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Abstract 

As an integral part of the cell’s communication system, membrane proteins play an 

essential role in relaying signals between cells and their environment. For example, 

binding of ligand on the extracellular portion of a cell surface receptor induces 

conformational changes that are transmitted through the membrane and activate 

numerous signaling pathways. I have utilized negative stain electron microscopy and 

single particle analysis to investigate and characterize the structural dynamics of 

transmembrane protein machineries.  

The hormone leptin is a key regulator of metabolism and body weight. The leptin 

receptor (LepR) is a single pass transmembrane receptor that is capable of instigating 

intracellular signaling via the JAK/STAT pathway upon leptin binding to the 

extracellular side of LepR. Both stimulation and inhibition of LepR have implications in 

disease treatment and represent important drug targets. I characterized the architecture of 

the leptin/LepR signaling complex and proposed a mechanism of activation upon binding 

of ligand. LepR displays significant flexibility in a hinge region within the leptin binding 

domain while the C-terminal “legs” remain rigid. In the context of a liganded receptor, 

there is no flexibility at the hinge region and the C-terminal, membrane proximal “legs” 

become positioned in a certain orientation that we propose is a key mechanism for 

transmitting the signaling across the membrane. 

This work also characterizes a signaling complex between the µ-Opioid receptor (µ-OR) 

and its cognate Gi subunit. The results reveal the dynamic nature of the Gα subunit of Gi, 

which appears to be a common feature of G-protein activation. As opioid drugs are 

highly addictive and their clinical efficacy restricted, understanding the activation 

mechanism of the µ-OR will facilitate more targeted drug development.  
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Chapter 1 Introduction 

1.1 Structure and Function on Membrane Proteins 

Membrane proteins are biologically very important groups of proteins because they 

connect the extracellular environment to the intracellular environment of the cell. 

Membrane proteins are involved in immune response and recognition, transport of 

molecules across the phospholipid bilayer, cell adhesion and signal transduction. There 

are two major categories of membrane proteins based on the membrane interaction - 

integral and peripheral. Integral membrane proteins are characterized by at least one 

membrane-spanning domain with many hydrophobic side chains in their amino acid 

composition, allowing them to make contact with the fatty acyl groups of the 

phospholipids. Integral membrane proteins penetrate the phospholipid bilayer through α-

helices or β-barrels, making these regions both structural and functional components of 

the cell membrane. On the other hand, the peripheral membrane proteins do not directly 

interact with the hydrophobic core of the phospholipid bilayer but instead are connected 

to the membrane through polar head groups (Lodish et al., 2000) (Figure 1-1). Ligand 

binding on the extracellular side of an integral membrane protein can lead to 

conformational changes, which are then transferred to the intracellular side, and the 

signal is converted to a physiological response. Membrane proteins comprise an 

extremely sophisticated set of cellular machineries whose intricate functions depend 

largely on the chemical makeup of the amino acids displayed on their surfaces. 
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Figure 1-1 An illustration of different types of membrane – protein associations. 
There are two major groups of membrane-associated proteins, based on their interaction 
with the membrane. Peripherally associated proteins only make a contact with the 
membrane and have an access either to the intracellular or the extracellular space. 
Examples are protein-lipid interactions and glycolipid-anchor. The integral membrane 
proteins are mainly single or multiple pass proteins making access to both the 
extracellular and intracellular space. 

In addition, their specific protein fold has a crucial significance in positioning a precise 

set of amino acids at the ligand binding pocket, governing the interactions with 

extracellular signals. The three-dimensional structure of proteins changes upon 

interaction with environmental stimuli. Following reversible or irreversible series of 

chemical shifts in their three dimensional structure is a way of providing a mechanism for 

exertion and regulation of cell processes. Exactly how the integral membrane proteins are 

able to transmit an extracellular signal in the form of a conformational change through 

the membrane and initiate physiological response is still poorly understood.  

Although membrane proteins constitute about 30% of the proteome, their solved 

structures are highly underrepresented, making up only about 2% of the total structures in 

the Protein Data Bank (PDB) (Figure 1-2).  

single pass

multi pass

glycolipid 
anchor

protein-protein
interactions

protein-lipid
interactions

phospholipid
anchor
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Figure 1-2 Number of known membrane protein structure in PDB up to date 
(http://blanco.biomol.uci.edu/mpstruc/listAll/list) 
 

The technical difficulties in expression, solubilization and purification are responsible for 

the low number of solved membrane protein structures. Recent advances in protein 

engineering had aided the successful crystallization of a few challenging membrane 

proteins, shedding new light into our understanding of structure-function relationship. 

1.2 Membrane proteins as signal transduction units 

A cell communicates with its environment by receiving, processing and responding to 

specific chemicals that can trigger signal transduction. The sensing and processing of 

stimuli is termed a signal transduction cascade whereby the cell is able to detect, amplify 

and integrate various external signals in order to generate diverse biological responses. 

For example, extracellular stimuli can modulate receptor and/or enzyme activity, ion-

channel activity or the expression of certain genes which may lead to disease (Berg et al., 

2002). 
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Figure 1-3 Signal propagation diagram. 
A signal in the form of any stimuli is received by the cell surface receptor (reception), 
amplified by the second messengers and transduced to downstream signaling effectors. 
As a result, a cellular response is generated in the form of transcriptional activation, for 
example. 

The main principles of signal transduction can be summarized in (Figure 1-3). An 

environmental signal, termed primary messenger, arrives at the cell membrane and since 

it is usually unable to cross the membrane, it interacts with a cell-surface receptor. 

Following the receptor interaction, the signal is relayed to the cell by a way of a 

conformational change in the receptor protein and further converted into an intracellular 

chemical response. On the intracellular side and in the cytosol, the signal is usually 

amplified by other small molecules, termed secondary messengers. The secondary 

messengers stimulate downstream effector molecules which in turn are able to trigger a 

physiological response. Second messengers are very important in signal transduction 

because they not only amplify the signal generated by a few activated membrane 

receptors but also travel to a variety of cellular compartments and signal in multiple 

pathways. Some of the important second messengers include cyclic AMP (cAMP), cyclic 

Signal

Reception

Transduction

Response

Ampli!cation
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GMP (cGMP), calcium ion (Ca2+), inositol 1,4,5-triphosphate (IP3) and diacylglycerol 

(DAG) (Stryer 2002) (Figure 1-4).  

 

 

Figure 1-4 Structures of some important second messengers. 

The concentration of these small molecules changes in response to extracellular stimuli 

and since they are readily diffusible through other cellular compartments, they can 

modulate diverse biochemical processes in the cell. Moreover, many cell surface 

receptors share the same second messengers in multiple signaling pathways which can 

often lead to cross talk, affecting the local concentration of second messengers. It is 

important to mention, however, that cross talk can not only lead to more precise 

regulation of cellular activity but also it may cause potential problems if the second 

messengers are misinterpreted by the cell (Berg et al., 2002). In addition, this signaling 

cascade can be modulated by feedback mechanisms by which the cell’s response is able 

to inhibit or change the initial signal reception.  

Some small non-polar molecules such as certain hormones can diffuse through the cell 

membrane and instigate signaling. Most of the time, however, the cell surface receptors 

are responsible for making the first contact with the environmental stimuli. Thus, large 

and polar molecules that are otherwise incapable of entering the cell are transmitting the 

information they are carrying into the intracellular space.  
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In addition, information transduction can be in the form of protein phosphorylation where 

second messengers activate protein kinases. In this case, an enzyme transfers a 

phosphoryl group from an adenosine triphosphate (ATP) to a serine, threonine or tyrosine 

residue of a protein. Protein phosphatases may reverse this change by dephosphorylating 

the protein and terminating the signal (Figure 1-5). 

Figure 1-5 Phosphate transfer. 
Graphical representation of the γ phosphate transfer from an adenosine tri-phosphate 
(ATP) to a Serine, a Threonine or a Tyrosine residue on a protein. 

Signal termination is needed in order for the cell to respond to new signals. However, 

when the signal cascade fails to be terminated, the cell can undergo uncontrolled growth 

or even become cancerous. Other mechanisms for signal transduction termination can be 

exerted in the form of negative feedback processes. A well-documented example of 

negative feedback used as a regulatory mechanism is the signaling of insulin. Insulin 

signals to liver cells to reduce the production and release of glucose thereby contributing 

to lowered blood glucose levels. In addition, insulin signals to fat and muscle to take up 

glucose at a greater rate. Insulin binds and activates transmembrane receptor tyrosine 

kinases which upon activation are phosphorylated on certain Tyrosine residues. Tyrosine 

phosphatases (PTPases) are enzymes capable of dephosphorylating the receptor and 

attenuating the insulin-induced signaling. A negative feedback mechanism of insulin 
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signaling is the insulin-mediated transcriptional activation of PTPases, which 

dephosphorylate the insulin receptors and attenuating the signal (James et al., 2005; 

Saltiel and Kahn, 2001). 

Some integral membrane proteins serve as ion channels, cellular transporters of cargo 

binding to them, energy pumps, enzymes catalyzing reactions at the cell membrane 

surfaces or receptors that transmit chemical information. The work in this thesis 

concentrates on the topics of how two different classes of integral membrane receptors, 

specifically, single and multiple pass receptors, are able to communicate signals through 

the cell membrane in response to extracellular stimuli and instigate physiological 

processes. Understanding the conformational dynamics of how these complicated 

membrane machineries are able to transduce information through the membrane is the 

primary aim of my studies. 

1.3 Cytokines and signal transduction 

Cytokines and their receptors  

The formation of a ligand-receptor complex at the membrane is the prerequisite for 

instigating intracellular signaling cascades. Cytokines are pleiotropic signaling molecules 

that regulate important biological responses such as immune response, cell proliferation, 

differentiation and apoptosis (Wang et al., 2009). Both ligands and receptors that belong 

to the cytokine superfamily share common structural features. Class 1 cytokines are most 

abundant and are characterized by a typical “four-helical” bundle fold (Bazan, 1990a) 

with their hydrophilic residues oriented on the outside and the hydrophobic ones forming 

the core of the helical bundle (Sprang, 1993). To signal, cytokines bind to their 

corresponding transmembrane receptors and instigate intracellular downstream signaling 

by stimulating an array of cytosolic molecules. According to their structure, the cytokine 

receptors can also be classified into several groups - class I, class II, TNF receptor 

superfamily, IL-1  and chemokine receptor family with class I being the largest 

(Thomson and Lotze, 2003). Because of their structural similarities, receptors can engage 

similar ligands, thus, involving redundant biological processes. Receptors belonging to 

this class, also known as the hematopoietin receptor family, are single pass 
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transmembrane proteins having an N-terminal extracellular, ligand-binding portion and 

C-terminal intracellular tail. Members of this family include granulocyte colony 

stimulating factor receptor (GCSF-R), leukemia inhibitory factor receptor (LIF-R), leptin 

receptor (Lep-R) and glycoprotein 130 (gp130) (Baumann et al., 1996; Tamada et al., 

2006; Wang et al., 2009) and others. The extracellular regions of class I cytokine 

receptors are grouped into modules, consisting of an array of fibronectin type-III (FNIII) 

fold domains. A membrane distal cytokine homology region (CHR) motif is associated 

with ligand-binding and is necessary for signaling (Eastell et al., 1998) (Bazan, 1990b; de 

Vos et al., 1992). In some members of this class such as the human Growth Hormone 

receptor (hGHR) and the erythropoietin receptor (EPOR), the basic CHR is sufficient to 

engage the ligand and initiate receptor homodimerization (de Vos et al., 1992; Sprecher 

et al., 1998). However, an Ig-like domain is an additional prerequisite for ligand-binding 

and signal induction in other cytokine receptors such as gp130, GCSF-R, LIF-R and 

LepR (Chow et al., 2001; Huyton et al., 2007; Tamada et al., 2006; Fong et al., 1998). 

Additional membrane-proximal FNIII type domains connect the ligand-binding region to 

the membrane. Following a single transmembrane helix, these receptors are characterized 

by a short intracellular tail also marked by conserved regions. Box 1 and box 2 motifs, for 

example, found in close proximity to the membrane, serve as docking sites for 

constitutively bound kinases, required to propagate the signal initiated by ligand binding 

(Tanner et al., 1995; Usacheva et al., 2002) (Figure 1-6a). Class I cytokine receptors are 

not active kinases themselves. Instead, they rely on constitutively bound Janus kinases 

(JAK’s) to execute the tyrosine kinase activity needed for signal transduction (Darnell et 

al., 1994; Leonard and O'Shea, 1998; Murray, 2007). Ligand-binding on the outside is 

followed by a conformational change which results in a critical re-orientation of the 

intracellularly bound kinases which are activated upon their transphosphorylation. 
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Figure 1-6 Overall domain organization of some class I cytokine receptors and their 
signal transduction. 
a, Domain organization of class I cytokine receptors – receptors belonging to class I are 
composed of an array of fibronectin III fold domains at their extracellular region; 
cytokine homology region (CHR) and immunoglobulin-like domain are involved in 
ligand binding; conserved Box 1, 2 motifs on the intracellular receptor tails serve as 
Janus Kinases binding sites; b, Signaling pathways activated by class I cytokines – 
Jak/Stat pathway is the primary pathway instigated upon ligand biding to class I cytokine 
receptors. Secondary signaling pathways involved in growth, reproduction and energy 
expenditure can also be activated as a result of cytokine signaling. (b, Courtesy of 
Georgios Skiniotis) 

Once activated, the JAKs phosphorylate certain residues on the receptor tail which serve 

as docking sites for a second family of proteins, the signal transducer and activator of 

transcription (STAT) proteins. STATs bind to the receptor tail and their JAK-mediated 

phosphorylation and activation results in subsequent dissociation from the receptor and 

dimerization in the cytoplasm. In turn, STATs translocate into the nucleus and activate 

transcription of variety of genes (Ihle, 2001; Schindler et al., 2007). In addition to the 

JAK-STAT signaling pathway, the class I cytokine receptor family can instigate and 

signal through many other pathways such as the PI3K kinase and/or the RAS/MAP 

kinase pathway  (Cantley, 2002; Dong et al., 2002). However, how the structural changes 

upon ligand binding are transmitted on the other side of the membrane to instigate 

signaling as well as the structural dynamics surrounding the JAK-STAT communication 

during receptor signaling are poorly understood (Figure 1-6b).  

a. b.
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Janus kinases 

Janus kinases (JAKs), a distinct family of tyrosine kinases, are required for signal 

transduction for class I cytokine receptors (Baker et al., 2007; Darnell et al., 1994). In 

addition to JAKs’ role in cytokine signal transduction, it has been suggested that they 

may promote cell surface expression of cytokine receptors by binding to the receptor 

(Huang et al., 2001). The JAK family includes four members, JAK1 (Wilks et al., 1991), 

JAK2 (Harpur et al., 1992), JAK3 (Rane and Reddy, 1994) and TYK2 (Firmbach-Kraft et 

al., 1990).  

According to their sequence similarities there are seven regions of homology named Jak 

homology (JH) regions 1-7 (Figure 1-7a) (Yeh and Pellegrini, 1999). The two carboxy 

terminal JH domains 1 and 2 retain high homology to tyrosine kinases. However, only 

JH1 retains kinase activity while JH2 lacks critical functional amino acids rendering it a 

pseudo-kinase (Duhe and Farrar, 1995; Feng et al., 1997). The pseudo-kinase domain has 

an essential regulatory function as a cytokine-inducible switch and can regulate JAK2 

activation. Despite the lack of structural information, biochemical studies suggest that 

regulation of the kinase activity is mediated possibly through an intramolecular 

interaction between JH1 and JH2 (Saharinen and Silvennoinen, 2002). The N-terminal 

region contains a Four-point-one/Ezrin/Radixin/Moesin (FERM) (JH4-JH7 and half of 

JH4) domain, which is responsible for receptor recognition and association (Frank et al., 

1995; Zhao et al., 1995). Mutagenesis and kinase chimeric experiments combining 

regions from different JAKs have suggested that a minimum receptor recognition region 

may be concentrated to the first 200 residues of the N-terminus (Feng et al., 1997; 

Richter et al., 1998). A Src homology-2 like (SH2-like) domain (JH3-JH4) is located 

between the FERM and the pseudo-kinase domains (Figure 1-7a)(Wilks et al., 1991). The 

SH2-like domain does not function as a conventional phosphotyrosine binding domain 

and may be involved in mediating association with the membrane proximal regions of the 

cytokine receptors but its exact functions remain unclear (Haan et al, 2006).  

Ligand binding to the extracellular site of cytokine/growth factor receptors results in 

juxtaposition of JAKs leading to their auto- trans-phosphorylation on key tyrosine 
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residues (Remy et al., 1999). Activation of JAKs, in turn mediates downstream signaling 

through phosphorylating specific tyrosine residues on the receptor tail that serve as 

docking sites for SH2 domains containing molecules such as signal transducers and 

activators of transcription (STATs) (Figure 1-6b).  

Mutations in JAKs that lead to the constitutive activation of the kinase domain and cause 

serious pathological diseases such as myeoloproliferative neoplasms (MPNs) and 

leukemia (Haan et al., 2010; Vainchenker et al., 2011), imply negative regulation of JH2 

on JAK activity. However, in a recent study it was suggested that JH2 may also have a 

positive regulatory function because a JH2 deletion mutant was able to maintain JAK2 

basal activity but could not be further stimulated by the cytokine (Ungureanu et al., 

2011). The crystal structures of both JH1 (Jak3) and JH2 (Jak2) are available 

(Bandaranayake et al., 2012; Boggon et al., 2005) although the precise regulatory nature 

of interactions of JH2 on JH1 remains elusive. In addition, it is also possible that in the 

context of preformed receptor dimers, constitutively bound JAKs interact in an inhibitory 

manner, through their JH2 domains. Upon ligand binding, conformational changes in the 

receptor perhaps lead to stimulatory rearrangements within the JH2 domains of JAKs and 

activate downstream signaling. 

How the structural information is carried from the activated receptor to JAK is still 

poorly understood due to the lack of structural information on both full-length JAK and 

the receptor/kinase complex.  
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Figure 1-7 Domain organization in JAKs and STATs 
a., representation of Janus kinases (JAKs) domain organization showing JAK homology 
domains (JH) 1-7, based on the sequence similarities of the four known JAKs. N-terminal 
FERM domain comprises regions JH7 through JH5. Src homology 2-like domain (SH2-
like) spans the JH3-JH4 region. JH2 is the pseudo-kinase domain and JH1 is the C-
terminal kinase.. b. Signal transducer and activator of transcription (STAT) domain 
organization – the six Stats share several functional domains. An amino terminal 
oligomerization domain, a coiled-cooil domain, a DNA-bidning domain, an SH2 domain 
and a transcriptional activation domain at the C-terminus. 

Structural information of the cytokine/receptor/JAK complex could provide important 

information regarding the structural rearrangements that take place upon ligand binding 

and lead to the activation of the Janus kinases.  

Signal transducers and activators of transcription and their targets 

The signal transducers and activators of transcription (STATs) are a family of proteins 

consisting of seven members in mammalian cells and originally described by Darnell et 

al. (Darnell et al., 1994) as ligand-induced transcription factors. Different members of the 

STAT family share domain organization. There are a total of seven domains that exhibit 

modular structure (Figure 1-7b) – a conserved N-terminal domain, a coiled-coil domain, a 
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DNA-binding domain, a linker region, a tyrosine activation and a C-terminal activation 

domain (Jatiani et al., 2010). The amino terminal domain is critical for STATs’ function 

as small deletions in this region lead to inability of the STATs to become phosphorylated. 

In addition, this domain plays a role in nuclear import, export, receptor binding and 

interaction with the DNA binding domain (Mertens et al., 2006). The coiled-coil domain 

is involved in receptor binding and interaction with regulatory proteins (Kisseleva et al., 

2002). The DNA binding domain, as its name implies is involved in binding to DNA to 

activate transcription and is highly conserved among STATs. A linker region is located 

between the DNA binding domain and the SH2 dimerization domain to ensure proper 

conformation. The SH2 domain is critical for signaling and the recruitment of STATs to 

the activated receptor complexes and is highly conserved. Through this domain STATs 

can homodimerize and heterodimerize and in turn localize to the nucleus and bind DNA. 

The C-terminal transactivation domain is the most variable between different STATs and 

it modulates transcriptional activation of target genes (Figure 1-7b) (Jatiani et al., 2010; 

Neculai et al., 2005). 

When cells are resting, STATs exist as a preformed homodimers in the cytoplasm 

(Mertens et al., 2006). Upon ligand binding to receptor, intracellularly bound JAKs also 

become activated and phosphorylate specific tyrosine residues on the receptor tails. The 

phosphotyrosyl residues, in turn, serve to direct the SH2-dependent recruitment of 

STATs to the receptor. Once recruited to the receptor tails, STATs become 

phosphorylated by the activated JAKs and get released into the cytoplasm where they 

rearrange into anti-parallel dimers through the SH2 domains. Furthermore, STAT dimers 

translocate to the nucleus, bind certain enhancer elements and initiate gene transcription 

(Baker et al., 2007; Schindler et al., 2007).  

Moreover, Stats are capable of forming not only homodimers but also heterodimers, 

tetramers and other higher order complexes (Ward et al., 2000). It has been suggested 

that JAKs do not exhibit specificity for certain STATs because the same STATs can get 

activated at different receptors, associated with different JAKs (Darnell, 1997). In 

addition, some experiments with chimeric receptor molecules with different JAK binding 

sites but with the same STAT-binding sites were found to activate the same STATs 
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(Kotenko et al., 1996). Therefore, it is likely that the specificity for STATs depends on 

their docking sites on the receptors rather than the JAK kinases. There are multiple 

details that yet remain to be resolved in the JAK-STAT signaling pathway which would 

require further structural and mechanistic information. 

Other signaling pathways activated by cytokines 

In addition to the JAK-STAT pathway, cytokines are able to activate multiple other 

signal transduction pathways, exerting their divergent actions. For example, it has been 

suggested that the protein tyrosine phosphatase SHP-2 is implicated in mediating the 

leptin receptor activation of MAPK (Bjorbaek et al., 1999). In addition, some cytokines 

can also induce JAK/STAT mediated phosphorylation of ERK and AKT (Saxena et al., 

2007). Moreover, experimental evidence suggests that AKT can also be activated via 

cytokine mediated stimulation of the lipid kinase phosphoinositol 3 kinase (PI3K) (Reddy 

et al., 2000). 

Negative regulation of cytokine pathways 

Excessive signaling and overstimulation of cytokine signaling can lead to autoimmune 

disorders and cancer. Therefore, it is crucial for the cell to exert tight regulation on the 

signaling pathways mediated by JAK/STAT. There are a few ways in which the cell is 

capable of turning off the signaling, initiated by cytokines. Src-homology phosphatase 

(SHP-1) can directly dephosphorylate JAKs. Three protein families, particularly the 

suppressors of cytokine signaling (SOCS), protein inhibitors of activated STATs (PIAS) 

and cytoplasmic phosphatases have been implicated in the negative regulation of 

cytokine signaling. SOCS are found to be able to compete with STATs for binding to the 

receptor (Seki et al., 2002) or directly interact with JAKs (Khwaja, 2006) to mediate 

negative regulation of cytokine signaling. PIAS proteins, on the other hand, can regulate 

the amount of available STAT for enhancing the transcription of available genes by 

directly binding to STAT dimers (Baker et al., 2007). Protein tyrosine phosphatases 

(PTP) can negatively regulate JAK-STAT pathways by dephosphorylating tyrosine 

residues (Pallen et al., 1992). The mechanism of regulation involves dephosphorylation 
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of both JAKs and activated receptors, thereby preventing STATs from associating with 

the receptors and their activation.  

1.4 G-protein Coupled receptors as signal transduction units 

GPCRs are by far the largest family of membrane proteins, with more than 800 members 

in the human genome, and are involved in signal transduction that mediates the majority 

of cellular responses to a variety of ligands, ranging from nucleotides and amines, to 

peptides and hormones (Strader et al., 1994). In addition, GPCRs are responsible for 

vision, olfaction and taste and many other vital physiological events. A seven 

transmembrane (7TM), α-helical region spanning the membrane with an extracellular 

amino terminal and a carboxy intracellular tail is a characteristic signature of all GPCRs. 

There are five main families of GPCRs grouped based on their amino acid sequence and 

three-dimensional structural similarities: rhodopsin, secretin, glutamate (family A, B and 

C, respectively), adhesion and Frizzled/Taste2 (Fredriksson et al., 2003). Although, the 

receptors are very similar in their overall topology, GPCRs, like cytokine receptors, can 

be involved in a variety of unique signal transduction pathways, both dependent and 

independent of different associated G-protein subtypes. 

GPCR overall structural topology 

There are three extracellular and three intracellular loops connecting the 7TM α-helices 

which also represent the most variable regions among the family of GPCRs (Kobilka, 

2007). The extracellular loops contain conserved cysteine residues that are capable of 

forming disulfide bonds to stabilize the receptor tertiary structure. In addition, the 

extracellular domain contains asparagine residues and motifs for N-glycosylation which 

are implicated in intracellular trafficking of the receptors to the membrane (Tuteja, 2009). 

The greatest diversity is displayed at the amino termini where the sequence can range in 

size from few amino acids for the monoamine and peptide receptors to few hundred 

amino acids for the glutamate receptors (Kobilka, 2007). In contrast, the greatest 

structural homology in GPCRs is within the transmembrane helical segments. The α-

helices embedded in the membrane are arranged to form a tight, ring-shaped hydrophobic 

structure which is important for receptor stability and ligand-induced conformational 
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changes. Thus, any mutations or perturbations in this structural organization could be 

deleterious.  

Common modes of activation of GPCRs 

As in other transmembrane signaling systems, the interaction between ligand and the 

extracellular portion of a GPCR is the prerequisite event in signal transduction. The 

major course of events upon ligand binding can be depicted in Figure 1.8.  Once the 

ligand and the receptor form the signaling complex, the receptor is activated and ready to 

propagate the information in terms of structural rearrangement through the membrane. 

 
Figure 1-8 Signal Transduction through GPCRs. 
Ligand binds to the extracellular side of the receptor and activates the receptor. GDP is 
released and GTP comes in, activating the G-protein, bound on the intracellular side of 
the receptor. Activated G-protein, interacts with effector molecules such as adenylate 
cyclase and leads to increase in concentration of second messengers such as cAMP. 
Second messenger diffuse to other cellular compartments and interact with other 
downstream effectors, initiating cellular responses. 

Briefly, ligand binding to the extracellular side of receptor initiates the G-protein 

interaction with the intracellular side of the receptor. Nucleotide exchange, specifically 

the exit of GDP and the subsequent binding of GTP within the α subunit, activates the G-
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protein and drives the dissociation of its heterotrimer into Gα and Gβγ subunits (Berg et 

al., 2002). Signaling is terminated by the hydrolysis of GTP by the GTPase activity in the 

α-subunit. The resulting GDP-bound α-subunit re-associates with the βγ-complex to enter 

a new cycle if activated receptors (Wettschureck and Offermanns, 2005). 

 The ligand recognition is by far the most important and crucial part of activating the 

receptor and downstream signaling. As mentioned earlier, the extracellular loops (ECL) 

are the structures that display most heterogeneity and their characteristic folds are 

receptor specific. For example, in the β2 adrenergic receptor (β2AR), ECL2 forms a 

compact helical shape, close to the transmembrane region and allows soluble ligands to 

readily diffuse toward the binding site inside of the receptor (Rosenbaum et al., 2007). In 

contrast, the crystal structure of sphingosine 1 phosphate 1 receptor (S1P1) reveals that 

the ECL2 appears to block the access from the outside and seals off the ligand-binding 

pocket (Hanson et al., 2012). These different binding modes have important implications 

during receptor activation, suggesting that there is no unique switch for all GPCRs. On 

the contrary, by interacting with different regions of the receptors, ligands can modulate 

and/or converge to common active states (Audet and Bouvier, 2012).  

 

Figure 1-9 G-Protein coupled receptor signaling initiation. 
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A stimuli binds to the receptor extracellular portion and causes association of the receptor 
to its cognate G-protein. Nucleotide exchange of GTP for GDP leads to dissociation of 
the heterotrimeric G-protein into an α and a βγ subunits. In turn, the α and the βγ can 
interact with downstream effectors and lead to an increase in concentration of second 
messengers such as cAMP and DAG. Hydrolysis of GTP leads to re-association of the α 
and the βγsubunits into a G-protein heterotrimer and the cycle can be repeated again. 

Activation of the receptor leads to the association of the heterotrimeric G-protein on its 

intracellular side (Figure 1-9). Further, nucleotide exchange decreases the affinity of Gα 

to Gβγ and Gα is freed from the complex and allowed to interact with downstream 

effectors with the canonical effector being adenylyl cyclase. In addition, the βγ-subunit 

can also modulate the activity of other effector proteins (Clapham and Neer, 1997). Some 

of the downstream signaling targets of βγ subunit are isoforms of adenylate cyclase, 

phospholipase C and phosphoinositide-3-kinase (Exton, 1996; Sunahara et al., 1996; 

Vanhaesebroeck et al., 2001). Moreover, most GPCRs are able to activate more than one 

subtype of G-protein which results in the activation of several different pathways both 

through the α and the βγ subunits. However, the interaction between the receptor and the 

G-protein appears to be selective and cell type specific (Wettschureck and Offermanns, 

2005).  

G-proteins composition 

G-proteins are the mediators of signaling from the activated receptors to the downstream 

effectors. The adenylate cyclase is the original model system for studying G-proteins 

whereby it can be either activated or inhibited by different G-proteins. G-proteins consist 

of three subunits: a guanyl nucleotide binding α subunit (39-52kDa), a β subunit (35-

36kDa) and a γ chain (8kDa) (Stryer and Bourne, 1986). G-proteins cycle between GDP-

bound inactive to GTP-bound active state. In the guanyl nucleotide, GDP-bound form, 

the G-protein is a trimer composed of all three α, β and γ subunits. There are many 

subtypes of G-proteins that modulate the functional versatility of GPCRs. The 

heterotrimeric G-proteins are divided into four groups depending on the sequence 

similarities in their Gα subunits (Gαs, Gαi, Gαq and Gα12) (Oldham and Hamm, 2008). 

The α-subunit is a member of the P-loop NTPase and involves guanyl binding (Berg et 

al., 2002). Gα contains a conserved region composed of a GTPase domain, responsible 
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for the GTP hydrolysis and an α-helical domain (Oldham and Hamm, 2008). The GTP-

ase domain is conserved in all G-proteins and is also involved in the binding interface 

with the βγ dimer.  

 

 

Figure 1-10 Heterotrimeric G-protein. 
Gα consist of a Ras domain (yellow) and an α-helical domain (AH) (orange). A 
nucleotide binding pocket is at the interface of the Ras and α-helical domain. Gβ is 
represented in green and the Gγ in purple, wrapping around the β subunit. Both the 
GαRas and the Gγ can mediate interactions with the membrane. 

The β subunit is characterized by a β-propeller fold, composed of seven WD40 sequence 

repeats (Wall et al., 1995). The γ subunit wraps around the β subunit and forms a coiled-

coil at its N-terminus (Figure 1-10). In addition, it bears an isoprenyl post-translational 

modification at its C-terminus, possibly with a farnesyl group that allows for membrane 

interactions (Zhang and Casey, 1996).  

In addition, a combination of 5 different β-subunits and 12 different γ-subunits, can 

compose the βγ-complexes adding even more complexity to GPCRs signal transduction 

(Wettschureck and Offermanns, 2005).  

Gα"

Gβγ"

Ras"

α-helical"

GDP!



 
20 

Stimulatory Gαs subunit 

The Gαs proteins are ubiquitously expressed and facilitate the activation of adenylyl 

cyclase resulting in the subsequent increase in the second messenger cAMP (Berg et al., 

2002). In turn, the increase of cAMP is able to modulate a variety of cellular processes by 

activating protein kinase A (PKA). This enzyme is composed of two regulatory chains 

(R) and two catalytic chains (C). When cAMP binds to the active chains, the catalytic 

chains are released and are then able to phosphorylate specific serine and threonine 

residues on multiple targets (Berg et al., 2002). The bacterial toxin, Cholera toxin (CTX), 

from Vibrio choleare can ADP ribosylate the Gαs subunit, rendering the G-protein 

catalytically inactive in the GTPase function (Freissmuth and Gilman, 1989). The ADP-

ribosylated Gα subunit is therefore left constitutively active thus constantly stimulating 

the AC, cAMP production and protein kinase A (PKA) activation. Finally, PKA opens 

chloride channels which leads to increased water secretion and can result in diarrhea 

(Gabriel et al., 1994). 

 
Figure 1-11 Effect on G-protein signaling by bacterial toxins. 
Cholera toxin (CTX) ADP-ribosylates the α subunit of Gs, leaving it constitutively 
active, thus, constantly stimulating adenylyl cyclase. Pertussis toxin (PTX) ADP-
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ribosylates the α subunit of Gi, rendering it inactive and no longer able to inhibit adenylyl 
cyclase. Therefore, both toxin, act through different mechanisms but lead to constitutive 
activation of AC and increase of cAMP concentrations. 

Inhibitory Gαi subunit 

The Gi/Go G-protein family is widely expressed throughout different tissues, where the 

α-subunit is implicated mostly in the inhibition of adenylyl cyclases (Sunahara et al., 

1996). It is also believed that the major signaling processes in the Gi/Go family are 

mediated by the βγ-complexes that are released from the G-protein (Clapham and Neer, 

1997). Studies on this family of G-proteins with Clostridium botulinum (pertussis toxin; 

PTX) show that the PTX can ADP-ribosylate the carboxy terminal of the Gαi, preventing 

the α-subunit from interacting with AC. In turn, AC is constitutively activated and this 

leads to an increase in intracellular concentration of cAMP and activation of potassium 

channels (Figure 1-11). 

Shutting off the signal transduction 

Halting the signal from the activated ligand-receptor-G-protein complex can be 

accomplished in several ways (Figure 1-12). First, the recycling of GTP for GDP 

increases the affinity of the α for the βγ subunits and reforms the G-protein heterotrimer, 

thus turning off the signal. Second, the ligand concentration in the extracellular space 

also plays a role in receptor disensitization. At lower concentrations, the likelihood of a 

7TM receptor rebinding a ligand is smaller and the receptor is predominantly in inactive 

form. G-protein coupled receptor kinases (GRK) can phosphorylate Ser and Thr residues 

on the C-terminal receptor tail. The phosphorylated residues serve as binding sites for β-

arrestins which in turn can prevent the re-association of the G-protein to the receptor and 

inhibit signaling (Berg et al., 2002).  
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Figure 1-12 Regulation of signal transduction of GPCRs by arrestins. 
Arrestins can bind to phosphorylated receptor tails and serve as both regulatory subunits, 
by internalizing the receptor, or signaling subunits. 

It is important to mention that signaling pathways of GPCRs can also be mediated in a G-

protein independent manner, making the regulation and modulation of GPCR signaling 

cascades even more complicated (Azzi et al., 2003; Lefkowitz and Shenoy, 2005). 

1.5 Structural techniques and challenges in studying membrane proteins 

Lipid-protein interactions 

The cell membrane is essential for life as it provides a barrier between the intracellular 

space and the extracellular matrix. Biological processes such as respiration, 

photosynthesis, motility and signal transduction are executed by the interactions between 

membrane proteins and the lipid bilayer. Protein production, purification, stability and 

homogeneity are the major challenges in studying membrane proteins. Membrane 

proteins are embedded in the lipid bilayer and need to be resolubilized by detergent in 

order to be studied. Lipids play important roles not only in stabilizing the proteins but 

ATP ADP

Receptor 
kinase

`-Arrestin

P

P

phosphorylation

SIGNALING

CLATHRIN-,MEDIATED 
RECEPTOR 

INTERNALIZATION



 
23 

also in their function, folding and even membrane insertion. Understanding the lipid-

protein interactions is crucial to delineate the native environment of membrane proteins 

and their functions (Lee, 2003, 2004). The association between the lipids and the 

membrane proteins is very tight. During protein purification, most of the lipids are lost in 

the process and those that remain are usually those most tightly bound ones. That is why 

in many cases lipids are added during purification in order to keep the proteins stable as 

in the case of human β2-adrenergic G protein-coupled receptor (Cherezov et al., 2007; 

Raunser and Walz, 2009). 

Methods overview to study the structure of membrane proteins 

There are a variety of methods available to study membrane proteins’ structure. All 

methods have their own advantages and disadvantages and the suitability of each depends 

on the identity and the characteristics of the protein of interest. Membrane proteins are 

very challenging targets for structural determination for a variety of reasons. The 

expression, purification, solubilization, inherent flexibility, hydrophobicity and size are 

just of the few of the reasons that make membrane proteins difficult to study. An 

overview of some of the most widely used techniques to study membrane protein 

structure is given below. 

X-ray crystallography 

X-ray crystallography is the primary technique used in protein structure determination 

with the majority of protein structures in the data bank being solved by this method. After 

the protein is purified and crystallized, it is subjected to an intense X-ray beam which is 

diffracted by the proteins in the crystal resulting in a characteristic pattern of spots, 

containing the information about the electron distribution in the protein. X-ray 

crystallography is a very powerful technique that can provide an atomic resolution detail 

for the molecules incorporated into the crystal. Crystallography is an excellent method 

for studying rigid proteins, of modest size, that can form nicely ordered crystals. 

However, flexible proteins, such as the membrane proteins, are more difficult to 

crystallize because they cannot all align in the same orientation to form a crystal. In 

addition, locally flexible regions in a protein that is successfully crystallized can be 
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invisible in the electron density maps because their electron density is smeared over a 

large space. NMR can provide information about the protein in solution and thus also 

provide information for the flexible regions of a protein that are otherwise disordered in 

crystal structures. Recent advances in protein engineering and purification have 

tremendously accelerated x-ray chrystallography as a technique to study membrane 

protein structures. For example, the concept of the lipidic cubic phase (LCP) where 

membrane proteins can freely diffuse in a continuous lipid bilayer for nucleation and 

crystal growth was introduced (Landau and Rosenbusch, 1996). Further, the insertion of 

an N-terminal recombinant lysozyme for the successful crystallization of human β-

adrenergic G-protein coupled receptor complex (Zou et al., 2012)  as well as the 

introduction of a stabilizing nanobody for the crystallization the β2AR-Gαs complex  

(Rasmussen et al., 2011a; Rasmussen et al., 2011b) have transformed the field of 

membrane protein crystallography. 

Nuclear Magnetic Resonance (NMR) 

Both solution and solid state NMR have been used to study membrane proteins’ structure 

and dynamics of membrane proteins. The main advantage of NMR is that the proteins of 

interest can be studied in various environments including different salt concentrations, 

pH, temperature, organic solvents or synthetic micelles. One of the challenges with this 

technique is the requirement for large amounts of very pure protein, usually in the 

milligram scale. As mentioned earlier, the purification and solubilization of membrane 

proteins is difficult and obtaining large quantities of such can be expensive, time-

consuming and sometimes impossible. What distinguishes the solution from the solid-

state methods in NMR is the motional properties of the protein-lipid sample (Montaville 

and Jamin, 2010). Because large protein assemblies (larger than ~ 40kDa) have slower 

molecular tumbling, they are more difficult to study with solution NMR. In contrast, the 

addition of specific stable-isotope to the protein is the limiting factor in solid-state NMR. 

Further, membrane proteins are characterized by high repetitiveness of hydrophobic 

amino acids spanning the membrane, forming primarily α-helices or β-strands. The signal 

overlaps from these structures further complicate the NMR spectra and make the solution 

of membrane protein structure more challenging using NMR. 
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Electron microscopy 

Electron microscopy has become a very powerful tool for characterizing protein 

structures. There are different methods in electron microscopy used to determine the 

three dimensional shape of proteins. For example, in cryo-EM, the sample is suspended 

in vitreous ice, and in negative stain, the proteins are embedded in heavy metal salt. If the 

protein forms 2D crystals, electron diffraction can be used to generate a 3D density map 

and to solve the structure of the protein (Unwin and Henderson, 1975). Cryo-electron 

microscopy has also made tremendous advances in the study of membrane protein 

structures as a result of instrument and data processing improvements. Generally, it is 

very applicable to supramolecular assemblies that are either too flexible to crystallize for 

X-ray diffraction analysis or too big for NMR to characterize. Thus, the combination of 

cryo-EM with single particle analysis allows for the determination of structures of 

supramolecular machineries in their native environment even in their transient states 

(Zhou, 2011). Viruses are particularly good candidates for cryo-EM because of their large 

size intrinsic symmetry, which allows for signal redundancy and easier averaging in 

single particle analysis. Viral structures have contributed to some of the highest 

resolution structures characterized by single particle analysis, cryo-EM (Cheng et al., 

2010; Zhang et al., 2010). However, as a result of the lower contrast in cryo-EM, proteins 

that are smaller than ~ 200 kDa are difficult to visualize. Therefore, negative staining EM 

may be a more suitable technique to study their structure. 

In negative staining, the sample is embedded and fixed in a solution of a heavy metal salt 

and subsequently dried on the EM grid. The stain embedding provides better contrast in 

comparison with cryo-EM but has its limitations as well. The dehydration of the proteins 

as a result of the negative staining may result in flattening and distortion of the three 

dimensional conformations (Vahedi-Faridi et al., 2012). In addition, this technique can 

provide information only about the surface characteristics of the protein and not their 

internal features. Nevertheless, the negative staining method is an excellent tool to assess 

the quality of purified samples, their homogeneity and purity, a test that is even more 

stringent than SDS gels, gel filtration or even dynamic light scattering. Negative stain 

electron microscopy cannot provide the atomic resolution of X-ray crystallography and 
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NMR. However, it allows us to study the overall shape of large and flexible molecular 

assemblies, in their native state. 

Applying Negative Stain EM for Structural Analysis of Proteins 

Image Formation 

After emitted from the source, the electron beam is deflected through a set of condenser 

lenses ensuring that the beam is parallel (Figure 1-13a). Then, the electron beam passes 

through the specimen by which the electrons are either scattered or not (Figure 1-13b). 

The inelastically scattered electrons provide the background noise of an image. The areas 

where the electrons are scattered, are in the range of grey and where the electron are 

unscattered the image is brighter (Frank, 2006; Williams and Carter, 1996). In contrast, in 

the regions where the electrons do not pass through the sample the image appears dark. 

However, in negative staining, as the name suggests, things are reversed. Background 

areas, covered in stain appear dark, while proteins appear brighter and are stain excluded. 

The scattered electrons interact further with the magnetic field of the objective, followed 

by an intermediate and projector lenses which in turn form an image (Figure 1-13). The 

image is then viewed on a fluorescent screen or can be recorded by a charge-coupled 

device (CCD) camera or conventional film (Williams and Carter, 1996). Because no lens 

is perfect the achievable resolution of an image is partly depended on the lens 

aberrations. There are three main sources of aberrations - spherical aberration, chromatic 

aberration and astigmatism. In the case of spherical aberration, the peripheral electrons 

are deflected more than the electrons closer to the center. This aberration can be 

improved with thinner samples. 
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Figure 1-13 TEM lens organization and electron path through the sample. 
a, Lens organization in the column of the EM. Red arrows represent the electron path. b, 
Electron diffraction path through the sample.  

Chromatic aberration is related to the energy of the electrons which emerge from the gun 

with different energies and are subsequently bent by the objective lens to different 

degrees with the ones with less energy being bent more. This is the aberration that most 

significantly defines the performance of the objective lens. Both types of aberrations 

result in a disk rather than a point where all the rays converge which makes the image 

blurred and may reduce contrast. The astigmatism is caused by the inherent property of 

the electromagnetic lens lacking a perfect cylindrical symmetry. Thus, this aberration 

affects the ability to focus an image but could be easily corrected by the stigmators 

(Frank, 2006). In addition, the resolution limit is also dependent on the nature of the 

biological sample. For example, because higher electron dose could damage biological 

samples, obtaining high sample contrast and better resolution is dependent on the dose 

rate. Furthermore, sample heterogeneity can also lead to lower resolution structures.  
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Single Particle Analysis 

Single particle analysis aims to determine the structure of macromolecules from images 

of individual particles, termed single particle projections. In negative staining the 

particles are fixed on a carbon support, embedded in heavy metal salt. Furthermore, based 

on their shape and charge they can assume preferred orientation on the carbon support. 

The single particle analysis method is a compilation of a few computerized image 

processing techniques used to analyze the images from TEM. Generally, the micrographs 

from the electron microscope are characterized by a very low signal-to-noise ratio. 

Therefore, the integral part in image processing is to improve signal-to-noise ratio by 

averaging large number of particle projections. With single particle analysis, the structure 

of a macromolecular protein complex can be determined from the images of individual 

particles (Frank, 2006). The homogeneity of the protein sample is critical in single 

particle analysis although, samples with conformational heterogeneity can also be 

analyzed.  

Reference-free alignment and classification 

The purpose of the alignment of several images is to increase the signal-to-noise ratio. 

After the particles have been boxed out, the averaging is carried out through translational 

and rotational alignments of the particle projections using reference-free procedures 

(Frank, 2006). In this method, multiple views from particles of a particular data set are 

separated into classes by comparatively aligning the particle projections to randomly 

chosen particles from the same data set. In essence, the randomly chosen initial 

projections are used as models and the remaining particles are grouped with them based 

on cross-correlation values. All the particles in each group are averaged out and the 

resulting class average is then used as a new reference. The alignment procedure is 

performed iteratively with multiple cycles until class averages are produced with no 

further change in the overall image shifts and rotations (Ohi et al., 2004). Each average 

contains similar particle projections, creating improved signal-to-noise ratio, and allows 

for clearer visualization of the protein’s features. In addition, the number of required 

classes can be chosen based on the heterogeneity of the sample. That is why initially, it is 
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good to start with few classifications containing different number of classes. A good 

indication would be if there are more output averages that represent a significant number 

of projection structures and the raw particle projections resemble their class averages. 

Further, unique classes can be selected from the classification and used for subsequent 

classifications to improve the model and enrich the population of particles in the specific 

group. There are few software packages capable of performing image alignment, 

classification and also multireference alignment such as IMAGIC (van Heel et al., 1996), 

SPIDER (Frank et al., 1996) and EMAN (Ludtke et al., 1999). 

Contrast transfer function 

The electron microscope distorts the structural information from the protein sample by 

changing the amplitudes and phases of the recorded electron waves. These artifacts are 

dependent on the microscope’s objective lens spherical aberration coefficient, the voltage 

and defocus values used as well as the spatial frequency. The contrast transfer function 

(CTF) defines the transfer of contrast from the sample to an image by defining the 

relationship between the Fourier transform of an object’s image and the Fourier transform 

of an object’s Coulombic potential multiplied by the contrast transfer function (Wade, 

1992). The CTF is an oscillating function with amplitude that can be plotted against the 

resolution in inverse angstroms (Figure 1-14). The CTF oscillates from positive contrast 

transfer to negative contrast transfer as it passes through zero, where the information 

about the object is lost due to no transmittance or contrast transfer. 
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Figure 1-14 Contrast transfer function (CTF) curve. 
This is an example of a contrast transfer function curve for a TEM operating at 200 kV, 
with Cs=2 and for a defocus value of 1000 nm. The signal amplitude is plotted against 
the resolution in inverse angstroms (x-axis). The experimental contrast transfer curve is 
in black and oscillates from positive to negative values, while the signal gradually with 
increasing resolution (Courtesy of Georgios Skiniotis). 

Since the exact location of the zero crossings depends on the defocus values, by 

collecting images at different defoci, the resolution limit of a 3D reconstruction could be 

improved. Another way to correct for the lost image information is to obtain a constant 

positive phase values by inverting the negative values of the micrograph’s CTF. The so-

called “phase-flipping” can be performed by determining the values of the parameters, 

contributing to the shape of the CTF of each micrograph and using these values to flip the 

negative regions of the curve to positive ones (Zhu et al., 1997).  



 
31 

Three dimensional reconstruction 

Among the mathematical operations to be carried out in the computer are alignment, 

determination of particle orientation (by random conical technique, common lines or 

reference to an existing density map), classification, reconstruction and correction of the 

contrast transfer function (CTF). A three dimensional reconstruction from the protein’s 

2D projections is achieved with several algorithms and approximations where the 2D 

projections along a 3D object contain sufficient information to restore the original object. 

For this purpose the orientation angles of each projection must be known. As the protein 

particles interact with the carbon support they form different projections which must fully 

fill Fourier space from all directions (Llorca, 2005). Therefore, the requirement to resolve 

the 3D structure of a protein is to establish the orientation of each projection image with 

respect to some reference coordinates. The orientation can be characterized by the 

projection’s Euler angles which are directional angles used to define the position of a 

particle around a common center. For this procedure, the data set needs to be of a 

sufficient size as well as to contain particles in the same conformation and different 

orientations on the carbon support. In cases when the protein falls on the grid in a 

preferred orientation or because it has an inherent conformational flexibility, different 

views cannot be unambiguously assigned to a specific conformation. The random conical 

tilt procedure in such situations can provide a solution to this and generate a 3D volume 

for each type of view (Llorca, 2005; Radermacher and Ruiz, 2006). 

Random conical tilt reconstruction 

The Random Conical Tilt (RCT) method is used to generate a reconstruction of a three 

dimensional image, taking advantage of the preferred orientation of the specimen with 

respect to the plane of the grid (Radermacher et al., 1987). In this approach, one 

micrograph is taken at 0° and another at a high tilt angle of 60° (could also be 50°-70°) 

degrees) (Figure 1-15a). The two images are digitized and put side put side-by-side where 

the same particles at different angles are selected (Figure 1-15b). The images of the 

untilted particles are then correlated to their tilted counterparts by the direction of the tilt 

axis and the tilt angles. After the untilted particles have been aligned and classified, the 
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angles and shifts are also applied to the corresponding particles from the tilted images. 

Thus, their orientations in space are determined (Figure 1-15c). The projections of the 

tilted particles will form a cone with a fixed tilt angle of 60° degrees and a random 

azymuthal angle series that can be extracted for the untilted particles and used for the 

reconstruction. By back-projecting the tilted particle projections, the initial model can be 

reconstructed (Figure 1-15d). One of the advantages of this method is that no initial 

model is needed and thus it can be used to generate one for subsequent reconstructions 

from negative stain and/or cryo EM. 

Angular refinement 

Angular refinement is an iterative process used to increase the visible details of the model 

obtained in the previous step by better defining the angular position of each experimental 

projection. In this method, the initial reconstruction serves as an initial reference structure 

from which two-dimensional projections are computed and then compared to the 

experimental projections, yielding refined angles. From the refined angles a new 

reconstruction is obtained which is consequently used as a reference for the next cycle. 

The process is repeated iteratively until no further improvement in the 3D model is 

observed and the orientation angles have been stabilized. (Fuller et al., 1996; Zhu et al., 

1997). A new reconstruction is calculated based on these parameters and it is used as an 

initial model for the subsequent iterations. 
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Figure 1-15 Random Conical Tilt.  
a., Red arrows show the electron path through the sample imaged at 0° and 60° degrees. 
b., Micrographs containing multiple single particle projections from the 0° and 60° 
degree are collected and the individual particles and picked and excised. c., Orientational 
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parameters of tilted particles are assigned based on their relationship to the untilted 
particles. d., After back-projecting the different views, the original image of the specimen 
can be restored. 

This process is repeated until the Fourier shell correlation (FSC) curve is converged. 

Figure 1-16 is a sample angular distribution plot of a 3D reconstruction of the single 

chain LepR, where the particles are spread in angular space around a reference model. 

Each mark inside the circle indicates the position of a matched projection with the ones 

near the center corresponding to the untilted particles and the ones surrounding the ring to 

the tilted particles. The more dots, the more representative views of the protein have been 

imaged and ideally the whole space should be filled. 

  

Figure 1-16 Angular plot of single chain extracellular LepR. 
The graph represents the angular distribution of particles, relative to a reference volume 
of the single chain LepR. Each dot marks a reference projection that has a matched 
experimental particle. 

In addition, when the particles have preferred orientation their corresponding 2D 

averages will contain more particles. This in turn will increase signal-to-noise ratio for a 

particular class, potentially increasing the resolution in the direction of space 

corresponding to the preferred orientations. The final resolution of the 3D reconstruction 

is calculated when the data set is split into two randomly selected subpopulations and two 

corresponding 3D maps are calculated. The Fourier Shell Correlation curve (FSC) is 
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calculated between the two volumes (a comparison in Fourier space) and the 

reconstruction’s resolution limit is determined at the FSC value of 0.5 (FSC=0.5). 

1.6 The leptin receptor system - a brief historical perspective 

The first documented case of genetically obese animals, the ob/ob mice, dates back to the 

1950s (Ingalls et al., 1950). However, it was not until later that another group discovered 

a nonsense mutation in the ob/ob mice (Zhang et al., 1994). The gene bearing the 

nonsense mutation makes the 16 kDa leptin hormone, normally expressed in the white 

adipose tissue. The mutation causes a truncation in the hormone making it unable to be 

secreted and causing extreme obesity in the mice (Zhang et al., 1994). Interestingly, the 

authors also reported that the expression of the ob gene in mice is greatly enhanced 

compared to their wild-type counterparts (Zhang et al., 1994). To identify the high 

affinity binding site of leptin or in other words the leptin receptor (LepR), Tartaglia and 

colleagues used a radioactively labeled leptin in mouse tissues and performed binding 

assays to identify the major sites of leptin binding. After constructing a cDNA library, the 

authors were able to isolate and clone the LepR which they characterized as a single pass 

membrane receptor similar to glycoprotein 130 (gp130), Interleukin-6 receptor (IL-6R), 

granulocyte colony stimulating factor receptor (GCSF-R) and leukemia inhibitory factor 

receptor (LIF-R) (Tartaglia et al., 1995). 

 Leptin  

The hormone leptin belongs to the hematopoietin family of cytokines because of its 

shared structural homology to interleukin-6 (IL-6), leukemia inhibitory factor (LIF) and 

cilliary neutrophic factor (CNTF), to name a few (Zhang et al., 1994). Because the native 

leptin peptide is very prone to aggregation, its poor solubility proved its crystallization to 

be very challenging. Systematic site-directed mutagenesis during the crystallographic 

trials led to the discovery of a single amino acid substitution at its surface having a 

dramatic effect on its solubilization. The yielded analog, leptin-E100, bearing a single 

amino acid substitution of Glu for Trp at position 100, finally allowed its crystallization 

(Zhang et al., 1997).  
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The hormone leptin and the leptin receptor (LepR) 

Structurally, leptin bears striking similarity to other four-helical bundled cytokines such 

as LIF (Robinson et al., 1994) and G-CSF (Hill et al., 1993). In addition to many 

similarities, the structure of leptin also has a few notable differences from other 

cytokines. For example, G-CSF and LIF have well pronounced kinks in the middle of 

helix A and D, respectively, in order to maximize helix contacts in these structures. 

Leptin, on the other hand, has only a small kink at the end of helix D (Zhang et al., 2005). 

Like other class I cytokines, leptin possesses three binding epitopes at sites I, II and III 

which can be potentially engaged with receptor interactions and activation (Bravo and 

Heath, 2000; Iserentant et al., 2005). Peelman and colleagues showed that epitope II of 

leptin constitutes the primary binding site to the receptor (Peelman et al., 2004). 

However, the existence of the two more putative binding epitopes has led to substantial 

controversy in terms of the formation of the leptin/LepR signaling complex (Couturier 

and Jockers, 2003; Mistrik et al., 2004; Peelman et al., 2006). 

 

Figure 1-17 Ribbon diagram of the crystal structure of leptin.  



 
37 

A four-helical bundle conformation of human leptin. Blue arrows point to putative 
binding epitopes based on structural similarities to other four-helical bundle cytokines.  

 

LepR belongs to class I cytokine receptors which includes glycoprotein 130 (gp130), the 

LIF receptor (LIF-R), the CNTF receptor (CNTF-R), the granulocyte colony stimulating 

factor receptor (GCSF-R), and others (Tartaglia et al., 1995) (Wang et al., 2009). 

Receptors from this class are characterized with conserved signature domain organization 

at their extracellular end. LepR has seven domains grouped into modules on the 

extracellular side of the membrane. Along with oncostatin M receptor (OSM-R) and LIF-

R, LEP-R is an unusual class I receptor since it contains not one, but two CHR modules. 

The N-terminal CHR1 and the C-terminal CHR2 are membrane-distal and separated by 

an immunoglobulin-like domain (IgD). Each CHR module consists of two domains with 

a characteristic fibronectin type III (FnIII) fold that contain the classical motif for 

cytokine binding (Wang et al., 2009). In addition, both CHR modules represent potential 

ligand binding sites, however, only CHR2 has been shown to be required for leptin 

binding (Fong et al., 1998; Iserentant et al., 2005; Peelman et al., 2004). Furthermore, 

unlike LIF-R and gp130, LEP-R possesses two, rather than three, FNIII membrane-

proximal domains. Although the IgD (D3) and the two membrane-proximal FnIII 

domains are not prerequisites for high-affinity leptin binding, they have been shown to be 

essential for LEP-R activation (Zabeau et al., 2005; Zabeau et al., 2004).  

To this end, there are at least five known isoforms of LepR (a-f) produced by alternative 

splicing of the db gene (Lee et al., 1996; Tartaglia et al., 1995). All isoforms are identical 

at their extracellular region but differ in length at their C-terminal tails. The shortest, 

isoform e, is truncated proximally to the membrane-spanning domain and functions as a 

soluble circulating leptin-binding protein. In addition, the longest isoform b is the only 

one having signaling capabilities (Friedman, 1998). LepR is primarily expressed in the 

hypothalamus, at the areas involved in the regulation of energy balance such as the 

arcuate and ventromedial nuclei (Elmquist et al., 1998). Therefore, leptin’s ability to 

regulate food intake can be primarily attributed to its actions in the hypothalamus. 
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Class I cytokine receptors are not kinases themselves. Instead, they rely on constitutively 

bound Janus kinases (JAKs), at their intracellular domains (ICD) for activation. There are 

two highly conserved motifs on the LepR ICD, termed box 1 and box 2 which are 

required for Jak2 binding and activation (Kloek et al., 2002). A few studies have 

suggested that ligand-binding on the extracellular portion of the receptor is a prerequisite 

for Jak2 signal instigation by way of stabilizing the transmembrane region in a certain 

conformation and thus favorably orienting the JAK2s toward each other (Couturier and 

Jockers, 2003; Murray, 2007).  

Signal transduction pathways activated by leptin 

Ligand-binding to the leptin receptor can lead to the activation of numerous downstream 

signaling pathways. Once activated, JAK2 phosphorylates multiple tyrosine residues on 

the intracellular receptor tail which serve as binding site for downstream signaling 

effectors. Some of the pathways that lepin activates include JAK/STAT, SHP-2, MAPK, 

phosphatidylinositol 3 kinase (PI3K and AMP-activated protein kinase (AMPK) (Zhang 

et al., 2005). Leptin signaling through the JAK/STAT pathway has been well studied. 

STAT3 binds on the receptor tail upon phosphorylation of Tyrosine1138 which results in 

JAK2-mediated phosphorylation and subsequent release into the cytoplasm, dimerization 

and translocation to the nucleus. In the nucleus, the STAT dimer binds DNA and 

instigates transcription of genes predominantly involved in expression of numerous 

neuropeptides involved in feeding and regulating body energy balance (Zhang et al., 

2005). Activation of LepR also induces the expression of SOCS3 in the hypothalamic 

area by direct binding of STAT3 to the response element (Bjorbaek et al., 1998). SOCS3 

is an SH2 domain-containing protein, capable of binding phosphorylated Tyr985 on 

JAK2 inhibiting JAK2 activity and abolishing LepR signaling (Bjorbaek et al., 1999). In 

addition, leptin-mediated MAP kinase activation is promoted through SH2-containing 

phosphatase 2 (SHP-2) which binds to the phosphorylated LepR and simultaneously 

inhibits STAT3 activation (Banks et al., 2000). Moreover, there is a strong correlation 

between leptin and insulin signaling pathways. It has been suggested that the 

hypothalamic leptin receptor signaling couples to the intracellular insulin-receptor 

substrate (IRS)-PI3K pathway via JAK2-mediated phosphorylation of IRS and Grb-2 
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protein (Villanueva and Myers, 2008). Also, it has been postulated that leptin can 

regulated lipid metabolism through fatty acid oxidation by activating AMPK (Minokoshi 

et al., 2002). 

Biomedical significance of leptin/LepR system 

Leptin is a pleiotropic adipokine and its receptors are located not only in the 

hypothalamus but also in peripheral tissues such as monocytes, lymphocytes, vascular 

tissue, pancreas, skeletal muscle and myocardium (Margetic et al., 2002). Given the 

broad expression of the receptors and plethora of pathways activated upon leptin 

signaling, it is not surprising that perturbations in the leptin system lead to serious 

illnesses. After the discovery of leptin and its successful crystallization, scientists thought 

that the solution for treating obesity would be a straightforward one. However, the initial 

recombinant leptin treatment for obesity did not yield the expected results. Leptin 

administration was shown to successfully suppress appetite and reduce excessive fat in 

obese humans with genetic leptin deficiency (Farooqi et al., 2002). In contrast, leptin 

therapy in the majority of human obese patients only resulted in modest weight reduction 

(Mantzoros and Flier, 2000). Interestingly, most obese individuals exhibit elevated 

circulating leptin concentrations, indicating leptin resistance rather than deficiency 

(Considine et al., 1996).  

Lipodystrophy is another rare disease characterized by low leptin levels and associated 

with insulin resistance, hyperglycemia, hyperinsulinemia and hepatic steatosis (Garg, 

2000). Treating lipodystrophic patients with leptin leads to an improvement in their 

glycemic control and decreases triglyceride levels. In addition, leptin deficiency 

contributes to insulin resistance and other abnormalities associated with severe 

lipodystrophy (Oral et al., 2002). Hypothalamic amenorrhea is yet another disease 

associated with leptin deficiency (Bluher and Mantzoros, 2007). Recombinant leptin 

therapy in these patients has been shown to improve the gonadal function associated with 

nutritional calorie deficiency (Welt et al., 2004). However, the development of better 

leptin analogs for long-term treatment is needed because of leptin-related weight loss in 

those patients, already underweight. Obesity also increases the risk of cardiovascular 
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disease and the elevated leptin levels in such individuals are found to be correlated with 

hypertension and atherosclerosis, stroke and inflammation (Beltowski, 2006; Sweeney, 

2010). 

The above mentioned clinically-related diseases implicated by leptin do not cover by far 

all potential clinical application of leptin-based therapies. Therefore, understanding the 

molecular mechanisms of leptin signaling and resistance is crucial to combat not just 

obesity but all pathways affected by defective leptin signaling in order to develop 

effective therapeutics. 

Part of the work in this thesis is concerned with investigating the leptin/leptin receptor 

signaling complex and aims to uncover valuable insights of the mechanism of activation 

and understand better this pleiotropic pharmacological target.   

1.7 The Opioid Receptor System 

Introduction to opiates and their receptors 

For centuries, opium and its derivatives have been utilized in medicine for treatment of 

chronic pain as well as “recreationally” as euphoriant agents. Opium is an extract of the 

poppy plant Papaver Somniferum. Friedrich Serturner was the first to identify morphine 

as the active ingredient. However, it was not until over a hundred years later when the 

actions of morphine were demonstrated at the receptor level (Pert and Snyder, 1973). 

Opiate receptors are of fundamental physiological importance because they mediate 

responses for pain, sedation and euphoria (Waldhoer et al., 2004). Opioid drugs such as 

morphine and codeine are invaluable pain killers and sedatives but their addictive nature 

limits their clinical usage. The opioid receptors therefore are important structural targets 

to design new drugs exerting beneficial actions and lacking the side effects (Hughes and 

Kosterlitz, 1983; Waldhoer et al., 2004). 

Opioid receptors can be activated by a variety of ligands either produced by the body 

(e.g. endorphins), found in nature (e.g. morphine) or synthetically made (e.g. heroin). 

Various glands throughout the body, such as the pituitary and the adrenal glands as well 

as the central nervous system (CNS) are responsible for production of endogenous opioid 
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peptides. Endogenous opioids are secreted as hormones or neurotransmitters in the 

circulation, travel to target organs and induce responses (Janecka et al., 2004). 

Endogenous opiate peptides can also serve as neuromodulators when produced by nerve 

cells and produce responses in the brain and the spinal cord. By mediating their actions 

on the CNS and in the circulation, endogenous peptides serve a broad range of 

physiological roles. The opioid receptors are also activated by exogenous non-peptide 

molecules termed alkaloids or opiate drugs such as morphine (Kieffer, 1995). These 

drugs can produce not only strong analgesic effects but also very addictive actions by 

mimicking the actions of the endogenous peptides. In addition, adverse side effects of 

opiate drugs could be attributed to their interference with the tightly regulated 

endogenous opioid system. 

Classification of opioid receptors 

Even before their biochemical identification, the notion of receptor subtypes has been 

suggested by classical pharmacological studies. To this end, there are four opioid 

receptors cloned and they are named after the pharmacological profile of the compounds 

used to identify them - MOR (µ = mu for morphine), KOR (κ = kappa for 

ketocyclazocine), DOR (δ = delta for deferens) and the NOR (nociceptin-orpharin) 

receptors (Waldhoer et al., 2004). It is suggested, however, that there may be additional 

opioid receptor subtypes resulting from posttranslational modification, alternative mRNA 

splicing, tissue distribution and alternative protein scaffolding (Jordan and Devi, 1999; 

Pasternak, 2001). Opioid receptors are coupled to pertussis-toxin-sensitive inhibitory G-

proteins termed Gi/o (Yaksh, 1997). The opioid signals are efficiently blocked by 

pertussis toxin (PTX), a bacterial toxin by Bordetella pertussis which ADP-rybosylates 

the α subunit thus inactivating Gi heterotrimer and preventing the receptor from 

signaling. In general, the Gi action is mediated through blocking the activity of adenylyl 

cylase which in turn reduces cAMP and leads to multiple actions, including modulation 

of sodium channel activity (Law et al., 2000). In addition, the G-proteins can also act by 

stimulating the potassium channels and increasing calcium levels (North et al., 1987) (Jin 

et al., 1992). Interestingly, G-proteins have also been shown to regulate mitogen-

activated protein kinase (MAPK) activity (Standifer and Pasternak, 1997). Understanding 
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the opioid receptors mediated signal transduction is crucial to understanding the 

regulatory mechanisms of their effectors. An important class of proteins that serve as 

GTPase activating proteins by facilitating the hydrolysis of GTP to GDP are regulators of 

G-proteins (RGS). The nucleotide hydrolysis facilitates the G-protein subunits re-

association and signal termination and they have been implicated in opioid tolerance 

(Garzon et al., 2001). Another mode of regulation of GPCR signaling is through β-

arrestins. Upon agonist stimulation of GPCRs, the G-protein receptor kinases (GRKs) 

phosphorylate the receptor which in turn leads to the recruitment of β-arrestins. These 

proteins promote the dissociation of G-proteins from the receptor and terminate signaling. 

In addition, G-proteins are also capable of facilitating the internalization of inactivated 

receptors to promote recycling or even degradation (Raehal and Bohn, 2005). 

Interestingly, β-arrestins have been shown to also have signaling roles by associating 

with additional scaffolding proteins and thus influencing overall receptor responsiveness 

(Shukla et al., 2011). 

The µ-opioid receptor (MOR) 

MOR is a subtype of opioid receptors class of GPCRs.  MORs are encoded by the MOR-

1 gene and they bind morphine most tightly compared to DORs and KORs. Studies in 

mice have shown that opioid alkaloids target primarily µ-opioid receptors to exert the 

effects of analgesia, euphoria, sedation, respiratory depression and cough suppression and 

even constipation as a peripheral effect (Katzung, 2009; Matthes et al., 1996). Because 

the opioid drugs are highly addictive, their clinical efficacy is limited by the development 

of tolerance and dependence. Activation of MOR can be attributed to both beneficial and 

adverse effects likely mediated by different downstream signaling and regulatory 

pathways.  

To signal, µ-OR couples to Gi/Go subunit which is responsible for its analgesic effects 

(Raffa et al., 1994). Several chimeric and mutagenesis approaches have identified 

functional residues in the receptor, responsible for ligand-binding on the N-terminus and 

G-protein (Pan and Pasternak, 2011). As a member of the GPCR family, the MOR also 

utilizes a GTP/GDP exchange within the heterotrimeric G-protein to catalyze signaling. 
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Activation of the receptor is through its interaction with G-proteins which induces the 

release of GDP from the α-subunit of the G-protein. This allows GTP to bind and results 

in the dissociation of the heterotrimeric G-protein into α and βγ signaling subunits. The α 

subunit has an inherent GTPase activity, which hydrolyzes the bound GTP to GDP 

resulting in the recycling of the heterotrimeric G-protein into its inactive state thereby 

affecting the signal potency and efficacy. 

The crystal structure of the MOR has been determined in the presence of bound 

antagonist, morphinan, but in the absence of associated G-protein (Manglik et al., 2012). 

Opioid receptors are similar to other GPCRs in their overall helical organization. Further, 

recent crystal structures have revealed a remarkably deep ligand-binding pocket in 

GPCRs. In the crystal structure of MOR, however, the bound antagonist is largely 

exposed to the extracellular surface, suggesting why the half-life of some opioid ligands, 

such as heroin, is short. Additionally, the receptor is crystallized as a twofold 

symmetrical dimer with a significantly large contact between individual protomers which 

suggests that this could serve as stabilization mechanism in vivo (Manglik et al., 2012). 

Despite the plethora of biochemical and recently structural information about the MORs, 

their mechanism of activation is still poorly understood. 

Insights from recent structural studies 

Recently the crystal structures of MOR, DOR and KOR have been reported (Granier et 

al., 2012; Manglik et al., 2012; Wu et al., 2012). Most likely their crystal structures 

represent an inactive state because they were crystallized in the presence of antagonist 

and without a bound G-protein. Nevertheless, these structures provide detailed 

information about ligand-binding specificity and an insight into an activation mechanism 

by a conformational rearrangement of the transmembrane helices. 

Recent studies of β2AR in complex with its G-protein have also begun to reveal some 

insight into its activation mechanism. Specifically, it has been suggested that the 

conformational changes in the receptor are coupled to conformational changes in the G-

protein, resulting in the movement of the N-terminal α-helical domain which in turn 

opens the nucleotide binding pocket (Chung et al., 2011; Rasmussen et al., 2011b; 
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Westfield et al., 2011). It is supposedly logical to think that the MOR involves a similar 

activation mechanism, although, the presence of the characteristically deep and solvent 

exposed binding pocket could potentially dictate a different mechanism. Thus, the precise 

structural basis for the MOR activation and specifically, how upon ligand-binding the 

structural information is transferred to the G-protein and to downstream effectors, 

remains to be elucidated. Also, the ultimate goal of the opioid research is to determine the 

optimal ligand-receptor complex profiles that infer maximal clinical efficacy with 

minimal side effects.  

The second part of my thesis work is concerned with analyzing the MOR-Gi complex 

with negative stain electron microscopy and comparing its overall domain organization to 

that of the β2AR-Gαs complex. In addition, one of the long-term goals of this work is to 

discover stabilizing nucleotides and/or nanobodies that will aid in the crystallization of 

the complex. Ultimately, the EM studies of the MOR-Gi complex would reveal a 

common mechanism of activation of the intracellularly bound G-proteins by a way of 

flexing and extending the AH domain of the Gα subunit. 

1.8 References 

Audet, M., and Bouvier, M. (2012). Restructuring G-protein- coupled receptor activation. 
Cell 151, 14-23. 

Azzi, M., Charest, P.G., Angers, S., Rousseau, G., Kohout, T., Bouvier, M., and Pineyro, 
G. (2003). Beta-arrestin-mediated activation of MAPK by inverse agonists reveals 
distinct active conformations for G protein-coupled receptors. Proceedings of the 
National Academy of Sciences of the United States of America 100, 11406-11411. 

Baker, S.J., Rane, S.G., and Reddy, E.P. (2007). Hematopoietic cytokine receptor 
signaling. Oncogene 26, 6724-6737. 

Bandaranayake, R.M., Ungureanu, D., Shan, Y., Shaw, D.E., Silvennoinen, O., and 
Hubbard, S.R. (2012). Crystal structures of the JAK2 pseudokinase domain and the 
pathogenic mutant V617F. Nature structural & molecular biology 19, 754-759. 

Banks, A.S., Davis, S.M., Bates, S.H., and Myers, M.G., Jr. (2000). Activation of 
downstream signals by the long form of the leptin receptor. The Journal of biological 
chemistry 275, 14563-14572. 

Baumann, H., Morella, K.K., White, D.W., Dembski, M., Bailon, P.S., Kim, H., Lai, 
C.F., and Tartaglia, L.A. (1996). The full-length leptin receptor has signaling capabilities 



 
45 

of interleukin 6-type cytokine receptors. Proceedings of the National Academy of 
Sciences of the United States of America 93, 8374-8378. 

Bazan, J.F. (1990a). Haemopoietic receptors and helical cytokines. Immunology today 
11, 350-354. 

Bazan, J.F. (1990b). Shared architecture of hormone binding domains in type I and II 
interferon receptors. Cell 61, 753-754. 

Beltowski, J. (2006). Leptin and atherosclerosis. Atherosclerosis 189, 47-60. 

Berg, J.M., Tymoczko, J.L., Stryer, L., Stryer, L., and National Center for Biotechnology 
Information (U.S.) (2002). Biochemistry.  (New York 

[Bethesda, MD], W.H. Freeman ;NCBI). 

Bjorbaek, C., El-Haschimi, K., Frantz, J.D., and Flier, J.S. (1999). The role of SOCS-3 in 
leptin signaling and leptin resistance. The Journal of biological chemistry 274, 30059-
30065. 

Bjorbaek, C., Elmquist, J.K., Frantz, J.D., Shoelson, S.E., and Flier, J.S. (1998). 
Identification of SOCS-3 as a potential mediator of central leptin resistance. Molecular 
cell 1, 619-625. 

Bluher, S., and Mantzoros, C.S. (2007). Leptin in reproduction. Current opinion in 
endocrinology, diabetes, and obesity 14, 458-464. 

Boggon, T.J., Li, Y., Manley, P.W., and Eck, M.J. (2005). Crystal structure of the Jak3 
kinase domain in complex with a staurosporine analog. Blood 106, 996-1002. 

Bravo, J., and Heath, J.K. (2000). Receptor recognition by gp130 cytokines. The EMBO 
journal 19, 2399-2411. 

Cantley, L.C. (2002). The phosphoinositide 3-kinase pathway. Science 296, 1655-1657. 

Cheng, L., Zhu, J., Hui, W.H., Zhang, X., Honig, B., Fang, Q., and Zhou, Z.H. (2010). 
Backbone model of an aquareovirus virion by cryo-electron microscopy and 
bioinformatics. Journal of molecular biology 397, 852-863. 

Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, 
T.S., Choi, H.J., Kuhn, P., Weis, W.I., Kobilka, B.K., et al. (2007). High-resolution 
crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. 
Science 318, 1258-1265. 

Chow, D., He, X., Snow, A.L., Rose-John, S., and Garcia, K.C. (2001). Structure of an 
extracellular gp130 cytokine receptor signaling complex. Science 291, 2150-2155. 



 
46 

Chung, K.Y., Rasmussen, S.G., Liu, T., Li, S., DeVree, B.T., Chae, P.S., Calinski, D., 
Kobilka, B.K., Woods, V.L., Jr., and Sunahara, R.K. (2011). Conformational changes in 
the G protein Gs induced by the beta2 adrenergic receptor. Nature 477, 611-615. 

Clapham, D.E., and Neer, E.J. (1997). G protein beta gamma subunits. Annual review of 
pharmacology and toxicology 37, 167-203. 

Considine, R.V., Sinha, M.K., Heiman, M.L., Kriauciunas, A., Stephens, T.W., Nyce, 
M.R., Ohannesian, J.P., Marco, C.C., McKee, L.J., Bauer, T.L., et al. (1996). Serum 
immunoreactive-leptin concentrations in normal-weight and obese humans. The New 
England journal of medicine 334, 292-295. 

Couturier, C., and Jockers, R. (2003). Activation of the leptin receptor by a ligand-
induced conformational change of constitutive receptor dimers. The Journal of biological 
chemistry 278, 26604-26611. 

Darnell, J.E., Jr. (1997). STATs and gene regulation. Science 277, 1630-1635. 

Darnell, J.E., Jr., Kerr, I.M., and Stark, G.R. (1994). Jak-STAT pathways and 
transcriptional activation in response to IFNs and other extracellular signaling proteins. 
Science 264, 1415-1421. 

de Vos, A.M., Ultsch, M., and Kossiakoff, A.A. (1992). Human growth hormone and 
extracellular domain of its receptor: crystal structure of the complex. Science 255, 306-
312. 

Dong, C., Davis, R.J., and Flavell, R.A. (2002). MAP kinases in the immune response. 
Annual review of immunology 20, 55-72. 

Duhe, R.J., and Farrar, W.L. (1995). Characterization of active and inactive forms of the 
JAK2 protein-tyrosine kinase produced via the baculovirus expression vector system. The 
Journal of biological chemistry 270, 23084-23089. 

Eastell, R., Reid, D.M., Compston, J., Cooper, C., Fogelman, I., Francis, R.M., Hosking, 
D.J., Purdie, D.W., Ralston, S.H., Reeve, J., et al. (1998). A UK Consensus Group on 
management of glucocorticoid-induced osteoporosis: an update. Journal of internal 
medicine 244, 271-292. 

Elmquist, J.K., Bjorbaek, C., Ahima, R.S., Flier, J.S., and Saper, C.B. (1998). 
Distributions of leptin receptor mRNA isoforms in the rat brain. The Journal of 
comparative neurology 395, 535-547. 

Exton, J.H. (1996). Regulation of phosphoinositide phospholipases by hormones, 
neurotransmitters, and other agonists linked to G proteins. Annual review of 
pharmacology and toxicology 36, 481-509. 

Farooqi, I.S., Matarese, G., Lord, G.M., Keogh, J.M., Lawrence, E., Agwu, C., Sanna, V., 
Jebb, S.A., Perna, F., Fontana, S., et al. (2002). Beneficial effects of leptin on obesity, T 



 
47 

cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital 
leptin deficiency. The Journal of clinical investigation 110, 1093-1103. 

Feng, J., Witthuhn, B.A., Matsuda, T., Kohlhuber, F., Kerr, I.M., and Ihle, J.N. (1997). 
Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase 
activation loop. Molecular and cellular biology 17, 2497-2501. 

Firmbach-Kraft, I., Byers, M., Shows, T., Dalla-Favera, R., and Krolewski, J.J. (1990). 
tyk2, prototype of a novel class of non-receptor tyrosine kinase genes. Oncogene 5, 1329-
1336. 

Fong, T.M., Huang, R.R., Tota, M.R., Mao, C., Smith, T., Varnerin, J., Karpitskiy, V.V., 
Krause, J.E., and Van der Ploeg, L.H. (1998). Localization of leptin binding domain in 
the leptin receptor. Molecular pharmacology 53, 234-240. 

Frank, J. (2006). Three-dimensional electron microscopy of macromolecular assemblies 
visualization of biological molecules in their native state, 2nd edn (Oxford ; New York: 
Oxford University Press). 

Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., and Leith, A. 
(1996). SPIDER and WEB: processing and visualization of images in 3D electron 
microscopy and related fields. Journal of structural biology 116, 190-199. 

Frank, S.J., Yi, W., Zhao, Y., Goldsmith, J.F., Gilliland, G., Jiang, J., Sakai, I., and Kraft, 
A.S. (1995). Regions of the JAK2 tyrosine kinase required for coupling to the growth 
hormone receptor. The Journal of biological chemistry 270, 14776-14785. 

Fredriksson, R., Lagerstrom, M.C., Lundin, L.G., and Schioth, H.B. (2003). The G-
protein-coupled receptors in the human genome form five main families. Phylogenetic 
analysis, paralogon groups, and fingerprints. Molecular pharmacology 63, 1256-1272. 

Freissmuth, M., and Gilman, A.G. (1989). Mutations of GS alpha designed to alter the 
reactivity of the protein with bacterial toxins. Substitutions at ARG187 result in loss of 
GTPase activity. The Journal of biological chemistry 264, 21907-21914. 

Friedman, J.M. (1998). Leptin, leptin receptors, and the control of body weight. Nutrition 
reviews 56, s38-46; discussion s54-75. 

Fuller, S.D., Butcher, S.J., Cheng, R.H., and Baker, T.S. (1996). Three-dimensional 
reconstruction of icosahedral particles--the uncommon line. Journal of structural biology 
116, 48-55. 

Gabriel, S.E., Brigman, K.N., Koller, B.H., Boucher, R.C., and Stutts, M.J. (1994). Cystic 
fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. 
Science 266, 107-109. 

Garg, A. (2000). Lipodystrophies. The American journal of medicine 108, 143-152. 



 
48 

Garzon, J., Rodriguez-Diaz, M., Lopez-Fando, A., and Sanchez-Blazquez, P. (2001). 
RGS9 proteins facilitate acute tolerance to mu-opioid effects. The European journal of 
neuroscience 13, 801-811. 

Granier, S., Manglik, A., Kruse, A.C., Kobilka, T.S., Thian, F.S., Weis, W.I., and 
Kobilka, B.K. (2012). Structure of the delta-opioid receptor bound to naltrindole. Nature 
485, 400-404. 

Haan, C., Behrmann, I., and Haan, S. (2010). Perspectives for the use of structural 
information and chemical genetics to develop inhibitors of Janus kinases. Journal of 
cellular and molecular medicine 14, 504-527. 

Hanson, M.A., Roth, C.B., Jo, E., Griffith, M.T., Scott, F.L., Reinhart, G., Desale, H., 
Clemons, B., Cahalan, S.M., Schuerer, S.C., et al. (2012). Crystal structure of a lipid G 
protein-coupled receptor. Science 335, 851-855. 

Harpur, A.G., Andres, A.C., Ziemiecki, A., Aston, R.R., and Wilks, A.F. (1992). JAK2, a 
third member of the JAK family of protein tyrosine kinases. Oncogene 7, 1347-1353. 

Hill, C.P., Johnston, N.L., and Cohen, R.E. (1993). Crystal structure of a ubiquitin-
dependent degradation substrate: a three-disulfide form of lysozyme. Proceedings of the 
National Academy of Sciences of the United States of America 90, 4136-4140. 

Huang, L.J., Constantinescu, S.N., and Lodish, H.F. (2001). The N-terminal domain of 
Janus kinase 2 is required for Golgi processing and cell surface expression of 
erythropoietin receptor. Molecular cell 8, 1327-1338. 

Hughes, J., and Kosterlitz, H.W. (1983). Opioid Peptides: introduction. British medical 
bulletin 39, 1-3. 

Huyton, T., Zhang, J.G., Luo, C.S., Lou, M.Z., Hilton, D.J., Nicola, N.A., and Garrett, 
T.P. (2007). An unusual cytokine:Ig-domain interaction revealed in the crystal structure 
of leukemia inhibitory factor (LIF) in complex with the LIF receptor. Proceedings of the 
National Academy of Sciences of the United States of America 104, 12737-12742. 

Ihle, J.N. (2001). The Stat family in cytokine signaling. Current opinion in cell biology 
13, 211-217. 

Ingalls, A.M., Dickie, M.M., and Snell, G.D. (1950). Obese, a new mutation in the house 
mouse. The Journal of heredity 41, 317-318. 

Iserentant, H., Peelman, F., Defeau, D., Vandekerckhove, J., Zabeau, L., and Tavernier, J. 
(2005). Mapping of the interface between leptin and the leptin receptor CRH2 domain. 
Journal of cell science 118, 2519-2527. 

James, C., Ugo, V., Le Couedic, J.P., Staerk, J., Delhommeau, F., Lacout, C., Garcon, L., 
Raslova, H., Berger, R., Bennaceur-Griscelli, A., et al. (2005). A unique clonal JAK2 



 
49 

mutation leading to constitutive signalling causes polycythaemia vera. Nature 434, 1144-
1148. 

Janecka, A., Fichna, J., and Janecki, T. (2004). Opioid receptors and their ligands. 
Current topics in medicinal chemistry 4, 1-17. 

Jatiani, S.S., Baker, S.J., Silverman, L.R., and Reddy, E.P. (2010). Jak/STAT pathways in 
cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. 
Genes & cancer 1, 979-993. 

Jin, W., Lee, N.M., Loh, H.H., and Thayer, S.A. (1992). Dual excitatory and inhibitory 
effects of opioids on intracellular calcium in neuroblastoma x glioma hybrid NG108-15 
cells. Molecular pharmacology 42, 1083-1089. 

Jordan, B.A., and Devi, L.A. (1999). G-protein-coupled receptor heterodimerization 
modulates receptor function. Nature 399, 697-700. 

Katzung, B.G. (2009). Basic & clinical pharmacology.  (New York, Lange Medical 
Books/McGraw Hill). 

Khwaja, A. (2006). The role of Janus kinases in haemopoiesis and haematological 
malignancy. British journal of haematology 134, 366-384. 

Kieffer, B.L. (1995). Recent advances in molecular recognition and signal transduction of 
active peptides: receptors for opioid peptides. Cellular and molecular neurobiology 15, 
615-635. 

Kisseleva, T., Bhattacharya, S., Braunstein, J., and Schindler, C.W. (2002). Signaling 
through the JAK/STAT pathway, recent advances and future challenges. Gene 285, 1-24. 

Kloek, C., Haq, A.K., Dunn, S.L., Lavery, H.J., Banks, A.S., and Myers, M.G., Jr. 
(2002). Regulation of Jak kinases by intracellular leptin receptor sequences. The Journal 
of biological chemistry 277, 41547-41555. 

Kobilka, B.K. (2007). G protein coupled receptor structure and activation. Biochimica et 
biophysica acta 1768, 794-807. 

Kotenko, S.V., Izotova, L.S., Pollack, B.P., Muthukumaran, G., Paukku, K., 
Silvennoinen, O., Ihle, J.N., and Pestka, S. (1996). Other kinases can substitute for Jak2 
in signal transduction by interferon-gamma. The Journal of biological chemistry 271, 
17174-17182. 

Landau, E.M., and Rosenbusch, J.P. (1996). Lipidic cubic phases: a novel concept for the 
crystallization of membrane proteins. Proceedings of the National Academy of Sciences 
of the United States of America 93, 14532-14535. 

Law, P.Y., Wong, Y.H., and Loh, H.H. (2000). Molecular mechanisms and regulation of 
opioid receptor signaling. Annual review of pharmacology and toxicology 40, 389-430. 



 
50 

Lee, A.G. (2003). Lipid-protein interactions in biological membranes: a structural 
perspective. Biochimica et biophysica acta 1612, 1-40. 

Lee, A.G. (2004). How lipids affect the activities of integral membrane proteins. 
Biochimica et biophysica acta 1666, 62-87. 

Lee, G.H., Proenca, R., Montez, J.M., Carroll, K.M., Darvishzadeh, J.G., Lee, J.I., and 
Friedman, J.M. (1996). Abnormal splicing of the leptin receptor in diabetic mice. Nature 
379, 632-635. 

Lefkowitz, R.J., and Shenoy, S.K. (2005). Transduction of receptor signals by beta-
arrestins. Science 308, 512-517. 

Leonard, W.J., and O'Shea, J.J. (1998). Jaks and STATs: biological implications. Annual 
review of immunology 16, 293-322. 

Llorca, O. (2005). Introduction to 3D reconstruction of macromolecules using single 
particle electron microscopy. Acta pharmacologica Sinica 26, 1153-1164. 

Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J., and others 
(2000). Protein structure and function. 

Ludtke, S.J., Baldwin, P.R., and Chiu, W. (1999). EMAN: semiautomated software for 
high-resolution single-particle reconstructions. Journal of structural biology 128, 82-97. 

Manglik, A., Kruse, A.C., Kobilka, T.S., Thian, F.S., Mathiesen, J.M., Sunahara, R.K., 
Pardo, L., Weis, W.I., Kobilka, B.K., and Granier, S. (2012). Crystal structure of the 
micro-opioid receptor bound to a morphinan antagonist. Nature 485, 321-326. 

Mantzoros, C.S., and Flier, J.S. (2000). Editorial: leptin as a therapeutic agent--trials and 
tribulations. The Journal of clinical endocrinology and metabolism 85, 4000-4002. 

Margetic, S., Gazzola, C., Pegg, G.G., and Hill, R.A. (2002). Leptin: a review of its 
peripheral actions and interactions. International journal of obesity and related metabolic 
disorders : journal of the International Association for the Study of Obesity 26, 1407-
1433. 

Matthes, H.W., Maldonado, R., Simonin, F., Valverde, O., Slowe, S., Kitchen, I., Befort, 
K., Dierich, A., Le Meur, M., Dolle, P., et al. (1996). Loss of morphine-induced 
analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-
receptor gene. Nature 383, 819-823. 

Mertens, C., Zhong, M., Krishnaraj, R., Zou, W., Chen, X., and Darnell, J.E., Jr. (2006). 
Dephosphorylation of phosphotyrosine on STAT1 dimers requires extensive spatial 
reorientation of the monomers facilitated by the N-terminal domain. Genes & 
development 20, 3372-3381. 



 
51 

Minokoshi, Y., Kim, Y.B., Peroni, O.D., Fryer, L.G., Muller, C., Carling, D., and Kahn, 
B.B. (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein 
kinase. Nature 415, 339-343. 

Mistrik, P., Moreau, F., and Allen, J.M. (2004). BiaCore analysis of leptin-leptin receptor 
interaction: evidence for 1:1 stoichiometry. Analytical biochemistry 327, 271-277. 

Montaville, P., and Jamin, N. (2010). Determination of membrane protein structures 
using solution and solid-state NMR. Methods in molecular biology 654, 261-282. 

Murray, P.J. (2007). The JAK-STAT signaling pathway: input and output integration. 
Journal of immunology 178, 2623-2629. 

Neculai, D., Neculai, A.M., Verrier, S., Straub, K., Klumpp, K., Pfitzner, E., and Becker, 
S. (2005). Structure of the unphosphorylated STAT5a dimer. The Journal of biological 
chemistry 280, 40782-40787. 

North, R.A., Williams, J.T., Surprenant, A., and Christie, M.J. (1987). Mu and delta 
receptors belong to a family of receptors that are coupled to potassium channels. 
Proceedings of the National Academy of Sciences of the United States of America 84, 
5487-5491. 

Ohi, M., Li, Y., Cheng, Y., and Walz, T. (2004). Negative Staining and Image 
Classification - Powerful Tools in Modern Electron Microscopy. Biological procedures 
online 6, 23-34. 

Oldham, W.M., and Hamm, H.E. (2008). Heterotrimeric G protein activation by G-
protein-coupled receptors. Nature reviews. Molecular cell biology 9, 60-71. 

Oral, E.A., Simha, V., Ruiz, E., Andewelt, A., Premkumar, A., Snell, P., Wagner, A.J., 
DePaoli, A.M., Reitman, M.L., Taylor, S.I., et al. (2002). Leptin-replacement therapy for 
lipodystrophy. The New England journal of medicine 346, 570-578. 

Pallen, C.J., Tan, Y.H., and Guy, G.R. (1992). Protein phosphatases in cell signalling. 
Current opinion in cell biology 4, 1000-1007. 

Pan, Y.X., and Pasternak, G.W. (2011). Molecular Biology of Mu Opioid Receptors. 
Recept Ser, 121-160. 

Pasternak, G.W. (2001). Insights into mu opioid pharmacology the role of mu opioid 
receptor subtypes. Life sciences 68, 2213-2219. 

Peelman, F., Iserentant, H., De Smet, A.S., Vandekerckhove, J., Zabeau, L., and 
Tavernier, J. (2006). Mapping of binding site III in the leptin receptor and modeling of a 
hexameric leptin.leptin receptor complex. The Journal of biological chemistry 281, 
15496-15504. 



 
52 

Peelman, F., Van Beneden, K., Zabeau, L., Iserentant, H., Ulrichts, P., Defeau, D., 
Verhee, A., Catteeuw, D., Elewaut, D., and Tavernier, J. (2004). Mapping of the leptin 
binding sites and design of a leptin antagonist. The Journal of biological chemistry 279, 
41038-41046. 

Pert, C.B., and Snyder, S.H. (1973). Opiate receptor: demonstration in nervous tissue. 
Science 179, 1011-1014. 

Radermacher, M., and Ruiz, T. (2006). Three-dimensional reconstruction of single 
particles in electron microscopy image processing. Methods in molecular biology 319, 
427-461. 

Radermacher, M., Wagenknecht, T., Verschoor, A., and Frank, J. (1987). Three-
dimensional reconstruction from a single-exposure, random conical tilt series applied to 
the 50S ribosomal subunit of Escherichia coli. Journal of microscopy 146, 113-136. 

Raehal, K.M., and Bohn, L.M. (2005). Mu opioid receptor regulation and opiate 
responsiveness. The AAPS journal 7, E587-591. 

Raffa, R.B., Martinez, R.P., and Connelly, C.D. (1994). G-protein antisense 
oligodeoxyribonucleotides and mu-opioid supraspinal antinociception. European journal 
of pharmacology 258, R5-7. 

Rane, S.G., and Reddy, E.P. (1994). JAK3: a novel JAK kinase associated with terminal 
differentiation of hematopoietic cells. Oncogene 9, 2415-2423. 

Rasmussen, S.G., Choi, H.J., Fung, J.J., Pardon, E., Casarosa, P., Chae, P.S., Devree, 
B.T., Rosenbaum, D.M., Thian, F.S., Kobilka, T.S., et al. (2011a). Structure of a 
nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469, 175-180. 

Rasmussen, S.G., DeVree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., 
Thian, F.S., Chae, P.S., Pardon, E., Calinski, D., et al. (2011b). Crystal structure of the 
beta2 adrenergic receptor-Gs protein complex. Nature 477, 549-555. 

Raunser, S., and Walz, T. (2009). Electron crystallography as a technique to study the 
structure on membrane proteins in a lipidic environment. Annual review of biophysics 
38, 89-105. 

Reddy, E.P., Korapati, A., Chaturvedi, P., and Rane, S. (2000). IL-3 signaling and the 
role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene 19, 2532-
2547. 

Remy, I., Wilson, I.A., and Michnick, S.W. (1999). Erythropoietin receptor activation by 
a ligand-induced conformation change. Science 283, 990-993. 

Richter, M.F., Dumenil, G., Uze, G., Fellous, M., and Pellegrini, S. (1998). Specific 
contribution of Tyk2 JH regions to the binding and the expression of the interferon 



 
53 

alpha/beta receptor component IFNAR1. The Journal of biological chemistry 273, 24723-
24729. 

Robinson, R.C., Grey, L.M., Staunton, D., Vankelecom, H., Vernallis, A.B., Moreau, 
J.F., Stuart, D.I., Heath, J.K., and Jones, E.Y. (1994). The crystal structure and biological 
function of leukemia inhibitory factor: implications for receptor binding. Cell 77, 1101-
1116. 

Rosenbaum, D.M., Cherezov, V., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, 
T.S., Choi, H.J., Yao, X.J., Weis, W.I., Stevens, R.C., et al. (2007). GPCR engineering 
yields high-resolution structural insights into beta2-adrenergic receptor function. Science 
318, 1266-1273. 

Saharinen, P., and Silvennoinen, O. (2002). The pseudokinase domain is required for 
suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible 
activation of signal transduction. The Journal of biological chemistry 277, 47954-47963. 

Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of glucose and 
lipid metabolism. Nature 414, 799-806. 

Saxena, N.K., Sharma, D., Ding, X., Lin, S., Marra, F., Merlin, D., and Anania, F.A. 
(2007). Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is 
involved in leptin-mediated promotion of invasion and migration of hepatocellular 
carcinoma cells. Cancer research 67, 2497-2507. 

Schindler, C., Levy, D.E., and Decker, T. (2007). JAK-STAT signaling: from interferons 
to cytokines. The Journal of biological chemistry 282, 20059-20063. 

Seki, Y., Hayashi, K., Matsumoto, A., Seki, N., Tsukada, J., Ransom, J., Naka, T., 
Kishimoto, T., Yoshimura, A., and Kubo, M. (2002). Expression of the suppressor of 
cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and 
Th2 differentiation. Proceedings of the National Academy of Sciences of the United 
States of America 99, 13003-13008. 

Shukla, A.K., Xiao, K., and Lefkowitz, R.J. (2011). Emerging paradigms of beta-arrestin-
dependent seven transmembrane receptor signaling. Trends in biochemical sciences 36, 
457-469. 

Sprecher, C.A., Grant, F.J., Baumgartner, J.W., Presnell, S.R., Schrader, S.K., 
Yamagiwa, T., Whitmore, T.E., O'Hara, P.J., and Foster, D.F. (1998). Cloning and 
characterization of a novel class I cytokine receptor. Biochemical and biophysical 
research communications 246, 82-90. 

Standifer, K.M., and Pasternak, G.W. (1997). G proteins and opioid receptor-mediated 
signalling. Cellular signalling 9, 237-248. 



 
54 

Strader, C.D., Fong, T.M., Tota, M.R., Underwood, D., and Dixon, R.A. (1994). 
Structure and function of G protein-coupled receptors. Annual review of biochemistry 63, 
101-132. 

Stryer, L., and Bourne, H.R. (1986). G proteins: a family of signal transducers. Annual 
review of cell biology 2, 391-419. 

Sunahara, R.K., Dessauer, C.W., and Gilman, A.G. (1996). Complexity and diversity of 
mammalian adenylyl cyclases. Annual review of pharmacology and toxicology 36, 461-
480. 

Sweeney, G. (2010). Cardiovascular effects of leptin. Nature reviews. Cardiology 7, 22-
29. 

Tamada, T., Honjo, E., Maeda, Y., Okamoto, T., Ishibashi, M., Tokunaga, M., and 
Kuroki, R. (2006). Homodimeric cross-over structure of the human granulocyte colony-
stimulating factor (GCSF) receptor signaling complex. Proceedings of the National 
Academy of Sciences of the United States of America 103, 3135-3140. 

Tanner, J.W., Chen, W., Young, R.L., Longmore, G.D., and Shaw, A.S. (1995). The 
conserved box 1 motif of cytokine receptors is required for association with JAK kinases. 
The Journal of biological chemistry 270, 6523-6530. 

Tartaglia, L.A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., Richards, 
G.J., Campfield, L.A., Clark, F.T., Deeds, J., et al. (1995). Identification and expression 
cloning of a leptin receptor, OB-R. Cell 83, 1263-1271. 

Thomson, A.W., and Lotze, M.T. (2003). The cytokine handbook, 4th edn (Amsterdam ; 
Boston: Academic Press). 

Tuteja, N. (2009). Signaling through G protein coupled receptors. Plant signaling & 
behavior 4, 942-947. 

Unwin, P.N., and Henderson, R. (1975). Molecular structure determination by electron 
microscopy of unstained crystalline specimens. Journal of molecular biology 94, 425-
440. 

Usacheva, A., Sandoval, R., Domanski, P., Kotenko, S.V., Nelms, K., Goldsmith, M.A., 
and Colamonici, O.R. (2002). Contribution of the Box 1 and Box 2 motifs of cytokine 
receptors to Jak1 association and activation. The Journal of biological chemistry 277, 
48220-48226. 

Vahedi-Faridi, A., Jastrzebska, B., Palczewski, K., and Engel, A. (2012). 3D imaging and 
quantitative analysis of small solubilized membrane proteins and their complexes by 
transmission electron microscopy. Journal of electron microscopy. 



 
55 

Vainchenker, W., Delhommeau, F., Constantinescu, S.N., and Bernard, O.A. (2011). 
New mutations and pathogenesis of myeloproliferative neoplasms. Blood 118, 1723-
1735. 

van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R., and Schatz, M. (1996). A new 
generation of the IMAGIC image processing system. Journal of structural biology 116, 
17-24. 

Vanhaesebroeck, B., Leevers, S.J., Ahmadi, K., Timms, J., Katso, R., Driscoll, P.C., 
Woscholski, R., Parker, P.J., and Waterfield, M.D. (2001). Synthesis and function of 3-
phosphorylated inositol lipids. Annual review of biochemistry 70, 535-602. 

Villanueva, E.C., and Myers, M.G., Jr. (2008). Leptin receptor signaling and the 
regulation of mammalian physiology. International journal of obesity 32 Suppl 7, S8-12. 

Wade, R.H. (1992). A Brief Look at Imaging and Contrast Transfer. Ultramicroscopy 46, 
145-156. 

Waldhoer, M., Bartlett, S.E., and Whistler, J.L. (2004). Opioid receptors. Annual review 
of biochemistry 73, 953-990. 

Wall, M.A., Coleman, D.E., Lee, E., Iniguez-Lluhi, J.A., Posner, B.A., Gilman, A.G., and 
Sprang, S.R. (1995). The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 
2. Cell 83, 1047-1058. 

Wang, X., Lupardus, P., Laporte, S.L., and Garcia, K.C. (2009). Structural biology of 
shared cytokine receptors. Annual review of immunology 27, 29-60. 

Ward, A.C., Touw, I., and Yoshimura, A. (2000). The Jak-Stat pathway in normal and 
perturbed hematopoiesis. Blood 95, 19-29. 

Welt, C.K., Chan, J.L., Bullen, J., Murphy, R., Smith, P., DePaoli, A.M., Karalis, A., and 
Mantzoros, C.S. (2004). Recombinant human leptin in women with hypothalamic 
amenorrhea. The New England journal of medicine 351, 987-997. 

Westfield, G.H., Rasmussen, S.G., Su, M., Dutta, S., DeVree, B.T., Chung, K.Y., 
Calinski, D., Velez-Ruiz, G., Oleskie, A.N., Pardon, E., et al. (2011). Structural 
flexibility of the G alpha s alpha-helical domain in the beta2-adrenoceptor Gs complex. 
Proceedings of the National Academy of Sciences of the United States of America 108, 
16086-16091. 

Wettschureck, N., and Offermanns, S. (2005). Mammalian G proteins and their cell type 
specific functions. Physiological reviews 85, 1159-1204. 

Wilks, A.F., Harpur, A.G., Kurban, R.R., Ralph, S.J., Zurcher, G., and Ziemiecki, A. 
(1991). Two novel protein-tyrosine kinases, each with a second phosphotransferase-
related catalytic domain, define a new class of protein kinase. Molecular and cellular 
biology 11, 2057-2065. 



 
56 

Williams, D.B., and Carter, C.B. (1996). Transmission Electron Microscopy A Textbook 
for Materials Science. Plenum Press Ney York and London. 

Wu, H., Wacker, D., Mileni, M., Katritch, V., Han, G.W., Vardy, E., Liu, W., Thompson, 
A.A., Huang, X.P., Carroll, F.I., et al. (2012). Structure of the human kappa-opioid 
receptor in complex with JDTic. Nature 485, 327-332. 

Yaksh, T.L. (1997). Pharmacology and mechanisms of opioid analgesic activity. Acta 
anaesthesiologica Scandinavica 41, 94-111. 

Yeh, T.C., and Pellegrini, S. (1999). The Janus kinase family of protein tyrosine kinases 
and their role in signaling. Cellular and molecular life sciences : CMLS 55, 1523-1534. 

Zabeau, L., Defeau, D., Iserentant, H., Vandekerckhove, J., Peelman, F., and Tavernier, J. 
(2005). Leptin receptor activation depends on critical cysteine residues in its fibronectin 
type III subdomains. The Journal of biological chemistry 280, 22632-22640. 

Zabeau, L., Defeau, D., Van der Heyden, J., Iserentant, H., Vandekerckhove, J., and 
Tavernier, J. (2004). Functional analysis of leptin receptor activation using a Janus 
kinase/signal transducer and activator of transcription complementation assay. Molecular 
endocrinology 18, 150-161. 

Zhang, F., Basinski, M.B., Beals, J.M., Briggs, S.L., Churgay, L.M., Clawson, D.K., 
DiMarchi, R.D., Furman, T.C., Hale, J.E., Hsiung, H.M., et al. (1997). Crystal structure 
of the obese protein leptin-E100. Nature 387, 206-209. 

Zhang, F., Chen, Y., Heiman, M., and Dimarchi, R. (2005). Leptin: structure, function 
and biology. Vitamins and hormones 71, 345-372. 

Zhang, F.L., and Casey, P.J. (1996). Protein prenylation: molecular mechanisms and 
functional consequences. Annual review of biochemistry 65, 241-269. 

Zhang, X., Jin, L., Fang, Q., Hui, W.H., and Zhou, Z.H. (2010). 3.3 A cryo-EM structure 
of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141, 472-482. 

Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J.M. (1994). 
Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425-
432. 

Zhao, Y., Wagner, F., Frank, S.J., and Kraft, A.S. (1995). The amino-terminal portion of 
the JAK2 protein kinase is necessary for binding and phosphorylation of the granulocyte-
macrophage colony-stimulating factor receptor beta c chain. The Journal of biological 
chemistry 270, 13814-13818. 

Zhou, Z.H. (2011). Atomic resolution cryo electron microscopy of macromolecular 
complexes. Advances in protein chemistry and structural biology 82, 1-35. 



 
57 

Zhu, J., Penczek, P.A., Schroder, R., and Frank, J. (1997). Three-dimensional 
reconstruction with contrast transfer function correction from energy-filtered cryoelectron 
micrographs: procedure and application to the 70S Escherichia coli ribosome. Journal of 
structural biology 118, 197-219. 

Zou, Y., Weis, W.I., and Kobilka, B.K. (2012). N-terminal T4 lysozyme fusion facilitates 
crystallization of a G protein coupled receptor. PloS one 7, e46039. 
  



 
58 

Chapter 2  Ligand induced architecture of the leptin receptor signaling complex 

2.1 Abstract  

Despite the crucial impact of leptin signaling on metabolism and body weight, little is 

known about the structure of the primary transducer in this pathway, the liganded leptin 

receptor (LEP-R) complex. Here we applied single-particle electron microscopy (EM) to 

characterize the architecture of the extracellular region of LEP-R alone and in complex 

with leptin. We show that unliganded LEP-R displays significant flexibility in a hinge 

region within the cytokine homology region 2 (CHR2) that is connected to rigid 

membrane-proximal FnIII domains. Examination of liganded LEP-R complexes reveals 

that leptin binds to CHR2 in order to restrict the flexible hinge and the disposition of the 

FnIII ‘legs’. Through a separate interaction, leptin engages the Ig-like domain of a second 

liganded LEP-R, resulting in the formation of a quaternary signaling complex. We 

propose that the membrane proximal domain rigidification in the context of a liganded 

cytokine receptor dimer is a key mechanism for the transactivation of dimeric Janus 

kinases (Jaks) bound at the intracellular receptor region. 

2.2 Introduction  

Cytokines are secreted signaling molecules that mediate crucial cellular responses 

through binding to their respective cell surface receptors (Gainsford et al., 1996; Hirahara 

et al., 2010; Li et al., 2008). Leptin, a class I cytokine, plays a key role in the regulation 

of energy homeostasis and body weight. Leptin is secreted from adipose tissue at levels 

that are proportional to body fat content (Considine et al., 1996), and after crossing the 

blood-brain barrier it engages the leptin receptor (LEP-R) in the central nervous system 

in order to modulate both food intake and energy expenditure (Bates et al., 2003; Halaas 

et al., 1995; Morton et al., 2005). Based on controlling homeostasis and growth, leptin 

signaling also regulates the endocrine and immune systems, affecting diverse processes 
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such as glucose level regulation, reproduction, bone formation and wound healing 

(Ahima et al., 1996; Lord et al., 1998; Peelman et al., 2006a).  

Leptin adopts a four-helix bundle structure, sharing structural homology to several helical 

cytokines of the hematopoietin family, such as interleukin-6 (IL-6), leukemia inhibitory 

factor (LIF), and ciliary neurotrophic factor (CNTF) (Zhang et al., 1997). Based on 

structural analyses and comparisons with homologous cytokines, leptin possesses three 

binding epitopes (sites I, II and III) that can be potentially employed for receptor 

engagement and activation (Bravo and Heath, 2000; Iserentant et al., 2005). Earlier 

biochemical studies suggested that epitope II constitutes the primary binding site of leptin 

to LEP-R (Peelman et al., 2004). However, the roles of the remaining epitopes in forming 

the leptin/LEP-R complex have been a matter of debate, leading to different models for 

the signaling assembly (Couturier and Jockers, 2003; Mistrik et al., 2004; Peelman et al., 

2006b).  

 

Figure 2-1 Crystal structure of some class I cytokines 
Top row, left to right – side views crystal structures of leptin, IL-6, CNTF and LIF; 
bottom row, left to right – top views of leptin, IL-6, CNTF,LIF; 
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The leptin receptor exists in at least five isoforms (LEP-Ra-e) differing in the length of 

their C-terminal tails, but only the long isoform b has demonstrated full intracellular 

signaling capabilities (Friedman, 1998; Lee et al., 1996). LEP-R belongs to the class I 

cytokine receptor family, which includes glycoprotein 130 (gp130), the LIF receptor 

(LIF-R), the CNTF receptor (CNTF-R), the granulocyte colony stimulating factor 

receptor (GCSF-R), and others (Baumann et al., 1996; Tartaglia et al., 1995; Wang et al., 

2009). Class I cytokine receptors do not possess intrinsic kinase activity, but rely on 

activating Janus kinases (Jaks) that are constitutively bound to the receptor intracellular 

domains (ICDs). The ICD of LEP-R, which consists of approximately 300 amino acid 

residues (b-isoform), includes two highly conserved membrane-proximal motifs, termed 

box1 and box2, that are critical for Jak2 binding and activation (Kloek et al., 2002). As 

has been proposed with other cytokine receptors, leptin binding on the extracellular 

portion of LEP-R presumably stabilizes the trans-membrane receptor α-helices in a 

conformation that favors Jak2 trans-phosphorylation and subsequent instigation of 

downstream signaling (Couturier and Jockers, 2003; Murray, 2007).  

The signature module of class I cytokine receptors is the so-called cytokine homology 

region (CHR) in the extracellular portion. The CHR consists of two domains with a 

characteristic fibronectin type III (FnIII) fold that contain the classical motif for cytokine 

binding (Wang et al., 2009). Along with oncostatin M receptor (OSM-R) and LIF-R, 

LEP-R is an unusual class I receptor since it contains not one, but two CHR modules. The 

N-terminal CHR1 and the C-terminal CHR2 are membrane-distal and separated by an 

immunoglobulin-like domain (IgD). Both CHR modules represent potential ligand 

binding sites, however, only CHR2 has been shown to be required for leptin binding 

(Fong et al., 1998; Iserentant et al., 2005; Peelman et al., 2004). Furthermore, unlike LIF-

R and gp130, LEP-R possesses two, rather than three, FnIII membrane-proximal 

domains. Although the IgD (D3) and the two membrane-proximal FnIII domains are not 

prerequisites for high-affinity leptin binding, they have been shown to be essential for 

LEP-R activation (Figure 2-2) (Zabeau et al., 2005; Zabeau et al., 2004).  
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Figure 2-2 Domain organization in class I cytokine receptors. 
Members of class I cytokine receptors have similar domain organization at their 
extracellular regions. The domains consist of an array of fibronectin II fold structures, 
grouped into modules. Cytokine homology region (CHR) and Immunoglobulin (Ig) 
domain play role in ligand binding. Intracellular short tails contain conserved motifs Box 
1 and 2 that are required to Janus kinase binding. 

Earlier studies on cytokine receptor complexes, such as gp130/IL-6/IL6-Rα (Boulanger 

et al., 2003a; Skiniotis et al., 2005), gp130/LIF-R/CNTF/CNTF-Rα (Skiniotis et al., 

2008), and the granulocyte colony-stimulating factor (GSCF) with its receptor GSCF-R 

(Tamada et al., 2006), have provided a wealth of information on the structural 

organization of these important signaling assemblies, shedding light on common 

principles of complex formation. Very recently, the crystal structure of human LEP-R 

CHR2 in complex with a Fab fragment from a leptin blocking monoclonal antibody 

provided insights into the mechanism of antagonism and potential modes of leptin 

binding to this region (Carpenter et al., 2012). However, owing to the existence of the 

three conserved epitopes on leptin, the structure of the activated signaling leptin/LEP-R 

complex has been a matter of debate, with the two main models proposing either a 2:2 or 



 
62 

a 2:4 stoichiometry between leptin and LEP-R (Figure 2-3) (Couturier and Jockers, 2003; 

Mistrik et al., 2004; Peelman et al., 2006b). 

 

Figure 2-3 Hexameric homology model of the leptin/LEP-R complex. 
The model is based on the 3 leptin binding epitopes (from Peelman et al.,2006b). the 
CHR2 domain form one receptor chain engages epitope II of one leptin molecule which 
the Ig domain of another LepR engages epitope III of the same leptin molecule. Epitope I 
of leptin is potentially involved in interaction with an additional LepR chain, forming a 
4:2 signaling complex. 

Given the lack of structural information on LEP-R and the controversy regarding its 

arrangement when bound to leptin, we used single-particle electron microscopy (EM) to 

visualize the extracellular portion of LEP-R alone and in complex with the cytokine. This 

approach allowed us to elucidate the architecture the leptin/LEP-R complex, and to 

obtain valuable insights into the mechanism of signal transduction. 

2.3 Experimental procedures 

Protein Expression & Purification 

LEP-R[D1-D7], LEP-R[D1-D5], LEP-R[D1-D7]-GCN4, and LEP-R[D3-D5] constructs 

were subcloned into the baculovirus FastBac pH7pFB LIC expression vector including a 

secretion signal sequence. Recombinant viruses were used to infect Sf9 cells and the 

protein constructs were purified from the supernatant using Ni-NTA Agarose affinity 

beads (Qiagen, USA). The samples were further purified by size exclusion 

chromatography (SEC) in 20 mM HEPES, 50 mM NaCl, pH 7.2 (Figure 2.9). For 

CHR2!
LEPTIN!

Ig!

III!
I!

II!
I!

II!

III!

Ig!

?!?!

LEPTIN!

LepR_1!

LepR_2!

LepR
_3!Le

pR
_4
!

CHR2!



 
63 

complex formation, purified LEP-R proteins constructs were incubated with excess 

recombinant mouse leptin (R&D Systems, Inc., USA). The liganded complexes were 

subsequently purified by SEC to remove excess leptin, and the purity of the samples was 

determined by SDS-PAGE stained with Coomassie Blue dye (Figure 1). LEP-R[D1-D7] 

L503S;L504S and LEP-R[D1-D7] L370A mutants were generated with Quick Change 

Mutagenesis® (Stratagene), subcloned into FastBac pH7pFB LIC expression vector, and 

purified as described above (Figure 2.18) 

Effect of different reducing reagents on leptin 

Leptin may form both intra and inter disulfide bonds making its existence as a dimer and 

monomer a dynamic process. In order to assess the effect of different reducing agents on 

leptin dimer formation, the commercially acquired leptin was incubated with different 

concentrations of dithiothreitol (DTT), tris (2-carboxyethyl)phosphine (TCEP) and β-

mercaptoethanol (βME), samples were boiled, ran on SDS-PAGE gels and silver stained. 

Interestingly, DTT and TCEP were effective to reduce the dimer to monomer at both low 

and high concentrations. On the other hand,  β-ME was only effective at concentration of 

over 100mM.  

Isothermal Titration Calorimetry 

Titrations were performed on a NanoITCTM – Low Volume calorimeter (TA Instruments) 

at 25 °C. Data were processed with the NanoAnalyze software. Briefly, both LEP-R[D1-

D7] (11.4 M) and LEP-R[D1-D5] (13 M) were titrated with leptin (75 M) (Figure 2.11 a, 

c). The titrations showed ~1:1 complex formation for both constructs and indicated high 

affinity leptin binding (KD=17.0 nM and KD=15.4 nM, respectively). The experiment was 

performed in 20mM HEPES, pH 8.0, 50mM NaCl at 25°C, 2µl/injection, 300 sec/inj., 250 

rpm stirring, high feedback, 0.190 ml cell volume. 

Analytical Ultracentrifugation (AUC) 

Sedimentation velocity experiments were carried out using a ProteomeLab XL-I 

(Beckman Coulter). Sample triplets were loaded into sector-shaped double channel 

centerpieces and sedimentation was carried out at 20,000 rpm, 22°C using an AN50TI 
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rotor. Intensity scans were collected continuously at a wavelength of 235 nm at a radial 

resolution of 30 µm. Data analysis was with the enhanced van Holde-Weischet analysis 

module and 2-dimensional sedimentation spectrum analysis (2-DSA) using the finite 

element modeling module provided with the Ultrascan3 software 

(http:/www.ultrascan.uthscsa.edu). Sedimentation profiles were analyzed at a grid 

resolution of 60 using 20 grid repetitions fitting time- and radial invariant noise. 

Confidence levels were derived from 2-DSA data refinement using genetic algorithm 

followed by 30 Monte Carlo simulations. Calculations were performed on the UltraScan 

LIMS cluster at the Bioinformatics Core Facility at the University of Texas Health 

Science Center at San Antonio and the Lonestar cluster at the Texas Advanced 

Computing Center supported by NSF Teragrid Grant #MCB070038 (to Borries Demeler). 

Electron Microscopy  

Protein samples were prepared for electron microscopy using the conventional negative 

staining protocol (Ohi et al., 2004), and imaged at room temperature with a Tecnai T12 

electron microscope operated at 120 kV using low-dose procedures. Images were 

recorded at a magnification of 71,139x and a defocus value of ~1.6 µm on a Gatan 

US4000 CCD camera. All images were binned (2 x 2 pixels) to obtain a pixel size of 4.16 

Å on the specimen level. Particle projections were manually excised using Boxer [part of 

the EMAN 1.9 software suite] (Ludtke et al., 1999) apart from tilt-pair images, where 

particles were selected using WEB (Frank et al., 1996).  

Image Processing 

Reference-free alignment and classification for the projection analysis of LEP-R and 

leptin/LEP-R complexes were carried out using the SPIDER image processing suite 

(Frank et al., 1996). For LEP-R[D1-D7], 23,933 particle projections were classified into 

100 classes (Figure 2.14a). For LEP-R[D1-D5], 8,352 particle projections were classified 

into 80 classes (Figure 2.14b). For the leptin/LEP-R[D1-D5] complex, 5,215 particle 

images were classified into 100 classes (Figure 2.16c,d). For the LEP-R[D1-D7] 

L503S;L504S mutant, 6,189 particle images were classified into 50 classes (Figure 2.18 
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c). For the leptin/LEP-R[D1-D7] L370A mutant complex, 4,964 particle images were 

classified into 50 classes (Figure 2.18 f). 

For the leptin/LEP-R[D1-D7] complex, 20,065 tilt-pair particle projections  were 

interactively selected from 0º and 60º tilted images.  To analyze the challenging 

projection variability of the entire extracellular liganded receptor chains and calculate 3D 

reconstructions we employed a three-step process: In the first step, the untilted particle 

images were subjected to 10 cycles of reference-free alignment and classification into 

300 classes (Figure 2.16a). In the second step, particles belonging to class averages with 

poor features and misaligned projections were removed from the dataset, and the 

remaining 13,616 projections were subjected to another round of iterative classification 

and alignment into 150 classes (Figure 2.16b). In the third step, we created separate 

particle sub-groups including projections displaying a specific type of conformation or 

composition. Thus, we created subgroups for the binary leptin/LEP-R[D1-D7] complex 

(liganded single chains), and for the side and top views of the leptin/LEP-R[D1-D7] 

quaternary complexes (Figure 2.16 b, d and 2-17a). This approach allowed us to probe 

the fine variability within each type of projection, and also select well-defined class 

averages for 3D reconstructions. The random conical tilt technique (Radermacher et al., 

1987) was used to calculate a first back projection map from individual classes using the 

images of the tilted specimen.  After angular refinement, the corresponding particles from 

the images of the untilted specimens were added, and the images were subjected to 

another cycle of refinement.  Using the resulting maps as reference models, we used 

FREALIGN (Grigorieff, 2007) for further refinement of the orientation parameters. The 

3D maps of the binary leptin/LEP-R[D1-D7], and of the side and top views of the 

leptin/LEP-R[D1-D7] quaternary complexes were based on 2,374, 1,194, and 772 0º and 

60º projections, with indicated resolutions of 40Å, 40Å and 45Å, respectively. 

 

Molecular Modeling and Docking 

The model of LEP-R[D1-D7] was built from the first five domains of the crystal structure 

of LIF-R (Huyton et al., 2007; Skiniotis et al., 2008) and the last two membrane proximal 
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FnIII domains from the crystal structure of gp130 (Xu et al., 2010) (Figure 2-15c). The 

binary and quaternary leptin/LEP-R[D1-D7] models were built by aligning the 

homologous domains from crystal structures of gp130/IL-6 (Boulanger et al., 2003b), 

GCSF/GCSF-R (Tamada et al., 2006), LIF-R (Huyton et al., 2007; Skiniotis et al., 2008), 

and leptin (Zhang et al., 1997). Due to the limited resolution of the 3D maps, all docking 

operations in the EM densities were performed manually with visual inspection of the 

best fit. The binary leptin/LEP-R[D1-D7] model and the gp130/IL-6 crystal structure 

were fit as rigid bodies into the 3D maps of the binary complex and the top view of the 

quaternary complex, respectively (Figures 2-15 f, 2-19e). For the 3D map from side 

views of the quaternary complex, two liganded leptin/LEP-R[D1-D7] models were 

flexibly fit into the EM densities (Figure 2-19b).  

2.4 Results  

Purification trials for LEP-R 

The CaCl2/NiCl2 precipitation method 

Expressing and purifying secreted proteins from insect cells can be very challenging due 

to the large volume of media to be handled. There are components in the insect cell 

media that will strip a Ni resin and that is why the media cannot be applied directly to the 

Ni-NTA. Therefore, one-way to adapt the media for passage though the Nickel is to 

precipitate out the interfering components by CaCl2/NiCl2 precipitation. All steps are 

carried out at a room temperature. Cells are spun and the media is filtered through a 

0.2um filter. To each liter of cell the following mixture is added: 

1 ml of 1M Nickel Chloride 

1ml of 5M Calcium Chloride 

50ml of 1M Tris pH 8 

Once the precipitation mixture is added, a heavy white precipitate will form immediately. 

The cells are spun again at least 6000rpm for 15 minutes. After filtration through a 0.2um 

filter the media is poured into a beaker with a stir bar and 2ml of Nickel slurry is added to 
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each liter of cells. Incubation is carried out for at least 3 hours at room temperature. The 

resin is then collected into a polyprep column and washed with 1x HBS and then eluted 

with 250mM imidazole. It is extremely important to keep the media at room temperature 

otherwise the Ni resin will be lost in the heavy white precipitate again which will form if 

the temperature is decreased. 

 

Figure 2-4 Analysis of protein purified with the precipitation method 
 a. SEC of FL LEP-R b., SDS silver stained gel of SEC fractions and bottom anti-His 
Western blot of SEC fractions. 
 

In this method the results are difficult to reproduce and usually the proteins are very hard 

to separate from other contaminants even after affinity and size exclusion steps (Figure 

2-4). In addition, adding any components to the media prior or during the Ni incubation 

step also leads to precipitation. Therefore, this method is not the ideal way to purify 

secreted proteins. 

Buffer exchange method 

Another way to strip the media from its interfering components before the Ni application 

is to exchange buffer for HBS overnight. This method also requires handling very large 

volumes and is unpractical to carry out for expression volumes over 1.5L. The reason is 
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that the need to have at least 10X the amount of buffer in the beaker with the media to be 

exchanged. Therefore, for high protein concentration this method is unsuitable. However, 

for small volume protein purifications, buffer exchange overnight yields media that could 

be passed through the Ni-NTA resin without stripping it. 

 

Figure 2-5 SDS-PAGE silver stain (top) and anti-His Western (bottom). 
Different purification fractions from full length extracellular LEP-R purified by buffer 
exchange method. 

Moreover, proteins purified with this method may be subject to degradation as illustrated 

from the Western blot in Figure 2-5 above. Also, the contaminants are difficult to 

separate from the target protein even after a gel filtration step. 

DEAE ion exchange purification method 

The diethylaminoethyl (DEAE) cellulose is an ion exchange resin that was tested against 

the insect media as a buffer exchange step. The ion exchange relies on the reversible 
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exchange of ions in solution with ions that are bound electrostatically to the resin. 

Whether or not the protein interacts with the resin and binds or flows through depends on 

its net charge, which depends on the isoelectric point of the protein and the buffer pH.. 

Thus, making the protein more negatively charged could be accomplished by raising the 

pH or more positively charged by lowering the pH and this will ultimately dictate its 

binding to the ion exchange resin. DEAE cellulose is a positively charged resin that is 

capable of locking negatively charged proteins. Therefore, when LEP-R in insect cell 

media is passed through the DEAE it flows through while all media interfering 

components are retained. This method is not very effective because of the unspecific 

binding of LEP-R to the DEAE. 

 

 

Figure 2-6 DEAE cellulose purification of full length extracellular LEP-R and LEP-
R-GCN4. 
SDS-PAGE analysis of different purification fractions for LEP-R constructs. 

As the figure above illustrates most of the protein flows through the DEAE but more 

importantly about 50% remains   on the resin (Figure 2-6). Although, most of it could be 

eluted with competing sodium chloride, the amount lost in the process that subsequently 

could not be directly applied on the Ni is significant. Additionally, the cleaning of the 
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DEAE is very laborious and time consuming. Therefore, this method is not practical for 

efficient and clean purification of secreted proteins. 

The Millipore concentrator method 

This method is the most successful one in dealing with large volumes of media. Here, 

after the cells have been collected, spun and filtered, the media is applied through the 

concentrator and the media volume is brought down to 10X. For example, if the starting 

expression volume is 5L, the concentrator allows for concentrating down to 500ml. Then, 

the final volume is buffer-exchanged overnight and the purification protocol is carried as 

usual in the following day. In addition to allowing a large-scale purification of secreted 

proteins, this method also provides a faster and less error prone methodology in handling 

sensitive secreted proteins. This method provides a fast and reliably reproducible 

approach for purification of secreted proteins and is therefore the preferred one for 

purification of the LEP-R constructs in this thesis. 

Effect of vector type, infection time and insect cell line on protein expression 

The Baculovirus protein expression has many advantages for producing recombinant 

mammalian proteins because it permits post-translational modifications such as 

phosphorylation, disulfide bond formation, proper protein folding, glycosylation and even 

signal peptide cleavage. Baculoviruses are well known in their ability to infect insects. 

They contain a double stranded, supercoiled DNA inside of a rod-shape capsid (Summers 

and Anderson, 1972). One of the most prominent isolate used in foreign gene expression 

is the Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) and the 

Orgyia pseudotsugata muticapsid nuclear polyhedrosisvirus (OpMNPV), used for 

expression of the LEP-R constructs (Brown et al., 2011). The disadvantages of this 

system are that the process is quite lengthy (about 2 months from cloning to protein 

expression), contains multiple steps, many variables, few control check points and can 

get expensive for large scale protein production. Nevertheless, the Baculovirus 

expression usually works where E. coli fails to produce the target protein with all the 

needed post-translational modifications. 
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Depending on the target protein either Spodoptera frugipedra (Sf9) or Trichoplusia ni 

(Hi5) insect cells can lead to better expression. In addition, the allowed time post 

infection as well as the type of vector used can also influence expression. 

 

Figure 2-7 Effect of cell type, vector and time of post-infection on protein 
expression.  
a., Expresion in Sf9 cells for different constructs and times. Arrows point to 
overexpressed protein. b., Expression in Hi5 cells for different constructs, vectors and 
time. Arrows point to overexpressed proteins. (Courtesy of Clay Brown) 

The expression of LEP-R constructs gave best yield in Sf9 cell, at 48 hours post-infection 

and in vectors containing the Ac64 and Op64 signal sequences (Figure 2-7). 

Effect of different reducing reagents on leptin 

Leptin may form both intra and inter disulfide bonds making its existence as a dimer and 

monomer a dynamic process. In order to assess the effect of different reducing agents on 

leptin dimer formation, commercial leptin was incubated with different concentrations of 
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dithiothreitol (DTT), tris (2-carboxyethyl)phosphine (TCEP) and β-mercaptoethanol 

(βME), samples were boiled, ran on SDS-PAGE gels and silver stained. Interestingly, 

DTT and TCEP were effective to reduce the dimer to monomer at both low and high 

concentrations which β-ME was only effective at concentration of over 100mM (Figure 

2-8).  

 

Figure 2-8 Effect of different reducing agents on leptin.  
Commercially available leptin was mixed with different reducing agents and samples 
were analyzed with SDS-PAGE. The gels were silver stained and clearly reveal the leptin 
dimeric and monomeric species. 

 

Assembly of the Extracellular Leptin/LEP-R complex 

For the present study we used a baculovirus system to express the entire extracellular 

region (domains D1-D7) of murine LEP-R and a truncated construct of the same protein 

lacking the two membrane-proximal FnIII domains (D1-D5). Both protein constructs 

were engineered with an N-terminal His-tag facilitating nickel affinity purification, and 

were further purified to homogeneity by size exclusion chromatography (Figure 2-9).  
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Figure 2-9 Size exclusion chromatography of LEP-R[D1-D7] and LEP-R[D1-D5]. 
After Ni-affinity purification of LepR constructs, the elution fractions were concentrated 
and applied to size exclusion chromatography separation. Only fractions under the 
highest peak were used for subsequent EM analysis. 

To evaluate the leptin/LEP-R complex formation and the binding stoichiometry, we 

employed analytical ultracentrifugation (AUC) and isothermal titration calorimetry (ITC) 

to measure the thermodynamics of the interaction. Both methods suggested 1:1 

stoichiometry of the complex although the ITC provided smaller error.  

The sedimentation velocities of both LEP-R[D1-D7] and LEP-R[D1-D5] constructs were 

measured at room temperature and the AUC species are represented in Figure 2-10. 
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Figure 2-10 Analytical Ultracentrifugation of LEP-R[D1-D7] and LEP-R[D1-D5] in 
the presence of excess leptin.  
Densitometry graph representing relative concentration of different species related to 
their sedimentation coefficient and relative mass. Data is generated by Titus Franzmann. 
 

The results from the AUC show multiple populations in the mixture after the 

sedimentation was carried. In fact, the concentration of dimerized leptin was higher than 

the monomeric species. This in turn increased the bias of whether complex formation was 

due to ligand dimerization or a dimerization of receptor and ligand. The major species in 

the mixture consisted of two receptors and two ligands. However, there was also a small 

population of monomeric receptor chains bound to leptin and some higher order species. 

For both the D1-D7 and D1-D5 constructs, the ITC measurements suggested that leptin 

engages LEP-R with high affinity interaction with KD value of ~17 nM, providing a first 

indication for stoichiometric complex formation in a 1:1 ratio (Figure 2-11 a, c).    We 

thus incubated purified LEP-R[D1-D7] and LEP-R[D1-D5] with excess recombinant 
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murine leptin and used size exclusion chromatography to isolate liganded receptor 

complexes for subsequent analysis (Figure 2-11 b, d).  

 

Figure 2-11 Thermodynamic Analysis and Purification of the leptin/LEP-R[D1-D7] 
and leptin/LEP-R[D1-D5] complex (Mancour et al., 2012) 
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a, Isothermal titration calorimetry for the assembly of leptin and LEP-R[D1-D7] 
complex. b, Size exclusion chromatography profile and SDS-PAGE analysis of purified 
liganded LEP-R[D1-D7]. c, Isothermal titration calorimetry for the assembly of leptin 
and LEP-R[D1-D5] complex. d, Size exclusion chromatography profile and SDS-PAGE 
analysis of purified liganded LEP-R[D1-D5]. 

Rigid Membrane-Proximal Domains Connected to a Flexible CHR2 

As a first step in our structural analysis we examined unliganded LEP-R[D1-D7] and 

LEP-R[D1-D5] preparations by negative stain EM. Both samples revealed monodisperse 

particle projections embedded in the negative stain (Figure 2-12 and).  
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Figure 2-12 Raw EM images of LEP-R[D1-D7] and leptin/LEP-R[D1-D7] complex. 
a, raw micrograph of negatively stained LEP-R[D1-D7], individual particles to the right. 
b, raw micrograph of leptin/LEP-R[D1-D7] complex, individual particles to the right 
(Mancour et al., 2012). 
 

 

Figure 2-13 Raw EM images of LEP-R[D1-D5] and leptin LEP-R[D1-D5] complex 
a, raw micrograph of negatively stained LEP-R[D1-D5], individual particles. b, raw 
micrograph of leptin/LEP-R[D1-D5] complex, individual particles (Mancour et al., 
2012). 

The samples were analyzed and classified according to the reference-free protocol. Class 

averages of the D1-D7 construct revealed a single preferred orientation of distinct rod-
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like structure of approximately 21 nm in length, which displays a characteristic ‘V’ shape 

closer to one end (Figure 2-14a, Figure 2-15 a). 

 

Figure 2-14 Final 2D classifications of LEP-R[D1-D7] and LEP-R[D1-D5] 
a., 23,933 particle projections classified into 100 classes. b., 8,352 particle projections 
classified into 80 classes (Mancour et al., 2012). 

Comparison of EM averages from the D1-D7 construct and the shorter D1-D5 construct 

(~16.5 nm) reveals the orientation of the LEP-R termini with the ‘V’ shape being closer 

to the N-terminus (Figure 2-15a, b). A higher density lobe at the C-terminus of the D1-

D7 construct suggests that the two membrane-proximal FnIII domains likely assume a 

sharp bend, similar to what has been observed in the crystal structure of the gp130 

ectodomain (Xu et al., 2010). Beyond the membrane-proximal domains, the observed 

structure is highly reminiscent to the extended “flying V” architecture observed in the 

crystal structures of murine and human LIF-R (Huyton et al., 2007; Skiniotis et al., 2008) 

(Figure 2-15c). In this configuration, the D1-D2 and D4-D5 CHR modules adopt the 

20 nm

20 nm

a. b.
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canonical bent elbow shape commonly seen in other cytokine receptors, while the IgD 

(D3) is centrally positioned at the base of the ‘V’. Given the highly similar extracellular 

domain architecture of LIF-R[D1-D5] and gp130[D1-D6], and also the similarities with 

the recently solved structure of LEP-R CHR2 region (Carpenter et al., 2012), we aligned 

and merged their available crystal structures to produce a homology model for the entire 

extracellular region of LEP-R (Figure 2-15c). This model is in striking agreement with 

the projection averages of LEP-R, indicating the common domain organization of the tall 

cytokine receptor family. 
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Figure 2-15 Conformational dynamics of LEP-R in unliganded and liganded states 
a., representative two-dimensional class averages of unliganded LEP-R[D1-D7] reveal 
significant flexibility in the hinge between D4 and the rigid D5-D7 module (white arrow 
heads). b., two dimensional class averages of unliganded LEP-R[D1-D5] confirm the 
domain assignments and the variable deposition of D5 (white arrowheads) in regards to 
D4. c., Comparison of the crystal strucutres from LEP-R, gp130 and LIF-R extracellular 
domain and homology model for LEP-R[D1-D7 d., Representative two-dimensional class 
average of the binary leptin/LEP-R[D1-D7] complex. The cytokine binds to CHR2 
resulting in the stabilization of the rigid D5-D7 module in a single conformation. e., 
Representative two-dimensional class average the binary leptin/LEP-R[D1-D5] complex. 
The orange and white arrowheads point to the leptin density and the LEP-R C terminus, 
respectively. f., Three-dimensional reconstruction of the binary leptin/LEP-R[D1-D7] 
complex with docked leptin/LEP-R homology model. g., The double mutation 
L503S/L504S on D4 of Lep-R abolishes leptin binding via epitope II. EM class averages 
of this mutant after incubation with  leptin reveal only monomeric receptor chains with no 
ligand bound at CHR2 (compare to a and d). All scale bars correspond to 5 nm (Mancour 
et al., 2012). 

Interestingly, D5 of CHR2 and the two membrane-proximal FnIII domains (D6-D7) are 

well defined and assume the same angle, suggesting that they behave as a rigid body 

(Figure 2-15a). However, the orientation of the D5-D7 module in respect to the central 

‘V’ is highly variable and assumes a continuum of angles with a range of ~40° in the 

plane of the carbon support of the EM grid. This observation suggests that the linker 

connecting the two domains composing CHR2 (D4-D5) is highly flexible and allows for 

variability in the relative configuration of the connected domains. Indeed, examination of 

class averages of the truncated construct lacking the FnIII ‘legs’ (D6-D7) clearly reveals 

that D5 assumes variable positions around D4 with the same angular range observed in 

the full-length extracellular construct (Figure 2-15 a, b). 

Leptin Engages CHR2 to Stabilize the Membrane-Proximal Domains 

In a next step we examined leptin/LEP-R complexes by negative stain EM. Raw images 

of this preparation revealed monodisperse particles with variable shapes (Figure 2-12 b, 

Figure 2-13 b), which represent different orientations or configurations adopted by 

individual complexes when adsorbed on the carbon support of the EM grid. This 

characteristic projection variability has been previously observed in our earlier studies 

involving gp130 (Skiniotis et al., 2005), gp130/LIF-R (Skiniotis et al., 2008), and 

vascular endothelial growth factor receptor (VEGF-R) (Ruch et al., 2007) liganded 
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complexes. Similarly to those studies, we applied a three-step strategy of reference-free 

alignment and classification, enabling us to analyze the projection variability of the 

receptor chains and calculate 3D reconstructions (for a detailed description see materials 

and methods section and Figure 2-15, Figure 2-17 and Figure 2-19).  

 

10 nm
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Figure 2-16 Steps in analyzing the challenging projection variability. 
a, 20,065 particle projections of the leptin/LEP-R[D1-D7] complex classified into 300 
classes. b, 13,616 projections of the leptin-LEP-R[D1-D7] complex classified into 150 

10 nm

d.
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classes after removing the misaligned projections as well the ones with poor features. c, 
17,106 particle projection of the leptin/LEP-R[D1-D5] complex into 200 classes. d, 5,215 
particle projections of the leptin/LEP-R[D1-D5] complex into 100 classes (Mancour et 
al., 2012). 

A fraction of the particles from the liganded LEP-R[D1-D7] and LEP-R[D1-D5] 

complexes reveal a single preferred orientation of monomeric chains with an additional 

distinct globular density towards the middle of the receptor, at the junction between 

domains D4 and D5 (Figure 2-15 d, e; approximately 15% and 25% of particles, 

respectively). The extra density can only be attributed to a leptin molecule bound to 

CHR2. This type of interaction has been previously observed in the signaling complexes 

of IL-6 with gp130 (Boulanger et al., 2003b; Skiniotis et al., 2005) and GCSF with 

GCSF-R (Tamada et al., 2006), where the cytokines use epitope II to interact with the 

elbow of the CHR module, and is in agreement with earlier mutagenesis studies 

(Iserentant et al., 2005). To support this interpretation, we calculated a 3D reconstruction 

of the liganded monomeric LEP-R chain and compared it to our homology model 

including a site II interaction of leptin (Figure 2-15 f and Figure 2-17).  

a. 

 

b. 
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Figure 2-17 2D classification and 3D reconstructions of leptin/LEP-R[D1-D7] 
projection sub-groups. 
a, Sub-group 0° projections from ‘STEP 3’ (see methods) were individually classified to 
fine-tune the alignment and facilitate 3D reconstruction by the random conical tilt 
approach. b, 3D reconstructions of binary and quaternary leptin/LEP-R[D1-D7] 
complexes (Mancour et al., 2012). 

Docking of the model in the 3D map shows a very good fit, reinforcing our analysis on 

the leptin/LEP-R interaction. Furthermore, we produced and analyzed a LEP-R[D1-D7] 

construct bearing the mutations L503S;L504S at the CHR2, as originally described by 

Tavernier and colleagues (Iserentant et al., 2005). As expected, incubation of this mutant 

with leptin did not result in a binary complex formation, and EM analysis showed that 

there was no additional distinct globular density attached to the region that we attributed 

to CHR2 (Figure 2-15 g and Figure 2-18). Interestingly, none of the averages from 

monomeric receptor chains display leptin density at the level of the IgD (D3), located at 

the base of the flying ‘V’ architecture (Figure 2-15 d, e). These observations suggest that 

the CHR2 of LEP-R represents the primary site for leptin binding via a high-affinity 

interaction, as also supported by our binding thermodynamics data (Figure 2-10 and 

Figure 2-11 a, c). Importantly, the liganded monomeric LEP-R chains from both 

extracellular constructs do not display any variability in the relative disposition of the D4 

and D5 domains of CHR2. Class averages from this population reveal a distinct single 

conformation of the D5-(D6-D7) module with a fixed angle in relation to the membrane-

distal domains (Figure 2-17). Thus, leptin binding on CHR2 constrains D5 and the rigidly 

attached membrane-proximal FnIII domains (D6-D7) in a fixed orientation towards the 

plane of the membrane. 
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Figure 2-18 Purification and 2D classification of LEP-R[D1-D7] L503S/L504S and 
L370A mutants after incubation with leptin. 
 a, SEC of LEP-R[D1-D7]L503S/L504S after incubation with leptin. b, Raw image of 
negative stained sample from the fraction shown in (a). c, 6,189 particle projections 
classified into 50 classes. d, SEC of LEP-R[D1-D7]L370A after incubation with leptin. e, 
Raw image of negative stained sample from the fraction shown in (d). f, 4,964 particle 
projections classified into 50 classes (Mancour et al., 2012). 
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Liganded LEP-R Assembles into 2:2 Quaternary Complex 

The majority of leptin/LEP-R complexes in our classification display variable views of 

dimeric LEP-R chains. A prominent set of class averages reveals a characteristic side 

view of the complex, where the two LEP-R chains appear to be crossing at the level of 

the CHR2 module, while both the CHR1 and the membrane-proximal modules remain 

unengaged (Figure 2-19 a). This interpretation was confirmed by 3D reconstructions and 

molecular docking, showing that the LEP-R chains cross over to opposite sides at the 

level of CHR2 and IgD (Figure 2-19 b). In most class averages the two LEP-R chains 

appear asymmetric, presumably due to the projection angle and distortion of the receptor 

chains on the carbon support of the EM grid, as was also the case with our study on the 

gp130/IL6/IL6-R complex (Skiniotis et al., 2005). In support of this notion, averages of 

relatively few particles in our population show a perfectly symmetric dimeric complex 

formation (Figure 2-16 and Figure 2-17). Nevertheless, in all projection averages where 

the two LEP-R chains are clearly distinguished the membrane-proximal domains appear 

to be constrained and point towards each other (Figure 2-19 a). This conformation 

reflects the same fixed geometry observed in the liganded monomeric LEP-R chains 

(Figure 2-19 d-f). In the context of the signaling LEP-R dimer, leptin induced 

stabilization of CHR2 appears to result in fixing the two membrane-proximal domains 

towards each other and in close proximity at their C-terminal tips. 
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Figure 2-19 Architecture of the Quaternary Leptin/LEP-R Signaling Complex. 
a, Two-dimensional class averages of side-view projections reveal the crossover 
configuration of two LEP-R extracellular chains. The two chains connect at the CHR2 
level, while the membrane proximal domains (white arrowheads) point toward each other 
and arrive in close proximity at their C-terminal tips. b, Three-dimensional reconstruction 
of the leptin/LEP-R side-view projections shown in (a). Flexible docking of two liganded 
LEP-R chains into the three-dimensional density map shows the complex configuration 
(right). c, Representative two-dimensional class average of a top view of the quaternary 
leptin/LEP-R [D1-D7] complex. In this type of projections the N-terminal CHR1 and C-
terminal FnIII domains are collapsed on the carbon support (black arrowheads). The 
boxed area shows the rectangular formation that is reminiscent of the anti-parallel 
gp130/IL-6 or GCSF/GCSF-R interaction. d, Representative two-dimensional class 
average of a top view of the quaternary leptin/LEP-R[D1- D5] complex, as in (c). The 
dashed white arrowheads point to missing densities from the omitted C-terminal domains 
of the truncated construct, as compared to (c). e, Three-dimensional reconstruction from 
topview leptin/LEP-R[D1-D7] projections shown in (c), and docked gp130/IL-6 crystal 
structure into the central rectangular density of the three-dimensional map (right). f, 
Mutation L370A on the IgD (D3) of LEP-R abolishes leptin binding via epitope III. EM 
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class averages of this mutant after incubation with leptin reveal only monomeric receptor 
chains with ligand bound at CHR2 (orange arrows). All scale bars correspond to 5 nm 
(Mancour et al., 2012). 

The 3D reconstruction from the side view particle projections has limited resolution in 

the plane perpendicular to the electron beam, and thus does not provide adequate detail 

for elucidating the arrangement between leptin and LEP-R in the context of the dimeric 

receptor complex. However, an abundant series of class averages reveals a top view of 

the complex (Figure 2-19c), reminiscent to the top views we characterized in our earlier 

study of the gp130/IL6/IL6-R complex (Skiniotis et al., 2005). Here, we also recognize a 

central rectangular formation with a distinct stain accumulation region in the center, 

suggesting a hole or cavity in this position. Emanating from the rectangle in the LEP-R 

top view are the projections from membrane-proximal FnIII and N-terminal CHR1 

domains that collapse in a distinct fashion on the carbon support (pointed by arrows in 

Figure 2-19c). The rectangular cap architecture represents the top view of the tetrameric 

arrangement between leptin and LEP-R that follows the identical topological blueprint of 

the gp130/IL-6 (Skiniotis et al., 2005) or GCSF/GCSF-R interaction (Tamada et al., 

2006). In this arrangement, while epitope II of leptin interacts with the CHR2 (D4-D5) of 

LEP-R, epitope III engages the IgD (D3) of the second, opposing receptor. This set of 

interactions, which was also observed in class averages of complexes formed by the 

truncated LEP-R chains (Figure 2-19d), results in the formation of a closed tetrameric cap 

with antiparallel subunits of leptin and LEP-R. This organization is further supported by 

the good fit of the gp130/IL-6 structure (Boulanger et al., 2003b) in the 3D EM 

reconstruction of the collapsed top view of the leptin/LEP-R complex (Figure 2-19e), and 

also by the good match between our 2D projections and reprojections of a quaternary 3D 

model in this arrangement (Figure 2-20).  
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Figure 2-20 Projection comparison. 
Comparison between reprojections of the 3D homology model of the quaternary 
leptin/LEP-R[D1-D7] complex (left) and experimental 2D class averages (right) 
(Mancour et al., 2012). 

To fully confirm this interpretation, we produced and analyzed a LEP-R[D1-D7] 

construct bearing the IgD mutation L370A, which has been previously shown to abolish 

leptin signaling (Peelman et al., 2006b). EM analysis of this IgD mutant LEP-R reveals 

that while it forms the binary complex with leptin through CHR2, it is unable to form the 

signaling quaternary complex that is based on the interaction of the IgD with epitope III 

of leptin (Figures 2-19f and 2-18d-f). Thus, the quaternary signaling leptin/LEP-R 

2D class averagesReprojections from
3D model

3D model of leptin/LEP-R
complex
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complex forms in a 2:2 stoichiometry by following the same organizing principles as 

gp130/IL6 and GCSF/GCSF-R complexes (Figure 2-21).  

 

Figure 2-21 Signaling Architecture of Tall Cytokine Receptors. 
Receptor organization and ligand epitope usage in the signaling complexes of gp130/IL-
6/IL-6Ra (a, left), gp130/LIF-R/CNTF/ CNTF-Ra (a; right), and leptin/LEP-R (b, left). 
Leptin employs only epitopes II and III to engage the CHR2 and IgD of LEP-R, 
respectively. Leptin-induced stabilization of each CHR2 in the quaternary complex 
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results in the constrained and close disposition of the membrane-proximal domains, 
which likely favors intracellular Jak2 transphosphorylation (b, right) (Mancour et al., 
2012). 

2.5 Discussion  

Reduced or deficient leptin signaling causes hyperphagia and morbid obesity in both 

animals and humans (Zhang et al., 1994), while administration of leptin has been shown 

to reduce food intake and body weight (Pelleymounter et al., 1995). Paradoxically, most 

obese patients display elevated levels of leptin, which underlines the so-called “leptin 

resistance”, a term used to describe the failure of high levels of leptin to prevent obesity 

(Considine et al., 1996; Frederich et al., 1995; Myers et al., 2008). One of the main 

causes of leptin resistance is the impairment of leptin receptor function and signaling that 

also results in obesity and associated metabolic diseases (Munzberg et al., 2005; Oswal 

and Yeo, 2010; Prosnak, 1976; White et al., 1997). For example, the originally described 

db/db obese mice lack the leptin receptor, and they resemble the leptin-deficient ob/ob 

mice (Clement et al., 1998; Friedman and Halaas, 1998; Hummel et al., 1966; Ingalls et 

al., 1950; Montague et al., 1997). Therefore, the elucidation of the molecular mechanism 

of leptin receptor activation is a key issue for the design of appropriate therapeutic 

strategies. Considering the diverse signaling events and significant physiological 

responses exerted by leptin, both stimulation and inhibition of the leptin receptor have 

pharmacological applications in disease treatment (Peelman et al., 2006a). 

For the present study we employed single-particle EM to characterize the architecture of 

the entire extracellular LEP-R alone and in complex with leptin. The unliganded 

extracellular receptor appears highly similar to the crystallographic structures of 

extracellular regions from gp130 (Xu et al., 2010), LIF-R (Huyton et al., 2007; Skiniotis 

et al., 2008), and GCSF-R (Tamada et al., 2006) (Figure 2-15). This result is perhaps not 

unexpected, considering the high sequence similarity and common domain organization 

of tall cytokine receptors. Nevertheless, this finding reinforces the notion that the overall 

architecture of tall cytokine receptors is relatively constrained, although the extracellular 

chains are composed of an array of linker-connected FnIII and Ig-like domains. A 

puzzling issue however is that crystal structures of gp130 and LIF-R show the same 
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receptor conformation in the presence and absence of the ligand, with a CHR2 

configuration that is similar to the one observed in the recently determined crystal 

structure of LEP-R CHR2 in complex with a Fab fragment (Carpenter et al., 2012). Here 

we show that LEP-R displays significant flexibility in the hinge region connecting the D4 

and D5 domains composing CHR2, which presumably allows the membrane-proximal 

domains to assume variable configurations in the absence of ligand. In contrast, leptin 

binding on CHR2 of LEP-R rigidifies the position of D5, thereby stabilizing the 

membrane-proximal FnIII domains (D6-D7) in a single conformation (Figure 2-15 d-f). 

The obtained LEP-R homology model, based on gp130 and LIF-R unliganded crystal 

structures, fits well in the 3D reconstruction of monomeric LEP-R in complex with leptin 

(Figure 2-15 c, f). This observation suggests that crystallization conditions may have 

induced the unliganded receptors to assume the same conformation as in the presence of 

ligand.  

The 2D projection analysis reveals that all monomeric LEP-R chains in the presence of 

ligand display stable leptin binding on CHR2. This finding indicates that CHR2 is the 

primary site for leptin binding with a high-affinity interaction, as supported by our ITC 

experiments and earlier biochemical studies (Fong et al., 1998; Iserentant et al., 2005). 

Based on the homologous interactions observed for gp130 (Boulanger et al., 2003b) and 

GCSF-R (Tamada et al., 2006), the LEP-R CHR2 interaction must be maintained through 

epitope II of leptin, as also supported by mutagenesis studies (Iserentant et al., 2005) 

(Figure 2-21a).  

Similar to the other hematopoietic cytokines, leptin possesses two additional conserved 

epitopes with the potential to be engaged in receptor binding. 3D reconstructions and 

modeling suggest that conserved epitope III of leptin is used for engaging the IgD (D3) of 

the second receptor chain that is juxtaposed in an antiparallel fashion. In the case of 

gp130 homodimers and heterodimers (e.g., gp130/LIF-R), epitope I is used to engage the 

CHR of a non-signaling α-receptor (e.g., IL6-Rα or CNTF-Rα) that is required for 

signaling complex formation (Boulanger et al., 2003b; Skiniotis et al., 2008) (Figure 2-

21a). However, the leptin/LEP-R signaling complex does not include a non-signaling α-

receptor. This omission has led to the proposal that four LEP-R chains participate in the 
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signaling complex through the additional engagement of epitope I. This is clearly not the 

case, as we show here that the signaling complex between leptin and LEP-R forms at a 

2:2 stoichiometry, by engaging only leptin epitopes II and III (Figure 2-21 a,b). 

Curiously, the N-terminal CHR1 of LEP-R does not appear to participate in any 

interactions, as has also been the case with the CHR1 of LIF-R in the gp130/LIF-

R/CNTF/CNTF-Rα complex (Skiniotis et al., 2008). It will thus be interesting to examine 

whether these regions have a different type of functionality that is independent of 

signaling. 

It is also worth noting that our results explain the absence of observed leptin density 

interacting with the IgD (D3) in monomeric LEP-R chains. Similarly to the gp130/IL6 

system (Boulanger et al., 2003b), the epitope III interaction has undetectably low affinity 

for LEP-R IgD alone, and is only stabilized by the avidity afforded by the “two-point 

attachment” between preformed and antiparallel leptin/LEP-R dimeric complexes. In this 

context, the mode of complex formation is likely cooperative, with leptin binding first to 

the CHR2 of one LEP-R with a 1:1 stoichiometry, followed by two liganded LEP-Rs 

engaging at the membrane distal regions (Figure 2-21b). 

Earlier work on gp130 and gp130/LIF-R signaling complexes has shown that the 

membrane-proximal FnIII domains of two juxtaposed receptors bend towards each other 

to reach the same position at the membrane level (Skiniotis et al., 2005; Skiniotis et al., 

2008). Within this family of receptors, LEP-R is the only member possessing two, rather 

than three, FnIII domains connecting the distal cytokine binding regions to the cell 

membrane. Perhaps this “handicap” is utilized to differentiate LEP-R in the types of 

intracellular signaling exerted by the liganded receptor. Nevertheless, we show here that 

the FnIII ‘legs’ in the leptin/LEP-R quaternary signaling complex also point towards each 

other and come in close proximity at their C-terminal tips. For the tall class of cytokine 

receptor liganded complexes the present study shows that this configuration of the FnIII 

‘legs’ is induced and stabilized by the binding of the cytokine on the flexible CHR. In the 

absence of ligand, the membrane proximal FnIII domains and the preceding C-terminal 

domain of CHR appear to behave like rigid rods that assume variable relative orientations 

in regards to the membrane plane (Figure 2-15a,b). Ligand binding on the CHR fixes the 
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membrane-proximal domains in a single configuration that facilitates precise and close 

juxtaposition at the membrane level (Figures 2-15d-e, 2-19a,b, 2-21b). 

Our EM studies with full-length gp130 and LIF-R constructs have suggested that the 

dimeric arrangement of the extracellular membrane-proximal domains was significantly 

stabilized by the presence of the receptor trans-membrane regions. As has been shown for 

the erythropoietin receptor, this is likely facilitated by dimerization properties of the 

receptor single-pass α-helices spanning the membrane (Constantinescu et al., 2001b). It is 

thus reasonable to assume that LEP-R and most cytokine receptors are preformed non-

signaling dimers at the cell membrane. Elegant mutagenesis experiments by 

Constantinescu et al. (2001) on the erythropoietin receptor have revealed that the exact 

disposition and pitch of the TM helices is crucial for intracellular signaling 

(Constantinescu et al., 2001a). Given the leptin-induced stabilization and precise 

disposition of the membrane-proximal LEP-R regions observed here, we postulate that 

ligand binding on the membrane-distal regions of receptor dimers is rigidly transmitted 

towards the receptor trans-membrane helices. This likely represents a common 

mechanism for cytokine and hormone receptors to stabilize an intracellular conformation 

that favors Jak trans-phosphorylation.  
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Chapter 3  Structural Flexibility of the Gi α-helical domain in the µ Opioid 

Receptor - Gi Complex 

3.1 Abstract 

The G-protein-coupled receptors (GPCRs) are the largest group of signaling proteins that 

respond to hormones and neurotransmitters. The fundamental event in GPCR signal 

transduction is the formation of an active, agonist-bound receptor and G-protein complex. 

Here, we apply electron microscopy (EM) in order to elucidate the architecture of the µ-

opioid receptor (MOR) in complex with its inhibitory G-protein partner, the Gi (Gαiβγ). 

In comparison with the recent EM study of the β2AR-Gαs complex, MOR-Gi overall 

domain organization as well as AH domain conformational flexibility are in striking 

agreement. We hypothesize that as is the case with β2AR-Gαs complex, the MOR-Gi α-

helical domain will be stabilized in the presence of specific nucleotides such as the 

pyrophosphate mimic foscarnet (phosphonoformate). 2D averages and 3D 

reconstructions of the MOR complex are compared to the β2AR-Gαs complex. The data 

from these studies reveals structural similarities of two GPCRs-G-protein complexes, 

signaling through different Gα subunits: β2AR-Gα through the activating Gαs and µOR 

through the inhibiting Gαi. 

3.2 Introduction  

Proteins embedded in the cell membrane, serve as the interface between the extracellular 

and the intracellular environment of the cell. GPCRs are amongst the largest and most 

diverse family of proteins that are able to detect extracellular signals such as photons, 

ions, small organic molecules and protein-ligands (Fredriksson et al., 2003). GPCRs are 

activated upon ligand binding on their extracellular portion. This results in 

conformational changes in the receptor’s transmembrane region, resulting in the 

activation of complex intracellular networks and initiating cellular response. Recent 

advances in obtaining detailed structural information of receptors from this family have 
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begun to unravel the complicated mechanisms of activation of these transmembrane 

machineries. In addition, the availability of structures from several GPCRs allows for 

comparative analysis not only on their three dimensional fold but also in their functional 

relationship. 

Opioid receptors are GPCRs that exert a wide range of actions in the central nervous 

system such as regulation of pain, euphoria, sedation, and cough suppression, making 

them important pharmacological targets (Katzung, 2009). Based on their pharmacology 

and tissue distribution the opioid receptors are grouped into 3 classes, the morphine (µ), 

vas deferens (δ) and ketocyclazocine (κ) classes (Satoh and Minami, 1995). 

MORs can be activated by endogenous peptides such as endorphins and enkephalins 

(Waldhoer et al., 2004). On the other hand, opioid alkaloids, such as morphine and 

codeine, and their derivatives bind on MORs and are the most effective in relieving acute 

and chronic pain. Unfortunately, these medically effective drugs are also highly 

addictive, contributing to the illicit drug market worldwide and are major contributors to 

death by intravenous overdose. Therefore, tolerance and dependence are the limiting 

factors in their clinical efficacy and developing new drugs is of crucial importance to 

improve human health. MORs can activate a diverse set of downstream signaling and 

regulatory pathways to mediate both their beneficial and adverse effects (Waldhoer et al., 

2004). To initiate intracellular signaling, MORs require the activation of their G-protein 

counterparts. G-proteins are guanine nucleotide binding proteins that are capable of 

hydrolyzing the guanosine triphosphate (GTP) to guanine diphosphate (GDP), thus 

shuffling between active and inactive states, respectively (Coleman and Sprang, 1996). 

Heterotrimeric G-proteins are composed of 3 types of subunits, the α subunit (39-52kDa), 

the β subunit (37kDa), and the γ subunit (8kDa), each made by either a different gene or 

as a result of alternative mRNA splicing. G-proteins are classified based on the identity 

of the α subunit which is localized to the membrane by a cysteine-linked palmitoyl group 

(Coleman and Sprang, 1996). The Gα subunits consists of a Ras domain,with a GTP-

binding pocket, and a small α-helical bundle domain. The structural characteristics of the 

Ras domain include a glycine-rich ‘P loop” that surrounds the di- and triphosphate of the 

guanine nucleotide and two segments termed switch I and switch II. Switch I contains a 
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conserved arginine and switch II a conserved glutamine and they both change 

conformation upon GTP hydrolysis (Sprang, 1997). In its inactive state, the α subunit is 

GDP-bound and has a high affinity for the βγ dimer. When the ligand binds to the 

receptor, the heterotrimeric G-protein associates with the receptor, GDP is exchanged for 

GTP within the Gα subunit and heterotrimer dissociates into Gα-GTP and Gβγ. The 

activated Gα subunit is then able to bind downstream effector proteins and exert its 

functions (Figure 3-1) (Van Eps et al., 2011). The β subunit and the γ subunit are tightly 

associated where the γ subunit makes farnesyl or geranylgeranyl contacts to the 

membrane lipids, localizing the βγ dimer to the membrane (Sprang, 1997). Structural 

differences between the 5 isoforms of Gβ and the 11 isoforms of Gγ found in mammals 

could provide selectivity for different GPCRs. Furthermore, the βγ dimer can also have 

signaling capabilities. For example Gβγ is shown to activate adenylyl cyclase, potassium 

channels and certain isoform of phospholipase C (Sprang, 1997). 

 

 

Figure 3-1 The activating cycle of the G-protein accompanied by exchange of GDP 
for GTP. 
The G-protein heterotrimer in its inactive state is composed of Gα and Gβγ and is in GDP 
bound state. Upon association with the receptor the nucleptide leaves the G-protein and 
the nucleotide-free receptor-G-protein complex is formed. Gα is activated upon GTP 
association in place of GDP. 
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The µ-opioid receptor couples to Gi, the inhibitory subunit of adenylyl cyclase (AC) 

which is also responsible for exerting its analgesic effect (Raffa et al., 1994). The Gi 

family of proteins exhibit the most diverse functionalities and can be further subdivided 

into 5 groups (Gi, o, t, g and z). The α subunit of the G protein undergoes a cycle of 

nucleotide exchange and hydrolysis when activated by the receptor (Linder, 2004). In 

addition, members of the Gi family, except Gαz, can be ADP-ribosylated by pertussis 

toxin at a cysteine residue, near the carboxy terminus, which inhibits their interaction 

with the receptor (Sprang, 1997). Interestingly, after activation, the receptor is 

phosphorylated which allows for its coupling to a class of proteins termed arrestins, 

which can exhibit both signaling and regulatory functions (Shukla et al., 2011).  

The structure of MOR in complex with a morphinan antagonist, in its inactive state, was 

recently solved (Manglik et al., 2012).  

 

Figure 3-2 Crystal structure of µ-OR bound to morphinan antagonist.  
Left – crystal structure of MOR, side view; green circle – bound morphinan antagonist. 
Right – top view, crystal structure of MOR with bound morphinan antagonist (green 
circle) (Manglik et al., 2012). 
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The crystal structures of other opioid receptors have also been determined in their 

inactive conformations, bound to antagonists (Granier et al., 2012; Wu et al., 2012). In 

addition, the crystal structure of other GPCRs in their active state have also been 

determined (Choe et al., 2011; Palczewski et al., 2000; Rasmussen et al., 2011a). 

Furthermore, a landmark in the field of GPCRs was the successful crystallization of 

β2AR in complex with its Gαsβγ-heterotrimer (Rasmussen et al., 2011b). These structural 

studies have provided important information regarding the association of an activated 

receptor with its G-protein in the process of signaling  

We employed single particle electron microscopy to study the µ-OR-Gi complex aiming 

to understand overall architecture and dynamics of the mechanism of activation of MORs 

and facilitate the crystallization of the MOR-Gi signaling complex. 

3.3 Experimental procedures 

Specimen Preparation and EM Imaging of Negative-stained Samples 

T4L-µ-OR-Gi complex was prepared by Aashish Manglik from the lab of Brian Kobilka . 

All samples were prepared for EM using the conventional negative staining protocol (Ohi 

et al., 2004). Specimens were imaged at room temperature with Tecnai T12 electron 

microscope operated at 120kV using low-dose procedures. Images were recorded at 

magnification of 71,138X and a defocus value of ~1.5 µm on a Gatan US4000 CCD 

camera. All images were binned (2X2 pixels) to obtain a pixel size of 4.16 å on the 

specimen level. Tilt-pair particles from 60° and 0° images were selected using WEB 

(Frank et al., 1996). Particles for only 2D classification of 0° projections were excised 

using Boxer (part of EMAN 1.9 software suite) (Ludtke et al., 1999). 

Two Dimensional Classifications and 3D Reconstructions of T4L-µ-OR-Gi complex. 

The 2D reference-free alignment and classification of particle projections were performed 

using SPIDER (Frank et al., 1996). For all conditions, the 0° particle projections were 

iteratively classified into multiple classes for 10 cycles. For the 3D reconstructions, in a 

first step we used the random conical tilt technique (Radermacher and Ruiz, 2006) to 

determine the initial 3D maps by back-projection of tilted particle images belonging to 
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individual classes. After a first round of angular refinement, corresponding particles from 

the untilted images were added, and the images were subjected to another cycle of 

refinement. Finally, we used FREALIGN for the further refinement of the orientation 

parameters and reconstruction.  

Molecular Modeling 

The crystal structure of the T4L-µ-OR (Figure 3-2) was fit into the EM density as a rigid 

body. Because of the presence of a detergent micelle, which accounted for a significant 

density surrounding the µ-OR, all docking operations were performed manually with 

visual inspection of the best fit. 

3.4 Results 

Overall Architecture of the T4L-µ-OR-Gi complex 

In the first part of the analysis we aimed to define the overall architectural organization of 

the T4L-µ-OR-Gi complex by comparing it to the T4L-β2AR-Gs complex. Initially, the 

homogeneity of the protein preparation was assessed by visualizing the T4L-MOR-Gi 

complex by negative stain EM. The negatively stained micrographs revealed a 

monodisperse particle population (Figure 3-3) 



 
108 

 

Figure 3-3 Raw image of the T4L-MOR-Gi complex. 
The micrograph reveals monodisperse particle projections of the T4L-MOR-Gi complex. 

After boxing the particle projections we performed a reference-free 2D classification. 

Initially, the ~26,000 particle projections were classified into 200 classes (Figure 3-4 a). 

In a second step, we removed particles from the misaligned classes, and performed a 

second round of classification with the remaining 19,200 particle projections (Figure 3-

4b,c). We divided the particles into both 100 and 50 classes in order to see if number of 

different populations increases with more classes. Since the 100 and the 50 classes 

contained similar averages, we decided to use the 50 classes classification for our 

subsequent analysis where the particle number per class would be higher. The 2D 

classification revealed characteristic class averages with an overall density displaying 

striking similarities to the β2AR-Gαs complex (Westfield et al., 2011).  

20nm
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Figure 3-4 2D reference-free alignment and classifications of particle projections of 
the MOR-Gi complex, using SPIDER. 
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a, Initial 2D classification of ~26,000 particle projections divided into 200 classes.b, 
Secondary 2D classification of the remaining ~19,200 particle projections divided into 
100 classes. c, Secondary 2D classification of the remaining ~19,200 particle projections 
divided into 50 classes. 
 

In our initial analysis, we wanted to compare the 2D class averages from the β2AR-Gαs 

to the 2D class averages of the MOR-Gαi complex side-by-side. Similarly to the β2AR-

Gαs complex, the MOR-Gαi complex also assumed a preferred orientation on the carbon 

support. This allowed for the side-by-side comparison of the two complexes and aided 

tremendously in the domain assignment within the MOR-Gi complex (Figure 3-5). Both 

complexes were similar in size and showed distinct densities that could be easily 

compared and contrasted, while the domain assignment of β2AR-Gαs complex served as 

guidance (Figure 3-5). The distinct features of the class averages in these preferred 

orientations allowed us to assign the specific features of the complex in its negative stain 

profile, directly compared to the β2AR-Gαs complex.  

As in β2AR-Gαs complex, the central oval density was attributed to the MOR within the 

detergent micelle (Figure 3-5a,b- left). In addition, some of the class averages also 

revealed a small protruding density at one end, which was attributed to the T4 lysozyme 

(T4L) (Figure 3-4 and 3-5). The engineered T4L served to replace the unstructured 

extracellular N terminus of the receptor and also helped with the particle alignment. 

Interestingly, in few of the class averages, the density for the t4L was missing. The 

reason for the absence of T4L was attributed to the sensitivity of the particles to the out-

of-plane tilting, the so-called “rock” and “roll”, unevenness of the carbon support and/or 

the relative flexibility of the linker between T4L and the receptor. These effects have 

been well documented in the earlier EM study of the β2AR-Gs complex (Westfield et al., 

2011). Although, the crystal structure of the µ-opioid receptor suggested the existence of 

a parallel dimer species (Manglik et al., 2012), the overall architecture of the MOR-Gi 

complex in solution suggests otherwise. Here, the 2D EM class averages reveal only a 

single T4L density per MOR, conveying only one receptor per complex. 
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Figure 3-5 Side-by-side comparison 2D class averages from β2AR-Gαs complex and 
MOR-Gαi complex. 
a, representative 2D class averages form the β2AR-Gs complex in a nucleotide-free state 
(Courtesy to Gerwin Westfield). b, representative 2D class averages of MOR-Gi complex 
in a nucleotide-free state .c, model for the domain assignment in the T4L-MOR-Gi 
complex with both invisible AH domain (left) and fully extended AH domain (right). 

 

As in the case with β2AR-Gαs, the additional density around the receptor is attributed to 

the large detergent micelle (Rubinstein et al., 2007). 
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The Gi heterotrimer was assigned to lie on the diametrically opposite side of the T4L 

with at least 2 domains clearly visible in each of the class averages (Figure 3-5). The 

domain that visibly made a connection to the micelle of the receptor was attributed to the 

catalytical domain of the Gi, the Ras domain. Also, in few of the class averages, an extra 

density was observed protruding below the Ras domain (Figure 3-5). In the crystal 

structure of the Gi heterotrimer, the AH domain is found in this extended conformation 

and below the Ras domain (Wall et al., 1995). In addition, the crystal structure of Gαs-

GTPγS alone reveals the same positioning of the AH domain (Sunahara et al., 1997). 

Therefore, we assigned this additional density to the AH domain (Figure 3-5 right 

panels). This visual variability of the AH domain in the 2D class averages was also 

observed in the β2AR-Gαs complex EM studies (Westfield et al., 2011) and was shown to 

be nucleotide-dependent. Therefore, observing an inherent flexibility in another GPCR-

G-protein complex is not surprising. Finally, the Ras domain also appeared to make a 

contact with an additional larger domain, not connected to the receptor. We assigned this 

domain as the βγ subunit of Gi heterotrimer (Figure 3-5). 

 

The flexibility of the AH domain of Gi 

One of the main aims of these studies was to observe the positioning of the AH domain in 

the context of the MOR-Gi complex and compare it directly to the β2AR-Gαs complex. 

Interestingly, careful examination of the 2D class averages from our reference-free 

alignment also revealed variability in the positioning of the density corresponding to the 

AH domain with respect to the Ras-like domain (Figure 3-6). 

 

Figure 3-6 Representative class averages displaying the variability in the positioning 
of the AH domain. 

5nm
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The position of the AH domain with respect to the Ras-like domain and the βγ varied 

with many degrees. In some class averages the AH domain was not visible likely due to 

its positioning directly on top of the Ras domain (Figure 3-5 left). In the class averages 

where the AH domain was clearly visible, it assumed various positions with respect to the 

βγ dimer (Figure 3-5). The striking similarities between the two GPCR-G-protein 

complexes of β2AR-Gαs and MOR-Gi, respectively, suggest an inherent flexibility of the 

AH domain. Further biochemical studies would be needed in order to elucidate the 

significance of the striking conformational changes of the AH domain in complex with 

the receptor. The possibility of its role in activation of the G-protein is plausible as 

previous studies suggest that the AH domain may limit the accessibility of the 

nucleotides within the nucleotide exchange pocket on the Ras-like domain. 

The significance of homo-oligomers of the MORs 

Past structural and functional studies have suggested the existence of functional homo-

dimers of the MOR (Granier et al., 2012; Manglik et al., 2012). In the case of the β2AR, it 

was shown that the existence of such species in the signaling context is unjustified 

(Rasmussen et al., 2011b; Westfield et al., 2011). EM and other biochemical and 

biophysical studies support the fact that the detergent micelle contains only one receptor. 

However, the gel filtration profile of the purified MOR-Gi complex also revealed some 

higher order species and we wanted to investigate further their overall conformation. We 

visualized ~4,500 particle projections, which were classified with a reference-free 

alignment into 100 classes (Figure 3-7a). The class averages displayed both monomers 

and what appeared as dimers of two complexes next to each other. However, upon closer 

examination of the classes containing the dimeric species, it appeared that the two 

detergent micelles, containing the receptors, were positioned at the opposite ends of the 

particles, forming anti-parallel dimers. (Figure 3-7b). Also, the βγ subunits of one 

complex seem to be making a ‘weak’ connection to the micelle of the opposite 

receptor/complex unit. These anti-parallel conformations were not observed in 

subsequent purifications and they certainly do not represent functional units.  The 

dimerization artifact could be attributed to hydrophobic groups within the βγ that are 
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being inserted in the micelles but whether this effect is concentration dependent is not 

entirely clear at this point. 

Interestingly, the MOR was crystallized as a parallel dimer, most likely due to the lowest 

energy needed for the crystal packing (Manglik et al., 2012). In our first analysis of the 

MOR-Gi complex, solubilized in detergent and analyzed with negative stain EM, we 

observed both monomeric and dimeric particles of the MOR-Gi complex. A closer look 

at the dimeric formations revealed that the dimer is actually formed in an antiparallel 

fashion (Figure 3-7).The EM analysis provides a view of the complex in solution and an 

anti-parallel dimer would have no physiological significance. Therefore, the parallel 

dimer of the receptor observed in the crystal structure may not have any biological 

significance. 

 

 

b.  

a.!
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Figure 3-7 The artificial antiparallel dimer of the MOR-Gi complex. 
a, 2D class averages of the ~4,500 particle projections grouped into 100 classes. b, side-
by-side comparison of the dimer to the monomer also revealing the weak interaction 
between the βγ subunit of one complex and the receptor micelle of another. 

3.5 Three-dimensional reconstructions of the T4L-MOR-Gi complex. 

In order to further investigate the overall architecture of the complex and obtain more 

discernable details of its conformations, we used the random conical tilt approach to 

calculate a three dimensional reconstruction of the complex. Initial 3D reconstructions 

were calculated from particle projections either with or without the density corresponding 

to the AH domain below the Ras-like domain (Figure 3-8 a, b). The initial reconstructions 

were in excellent agreement to the corresponding 2D class averages (Figure 3-8). 

Furthermore, the 3D reconstructions where the AH domain is either invisible or 

positioned below the Ras-like domain, closely resemble the 3D volumes for the β2AR-Gs 

complex (Figure 3-8). We could not perform experiments in the presence of nanobody 37 

to enhance the density of the AH domain due to time constraints. Nevertheless, our 3D 

volumes of the MOR-Gi complex are in excellent agreement with the 3D volumes of the 

β2AR-Gs complex in the absence of Nb37. In addition, the 3D reconstruction from the 

population of particle projections with “fully-extended” AH domain, provides enough 

volume below the Ras-like domain to fully accommodate the AH domain in this region. 

It should be noted that one of the disadvantages of negative stain is that the proteins lose 

the hydration shell and collapse on the carbon support. Therefore, the AH domain does 

not appear to have a designated density protruding either in the front or the back of the 

3D reconstructions. More experiments with stabilizing nanobodies or nucleotides are 

needed to confirm our findings. However, these initial structural studies provide an 

insight not only into the overall structural similarity of two GPCRs in complex with their 
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G-proteins but also into the flexibility of the AH domain in the context of the activated 

receptor. 

 

Figure 3-8 Three-dimensional reconstructions of the MOR-Gi complex in a 
nucleotide-free state. 
a, Representative class averages of the corresponding 3D reconstructions in b, of particles 
in each category to show the variability in the positioning of the AH domain in the 
nucleotide-free complex. In the reconstruction to the left, the AH domain is not visible 
because of its flexibility and highly variable particle population. In the reconstruction to 
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the right, the AH domain is modeled within the EM density and right below the Ras-like 
domain of Gi, as suggested in the 2D class averages. c., 3D reconstructions of the β2AR-
Gs complex with the docked crystal structure, also displaying the variability in the 
positioning of the AH domain. (c., Courtesy of Gerwin Westfield). 

3.6 Discussion  

The EM studies of the MOR-Gi complex provide important insights into the inherent 

flexibility of AH domains of Gα proteins. The crystal structures are able to provide 

snapshots of these complexes in certain nucleotide states. However, the flexibility of 

distinct domains within the complexes that reflect the dynamics of such protein 

machineries have just begun to unravel. Despite the artifacts from negative staining such 

as protein dehydration and particle collapse, single particle analysis allows for obtaining 

new insights into the dynamic features of inherently flexible protein assemblies. Here, we 

visualized the MOR-Gi complex, embedded in negative stain with EM and applied single 

particle analysis to elucidate overall domain organization as well as assess the flexibility 

of the AH domain in the Gαi subunit.  

The 2D class averages of MOR-Gi complex and the side-by-side comparison with the 

β2AR-Gs complex allowed for the domain assignment. Our analysis revealed striking 

similarities in the overall architecture of the two GPCS-G-protein complexes, β2AR-Gs 

and MOR-Gi (Figure 3-5). As in the case for β2AR-Gs, the 2D class averages revealed a 

large density in the middle, corresponding to the µ-opioid receptor (MOR) solubilized in 

detergent. Additionally, an N-terminal T4L was present in some class averages and 

missing in others. The well documented artifact due to the particle “rock” and “roll” 

(Westfield et al., 2011) is contributing to this partial visibility in few of our class 

averages. Moreover, we were able to distinguish the Ras domain from the Gα subunit 

making its connection to the receptor as well as the variably visible density contributing 

to the AH domain of Gαi. The globular density contributing the AH domain was 

observed in various positions compared to the Ras domain, from fully extended to 

completely positioned on the Ras domain (Figure 3-6).  

Interestingly, the AH domain displays the same inherent flexibility in a nucleotide-free 

state of the complex as is the case with β2AR-Gs complex. The mode of action of Gs and 
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Gi proteins is different in how they are able to effect downstream signaling targets either 

activating adenylyl cyclase (AC) or inhibiting AC, respectively. Indeed, the flexibility of 

the AH domain was inferred in a study with the activated rhodopsin-Gi complex as a 

change in the relative distances between the Ras and AH (Van Eps et al., 2011). In 

addition, the EM and Deuterium exchange coupled to mass spectrometry (DXMS) studies 

of the β2AR-Gαs complex (Westfield et al., 2011) (Chung et al., 2011) also support the 

receptor-induced AH domain flexibility of the G-protein. In addition, it has been 

demonstrated that the nucleotide exchange lies in the interface between the Ras and the 

AH domain (Sprang, 1997) and the presence of the AH domain slows the nucleotide 

exchange (Markby et al., 1993). Therefore, it is possible that the AH domain may play a 

role in the activation of the G-protein by capturing the nucleotide when positioned 

directly on Ras or providing an escape route of the nucleotide when in fully-extended 

conformation. Furthermore, the functional role of the structural flexibility of the AH 

domains could be explained in the context of bacterial toxins’ mode of action as well as 

nucleotide analogs able to lock the AH domain in certain positions and affect 

downstream signaling.  

More studies need to be conducted to fully assess the effect of different nucleotides on 

the stability of MOR-Gi complex. However, considering the conservation in the overall 

domain organization between β2AR-Gs and MOR-Gi, as well as the inherent flexibility of 

the AH domains in both Gs and Gi subunits, it is likely that the flexibility of the AH 

domain in the MOR-Gi complex would be affected by nucleotide analogs in a similar 

manner. For example, it is suggested that the binding of PPi-mimic foscarnet substitutes 

for the binding of the α- and β- phosphates in GDP. (Westfield et al., 2011). In addition, 

only foscarnet is able to stabilize the AH domain on Ras by acting as a ligand fragment in 

the nucleotide binding pocket (Westfield et al., 2011). If the activating mechanisms of 

MOR-Gi and β2AR-Gs are indeed similar, one would expect to find the AH domain of Gi 

being stabilized on the Ras domain in the presence of foscarnet which presumably 

interacts with the nucleotide binding pocket on Ras, trapping the Gα subunit in a certain 

conformation. 
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Figure 3-9 Different dissociation states of the β2AR-Gs complex in the presence of 
1uM GTPγS. 
Left is fully intact complex, right - fully dissociated G-protein hetertrimer (Courtesy of 
Gerwin Westfieled). 

 

In contrast to PPi and foscarnet, the non-hydrolyzable GTP analog, GTPγS would be 

expected to mimic bound GTP and lead to dissociation of the G-protein from the 

receptor. This was the case for β2AR-Gαs complex (Westfield et al., 2011). 

To facilitate obtaining a high-resolution structure of the MOR-Gi complex, we will also 

investigate the effect of nanobodies on complex stabilization. The nanobodies are 

clonable variable domains of heavy chain only antibodies that can be obtained by 

immunizing a Llama with purified GPCR-G-protein complexes (Rasmussen et al., 

2011a). Nanobody 35 (Nb35) was found to bind at the interface of Gα and Gβγ 

stabilizing the complex and facilitating the crystallization the receptor-G-protein 

complex. More importantly, Nb35 did not interfere with the stability of the AH domain 

(Rasmussen et al., 2011b; Westfield et al., 2011). 

The single particle EM analyses of GPCR-G-Protein complexes serve as a tool to gain 

important insights into dynamic changes taking place upon receptor activation or 

nucleotide exchange in the G-protein. In addition, the EM studies allow for the capturing 

of transient state snapshots of the complex which otherwise may not be present in the 

crystal structure and thus help reveal mechanism of action. 
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Chapter 4 Discussion and Future Directions 

4.1 The leptin receptor system 

Despite the wealth of biochemical information on the leptin/leptin receptor signaling 

pathway, there are many structure-function related questions that remain to be resolved. 

The structural information concerning the atomic detail of the ligand binding domain 

alone and in complex with leptin is still lacking. Increasing the resolution of structures 

for this interaction could also lead to development of small molecule agonists and 

antagonist that can modulate leptin signaling. Additionally, it is still not well understood 

how ligand binding at the extracellular side of the receptor instigates intracellular 

signaling. The details regarding the transmission of structural information through the 

membrane are still lacking. Because LepR relies on intracellularly bound JAK2s for 

signaling, obtaining structural information about the ligand-receptor-kinase complex is 

crucial for our understanding not only of leptin-LepR system but also for the whole 

family of cytokine receptors. 

 

Crystallization trials 

The gene for LepR was discovered and cloned about seventeen years ago by Tartaglia 

and colleagues (Tartaglia et al., 1995). Yet, since then, very limited information 

regarding the structure of the leptin/LepR complex has become available. Because LepR 

is an integral membrane protein, its solubilization and purification have proven to be very 

difficult. In addition, the lack of posttranslational modification mechanisms in bacterial 

cells such as glycosylation, proteolytic maturation of the overexpressed protein or limited 

capacity for the formation of disulfide bridges have also contributed to the difficult 

recombinant production of LepR (Kamionka, 2011). Insect cells and Baculovirus 

expression systems have emerged as a novel tool for production of recombinant proteins 
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with the necessary posttranslational modifications (Becker-Pauly and Stocker, 2011). 

However, the quantities of the recombinant expressed proteins and their solubilization 

can still pose challenges for the crystallographic studies.  

Portions of the extracellular domains of other members of the class I cytokine receptors 

have been successfully crystallized. For example the N-terminal five domains of LIF-R in 

complex with LIF have been crystallized, revealing an addition LIF-receptor interaction 

within the Ig-like domain (Huyton et al., 2007). The structure of the ligand interacting 

domains of GCSF-R in complex with GCSF was also solved (Tamada et al., 2006). In 

addition the entire ecto domain of the gp130 was successfully crystallized (Xu et al., 

2010). These crystallographic studies give precedent for the crystallization of parts or the 

entire the region of LepR.  

 

Flexible regions  

The EM negative stain studies on the full length extracellular LepR revealed a flexible 

hinge, at the level of CHR2 which is stabilized upon ligand binding. Moreover, long 

linkers at the very N-terminus as well as within the CHR1 putative module could also 

present potential sites of flexibility. Receptor’s sequence analysis and homology 

modeling contribute to this hypothesis. In fact, sequence analysis of LepR reveals long 

linkers at the N-terminal region of the receptor that are not attributed to any domain. 

There are ~40 residues between the end of the signal sequence and the first putative 

domain of the CHR1 module. Additionally, a stretch of 57 residues divides the distance 

between the two CHR1 domains within the first module (Figure 4-1).  Furthermore, the 

2D class averages from both full length and truncated extracellular LepR display 

increased “fuzziness” at the very N-terminal tips, also suggesting flexibility in these 

regions.  

Protein engineering can help alleviate the problem of flexibility by adding more 

conformational constraints and rigidity in the receptor. Engineering of shorter constructs 

lacking the flexible regions may aid in the stabilization of the protein and thus enhance 
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the chances of its crystallization. For this purpose, constructs lacking the entire CHR1 

module and one composed only of the CHR2 and IgD could be further examined. 

Preliminary data from the designing, cloning and expression of the CHR-IgD protein 

construct is already available (Figure 4-2).  

 

Figure 4-1 a, Homology model of the entire extracellular domain of LepR and 2D 
class averages of both full length and truncated extracellular Lep-R. 
a., Homology model of the entire ecto domain of LepR; all seven domain D1-D7 are 
modeled according to known structures of the same family of receptors. The first 57 
residues, termed D0, are also modeled to a random crystal structure in the PDB (Courtesy 
of Steven Z. Chou). b, class averages of full length extracellular and truncated LepR 
where green circles represent flexible regions. 
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Figure 4-2 Raw images of purified CHR2/IgD construct. 

Raw images from negatively stained particles from the purified protein reveal a 

homogeneous population of monodispersed particles with the characteristic kink at the 

level of CHR2 domain. In addition, the optimized protocol for the purification of the full 

length extracellular LepR is also applicable for the shorter constructs, allowing for the 

production of large quantities of protein that are also needed for the crystallization trials.  

 

Heterogeneity 

In addition, our analysis of the leptin/LepR complex consistently revealed complexes 

composed of two receptor chains and two ligands and a very small population (~15%) of 

single receptor chains bound to leptin. Because of the dynamical process of these 

interactions and the shape of the molecules, we were never able to separate the two 

populations with any biophisical method. Furthermore, it is possible that the monomer-

dimer heterogeneity is not present at higher protein concentrations. 

Previous mutagenesis studies on the ligand binding domain of the leptin receptor define 

important functional residues that play roles in leptin binding and LepR activation 

(Iserentant et al., 2005; Peelman et al., 2006). Precisely, a mutation (L503A) within the 

CHR2 domain of the receptor completely abolishes leptin binding while a (L370A) 

within the Ig-like domain leads only to an impaired ability to activate downstream 

signaling. Interestingly, in the EM studies of the leptin receptor signaling complex, the 

L370A mutant is still able to bind leptin, thus, stabilizing the hinge region at the CHR2 

while unable to form the quaternary complex. The L370A mutant can be useful in the 

crystallization of the complex by creating a homogeneous population of binary 

complexes consisting of one receptor chain bound to one leptin. 

Furthermore, adding a leucine zipper at the C-terminus of the extracellular portion of the 

receptor could create a homogeneous population of the quaternary signaling complex. An 

engineered GCN4 coiled-coil will aid in the stabilization of the quaternary complex by 
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not allowing the dissociation due to the weaker interaction of epitope 3 of leptin and the 

Ig-like on the receptor.  The design and cloning of this construct is already in progress. 

 

Longer constructs of the LepR 

The recent EM studies of the extracellular leptin receptor signaling complex provide 

important insights into the mechanism of activation upon binding of leptin. Previous 

biochemical studies suggests that the receptor exists a preformed dimer and binding of 

ligand induces conformational changes that result in activation of downstream signaling 

(Devos et al., 1997; Zabeau et al., 2005).We hypothesize that the receptor exists as a 

preformed dimer at the plasma membrane. Upon leptin binding at the extracellular side, a 

conformational change on the receptor is transmitted through the membrane and allows 

for the precise positioning of intracellulary bound JAK2s to transphosphorylate and 

activate downstream signaling. The EM studies of the extracellular LepR  clearly 

demonstrated that the extracellular LepR exists as a monomer and it dimerizes upon 

ligand binding. Therefore, it will be interesting to examine further whether the 

dimerization interface can be attributed to the transmembrane helices or the intracellular 

receptor tails. For this purpose, longer receptor constructs will aid in the analysis. 

Moreover, reconstitution of the full-length receptor in the presence of the ligand and the 

Janus kinase could provide invaluable insights onto how the kinase gets activated. In 

addition, an in vitro reconstitution of all the components of the signaling machinery could 

also provide more clues onto how transmembrane receptors translate ligand-induced 

structural information through the membrane to instigate downstream signaling. 

 

4.2 The µ-opioid receptor - Gαi complex system 

In both the β2AR-Gαs and the µ-OR-Gαi complexes, the AH domain of the α subunit of 

their respective G-protein seems to possess an inherent flexibility. The flexibility of the 

AH domain can be implicated in the activation mechanism of the G-protein. Because G-

proteins play a central role in signal transduction and mediate the extracellular signaling 
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through the largest family of receptors, the GPCRs, they are poised for further 

examination.  

 

The flexibility of the α-helical domain of the G-protein 

Crystal structures of G-proteins reveal important insights into their activation mechanism. 

Conformational changes can be exerted within three regions, termed Switch I-III, which 

lie within the Ras domain and Switch I connects the Ras to the AH domain (Sprang, 

1997). The nucleotide exchange occurs at the interface between the Ras and the AH 

domain and it is presumably dependable on their uncoupling. In fact, it was demonstrated 

that the rate of nucleotide exchange is slowed in the presence of AH domain suggesting 

the role of the AH domain in the activation of the G-protein (Markby et al., 1993). 

Additionally, experiments with chimeric Gα subunits from plant G-proteins showed that 

the more disordered AH domain contributes to higher basal activity (Jones et al., 2011). 

In other words, a more extended conformation, where the AH domain is further away 

from the Ras domain, provides for more accessibility of the nucleotide to be shuffled in 

and out. Moreover, in the crystal structure of the β2AR-Gαs complex, the βγ subunit does 

not interact with the receptor where the Gαs contacts the receptor with both its N- and C-

termini (Rasmussen et al., 2011). A snapshot of the G-protein bound to the receptor in its 

nucleotide-free state also reveals the displacement of the AH domain away from Ras 

thereby, suggesting their dissociation and exposing the nucleotide binding pocket. Aside 

from the structural information about the AH domain in the crystal structure of the 

β2AR-Gαs complex, past biochemical and biophysical studies also have revealed the 

flexibility of the AH domain. In one study, the author applied double electron-electron 

resonance spectroscopy and measured the change in probes between the Ras and the AH 

domains in Gαi. Interestingly, the increase in distance between the two domains 

corresponded with nucleotide release (Van Eps et al., 2011). In hydrogen deuterium 

exchange studies, the solvent accessibility at the Ras-AH domain increases upon receptor 

binding (Chung et al., 2011). Thus, it appears that upon receptor activation the AH 

domain moves away exposing the nucleotide binding pocket. Moreover, the single 
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particle EM studies of the β2AR-Gαs complex also revealed that the conformation of the 

AH domain undergoes from being stabilized on the Ras domain in the more inactive 

state, to becoming more flexible in a fully extended orientation in active state. In fact, the 

MOR-Gi complex also exhibits flexibility of the AH domain. It seems likely that the 

separation of the AH domain from Ras is correlated to release of nucleotide in all of the 

above mentioned studies.  

 

AH domain as a drug target 

G-proteins have a high degree of sequence similarities with the greatest conservation 

being  within the Ras, particularly the switch regions, and the least conservation within 

the AH domain (Dohlman and Jones, 2012). The EM studies of the MOR-Gi complex 

were able to reveal and confirm the previously suggested flexibility of the AH domain of 

Gαi. In addition, it has been demonstrated that the presence of the AH domain slows the 

nucleotide exchange within the α subunit (Markby et al., 1993). Interestingly, the crystal 

structure of a plant G-protein that is structurally similar to its mammalian counterparts, 

reveals a self-activating function attributed to the intrinsic disorder within the AH domain 

(Jones et al., 2011). Therefore, it is possible that the AH domain plays an important role 

in the activation of the G-protein, making it a potential drug target. 

The sequence variability within the AH domains makes them attractive pharmacological 

targets for finding small molecules that can bind to unique residues and potentially 

modulate signaling. In addition, finding potential downstream binding partners that 

uniquely interact with the AH domain of the Gα could also provide new modes of 

regulation of G-protein signaling. 

Thus, recent advances in structural biology provide new opportunities for developing 

novel therapeutics not limited only to the receptors. With the growing understanding the 

role of the AH domain on the activity of the G-proteins come new possibilities for 

influencing signal regulation. 
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4.3 Concluding remarks 

The investigation of the signaling complex between leptin and its receptor with electron 

microscopy has provided important insights in the activation mechanism not only for the 

leptin system but also for the rest of the class I cytokine members. The structural analysis 

from electron microscopy allowed for the visualization of the flexible regions on the 

leptin receptor, specifically at the CHR2 domain, which are stabilized upon ligand 

binding. In addition, the stoichiometry of the complex which was a matter of debate for a 

long time was also deduced. Most importantly, the electron microscopy allowed for the 

observation of transient states of the proteins, forming the signaling complex. Here, a 

technique such as x-ray crystallography could have provided only a snapshot of the 

mechanism. Yet, detailed and high resolution structural information between the ligand 

and receptor binding domain could provide very useful information for the development 

of novel therapeutics. Thus, further investigation with x-ray crystallography and/or high-

throughput screening for potential drugs is needed to gain more understanding on how 

the leptin signaling can be modulated. 

The electron microscopy studies of the MOR-Gi complex will not only aid in the 

crystallization efforts of the complex but also extend the previous observations of the 

flexible nature of the AH domain. A crystal structure of the MOR-Gi complex would 

undoubtedly provide a high resolution information about the AH domain interaction with 

the rest of the complex. However, further studies regarding the AH domain can also shed 

light into development of novel therapeutics. Small molecule and protein-protein 

interaction studies would be an invaluable addition to our further understanding of the 

mechanism of action of G-proteins. 
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Appendix A 

 

Structural Studies of Isobutyryl Co-A Mutase Fusion – A G-protein Chaperone 

*This project has been in collaboration with Ruma Banerjee’s Lab at University of 

Michigan.  

 

Isobutyryl-CoA mutase (ICM) is a radical enzyme that uses Coenzyme B12 to catalyze 

carbon skeleton rearrangements. It is a α2β2-heterotetramer that catalyzes the 

rearrangement of isobutyryl-CoA to n-butyryl-CoA. 

The Banerjee Lab has shown that ICM is fused to the P-loop GTP-ase in >70 bacteria and 

named this protein Isobutyryl Co-A Mutase Fusion (IcmF). Structural information about 

the domain organization and interdomain interaction in this newly discovered protein is 

lacking. I have been exploring these interactions using purified protein of the holo 

complex of IcmF using negative stain EM.  

I investigated different constructs of the complex, in the presence of different nucleotides 

and performed reference-free alignment on all samples (Figure A 1-6). 
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Figure A 1 Reference-free alignment of the holo ICMF complex. 
19,515 particle projections classified into 40 classes. 

 

Figure A 2 Reference-free alignment of Apo-IcmF – 4,688 particle projections split 
into 50 classes 
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Figure A 3 Reference-free alignment of IcmF_Apo_GDP_IcsobutyrylCoA – 3,226 
particle projections into 100 classes. 
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Figure A 4 Reference-free alignment of truncated IcmF, lacking the B12 binding 
domain – 14,588 particle projections into 100 classes. 

 

Figure A 5 Reference-free alignment of MeaI, a single domain of IcmF, possibly 
defining the interface between the two subunits. 
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Figure A 6 Gallery of different IcmF conformations 

During our analysis of the 2D class averages of the holo complex, we observed that while 

one half of the molecule remained consistently similar when compared between class 

averages, the other half varied dramatically. We wanted to further investigate this 

phenomenon and calculated a three dimensional reconstructions using the Random 

Conical Tilt approach. The three dimensional envelop closely resembles the 2D averages. 

However, due to the limited biochemical data, we could not explain the significance of 

the “movement” od one of the domains. 

In conclusion, due to the limited biochemical information, our EM results were 

inconclusive and we didn’t pursue further investigation. 
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Appendix B 

 

Vps13 

*This project has been in collaboration with Bob Fuller Lab at University of Michigan, 

Ann Arbor. 

 

Mutations in human orthologs of the yeast VPS13 result in hereditary disorders chorea 

acanthocytosis and Cohen syndrome. VPS 13 functions to transport proteins to the 

vacuole in yeast and also plays an important role in the formation of prospore membrane 

that eventually gives rise to spores. Because of the established role of yeast VPS13 in 

vacuolar transport, it has been inferred that the human phenotypes result from 

comparable defects in membrane transport. 

We carried out some initial EM negative stain analysis of VPS13 to gain more insights 

into its overall topology. We carried out the 2D classification with reference-free 

alignment and split the 7,639 particle projections into 50 classes (Figure B 1). 

The class averages revealed a highly elongated and flexible molecule. Some of the 2D 

averages revealed a distinct loop at one end and a characteristic hook at the other 

diametrically opposite end. However, because of the highly flexible nature of the 

particles and their subsequent alignment, these features were lost form most of the 

classes. We attempted to isolate only these averages that clearly displayed either the loop 

or the hook and reclassify the particles with a subsequent round of reference-free 

classification. As a result we split ~3,000 remaining particles into 15 classes and 

performed another round of averaging (Figure B 2). 
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Figure B 1 Reference-free alignment of VPS13 - ~7,600 particle projections 
classified into 50 classes. 

 

Figure B 2 Reference-free alignment of VPS13 - ~3,000 particle projections 
classified into 15 classes. 
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In addition, we generated three-dimensional reconstructions, using the Random Conical 

Tilt Approach from three classes that most clearly displayed both characteristic features 

(Figure B 3). 

 

 

Figure B 3 three-dimensional reconstructions from the respective 2D class averages, 
using Random conical tilt approach. 

 

In conclusion, these analysis require further and more thorough investigation. 

Additionally, optimizing sample preparation and staining is also of critical importance in 

order to aid in the negative stain analysis. 
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