

Similarly, the fraction months looked for work variable is computed using a retrospective calendar history, and is calculated as the number of 

months the individual actively sought work over the last 8 months, divided by 8.Lastly, the average number of concurrent jobs is the average of 

the total number of jobs held each month across the 8 month period.
Stratification cell fixed effects are included as the randomization was conducted by stratifying on baseline ability and whether the individual had 

ever worked with the recruiter previously.The set of covariates includes: age, marital status, education dummies, a dummy indicator for whether 

the respondent has any children, the number of children that the respondent has, ability score (a composite measure of numeracy and literacy 

scores), dummy indicators for tribe, a dummy indicator if the respondent has any work experience, reports any work in the past month and any job 

search in the past month, and the number of months in the last six months he has worked.*** denotes statistical significance at the 1 percent level, 

** 5 percent level, and * 1 percent level. Robust standard errors are reported. 

0.421 0.586 0.532
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

-0.576 -0.567 -0.691* 5.463 5.836 7.854* 3.801* 4.191* 3.928** 0.668* 0.687* 0.605*

[0.381] [0.376] [0.387] [4.361] [4.404] [4.173] [2.149] [2.218] [1.885] [0.373] [0.387] [0.354]

Constant 3.223*** 4.033*** 4.720*** 21.559***14.082*** 18.413 4.133*** 10.784 -1.611 1.206*** 0.621 0.216

[0.185] [0.433] [1.139] [2.112] [4.321] [15.205] [0.864] [7.161] [5.779] [0.173] [0.559] [1.135]

Stratification cell 

fixed effects
No Yes Yes No Yes Yes No Yes Yes No Yes Yes

Other covariates? No No Yes No No Yes No No Yes No No Yes

Observations 166 166 166 167 167 167 227 227 227 164 164 164

R-squared 0.029 0.069 0.154 0.035 0.199 0.045 0.251 0.036 0.262

Ave of dep variable 

(no job)

Notes:

Stratification cell fixed effects are included as the randomization was conducted by stratifying on baseline ability and whether the individual had ever 

worked with the recruiter previously.The set of covariates includes: age, marital status, education dummies, a dummy indicator for whether the 

respondent has any children, the number of children that the respondent has, ability score (a composite measure of numeracy and literacy scores), 

dummy indicators for tribe, a dummy indicator if the respondent has any work experience, reports any work in the past month and any job search in the 

past month, and the number of months in the last six months he has worked.*** denotes statistical significance at the 1 percent level, ** 5 percent level, 

and * 1 percent level. Robust standard errors are reported. 

 The average daily wage is  calculated using the restrospective job work history. The average daily wage is calculated as the average wage on the 

individual's main job in the last month. Columns 1 through 3, those who are unemployed are coded as 0's. Columns 4 through 6 uses the logged wage, 

therefore for individuals who earned $0 across all eight months are omitted.

The regressions are IV estimates, where dummy indicators for the treatment assignment (i.e. assignment to a 0-,    1-, 5-, 50-, 75-, or 100-percent 

chance of employment) are used to instrument for the binary indicator got a job offer from recruiter or through random determination.

Table 2.5: Returns to Work Experience: Intensive Margin

Ave hrs worked per week

Ave daily wage (incl. 

Unemployed) Log (Ave daily wage)

5.079 1.361

Hourly wage

23.265 0.489

Dependent 

Variable: 

Got a job or 

recruiters job offer 

(IV)
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Avg dep var 

(no job) Coeff SE

Avg dep var 

(no job) Coeff SE

Avg dep var 

(no job) Coeff SE

Occupation: (1) (2) (3) (4) (5) (6) (7) (8) (9)
Professional, technical, and 

related workers 
0.368 0.158 [0.108] 1.515 0.661 [0.599] 0.475 -0.075 [0.142]

Administrative and managerial 

workers 
0.007 0.052 [0.040] 0.007 0.279 [0.251] 0.000 0.083 [0.053]

Clerical and related workers 0.213 0.150 [0.106] 0.691 0.695 [0.485] 0.212 0.057 [0.125]

Sales workers 0.044 -0.015 [0.043] 0.096 0.117 [0.190] 0.030 0.009 [0.055]

Service workers 0.066 -0.053 [0.040] 0.419 -0.352 [0.259] 0.091 -0.056 [0.057]

Agriculture, animal husbandry, 

and forestry workers, 

fishermen, and hunters 

0.066 -0.032 [0.038] 0.346 -0.130 [0.227] 0.081 -0.019 [0.052]

Production and related 

workers, transport equipment 

operators, and labourers 
0.110 -0.029 [0.061] 0.471 -0.074 [0.284] 0.111 0.001 [0.079]

Notes:

Stratification cell fixed effects are included as the randomization was conducted by stratifying on baseline ability and whether the individual had ever 

worked with the recruiter previously.The set of covariates includes: age, marital status, education dummies, a dummy indicator for whether the 

respondent has any children, the number of children that the respondent has, ability score (a composite measure of numeracy and literacy scores), 

dummy indicators for tribe, a dummy indicator if the respondent has any work experience, reports any work in the past month and any job search in 

the past month, and the number of months in the last six months he has worked.*** denotes statistical significance at the 1 percent level, ** 5 percent 

level, and * 1 percent level. Robust standard errors are reported. 

Any job held in past 8 months:

Num months in each occupation 

in past 8 months:

Modal occupation in past 8 

months

Table 2.6: Shifts in occupations

The regressions are IV estimates, where dummy indicators for the treatment assignment (i.e. assignment to a 0-, 1-, 5-, 50-, 75-, or 100-percent chance 

of employment) are used to instrument for the binary indicator got a job offer from recruiter or through random determination.
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Dependent Variable: 

(1) (2) (3)

-0.576 -0.567 -0.691*

[0.381] [0.376] [0.387]

Constant 3.223*** 4.033*** 4.720***

[0.185] [0.433] [1.139]

Stratification cell FE's No Yes Yes

Other covariates? No No Yes

Observations 166 166 166

R-squared 0.029 0.069 0.154

Ave of dep variable (no job)

Notes:

The regressions are IV estimates, where dummy indicators for the treatment assignment (i.e. 

assignment to a 0-, 1-, 5-, 50-, 75-, or 100-percent chance of employment) are used to instrument for 
 The average daily wage is  calculated using the restrospective job work history. The average daily 

wage is calculated as the average wage on the individual's main job in the last month. Columns 1 

through 3, those who are unemployed are coded as 0's. Columns 4 through 6 uses the logged wage, 

therefore for individuals who earned $0 across all eight months are omitted. Ave hours worked per 

Stratification cell fixed effects are included as the randomization was conducted by stratifying on 

baseline ability and whether the individual had ever worked with the recruiter previously.The set of 

covariates includes: age, marital status, education dummies, a dummy indicator for whether the 

respondent has any children, the number of children that the respondent has, ability score (a composite 

measure of numeracy and literacy scores), dummy indicators for tribe, a dummy indicator if the 

respondent has any work experience, reports any work in the past month and any job search in the past 

Table 2.7: Contract type

Unit of pay (1 = daily, 2 = weekly,    3 = fortnightly; 

4 = monthly)

Got a job or recruiters job offer 

(IV)

3.169
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Avg dep var Coeff SE

Panel A: Social Networks: (1) (2) (3)

Heard about a job opportunity 0.438 0.234** [0.115]

# job opportunities 0.795 0.126 [0.268]

Secured a job opportunity 0.091 0.085 [0.056]

# job opportunities secured 0.080 0.077 [0.056]

Panel B: Signalling:

Used any reference letter for a job in last 8 

months
0.648 -0.074 [0.110]

Panel C: Wage Expectations:

Self-reported monthly reservation wage 361.873 121.253 [84.563]

Notes:

The regressions are IV estimates, where dummy indicators for the treatment assignment (i.e. 

assignment to a 0-,    1-, 5-, 50-, 75-, or 100-percent chance of employment) are used to instrument for 

the binary indicator got a job offer from recruiter or through random determination.
Stratification cell fixed effects are included as the randomization was conducted by stratifying on 

baseline ability and whether the individual had ever worked with the recruiter previously.The set of 

covariates includes: age, marital status, education dummies, a dummy indicator for whether the 

respondent has any children, the number of children that the respondent has, ability score (a composite 

measure of numeracy and literacy scores), dummy indicators for tribe, a dummy indicator if the 

respondent has any work experience, reports any work in the past month and any job search in the past 

month, and the number of months in the last six months he has worked.*** denotes statistical 

significance at the 1 percent level, ** 5 percent level, and * 1 percent level. Robust standard errors are 

reported. 

Table 2.8: Channels
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Panel A: Ability 

Inteactions

Frac. months 

worked

Avg daily wage (incl. 

unemployed)

Logged (Avg daily 

wage)

(1) (2) (3)

Got a job 0.119 4.443** 6.711**

[0.074] [1.820] [3.137]

Ability score X Got job -0.169** -3.046* -5.654*

[0.079] [1.773] [3.038]

Ability score 0.099 -1.396 2.636

[0.099] [1.741] [4.166]

Panel B: Degree interactions
(1) (2) (3)

Got a job 0.057 7.431* 1.545**

[0.209] [4.407] [0.759]

Degree X Got a job 0.359 -21.501 -4.144

[1.254] [24.915] [3.204]

Degree -0.033 0.000 3.513**

[0.000] [12.706] [1.645]

Panel C: Current labor attachment interactions:

(1) (2) (3)

Got a job 0.761 6.851 5.126

[1.108] [23.227] [4.178]

-0.918 -4.075 -6.233

[1.532] [33.295] [5.784]

Any work in last month 0.334 2.087 2.295

[0.483] [10.858] [1.778]

Panel D: Any previous experience interactions:

(1) (2) (3)

Got a job -0.233 9.528 8.844

[0.478] [9.609] [9.874]

Ever worked X Got a job 0.530 -8.900 -11.214

[0.742] [15.287] [13.496]

Ever worked -0.189 4.898 4.136

[0.277] [5.617] [4.853]

Notes:

Table 2.9: Heterogeneity of wage and employment impacts 

Any work in last month X 

Got a job

The probability of alternative employment (P i ) and the interaction of the baseline characteristic and the probability of alternative 

employment assigned  (Base i * P i ) are used to instrument for the binary indicator JO i  and the interaction of the baseline 

characteristic and the job offer (Base i *JO i ). The fraction months employed variable is calculated as the number of months the 

individual was employed over the last 8 months, divided by 8.  The average daily wage is  calculated using the restrospective job 

work history.  Stratification cell fixed effects are included as the randomization was conducted by stratifying on baseline ability and 

whether the individual had ever worked with the recruiter previously.The set of covariates includes: age, marital status, education 

dummies, a dummy indicator for whether the respondent has any children, the number of children that the respondent has, ability 

score (a composite measure of numeracy and literacy scores), dummy indicators for tribe, a dummy indicator if the respondent has 

any work experience, reports any work in the past month and any job search in the past month, and the number of months in the last 

six months he has worked.*** denotes statistical significance at the 1 percent level, ** 5 percent level, and * 10 percent level. 

Robust standard errors are reported. 

125



 

126 
 

Chapter 3  

Employee Crime and Monitoring 

 

 

3.1 Introduction 

Employee crime is costly and widespread. Snyder (1991) estimates the losses 

incurred from employee theft, excluding fraudulent reporting of financial statements, to 

be approximately $120 billion per annum in the United States alone. Statistics on the 

extent of employee crime are less readily available in developing countries, but the 

available evidence indicates high levels of employee crime (PwC, 2002; Chandra et al., 

2001; Fafchamps, 2004; UN, 2003). In addition to the costs to individual businesses, 

corruption broadly construed has been highlighted as a constraint to growth (Schleifer 

and Vishny, 1993; Mauro, 1994). Also, small scale firms also cite employee theft as a 

reason not to hire workers (Fafchamps, 2004). Therefore, employee crime may thwart 

firm growth and job creation. Understanding strategies that may reduce employee crime 

is important. In this paper I examine the role of one strategy – auditing of monetary 

transactions – and the impact of this strategy on employee crime. 
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Whether and to what extent auditing will affect employee crime is theoretically 

ambiguous.  Becker’s seminal work (1968) examines the optimal allocation of resources 

to the detection and punishment of crime. He shows that the optimal amount of 

enforcement depends on the cost of detecting and punishing individuals, as well as the 

behavior change of offenders to enforcement. Becker and Stigler (1974) apply this model 

to employee crime and show that both higher wages and the positive probability of audit 

deter corruption. The economic rationale is clear. The higher the cost of committing a 

crime, conditional on being caught, the lower the expected payoff to committing that 

crime. Behavioral economists and psychologists have challenged this rational-

expectations based intuition, however. Frey (1993a and 1993b) suggest that implicit 

psychological contracts between an employer and his employee could be undermined in 

the presence of a non-zero audit probability. Specifically, increased monitoring may in 

fact increase employee crime or lower effort. Chang and Lai (1999) combine the rational 

actor model with the behavioral insights. From this model they derive theoretically 

ambiguous predictions for how employee crime responds to monitoring intensity in the 

workplace. However, their model does not provide conditions under which either 

economic incentives or psychological disincentives dominate.  

The existing empirical literature finds mixed results about the effect of monitoring 

on employee crime. An extensive review of the literature examining how employees 

respond to incentives in the workforce broadly is provided in Prendergast (1996). This 

review largely finds that individuals act in accordance with a rational cheater model. 

Specifically, individuals respond to incentives induced by monitoring by changing their 

behavior when the marginal benefit of the alternative outweighs its marginal cost. 
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Although theoretical models identify two key channels to influence employee behavior – 

wages and monitoring – the empirical literature has largely focused on the impact of 

wages on employee effort (Laezear 1996; Paarsch and Shearer 1996). A handful of 

papers have examined the trade-off between wages and supervision (Groshen and 

Krueger 1990; Kruse 1992; Rebitzer 1995; and di Tella and Schargodsky 2003). To my 

knowledge, there is only one paper that focuses explicitly on the impact of monitoring on 

employee effort, specifically opportunistic behavior (Nagin et al., 2002). Nagin et al. 

(2002) use experimentally induced variation in the audit rate at a call center firm in the 

United States to examine the impact of auditing on employee effort and opportunistic 

behavior. The probability of an audit ranges from zero to 15 percent. Employees exhibit 

heterogeneous responses to monitoring: while some employees reduced their effort when 

the audit rate declined, a substantial fraction did not. Moreover, some employees reduced 

their effort when the audit rate increased. These mixed empirical results from one study 

from one firm in the United States suggest that there is scope to learn a great deal more 

about how employees respond to changes in the degree of supervision in the workplace.  

A key limitation when examining the impact of auditing on worker effort or 

specifically employee crime is that auditing is often endogenous to the prevalence and 

cost of employee crime. Within firm or across firm variation in audit rates are likely to 

arise in part due to differences in the existence or extent of crime. Specifically, increases 

in auditing may result precisely because there is a problem with employee effort or crime. 

Moreover, it is likely that employees who are suspected of being likely to engage in 

employee crime are also those likely to be supervised with greater intensity. This makes 

it difficult to ascertain the causal impact of changes in auditing on employee crime.  
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A second limitation arises due to difficulties in measuring the audit rate. Many 

studies that examine the impact of monitoring use the ratio of supervisors to staff rather 

than an actual measure of monitoring by those supervisors (Groshen and Krueger, 1990). 

Because most supervisors only allocate some of their time to monitoring, much of the 

true variation in monitoring is not captured with this measure. Also, under this definition 

the monitoring rate is likely correlated with other human resource protocols that 

independently affect employee effort (and specifically employee crime), therefore 

introducing omitted variable bias.  

A third challenge relates to the measurement of employee effort and employee 

crime. Many studies use measures of worker productivity; for some industries this is 

relatively easy, for example if piece-rate wages are paid (Laezear 1996; Paarsch and 

Shearer 1996). However, in many other cases productivity is not easily observed. 

Employee crime is also difficult to observe.  Many studies that specifically focus on 

employee crime utilize susceptibility to crime rather than actual employee transgressions 

due to the lack of availability of such data (e.g. Nagin and Paternoster, 1993; Barnes and 

Lambell, 2007). Studies that measure crime directly often use an aggregated measure. For 

example, Rickman and Witt (2007) use actual record employee theft aggregated by 

region due to data availability. 

This paper exploits experimentally induced variation in the degree of supervision. 

Specifically, I measure how interviewers employed in a short term contracting market in 

Malawi alter their opportunistic behavior in response to changes in the audit rate. Like 

the Nagin et al. (2002) paper, the approach taken here overcomes the standard challenges 
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to identification and measurement. In this paper the monitoring rate is exogenously 

induced; the measurement of monitoring is well-defined and accurate; and the 

measurement of employee crime (although one-dimensional) is interviewer-specific and 

captures actual rather than perceived behavior. This paper is most similar to the Nagin et 

al. (2002) paper but makes a number of new contributions. First, I observe variation in 

monitoring over a wider spread of possible audit rates; it provides the first evidence in a 

developing country setting in a more informal labor market.; I examine employee theft 

rather than opportunistic behavior use actual theft; and I exploit within employee 

variation rather than across employee variation to measure the responses. Moreover, the 

results in Nagin et al. (2002) are mixed and more evidence on behavioral responses to 

varying monitoring regimes is needed.    

The specific short term contracting market is the market for interviewers. 

Employees in this context are interviewers who are required to handle cash transactions 

as part of their data collection efforts. Each work day interviewers are provided a set 

amount of stock and cash. At the end of each day the remainder of the stock and cash are 

collected. The amount of stock and cash can be reconciled with the questionnaires 

submitted. Whether or not interviewers are audited and the probability that an individual 

interviewer is audited on a given day is randomized daily. Each day all employees face 

the same chance of being audited; for example, on a day with a 50 percent audit 

probability, half of the interviewers will be randomly selected for audit. This variation 

identifies the impact of monitoring on two measures of employee crime: the probability 

of stealing cash, and the amount of cash stolen. The data are collected from two distinct 

rounds of data collection with slightly different protocols. The data comprises 34 distinct 
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employees and 36 different days for a total of 499 observations. Different employees 

work in the different rounds; and even within round not all employees work all days. 

Also, in round two, not all individuals are audited each day reducing the number of 

interviewer-day observations.  

I find that the prevalence of employee crime decreases as the monitoring rate 

increases. In the first round of data collection, the probability of stealing any money 

declines by between 16.7 and 21.7 percentage points when moving from no monitoring to 

full monitoring. The response is considerably stronger in round two, where I find 

interviewers were approximately 55 percentage points less likely to pocket any money in 

the case of no monitoring compared to full monitoring. The process in round two was 

more transparent to employees, and the audit rate was more credible. In both cases, the 

effect of monitoring is statistically significant, and is robust to the inclusion of 

interviewer and day-of-week fixed effects.   

Increasing the monitoring rate from no monitoring to full monitoring reduced the 

amount of money stolen per person by five to nine kwacha. While in dollar terms this is a 

small amount of money, in percentage terms this is a large reduction ranging from a 50 to 

80 percent reduction depending on the round and empirical specification used. The 

estimated effect is not statistically significant at the 10 percent level in either individual 

round due to limited statistical power. However, when using the pooled data the 

reduction in the amount stolen is statistically significant at the 5 percent level.  

The paper proceeds as follows. Section 3.2 sets out a simple conceptual 

framework of employee crime. Section 3.3 provides relevant details about the specific 
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context, the experiment implemented, the data used in this paper and the measurement of 

the audit rate and employee crime. Section 3.4 presents the empirical strategy and Section 

3.5 presents and discusses the results. Section 3.6 concludes. 

3.2 Employee crime – Monitoring and fines 

The decision to engage in corrupt activities is a decision made under uncertainty. 

That uncertainty operates through two key channels. First, there is uncertainty as to 

whether the interviewer will be caught. Second, there is uncertainty with respect to the 

penalty if caught. The basic model set out below focuses on an interviewer’s decision to 

commit employee theft.  

There are two states of the world, one in which corruption is detected and another 

in which it is not. Interviewers face a standard concave utility function such that      

and       . The employee’s choice variable is the extent of participation in corrupt 

activities d – here, measured as the amount of money stolen. The present discounted 

value of future income is captured by A. Conceptually, this income is a composite of 

potential income from the current employer and other employers. The probability of 

being hired in the future (either by the current employer or other employers) is denoted 

by q.  The probability that an employee who has stolen money is caught is equivalent to 

the percent of interviewers monitored on any particular day, p. In other words, if an 

employee cheats and he is audited he is caught. If an interviewer is caught stealing he 

faces a penalty, F(d). The penalty imposed translates into a reduction in the interviewers’ 

probability of accessing future employment opportunities, and as such results in a lower 

present discounted future income in the state of the world in which he is caught. 

Employees are not immediately fired as there are large frictions for the employer to 
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replace the employee, including search and training costs. Therefore, it is inefficient to 

summarily dismiss any employee caught cheating. The penalty imposed can be thought 

of as a negative shock to reputation with both the current and other employers.  This 

penalty is an increasing function of the amount stolen (i.e. F'(d)>0); those who are caught 

stealing more suffer a larger cost to their reputation and therefore a lower probability of 

future job opportunities. Assume F''(d)<0, i.e. the penalty is increasing at a decreasing 

rate in the level of employee crime. In this case the expected utility function is:  

   (   ) [    ]    [  (   ( )) ]                  (1) 

The first-order condition for an interior maximum is: 

(   )  [    ]     [  (   ( )) ](    )                     (2) 

The second order condition for a maximum is: 

    (   )  [    ]     [  (   ( )) ](    )               (3) 

The first comparative static of interest is how corrupt behavior d depends on the 

monitoring rate p. Differentiating (2) and simplifying yields: 

  

  
 

 

   
[  [    ]    [  (   ( )) ](    )]                    (4) 

The above derivative is negative because marginal utility is positive in both states 

of the world; the SOC is positive and π_d is a probability. As the monitoring rate 

increases (i.e. risk of detection rises) the likelihood or amount of employee crime 

committed should decline. Including a nominal fixed cost of being caught that embodies 
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distaste for stealing, or the stigma of being caught will ensure that the optimal amount 

stolen under full monitoring is not zero. 

3.3 Background and intervention 

3.3.1 Context 

Nationally representative firm level data providing employee crime prevalence is 

not available in Malawi. However, a survey of small traders conducted in 1999 and 2000 

shows that 33 percent of these traders were victims of inventory theft in the past 12 

months. The reported maximum value of goods stolen relative to annual sales was as high 

as 42.1 percent. Only nine percent of the traders suspected an employee in the event of 

inventory theft but an additional 11 percent of traders reported not hiring workers for fear 

of theft (Fafchamps, 2004). Interestingly, the National Bank of Malawi promotes their 

VISA debit cards by citing reduced employee theft as a benefit (National Bank of 

Malawi, 2008).  Both the statistical evidence and the market response suggest that 

employee crime is an important challenge to firms and small traders in Malawi.  

I conduct this experiment in the context of a market for short term skilled labor 

contracts. This market is characterized by fairly well educated employees  who are hired 

shortly before the start of a contract to work for fixed periods of employment.  

Interviewers often work on overlapping contracts – before the one contract terminates 

they find a new contract and switch employers. Mostly, neither the employer nor the 

employee is required to give notice.  

In this paper, employees are hired as interviewers. Their responsibilities include 

interviewing a predefined sample of men across a period of several weeks. Interviewers 
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were required make a cash payment to each respondent and then offer the respondent the 

opportunity to purchase reduced-priced condoms. There are multiple forms of employee 

crime that can arise in this setting. First, employees can steal money that remains at the 

end of the work day. Second, employees can pay respondents too little money and pocket 

the difference. Third, employees can complete ghost questionnaires and pocket the 

money intended for a respondent. Optimally, one would like to measure all three directly. 

Unfortunately, good data is only available on the first type of crime and is therefore the 

focus of this paper.  

Evidence regarding the other types of employee crime suggests that it is very low. 

For example, the number of interviews conducted does not vary with the audit rate. 

Although I cannot directly measure the prevalence of ghost questionnaires there is 

suggestive evidence that the general prevalence of this type of dishonest behavior is low 

and not differential by the monitoring rate. First, supervisors of the interviewers perform 

spot checks to ensure that interviewers actually visited respondents. From these spot 

checks only one case of an interviewer paying the respondent too little was observed, and 

no ghost respondents were noted.  Second, the survey data collected by the interviewers 

was part of a panel study; using information from one of the other waves of data 

collection I construct a measure of inconsistencies in time-invariant variables by day of 

interview across survey wave. A higher frequency of inconsistencies between the two 

waves of data would suggest a higher probability that the interviewer did not interview 

the correct respondent or any respondent. Importantly, this measure of inconsistency does 

not vary by the audit rate on the day of the interview.  
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3.3.2 Monitoring experiment 

The data used in this paper is pooled across two rounds of experimentation. In this 

section I outline the details of each round and note the key differences between the two 

rounds.   

3.3.2.1. Round 1: 

The detailed timeline of a typical work day for the subjects of this experiment is 

presented in Figure 3.1. The first round of data collection includes 13 distinct 

interviewers working on 19 different days. Not all interviewers worked each day. There 

are a total of 193 interviewer-day level observations from this round of data. In this initial 

round of data collection the monitoring rate was not explicitly randomized but 

determined in an ad-hoc manner before each work day. It was determined by the 

experimenter but prior to examining the level of theft on the previous day. To minimize 

interference with the project for which the interviewers were hired the monitoring rate 

was not altered every day during this round of data collection. There were three different 

monitoring rates: 0 percent, 33 percent and 100 percent. The audit rate was 

communicated directly to the field supervisors, who were then required to communicate 

this to all interviewers at the start of each work day. On days where the audit rate was 33 

percent, the identity of the interviewers to be audited was not revealed to supervisors in 

advance. This was enforced to minimize the extent to which supervisors could collude 

with interviewers.  

At the beginning of each work day interviewers received 300 Malawian kwacha; a 

set number of condoms; and questionnaires. Supervisors communicated the monitoring 

rate by announcing how many of the interviewers would be audited at the end of the work 
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day. During the work day each interviewer was required to give each respondent 30 

Malawian Kwacha and then offer the respondent the opportunity to purchase reduced-

priced condoms. Condoms were sold at the following rates: one condom for two kwacha 

or a pack of three condoms for five kwacha. Respondents could buy up to 30 kwacha 

worth of condoms. Interviewers typically completed four interviews and sold an average 

of 7.29 condoms per day (Table 3.1). At the end of each work day interviewers were 

required to submit all questionnaires to their supervisor and all remaining condoms and 

coins to the experimenter.  

The experimenter collected data about transaction accuracy for all interviewers 

every day (effectively, implementing a 100 percent audit rate). This process involved 

carefully reconciling the amount of money returned and comparing it to the amount that 

should have been returned given the number of questionnaires completed and condoms 

sold.  A list of all interviewers for which there was a discrepancy and the amount of the 

discrepancy was communicated to the supervisors. On days when the full-monitoring 

regime had been announced to interviewers, supervisors privately communicated 

discrepancies to the interviewers for whom cheating was detected. When there was 

partial monitoring supervisors spoke to the subset of interviewers who were randomly 

chosen to be subject to auditing, and on days on which there was no monitoring no-one 

was informed about whether they had returned too little money.  Other than 

communicating the discrepancy there was no explicit punishment for being caught. The 

reputation cost of being caught cheating was not made explicit. Moreover, there were no 

real or announced consequences for letters of references that were provided at the end of 

the contract. 
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3.3.2.2. Round 2:  

Building on the experience from the first round, the second round of 

experimentation was conducted more systematically. First, the daily audit rate was 

explicitly randomized by day. The monitoring rates varied from zero to 100 percent. The 

frequency of monitoring rates is shown in Figure 3.2. Lower probability audit rates were 

assigned with greater frequency. The second round of data collection involves 21 distinct 

interviewers across a period of 17 days. As in the first round, not all interviewers work 

each day; the total number of observations is 306.  

Specific details pertaining to the timeline of activities for the work day for this 

round of data collection are also presented in Figure 3.1. At the beginning of each work 

day interviewers received either 150 or 180 Malawian kwacha; a set number of condoms; 

and questionnaires.  As in the first round of data collection, interviewers were informed 

as to how many in the group would be audited each day. Each day the randomly 

determined probability of audit is the same for all employees. However in this case the 

announcement was made by the experimenter rather than the supervisors. During the 

work day, at the end of each interview interviewers were required to give the respondent 

30 Malawian Kwacha and then offer the respondent the opportunity to purchased 

reduced-priced condoms, just as in round one.   

At the end of each work day interviewers were required to submit all 

questionnaires to their supervisor. All remaining condoms and coins were handed in to 

the experimenter the following morning. On days when there was no monitoring, all 

employees were asked to place all remaining stock of condoms and coins in one large 

sealed box. This was done publicly and given that each bag was unmarked it was clear 
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that interviewer bags of coins and stock could not be traced to a specific interviewer. On 

days with 100-percent monitoring, each interviewer submitted their stock and coins. 

These were labeled and reconciled later in the day. On days with partial monitoring, first 

a random draw of interview IDs took place. Each interviewer ID was placed in a black 

bag. A number of ID tokens corresponding to the day’s audit rate were drawn from the 

bag, in full view of all interviewers. For those interviewers who were selected for 

auditing, the same process as on days of full monitoring occurred. For those interviewers 

who were not selected the same protocol for days of no monitoring was followed.  

After reconciling the stock, coins, and questionnaires, the experimenter 

communicated discrepancies to individual interviewers in private the following day. 

Individuals who had not cheated were informed that they had not cheated.   

3.3.2.3 Key differences in data collection by round 

 Several differences in implementation between rounds one and two may affect 

interpretation of the results. First, the audit rate was explicitly randomly determined in 

round two. In round one, it was determined in an ad-hoc basis unrelated to the prevalence 

of crime, but it was not explicitly randomized. Second, supervisors were not an 

intermediary in the collection process of the stock and coins in round two. Therefore, in 

round two all responsibility lies with the interviewer and there is no possibility for 

collusion with the supervisors. Third, in round one while the daily audit rate was 

announced all interviewers were in fact audited. In round two, the audit rate that was 

announced was implemented. The random selection of interviewers selected for auditing 

was also conducted in an open transparent manner. Therefore, the round two process was 
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likely more credible and transparent. Fourth, there is considerably less variation in the 

partial monitoring rates in round one as compared to round two.  

 While the implementation of the experiment differed on those dimensions, many 

design elements were preserved across the two rounds.  These key similarities include the 

type of work and scope for theft; the private notification of discrepancies; and the lack of 

explicit punishment when cheating was detected.  

3.3.3 Data 

Measures of employee crime are drawn from the daily administrative data from 

two rounds of the experiment. I complement this administrative data with a limited set of 

demographic data. In the first round, there are 13 distinct interviewers (all men) and 19 

different days with non-missing data.  In the second round of data, there are 21 distinct 

interviewers (76.1 percent are men) and 17 days of data. On any particular day there may 

be missing data for a subset of interviewers. There are a number of reasons why 

interviewers did not work all days of the contract. First, not all participants worked the 

full duration of the project. In some cases, they experienced early termination of their 

contract by their project field supervisor for reasons unrelated to the monitoring 

experiment.  Second, some employees terminated their contracts early in all cases 

immediately beginning on another short term contract. Third, for a subset of interviewers 

in the first round of data collection, they were only hired mid-project.  Lastly, in both 

rounds of data collection interviewers were absent for work for a variety of reasons, in all 

cases informing their supervisors of their absence prior to the morning revelation of the 

monitoring rate. In total, I use 499 interviewer-day observations in the analysis, 193 

observations from round one and 306 observations from round two. 
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Table 3.1 presents descriptive statistics for each round of data collection and the 

pooled dataset. As all employees in round one were male and 76.1 percent of the 

employees in round two were male, only 14.7 percent of employees in the pooled sample 

were female. All participants had completed their secondary schooling as this was an 

eligibility requirement for the job. Interviewers were on average 25 years of age; in round 

one 36 percent were married and in round two 25 percent of the employees were married. 

The predominant ethnicity in the area is the Yao tribe and this is reflected in the ethnicity 

of the interviewers. In round one, 36.5 percent of the interviewers are Yao and 44.7 

percent are Yao in round two. Table 3.1 also presents the summary statistics from the 

administrative data of the day-to-day work undertaken by the interviewers. These 

statistics show key differences between the two rounds of data collected. First, 

interviewers completed on average four and two interviews per day in rounds one and 

two respectively. The second round of data collection was a follow-up study and required 

finding the same respondents as interviewed during a baseline survey. Therefore, 

interviewers needed to allocate time to locating individuals who had moved thus less time 

in any particular day was available for conducting interviews. In both rounds of data 

collection interviewers worked six days of the week – Monday through Saturday.  

3.4 Empirical strategy 

In this section, I first discuss the measurement of the key outcome variables: 

whether interviewers stole and how much they stole. Then I present the main empirical 

specification and discuss the validity of the underlying assumptions for this empirical 

strategy.  
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3.4.1. Measuring employee crime 

I use two key outcomes to measure employee crime. First, I construct a binary 

indicator equal to one if the interviewer returned too little money (Any money missing) 

and zero otherwise. Table 3.1 shows that in 45.1 percent of cases in round one and 60.9 

percent of cases in round two, interviewers pocketed or miscounted some of the petty 

cash in a manner that resulted in a net loss to the employer. It is interesting to highlight 

that in 13 percent of cases in round 1 and 16.1 percent of cases in round two, interviewers 

actually returned excess cash. For the purposes of this binary indicator I code these 

interviewers as zeros (i.e. no money missing). The existence of excess money returned 

highlights the fact that the measure of employee crime also embodies calculation errors. 

However, the prevalence of money missing interviewer-day level observations is 

substantially higher than the frequency of interviewer-days in which excess money is 

returned.  

Second, I construct a continuous variable equal to the discrepancy between the 

amount of coins that the interviewer returned and the amount that they should have 

returned (Amount of money missing). This is coded as negative in the cases where excess 

money is returned. Table 3.1 shows that conditional on not returning exactly the correct 

amount of cash, the average amount stolen is 14 and 7.4 Malawian Kwacha per person in 

rounds one and two respectively.  This average includes the negative amounts, i.e. the 

cases when excess money is returned. This is 4.7 and 6.5 percent of the total money 

issued to an interviewer each day – a non-trivial share of the money each interviewer 

handled daily. Figure 3.3 presents the average amount stolen on days with no monitoring, 

partial monitoring and full monitoring for each round of data and in the pooled data. 
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Despite the differences in implementation across the two rounds, the patterns of 

employee crime are quite consistent. Specifically, in round one, 50 percent of 

interviewers stole any money when there was no chance of an interviewer audit; 43 

percent under a partial monitoring regime, and 32 percent when all interviewers were 

audited. In round two, rates of theft are somewhat higher than round one under both full 

and partial monitoring regimes, but somewhat lower under the full monitoring treatment. 

This may be attributable to the more credible and transparent auditing process conducted 

in round two.  

Figure 3.4 shows the average amount stolen under the three monitoring regimes 

and two rounds of data collected. On average, MK 10 was stolen in either round one or 

round two when there was no auditing.  With complete monitoring, the average amount 

stolen fell to MK 3 in each round. Under partial monitoring there are larger differences in 

the amount stolen between the two rounds. In round one, interviewers stole 

approximately 9 MKW and in round two 4 MKW. The larger range of partial monitoring 

in round two may be a key factor for these differences.  

The full distribution of the amount stolen for each of the different monitoring 

rates, using data from both rounds, is shown in Figure 3.5. We see that when full 

monitoring was implemented, a larger fraction of interviewers return the correct amount 

of money to the project. We can reject the null hypothesis that the distributions are 

equivalent using the Kolmogorov-Smirnov two-sample test for equality of distributions 

(p-value is 0.000). Similarly, using the Kolmogorov-Smirnov two-sample test for 

equality of distributions for the amount stolen under no monitoring and partial monitoring 
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the p-value is 0.000 and thus the null hypothesis that these distributions are the same is 

also rejected.  

3.4.2 Main empirical specification 

In this paper, I estimate the causal impact of the exogenously-assigned audit rate 

on the prevalence and extent of employee crime as measured by money stolen by 

employees. I estimate the following specification: 

                      

where     measures employee crime of individual i on day d. I use two measures 

of crime: a binary indicator equal to one if the interviewer i on day d returned too little 

money (i.e. any money missing) and zero otherwise, and a continuous measure capturing 

the amount of money missing by interviewer i on day d. For the continuous measure, the 

amount of excess money returned is coded as a negative value. Md is the announced 

probability of an audit. This probability is the same across interviewers within a day. 

Therefore, variation in the audit rate is only present across time. Xi denotes interviewer 

fixed effects and Yw captures day of the week fixed effects.  

The identifying assumption is that the error term is uncorrelated with the 

monitoring variable. This is satisfied by the exogenous assignment of the audit 

probability. One test of this assumption is to test whether the audit rates are predicted by 

interviewer characteristics. In round two, there are numerous audit rates implemented 

with relatively small sample sizes; as such, I restrict the comparison across treatment 

arms for the purposes of this test to: zero, partial and full monitoring. Table 3.2 presents 

the mean of each baseline characteristic of the interviewers for each of these monitoring 
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regimes for each round and for the pooled data. In Columns 4, 8 and 12, I present the p-

value of the joint F-test of the significance of the coefficients on full and partial 

monitoring from a regression of the baseline characteristic on indicators for the full and 

partial monitoring regimes. Table 3.2 shows that the different treatment arms appear to be 

balanced across the limited set of baseline characteristics available. In most cases, I 

cannot reject the null hypothesis that the means are jointly equal across the groups. One 

exception is the average age across groups in the pooled data. Interviewers in round two 

are on average slightly younger than those employed in round one by approximately one 

year; and in round two a larger fraction of the observations fall under partial monitoring. 

Therefore this systematic difference in the average age across monitoring regimes in the 

pooled data is a direct consequence of these factors.  The marginally significant 

difference in the fraction male across monitoring regime in the pooled data arises due to 

there being no female interviewers in round one and higher frequency of partial 

monitoring in round two.  

Given the random assignment and the validity of the underlying assumption that 

the error term is indeed uncorrelated with the monitoring rate, β1 can be interpreted as a 

causal estimate of the impact of the monitoring rate on actual employee crime.  The main 

results come from linear probability models for ease of interpretation, but probit models 

yield qualitatively similar results for the case where the binary indicator of employee 

crime is used.  There are limited additional covariates available, including the age, tribe 

and marital status of the interviewer; whether or not these additional covariates are 

included in the regression does not substantively affect the results.  
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The usual assumption that εid is independent and identically distributed is violated 

due to the fact that we have multiple observations per person, and multiple observations 

per day. As different interviewers likely exhibit different cheating norms, I include 

interviewer fixed effects. Also, it is reasonable to assume that observations of one 

interviewer are correlated and therefore important to cluster the standard errors by 

interviewer. Since treatment varies by day, it is appropriate to cluster the standard errors 

at that level. To account for both clustering at the day and interviewer level 

simultaneously I implement two-way clustering (Cameron, Gelbach and Miller, 2008) in 

all regressions. 

                        

where:     measures employee crime of individual i on day d. To measure the employee 

crime I use a binary indicator equal to one if the individual i on day d returned too little 

money (i.e. stole any money) and zero otherwise.I also use a continuous measure 

capturing the amount of money stolen by individual i on day d. Md is the probability of an 

audit that employees are told. This probability is the same across individuals within a 

day. Therefore, variation is only induced across time not across individuals. Xi denotes 

individual fixed effects and Yw captures day of the week fixed effects.  

Given that Md is randomly determined by the experimenter the audit rate is 

exogenously determined unlike most other studies. Therefore, it is assumed that the error 

term is uncorrelated with the monitoring variable. One test of this assumption is to 

compare observable characteristics across the different treatment arms. In round two, 

there are numerous audit rates implemented with relatively small sample sizes, as such I 
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restrict the comparison across treatment arms for the purposes of this test to: no 

monitoring, partial monitoring and full monitoring. Table 3.2 presents the mean of each 

baseline characteristic of the interviewers for each of these monitoring regimes for each 

round and for the combined data. In Columns 4, 8 and 12, I present the p-value of the 

joint F-test of the significance of the coefficients on full monitoring and partial 

monitoring from a regression of the baseline characteristic on indicators for full and 

partial monitoring regimes. Table 3.2 shows that the different treatment arms appear to be 

balanced across the limited set of baseline characteristics available. In most cases, I 

cannot reject the null hypothesis that the means are jointly equal across the groups. In 

both rounds, there is no statistically different rate of monitoring observed across 

interviewer characteristics such as marital status, age and ethnicity. Only in one case 

when the data from the two rounds are combined there is a systematic difference by 

baseline characteristics across the monitoring regimes. Specifically, the average age of 

participants systematically differs across the monitoring regimes. Individuals in round 

two are on average slightly younger than those employed in round one by approximately 

one year; and in round two a larger fraction of the observations fall under partial 

monitoring. Therefore this systematic difference in ages in the combined data is a direct 

consequence of this combination of factors.   

Given the random assignment and the validity of the underlying assumption that 

the error term is indeed uncorrelated with the monitoring rate,    can be interpreted as a 

causal estimate of the impact of the monitoring rate on actual employee crime.  OLS 

regression results are presented, however the probit results present qualitatively similar 

results for the case where the binary indicator of employee crime is used.  There are 
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limited additional covariates available, these include: the age, tribe and marital status of 

the interviewer; whether or not these additional covariates are included in the regression 

do not alter the results.  

The usual assumption that     is independent and identically distributed is 

violated due to the fact that we have multiple observations per person, and multiple 

observations per day. It is reasonable to assume that observations of one interviewer are 

correlated. An interviewer who steals money on one day is also likely to steal on other 

days. To control for this, all specifications will include interviewer fixed effects. 

Similarly, observations on one day are likely to be correlated as individuals faced similar 

conditions on each day. This is particularly likely given that the percentage monitored is 

determined for all interviewers each day rather than each interviewer being individually 

assigned a probability of being monitored. Therefore, in all regressions the standard 

errors will be clustered by day.  

3.4.3 Results 

Table 3.3 Panel A presents the impact of the monitoring rate on the rate of 

employee crime; and Panel B presents the impacts on the amount of money stolen by 

interviewers.  

We observe that interviewers respond more strongly to monitoring in round two 

than in round one. In the first round, interviewers reduced stealing any money by between 

16.7 and 21.7 percentage points when moving from a regime of no monitoring to full 

monitoring. The response is considerably higher in round two. Interviewers were 

approximately 55 percentage points less likely to have stolen money when everyone was 
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audited compared to the case when no one was audited. Given that the second round of 

data collection was conducted in a more systematic manner, the second round estimates 

are my preferred estimates. However, in both cases the results are statistically and 

substantively significant and are robust to the inclusion of interviewer fixed effects and 

day of the week fixed effects.   

Table 3.3 Panel B presents the impact of the monitoring rate on the amount of 

money stolen for round one (Columns 1 through 3), round two (Columns 4 through 6), 

and the pooled data from both rounds (Columns 7 through 9). Across the two rounds of 

implementation and across specifications, the results suggest a consistent response by 

interviewers. I find that increasing the monitoring rate from no monitoring to full 

monitoring reduced the amount of money stolen per person by five to nine kwacha. 

While in dollar terms this is a small amount of money, in percentage terms this is a large 

reduction, representing 50 to 80 percent of baseline theft depending on the round and 

empirical specification used. The estimated effect is not statistically significant at the 10 

percent level in either round one or round two separately because of limited statistical 

power in the small samples. However, when pooling both rounds of data the reduction in 

the amount stolen is statistically significant at the 95 percent confidence level. Table 3.4 

shows that there is considerable variation in the extent of corruption across interviewers. 

In round one, all interviewers have money missing on at least one day. The prevalence of 

money missing ranges from 10.5 percent to 88.8 percent of the time across interviewers. 

However, in round two 11 interviewers never return less money than they should. In this 

case, prevalence of money missing ranges from zero percent to 75 percent. The 

distribution of the amount stolen by interviewer also varies considerably.  
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Thus far, regression specifications have implicitly assumed that the relationship 

between crime and the monitoring rate is linear. Table 3.5 allows for a somewhat more 

flexible relationship between crime and the monitoring rate. Due to the limited variation 

in the partial monitoring rate in the first round of data used I examine two semi 

parametric specifications. Table 3.5 Column 1 includes a dummy indicator for the 

presence of any monitoring; while Column 2 includes a dummy for the presence of 

monitoring higher than 50 percent. These results are fairly similar in magnitude as any 

monitoring resulted in a large a reduction in crime.  The fact that the magnitude of the 

coefficients in column 1 and 2 are so similar suggests also that the responsiveness is non-

linear.  

Round two has more variation in the partial monitoring rates and therefore 

permits a more systematic test of the linearity of the relationship between monitoring and 

crime. If the probability of crime exhibited a linear relationship with the monitoring rate 

then we would observe the magnitude of the coefficient increasing by a constant rate 

across the specifications in Columns 3 through 7. Table 3.5 Column 3 shows that any 

monitoring results in a 12.7 percentage point decline in crime; although large in 

magnitude the coefficient is not statistically significant at the 10 percent level. The 

coefficient becomes considerably larger at a monitoring rate of 20 percent (Column 3). In 

the presence of an audit rate of 20 percent or more, the decline in crime was 

approximately 35.9 percentage points. Although the magnitude of the coefficient does 

increase across specifications it does not do so in a linear manner. Therefore, it appears 

that there exists a non-linear relationship between the probability of employee crime and 

the monitoring rate.  
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Table 3.5 Panel B replicates Panel A for the continuous measure of corruption. 

Interestingly, I observe coefficients of roughly the same magnitude across specifications. 

This result suggests that any monitoring is sufficient to reduce the average amount of 

money stolen, and that there are no gains to increasing the monitoring rate beyond five 

percent in this setting.   

3.5 Conclusion 

In this paper I examine the impact of monitoring on theft by short-term contract 

employees in Malawi. I induce exogenous variation in the monitoring rate by explicitly 

varying the daily audit rate, enabling precise causal estimates of the impact of monitoring 

on employee crime.  Two experimental rounds with slightly different protocols yield 

similar results. 

I find that a ten percentage point increase in the probability of audit for an 

individual employee decreases the likelihood of money being stolen by four percentage 

points and reduces the amount stolen by between five and eight percent of baseline theft.  

I find that the relationship between the monitoring rate and probability of stealing is non-

linear. This finding deserves further attention in future work as it can help determine 

optimal monitoring regimes.  

Understanding the efficacy of monitoring on employee crime, opportunistic 

behavior and effort more generally is particularly relevant from a policy perspective. 

Developing countries are widely believed to have higher levels of aggregate corruption 

and indeed, economists believe the corruption is a key obstacle to aggregate growth 

(Shleifer and Vishny 1993, Mauro 1994).  If employees respond to monitoring by 

reducing corruption, then monitoring may be part of a broader micro-approach enabling 
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markets to function more effectively and countries to grow more rapidly. The results in 

this paper are a first attempt at shedding on light on the precise causal impact monitoring 

can have on reducing corruption. More work that explicitly examines the dynamics, and 

non-linearities of the relationship between monitoring and employee effort more broadly 

is needed. 
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Figure 3.1: Timeline of rounds one and two of audit study    

 Round 1 Round 2 

t = -1 
Experimenter counts and sorts coins into 300 

MKW bags 

Experimenter counts and sorts coins into 150 

or 180 MKW bags 

   

t = 0  

Supervisors provide interviewers with coins, 

questionnaires and condoms. 

Supervisors provide interviewers with coins, 

questionnaires and condoms. 

Supervisors announce the number of 

interviewers that will be audited that day.  

Experimenter meets with employees, 

announces number of interviewers to be 

audited that day.  
 

Interviewers work during the day completing 

interviews. 

 

Interviewers work during the day completing 

interviews. 
 

At end of work day: interviewers hand in 

questionnaires to one supervisor, coins and 

condoms to other supervisor.  

At end of work day: interviewers hand in 

questionnaires to one supervisor.  

   

t = 1 

 

 

Supervisors submit coins, and remaining 

condom stock to experimenter. 

 

 

 

Experimenter randomly draws interviewers to 

be audited. These interviewers submit coins, 

and condom stock to experimenter. The 

remaining interviewers submit any coins and 

stock to the sealed box.  

Experimenter conducts audit - counts coins 

and compares numbers to completed 

questionnaires, and condoms sold.  

Experimenter conducts audit and 

communicates discrepancies directly to the 

interviewer.  

Experimenter leaves list of discrepancies for 

supervisors. 

 

   

t = 2 
Supervisors communicate (if monitoring rate 

>0) privately to interviewers their discrepancy. 

 

 

        
Notes: Each interviewer-day level observation is each day worked (t=0). However actions related to the 

implementation of the experiment for each day of data collected starts the day prior to the work day, and in 

the case of round one finishes two days after the work day, and one day after the work day for round two. 
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Figure 3.2: Audit rate assignment: round two 

 

Figure 3.3: Monitoring Rates and Propensity to Steal 
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Figure 3.4: Monitoring Rates and Average Amount Stolen 

 

Figure 3.5: Cumulative distribution functions of amount of money stolen by monitoring 

regime 
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Mean SD Mean SD Mean SD

Interviewer characteristics:

Male 1.000 0.000 0.773 0.419 86.055 0.347

Age 25.709 2.687 23.742 3.019 24.523 3.045

Married 0.358 0.481 0.254 0.436 0.296 0.457

MCSE (Completed secondary schooling) 1.000 0.000 1.000 0.000 1.000 0.000

Yao 0.365 0.483 0.447 0.498 0.416 0.493

Audit study administrative data:

Percent monitored 0.285 0.421 0.315 0.363 0.303 0.386

Number of interviews completed 3.916 1.537 2.088 1.369 2.769 1.684

Number of daily monetary transactions 5.442 2.444 3.739 1.508 4.470 2.136

Value of coins distributed 298.653 5.026 155.794 31.376 209.436 73.611

Days of the week:

Monday 0.093 0.292 0.237 0.426 0.183 0.387

Tuesday 0.202 0.403 0.178 0.383 0.187 0.390

Wednesday 0.218 0.414 0.178 0.383 0.193 0.395

Thursday 0.212 0.410 0.112 0.316 0.150 0.357

Friday 0.176 0.382 0.121 0.327 0.142 0.349

Saturday 0.098 0.299 0.174 0.380 0.174 0.380

Worker Effort:

Minutes worked 304.370 119.677 105.300 203.653 285.321 142.056

Proportion of work day worked 0.644 0.228 0.355 0.437 0.616 0.268

Dependent variables:

Any money missing 0.451 0.499 0.609 0.489 0.549 0.498

Amount stolen 8.140 21.016 5.698 9.532 6.622 14.980

Amount stolen (conditional on any money 

missing)
14.027 26.089 7.402 10.271 9.486 17.161

Returned excess money 0.130 0.337 0.161 0.368 0.149 0.356

Notes:

Table 3.1: Descriptive statistics

The data comes from two rounds of data collected. The round one data consists of 13 interviewers across 19 days; the second 

round consists of 21 interviewers across 17 days. 

N=193 N=289 N=499

Round 1 Round 2 Pooled
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No 

Monitoring

Partial 

Monitoring

Full 

Monitoring

p-value of 

joint F-test

No 

Monitoring

Partial 

Monitoring

Full 

Monitoring

p-value of 

joint F-test

No 

Monitoring

Partial 

Monitoring

Full 

Monitoring

p-value of 

joint F-test

Male 1.000 1.000 1.000 n/a 0.724 0.801 0.730 0.336 0.894 0.823 0.881 0.101

Age 25.703 25.583 25.787 0.953 23.652 23.805 23.576 0.882 24.947 24.010 24.875 0.005

Married 0.361 0.333 0.362 0.965 0.246 0.259 0.242 0.964 0.319 0.268 0.313 0.495

MCSE 1.000 1.000 1.000 n/a 1.000 1.000 1.000 n/a 1.000 1.000 1.000 n/a

Yao 0.373 0.333 0.362 0.933 0.434 0.459 0.405 0.807 0.397 0.445 0.381 0.474

Notes:

The p-value of the joint F-test comes from the test that the coefficinet on full and partial monitoring indicators equal zero, when the baseline characteristic is regressed on 

partial and full monitoring dummy indicator variables. MCSE refers to completed secondary schooling. 

Round 1 Round 2 Combined

Table 3.2: Balanced on observables?
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Panel A: Any money missing 

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Percent Monitoring -0.180** -0.167* -0.217** -0.555*** -0.560*** -0.530** -0.383*** -0.382*** -0.441***

[0.085] [0.087] [0.110] [0.177] [0.184] [0.220] [0.109] [0.112] [0.109]

Constant 0.502*** 0.196* 0.215* 0.803*** 0.692** 0.740*** 0.371*** -0.129 -0.093

[0.078] [0.103] [0.123] [0.131] [0.314] [0.228] [0.114] [0.296] [0.260]

Interviewer Fixed Effects No Yes Yes No Yes Yes No Yes Yes

Day of the week Fixed Effects No No Yes No No Yes No No Yes

Observations 193 193 193 307 306 306 500 499 499

R-squared 0.023 0.167 0.212 0.172 0.211 0.293 0.119 0.195 0.234

Panel A: Amount of money missing

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Percent Monitoring -6.741* -4.866 -5.082 -6.949 -7.150 -9.462 -6.854*** -6.112*** -7.825**

[3.595] [3.762] [5.183] [4.280] [4.392] [6.452] [2.253] [2.301] [3.089]

Constant 10.058*** 3.769 3.110 8.241*** 1.081 0.206 11.969*** 7.444 5.484

[2.340] [4.688] [6.375] [3.069] [2.359] [3.858] [4.016] [7.122] [8.001]

Interviewer Fixed Effects No Yes Yes No Yes Yes No Yes Yes

Day of the week Fixed Effects No No Yes No No Yes No No Yes

Observations 193 193 193 307 306 306 500 499 499

R-squared 0.018 0.122 0.133 0.074 0.109 0.189 0.036 0.123 0.142

Notes:

Results presented are from the OLS specification. In the case of Panel A, using a probit produces qualitatively similar results to those presented here. 

Standard errors are clustered by both project day and interviewer. *** indicates significance at the 1 percent level, ** indicates significance at the 5 percent 

level, and * indicates significance at the 10 percent level. Any amount missing records a 0 if the employee returned too much or precisely the correct 

amount, and a 1 if the employee returned too little money. Amount stolen is not truncated it simply measures the discrepancy (positive, zero or negative) 

between what the employee should have and did return - there are cases in which the amount stolen is a negative number (i.e. the individual returned too 

much). Additional controls include: an ethnicity dummy for Yao tribe, married, and age. 

Round 2Round 1 

Table 3.3: Response to monitoring

Round 1 

Combined

Round 2 Combined

160



Panel A: Round 1

Mean SD Mean SD Min Max 1% 5% 10%

1 15 0.133 0.352 1.933 14.478 -21 50 0.083 0.250 0.417

2 17 0.588 0.507 9.000 15.447 -16 51 0.000 0.167 0.250

3 18 0.611 0.502 3.667 12.565 -30 20 0.083 0.167 0.167

4 18 0.555 0.511 6.055 10.602 -15 25 0.000 0.083 0.167

5 18 0.555 0.511 9.944 19.425 -15 66 0.000 0.083 0.250

6 13 0.461 0.519 2.923 21.150 -45 50 0.000 0.083 0.083

7 19 0.368 0.496 12.052 34.850 -70 110 0.000 0.083 0.083

8 18 0.500 0.514 2.222 13.653 -36 30 0.000 0.083 0.167

9 19 0.105 0.315 2.947 14.397 -10 60 0.167 0.417 0.500

10 13 0.461 0.519 11.923 16.520 0 45 0.000 0.000 0.000

11 9 0.888 0.333 29.550 36.613 0 95 0.167 0.500 0.667

12 4 0.500 0.577 32.500 42.720 0 90 0.000 0.000 0.000

13 12 0.333 0.492 10.080 18.630 0 50 0.000 0.083 0.083

Panel B: Round 2

Mean SD Mean SD Min Max

1 5 0.400 0.548 2.800 4.087 0 9

2 5 0.000 0.000 -2.000 4.472 -10 0

3 4 0.500 0.577 7.500 11.902 0 25

4 6 0.000 0.000 -3.500 8.093 -20 0

5 8 0.375 0.518 3.625 8.863 -2 25

6 2 0.000 0.000 0.000 0.000 0 0

7 4 0.750 0.500 15.000 12.910 0 30

8 5 0.200 0.447 3.000 6.708 0 15

9 5 0.200 0.447 4.000 8.944 0 20

10 5 0.000 0.000 0.000 0.000 0 0

11 4 0.000 0.000 -1.500 2.380 -5 0

12 5 0.000 0.000 0.000 0.000 0 0

13 5 0.000 0.000 -0.800 1.789 -4 0

14 4 0.500 0.577 2.250 16.338 -20 15

15 5 0.400 0.548 5.000 7.071 0 15

16 7 0.286 0.488 -0.429 15.957 -30 25

17 7 0.143 0.378 0.714 17.661 -25 35

18 2 0.000 0.000 0.000 0.000 0 0

19 6 0.000 0.000 0.000 0.000 0 0

20 6 0.000 0.000 0.000 0.000 0 0

21 3 0.000 0.000 0.000 0.000 0 0

Obs
Corrupt Amount Stolen %Days Indiv 

Checked

0.294

0.313

0.235

0.353

0.294

0.471

0.400

0.222

0.294

0.235

0.294

0.235

0.313

0.313

0.429

0.294

0.353

0.412

0.412

0.333

0.353

Table 3.4: Interviewers' distributions

Obs
Corrupt Amount Stolen

Percent of rejections of 

Kolmogorov-Smirnov test of 

equality with other 

interviewers' distributions

161



Panel A: Any Money Missing 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

5% chance or greater -0.181* -0.127 -0.179

[0.108] [0.223] [0.125]

10% chance or greater -0.199 -0.244**

[0.176] [0.120]

20% chance or greater -0.359** -0.353***

[0.173] [0.101]

33% chance or greater -0.396** -0.368***

[0.170] [0.100]

50% chance or greater -0.198** -0.396** -0.381***

[0.099] [0.170] [0.091]

Constant 0.201 0.206* 0.507 0.455 0.561** 0.523** 0.523** -0.117 -0.053 -0.003 0.089 -0.047

[0.126] [0.119] [0.443] [0.298] [0.252] [0.244] [0.244] [0.230] [0.218] [0.226] [0.253] [0.245]

Observations 193 193 316 316 316 316 316 509 509 509 509 509

R-squared 0.209 0.209 0.208 0.231 0.280 0.300 0.300 0.160 0.188 0.234 0.243 0.242

Table 3.5: Non-linearities in the response to monitoring 

Yes Yes Yes Yes Yes

Round 1 

Interviewer Fixed Effects Yes Yes Yes

Yes Yes Yes Yes
Day of the week Fixed 

Effects
Yes Yes Yes Yes

Round 2 Combined

Yes Yes Yes Yes

Yes Yes Yes Yes
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Panel B: Amount of money missing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

5% chance or greater -3.796 -7.390 -6.189*

[4.848] [6.005] [3.514]

10% chance or greater -6.995* -6.044**

[4.017] [2.578]

20% chance or greater -7.936 -6.182**

[4.914] [2.626]

33% chance or greater -6.731 -5.826***

[4.096] [2.158]

50% chance or greater -6.731 -6.416***

[4.096] [2.325]

Constant 2.575 3.007 4.679 -0.227 1.032 -0.572 -0.572 1.767 3.087 3.282 4.497 2.436

[6.299] [6.230] [7.393] [3.308] [4.209] [3.384] [3.384] [8.035] [8.710] [8.769] [8.713] [8.648]

Observations 193 193 316 316 316 316 316 509 509 509 509 509

R-squared 0.130 0.133 0.177 0.190 0.185 0.158 0.158 0.139 0.142 0.141 0.137 0.141

Notes:

Results presented are from the OLS specification. In the case of Panel A, using a probit produces qualitatively similar results to those presented here. Standard errors are 

clustered by both project day and interviewer. *** indicates significance at the 1 percent level, ** indicates significance at the 5 percent level, and * indicates significance 

at the 10 percent level. Any amount missing records a 0 if the employee returned too much or precisely the correct amount, and a 1 if the employee returned too little 

money. Amount stolen is not truncated it simply measures the discrepancy (positive, zero or negative) between what the employee should have and did return - there are 

cases in which the amount stolen is a negative number (i.e. the individual returned too much). Additional controls include: an ethnicity dummy for Yao tribe, married, and 

age. 

Round 1 

Yes Yes Yes Yes

Day of the week Fixed 

Effects
Yes Yes Yes Yes

Interviewer Fixed Effects Yes Yes Yes Yes

Yes Yes Yes Yes

Round 2 Combined

Yes Yes Yes Yes

Yes Yes Yes Yes
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APPENDIX A  

Determinants of the hiring decision using  

administrative data 
 

In making hiring decisions the recruiter took a number of factors into account. As 

discussed above the recruiter conducted multiple tests to ensure that trainee participants 

paid attention and to ensure an objective measure of assessment was available to them. 

No participants were hired that had a standardized test score (using the composite test 

measure) less than 0.05. All participants that had a standardized test score greater than 

1.3 were hired. As such although performing well on the test is a key factor in the hiring 

decision, 72 percent of the group that were hired had test scores in a region where that 

was not a sufficient determining factor. That is, performing well on the test was a 

necessary condition to get hired. It was not however a sufficient condition for those 

participants with a standardized test score between 0.05 and 1.3.  

Appendix Table A.1 presents the determinants of the hiring decision making 

process of the recruiter. This shows that the standardized test score is an important 

determinant of whether the person gets hired - a 1 standard deviation increase in the 

composite test score results in 9.7 percentage point increase in the likelihood that the 

individual is hired. Other key indicators that were measured by the recruiter include 

punctuality, contributions and disruptions. Given Appendix Figure A.1, it suggests that 
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any alternative measures of evaluating performance should be interacted with the test 

score. 

Punctuality appears to have little impact on the hiring decision. Interestingly for 

those individuals that do come late, this seems to increase their chances of employment if 

they have higher standardized tests scores (although the magnitude is small – for every 

additional minute late they are 0.3 percentage points more likely to be hired if they have a 

standardized test score of 1) (Column 2 of Appendix Table 2).  Appendix Table 2 also 

shows that for those performing well (in terms of their standardized test score), making 

“good” and “neutral” contributions during the training sessions increased the probability 

that they were hired. In such a large hiring process being noticed in a good way mattered 

for those participants who performed well but not exceptionally well. Lastly, Column 4 

of Appendix Table 2 also includes measures for disruptions made by participants during 

the training. This appears not to have any significant impact on the hiring decision 

making process as the magnitude of the coefficients are small and statistically 

insignificant.  

Evidently, the most significant factor taken into account by the recruiter in its 

hiring decisions was the performance of participants on the written tests. However, there 

is evidence that other performance indicators were also taken into account – in particular 

whether or not the applicant made a “good” contribution to the discussion.  
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Figure A.1: Scatter plot employed by recruiter and training test score 
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(1) (2) (3) (4) (5)

Age 0.107*** 0.097*** 0.069*** 0.065*** -0.007

[0.018] [0.016] [0.016] [0.016] [0.005]

Married 0.036 -0.008 -0.007 -0.007 0.101

[0.071] [0.005] [0.005] [0.005] [0.070]

Ever worked 0.067 0.086 0.104 0.103 0.093

[0.058] [0.069] [0.067] [0.069] [0.059]

Ever worked with recruiter 0.150 0.096* 0.087 0.093 0.117

[0.094] [0.055] [0.058] [0.059] [0.078]

Ability score (standardized) 0.104*** 0.139* 0.122 0.12 0.046**

[0.024] [0.082] [0.078] [0.078] [0.023]

Test score 0.097*** 0.092*** 0.067*** 0.063***

[0.016] [0.016] [0.016] [0.016]

Minutes late -0.035 -0.035 0.001

[0.043] [0.043] [0.001]

Minutes late X test score 0.114** 0.096* 0.001

[0.052] [0.051] [0.002]

Any good contribution -0.031 -0.031

[0.043] [0.043]

0.114** 0.098*

[0.052] [0.052]

Any neutral contribution 0.023 0.023

[0.042] [0.042]

0.078 0.068

[0.052] [0.050]

Any bad contribution -0.012 0.019

[0.041] [0.055]

0.062 -0.052

[0.041] [0.061]

Any disruption -0.009

[0.041]

Any disruption X test score 0.059

[0.042]

Constant 0.281** 0.272** 0.269** 0.250* 0.240*

[0.137] [0.129] [0.130] [0.137] [0.145]

Observations 268 268 268 268 268

R-squared 0.11 0.25 0.26 0.31 0.32

Average of dep variable

Appendix Table A.1: Predicting Employment

Notes: The dependent variable is a binary indicator equal to 1 if the recruiter offered the job-seeker a job and 0 

otherwise. For covariates with missing data the variable is assigned the mean value of the variable and an indicator 

variable is included for whether or not that particular variable is missing.   Robust standard errors. *** indicates 

significance at the 1% level, ** indicates significance at the 5% level, * indicates significance at the 10% level

0.158

Any good contribution X test 

score

Any neutral contribution X 

test score

Any bad contribution X test 

score
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APPENDIX B  

Robustness checks I 

 

This appendix presents additional specification checks for the analysis conducted in 

Chapter 1: Employee Risk and Performance. Appendix Table B.1 considers the 

additional outcome of training behavior. Appendix Table B.2 examines the distributions 

of arrival times at the training venues for individuals assigned to different treatment 

groups. Appendix Table B.3 and B.4 present the main effort and performance results 

when covariates are excluded. Appendix Table B.5 through Table B.9 present various 

robustness specification checks.  

 

 

 

 

 

 

 

 

 

 

 



Dependent Variable

Any 

disruption # disruptions

Chat/ 

Noise

Toilet/ 

Move Phone Call

(1) (2) (3) (4) (5)

0% Job Guarantee 0.627 1.104 0.533 0.504 0.067

[0.105] [0.242] [0.134] [0.148] [0.052]

1% Job Guarantee 0.696 1.120 0.536 0.488 0.096

[0.104] [0.203] [0.099] [0.135] [0.047]

5% Job Guarantee 0.615 0.933 0.503 0.330 0.100

[0.110] [0.191] [0.150] [0.102] [0.044]

50% Job Guarantee 0.586 0.887 0.285 0.419 0.183

[0.105] [0.190] [0.082] [0.121] [0.072]

75% Job Guarantee 0.579 0.816 0.437 0.264 0.114

[0.137] [0.231] [0.139] [0.135] [0.058]

100% Job Guarantee 0.638 1.021 0.560 0.468 -0.007

[0.159] [0.278] [0.194] [0.203] [0.014]

Observations 268 268 268 268 268

R-squared 0.432 0.351 0.282 0.225 0.123

Stratification cell FE's? Yes Yes Yes Yes Yes

Includes controls? Yes Yes Yes Yes Yes

p-values of F-tests:

0% and 100% 0.952 0.821 0.907 0.886 0.168

Notes:

This table presents the average training classroom behavior by treatment group using administrative data. "Any 

disruption" is a binary indicator equal to 1 if the job trainee at any point during training disrupted the training to 

exit the room, to take a phone call or was disruptive by talking to his peers or making noise. "Number of 

disruptions" is the cumulative number of disruptions made by a job trainee. Treatment status was randomly 

allocated and stratified by quintile ability and prior work experience with the recruiter. The stratification cell fixed 

effects include a set of dummies for each stratification cell. The set of additional covariates include: a dummy 

variable for whether the individual has worked before, marital status, age,  and the individuals' standardized ability 

score. For covariates with missing observations the variable is assigned the mean value of the variable and an 

indicator variable is included for whether or not that particular variable is missing. Robust standard errors are 

presented. 

Appendix Table B.1: Training behavior by treatment group

169



Minutes early/late: p-value of kolmogorov smirnov distrinbution test of equality

0% Job 

Guarantee

1% Job 

Guarantee

5% Job 

Guarantee

50% Job 

Guarantee

75% Job 

Guarantee

100% Job 

Guarantee

0% Job Guarantee 0.178 0.272 0.436 0.616 0.408

1% Job Guarantee 0.995 0.421 0.196 0.38

5% Job Guarantee 0.572 0.475 0.269

50% Job Guarantee 0.769 0.193

75% Job Guarantee 0.13

100% Job Guarantee

Notes:

Appendix Table B.2: Arrival time distribution tests of equality

Arrival times were recorded by recruitment staff as discussed in Section 4.2. This table presents the associated p-values 

from Kolmogorov Smirnov distribution tests of equality between the distribution of arrival times between treatment groups. 
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Tests Any # total # good # neutral # bad

(1) (2) (3) (4) (5) (6)

0% Job Guarantee -0.176 0.635 1.453 0.491 0.604 0.358

[0.147] [0.068] [0.212] [0.088] [0.122] [0.108]

1% Job Guarantee -0.015 0.611 1.589 0.804 0.589 0.196

[0.136] [0.067] [0.256] [0.134] [0.127] [0.086]

5% Job Guarantee 0.041 0.725 1.596 0.692 0.692 0.212

[0.132] [0.063] [0.219] [0.152] [0.128] [0.057]

50% Job Guarantee 0.041 0.642 1.389 0.778 0.389 0.222

[0.124] [0.067] [0.219] [0.139] [0.093] [0.063]

75% Job Guarantee -0.039 0.741 1.321 0.750 0.500 0.071

[0.241] [0.085] [0.234] [0.150] [0.120] [0.049]

0.259 0.760 2.240 0.920 1.040 0.280

[0.195] [0.086] [0.414] [0.198] [0.239] [0.107]

Observations 258 262 268 268 268 268

R-squared 0.013 0.676 0.475 0.380 0.342 0.161

p-value of F-test:

0% and 100% 0.076 0.254 0.092 0.048 0.105 0.607

Notes:

Appendix Table B.3: Performance Indicators (No covariates)

100% Job Guarantee

This table presents mean performance using an average across training for each job trainee. I use the average of the standardized test scores which are 

standardized by using the sample mean and standard deviation for the relevant test. "Any contribution" is a binary indicator if the job trainee engaged 

verbally ever during training. The "total number of contributions" is the cumulative number of contributions made by the job trainee during the whole 

training, and then separated out by quality as determined by the recruitment staff.  Treatment status was randomly allocated and stratified by quintile 

ability and prior work experience with the recruiter. The stratification cell fixed effects include a set of dummies for each stratification cell. The set of 

additional covariates include: a dummy variable for whether the individual has worked before, marital status, age,  and the individuals' standardized 

ability score. For covariates with missing observations the variable is assigned the mean value of the variable and an indicator variable is included for 

whether or not that particular variable is missing. Robust standard errors are presented. 

Contributions
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Ever late Always late

Mins early 

or late

Studied 

(Hours)

Radio/TV 

(Hours)

(1) (2) (3) (4) (5)

0% Job Guarantee 0.180 0.020 -24.230 1.177 1.142

[0.055] [0.020] [2.228] [0.137] [0.121]

1% Job Guarantee 0.182 0.000 -21.467 1.151 1.580

[0.053] [0.000] [1.794] [0.109] [0.132]

5% Job Guarantee 0.314 0.020 -19.209 0.959 1.358

[0.066] [0.020] [2.310] [0.100] [0.154]

50% Job Guarantee 0.176 0.020 -21.843 1.093 1.520

[0.054] [0.020] [2.099] [0.098] [0.138]

75% Job Guarantee 0.259 0.037 -19.914 1.125 1.419

[0.085] [0.037] [3.023] [0.134] [0.162]

0.280 0.080 -19.320 0.754 2.020

[0.091] [0.055] [4.354] [0.078] [0.247]

Observations 259 259 259 254 254

R-squared 0.238 0.043 0.647 0.699 0.676

p-value of F-test:

0% and 100% 0.347 0.306 0.316 0.008 0.002

Notes:

Appendix Table B.4: Average Effort Indicators (No Covariates)

100% Job Guarantee

This table presents the average effort by treatment group using both administrative data and survey data. "Ever 

late" is a binary indicator equal to 1 if the job trainee ever arrived late for training. "Always late" is a binary 

indicator if the job trainee arrived late for training every day.  "Minutes early/late" is a continuous variable 

recording the average minutes early (-) or late (+) job trainees arrived across the training period. Time use in 

columns 4 and 5 comes from survey data and is the average number of hours conducting each activity. Treatment 

status was randomly allocated and stratified by quintile ability and prior work experience with the recruiter. The 

stratification cell fixed effects include a set of dummies for each stratification cell. The set of additional covariates 

include: a dummy variable for whether the individual has worked before, marital status, age,  and the individuals' 

standardized ability score. For covariates with missing observations the variable is assigned the mean value of the 

variable and an indicator variable is included for whether or not that particular variable is missing. Robust 

standard errors are presented. 
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Ratio

(1)

Performance indicators:

Tests 67.994

Engagement:

* # of contributions -1.504

* # good contributions -1.672

* # neutral contributions -1.796

Effort indicators:

Time use:

* Hours studied training materials 7.003

* Hours watching tv/listening to radio 9.668

Notes:

Appendix Table B.5: Omitted variable bias ratio

Following Altonji et al. (2005) and Bellows and Miguel (2008), I construct 

a ratio that assesses the extent of omitted variable bias that would be 

required to explain away the results. This table presents the ratios for each 

of the performance and effort indicators for the estimated difference 

between those assigned no outside option and a guaranteed outside option. 

The ratio measures the extent to which selection on unobservables would 

need to exceed selection on observables to explain away the coefficient. 

Therefore, a larger ratio implies that the relative omitted variable bias from 

unobservables relative to observables is greater, and therefore estimated 

effects are less likely to be explained away.
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Weighted

0-75=max; 

100=min

0-75=min; 

100=max Weighted

0-75=max; 

100=min

0-75=min; 

100=max Weighted

0-75=max; 

100=min

0-75=min; 

100=max

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0% Job Guarantee -0.174 -0.067 -0.288* 0.629 0.652 0.618 0.242 0.259 0.24

[0.141] [0.147] [0.154] [0.104] [0.110] [0.104] [0.051] [0.056] [0.051]

1% Job Guarantee -0.004 0.045 -0.1 0.683 0.782 0.66 0.371 0.414 0.359

[0.126] [0.129] [0.139] [0.111] [0.129] [0.109] [0.061] [0.067] [0.060]

5% Job Guarantee 0.038 0.089 -0.052 0.72 0.78 0.701 0.342 0.393 0.332

[0.120] [0.120] [0.139] [0.101] [0.107] [0.100] [0.069] [0.079] [0.068]

50% Job Guarantee 0.03 0.16 -0.049 0.585 0.63 0.573 0.351 0.38 0.346

[0.122] [0.133] [0.125] [0.090] [0.098] [0.088] [0.063] [0.067] [0.062]

75% Job Guarantee -0.032 0.04 -0.156 0.503 0.555 0.485 0.297 0.341 0.287

[0.208] [0.218] [0.232] [0.097] [0.105] [0.094] [0.067] [0.077] [0.065]

0.261 0.252 0.271 0.915 0.901 0.918 0.391 0.382 0.393

[0.198] [0.202] [0.194] [0.167] [0.168] [0.167] [0.089] [0.091] [0.088]

Observations 258 268 268 262 268 268 262 268 268

R-squared 0.2 0.18 0.18 0.49 0.48 0.48 0.42 0.41 0.41

Stratification cell FEs? Yes Yes Yes Yes Yes Yes Yes Yes Yes

Additional controls? Yes Yes Yes Yes Yes Yes Yes Yes Yes

p-value of F-test:

0% and 100% 0.075 0.203 0.024 0.151 0.219 0.131 0.148 0.249 0.133

Notes:

100% Job Guarantee

Min-Max Bounds Min-Max Bounds Min-Max Bounds 

This table presents mean performance using an average across training for each job trainee. I use the average of the standardized test scores which are 

standardized by using the sample mean and standard deviation for the relevant test. "Any contribution" is a binary indicator if the job trainee engaged verbally 

ever during training. The "total number of contributions" is the cumulative number of contributions made by the job trainee during the whole training, and then 

separated out by quality as determined by the recruitment staff.  Treatment status was randomly allocated and stratified by quintile ability and prior work 

experience with the recruiter. The stratification cell fixed effects include a set of dummies for each stratification cell. The set of additional covariates include: a 

dummy variable for whether the individual has worked before, marital status, age,  and the individuals' standardized ability score. For covariates with missing 

observations the variable is assigned the mean value of the variable and an indicator variable is included for whether or not that particular variable is missing. 

Robust standard errors are presented. 

Average test score Number of contributions Good quality contributions

Appendix Table B.6: Average performance by treatment group: Weighted results and bounds
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Coeff p-value Coeff p-value

(1) (2) (3) (4) (5)

Performance indicators:

Tests 0.346 0.154 0.492 0.054 5.66

Engagement:

* Any contribution 0.1207 0.273 0.14 0.208 1.89

* Total # contributions 0.813 0.173 0.986 0.093 1.89

* # good contributions 0.413 0.192 0.509 0.099 1.89

* # neutral contributions 0.497 0.143 0.593 0.075 1.89

* # bad contributions -0.155 0.429 -0.116 0.547 1.89

Effort indicators:

Punctuality:

* Always late 0.005 0.945 0.065 0.288 5.66

* Ever late 0.057 0.615 0.117 0.290 5.66

* Minutes early/late 1.894 0.709 6.490 0.206 5.66

Time use:

* Hrs studied training materials -0.502 0.001 -0.363 0.021 9.43

* Hrs watching tv/listening to radio 0.656 0.032 1.043 0.001 9.43

Notes:

Lower Bound Upper Bound Trimming 

Proportion

Appendix Table B.7: Lee bounds

This table presents the Lee bounds for the comparison of those assigned no outside option (T0) and those assigned a 

guaranteed outside option (T100). I use the average of the standardized test scores which are standardized by using 

the sample mean and standard deviation for the relevant test. "Any contribution" is a binary indicator if the job trainee 

engaged verbally ever during training. The "total number of contributions" is the cumulative number of contributions 

made by the job trainee during the whole training, and then separated out by quality as determined by the recruitment 

staff.  "Late" is a binary indicator equal to 1 if the job trainee arrived late for training on that day. "Minutes early/late" 

is a continuous variable recording the minutes early (-) or late (+) job trainees arrived at training. Time use in columns 

4 and 5 comes from survey data and is the number of hours conducting each activity daily. The effort index is a 

summary measure of the effort indicators. It is constructed as the average of the normalized values of: "Minutes 

early/late", " Hours studying training materials", "Hours watching television/listening to the radio".

175



Weighted

0-75=max; 

100=min

0-75=min; 

100=max Weighted

0-75=max; 

100=min

0-75=min; 

100=max Weighted

0-75=max; 

100=min

0-75=min; 

100=max

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0% Job Guarantee 0.088 0.139 0.083 1.17 1.41 1.069 1.156 1.334 1.044

[0.030] [0.040] [0.028] [0.131] [0.159] [0.127] [0.124] [0.139] [0.123]

1% Job Guarantee 0.081 0.091 0.079 1.158 1.268 1.127 1.593 1.681 1.536

[0.025] [0.027] [0.024] [0.111] [0.134] [0.110] [0.134] [0.146] [0.134]

5% Job Guarantee 0.152 0.173 0.146 0.946 1.091 0.889 1.341 1.557 1.256

[0.036] [0.037] [0.035] [0.105] [0.122] [0.102] [0.166] [0.191] [0.162]

50% Job Guarantee 0.079 0.125 0.073 1.087 1.222 1.03 1.505 1.658 1.429

[0.030] [0.040] [0.029] [0.100] [0.121] [0.099] [0.133] [0.150] [0.136]

75% Job Guarantee 0.129 0.157 0.124 1.16 1.212 1.138 1.428 1.487 1.374

[0.051] [0.058] [0.049] [0.147] [0.152] [0.145] [0.167] [0.177] [0.168]

0.186 0.182 0.186 0.742 0.73 0.747 2.029 2.014 2.037

[0.066] [0.067] [0.066] [0.078] [0.090] [0.074] [0.247] [0.246] [0.250]

Observations 259 268 268 254 268 268 254 268 268

R-squared 0.24 0.27 0.24 0.69 0.65 0.66 0.71 0.69 0.68

p-values of F-test:

0% and 100% 0.186 0.578 0.158 0.005 0.000 0.028 0.002 0.017 0.001

Notes:

100% Job Guarantee

This table presents the average daily effort by treatment group using both administrative data and survey data. "Late" is a binary indicator equal to 1 if the job trainee arrived late 

for training on that day. "Minutes early/late" is a continuous variable recording the minutes early (-) or late (+) job trainees arrived at training. Time use in columns 4 and 5 comes 

from survey data and is the number of hours conducting each activity daily. The effort index is a summary measure of the effort indicators. It is constructed as the average of the 

normalized values of: "Minutes early/late", " Hours studying training materials", "Hours watching television/listening to the radio". Treatment status was randomly allocated and 

stratified by quintile ability and prior work experience with the recruiter. The stratification cell fixed effects include a set of dummies for each stratification cell. The set of 

additional covariates include: a dummy variable for whether the individual has worked before, marital status, age,  and the individuals' standardized ability score. For covariates 

with missing observations the variable is assigned the mean value of the variable and an indicator variable is included for whether or not that particular variable is missing. Robust 

standard errors are presented. 

Appendix Table B.8: Average effort indicators: Weighted results and bounds

Punctuality

Min-Max Bounds Min-Max Bounds 

Hours studied training materials

Min-Max Bounds 

Hours watching television or 

listening to the radio
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Weighted

0-75=max; 

100=min

0-75=min; 

100=max Weighted

0-75=max; 

100=min

0-75=min; 

100=max Weighted

0-75=max; 

100=min

0-75=min; 

100=max

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0% Job Guarantee 73.046 75.844 66.691 347.589 635.49 322.424 123.557 154.669 110.836

[3.532] [3.425] [4.216] [75.486] [145.780] [70.860] [16.122] [21.008] [15.726]

1% Job Guarantee 73.541 74.3 70.995 425.016 576.75 407.061 165.349 179.587 158.686

[2.992] [2.914] [3.494] [97.883] [149.297] [96.436] [15.036] [17.657] [15.313]

5% Job Guarantee 76.142 76.776 74.107 372.751 469.008 365.048 155.073 168.564 149.658

[3.168] [3.096] [3.538] [92.596] [111.595] [91.104] [21.256] [22.959] [21.128]

50% Job Guarantee 72.651 74.246 70.518 438.595 665.541 416.322 147.121 183.593 138.344

[2.339] [2.419] [2.586] [97.284] [158.985] [93.549] [19.970] [28.294] [19.617]

75% Job Guarantee 83.63 83.9 82.181 337.727 371.837 327.945 184.582 203.359 177.235

[3.366] [3.253] [3.626] [74.216] [80.977] [72.379] [27.827] [32.523] [27.795]

77.596 77.543 77.902 328.642 309.028 329.545 123.838 119.957 124.523

[3.562] [3.649] [3.405] [79.859] [89.147] [79.408] [23.189] [22.202] [23.549]

Observations 256 268 268 256 268 268 256 268 268

R-squared 0.94 0.94 0.91 0.36 0.31 0.35 0.6 0.57 0.57

p-values of F-test:

0% and 100% 0.361 0.732 0.038 0.865 0.056 0.947 0.992 0.255 0.627

Notes:

Appendix Table B.9: Other Mechanisms: Weighted results and bounds

Treatment status was randomly allocated and stratified by quintile ability and prior work experience with the recruiter. The stratification cell fixed effects include a set 

of dummies for each stratification cell. The set of additional covariates include: a dummy variable for whether the individual has worked before, marital status, age,  

and the individuals' standardized ability score. For covariates with missing observations the variable is assigned the mean value of the variable and an indicator 

variable is included for whether or not that particular variable is missing. Robust standard errors are presented.

100% Job Guarantee

Food expenditures - eat out

This table presents the treatment group means for each outcome. Food Expenditures (in MKW) is the average amount spent on food reported by the respondent across 

the 3 training days. "Eat out expenditures (in MKW)" is similar except measures food expenditures for food consumed away from the home. "Perceived chance of 

employment with recruiter" is constructed using the following question: “What percentage chance do you think you have of getting one of the available positions for 

the RECRUITER’S PROJECT?” with the following options: No chance of getting a job; Less than 25 percent; Between 25 and 50 percent; 50 percent; Between 50 

and 75 percent; Between 75 and 99 percent; and Certain about employment with recruiter. To create a measure of the likelihood of employment I assign the mid-point 

to categories that are brackets and creating a continuous variable. 

Perceptions Food expenditures - groceries

Min-Max Bounds Min-Max Bounds Min-Max Bounds 
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APPENDIX C  

Robustness checks II 

 

This appendix presents additional specification checks for the analysis conducted in 

Chapter 2: Employment Exposure: Experimental Evidence on Employment and Wage 

Effects. Appendix Table C.1 provides additional information regarding differential 

attrition by treatment status and covariates.  

  



Mean SD

(1) (2) (3) (4)

Demographics:

Age 25.604 4.638 0.004 0.001

Married 0.172 0.378 -0.031 0.136

Any child? 0.164 0.371 0.000 0.087

Number of children 0.299 0.784 0.028 -0.029

Years of education 13.183 0.940 0.064** -0.104

Income (USD, 3 months) 206.123 228.803 0.00004 0.00001

Ability score -0.001 1.003 0.035 -0.035

Tribe:

Chewa 0.310 0.463 -0.064 0.093

Lomwe 0.108 0.311 0.125* -0.304

Ngoni 0.164 0.371 0.057 0.138

Tumbuka 0.190 0.393 -0.041 0.112

Other 0.201 0.402 0.029 -0.188

Education and Work:

Ever worked? 0.869 0.338 -0.014 -0.152

Ever worked with recruiter? 0.104 0.306 -0.093 0.107

Any work in last month 0.646 0.479 0.039 0.131

Any work in last 6 months 0.869 0.338 0.109 0.167

Frac of 6 mths worked 2.657 2.176 0.008 0.015

Any job search last month 0.116 0.320 -0.085 0.270**

Notes:

Covariate * 

Probability of 

Job offer

The baseline sample consists of 268 individuals who participated in the recruitment process and 

experiment discussed in Section 2. Columns 3 and 4 are from the same regression predicting where 

the dependent variable is whether or not the individual was found at follow up. Columns 3 and 4 

present the coeffieint on the baseline characteristic and the interaction of the baseline coefficient and 

the assigned probability of a job offer respectively .  

Appendix Table A: Sample and Attrition

Covariate

Baseline

N=268
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