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ABSTRACT

Statistical Methods for Bayesian Adaptive Early-Phase Clinical Trial Designs

by

Jin Zhang

Chair: Thomas M. Braun

This dissertation develops new methods for unaddressed issues in the design of Bayesian

adaptive Phase I and Phase I/II oncology clinical trials, which are trials that seek to

identify the optimal dose and/or schedule of a new cytotoxic agent in a small group

of patients either based on dose-limiting toxicity (DLT) alone or both toxicity and

efficacy.

Our first project focuses on methods to calibrate the prior variance assumed for

the parameter in the Continual Reassessment Method (CRM). We propose three sys-

tematic approaches to adaptively calibrate the prior variance continually throughout

the trial and compare those approaches to existing methods that calibrate the vari-

ance only at the beginning of a trial. Computer simulations show that our approaches

have the ability to perform better than the existing methods under various scenarios.

In our second project, we extend the traditional Phase I dose-schedule-finding de-

sign that only optimizes dose and schedule among patients by adaptively re-evaluating

and, if necessary, varying the intra-patient dose-schedule assignment as the study

proceeds. Our design is based on a Bayesian non-mixture cure rate model that in-

corporates multiple administrations each patient receives with the per-administration

xii



dose included as a covariate. Simulations indicate that our design identifies correct

dose and schedule combinations as well as the traditional method that does not allow

for intra-patient doses-schedule reassignments, but with a larger number of patients

assigned to those combinations. The method is illustrated by application to a bone

marrow transplantation trial for acute myelogenous leukemia (AML).

In our third project, we generalize our method in the second project by jointly

modeling toxicity and efficacy as time-to-event outcomes in a Phase I/II clinical trial.

We adopt a non-mixture cure rate model for the marginal distributions. A copula

is then assumed to obtain a bivariate time-to-event distribution. To ensure an eth-

ical trial, dose-schedule regimes are selected for successive patient cohorts based on

the proposed safety and efficacy acceptability criteria at each decision-making time.

Through simulations we show that the proposed design has a high probability of

making correct decisions and treats most patients at desirable treatment regimes.

xiii



CHAPTER I

Introduction

1.1 Background

Early-phase clinical trials are first-in-human studies for a new agent. This thesis

focuses on the development of novel statistical methods for Bayesian adaptive dose-

and/or schedule-finding designs in Phase I and Phase I/II oncology trials.

Anti-cancer drugs are naturally toxic in order to kill cancer cells or suppress their

growth. Thus, the study subjects in oncology trials are cancer patients, instead of

healthy volunteers that might be used in other therapeutic areas. In oncology trials,

especially for cytotoxic drugs, the general belief of oncologists is that the more toxic a

regimen (a single drug, combined drugs or a dose-schedule combination) is, the more

efficacious it will be. In addition, it is often reasonable to assume that the higher

the dose is, the more toxic the regimen should be. In a typical early-phase oncology

trial, the clinician suggests several doses and/or schedules regimes for investigation

and tries to identify the optimal regimen. Hence, the number of regimes under study

is actually finite rather than lying along continuum.

In Phase I oncology trials, the investigators are interested in determining a treat-

ment regimen that is not only safe but also likely to be efficacious in a small group of

patients, typically ranging from 15-40 patients. A reasonable approach is to specify a

target toxicity rate η that should be sufficiently low to indicate safety and sufficiently

1



high to indicate efficacy, where η usually falls in the interval [0.2, 0.4]. Toxicity here

does not include all types of adverse events but is a dose-limiting toxicity (DLT),

which, even though varying among trials , often includes Grade 3 or higher toxicity

according to the National Cancer Institute. The dose with dose-limiting toxicity rate

closest to η is usually defined as the maximum tolerated dose (MTD), although a

penalty could be imposed to select a lower dose for over-dose control and trial safety.

One of the main goals of Phase I clinical trials in oncology is to establish the MTD

that will be examined further in a Phase II trial for efficacy.

A limitation of a typical Phase I trial design is that efficacy is ignored and dose

finding is based on toxicity alone, although efficacy information is still collected.

Ignoring efficacy outcomes might result in an inefficient design that tends to target

a suboptimal regimen or requires a larger sample size. One obvious reason is that

the MTD might not be estimated in a reliable way in a Phase I trial due to the

small sample size. Second, for cytostatic agents, efficacy effect may not necessarily

increase with the dose. Therefore, it might be a better strategy to incorporate both

toxicity and efficacy in a seamless phase I/II design. Third, for trials that aim to

identify optimal dose combinations or dose-schedule combinations, there would be no

obvious ordering in terms of toxicity or efficacy for the combinations in the dose-dose

or dose-schedule matrix. It is very likely that two regimes could be very similar in

the DLT rate but differs substantially in response rates. Hence, it would be desirable

to consider both toxicity and efficacy for dose and/or schedule finding, necessitating

a seamless Phase I/II trial design. In general, the main goal of a Phase I/II clinical

trial is to identify a treatment regimen that is both safe and efficacious by imposing

some conditions on the toxicity and response rate when selecting the best regimen

for a new cohort of patients.

Since anti-cancer agents are quite toxic, a Phase I or Phase I/II trial should (1)

minimize the number of patients treated at sub-optimal regimes, including those

2



overly toxic regimes and those with unacceptably low toxicity rates or low response

rates; (2) stop a Phase I trial early if it is very likely that no acceptably safe regimen

and stop a Phase I/II trial early if there is sufficient evidence that no regimen under

investigation is both safe and efficacious. To meet the above ethical constraints,

patients are rarely randomized to all the investigational treatment regimes. Instead,

patients are enrolled in cohorts and the assignment for the next cohort is adaptively

determined based on the observed accumulating data from the enrolled patients. This

procedure will be repeated until the maximum number of patients is reached or the

trial is stopped early.

The focus of this thesis is on model-based methods and the optimal regimen will

be determined based on the proposed dose-toxicity and/or dose-response model. We

adopt a Bayesian approach because early-phase trials have relatively small sample

sizes and a Bayesian approach is useful for the decisions to make at each interim anal-

ysis. For example, the Bayesian Continual Reassessment Method (CRM) in Phase I

dose-finding trials assumes a single-parameter dose-toxicity model, updates the model

parameter whenever a new cohort is enrolled, and selects the current MTD, which

is defined to the one with estimated DLT rate close to the target η, to assign to the

next cohort (o’Quigley, Pepe, and Fisher 1990).

Due to the ethical constraints mentioned above, it would be ideal that we assign

most of our patients at or around the optimal treatment regimen. As a result, the trial

is typically severely unbalanced, which might cause problems in estimating the DLT

or response rates of those regimes that very few patients are assigned to. However,

since the main goal is to identify the optimal regimen instead of finding a good model,

minimizing the bias/variance of the model parameter estimate is not quite relevant.

Instead, we are more interested in the local model fit for the dose-toxicity/dose-

response curve around the optimal regimen. In light of the above design features

and the small sample size in an early phase trial, a parsimonious model is usually

3



preferred to a complex model. For example, the CRM assumes a single-parameter

model that has been shown to perform well in numerous simulation studies and a two-

parameter model does not improve the operating characteristics(Shu and O’Quigley

2008; Paoletti and Kramar 2009).

1.2 Motivation and Significance

We develop methods for three unaddressed issues in Bayesian adaptive Phase I

and Phase I/II trial designs. The details will be discussed in the ensuing chapters. In

Chapter II, we focus on methods to adaptively calibrate the prior variance assumed

for the parameter in the Phase I Bayesian CRM in order to improve its operating

characteristics. Due to the small sample size in a Phase I study, the CRM can be

sensitive to the amount of the prior variance. Although methods have emerged to

adaptively select skeletons and to calibrate the prior variance only at the beginning

of a trial, there has not been any approach developed to adaptively calibrate the prior

variance throughout a trial. We propose three systematic approaches to adaptively

calibrate the variance of the prior distribution during a trial in the CRM and compare

those approaches via simulation to existing methods that calibrate the variance only

at the beginning of a trial (Zhang, Braun, and Taylor 2012).

In Chapter III, we develop methods for dose-schedule-finding designs in which we

generalize the methods of Liu and Braun (2009) to simultaneously optimize the dose

and schedule assigned to each patient. A second limitation of existing model-based

adaptive Phase I designs is that they only determine the assignment for the next

patient or group of patients by using the most recent model estimates. What these

designs fail to do is to re-examine the assignments of patients who are still receiving

treatment and may benefit from a change to their assignment, such as a higher dose

at the next administration or increasing the number of planned administrations at

the current dose. It is important to introduce intra-patient dose and/or schedule

4



reassignment when necessary, especially for the patients enrolled early in a trial since

they are more likely to receive a suboptimal dose or schedule. Although the model of

Braun et al. (2007) could allow the possibility that the patients planned dose for each

administration to be changed, both the benefit of intra-patient dose change and how

to reassign intra-patient dose and/or schedules are areas that have not been studied.

The second contribution of our work is to adaptively optimize the dose and schedule

assignments both among patients and within patients.

In Chapter IV, we generalize the method of Phase I dose-schedule-finding in Chap-

ter III to allow for both toxicity and efficacy outcomes by modeling times to toxicity

and efficacy outcomes jointly. There are several challenges for designing such a trial.

First, the ordering information in terms of either toxicity or response rates is not

completely known for two dose-schedule regimes, which excludes the use of 3+3 and

other traditional escalation/de-escalation methods that rely on the ordering informa-

tion. Secondly, patient responses usually take a relatively long time to assess and

an efficient design should be able to incorporate incomplete follow-up for the out-

comes. However, most of current Phase I/II designs require complete follow-up for

each enrolled patience because they model binary outcomes instead of time-to-event

outcomes. As a result, the total duration of a trial might be overly long. Third,

the definition of the schedule can vary between studies. A typical schedule can be

either a nested schedule or a non-nested schedule. However, there has not been any

systematic approach to handle both of them. Lastly, intra-patient dose modification

is common in practice but most of current Phase I/II designs fail to accommodate

intra-patient dose variation. In order to address all the issues above, we adopt the

marginal survival functions using the non-mixture cure rate models that incorporate

the cumulative effect due to multiple administration with each per-administration

dose as a covariate. A copula is then assumed to obtain a bivariate time-to-event

distribution. To ensure an ethical trial, adaptive safety and efficacy acceptability
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conditions are imposed on the dose-schedule regimes.

In Chapter V, we present a brief summary of our proposed work, and discuss

future research areas that can be explored further based on our current work.
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CHAPTER II

Adaptive Prior Variance Calibration in the

Bayesian Continual Reassessment Method

2.1 Introduction

Phase I clinical trials are studies of human subjects aimed at estimating the

maximum-tolerated dose (MTD) with the sample size typically in the range of 20-40

subjects. The MTD is the dose at which the probability of having a dose-limiting

toxicity (DLT) is near a predefined target 0 < η < 1. Since the dose identified as

the MTD will be further investigated for efficacy in Phase II trials, it is important to

obtain an accurate estimate for the MTD. Due to the severity of most DLTs, patient

safety dictates that the study begins at low doses and escalates doses as patients are

accrued so that exposure of patients to doses above the MTD is minimized. However,

escalation of doses should also occur as quickly as possible as lower doses are also

expected to be ineffective for treating or preventing recurrence of cancer.

A vast amount of methodology exists for the design of Phase I trials. The 3 +

3 design is the standard algorithmic design using cohorts of three patients. While

algorithmic designs are simple to understand and implement, their resulting MTD

estimates have large bias and variance. Also, many subjects are likely to be treated

at doses below the MTD (Storer 1989; Rosenberger and Haines 2009).
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A preferred design would incorporate a parametric model for the association of

dose and probability of DLT. One popular model-based method is the Continual

Reassessment Method (CRM) which provides the MTD estimate from a fixed set

of dose levels using a one-parameter model for the dose-toxicity relationship. The

parameter estimate is updated every time a new subject or cohort completes its

follow-up either using Bayesian methods as proposed by O’Quigley, Pepe, and Fisher

(1990) or maximum likelihood methods as proposed by O’Quigley and Shen (1996).

In the Bayesian CRM, one must determine a priori DLT rates for each dose,

referred to as a skeleton, and the first subject is assigned to the dose whose skeleton

value is closest to η. Faries (1994), Korn et al. (1994) and Moller (1995) proposed

modifications to the original CRM to promote patient safety and slow dose escalation.

Specifically, the modified CRM suggests that the first patient be assigned to the lowest

dose, regardless of the skeleton, and that skipping of doses during dose escalation

should not be allowed. Numerous extensions to the CRM have been published since

the original CRM manuscript, including the time-to-event CRM (TITE-CRM) of

Cheung and Chappell (2000) to account for incomplete follow-up of patients and the

later generalization of Braun (2005) to adapt the TITE-CRM for early- and late-onset

DLTs. Yin and Yuan (2009) proposed the Bayesian Model Averaging CRM (BMA-

CRM) to allow for the incorporation of multiple skeletons, and Yuan and Yin (2011)

developed a hybrid design to combine rule-based methods and the CRM. Lee and

Cheung (2009; 2011) suggested a systematic but computationally intensive approach

to calibrate the skeleton through the use of indifference intervals.

The work of Lee and Cheung (2011) also proposed methods to determine the

value of the variance given to the prior distribution of the parameter in the dose-

toxicity model at the onset of the trial. In general Bayesian applications, a large, i.e.

vague, prior variance usually connotes a less-influential prior distribution, and Chevret

(1993) suggested using a vague prior variance with the Bayesian CRM, although the
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specific definition of vagueness is controversial. Lee and Cheung (2011) proposed

a least-informative prior variance, defined as that value of the prior variance that

results in all doses being a priori equally likely of being the MTD. The value of the

least-informative prior variance tends to be much smaller than what is traditionally

considered a vague prior variance.

It is also not appreciated that the level of vagueness of the prior variance is de-

pendent upon the values selected for the skeleton. The aggressive behavior of the

CRM in the case studies of Moller (1995) and Neuenschwander et al. (2008) can be

entirely explained by the dependence between the prior variance and the skeleton, so

that the prior variance used in each study was too small for the chosen skeleton. As

a specific example, O’Quigley et al. (1990) suggested using a standard exponential

distribution. Consider two skeletons for five dose levels: the original skeleton used by

O’Quigley et al. (1990) and a skeleton developed using the methods of Lee and Che-

ung (2011). Both skeletons specify the third dose as the MTD. The target probability

is 0.20, the true MTD is dose 6, the maximum number of enrolled patients is 25 and

the dose-response model is the hyperbolic model defined by O’Quigley et al. (1990).

From the results presented in Scenario 1 in Table 2.1, we see a notable difference in

the dose selected as the MTD under these two skeletons even though both use the

same prior distribution for the parameter. The prior distribution works well with

the second skeleton but may be too small for the first skeleton. If we increase the

prior variance by using a Gamma distribution with mean 1 and variance 4, the first

skeleton now gives results comparable to the second skeleton. Hence, the vagueness

of a prior variance heavily depends on the skeleton used.

For a specific skeleton used in a trial, the choice of the prior variance also depends

on the relative location of the true MTD and the MTD defined by the skeleton. If the

MTD specified by the skeleton is close to the true MTD, a small prior variance could

help find the correct MTD more efficiently. However, if the skeleton does not match
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Table 2.1: A simulation study comparing the impact of the prior variance and skeleton on the ability
to identify the MTD for the traditional CRM with a fixed prior variance. Numbers 1-6 in the first
row stand for doses 1 to 6. Other numbers in the table stand for the proportion of simulations that
select each dose as the MTD. Skeleton A denotes the original skeleton used by O’Quigley et al.:
{0.05, 0.10, 0.20, 0.30, 0.50,0.70} and Skeleton B denotes the skeleton used by Lee and Cheung:
{0.05, 0.11, 0.20, 0.31, 0.42, 0.53}. Numbers in bold indicate which dose is the MTD.

Scen Skeleton Prior 1 2 3 4 5 6

1 DLT rates: 0.00 0.00 0.03 0.05 0.11 0.22
A Exp(1) 0 0 0 6 65 29
B Exp(1) 0 0 0 4 36 60
A Gamma(1/4, 4) 0 0 0 3 36 61

2 DLT rates: 0.02 0.05 0.10 0.20 0.30 0.50
A Exp(1) 0 2 20 56 23 0
A Gamma(1/4, 4) 0 2 18 47 31 1

B Exp(1) 0 2 22 50 23 2
B Gamma(1/4, 4) 0 2 20 49 26 3

the truth well, then a larger prior variance is needed to help find the MTD. In Table

2.1, for the same Skeleton A, we find that a larger prior variance works better when

the true MTD is dose 6 and that a smaller prior variance works better when the true

MTD is dose 4. For both scenarios, the a priori MTD is dose 3. Again the vagueness

of a prior variance depends on the skeleton used. To achieve similar performance

with using Skeleton A and standard exponential distribution as the prior, one might

need to further reduce the prior variance used for Skeleton B. It seems that the CRM

using a constant prior variance could perform well in specific scenarios but might not

perform well in other scenarios, no matter which value is selected for the constant

prior variance.

The above motivating example indicates that the traditional methods to calibrate

the prior variance may not work well in many scenarios, since the traditional ap-

proaches try to find a prior variance based on the skeleton at the onset of a trial and

keep it constant during a trial but fail to take into account the relative location of the
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true MTD and a priori MTD for the specific scenario. However, the accumulating

data during a trial might provide us information regarding the relative distance be-

tween the truth and the skeleton. Hence, we consider the prior variance as a tuning

parameter that should be adaptively calibrated during the entire study to determine

whether or not the variance chosen at the beginning of the study should be modified.

We introduce three systematic approaches for adaptively calibrating the prior vari-

ance throughout a Phase I trial. In Section 2.2, we review the CRM and the work of

Lee and Cheung (2011). In Section 2.3, we present the details for our three variance

calibration approaches. In Section 2.4, we apply our methods to two hypothetical

settings and compare operating characteristics with current approaches. In Section

2.5, we conclude with some discussion.

2.2 Existing Methods

2.2.1 Continual Reassessment Method

Under the assumption that the probability of DLT increases monotonically with

dose, the CRM procedure updates the dose-response relationship throughout the trial

as new observations are available. Patients are assigned to the dose whose estimated

DLT rate is the closest to the target probability η, subject to possible restrictions.

Let J denote the number of doses examined and let N denote the number of subjects

enrolled by the end of the trial. For each dose j, j = 1, . . . , J , there is a skeleton value

pj, denoting the a priori DLT rate for dose j. The response yi of patient i is binary:

yi = 1, if there is DLT or yi = 0, if there is no DLT, i = 1, . . . , N . The CRM uses

a one-parameter model given by πi = ψ(xi; β), where β is some unknown parameter,

ψ is a monotonic function with the range [0, 1] and xi denotes the rescaled value of

the assigned dose for subject i. Here, we consider two commonly used models: (1) a

logistic model with intercept 3 given by ψ(xi; β) = 1/{1 + exp[−3 − exp(β)xi]} and

(2) a power model given by ψ(xi; β) = x
exp(β)
i . In both models, we place a normal

11



prior on β with mean zero and variance σ2.

The rescaling of doses attempts to mirror the investigators’ prior assumptions and

provides a good fit over the skeleton probabilities for the dose levels under the study

(O’Quigley et al. 1990). Specifically, xi can take one of the rescaled values x∗j that

are determined from the equations

pj =

∫
ψ(x∗j ; β)g(β)dβ j = 1, . . . , J,

where g(β) is the prior distribution for β. In practice, this computation is replaced

with the simplified formula

x∗j = ψ−1β=E(β)(pj). (2.1)

Let Yn = {y1, . . . , yn} denote the observed DLT responses for subjects 1, . . . , n, 1 ≤

n ≤ N , after subject n has completed follow-up for DLT. Then the likelihood function

for Yn is given by

L(Yn|β) =
n∏
i=1

{ψ(xi; β)}yi {1− ψ(xi; β)}1−yi

By Bayes’ theorem, the posterior mean of the DLT rate at dose dj given the observed

data is given by

π̃j = E(ψ(β;xi = x∗j)|Yn) =

∫
ψ(β;xi = x∗j)

L(Yn|β)g(β)∫
L(Yn|β)g(β)dβ

dβ.

In practice, the plug-in estimator, ψ(x∗j ; β̃) where β̃ = E(β|Yn), is commonly used

to simplify the calculation for π̃j. Based on the updated posterior DLT rates π̃j,

j = 1, . . . , J , the recommended dose for the next patient is chosen as the one with a

DLT rate closest to the target η. So the next subject is assigned to dose level j such
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that

j = arg min
j∈(1,...,J)

|π̃j − η|. (2.2)

The CRM usually does not allow dose skipping during dose escalation. The trial

either progresses until the total number of subjects N is reached or is terminated if a

certain stopping rule is satisfied. The MTD is determined at the end of the trial by

simply selecting dose j according to (2.2) based upon YN .

In order to address the ethical concern of overdosing subjects, many authors have

developed stopping rules for dose-finding studies that halt a study if all doses under

study are too toxic, including Korn et al. (1994), O’Quigley (1992), and O’Quigley

and Reiner (1998). In our simulations presented in Section 2.4, we used a variant of

the stopping rule proposed by Thall and Russell (1998), in which the trial is stopped

and no dose is selected as the MTD once the posterior probability that the DLT rate

of the lowest dose is higher than the target probability is larger than a pre-specified

value.

2.2.2 Least Informative Prior Variance of Lee and Cheung (2011)

We first briefly review the concept of indifference intervals proposed by Cheung

and Chapell (2002) in the context of the CRM. The parameter space of β can be

divided into J intervals: I1 = [bl, b1), Ij = (bj, bj+1) for j = 1, . . . , J − 2 and IJ =

(bJ−1, bu), where b1, . . . , bJ−1 are solved from

ψ(x∗j ; bj) + ψ(x∗j+1; bj) = 2η, for j = 1, . . . , J − 1.

It is obvious that the CRM would assign dose j to the next subject if and only if the

estimate β̃ falls in the interval Ij, j = 1, . . . , J . Although β ∈ (−∞,∞), finite values

for bl and bu are used in practice to avoid computational difficulty.

The least informative prior variance, denoted as σ2
LI , is the prior variance that

results in β being equally likely of belonging to any of the J intervals, i.e., all doses
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being a priori equally likely of being the MTD. These J probabilities can be regarded

as being from a discrete uniform distribution, although it is usually not possible to

make them exactly equal. Instead, Lee and Cheung (2011) defined σ2
LI as the prior

variance such that the variance of the J probabilities matches (J2−1)/12, the variance

of a discrete uniform distribution. Although σ2
LI is uninformative in terms of the prior

model-based MTD distribution, the value of σ2
LI is usually not large with respect to

what is usually considered to be an uninformative variance.

For example, in the setting where there are five dose levels, the skeleton is {0.05,

0.10, 0.20, 0.35, 0.50}, the target η is 0.20 and a logistic model with intercept 3

is used, the resulting five intervals of β in which doses 1 to 5 are the MTD are

I1 = (−∞,−0.23), I2 = (−0.23,−0.08), I3 = (−0.08, 0.10), I4 = (0.10, 0.29) and I5 =

(0.29,∞), respectively. The least informative prior variance σ2
LI is 0.322, which would

usually be regarded as an informative prior variance in general Bayesian applications.

2.3 Methods for Adaptive Variance Calibration

2.3.1 Defining a Large Prior Variance σ2
HI

When the MTD defined by the skeleton is not the first or last dose, a prior variance

larger than σ2
LI would result in a U-shaped distribution of the a prior model-based

MTD (Lee and Cheung 2011). As a result, dose 1 and J would be more likely to be

selected as the MTD. Hence, σ2
LI could perform poorly when the MTD is the lowest

or highest dose and the MTD defined by the skeleton lies elsewhere, at least when

no stopping rule is used. Therefore, we further define a larger prior variance, σ2
HI ,

as the prior variance that satisfies Pr(β ∈ I1 ∪ IJ) = 0.8, producing a U-shaped

distribution for the model-based MTD. Presumably, σ2
HI could perform well when

σ2
LI performs poorly. A value other than 0.80 can certainly be used to determine

the value of σ2
LI . However, values larger than 0.80 will place more mass in the tails

of the MTD distribution and may be too aggressive in situations when the MTD is
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not the highest dose. Conversely, values smaller than 0.80 will place less mass in the

tails of the MTD distribution and will lessen the ability to find the MTD when it

is the highest dose. We found that 0.80 was a good compromise between these two

situations.

2.3.2 CRM-VC1: Increasing the Prior Variance With the Sample Size

We denote CRM-VC1 as our first approach to adaptively calibrate the prior vari-

ance in the CRM. Since the sample size is small early in a trial, it may be appropriate

to use σ2
LI at the beginning of a trial so that each dose is a priori equally likely to be

selected as the MTD. However, it would not be desirable for the prior to dominate the

data (Iasonos and OQuigley 2011), especially when the MTD is the lowest or highest

dose. Hence, a sufficiently large prior may be preferred later in a trial. One natural

approach is to start the prior variance at σ2
LI and increase it to σ2

HI at a rate based

upon n, the number of currently enrolled patients. We have selected five different

functions explaining how the prior variance increases with n so that different rates of

change could be captured:

1. σ2
n = σ2

LI + (σ2
HI − σ2

LI)(n− 1)4/(N − 1)4

2. σ2
n = σ2

LI + (σ2
HI − σ2

LI)(n− 1)2/(N − 1)2

3. σ2
n = σ2

LI + (σ2
HI − σ2

LI)(n− 1)/(N − 1)

4. σ2
n = σ2

LI + (σ2
HI − σ2

LI) log(2n− 1)/ log(2N − 1)

5. σ2
n = σ2

LI + 2N(σ2
HI − σ2

LI)(n− 1)/(N2 − 1)− (σ2
HI − σ2

LI)(n− 1)2/(N2 − 1).

Figure 2.1 displays the five different patterns when N = 30, σLI = 0.33 and σHI =

1.08, a setting we will further explore in our simulations. These five functions repre-

sent typical variance-sample size relationships: (a) the prior variance increases slowly

at first and then quickly reaches σ2
HI ; (b) the prior variance increases with n with a
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Figure 2.1: CRM-VC1: the prior variance increases with the sample size in five different patterns.

constant rate, and (c) the prior variance increases quickly at first and slowly reaches

σ2
HI .

2.3.3 CRM-VC2: A Hypothesis Testing Approach

If we start with a certain prior variance in the CRM, it would be ideal if the accu-

mulating data could help determine whether the current prior variance should change.

If the skeleton specifies the correct MTD, the prior variance should be small and the

prior information is incorporated to enhance estimation of the MTD. Otherwise, it

is preferable to change the prior variance if the data indicate that the skeleton has

misidentified the MTD. This is the motivation for CRM-VC2.

A trial based on CRM-VC2 starts with the prior variance σ2
LI . When the data

favors the hypothesis that the MTD is the highest dose but the MTD defined by the

skeleton lies elsewhere, CRM-VC2 increases the prior variance to σ2
HI , since a large

prior variance would increase the probability of selecting the tail dose levels due to

the U-shaped distribution. We do not increase the prior variance if the MTD is dose

1, since the use of a stopping rule makes it unnecessary. However, when the MTD

defined by the skeleton coincides with the highest dose, the prior variance determined

by CRM-VC2 would remain at σ2
LI since increasing the prior variance is no longer

helpful when the prior information is correct.

The decision to switch from σ2
LI to σ2

HI involves a hypothesis testing approach,
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similar to what Yuan and Yin (2011) proposed for their hybrid design. We propose

three hypotheses: H1 : β ∈ I1, H2 : β ∈ I2 ∪ I3 . . . ∪ IJ−1 and H3 : β ∈ IJ . We also

propose two reasonable bounds bl and bu for β to avoid technical difficulties, that is,

β ∈ [bl, bu] rather than (−∞,∞). Specifically, bl satisfies ψ(x1, bl) = η + 0.05 and

bu satisfies ψ(xJ , bu) = η − 0.05. Although it is guaranteed that bl is smaller than

bu for our model parameterization, such a result may not hold true for all models,

in which case one would switch bl with bu. Via simulation, we also examined using

bounds defined by η ± 0.025 and η ± 0.10 and found little change in the operating

characteristics when using η ± 0.05 (results not shown). Actually, when the true β

falls outside [bl, bu], the true DLT rates for all the J doses would be far away from

the target η, implying that the doses examined would be either too toxic or overly

safe. A trial would hence either be terminated by a stopping rule or quickly find the

highest dose as the MTD.

To be objective, we assign a uniform prior distribution under each hypothesis:

β|H1 ∼ Unif[bl, b1), β|H2 ∼ Unif[b1, bJ) and β|H3 ∼ Unif[bJ , bu]. The marginal

distribution of Yn under H1 is then given by

p(Yn|H1) =

b1∫
bl

n∏
i=1

{ψ(xi; β)}yi {1− ψ(xi; β)}1−yi 1

b1 − bl
dβ.

Similarly, we can compute p(Yn|H2) and p(Yn|H3). The posterior probability of Hk,

k = 1, 2, 3, is given by

p(Hk|Yn) =
p(Hk)p(Yn|Hk)

p(H1)p(Yn|H1) + p(H2)p(Yn|H2) + p(H3)p(Yn|H3)
.

If we let BFhk = p(Yn|Hh)/P (Yn|Hk), h = 1, 2, 3, denote the Bayes factor for com-
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paring Hh and Hk, then

p(Hk|Yn) =
p(Hk)

p(H1)BF1k + P (H2)BF2k + P (H3)BF3k

.

We specify p(H1) = P (H2) = P (H3) = 1/3 and use Jeffreys’ rule that log10(BFkk′) >

1/2 indicates substantial evidence in favor of Hk against Hk′ (Jeffreys, 1961). This

rule translates to the criterion that if p(H3|Yn) > 0.61, then there is substantial

evidence that β ∈ IJ . Once such evidence exists, the prior variance would increase to

σ2
HI ; otherwise, the prior variance stays at σ2

LI .

2.3.4 CRM-VC3: Adaptively Changing Skeletons

Instead of changing the prior variance during a trial to make the MTD more likely

to be selected, CRM-VC3, our third approach to calibrate the prior variance, is to

modify the skeleton adaptively but keep the prior variance constant. Consequently,

the intervals I1, . . . , IJ would also change, because the intervals I1, . . . , IJ only depend

on the skeleton and the model used. If we can properly adjust these intervals, more

mass of the prior distribution could be placed over the interval that results in selecting

the correct MTD.

For CRM-VC3, a trial starts with the prior variance σ2
LI and once the new esti-

mates for πj, are obtained, the dose values would be rescaled again and used as the

new dose values. Let β̃n denote the posterior mean of β after n subjects have finished

follow-up for DLT and let x∗j,0 = x∗j . The updated skeleton pnj is set equal to the

current DLT probabilities based on β̃(n), i.e.,

pnj = ψ(x∗j,(n−1); β̃(n)), (2.3)

and, similar to (2.1), the updated rescaled dose value for dose j is,

x∗j,n = ψ−1β=E(β)(p
n
j ). (2.4)
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Skeletons and rescaled dose values are updated according to (2.3) and (2.4) during

a trial. All other facets of the design, including the model and prior distribution,

remain the same. The resulting intervals I1 . . . IJ would change adaptively with the

updating of β̃. Consider the setting where there are five dose levels, the skeleton

is {0.05, 0.10, 0.20, 0.35, 0.50}, the target η is 0.20 and the model used is a logistic

model with intercept 3. Figure 2.2 shows that we could assign more mass to tail

areas adaptively if β̃ falls in I1 or IJ . After the first subject is observed, if β̃ = 0,

the new skeleton will be the same with the original skeleton, indicating the prior

information is close to the truth. As a result, the J intervals and the resulting areas

under the prior density curve for the J intervals do not change since we are using σ2
LI

as the prior variance; see Figure 2.2 (a). This is reasonable because the data suggests

that the MTD does not lie in the tail. If β̃ = log(3/2), suggesting the MTD is dose 5.

The prior density will place more mass in I5 after rescaling the dose values with the

area under I5 = 0.64; see Figure 2.2 (b). If β̃ = log(2/3), suggesting the MTD is dose

1, the prior density places more mass on I1 after rescaling the dose values with the

area under I1 = 0.70; see Figure 2.2 (c). As more subjects enter the study, β̃ becomes

more accurate and the resulting updated skeleton is driven by the data, avoiding the

effect that a misspecified skeleton would have in the conventional CRM. One may

be concerned that the updated skeleton values may be unstable early in the study

when little data exists and restrict the use of CRM-VC3 after a minimum sample size

has been accrued. However, restricting any skipping of doses during escalation will

alleviate any possible instability. Furthermore, we examined the mean dose assigned

to the first ten subjects in the settings presented in Section 2.4 (results not shown)

and found that using CRM-VC3 was no more or less stable than the other methods.
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Figure 2.2: Areas under the Normal prior density curve of β with mean zero and variance σ2
LI = 0.322

for intervals I1 to I5: S1 to S5. They are also the prior probabilities for selecting each of the five
doses as the MTD. Rescaling the doses sequentially could change the area under the curve for each
interval. The four vertical lines stand for the boundaries for the five intervals.

2.4 Simulation Results

2.4.1 Rules Used in Simulation

We use a cohort size of one subject in our study. Like most dose-finding studies,

we restrict dose escalation to be no more than one dose above the assignment of

the most recent subject. However, we do not impose any restriction on dose de-

escalation. Also, the first subject is always assigned to the lowest dose. However, in

the simulations of the hypothetical trial of Lee and Cheung (2011), the third dose is

assigned to the first subject in order to make our results comparable to theirs.

The prior variance (CRM-VC1 and CRM-VC2) or skeleton (CRM-VC3) will be

updated after a new subject finishes follow-up for DLT. For patient safety, we will

stop the trial if at least two out of the first three patients experience DLT, or, if

Pr(π1 > η|Yn) > 0.9 after four or more patients have been enrolled. In order

to reduce the sensitivity to the prior variance and instability due to small sample

size, our stopping rule mimics the 3+3 method for the first three subjects and then
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switches to use of the posterior probability that the DLT rate for the lowest dose is

above the target. The threshold of 0.9 was found to work well in simulations but could

be adjusted depending upon how great the need for early stopping is. We performed

2, 000 simulations in each scenario; all simulations were done in the statistical package

R (R Development Core Team 2008), the code for which is available upon request.

2.4.2 A Hypothetical Trial

In our hypothetical clinical trial of N = 30 subjects with five dose levels and

the target DLT rate η = 0.20, we used the logistic model with intercept 3. The

prior distribution for β was normal with mean 0 and variance σ2
n. We considered

two commonly used skeletons that specify the a priori MTDs to be the middle dose

and the highest dose. Specifically, Skeleton 1 is {0.05, 0.10, 0.20, 0.35, 0.5} (σLI =

0.32; σHI = 1.04) and Skeleton 2 is {0.01, 0.04, 0.07, 0.11, 0.20} (σLI = 0.35; σHI =

0.68). We examined the performances of CRM-VC1, CRM-VC2 and CRM-VC3 in five

different scenarios under both Skeleton 1 and 2 based on the percentage of simulations

selected as the MTD and the average number of patients assigned to each dose. The

true MTDs are doses 1 to 5 for the scenarios 1 to 5, respectively. We also performed

the traditional CRM using the fixed prior variances σ2
LI and σ2

HI in the same five

scenarios for comparison.

The performances under each scenario are summarized in the final eleven columns

of Table 2.2 and Table 2.3 for Skeleton 1 and 2, respectively. The first five of the

eleven columns display the percentage of simulations in which each dose was identified

as the MTD at the end of the study, and the last five columns display the average

number of patients assigned to each dose. For each scenario, we list the true toxicity

probabilities in the first row, the results for the CRM using the fixed prior variance

σ2
LI and σ2

HI in rows 2-3, the results obtained by CRM-VC1 using functions (1) and

(2) in Section 3.2 in rows 4-5, the results obtained by CRM-VC2 in row 6 and the

results obtained by CRM-VC3 in row 7. We do not present the results for CRM-VC1
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using functions (3) to (5) as they did no better or worse than functions (1) and (2).

We note that in general, we have found that all five functions perform similarly in

terms of finding the correct MTD, indicating that there is no real need to choose

among them in application.

In Table 2.2, we note that the traditional CRM is sensitive to the value of the

prior variance. Using the prior variance σ2
LI , a similar approach with Method A1

in Lee and Cheng (2011), performs better than using σ2
HI in Scenarios 2, 3 and 4,

where the true MTD is close to the MTD defined by the skeleton. But using σ2
LI

performs poorly relative to σ2
HI in Scenario 5 where the true MTD is the highest dose

but the MTD defined by the skeleton is dose 3. Overall, the CRM using σ2
HI is more

robust than using σ2
LI in finding the MTD except when the true MTD is at or close to

the skeleton MTD. We also see that using a large prior variance could produce more

unnecessary early stopping. For example, in Scenario 1, using σ2
HI results in 44%

early stopping compared with 36% when using σ2
LI . This is why the prior variance

does not increase to σ2
HI in CRM-VC2 when there is evidence that the true MTD is

dose 1.

CRM-VC1 gives comparable results with the traditional CRM using σ2
LI when

the true MTD is similar to that specified by the skeleton, but performs much better

when the true MTD is the highest dose. Compared with the traditional CRM using

the prior variance σ2
HI , CRM-VC1 performs slightly better in Scenario 1, 2 and 3 and

has comparable performance in scenarios 4 and 5. CRM-VC2 performs consistently

well overall, even though it performs slightly worse than other competing methods

in Scenario 4. CRM-VC2 performs as well as the CRM using the prior variance σ2
LI

in Scenario 1, 2 and 3, but CRM-VC2 performs much better in Scenario 5 where the

true MTD is dose 5. Compared with the traditional CRM using σ2
HI , CRM-VC2 also

demonstrates a better ability in identifying the MTD: 61% versus 56% in Scenario 2

and 65% versus 59% in Scenario 3. CRM-VC3 performs similarly with the traditional
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CRM using the prior variance σ2
HI .

We also see that the design giving a higher probability of selecting the MTD also

assigns more patients to the correct dose. Hence, similar results are obtained if we

compare mean dose assignments among the methods examined. Overall, CRM-VC2

performs best among all the methods examined across the five scenarios. It is also

common in practice that the MTD determined by the skeleton is the highest dose.

Skeleton 2 is one such skeleton. When using Skeleton 2 while keeping other facets

of the design unchanged, we notice that the results presented in Table 2.3 are quite

similar among the five scenarios for most of the methods examined. However, CRM-

VC2 and the traditional CRM using prior variance σ2
LI slightly outperform other

methods across the five scenarios.

2.4.3 A Hypothetical Trial in Lee and Cheung (2011)

In this setting, there are N = 25 subjects, six dose levels and the target DLT

rate is η = 0.20. The first patient is assigned to dose 3 and the model used is the

power model. In order to make our results comparable to those of Lee and Cheung, we

used the skeleton {0.05, 0.11, 0.20, 0.31, 0.42, 0.53} (σLI = 0.68; σHI = 2.45) used with

Method A1 of Lee and Cheung, which we denote as LC-A1. Table 2.4 contains results

obtained from the traditional CRM, LC-A1, CRM-VC1, CRM-VC2 and CRM-VC3

in the similar scenarios examined by Lee and Cheung. Note that LC-A1 is equivalent

to the traditional CRM using the prior variance σLI in this example because the

skeleton is the same for both methods.

In Scenario 1, all the methods work similarly. The traditional CRM using prior

variance σ2
HI results in more trials being terminated than using σ2

LI . In Scenarios 2 and

3, LC-A1, CRM-VC2 and the traditional CRM using σ2
LI perform slightly better than

other approaches; all three approaches correctly identify the MTD in approximately

55% of simulations in contrast to 49-53% for the other approaches. However, LC-A1

and the traditional CRM using σ2
LI perform poorly relative to CRM-VC2 in Scenario
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Table 2.2: Simulation study comparing the CRM-VC1, CRM-VC2 and CRM-VC3 with the tradi-
tional CRM under Skeleton 1: {0.05, 0.10, 0.20, 0.35, 0.5}. “None” denotes the proportion of trials
that stop early. Numbers 1-5 in the first row stand for dose 1 to 5. Numbers in bold indicate which
dose is the MTD.

Percentage of simulations Mean number of
selected as MTD subjects assigned

Scen None 1 2 3 4 5 1 2 3 4 5

1 Pr(DLT) 0.20 0.30 0.35 0.45 0.50
CRM σ2

LI 17 44 29 9 1 0 11 9 5 1 0
σ2
HI 32 36 23 8 1 0 11 6 3 1 1

CRM-VC1 1 23 47 21 7 1 0 12 8 4 2 0
2 26 43 24 9 1 0 11 9 5 1 0

CRM-VC2 18 44 28 9 1 0 10 8 6 2 0
CRM-VC3 34 36 20 8 1 0 10 6 4 1 1

2 Pr(DLT) 0.10 0.20 0.35 0.45 0.50
CRM σ2

LI 4 15 62 16 1 0 6 14 7 2 0
σ2
HI 6 18 56 19 2 0 8 12 6 2 1

CRM-VC1 1 4 22 57 22 2 0 7 13 7 2 0
2 4 20 56 19 1 0 7 13 7 2 0

CRM-VC2 4 15 61 19 1 0 6 14 7 2 0
CRM-VC3 9 18 55 17 2 0 8 12 6 2 1

3 Pr(DLT) 0.05 0.10 0.20 0.35 0.45
CRM σ2

LI 0 1 19 66 13 0 2 7 15 5 0
σ2
HI 2 1 19 59 18 1 3 7 12 6 2

CRM-VC1 1 0 1 23 61 14 1 2 7 14 6 1
2 2 1 19 60 18 1 2 7 13 6 1

CRM-VC2 0 1 20 65 14 1 2 7 15 5 1
CRM-VC3 2 1 20 61 15 1 3 7 12 6 2

4 Pr(DLT) 0.02 0.05 0.10 0.20 0.35
CRM σ2

LI 0 0 1 28 61 10 1 2 10 14 3
σ2
HI 0 0 1 23 60 16 2 3 7 12 7

CRM-VC1 1 0 1 1 25 58 16 1 2 9 14 4
2 0 0 1 21 61 16 1 2 8 13 5

CRM-VC2 0 0 1 27 56 16 1 2 9 12 5
CRM-VC3 0 0 1 23 60 15 2 3 7 12 7

5 Pr(DLT) 0.01 0.04 0.07 0.11 0.20
CRM σ2

LI 0 0 0 7 37 56 1 2 5 12 11
σ2
HI 0 0 0 4 27 69 1 2 3 7 16

CRM-VC1 1 0 0 0 6 28 66 1 2 4 11 12
2 0 0 0 4 27 68 1 2 4 9 14

CRM-VC2 0 0 0 6 26 68 1 2 4 8 14
CRM-VC3 0 0 0 5 25 70 1 2 3 7 17
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Table 2.3: Simulation study comparing the CRM-VC1, CRM-VC2 and CRM-VC3 with the tradi-
tional CRM under Skeleton 2: {0.01, 0.04, 0.07, 0.11, 0.20}. “None” denotes the proportion of trials
that stop early. Numbers 1-5 in the first row stand for dose 1 to 5. Numbers in bold indicate which
dose is the MTD.

Percentage of simulations Mean number of
selected as MTD subjects assigned

Scen None 1 2 3 4 5 1 2 3 4 5

1 Pr(DLT) 0.20 0.30 0.35 0.45 0.50
CRM σ2

LI 18 41 30 8 1 0 9 9 4 2 1
σ2
HI 26 44 24 5 1 0 13 7 3 2 1

CRM-VC1 1 21 46 26 6 1 0 10 8 4 2 1
2 22 45 26 8 2 0 10 9 4 2 1

CRM-VC2 18 41 30 8 1 0 9 9 4 2 1
CRM-VC3 31 43 20 5 1 0 12 6 3 1 1

2 Pr(DLT) 0.10 0.20 0.35 0.45 0.50
CRM σ2

LI 6 16 60 17 2 0 5 13 7 3 1
σ2
HI 5 20 57 14 2 0 8 12 5 2 1

CRM-VC1 1 6 20 57 16 2 0 5 13 6 3 1
2 6 16 57 17 3 1 6 13 6 3 1

CRM-VC2 6 16 60 17 2 0 5 13 7 3 1
CRM-VC3 9 21 55 14 2 0 9 11 5 2 1

3 Pr(DLT) 0.05 0.10 0.20 0.35 0.45
CRM σ2

LI 1 1 22 54 21 2 2 7 11 7 3
σ2
HI 1 2 25 49 22 2 3 8 10 6 3

CRM-VC1 1 1 1 29 49 20 2 2 8 11 7 3
2 2 1 26 49 20 2 2 8 11 7 3

CRM-VC2 1 1 22 54 21 2 2 7 11 7 3
CRM-VC3 2 2 29 50 17 1 3 8 10 6 3

4 Pr(DLT) 0.02 0.05 0.10 0.20 0.35
CRM σ2

LI 0 0 3 22 58 18 1 2 6 12 8
σ2
HI 0 0 2 21 55 22 2 3 6 11 9

CRM-VC1 1 0 0 3 22 58 18 1 2 6 12 8
2 0 0 2 23 54 21 1 2 6 12 9

CRM-VC2 1 0 3 22 58 18 1 2 6 12 8
CRM-VC3 0 0 3 24 55 18 2 3 7 11 8

5 Pr(DLT) 0.01 0.04 0.07 0.11 0.20
CRM σ2

LI 0 0 0 2 23 75 1 1 2 7 19
σ2
HI 0 0 0 2 23 75 1 2 2 6 18

CRM-VC1 1 0 0 0 3 23 73 1 1 2 7 18
2 0 0 0 2 22 75 1 1 2 6 19

CRM-VC2 0 0 0 2 23 75 1 1 2 7 19
CRM-VC3 0 0 1 4 23 73 1 2 3 6 18
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5 where the MTD is the highest dose.

As seen earlier, the traditional CRM using σ2
HI does not perform as well as σ2

LI in

Scenarios 2 and 3 where the true MTD is close to the MTD defined by the skeleton,

even though the difference is not large. CRM-VC1 and CRM-VC2 performs as well

as or better than LC-A1 in Scenarios 2,3 and 4 but performs better than LC-A1 in

Scenario 5. CRM-VC3 performs similarly with the traditional CRM using σ2
HI . We

also see that the design giving a higher probability of selecting the MTD also assigns

more patients to the correct dose. Hence, similar results are obtained if we compare

mean dose assignments among the methods examined. Overall, in this setting, CRM-

VC2 and CRM-VC3 seem to perform best among all the methods examined in terms

of the ability of identifying the MTD across the five scenarios.

2.5 Discussion

In the present project, we relax the assumption of a fixed prior variance in the

traditional CRM and propose three systematic approaches to adaptively calibrate the

prior variance continually throughout the trial. Our approaches have the ability to

perform better than the traditional CRM using a constant prior variance as well as

methods that calibrate the prior variance only at the beginning of the trial.

Although Lee and Cheung (2011) suggested using σ2
LI after first calibrating the

skeleton at the beginning of the trial, this approach does not perform well when the

true MTD is far away from the MTD defined by the skeleton. Although Lee and

Cheung proposed an alternate, computationally intensive design, which we refer to

as LC-A2, we found that LC-A2 generally offers no improvement to the results of

LC-A1. Our approaches, however, are able to improve upon the results of LC-A1 in

scenarios where the MTD is the highest dose without sacrificing the performance much

in other scenarios, and are less computationally expensive than LC-A2. However, as

seen in our simulation results, our methods might be more aggressive than the CRM
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Table 2.4: Simulation study comparing the CRM-VC1, CRM-VC2 and CRM-VC3 with the method
LC-A1 and the traditional CRM in scenarios examined by Lee and Cheung. The column “None”
denotes the proportion of trials that stop early. The numbers 1-6 in the first row denote dose 1 to
6. Numbers in bold indicate which dose is the MTD.

Percentage of simulations Mean number of
selected as MTD subjects assigned

Scen None 1 2 3 4 5 6 1 2 3 4 5 6

1 Pr(DLT) 0.20 0.35 0.50 0.61 0.76 0.87
CRM σ2

LI 37 44 18 1 0 0 0 8 6 3 1 0 0
σ2
HI 43 43 14 1 0 0 0 11 4 4 2 1 0

LC-A1 37 44 18 1 0 0 0 8 6 3 1 0 0
CRM-VC1 1 44 43 13 1 0 0 0 8 5 3 1 0 0

2 45 42 14 0 0 0 0 8 5 3 1 0 0
CRM-VC2 39 44 16 1 0 0 0 8 6 3 0 0 0
CRM-VC3 41 44 14 1 0 0 0 10 4 3 1 0 0

2 Pr(DLT) 0.05 0.10 0.20 0.30 0.50 0.70
CRM σ2

LI 5 1 21 51 22 1 0 1 5 11 6 1 0
σ2
HI 4 3 22 49 22 1 0 3 5 9 5 2 1

LC-A1 5 1 21 51 22 1 0 1 5 11 6 1 0
CRM-VC1 1 4 2 22 47 22 2 0 1 5 11 6 1 0

2 5 1 22 48 22 2 0 1 6 10 6 1 0
CRM-VC2 4 1 20 52 21 2 0 1 5 11 5 1 0
CRM-VC3 4 2 22 48 22 1 0 2 5 10 5 2 1

3 Pr(DLT) 0.06 0.08 0.12 0.18 0.40 0.71
CRM σ2

LI 3 0 4 27 55 11 0 0 2 8 10 3 0
σ2
HI 2 1 7 27 49 14 0 2 2 7 9 4 1

LC-A1 3 0 4 27 55 11 0 0 2 8 10 3 0
CRM-VC1 1 3 1 5 23 53 16 0 0 2 8 10 3 0

2 3 0 5 25 52 15 0 1 2 8 10 4 0
CRM-VC2 3 0 5 27 54 12 0 0 2 9 10 3 1
CRM-VC3 2 1 6 26 52 14 0 1 2 8 9 4 1

4 Pr(DLT) 0.05 0.06 0.08 0.11 0.19 0.34
CRM σ2

LI 1 0 1 8 33 46 11 0 1 5 8 8 3
σ2
HI 1 0 2 6 23 47 20 1 1 3 6 8 6

LC-A1 1 0 1 8 33 46 11 0 1 5 8 8 3
CRM-VC1 1 2 0 1 7 23 45 22 0 1 5 7 8 4

2 1 0 1 7 25 45 20 0 1 5 7 8 5
CRM-VC2 2 0 1 8 26 43 21 0 1 5 7 6 5
CRM-VC3 1 0 2 7 23 46 21 1 1 4 5 7 6

5 Pr(DLT) 0 0 0.03 0.05 0.11 0.22
CRM σ2

LI 0 0 0 0 7 43 50 0 0 3 5 9 8
σ2
HI 0 0 0 0 4 30 65 0 0 2 3 7 13

LC-A1 0 0 0 0 7 43 50 0 0 3 5 9 8
CRM-VC1 1 0 0 0 0 4 29 66 0 0 3 4 8 10

2 0 0 0 0 4 31 64 0 0 3 4 7 11
CRM-VC2 0 0 0 0 6 29 65 0 0 3 5 6 12
CRM-VC3 0 0 0 0 4 28 68 0 0 3 3 6 13
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using σ2
LI in certain scenarios. Nonetheless, the CRM-VC2 and CRM-VC3 can be

modified to be less conservative by simply changing some of the thresholds used in

those methods. For example, we could increase the threshold of 0.61 for the posterior

probability of H3 in CRM-VC2 to a larger value, in which case the performance would

be similar to that of Lee and Cheung. However, we note that there is no one value

for the threshold that will work best in all scenarios and we feel our threshold is a

good choice in most scenarios.

One reviewer questioned whether or not our designs are coherent in the sense that

dose escalation is possible when the most recent patient experiences a DLT (Cheung

2005). In the scenarios of Section 2.4.3, escalation after a DLT never occurred, and

in the scenarios of Section 2.4.2, the dose escalation never occurred after an observed

DLT in more than 3% of simulations. Thus, although there is no guarantee of coher-

ence of our designs in all settings, any deviation from coherence is quite small and

patient safety is not compromised.

Our approaches could be extended to accommodate a wider range of applications.

CRM-VC1 could be easily applied to more complex studies, including finding the

most successful dose or the most tolerated schedule , once we determine σ2
LI and σ2

HI .

CRM-VC2 and CRM-VC3 rely on the skeleton and hence could be naturally extended

to a study where a skeleton is specified and the dose values are rescaled, for example

modeling the toxicity in the study of finding the MSD. For a model with more than

two parameters, CRM-VC2 and CRM-VC3 are still applicable even though it may be

hard to find the indifference regions in high-dimensional parameter space.
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CHAPTER III

A Phase I Bayesian Adaptive Design to

Simultaneously Optimize Dose and Schedule

Assignments Both Between and Within Patients

3.1 Introduction

Traditional Phase I trials assign a dose of a therapeutic agent to each subject

and the subject receives that dose in a single administration. However, if the agent

is safe at that dose, reason suggests that the patient should be given additional

administrations of the agent at the same, or perhaps different, doses in hopes of

maximizing any efficacy the agent may have with regard to treating or preventing

disease.

Such was the motivation of the Phase I trial described by de Lima, et al. (2010).

Chemotherapy is often the first treatment given to patients with acute myelogenous

leukemia (AML) or advanced myelodysplastic syndrome (MDS). If chemotherapy fails

to force remission of a patient’s cancer, the next course of treatment is an allogeneic

hematopoietic stem cell transplant (HSCT). Although short-term complete remission

(CR) of cancer frequently occurs after HSCT, long-term cancer recurrence is still

quite prevalent in HSCT recipients. Therefore, researchers hope to find interventions

that can be given not only in proximity to HSCT, in order to promote a short-
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term CR, but also repeatedly after HSCT in order to maintain a CR for a longer

period of time. One such intervention is azacitidine; however, the safety profile for

multiple administrations of different doses of azacitidine in AML and MDS patients

was unknown, thereby necessitating the design of the Phase I trial to address this

question.

At the time that the azacitidine trial was being considered, there were no published

designs for simultaneous dose- and schedule-finding in Phase I trials. Although Braun,

Zheng, and Thall (2004) proposed a design in which the time to toxicity was modeled

using a triangular hazard model for each administration, their model assumed a single

dose was under study. Liu and Braun (2009) later developed a more flexible model for

the cumulative hazard of a dose-limiting toxicity (DLT) by introducing a non-mixture

cure rate model and a smooth hazard function. However, their methods also assumed

a single dose was being considered.

To meet the needs of the azacitadine trial, Braun et al. (2007) developed the first

design for dose- and schedule-finding by generalizing the work of Braun et al. (2004)

to incorporate different triangular hazard functions for each dose. However, as noted

by Liu and Braun (2009), the method of Braun et al. (2004) can be inflexible mainly

due to its computational difficulty, the finite support of the triangular hazard function

and the difficulties with including patient-level or administration-level covariates.

The azacitidine Phase I trial was designed to identify which combination of three

doses and four administration schedules was the maximum tolerated combination

(MTC) of dose and schedule, defined as the combination estimated to have the prob-

ability of a DLT within 116 days of starting treatment closest to 0.30. In the design,

each patient was adaptively assigned to whichever dose and schedule combination

was believed to be the MTC, based upon the data collected on previously enrolled

patients. One important characteristic of this trial was that once enrolled, a patient’s

dose and/or schedule was to remain unchanged, except for reductions in dose and/or

30



number of administrations due to complications unrelated to azacitidine such as infec-

tion. In the actual trial, three patients received reduction in their assigned dose, and

about half of the patients had reductions to their planned number of administrations.

However, one could also envision patients who were assigned to combinations that

during the trial are determined to have DLT rates well below that of the MTC. Pa-

tients assigned to such combinations who have not completed all their administrations

might benefit from increases to the dose and/or number of administrations they re-

ceive. Such changes are not necessarily expected to increase correct identification of

the MTC at the end of the study, but should increase the number of subjects during

the trial who are assigned to combinations near the MTC. Although the model of

Braun et al. (2007) could allow the possibility that the patient’s planned dose for

each administration to be changed, the benefit of patient reassignments, as well as

how and when appropriate reassignments of doses and/or schedules are determined,

are areas that have not been studied.

These issues are the motivation of our current work. First, we generalize the

methods of Liu and Braun (2009) to simultaneously optimize the dose and schedule

assigned to each patient. Specifically, we extend their Bayesian non-mixture cure

model by incorporating the per-administration dose as a covariate for modeling the

cure fraction to allow for multiple dose levels. In addition, we derive a non-mixture

cure rate model through a competing risks approach to accommodate multiple ad-

ministrations one patient may receive. The second contribution of our work is to

adaptively optimize the dose and schedule assignments both between patients and

within patients. While new patients are given the most recent maximum-tolerated

dose-schedule combination (MTC) estimate, our approach also re-evaluates the esti-

mated DLT rate for the current assignment of each enrolled patient and automatically

determines whether dose-schedule reassignment is needed. Patient accrual, data mon-

itoring, and outcome-adaptive decision-making are done continuously throughout the
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trial under a Bayesian formulation. We describe the probability model and the dose-

schedule-finding algorithm in Section 3.2, and we illustrate the proposed design in

the context of a real trial and present a simulation study in Section 3.3. We conclude

with a brief discussion in Section 3.4.

3.2 Methods

3.2.1 Preliminary Notation

Typical dose-schedule finding trials aim to find the MTC within a J ×K matrix

consisting of J per-administration doses and K nested schedules. We denote the

administration times for schedule k, k = 1, . . . , K, as s(k) = {s1, s2, . . . , smk} such

that s(1) ⊂ s(2) ⊂ · · · ⊂ s(K) and m1 < m2 < · · · < mK , where mk is the number

of administrations for schedule k. We focus on nested schedules because they have

natural ordering and hence are of interest to the clinicians.

In our motivating example, there are J = 3 doses and K = 4 nested schedules.

A course of administrations corresponds to daily administrations for the first 5 days

followed by 24 days of rest, which we denotes as (5+, 24-). The first schedule is com-

prised of one single course, so the administration times s(1) = {0, 1, 2, 3, 4}. Schedule

2 consists of two courses with the additional course starting 28 days after the be-

ginning of s(1), we have s(2) = {0, 1, 2, 3, 4, 28, 29, 30, 31, 32} =
{
s(1), s(1) + 28

}
, and

so on. Ideally, we plan to give dose j = 1, 2, . . . J , at each administration in s(k),

and we let dj denote the per-administration dose. The number of subjects enrolled

by the end of the trial is N and each subject will be followed up to the maximum

follow-up time ω = 116 days, which is determined by the clinical investigators and

is a clinically meaningful duration of time that is sufficiently late enough to observe

DLTs attributed to the longest schedule. A target DLT rate η = 0.30 is also elicited

from clinicians and is defined as the targeted probability of cumulative toxicity by ω.

Note that dj and s(k) represent the combinations of doses and schedule that are
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possible assignments to each patient as they enter the study. In contrast, during

a trial, the actual number of administrations and the dose at each administration

for each patient may differ from each of those possible combinations. To make this

concept distinct, we let si = {si,1, . . . , si,mi} , i = 1, . . . , N, denote the successive

times at which patient i receives the agent and let di = {di,1, . . . , di,mi} where di,l ∈

{1, . . . , J} and l = 1, . . . ,mi denote the per-administration doses for patient i at the

administration times si.

3.2.2 Model for Time-to-DLT After a Single Administration

As noted by Liu and Braun (2009), a significant proportion of patients are “cured,”

i.e. never experience DLTs after a single administration. Thus, they chose to model

the time-to-DLT for a single administration using the non-mixture cure model pro-

posed by Chen, Ibrahim, and Sinha (1999). Specifically, we take a standard cumu-

lative distribution function F (ν|φ) with parameters φ, with a corresponding density

function f(ν|φ), and scale F (ν|φ) by a parameter θ > 0 to create the respective

survival and hazard functions S(ν|θ,φ) = exp[−θF (ν|φ)] and g(ν|φ, θ) = θf(ν|φ).

We adopt S(ν|θ,φ) as the probability of no DLT by follow-up time ν after a single

administration and interpret θ as a cure rate parameter because the cure fraction

S(∞) = exp(−θ) is determined solely by θ. The Time-to-Event CRM (TITE-CRM)

of Cheung and Chappell (2000) for traditional dose-finding can be viewed as a mix-

ture cure model for the time-to-DLT, as outlined in Braun (2005). However, we have

chosen to use a non-mixture cure rate model instead of a mixture cure model be-

cause the latter does not have a proportional hazards structure and is less feasible

for Bayesian computations (Chen, Ibrahim, and Sinha 1999; Tsodikov, Ibrahim, and

Yakovlev 2003).

However, the non-mixture cure model used by Liu and Braun (2009) must be ex-

tended to allow the cure fraction to vary by dose. To that end, we model the cure rate

fraction for administration l of patient i as log(θi,l) = β0 + exp(β1)di,l,−∞ < β0, β1 <
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∞, so that θi,l > 0. Note that we exponentiate β1 to ensure that the probability of

DLT after a single administration increases with dose. As a result, the respective haz-

ard and survival functions for a single administration l are g(νi,l|β,φ) = θi,lf(νi,l|φ)

and S(νi,l|β,φ) = exp[−θi,lF (νi,l|φ)], in which β = (β0, β1). Thus, our proposed

hazard is an increasing function of dose through the cure fraction, even though the

parameters in f(·) do not involve dose. We feel that the log-linear model should be

adequate in many settings for identifying the MTC since the sample size is usually

small in Phase I trials and the overall model fit is not our primary interest (O’Quigley

et al. 1990). However, if one were truly concerned about the log-linear assumption,

one could always add more parameters in the model if needed. Although compu-

tationally challenging relative to the small sample size, one could propose several

competing models and use Bayesian Model Averaging or select the best-fitting model

at each interim analysis time as outlined by Raftery, Madigan, and Hoeting (1997)

and Ying and Yuan (2009).

With regard to f(·), we adopt the model of Liu and Braun (2009), a two-parameter

Weibull density f(νi,l|φ) = exp(−γ)ανα−1i,l exp
[
−ναi,l exp(−γ)

]
with φ = (α, γ). Such

a choice has biologic appeal because the resulting hazard function increases with time

to a certain time point and then attenuates afterward, as was suggested by clinical

investigators in the azacitidine trial. Mathematically, we expect the mode of the

hazard function to exist at exp(γ/α)(1 − 1/α)1/α, and we assume α > 1 so that the

mode exists.

We did consider modeling φ as a function of dose, but did not because doing so

would eliminate the proportional hazards structure of our model and there will be

no guarantee that the hazard will increase with dose if φ is also a function of dose.

Further support for our approach is given by Chen, Ibrahim and Sinha (1999), who

examined the standard cure model without proportional hazards and found both mod-

els (with or without proportional hazards) led to similar point and interval estimates.

34



We also ran simulations (results not shown) with φ varying with dose and found

that this added level of complexity to our model offered no benefit to identification

of the MTC. The main reason for this result is Phase I trials seek to estimate well

the DLT rate of the MTC and not necessarily the DLT rates for all dose-schedule

combinations. Thus, overall model fit is not the primary interest and we prefer a

parsimonious model with reasonable flexibility.

Thus the distribution of DLT times is controlled by the four parameters β0, β1, α,

and γ, whose interpretations are as follows. If we denote pi,l as the DLT rate by

the maximum follow-up time ω for a single administration l of patient i, then pi,l =

1− S(ω|β,φ) = 1− exp{− exp[β0 + exp(β1)di,l]F (ω|φ)}. Thus, with infinite follow-

up, we have pi,l = 1− exp{− exp[β0 + exp(β1)di,l]}, which is a complementary log-log

model that could be used in the CRM with binary DLT outcomes. The intercept

β0 quantifies the limiting probability of DLT for a single administration of a dose

di,` = 0, while β1 quantifies how the limiting probability varies with dose. The rate

at which the limiting probability is reached for each dose is controlled by α and γ, in

which α and γ determines the mode of the DLT times and increasing the value of γ

quantifies later DLT times.

3.2.3 Model for Time-to-DLT After Multiple Administrations

We employ a competing risks cure rate model by treating yi,l, the time to the DLT

after administration l of patient i, as a latent variable to incorporate the multiple ad-

ministrations received by each patient. The patient time when patient i experiences a

DLT is then defined as the random variable Yi = min {(s1 + yi,1), . . . , (smi + yi,mi)}.

Therefore, under the assumption of independence of yi,1, . . . , yi,mi , the survival func-

tion for patient i at patient time t, is given by

ψ(t|β,φ, si,di) = Pr(Yi > t) =

mi∏
l=1

S(νi,l|β,φ) = exp

{
−

mi∑
l=1

θi,lF (νi,l|φ)

}
(3.1)
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and the density function is given by

q(t|β,φ, si,di) =

[
mi∑
l=1

θi,lF (νi,l|φ)

]
exp

{
−

mi∑
l=1

θi,lF (νi,l|φ)

}
(3.2)

where θi,l = exp[β0 + exp(β1)di,l] is the cure parameter and νi,l = t − si,l is the

follow-up time for administration l of patient i. The hazard function is then given by

h(t; |β,φ, si,di) =
∑mi

l=1 θi,lF (νi,l|φ), which indicates the cumulative effect of multiple

administrations.

The assumption that the times-to-DLT after each administration, yi,1, . . . , yi,mi ,

are independent for the mi administrations of the same patient i might not hold,

although the actual amount of correlation is not testable (Tsiatis 1975). A more

general model could be based on an Archimedean copula-type model or a frailty model

with a cure fraction (Hougaard 2000). For example, the above survival function could

be generalized to

ψo(t|β,φ, si,di) = exp

−
(

mi∑
l=1

[θi,lF (νi,l|φ)]1/ξ

)ξ
 ,

which is a Gumbel copula model with a correlation parameter ξ, in which ξ = 0

indicates independent DLT times. Here, we will assume independence for our model

since it is simple and we feel that copula models could possibly impose strong and

untestable assumptions on the correlation structure of DLT times.

Define the observed patient time Ti = min(Yi, Ui) and Ci = I(Yi ≤ Ui), where

Ui denotes the censoring time and I(·) is the indicator function. Hence, we observe

a DLT for patient i if Ci = 1. Since we perform interim analyses whenever a new

patient in enrolled, by the time patient n + 1 is enrolled, we denote the number of

patients currently in the study as n and for each enrolled patient, we observe Ti, Ci, si

and di, where si and di, as we defined previously, are the respective time and dose for
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each administration patient i have received, i = 1, . . . , n. Note Ui = min(Wi,n+1, ω),

where Wi,n+1 the inter-patient time between patient i and n + 1. If n = N , the

maximum number of patients for the study, then define Wi,n+1 as the time between

patient i and the end of the study. It is reasonable to assume random censoring since

Wi,n+1 is usually independent of the DLT time and ω is a fixed value. Based on the

above information, Equations (3.1) and (3.2), the likelihood on the data Di = (Ti =

ti, Ci = ci, si,di) for patient i is given by

L(Ti = ti, Ci = ci|β,φ, si,di) = ψ(ti|β,φ, si,di)1−ciq(ti|β,φ, si,di)ci (3.3)

After determining the prior distribution p(β,φ), then the posterior distribution of

(β,φ) based on D = {Di : i = 1, ..., n} is

p(β,φ|D) ∝ p(β,φ)
n∏
i=1

L(Ti = ti, Ci = ci|β,φ, si,di).

We can compute posterior quantities via adaptive Markov Chain Monte Carlo (MCMC)

methods (Rosenthal 2007). Those posterior quantities will be used to identify the

dose-schedule assignment for a new patient and a possibly new dose-schedule assign-

ment for an existing patient as described in Section 3.2.5.

3.2.4 Establishing Prior Distributions

For the two parameters of the cure fraction, β, we assign independent Gaussian

distributions with prior mean and prior variance (µ0, σ
2
0) for β0 and (µ1, σ

2
1) for β1.

In order to determine values for the prior means µ0 and µ1, we ask the investigators

to provide the “skeleton” P , which is a J × K matrix of a priori estimates of the

DLT rates by ω for all dose-schedule combinations, in which element (j, k), denoted

Pjk, corresponds to the combination of dose j and schedule k. We then fit the linear

regression model log(− log[1− Pjk]) = log(mk) + b0 + exp(b1)dj and use the ordinary
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least square estimates b̂0 and b̂1 as the respective values for µ0 and µ1.

For the two parameters of the hazard, φ = (α, γ), we have chosen to make α fixed

to maintain a parsimonious model and limit the number of parameters to estimate.

In addition, preliminary simulations (results not shown) indicated that there was no

meaningful change in operating characteristics when assigning a prior distribution to

α. However, because the mode of the hazard for a single administration monotonically

increases with γ, estimation of γ is important to the performance our algorithm.

Therefore, we assign a Gaussian prior distribution for γ with mean µγ and variance

σ2
γ. To determine values for α and µγ, we apply the method outlined in Liu and Braun

(2009) for each dose and calculate the average. If the resulting value for α < 1, we

set α = 1.01, so that the mode exists.

It is important to carefully calibrate the prior variances σ2
1, σ

2
2 and σ2

γ as we can

imagine that Phase I trials are usually sensitive to prior variances due to the small

sample size. The prior variances should not be too small, otherwise the prior in-

formation dominates the trial. However, they cannot be too large either since we

hope to incorporate the prior information for possibly more accurate estimation. We

recommend calibrating the prior variances through simulations using a few different

skeletons and prior variances. The prior variance that is the most insensitive to skele-

tons and leads to the best operating characteristics will be used for a real trial. We

present an example of variance calibration related to the simulations of Section 3.3.

3.2.5 Algorithm for Adaptive Assignments for New Patients and Reas-

signments for Enrolled Patients

The algorithm for assigning a dose-schedule combination to a new patient is similar

to that used in the CRM and many other Phase I designs. When a new patient

enters the study, for every combination of a dose j and a schedule k, we compute

p̂jk = 1− ψ̂(ω|φ,β, s(k), dj), the posterior estimate of the DLT rate by the maximum

follow-up time ω. In Phase I studies, ψ̂ is usually approximated by plugging in φ̂ and
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β̂, the respective posterior medians/means of φ and β. Given a desired DLT rate η,

the dose-schedule combination that minimizes a distance measure d(p̂jk, η), which we

denote (j∗, k∗) is assigned to the next patient, subject to one restriction. Both j∗ and

k∗ cannot simultaneously be respectively more than one dose higher than ji−1, the

dose assigned to the most recently enrolled patient, and ki−1, the schedule assigned to

the most recently enrolled patient. Even though we use a “no-skipping” rule for dose-

schedule escalation among successive patients, there is no such rule when it comes

to de-escalation. We place no restriction on escalation of dose and schedule within

a patient, which some may view as overly aggressive. However, in the simulation

results presented in Section 3.3.2, we see no evidence of a higher than desired rate of

DLTs. We also ran simulations in which the between-patient restriction on escalation

to also applied within-patient (results not shown). We saw little change to the results

presented in Table 3.4, except that patient assignments to acceptable combinations

tended to lessen with the restriction than without it.

We adopt the measure d(p̂jk, η) = |p̂jk − η|, although we could adopt a different

metric in order to penalize selection of toxic regimens, like that proposed in the

Escalation with Overdose Control (EWOC) design of Babb, Rogatko, and Zacks

(1998). EWOC selects the dose that minimizes the distance (p̂jk − η)(1 − δ)I(p̂jk >

η) + (η − p̂jk)δI(p̂jk < η), and with δ < 0.5, will penalize the selection of toxic dose-

schedule combinations more than our metric |p̂jk − η|. Furthermore, a stopping rule

for excessive toxicity could be easily incorporated into our design. For example, in

our simulations, we use a stopping rule stating that a trial is halted if at least three

patients have been enrolled and p̂11 > η+ 0.15, in which p̂11 is the DLT rate estimate

for the lowest dose-schedule combination. A similar stopping rule when all DLT rates

are too low could also be used.

We emphasize that reassignment of dose and/or schedule does not apply to pa-

tients who have experienced DLT, nor to those who finished their originally assigned
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treatment, nor those whose treatment was terminated early. For the remaining n∗ ≤ n

patients who are still planning to receive additional administrations, we compute

p̂` = 1 − ψ̂(ω|φ,β, s`,d`), which is the estimated DLT rate of the administrations

received so far by patient ` = 1, 2, . . . n∗. We immediately terminate the treatment

of any patient ` for whom p̂` ≥ η + 0.1, as they have already received a combination

that appears to be overly toxic and further treatment would be unethical. Once the

treatment is terminated, no additional administrations will be given to the patient

but this patient is still under follow-up until a DLT occurs or the maximum follow-up

time ω is reached.

For each of the remaining patients for whom p̂` < η+0.1, we need to consider how

many more administrations might be given and which dose would be given at each

of those administrations. Specifically, if m` is the number of administrations received

so far, we compute δk` = (mk − m`), for each schedule k, including the schedule to

which the patient was originally assigned. Among all schedules with δk` > 0, let s
(k)
`+

denote the remaining administration times for schedule k that could still be assigned

to patient `. We consider the combination of each s
(k)
`+ with each dose j and let d

(jk)
`+

denote the remaining dose assignments, which is a vector of δk` elements each with

the value dj. We then compute P
(jk)
` = 1 − ψ̂(ω|φ,β, [s`, s(k)`+ ], [d`,d

(jk)
`+ ]), which is

the probability of DLT by ω for patient ` for each of these possible reassignments

appended to what he has already received. We will reassign patient ` according to

whichever P
(jk)
` is closest to the targeted DLT rate, η. We emphasize again that

one of the possible “reassignments” is simply the assignment currently belonging to

patient `.

To clarify our notation, we consider a hypothetical study of J = 3 doses and

K = 5 schedules in which schedule k is comprised of k consecutive (5+, 24−) courses

as described in Section 3.2.1. Imagine that a new patient is to be enrolled in

the study and that we have an enrolled patient ` who was assigned to schedule
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Table 3.1: Nine possible remaining dose and schedule assignments for a hypothetical patient who
has not completed their originally assigned treatment and remains under observation without DLT.

Vectors of remaining administration times are s
(3)
`+ = {58, 59, 60}, s(4)`+ = {s(3)`+ , 84, 85, 86, 87, 88}, and

s
(5)
`+ = {s(4)`+ , 112, 113, 114, 115, 116}

.

Dose at Each Times of
Decision Administration Administration

No change 32 s
(3)
`+

Change dose only 8 s
(3)
`+

16 s
(3)
`+

Change schedule only 32 s
(4)
`+

32 s
(5)
`+

Change dose & schedule 8 s
(4)
`+

8 s
(5)
`+

16 s
(4)
`+

16 s
(5)
`+

3, has not yet experienced a DLT, and has respective administration times and

doses for each administration s` = {0, 1, 2, 3, 4, 28, 29, 30, 31, 32, 56, 57} and d` =

{8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 32, 32} mg/m2. As each schedule had a total of five

planned administrations, we see that patient ` has completed two courses and has

three administrations remaining in her third course. Assuming that the treatment

received so far does not have an estimated DLT rate 10 points above the target, Ta-

ble 3.1 delineates the nine possible remaining assignments that could now be given to

patient `. Whichever of these nine combinations, when appended to s` and d`, leads

to an estimated DLT rate by ω closest to the target DLT rate is the reassignment

given to patient `.

This example emphasizes the fact that we attempt to keep the dose constant

within a patient as much as possible, i.e. each administration for a patient will be at

the same dose until a reassignment occurs. Thus, the hypothetical patient ` described
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above had already received two previous changes to her assignment, as her dose was

increased from 8 mg/m2, then to 16 mg/m2, and then again to 32 mg/m2. Of course

one could consider a setting in which the best treatment plan would be contrary

to this, i.e. perhaps alternating back-and-forth between two doses. However, such

a treatment plan, or one that considers any of the J doses at each administration

period would be infeasible in practice and would likely lead to treatment errors if

the treatment plans assigned to several patients were all different and impossible to

remember.

Furthermore, we have chosen to only consider reassignments when a new patient

is enrolled. This certainly is not the only benchmark at which we might consider

reassigning patients. For example, we might instead (or also) re-evaluate the data

collected so far each time a patient completes their follow-up, either by reaching ω

without a DLT or experiencing a DLT sometime before ω. Or we could re-evaluate

the data each time a patient completes a course, thereby allowing a course-by-course

evaluation for every patient. And if we truly wanted to optimize the treatment of

every patient in the study, it would seem most sensible to evaluate each patient after

every single administration. However, most of these alternate approaches are un-

realistic in practice as the frequency of the necessary computations would become

administratively impossible. On the opposite end of the spectrum, we could admin-

istratively set times, i.e. every three months, when we might consider reassignments

that have nothing to do with patient outcomes but makes the process of re-assignment

known before the trial begins. However, we feel our approach of re-evaluating assign-

ments when each new patient is enrolled is a good compromise between optimizing

the treatment of each patient as much as possible and maintaining a feasible level of

computation.

42



3.2.6 Conduct of the Trial

We plan on enrolling a maximum of N patients in the trial, and each patient will

be followed for ω days after enrollment. The first patient is enrolled at study time

t = 0 and is assigned to the shortest schedule (k = 1) with the lowest dose (j = 1).

When patient i = 2, . . . , N is to be enrolled in the study at study time t, we perform

the following steps:

(1) Place each enrolled patient i
′
= 1, 2, . . . i−1 into one of two groups, either those

without DLT or those with DLT;

(2) For patients without DLT, record:

(i) Ci′ = 0, indicating no DLT

(ii) Ti′ = min{Wi′ ,i, ω}, where Wi′ ,i is the inter-patient time between patient

i′ and i;

(3) For patients with DLT, record:

(i) Ci′ = 1, indicating DLT

(ii) Ti′ = Yi′ , the patient time when a DLT occurred;

(4) For all enrolled patients, record si′ , the vector of times of each administration

received, and di′ , the vector of doses given at each administration;

(5) Use the information recorded from (2)-(4) above to compute the likelihood given

in Equation (3.3). Specifically, patients without DLT will contribute an amount

given in Equation (3.1) and patients with DLT will contribute an amount given

in Equation (3.2);

(6) Combine the likelihood with the prior distributions described in Section 3.2.4

to compute the posterior medians of φ and β;
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(7) Apply the methods described in Section 3.2.5 to determine whether to terminate

the trial, and if not, determine for each patient whether to assign a new dose

and/or schedule or terminate their treatment altogether;

(8) Determine the dose and schedule assignment for patient i using the methods

described in Section 3.2.5;

(9) Once all N patients have been enrolled, use all accumulated data to compute

final posterior estimates of the DLT rates of each dose and schedule combination

and select the combination with estimated DLT rate closest to η as the optimal

combinations

3.3 Application

3.3.1 Simulation Design

In the motivating azacitidine trial, there were J = 3 doses of interest: 8, 16 and

24 mg/m2, and K = 4 schedules with respective numbers of administrations m1 = 5,

m2 = 10, m3 = 15 and m4 = 20, for a total of 12 combinations. A course consists

of five daily consecutive administrations followed by 28 days of rest as described

in the example in Section 3.2.1, and schedule k consists of k consecutive courses.

Investigators would like to determine which of the 12 combinations has a DLT rate

close to η = 0.30. The maximum follow-up time for each patient is ω = 116 days. We

consider the dose-schedule combinations with DLT rates of η± 0.10 to be acceptable

choices of the MTC, since a small deviation from η is acceptable for the investigators

(Braun et al. 2007). A maximum of N = 60 patients will be enrolled.

We considered two skeletons that we feel would reflect those most commonly used

in practice. Skeleton 1 specifies the a priori MTC to exist at middle combinations

whereas Skeleton 2 specifies the highest combinations as the a priori MTC; the actual

values of the skeletons can be found in Table 3.2. For each skeleton, we used the

44



Table 3.2: The two skeletons used in the simulation study. The boldfaced values correspond to
acceptable combinations.

Schedule

Skeleton Dose(mg/m2) 1 2 3 4

1 8 0.03 0.12 0.30 0.50
16 0.15 0.30 0.50 0.60
24 0.30 0.50 0.60 0.75

2 8 0.02 0.06 0.15 0.25
16 0.08 0.15 0.25 0.30
24 0.15 0.25 0.30 0.38

methods described in Section 2.5 to calculate the prior means. For Skeleton 1, this

leads to µ0 = −4.80, µ1 = −0.32, µγ = −0.818 and α = 1.73. The corresponding

values for Skeleton 2 were µ0 = −5.50, µ1 = −0.43, µγ = −0.822 and α = 1.72.

With either skeleton, the mode of the hazard function is around four days after

administration. For both skeletons, we calibrated the prior variances of our model

parameters through a process outlined in Section 3.5.2.

We examined our approach in 16 different scenarios that are summarized in Table

3.3. The true DLT rates of every combination of dose and schedule were not generated

by the model used in our methods but were instead created using an approach outlined

in Section 3.5.1.

Table 3.3 also contains three metrics that seek to measure how difficult finding the

MTC might be in each scenario. The first value, Nc, is the number of combinations

with DLT rates within 10 points of the target η, the second value, MSE, denotes

the mean sum-of-squared-errors for the fit of the linear model log[− log(1 − pdj)] =

β0 + exp(β1)dj, and the third value, SD, is the sample standard deviation of the 12

DLT rates. Thus, smaller values of Nc and SD would indicate greater difficulty of

finding the MTC and larger values of MSE would indicate that the linearity assumed
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Table 3.3: Summary of the 16 scenarios studied, including the actual DLT rates of each dose and
schedule combination and three metrics that measure the difficulty of identifying an MTC. Boldfaced
values indicate dose and schedule combinations with DLT rates within 10 points of the desired DLT
rate η = 0.30.

Schedule

Method Scenario Dose(mg/m2) 1 2 3 4 pd Nc MSE SD ξ

Independent 1 8 0.05 0.10 0.14 0.18 0.010 3 0.03 0.08 n/a
16 0.06 0.12 0.18 0.23 0.013
32 0.09 0.17 0.24 0.30 0.018

2 8 0.05 0.10 0.14 0.18 0.010 3 0.32 0.23 n/a
16 0.09 0.17 0.24 0.30 0.018
32 0.30 0.52 0.66 0.77 0.070

3 8 0.02 0.05 0.07 0.10 0.005 1 0.35 0.32 n/a
16 0.18 0.32 0.44 0.54 0.038
32 0.47 0.72 0.85 0.92 0.120

4 8 0.03 0.07 0.10 0.13 0.007 1 0.42 0.15 n/a
16 0.05 0.09 0.13 0.17 .0095
32 0.17 0.31 0.42 0.52 0.036

Gumbel 5 8 0.18 0.31 0.41 0.50 0.048 4 0.06 0.16 0.88
16 0.22 0.36 0.48 0.57 0.058
32 0.29 0.47 0.59 0.69 0.080

6 8 0.13 0.18 0.23 0.27 0.050 3 0.30 0.20 0.60
16 0.33 0.45 0.54 0.60 0.140
32 0.43 0.57 0.66 0.72 0.190

7 8 0.30 0.44 0.54 0.61 0.110 2 0.07 0.15 0.70
16 0.35 0.50 0.60 0.68 0.130
32 0.46 0.63 0.73 0.80 0.180

8 8 0.02 0.06 0.11 0.17 .0021 2 0.22 0.18 1.5
16 0.07 0.17 0.30 0.42 0.006
32 0.11 0.27 0.44 0.59 0.010

9 8 0.17 0.28 0.36 0.43 0.049 2 0.29 0.25 0.81
16 0.43 0.62 0.74 0.82 0.140
32 0.56 0.76 0.86 0.92 0.200

10 8 0.02 0.06 0.10 0.15 .0018 1 0.29 0.12 1.5
16 0.03 0.07 0.13 0.17 .0023
32 0.07 0.17 0.30 0.42 0.006

Frank 11 8 0.05 0.09 0.13 0.17 0.010 3 0.03 0.14 1.5
16 0.09 0.17 0.24 0.30 0.020
32 0.19 0.32 0.42 0.50 0.043

12 8 0.19 0.32 0.43 0.51 0.044 3 0.08 0.16 1.5
16 0.26 0.43 0.54 0.63 0.065
32 0.31 0.49 0.61 0.69 0.080

13 8 0.07 0.13 0.18 0.23 .0146 3 0.13 0.21 1.5
16 0.18 0.31 0.41 0.49 0.042
32 0.33 0.52 0.64 0.72 0.087

14 8 0.18 0.31 0.41 0.49 0.042 2 0.04 0.19 1.5
16 0.29 0.47 0.59 0.67 0.075
32 0.42 0.62 0.74 0.82 0.120

15 8 0.03 0.06 0.08 0.11 0.006 2 0.31 0.13 1.5
16 0.05 0.09 0.13 0.19 0.010
32 0.15 0.27 0.36 0.44 0.035

16 8 0.53 0.74 0.84 0.90 0.170 0 0.01 0.15 1.5
16 0.53 0.75 0.85 0.91 0.175
32 0.55 0.75 0.86 0.91 0.178
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in our model may be suspect and lead to a poorer ability of correctly identifying an

MTC.

We simulated patients to have exponentially distributed inter-arrival times with

a mean of two weeks, and we divided all the follow-up times by 10 to achieve better

numeric stability for our model. When a new patient is enrolled, an interim analysis is

performed in which a single chain of 6, 000 samples, after a burn-in of 4, 000 samples,

is drawn from the posterior distribution for each parameter. These posterior draws

are then used to determine the dose and schedule assigned to the new patient as

well as any dose and/or schedule reassignments for each currently enrolled patient

still being followed. We then simulate for each a binary indicator of DLT using the

method outlined in Section 3.5.1 depending upon the scenario examined. If a patient

is simulated to have a DLT, the time of the DLT is drawn uniformly from the interval

[4 + 24(k − 1), 4 + 24k] under their assigned schedule k, which also implies that all

possible DLTs occur by ω = 116 days. We did perform simulations of our design

using our assumed model to simulate DLTs and came to similar final conclusions,

and we have omitted those results for brevity.

We compared the performance of our approach that allows for patient reassign-

ment (Design A) with the traditional approach that does not allow for patient reas-

signment (Design B). We evaluated the performance of both approaches by comparing

the correct selection frequency at the end of the study, the mean proportion of patients

assigned to each dose-schedule combination and the mean proportion of patients who

experienced DLTs. We performed 1, 000 simulations in each scenario; our computer

code is available upon request.

3.3.2 Simulation Results

Table 3.4 contains a summary of the performance of Design A (with reassignment)

and Design B (without reassignment) in the 16 scenarios described in Table 3.3. For

each design, this summary is a series of eight columns. The first four columns describe
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the proportion of simulations in which the MTC selected at the end of the study

was not found, had a DLT rate more than 10 points below the desired DLT rate η

(column “L”), within 10 points of η (column “In”), or more than 10 points above

η (column “H”). The next three columns have a similar interpretation related to

the average percentage of dose-schedule assignments during the study. The eighth

column, labeled “DLT” is the average of the proportion of observed DLTs among the

1,000 simulations.

Overall, we are able to identify acceptable dose-schedule combinations at the end

of the study in a majority of simulations in the first 15 scenarios, whether or not

reassignment is used, as well as terminate the study early in scenario 16. These

results are not surprising, as the primary goal of reassignment is to optimize the

assignments of patients enrolled in the study, rather than improve the final decision

at the end of the study. Scenarios 4, 8, 9, and 10 have the lowest percentages of

identifying the MTC at an acceptable combination, which is partially explained by

the fact that these scenarios have only 1 or 2 acceptable combinations to choose

from. These scenarios also have some of the largest values of MSE, indicating that

the assumption of linearity in our model is suspect. Nonetheless, we emphasize that

all 15 scenarios have DLT rates that come from models that are different from our

assumed model, so that our approach works well even when the model is misspecified.

With regard to patient assignments during the study, we see that including reas-

signment leads to a higher proportion of patients assigned to acceptable combinations

than without reassignment. For example, Design A assigned 58% of the patients to

acceptable combinations in scenario 4, compared with only 29% for Design B, and the

corresponding percentages in scenario 10 are 53% and 26%, respectively. Moreover,

in all 15 scenarios, the average DLT rate when using reassignment is never more than

the average observed DLT rate without reassignment and is always close to the de-

sired DLT rate. Although Scenarios 7, 9 and 10 have 33%, 40% and 31% of patients,
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Table 3.4: Simulation results for Design A (with reassignment) and B (without reassignment), prior
standard deviation σ = 2 and Skeleton 2. For each design, there are four columns under “Selection”
list the percentage of simulations in which the MTC was not identified, was identified at combinations
with DLT rates below that desired, within that desired, and above that desired, respectively. Cor-
responding columns are listed under “Assignment” to describe the average percentage of patients
assigned to each combination. DLT = mean proportion of patients who experienced DLT. The
columns under “Reassignment” gives summary statistics on reassignment: Rp = average proportion
of patients receiving at least one reassignment during the study, Rm (Rsd) = mean (standard devi-
ation) of number of reassignments a patient received, R1 (Rn) = the average minimum (maximum)
number of reassignments a patient received.

Selection Assignment Reassignment

Scen Design None L In H L In H DLT Rp Rm Rsd R1 Rn

1 A 0 5 95 0 10 90 0 27 38 0.9 1 0 4.1
B 0 4 96 0 12 88 0 27

2 A 0 13 83 3 19 63 18 31 56 1.2 1.3 0 5.2
B 0 12 86 3 29 52 18 31

3 A 1 14 71 14 22 53 24 32 53 1 1.2 0 4.7
B 0 25 62 13 29 48 23 33

4 A 0 27 53 20 19 58 23 30 68 1.6 1.5 0 5.8
B 0 32 48 20 33 29 38 31

5 A 2 2 78 17 7 62 29 35 43 0.7 0.9 0 3.8
B 2 2 81 16 5 63 31 36

6 A 1 18 56 25 18 52 29 34 44 0.7 0.9 0 3.7
B 1 12 64 23 21 44 35 34

7 A 11 0 69 20 0 58 33 36 20 0.3 0.6 0 2.5
B 9 0 66 24 0 54 39 37

8 A 0 12 56 32 14 58 28 32 73 1.7 1.5 0 5.9
B 0 15 58 27 25 36 38 32

9 A 6 18 49 28 18 38 40 34 25 0.4 0.7 0 2.7
B 3 14 54 29 17 38 44 36

10 A 0 25 53 22 16 53 31 30 62 1.5 1.5 0 5.6
B 0 26 53 21 30 26 44 30

11 A 0 10 79 11 15 64 22 31 67 1.6 1.5 0 5.7
B 0 12 76 13 21 48 31 31

12 A 2 5 75 18 9 59 30 35 37 0.6 0.9 0 3.5
B 2 4 74 20 9 53 36 36

13 A 0 14 67 19 15 63 22 33 56 1.1 1.2 0 4.8
B 0 13 69 17 24 52 24 33

14 A 3 8 61 28 12 57 28 35 32 0.5 0.8 0 3.2
B 3 7 58 32 13 51 35 36

15 A 0 17 74 8 16 64 20 30 64 1.5 1.5 0 5.7
B 0 26 65 9 26 44 30 30

16 A 89 0 0 11 0 1 37 21 5 0.1 0.3 0 1.4
B 87 0 0 13 0 0 40 22

49



respectively, assigned to toxic combinations, most of the combinations in Scenarios 7

and 9 are overly toxic, and exposing a higher proportion of patients to toxic combi-

nations in these scenarios seems unavoidable. Furthermore, in Scenario 10, all of the

assignments to toxic combinations were to combinations with DLT rates in the range

of 40%− 42%, and in Scenario 9, 25% of patients were assigned to combinations with

DLT rates between 40% and 45%. We also conducted simulations using the EWOC

distance measure described in Section 3.2.5, but due to space limitations, we omit

these results. We found that using the EWOC distance measure led to treating fewer

patients at overly toxic combinations in some scenarios, but this apparent increase in

safety came with a reduced ability of finding the MTC at the end of the trial.

The final five columns of Table 3.4 contain a summary of the number of reassign-

ments per patient that occurred in each of the 16 scenarios. Rates of reassignment

above 0.60 were seen in scenarios 4, 8, 10, 11, and 15. Although the explanation

for the high rate of reassignment is not immediately obvious, a partial explanation

is that acceptable combinations in these scenarios appear with longer schedules of

the highest dose, with even longer schedules then becoming overly toxic. In contrast,

Scenario 1 has a much lower rate of reassignment because that scenario had no overly

toxic combinations. We also see that less than two reassignments occurred per patient

on average in all the scenarios and just under six reassignments was the maximum

number of reassignments per patient on average in all scenarios.

We also examined the sensitivity of our design to the maximum sample size by

repeating our simulations using sample sizes of 50 and 70, the results of which are

summarized in Table 3.5. The results show that decreasing the sample size from 60

to 50 may result in a nontrivial loss is selecting correct combinations in Scenarios 4,

10 and 15. However, increasing the sample size from 60 to 70 only produces a minor

increase in the selection of correct combinations. Therefore, we selected a maximum

number of 60 patients for this study.
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Table 3.5: Simulation results for Design A with sample sizes of N = 50 and N = 70. For each
design, columns “Selection” gives the percentage of identifying three categories of combinations as
the MTC: unacceptable inefficacious combinations (“L”) ; acceptable combinations (“In”) and too
toxic combinations (“H”). For each design, columns “Assignment” gives the mean proportion of
patients assigned to the three categories, columns “DLT” give the mean proportion of patients who
experienced DLTs.

Design A with N = 50 Design A with N = 70
Selection Assignment Selection Assignment

Scen None L In H L In H DLT None L In H L In H DLT

1 0 6 94 0 11 89 0 27 0 5 95 0 9 91 0 27
2 0 17 79 4 21 58 21 31 0 11 86 2 17 66 17 31
3 0 16 66 17 24 49 26 33 0 12 73 15 20 56 23 32
4 0 32 45 24 20 54 26 30 0 25 57 18 18 61 21 30

5 2 3 78 18 8 58 32 35 1 2 82 15 7 66 26 34
6 1 19 55 25 18 50 31 35 1 12 64 22 16 55 27 34
7 9 0 66 25 0 55 38 37 9 0 73 18 0 61 32 35
8 0 16 55 30 16 54 30 33 0 12 57 31 14 61 25 32
9 4 17 48 31 20 34 43 36 3 16 53 28 19 39 40 35
10 0 28 50 22 18 48 34 30 0 26 54 20 17 54 29 30

11 0 14 74 12 16 60 24 31 0 10 80 11 15 65 20 31
12 3 5 68 25 10 53 35 36 2 4 78 17 9 62 28 35
13 1 15 64 20 15 59 25 33 0 13 70 16 14 66 20 32
14 3 9 54 34 12 54 31 36 1 7 61 31 11 61 26 35
15 0 22 68 10 18 58 23 30 0 18 75 7 15 66 18 30

16 83 0 0 17 0 1 42 24 89 0 0 11 0 1 34 19
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Figure 3.1: Comparison between Design A and B using Skeleton 1 and calibrated prior standard
deviation 2.

Recall that we found that using a value of σ = 2 for the prior variances of the

model parameters was insensitive to the skeleton used. To confirm this statement, we

do not present the results when using Skeleton 1 in a tabular format like that of Table

3.4. Instead, Figure 3.1 contains a visual summary of the percentage of simulations

in which the MTC was selected at an acceptable combination (left plot) and the

percentage of patients assigned to acceptable combinations (right plot) in each of the

15 scenarios. As we found in Table 3.4, we are able to identify the MTC well whether

or not reassignment is allowed, but that inclusion of reassignment greatly improves

the treatment assignment of patients enrolled in the study.

3.4 Discussion

In our methods, we reassigned the dose and/or schedule of each enrolled patient

only when a new patient was enrolled in order to optimize the treatment of each

patient but maintain a feasible level of computation. As a result, with an average

arrival of a new patient every 14 days relative to a follow-up of 116 days in our simula-

tions, we considered approximately no more than eight reassignments with each new

enrollment. In a study with much faster accrual, there would be many more possible

reassignments to consider at each new enrollment and many of the patients could have

several reassignments occurring during their treatment. Investigators may feel that
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this level of possible reassignment impractical, requiring a different rule for determin-

ing when reassignment is possible. An interesting area of research is to compare our

approach to other reassignment strategies to determine when fewer reassignments are

allowed, yet do not lead to significantly worsened operating characteristics.

Although we restricted the estimate of the MTC at the end of the trial to only exist

among dose-schedule regimens with dose constant within patient, our methods are

flexible enough to regimens with dose variations within-patient that ultimately might

provide a better MTC estimate since we are considering a richer set of candidate

strategies. In addition, we could consider multiple MTC estimates each of which

that are qualitatively different from each other. For example, we could consider two

completing MTC estimates, one with a few administrations of a higher dose and

another with many administrations of a lower dose. It is very possible that one

schedule may be more effective or easier to administer and these facts are not yet

part of our decision-making process. Certainly our methods can be generalized to

incorporate more information and further the process of discovering new drugs and

how to best administer them, and is an exciting avenue of research. Furthermore, our

methods belong to the family of dynamic treatment regimes (Murphy, 2002) and use

of additional patient information, such as a key biomarker for response or risk factors

for lack of response, might further the cause to “personalize” the dose and schedule

assigned to each patient. However, the major limiting factor for all these extensions

is the small sample size used in most early-phase clinical trials.

We introduce our design in the setting of dose-schedule finding studies, although

our methods could be easily applied to other settings. If the schedule were fixed

while the dose varied, our design would be similar to the TITE-CRM in which the

weight function would be determined by the functional form of the hazard function

of a single administration in our model. In Phase I/II studies, one can easily adapt

our method to the work of Yuan and Yin (2009) to model late-onset toxicity/efficacy
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and introduce intra-patient dose changes. Similar modifications could be made to

apply our approach to trials of combinations of two agents by specifying the hazard

function of the toxicity or efficacy after a single administration to be a function of

doses of both agents. However, the model that takes account of the joint distribution

of toxicity and efficacy as a function of possibly multiple doses is not immediately

obvious and should be carefully chosen. Lastly, in the motivating azacitidine trial,

the highest dose and longest schedule was reached with no evidence of unacceptable

toxicity and investigators decided to add more doses to the trial. The flexibility of our

model would allow one to adaptively estimate the DLT rates of other doses and/or

schedules to determine which, if any, might be added to the trial once it has begun.

3.5 Appendices

3.5.1 Algorithm for Simulating True DLT Rates

We let pdj denote the probability of DLT by ω after a single administration of dose

j = 1, 2, 3, and we let nj denote the number of administrations of dose j received.

Then, for a treatment schedule of n1, n2, and n3 administrations of doses 1, 2, and 3,

respectively, regardless of their order, we denote the actual probability of DLT by time

ω as Ptrue(d1, d2, d3, n1, n2, n3). In scenarios 1-4, we assume that all administrations

have independent effects (which is also the assumption used in our model), i.e.

Ptrue(d1, d2, d3, n1, n2, n3) = 1− qn1
d1
qn2
d2
qn3
d3
,

in which qdj = 1 − pdj . In scenarios 5-10, we assume that all administrations have

correlated effects modeled via a Gumbel copula, i.e.

Ptrue(d1, d2, d3, n1, n2, n3) = 1− exp

−{ 3∑
j=1

nj[− log(qdj)]
1/ξ

}ξ
 ,
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and is the same as Equation (3.4) when the correlation parameter ξ = 1. In scenarios

11-15, we assume that all administrations have correlated effects modeled via a Frank

copula, i.e.

Ptrue(d1, d2, d3, n1, n2, n3) = 1 +
1

ξ
log

(
1 +

∏3
j=1[exp(−ξqdj)− 1]nj

(e−ξ − 1)
∑
j nj−1

)
,

and is the same as Equation(3.4) when ξ → 0.

The value of ξ used in each of scenarios 5-16 is shown in the last column of Table

3 of the manuscript and the actual values of pd1 , pd2 , and pd3 used in each of the

fifteen scenarios are shown in the column labeled “pd” in Table 3 of the manuscript.

Although Table 3 of the manuscript displays the DLT rates for each of the dose and

schedule combinations under study, the values in the column labeled “pd” can be

used to compute the actual DLT rates for patients who receive a reassignment that

does not fit one of these dose-schedule combinations. For example, suppose we have

a patient in scenario 1 who has been assigned to five administrations of 8 mg/m2

and five administrations of 16 mg/m2. This patient has a probability of DLT by ω of

1− (1− 0.010)5(1− 0.013)5 ≈ 0.11.

3.5.2 Calibration of Prior Variance

To achieve good operating characteristics, we first calibrated the prior standard

deviations via simulation using a maximum number of 60 patients. We let σ1, σ2

and σ3 have the same value σ to simplify the calibration process. The prior standard

deviation that performs best among σ = 1, 2, 5 would be used in the study. We

certainly could have examined more values of σ, but felt that choosing among these

three values was sufficient and any small deviations in performance with other possible

values for σ were outweighed by the increased amount of simulation time required.

The first row of Figure 3.2 shows how the prior variance impacts the proportion of

patients assigned to acceptable dose-schedule combinations in Design A using either
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Figure 3.2: Impact of prior standard deviation and skeletons on the MTC assignment for Design A.

skeleton 2 (upper left plot) or skeleton 1 (upper right plot). For both skeletons,

the design using σ = 5 performs worse than using σ = 1 or 2 in most of the 15

examined scenarios. However, from these two plots, it is not clear which among

between σ = 1 and σ = 2 would be preferred. Therefore, the bottom two plots

in Figure 3.2 attempt to assess the sensitivity of the results to the chosen skeleton

when using σ = 2 (lower left plot) and σ = 1 (lower right plot). From these two

plots, we see that there is greater variation in the results when using σ = 1 than

σ = 2. We also performed similar analyses for the proportion of simulations in which

acceptable dose-schedule combinations were selected at the end of the study, as well

as repeating our calibration with Design B (no reassignment), and found little change

in our conclusions. Therefore, we selected σ = 2 to be the prior standard deviation

used in the study. And since our design is not sensitive to the skeletons when σ = 2,

we have chosen to use Skeleton 2 in our study.
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3.5.3 Illustration of Patient Reassignments

We selected the results from one of our simulations in Scenario 1 to visually display

how patient reassignments occur during a trial. To that end, we have a series of tables

that summarize patient assignments and reassignments after 10 patients have been

enrolled (Table 1), after 20 patients have been enrolled (Table 2), after 30 patients

have been enrolled (Table 3), etc., until the maximum sample size of N = 60 has

been enrolled (Table 6).

Recall that there are 3 dose levels and 4 nested schedules under investigation.

Each treatment course consists of 5 daily administrations followed by 28 days of

rest. In Tables 1-6, we let (a*b) denote a treatment assignment that corresponds

to b administrations at dose level a. Similarly, (a*b, c*d) denotes b administrations

at dose level a followed by d administrations at dose level c. For instance, (2*5,

3*5) denotes that the patient received five administrations of dose level 2 for five

consecutive days, had 28 days of rest, then received another five administrations of

dose level 3.

With regard to the information in each table, ID refers to the identification number

of the patient, “Time enrolled” is the study time when each patient is enrolled,

“Assign” contains the most recent assignment of the patient, “Reassign” indicates

the dose-schedule reassignment for each patient who received a reassignment, “DLT”

contains a indicator (1=yes; 0=no) if the patient experienced a DLT, “Follow-up” is

the time to DLT or the follow-up time if there has not been a DLT, and “Comp”

indicates whether the patient completed their follow-up (Y=yes; N=no).

We see in Table 1 that the first patient received the lowest dose-schedule combina-

tion (dose 1, schedule 1), and because no DLT had been observed when patient 2 was

enrolled, we initially assigned patient 2 to the combination of dose 2 and schedule

2. Similarly, we treated patient 3 at the combination of dose 3 and schedule 3 at

enrollment. When the fourth patient was enrolled, not only was that patient assigned
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Table 3.6: Summary of patient assignments and re-assignments when patient 11 is enrolled.

Time
ID Enrolled Assign Reassign DLT Follow-up Comp

1 0.0 1*5 n/a 0 116.0 Y
2 4.5 2*10 2*5, 3*5 1 112.2 Y
3 15.7 3*15 3*20 0 116.0 Y
4 48.0 3*20 n/a 1 59.4 Y
5 83.3 3*20 3*15 0 42.0 N
6 90.7 3*20 3*5, 2*15 0 34.6 N
7 97.3 3*20 3*15 0 28.0 N
8 103.6 3*20 3*15 0 21.7 N
9 109.0 3*20 3*15 0 16.3 N

10 117.8 2*20 2*5, 3*15 0 7.5 N

to the current best regimen (dose 3 and schedule 4), but the assignments of the first

three patients were re-examined for potential reassignment. As a result, the assign-

ment for patient 2 was escalated to 2*5, 3*15 and the assignment for patient 3 was

escalated from 3*15 to 3*20. Table 1 also demonstrates intra-patient de-escalation.

For instance, after we observed two DLTs for patients 2 and 4, the initial assignments

for patients 5-9 were changed to a dose-schedule combination with a lower DLT rate.

Finally, when patient 11 was enrolled, we saw that the initial assignment for patient

10 was escalated from 2*20 to 2*5, 3*15 because we only saw two DLTs by that time.

Table 2 also demonstrates how patient reassignments can be altered as more pa-

tients are enrolled. For example, in Table 1, patient 6, who had been originally

assigned to dose 3 and schedule 4 was reassigned to five administrations of dose 3 and

15 administrations of dose 2 by the time subject 11 was enrolled. Table 2 then shows

that patient 6 was reassigned again with a reduction to 10 administrations of dose 2

instead of the original 15 administrations, due to the DLT experienced by patient 10.

Similar conclusions can be reached from the information in Tables 3-6
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Table 3.7: Summary of patient assignments and re-assignments when patient 21 is enrolled.

Time
ID Enrolled Assign Reassign DLT Follow-up Comp

1 0.0 1*5 n/a 0 116.0 Y
2 4.5 2*5,3*5 n/a 1 112.2 Y
3 15.7 3*20 n/a 0 116.0 Y
4 48.0 3*20 n/a 1 59.4 Y
5 83.3 3*15 n/a 0 116.0 Y
6 90.7 3*5,2*15 3*5,2*10 0 116.0 Y
7 97.3 3*15 3*10, 1*5 0 116.0 Y
8 103.6 3*15 3*10, 1*5 0 116.0 Y
9 109.0 3*15 3*10, 1*5 0 116.0 Y

10 117.8 2*5,3*15 n/a 1 21.6 Y
11 125.3 3*15 3*5, 1*10, 3*5 0 116.0 Y
12 151.0 2*20 2*10, 3*10 0 116.0 Y
13 196.6 3*20 n/a 0 110.2 N
14 204.9 3*20 n/a 0 102.2 N
15 237.9 3*20 n/a 1 29.3 Y
16 239.2 3*20 n/a 0 67.9 N
17 247.4 3*20 n/a 0 59.7 N
18 278.6 3*20 n/a 0 28.5 N
19 282.7 3*20 n/a 0 24.4 N
20 294.2 3*20 n/a 0 12.9 N
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Table 3.8: Summary of patient assignments and re-assignments when patient 31 is enrolled.

Time
ID Enrolled Assign Reassign DLT Follow-up Comp
13 196.9 3*20 n/a 0 116.0 Y
14 204.9 3*20 n/a 0 116.0 Y
15 237.9 3*20 n/a 1 29.3 Y
16 239.2 3*20 n/a 0 116.0 Y
17 247.4 3*20 n/a 0 116.0 Y
18 278.6 3*20 n/a 1 75.9 Y
19 282.7 3*20 n/a 0 116.0 Y
20 294.2 3*20 n/a 0 116.0 Y
21 302.5 3*20 n/a 0 116.0 Y
22 307.1 3*20 n/a 1 71.8 Y
23 314.6 3*20 n/a 1 76.0 Y
24 339.2 3*20 3*15 0 116.0 Y
25 340.0 3*20 n/a 1 18.2 Y
26 377.7 3*20 3*5, 2*10 0 82.2 N
27 391.7 3*15 3*5, 2*15 1 27.8 Y
28 410.6 3*15 n/a 1 27.5 Y
29 458.4 2*20 n/a 0 1.5 N
30 458.9 2*20 n/a 0 1.0 N

Table 3.9: Summary of patient assignments and re-assignments when patient 41 is enrolled.

Time
ID Enrolled Assign Reassign DLT Follow-up Comp
26 377.7 3*5, 2*10 n/a 0 116.0 Y
27 391.7 3*5, 2*15 n/a 1 27.8 Y
28 410.6 3*15 n/a 1 27.5 Y
29 458.4 2*20 2*5, 3*10 1 35.1 Y
30 458.9 2*20 2*5,3*5,1*5,2*5 0 116.0 Y
31 459.9 2*20 2*5,3*5,1*5,2*5 0 116.0 Y
32 468.0 2*20 2*17, 3*3 0 116.0 Y
33 500.6 2*20 2*10, 3*5, 2*5 0 91.1 N
34 520.2 2*20 2*10, 3*10 0 71.5 N
35 522.5 2*20 2*8, 3*2, 2*5,3*5 0 69.2 N
36 532.0 2*20 2*5,3*5,2*5,3*5 0 59.7 N
37 538.4 2*20 2*5, 3*10 0 53.3 N
38 540.6 2*20 2*5, 3*10 0 51.1 N
39 553.5 3*10 3*5,2*5,3*5 0 38.2 N
40 570.2 3*15 3*5, 2*15 0 21.5 N
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Table 3.10: Summary of patient assignments and re-assignments when patient 51 is enrolled.

Time
ID Enrolled Assign Reassign DLT Follow-up Comp
33 500.6 2*10, 3*5, 2*5 n/a 0 116.0 Y
34 520.2 2*10, 3*10 n/a 0 116.0 Y
35 522.5 2*8, 3*2, 2*5,3*5 n/a 0 116.0 Y
36 532.0 2*5,3*5,2*5,3*5 n/a 0 116.0 Y
37 538.4 2*5, 3*10 2*5,3*5,2*5,3*5 0 116.0 Y
38 540.6 2*5, 3*10 2*5,3*5,2*5,3*5 1 89.9 Y
39 553.5 3*5,2*5,3*5 3*5,2*10,3*5 0 116.0 Y
40 570.2 3*5, 2*15 3*5,2*10,3*5 0 116.0 Y
41 591.7 3*15 3*10,2*5,3*5 0 85.0 N
42 591.8 3*15 3*10,2*5,3*5 0 84.9 N
43 601.6 3*15 3*10,2*5,3*5 0 75.1 N
44 605.9 3*15 3*10,2*5,3*5 0 70.8 N
45 634.2 3*15 3*15 0 42.5 N
46 655.5 3*15 n/a 0 21.2 N
47 664.4 3*15 n/a 0 12.3 N
48 668.1 3*15 n/a 0 8.6 N
49 668.6 3*15 n/a 0 8.1 N
50 673.4 3*15 n/a 0 3.3 N
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Table 3.11: Summary of patient assignments and re-assignments at the end of the study.

Time
ID Enrolled Assign Reassign DLT Follow-up Comp
41 591.7 3*10,2*5,3*5 n/a 0 116.0 Y
42 591.8 3*10,2*5,3*5 n/a 0 116.0 Y
43 601.6 3*10,2*5,3*5 n/a 0 116.0 Y
44 605.9 3*10,2*5,3*5 n/a 0 116.0 Y
45 634.2 3*15 n/a 0 116.0 Y
46 655.5 3*15 3*20 0 116.0 Y
47 664.4 3*15 n/a 0 116.0 Y
48 668.1 3*15 n/a 0 116.0 Y
49 668.6 3*15 3*15,1*5 0 116.0 Y
50 673.4 3*15 3*15,1*5 0 116.0 Y
51 676.7 3*15 n/a 1 18.1 Y
52 712.7 3*15 3*20 1 28.0 Y
53 714.1 3*15 3*20 0 116.0 Y
54 728.3 3*15 3*20 1 113.5 Y
55 744.6 3*15 3*20 1 86.7 Y
56 761.0 3*20 n/a 0 116.0 Y
57 761.1 3*20 n/a 0 116.0 Y
58 766.6 3*20 n/a 0 116.0 Y
59 769.9 3*20 n/a 0 116.0 Y
60 773.7 3*20 n/a 0 116.0 Y
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CHAPTER IV

A Bayesian Phase I/II Adaptive Design to

Simultaneously Optimize Dose and Schedule

Assignments by Modeling Toxicity and Efficacy as

Time-to-event Outcomes

4.1 Introduction

Most published methodology of Phase I or Phase I/II oncology trials focuses on

dose finding. In such studies, the investigators usually propose a dosing schedule prior

to the onset of a study and aim to identify an optimal dose in terms of toxicity and/or

efficacy under that schedule. The traditional 3+3 method or more recent model-

based methods, for example, the Continual Reassessment Method (CRM) proposed

by O’Quigley, Pepe, and Fisher (1990), are suitable for Phase I dose-finding studies.

Alternatively, many Phase I/II dose-finding designs based on the joint outcomes of

both toxicity and efficacy have been proposed. For example, see Braun (2002), Thall

and Russell (1998), Thall and Cook (2004) and Yuan and Ying (2009).

It is obvious that such dose-finding studies might not perform well when the pre-

determined dosing schedule is not chosen correctly and leads to the conclusion that all

the doses under investigation are either too toxic or too inefficacious. To address this
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issue, Braun et al. (2007) first proposed a dose- and schedule-finding design based

on the schedule-finding design of Braun et al. (2004) by defining separate hazard

functions for modeling time to a dose-limiting toxicity (DLT) for each dose. Liu

and Braun (2009) also generalized the work of Braun et al. (2004) by incorporating

smoother hazard functions. Although the cited work focuses on nested schedules,

Li et al. (2008) explored a Phase I/II adaptive design for finding an optimal dose

and schedule combination when schedules are not nested by using a Bayesian isotonic

transformation and binary patient outcomes.

However, there are several design issues the current methods in dose- and schedule-

finding studies fail to address. First, most published methods for dose-schedule finding

were created with solely toxicity as the outcome while the extension to where toxicity

and efficacy outcomes are considered jointly is not obvious. Second, even though Li et

al. (2008) do model toxicity and efficacy outcomes jointly for dose-schedule finding,

their design requires binary patient outcomes and patients have to be fully followed

before a new cohort of patients can be enrolled. However, the efficacy outcome usually

requires a relatively long period of follow-up, resulting in an undesirably long trial.

In addition, a trial using such a design would be suspended to enrollment during fast

accrual because incoming patients would have to wait until all the enrolled patients

complete their follow-up. Third, intra-patient dose modifications during a trial are

common in practice, often a result of unexpected outcomes that may benefit from a

reduced dose. Also, in newer oncology trials involving molecularly targeted agents

with low toxicity rates, the investigator might intentionally apply intra-patient dose

escalation to those patients who do not achieve a certain efficacy endpoint after a

first treatment cycle in order to have better clinical outcomes (Cutsem et al. 2012).

However, there has not been any systematic approach to accommodate intra-patient

dose modification in Phase I/II studies.

To address the above design issues, we first define separate hazard functions for
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time to toxicity and time to response after a patient receives a single administra-

tion. We extend these hazards to accommodate multiple administrations using a

non-mixture cure rate model and derive the marginal survival function for toxic-

ity and efficacy outcomes. A copula model is then assumed for the joint survival

function. We further define acceptable and optimal dose-schedule treatment regimes

using the criteria based on both estimated toxicity and response rates. Patient ac-

crual, data monitoring, early stopping and outcome-adaptive regimen assignment are

done continually throughout the trial under a Bayesian formulation. We introduce

two case studies that motivate our work in Section 4.2 for both nested and non-nested

schedules. We describe our method and model in Section 4.3 and introduce the trial

conduct in Section 4.4. We illustrate our method and algorithm in our motivating

trials in Sections 4.5 and 4.6 for nested and non-nested schedules, respectively. We

conclude with a discussion in Section 4.7.

4.2 Case Studies

4.2.1 Nested Schedule - Treating acute myelogenous leukemia (AML)

and myelodysplastic syndrome (MDS)

Azacitidine is a DNA methyltransferase inhibitor with activity in myeloid disease.

It was hypothesized by de Lima, et al. (2010) that low-dose azacitidine administered

after transplant would reduce recurrence rates of AML and MDS. Instead of con-

sidering the long-term event-free survival, a short term efficacy endpoint in an early

phase trial is complete response (CR). The investigators investigated combinations

of five daily doses: 8, 16 and 32 mg/m2 and 4 schedules: 1, 2, 3, or 4 cycles, each

with five days of drug and 23 days of rest. A limited number of azacitidine cycles

were administered because of concerns of sustained myelosuppression as well as pos-

sible induction of graft-versus-host disease(GVHD). Toxicity is defined as any of the

following adverse events occurring within 116 days from the start of the first cycle:
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1) National Cancer Institute Grade 3 or higher renal, hepatic, cardiac, pulmonary, or

neurologic toxicity; 2) Grade 3/5 acute GVHD; 3) serious infection; 4) severe hema-

tologic toxicity/graft failure. Response is defined as the event of CR, that is, < 6%

bone marrow blasts and evidence of donor chimerism (> 80%) by DNA microsatellite

polymorphism analysis. Development of drug-related Grade 3 or 4 organ toxicity or

severe infection led to azacitidine discontinuation. Azacitidine was also discontinued

if platelet count dropped to < 10, 000/mm3, with 50% dose reduction if platelet count

dropped to < 20, 000/mm3.

4.2.2 Non-nested Schedule - Treating metastatic colorectal cancer

Irinotecan was the first drug to improve survival beyond that achieved with

standard first-line treatment of colorectal cancer. Combining irinotecan with oral

capecitabine is an interesting alternative in view of the practicability of the treat-

ment. However, there is no consensus on the dose and schedule of irinotecan in

presence of standard treatment of oral capecitabine (Borner et al. 2008). Two non-

nested schedules are suggested: weekly irinotecan on days 1, 8, 15, 22, 29 or tri-weekly

irinotecan on day 1 and days 22 every six weeks for six cycles. Doses for the weekly

schedule are 35, 70 and 90 mg/m2 and doses for the tri-weekly schedule are 180, 240

and 300 mg/m2. Hence, there are a total of six dose-schedule treatment regimes

under investigation. Toxicity is defined as any of the Grade 3/4 toxicity according

to the National Cancer Institute. Response is defined as any of a complete response

(CR), partial response (PR) or minor response (at least a 25% decrease in tumor size)

reviewed by an independent radiology panel. There is an intra-patient dose reduc-

tion rule stating that doses should be reduced by 25% in the subsequent treatment

cycles in case of Grade 3 non-hematological toxicity or by 50% in case of Grade 4

hematological toxicity.
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4.3 Methods

4.3.1 Preliminary Notation

A typical dose-schedule-finding trial involving nested schedules aims to identify an

optimal treatment regimen within a J×K matrix consisting of J doses and K nested

schedules. Patients receive administrations under schedule k, k = 1, . . . , K at times

s(k) = (s1, s2, . . . , sm(k)
) where s(1) ⊂ s(2) ⊂ . . . ⊂ s(K) and m(1) < m(2) < . . . < m(K).

In the azacitidine trial, there are J = 3 doses and K = 4 nested schedules. A single

course of treatment, includes 5 administrations on first 5 consecutive days and the

administration times are denoted by s(1) = (0, 1, 2, 3, 4). Patients receive the second

treatment course after 28 days of rest, hence s(2) = (0, 1, 2, 3, 4, 28, 29, 30, 31, 32) =

(s(1), s(1) + 28) and so on. Let dj denote the per-administration dose, j = 1, . . . , J ,

then sk and dj denote the possible dose and schedule regimes to be initially assigned

to a patient and dj ∈ (8, 16, 32) mg/m2. However, due to possible intra-patient dose

modification, the patient may not receive the same dose dj for each administration.

Hence, patient i may receive different doses di = (di,1, . . . , di,mi) at administration

times si = (si,1, . . . , si,mi) where mi is the number of administrations patient i has

received.

Non-nested schedules, in contrast, are qualitatively different from each other and

do not consist of the same treatment course. In the irinotecan trial, K = 2 non-nested

schedules are under investigation. The administration times are denoted as s10 =

(0, 7, 14, 21, 28) for a single treatment cycle using the weekly schedule and s20 = (0, 21)

for a single treatment cycle using the tri-weekly schedule. Since the investigator plans

six cycles, the administration times for the tri-weekly schedule are s(2) = (0, 21, 42,

63, 84, 105, 126, 147, 168, 189, 210, 231) = (s20, s
2
0+42, s20+84, s20+126, s20+168, s20+210).

Similarly, for the weekly schedule s(1) = (s10, s
1
0+42, s10+84, s10+126, s10+168, s10+210).

Contrary to nested schedules, the set of doses under investigation for each schedule
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could be different. Let d1j denote the per-administration dose j for the weekly schedule

and d2j denote for the corresponding dose for the tri-weekly schedule, where j =

1, . . . , J , the total number of doses considered for each schedule. In our example, J

=3, d1j ∈ (35, 70, 90) mg/m2 and d2j ∈ (180, 240, 300) mg/m2. Again, even though the

dose and schedule regimen sk and dkj , k = 1, . . . , K, might be assigned to patient i

initially, she might experience dose modification for later treatment cycles. We still

use di and si to denote the dose and schedule combination one actually receives.

Regardless of either nested or non-nested schedules, a patient will be followed for

a maximum duration of ωT and ωE for evaluating whether the patient experiences a

toxicity or response, respectively. The values ωT and ωE are often determined by the

clinician and also known as the duration of the evaluation window for toxicity and

efficacy.

4.3.2 Marginal Model for Time-to-Event After a Single Administration

Let c = T or R be an indicator for the toxicity outcome (T) or efficacy outcome

(R). We expect the hazard function for either outcome after a single administration to

increase with time to certain time and then attenuate as we want to mimic the biologic

of the agent (Liu and Braun, 2009). We define the hazard function at time ν for event

c as gc(ν|θc, φc) = θcf(ν|φc) where θc is a positive scale parameter and f(ν|φc) is a

probability density function with a certain restriction on the parameter φc such that

the mode of f(·) exists. Let F (ν|φc) denote the cumulative density function of f(·).

The above model corresponds to the non-mixture cure rate model proposed by Chen,

Ibrahim, and Sinha (1999) since the survival function S(ν|θc, φc) = exp[−θcF (ν|φc)] is

not proper and S(∞|θc, φc) = exp(−θc) > 0 is the cure probability, i.e., the proportion

of the population who would never experience toxicity (c=T) or response (c=R).

Therefore, 1− exp(−θc) is the toxicity or response rate after a single administration

of a dose with infinite follow-up.

Chen et al. (1999) also suggested modeling covariate effects through θc to maintain
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a proportional hazards structure. To make the concept distinct, we denote θi,l,c as the

cure parameter associated with dose di,l for administration l to patient i. Since θi,l,c >

0, we model it as a function of the dose di,l for administration l through log(θi,l,c) =

β0,c + exp(β1,c)di,l, where the slope is positive because it is reasonable to assume

that toxicity and response rates increase with dose. However, if the monotonicity

assumption is not valid, one option is to use a second order polynomial. We choose

f(·) to be the Weibull density function defined in Liu and Braun (2009): f(νi,l|φc) =

exp(−γc)αcναc−1i,l exp
[
−ναci,l exp(−γc)

]
where φc = (αc, γc) and we require αc > 1 so

the mode of the density exists. Therefore, the respective hazard and survival functions

for patient i after administration l at dose di,j are g(νi,l|βc,φc) = θi,l,cf(νi,l|φc) and

S(νi,l|βc,φc) = exp[−θi,l,cF (νi,l|φc)], in which βc = (β0,c, β1,c). More details about

the model assumptions have been presented in Chapter III.

4.3.3 Marginal Model for Time-to-Event After Multiple Administrations

Assume patient i receives mi administrations at administration times (si,1, si,2,

. . ., si,mi) and the respective per-administration doses are (di,1, di,2, . . ., di,mi). By

employing a competing risks approach, we assume that there is a latent event time

Yi,l after each administration, and the patient time when patient i experiences an

event is min(Yi,1 + si,1, . . . , Yi,mi + si,mi). At patient time ti, the survival function for

Yi is given by

φ(ti|β,φ, si,di) = P (Yi > ti) = P (Yi,1 > yi,1, . . . , Yi,mi > yi,mi)

where yi,l = ti − si,l.

However, we do not assume Yi,1, . . . , Yi,mi are independent since they are from

the same patient and we may want to consider within-patient correlation, which we

did not take into account in Chapter III. We introduce a frailty variable wi > 0,

conditional on which Yi,1, . . . , Yi,mi are independent. Specifically, after consider-
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ing bivariate outcomes (c=T or R), the hazard and survival functions after admin-

istration l of multiple administrations are g(νi,l|βc,φc, wi) = wiθi,l,cf(νi,l|φc) and

S(νi,l|βc,φc, wi) = exp[−wiθi,l,cF (νi,l|φc)]. While there are several choices for the

distribution of wi, the stable distribution is commonly used and expressed in the

form

z(w|λ) =
λ

1− λ
w−1/(1−λ)

1∫
0

J(µ) exp[− J(µ)

w
λ

1−λ
]dµ,

where

J(µ) = (
sin(λπµ)

sin(πµ)
)

λ
1−λ (

πµ(1− λ)

sin(πµ)
).

Using the Laplace transform of wi, considering bivariate outcomes (c =T, R) and

following the derivation of Chen, Ibrahim, and Sinha (2002), one can derive the

marginal survival function for the patient event time Yi,c as

ϕc(tc,i|βc,φc, λc, sc,i,dc,i) =

∞∫
0

P (Yi,1 > yi,1, . . . , Yi,mi > yi,mi |wi)z(wi|λ) dwi

= exp

−
[
mc,i∑
l=1

θc,i,lF (yc,i,l|φc)

]λc (4.1)

where log(θi,l,c) = β0,c + exp(β1,c)di,l. Note that the number of administrations mi,c

could be different when considering different outcomes, since toxicity and response

could occur at different times. λc > 0 is a correlation parameter that quantifies the

amount of within-patient correlation and λc = 1 implies that there is no within-patient

correlation.

The toxicity and response rate πc(j, k) for a dose-schedule combination (j, k)

within the duration of the respective evaluation windows ωc is then given by πc(j, k) =

1− ϕc(ωc) where the parameters are omitted for brevity.
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4.3.4 Joint Model, Likelihood and Posterior

In order to take into account the possible correlation between times to toxic-

ity and efficacy, we construct the joint bivariate survival function by employing

an Archimedean copula model, which specifies a well-defined relationship between

marginal and joint distributions. We adopt the Clayton copula model (Clayton 1978;

Yuan and Ying 2009) because it is simple and easy to interpret. Specifically, the

bivariate survival function is given by

S(tT,i, tE,i|ζ,βT ,φT , λT ,βE,φE, λE, si,di)

=
[
ϕT (tT,i|βT ,φT , λT , sT,i,dT,i)−ζ + ϕE(tE,i|βE,φE, λE, sE,i,dE,i)−ζ − 1

]−1/ζ
(4.2)

Note that ζ > 0 is a correlation parameter that defines the amount of correlation

between times to toxicity and response. There is no correlation when ζ = 0 since

Kendall’s tau that measures bivariate association is equal to ζ/(2 + ζ).

For toxicity, define patient time YT,i = min(YT,i, UT,i) and δT,i = I(YT,i ≤ UT,i),

where UT,i denotes the censoring time and I(·) is the indicator function. Hence, we

observe toxicity for patient i if Ci = 1. Similarly, YE,i and δE,i are defined for efficacy.

Since interim analyses are performed whenever a new cohort is enrolled, by the time

cohort n+ 1 is enrolled, we denote the number of patients currently in the study as n

and for each enrolled patient, we observe yT,i, δT,i, yE,i, δE,i, si and di, where si and

di, as we defined previously, are the respective time and dose for each administration

patient i has received, i = 1, . . . , n. Note Ui = min(Wi,n+1, ω), where Wi,n+1 is the

inter-patient time between patient i and n + 1. If n = N , the maximum number

of patients for the study, then define Wi,n+1 as the time between patient i and the

end of the study. It is reasonable to assume random censoring since Wi,n+1 is usually

independent of the DLT time and ω is a fixed value. Based on the above information

and (4.2), the likelihood of the data Di = (yT,i, δT,i, yE,i, δE,i, si,di) for patient i is
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given by

L(τ |Di) = L
δT,iδE,i
1 L

δT,i(1−δE,i)
2 L

(1−δT,i)δE,i
3 L

(1−δT,i)(1−δE,i)
4 ,

where,

L1 = ∂2S(yT,i, yE,i|τ , si,di)/∂yT,i∂yE,i,

L2 = −∂S(yT,i, yE,i|τ , si,di)/∂yT,i,

L3 = −∂S(yT,i, yE,i|τ , si,di)/∂yE,i,

L4 = S(yT,i, yE,i|τ , si,di).

Let τ = (ζ,βT ,φT , λT ,βE,φE, λE). After determining the prior distribution p(τ ),

the posterior distribution of τ based on D = {Di : i = 1, ..., n} is

p(τ |Di) ∝ p(τ )
n∏
i=1

L(τ |Di)

We can compute posterior quantities via adaptive Markov Chain Monte Carlo (MCMC)

methods (Rosenthal 2007). Those posterior quantities will be used to identify the

dose-schedule assignment for a new cohort of patients.

4.3.5 Establishing Prior Distributions

For the parameters βc and λc (c=T or R), we assign independent Gaussian distri-

butions with prior mean and prior variance (µ0, σ
2
0,c) for β0,c, (µ1,c, σ

2
1,c) for β1,c and

(µ3,c, σ
2
2,c) for log(λc). The means are elicited from the investigators who are asked to

provide the “skeleton” P , the a priori estimates of the toxicity and response rates for

all dose-schedule combinations, in which element (j, k), denoted Pjk, corresponds to

the toxicity rate or response rate of dose j and schedule k treatment regimen. We then

fit the linear regression model log(− log[1−Pjk,c]) = λc log(mk,c)+λcb0,c+λc exp(b1,c)dj

72



(dj is replaced by dkj for non-nested schedules) derived from Equation (4.1) and use

the ordinary least square estimates b̂0,c, b̂1,c and λ̂c as the respective values for µ0,c,

µ1,c and µ2,c.

For the parameters of the Weibull density in the hazard, φc = (αc, γc), we adopt

the same approach outlined in Chapter III and in Liu and Braun (2009). Specifically,

we keep αc fixed to maintain a parsimonious model and limit the number of parameters

to estimate. In addition, we assign a Gaussian prior distribution for γc with mean

µγ,c and variance σ2
γ,c.

For the correlation parameter ζ for the bivariate time-to-event outcomes, we re-

parameterize ζ = (ζs)
2 and assign a Gaussian distribution with mean µζ and variance

σ2
ζ to ζs. We choose µζ to be 0.

As in Chapter III, we recommend calibrating the prior variances through simula-

tions using a few different skeletons and prior variances. The prior variance that is

the most insensitive to skeletons and leads to the best operating characteristics will

be used for a real trial.

4.4 Trial conduct

4.4.1 Decision Criteria

We adopt the decision criteria in terms of posterior probabilities given D at any

interim analysis in the trial similar to Thall and Russell (1998) and many other

Phase I/II trial designs. Given upper probability cutoffs pT and pE, we consider a

dose-schedule combination, denoted by (j,k), to be a regimen with acceptably low

toxicity rate if

P{πT (j, k) < πT |D} > pT (4.3)
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and to be a regimen with acceptably high response rate if

P{πE(j, k) > πE|D} > pE, (4.4)

where πT and πE are a fixed upper limit on toxicity rate and lower limit on response

rate respectively. A dose-schedule regimen is acceptable if it satisfies both (4.3) and

(4.4). We denote the set of acceptable strategies based on D to be A(D). In order

to have good operating characteristics for the design, the values of cut-off values pT

and pE should be carefully calibrated via simulations prior to the onset of a trial.

The optimal regimen was defined to be the one in A(D) that maximizes the

posterior response probability in (4.4), a rule proposed by Thall and Russell (1998).

However, the above criteria might not work well when πE(j, k) is much above pT for

several dose-schedule regime because the probabilities in (4.4) would be very close to

1 and cause some numerical problems, since there would be more than one optimal

treatment regime. Hence, we further propose the following additional criteria for

accepting a dose-schedule regimen:

π̂T (j, k) < πT + ∆T (4.5)

for toxicity and

π̂E(j, k) > πE −∆E (4.6)

for efficacy. π̂T (j, k) and π̂E(j, k) are posterior mean of the toxicity and response

rates; ∆T and ∆E are cut-off values and usually assumed to be equal. We further

re-define the set A(D) to be those strategies that satisfy (4.3) to (4.6).
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4.4.2 Trial Conduct for Nested Schedules

We plan on enrolling a maximum of N patients in the trial in V cohorts with

n0 patients per cohort, and each patient will be followed for ωT and ωE days after

enrollment for toxicity and efficacy respectively. The first cohort of patients are

enrolled at study time t = 0 and assigned to the shortest schedule (k = 1) with the

lowest dose (j = 1) or the dose-schedule regimen specified by the clinician. When

cohort i = 2, . . . , V is to be enrolled in the study at study time t, we perform the

following steps:

(a) Record the observed data Di′ for each enrolled patient i
′
= 1, 2, . . . , (i− 1)n0;

(b) Compute the likelihood and draw samples from posterior distributions;

(c) Similar to Thall and Cook (2004), dose-schedule combination (j, k) ∈ A(D) if

(j, k) satisfies (4.3) to (4.6), or if (j, k) is the lowest untried regimen above the

starting regimen and it satisfies (4.3) and (4.5);

(d) If A(D) 6= φ, then the next cohort is treated at the optimal regimen in A(D),

subject to the constraint that no untried dose or schedule can be skipped when

escalating;

(e) If A(D) = φ, then consider the following conditions:

(i) If (4.3) or (4.5) is not satisfied, then the trial is terminated and no dose-

schedule regimen is selected;

(ii) if it is the first time that (4.3) and (4.5) are satisfied but not for (4.4)

or (4.6), then treat the next cohort at the regimen that maximizes the

estimated response rate subject to the same no-skipping rule in (c); Oth-

erwise if it is not the first time, then terminate the trial and no regimen is

selected.
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(f) If all N patients have been enrolled and the trial is not stopped early, then

select the combination in A(DN) that maximizes the estimated response rate

(we use its posterior mean) in (4.6).

4.4.3 Trial Conduct for Non-nested Schedules

In contrast with nested schedules, the ordering in terms of either toxicity or re-

sponse rates of two dose-schedule regime with two different non-nested schedules are

usually unknown. Hence, in order to have good operating characteristics, some as-

pects of the algorithm used for nested schedules need to be modified even though

the rest remains the same. Firstly, the lowest dose-schedule combination is unknown

and hence the regimen to be assigned to the first cohort has to be specified by the

clinician. Secondly, we introduce adaptive randomization when assigning the a dose-

schedule regimen to the next cohort rather than assigning the optimal regimen to the

next cohort in the steps (d) and (e)(ii) with probability 1. The randomization is done

as follows:

(i) Compute the estimated response rates π̂E(j, k) for all dose-schedule regime in

A(D);

(ii) For each schedule k = 1, . . . , K, find the jopt(k) = argmax
j=1,2,...,J

π̂E(j, k);

(iii) Treat the next cohort at the regimen (jopt(k), k) with the randomization prob-

ability

r(jopt(k), k) =
π̂E(jopt(k), k)∑K

k′=1 π̂E(jopt(k′), k′)

where π̂E(jopt(k′) = 0 if jopt(k′) = φ.
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4.5 Application - The Azacitidine Trial

4.5.1 Simulation Design

In the motivating azacitidine trial, the clinicians specified J = 3 doses of interest:

8, 16 and 24 mg/m2, and K = 4 nested schedules, for a total of 12 combinations. A

course consists of five daily consecutive administrations followed by 28 days of rest

as described in the example in Section 4.3.1, and schedule k consists of k consecutive

courses. The maximum follow-up time for each patient is ωT = ωE = 116 days. A

maximum of N = 60 patients will be enrolled with the cohort size 3. The algorithm

was implemented with pT = 0.4, pE = 0.1, πT = 0.35 ,πE = 0.35 and ∆T = ∆E = 0.05

starting at the lowest dose and schedule (dose 1 and schedule 1). Investigators would

like to determine which of the 12 combinations is the optimal treatment regimen in

terms of both toxicity and efficacy.

We asked the investigator to provide the estimates of the toxicity and response

rates for each of the 12 dose-schedule combinations. The skeleton specifies the middle

combinations to be the optimal regimes. The actual values of the skeleton can be

found in Table 4.2. We used the methods described in Section 4.3.5 to calculate

the prior means that are shown in Table 4.1. We calibrated the prior variances

of our model parameters through a process outlined in Chapter III. We assumed

the variances for all the prior distributions are equal and tried three different prior

standard deviations, 1, 2 and 4. We selected prior standard deviation(SD)=2 for the

trial.

We examined our approach in eight different scenarios that are summarized in Ta-

ble 4.2 in which the true toxicity and response rates are denoted by a pair (πT , πE).

The true toxicity and response rates of every combination of dose and schedule were

generated by the model used in our methods with the frailty following the positive

stable distribution defined in Section 4.3.3. We simulated patients to have exponen-
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Table 4.1: Means and standard deviations of the prior normal distributions for each parameter in
the azacitidine trial.

Parameter Mean Sd

β0,T -5.02 2
β1,T -0.76 2

log(λT ) -0.43 2
αT 1.87 0
γT 1.27 2
β0,E -5.29 2
β1,E -0.55 2

log(λE) -0.73 2
αE 1.88 0
γE 1.27 2
ζs 0 2

tially distributed inter-arrival times with a mean of two weeks, and we divided all the

follow-up times by 10 to achieve better numerical stability for our model. When a new

cohort is enrolled, an interim analysis is performed in which a single chain of 6, 000

samples, after a burn-in of 4, 000 samples, is drawn from the posterior distribution

for each parameter. These posterior draws are then used to determine the dose and

schedule assigned to the new patient. We evaluated the performance of our approach

by comparing the correct selection frequency at the end of the study and the mean

proportion of patients assigned to each dose-schedule combination. We performed

500 simulations in each scenario; our computer code is available upon request.

4.5.2 Simulation Results

Table 4.3 contains a summary of the performance of our design in the eight sce-

narios described in Table 4.2. Columns 3-6 describe the proportion of simulations in

which each of the dose-schedule combination is selected as the optimal regimen at the

end of the study. Column 7 describes the proportion of simulations that are stopped

early. The next three columns have a similar interpretation related to the average
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Table 4.2: The true toxicity and response rates and the skeleton used in the simulation study. The
boldfaced values correspond to acceptable combinations.

Schedule (πT , πE)

Sc. Dose 1 2 3 4

1 1 (0.54,0.41) (0.71,0.55) (0.80,0.63) (0.86,0.69)
2 (0.56,0.43) (0.73,0.57) (0.82,0.66) (0.88,0.71)
3 (0.59,0.45) (0.75,0.59) (0.84,0.68) (0.89,0.73)

2 1 (0.03,0.02) (0.05,0.04) (0.07,0.05) (0.09,0.06)
2 (0.03,0.02) (0.06,0.04) (0.09,0.06) (0.11,0.08)
3 (0.04,0.03) (0.08,0.05) (0.11,0.07) (0.14,0.09)

3 1 (0.06,0.18) (0.11,0.26) (0.16,0.32) (0.19,0.36)
2 (0.11,0.26) (0.19,0.36) (0.27,0.44) (0.33,0.49)
3 (0.19,0.36) (0.32,0.49) (0.43,0.58) (0.51,0.64)

4 1 (0.05,0.10) (0.07,0.18) (0.1,0.24) (0.11,0.27)
2 (0.08,0.14) (0.12,0.26) (0.16,0.34) (0.18,0.39)
3 (0.12,0.21) (0.20,0.36) (0.25,0.48) (0.29,0.53)

5 1 (0.14,0.28) (0.20,0.40) (0.25,0.48) (0.29,0.55)
2 (0.28,0.30) (0.39,0.43) (0.46,0.52) (0.52,0.58)
3 (0.50,0.33) (0.65,0.46) (0.74,0.55) (0.80,0.62)

6 1 (0.13,0.14) (0.21,0.20) (0.28,0.24) (0.33,0.27)
2 (0.20,0.28) (0.32,0.39) (0.41,0.46) (0.48,0.49)
3 (0.30,0.50) (0.46,0.65) (0.58,0.74) (0.65,0.77)

7 1 (0.26,0.54) (0.38,0.59) (0.46,0.62) (0.51,0.64)
2 (0.34,0.55) (0.48,0.60) (0.57,0.63) (0.62,0.65)
3 (0.44,0.55) (0.60,0.60) (0.69,0.63) (0.74,0.65)

8 1 (0.05,0.07) (0.10,0.13) (0.13,0.18) (0.16,0.21)
2 (0.10,0.20) (0.18,0.33) (0.24,0.44) (0.29,0.51)
3 (0.18,0.47) (0.32,0.70) (0.42,0.82) (0.48,0.88)

Skeleton 1 (0.13,0.18) (0.21,0.28) (0.28,0.33) (0.32,0.35)
2 (0.14,0.28) (0.30,0.33) (0.34,0.40) (0.38,0.44)
3 (0.30,0.33) (0.35,0.44) (0.40,0.48) (0.45,0.53)
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percentage of dose-schedule assignments during the study.

Overall, we are able to identify acceptable dose-schedule combinations at the end

of the study in a majority of simulations and stop the trial early if there is no regimen

that is both safe and efficacious. In Scenario 1, all the regimes are overly toxic

because all of their toxicity rates are above the upper limit πT . We terminated the

trial in 100% of the simulations. In Scenario 2, none of the regimes is efficacious

enough because all of the response rates are below the lower limit πE. The trial

was terminated in all the simulations. In Scenarios 3-8, we are able to identify the

acceptable and the optimal regimes with high probability. For example, in Scenario 5,

the combinations of dose 1 and one of schedules 2-4 are acceptable treatment regimes.

But the combinations (dose 1, schedule 3) and (dose 1, schedule 4) have much higher

response rates but still relatively low toxicity rates; hence they could be considered as

the optimal combinations in this scenario. We select them 15% and 65% respectively

at the end of trial. Scenario 6 might be the most difficult for dose-schedule finding

among the scenarios we explored, because there are only two acceptable dose-schedule

treatment regimes and their toxicity rates are very close to πT but their response rates

are not much higher than πE. The trial was stopped early in 10% of the simulations

due to the difficulty in finding the correct treatment regimes. Even in this scenario,

we selected the acceptable regimes in 50% of the simulations. In Scenario 7, the trial

was stopped with the probability 13%. This is because most of the combinations are

overly toxic and only two are acceptable ones.

In terms of patient assignment, we find that a high percentage of patients were

treated at the acceptable dose-schedule regimes. In Scenario 1, we treated 20% of the

total patients before the trial was stopped early due to safety and most of the enrolled

patients were treated at the lowest dose and schedule combination. In Scenario 2,

we enrolled 35% of the total patients before the trial was terminated due to futility

and most of treated patients were on the highest dose-schedule regimen. In Scenarios
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Table 4.3: Simulation results for the azacitidine trial with sample size of N = 60. Columns “%
Sel” gives the percentage of identifying each dose-schedule combination as the optimal treatment
regimen. Column “ None” gives the percentage of simulations that were stopped early. Columns “%
Pat” gives the mean proportion of patients assigned to each dose-schedule regimen. The boldfaced
values correspond to acceptable combinations.

% Sel % Pat

Schedule Schedule

Scenario Dose 1 2 3 4 None 1 2 3 4

1 1 0 0 0 0 100 11 2 1 3
2 0 0 0 0 2 1 0 1
3 0 0 0 0 0 0 0 0

2 1 0 0 0 0 100 0 0 0 6
2 0 0 0 0 0 0 0 5
3 0 0 0 0 0 0 0 24

3 1 0 0 1 10 1 0 1 1 16
2 0 4 17 33 1 2 6 31
3 8 17 6 2 3 8 9 22

4 1 0 0 0 0 1 0 0 0 6
2 0 0 0 5 0 0 0 10
3 0 1 6 87 0 1 2 80

5 1 2 6 15 65 2 2 5 8 51
2 3 3 2 1 4 6 6 8
3 1 0 0 0 3 2 3 3

6 1 0 3 5 11 10 1 3 4 17
2 14 14 4 0 8 10 6 9
3 36 2 0 0 19 9 4 6

7 1 52 7 1 0 13 29 14 6 9
2 19 1 0 0 14 5 3 3
3 6 0 0 0 5 2 1 1

8 1 0 0 0 1 0 0 0 0 8
2 0 2 6 12 0 2 3 17
3 26 39 9 5 9 19 14 27
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3-8, we were able to treat many patients at the acceptable regimes: 66%, 93%, 64%,

29%, 57% and 48% respectively. At the same time, we did not expose many patients

to overly toxic combinations. For example, if we consider the regimes with toxicity

rate over πT + 0.05 as overly toxic, the percentage of overdosed patients are 20%, 0%,

22%, 0%, 25%, 34%, 31% and 27% in Scenarios 1-8 respectively.

We calibrated the variances of the prior distributions via simulations. Table 4.4

summarizes the simulation results using prior SD = 1 and 4. We note that the

results are quite similar for prior SD =1 and 2. However, the results from using prior

SD=4 differ greatly from others because we note more simulations were stopped early.

Hence, we chose prior SD= 2 because our design selected the correct regimen slightly

more often in Scenario 5 however quite similar in other scenarios.

We examined the sensitivity of our design to model misspecification in Table 4.5.

Our model assumes a positive stable frailty, so we evaluated our method when the

frailty actually follows an Inverse Gaussian distribution with mean 1 and variance

adjusted to make the toxicity and response rates for each scenarios match Table

4.3. Overall, we find that our design’s ability to identify and assign the correct dose-

schedule regimes is not compromised, although we might assign slightly more patients

to toxic treatment regimes.

We also examined the sensitivity of our design to the maximum sample size by

repeating our simulations using sample sizes of 48 and 72, the results of which are

summarized in Table 4.6. The results show that decreasing the sample size from 60

to 48 may result in a nontrivial loss is selecting and assigning correct combinations.

However, increasing the sample size from 60 to 72 only produces a minor increase

in the selection and assignment of correct combinations. Therefore, we selected a

maximum number of 60 patients for this study.
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Table 4.4: Simulation results for the azacitidine trial with sample size of N = 60 using different
prior variances. Columns “% Sel” gives the percentage of identifying each dose-schedule combination
as the optimal treatment regimen. Column “ None” gives the percentage of simulations that were
stopped early. Columns “% Pat” gives the mean proportion of patients assigned to each dose-schedule
regimen. The boldfaced values correspond to acceptable combinations.

% Sel % Pat

Schedule Schedule

Prior Sd Scenario Dose 1 2 3 4 None 1 2 3 4

1 1 1 0.2 0 0 0 99.8 16 4 2 2
2 0 0 0 0 2 1 0 1
3 0 0 0 0 0 0 0 0

2 1 0 0 0 0 100 0 0 0 6
2 0 0 0 0 0 0 0 6
3 0 0 0 0 0 0 0 25

5 1 1 9 18 59 1 1 4 9 50
2 2 6 3 1 3 7 7 9
3 1 0 0 0 4 3 3 1

6 1 0 1 5 14 8 0 2 4 19
2 13 15 3 0 6 10 8 10
3 37 3 0 0 20 10 5 4

7 1 59 16 4 1 2 24 20 10 13
2 16 1 0 0 12 6 3 4
3 1 0 0 0 4 2 1 1

4 1 1 0.2 0 0 0 99.8 10 2 0 3
2 0 0 0 0 1 1 0 1
3 0 0 0 0 0 0 0 0

2 1 0 0 0 0 100 0 0 0 6
2 0 0 0 0 0 0 0 6
3 0 0 0 0 0 1 1 21

5 1 3 7 12 63 4 3 6 7 48
2 3 2 2 1 4 5 5 8
3 1 0 0 0 4 2 2 4

6 1 0 5 3 9 12 3 5 4 14
2 18 13 3 1 9 10 5 7
3 31 4 0 0 20 9 4 7

7 1 37 6 1 1 27 26 10 4 7
2 16 0 0 0 13 4 2 3
3 12 0 0 0 9 2 1 1
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Table 4.5: Simulation results for the azacitidine trial under model mis-specification with sample size
of N = 60. Columns “% Sel” gives the percentage of identifying each dose-schedule combination
as the optimal treatment regimen. Column “ None” gives the percentage of simulations that were
stopped early. Columns “% Pat” gives the mean proportion of patients assigned to each dose-schedule
regimen. The boldfaced values correspond to acceptable combinations.

% Sel % Pat

Schedule Schedule

Scenario Dose 1 2 3 4 None 1 2 3 4

1 1 0.2 0 0 0 99.8 13 3 2 2
2 0 0 0 0 2 1 0 0
3 0 0 0 0 0 0 0 0

2 1 0 0 0 0 100 0 0 0 5
2 0 0 0 0 0 0 0 6
3 0 0 0 0 0 0 0 23

3 1 0 0 0 6 2 0 0 0 12
2 0 2 16 33 0 1 5 31
3 6 21 11 4 3 9 11 28

4 1 0 0 0 0 2 0 0 0 5
2 0 0 0 3 0 0 0 9
3 0 0 5 89 0 1 2 82

5 1 0 6 10 78 2 1 4 7 56
2 1 2 1 0 4 6 6 6
3 0 0 0 0 4 2 3 2

6 1 0 2 3 11 5 1 3 3 15
2 11 19 5 1 6 11 9 10
3 40 2 0 0 23 9 4 6

7 1 54 12 2 1 7 28 16 6 9
2 18 1 0 0 15 5 3 4
3 4 0 0 0 5 2 1 1

8 1 0 0 0 0 1 0 0 0 7
2 0 0 3 17 0 1 2 18
3 20 38 15 6 7 20 14 32
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Table 4.6: Simulation results for the azacitidine trial under with sample size of N = 48 and 72.
Columns “% Sel” gives the percentage of identifying each dose-schedule combination as the optimal
treatment regimen. Column “ None” gives the percentage of simulations that were stopped early.
Columns “% Pat” gives the mean proportion of patients assigned to each dose-schedule regimen.
The boldfaced values correspond to acceptable combinations.

% Sel % Pat

Schedule Schedule

Prior Sd Scenario Dose 1 2 3 4 None 1 2 3 4

48 1 1 0 0 0 0 100 12 2 2 2
2 0 0 0 0 2 0 0 0
3 0 0 0 0 0 0 0 0

2 1 0 0 0 0.2 99.8 0 0 0 6
2 0 0 0 0 0 0 0 6
3 0 0 0 0 0 0 0 24

5 1 2 11 14 57 2 2 5 6 35
2 3 3 4 1 3 5 6 8
3 2 0 0 0 3 2 2 3

7 1 49 12 2 1 10 21 11 5 9
2 17 1 0 0 11 5 2 4
3 6 0 0 0 5 2 1 1

8 1 0 0 0 0 1 0 0 0 7
2 0 3 6 13 0 1 3 14
3 22 35 12 7 6 14 10 25

72 1 1 0 0 0 0 100 12 2 1 3
2 0 0 0 0 2 1 0 1
3 0 0 0 0 0 0 0 0

2 1 0 0 0 0 100 0 0 0 6
2 0 0 0 0 0 0 0 5
3 0 0 0 0 0 0 0 23

5 1 1 6 13 73 1 2 5 9 67
2 1 3 2 0 4 6 6 9
3 0 0 0 0 3 3 3 3

7 1 58 8 0 1 11 40 17 7 9
2 19 0 0 0 19 5 3 3
3 4 0 0 0 6 2 1 1

8 1 0 0 0 0 0 0 0 0 7
2 0 1 5 17 0 2 3 21
3 32 35 8 2 13 27 16 30
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4.6 Application - The Irinotecan Trial

4.6.1 Simulation Design

In the motivating irinotecan trial, clinicians specified J = 3 doses for each of

the two non-nested schedules, for a total of 6 combinations. Specifically, the doses

are 35, 70 and 90 mg/m2 for weekly schedule and 180, 240 and 300 mg/m2 for tri-

weekly schedule. The maximum follow-up time for each patient is ωT = ωE = 420

days. A maximum of N = 72 patients will be enrolled in cohorts of three patients.

The algorithm was implemented with pT = 0.4, pE = 0.1, πT = 0.35 and πE =

0.35. (dose 1, schedule 1) is assigned to the first cohort and (dose 1, schedule 2)

is assigned to the second cohort, because the ordering of toxicity or response rate

of the two dose-schedule regimes is unknown. Our algorithm begins with the third

cohort. Investigators would like to determine which of the six combinations is the

optimal treatment regimen for both toxicity and efficacy. The prior means as well

prior variances of model parameters are shown in Table 4.7 and the skeleton can be

found in Table 4.8 and Table 4.9. We tried three different prior SDs (1, 2 and 4) and

selected prior SD = 1 for the trial.

We examined our approach in seven different scenarios that are summarized in

Table 4.8. The true toxicity and response rates are also generated from our assumed

model. We simulated patients to have exponentially distributed inter-arrival times

with a mean of four weeks. The rest of the simulation designs are the same as those

in Section 4.5.

4.6.2 Simulation Results

Overall, our design performs well in all of the seven scenarios according to the

results summarized in Table 4.8. In Scenarios 1-2, the trial was stopped early in 100%

and 99.6% of the simulations due to toxicity and futility respectively. We assigned 15%

and 29% of the patients before the trial was terminated on average. In Scenarios 3-8,
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Table 4.7: Means and standard deviations of the prior normal distributions for each parameter:
non-nested

Parameter Mean Sd

β0,T -4.88 1
β1,T -1.131 1

log(λT ) 0.72 1
αT 1.87 0
γT 1.26 1
β0,E -4.59 1
β1,E -1.134 1

log(λE) 0.47 1
αE 1.88 0
γE 1.26 1
ζs 0 1

we are able to select the acceptable regimes with probabilities 100%, 100%, 57%, 80%

and 65%. For patient assignment, we note that most of patients were treated at

acceptable dose-schedule regimes.

We examined the sensitivity of our design to the maximum sample size by re-

peating our simulations using sample sizes of 60, the results of which are summarized

in Table 4.9. The results show that decreasing the sample size from 72 to 60 may

result in a nontrivial loss is selecting and assigning correct combinations. Therefore,

we selected a maximum number of 60 patients for this study. We also examined the

sensitivity of our design for prior variance and model misspecification. Our conclusion

is similar to that in the azacitidine trial and we have omitted these results for brevity.

4.7 Discussion

In our algorithm, we define the acceptable dose-schedule regimes to be the set

A(D) that satisfies both toxicity and efficacy constraints and we further define the

optimal regimen to be the regimen in A(D) with the highest estimated response rate.

More generally, the optimal dose-schedule regimen could be based on maximizing
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Table 4.8: Simulation results for the itinotecan trial with sample size of N = 72. Columns “%
Sel” gives the percentage of identifying each dose-schedule combination as the optimal treatment
regimen. Column “ None” gives the percentage of simulations that were stopped early. Columns “%
Pat” gives the mean proportion of patients assigned to each dose-schedule regimen. (π0

T ,π0
E) denotes

the skeleton used in the trial. The boldfaced values correspond to acceptable combinations.

Weekly Schedule Tri-weekly Schedule

Sc. Dose 1 Dose 2 Dose 3 Dose 1 Dose 2 Dose 3 None

(π0
T ,π0

E) (.07,.15) (.15,.40) (.33,.50) (.05,.15) (.19,.40) (.32,.50)

1 (πT ,πE) (.55,.27) (.67,.36) (.74,.43) (.51,.28) (.72,.46) (.9,.67)
% Sel 0 0 0 0 0 0 100
% Pat 10 1 0 15 1 0

2 (πT ,πE) (.07,.08) (.09,.09) (.11,.11) (.06,.05) (.1,.07) (.18,.09)
% Sel 0 0 0 0 0 0.4 99.6
% Pat 4 4 15 4 4 8

3 (πT ,πE) (.07,.27) (.09,.36) (.11,.43) (.06,.28) (.1,.46) (.18,.67)
% Sel 0 0 10 0 0 90 0
% Pat 4 4 36 9 5 41

4 (πT ,πE) (.11,.5) (.15,.56) (.18,.59) (.1,.28) (.17,.35) (.29,.43)
% Sel 0 0 98 0 0 2 0
% Pat 5 5 46 9 8 27

5 (πT ,πE) (.25,.51) (.4,.63) (.51,.71) (.49,.52) (.83,.74) (.99,.91)
% Sel 57 10.4 0 1 0 0 31
% Pat 47 12 1 16 1 0

6 (πT ,πE) (.37,.51) (.45,.63) (.5,.71) (.26,.52) (.38,.74) (.53,.91)
% Sel 10 5 0 43 27 4 11
% Pat 21 7 4 34 19 8

7 (πT ,πE) (.2,.29) (.26,.4) (.31,.47) (.21,.32) (.33,.52) (.5,.76)
% Sel 3 9 28 6 37 15 3
% Pat 12 12 24 17 19 15
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Table 4.9: Simulation results for the itinotecan trial with sample size of N = 60. Columns “%
Sel” gives the percentage of identifying each dose-schedule combination as the optimal treatment
regimen. Column “ None” gives the percentage of simulations that were stopped early. Columns “%
Pat” gives the mean proportion of patients assigned to each dose-schedule regimen. π0

T ,π0
E denotes

the skeleton used in the trial. The boldfaced values correspond to acceptable combinations.

Weekly Schedule Tri-weekly Schedule

Sc. Dose 1 Dose 2 Dose 3 Dose 1 Dose 2 Dose 3 None

(π0
T ,π0

E) (.07,.15) (.15,.40) (.33,.50) (.05,.15) (.19,.40) (.32,.50)

1 (πT ,πE) (.55,.27) (.67,.36) (.74,.43) (.51,.28) (.72,.46) (.9,.67)
% Sel 0 0 0 0 0 0 100
% Pat 12 0 0 17 2 0

2 (πT ,πE) (.07,.08) (.09,.09) (.11,.11) (.06,.05) (.1,.07) (.18,.09)
% Sel 0 0 0.4 0 0 0.4 99.2
% Pat 5 5 18 10 5 10

3 (πT ,πE) (.07,.27) (.09,.36) (.11,.43) (.06,.28) (.1,.46) (.18,.67)
% Sel 0 0 17 0 1 83 0
% Pat 5 5 35 10 6 38

4 (πT ,πE) (.11,.5) (.15,.56) (.18,.59) (.1,.28) (.17,.35) (.29,.43)
% Sel 0 1 95 0 0 4 0
% Pat 6 6 41 11 9 26

5 (πT ,πE) (.25,.51) (.4,.63) (.51,.71) (.49,.52) (.83,.74) (.99,.91)
% Sel 52 13 1 2 0 0 33
% Pat 44 12 2 20 2 0

6 (πT ,πE) (.37,.51) (.45,.63) (.5,.71) (.26,.52) (.38,.74) (.53,.91)
% Sel 7 2 1 42 31 4 13
% Pat 22 8 4 32 18 9

7 (πT ,πE) (.2,.29) (.26,.4) (.31,.47) (.21,.32) (.33,.52) (.5,.76)
% Sel 5 11 31 5 30 15 3
% Pat 14 13 22 18 18 14
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the posterior estimate of a utility function that explicitly incorporates the trade-off

between toxicity and efficacy. Obviously, the utility function should decrease with the

toxicity rate and increase with the response rate. For instance, a possible choice is

the odds ratio between the response and toxicity rate. However, the odds ratio might

not work for all drugs, since the critical aspect of using a utility function is that it

should reflect clinical knowledge and background. Hence, it is important to interact

with clinicians regarding the details on toxicity and efficacy trade-off.

Another possible extension of our current method is to implement dose and/or

schedule re-assignment to our design. While dose-schedule regimen is assigned to the

next cohort adaptively during the trial, a patient, once being assigned, is assumed to

receive the same initially assigned regimen (except when the dose is reduced due to

the dose reduction rule) even though it might turn out to be a sub-optimal regimen

later in the trial. However, the benefit of introducing re-assignment in a Phase I/II

trial is not directly clear. Furthermore, the potential benefit might really depend on

what utility function and re-assignment rule are used in the trial.

We used a relatively parsimonious model in our design because the sample size is

usually small in early phase trials and the overall model fit is not the primary goal

for a dose and/or schedule finding study. However, if the investigator is concerned

about the model assumptions, we could certainly adopt a more complex model. For

example, one could model the correlation parameter λc as a function of dose to make

the model more flexible. A strong assumption made in our method is that the toxicity

and response rates increase with dose, which is reasonable for azacitidine, irinotecan

and many other cytotoxic agents. However, for some newer cytostatic agents, the

response rates might not necessarily increase with dose. In such situations, one might

use a second order polynomial to model the relationship between log(θc) and dose.

Another assumption in our model is that we can observe the exact event time for

both toxicity and efficacy outcomes. However, in practice, one might only observe
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them in a certain interval, for instance, it might be sensible to evaluate the efficacy

outcomes every month instead of continually. Our model could be easily extended to

accommodate such interval censored data, in which the intervals are pre-specified by

the clinician.

Another interesting area of research is to develop methods to accommodate patient

dropout. Patients might have such severe side effects that they might drop out from

the study, or worse, they might die. In such situations, if the response has not yet

occurred, the response would most likely be informatively censored. However, if a

response has occurred without toxicity, patients would still receive treatment and be

under follow-up. Hence, toxicity could possibly censor efficacy outcome, but not vise

versa. Possible future work is to adopt a semi-competing risks model to solve the

problem of patient death or drop-out.
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CHAPTER V

Summary

In this dissertation we relax the assumption of a fixed prior variance in the tra-

ditional CRM for a Phase I dose-finding design and propose three systematic ap-

proaches to adaptively calibrate the prior variance continually throughout the trial.

Our approaches have the ability to perform better than the traditional CRM using a

constant prior variance as well as methods that calibrate the prior variance only at

the beginning of the trial.

We have contributed to the existing literature on the design of Phase I dose- and

schedule-finding studies by first expanding the schedule-finding model used by Liu

and Braun (2009) to incorporate variations in dose and have then incorporated an

algorithm for assessing whether or not currently enrolled patients should have their

assigned dose and/or schedule changed to one with an estimated DLT rate closer to

that desired. We modeled the per-administration dose as a covariate through the cure

parameter of the hazard function for a single administration in the framework of the

cure rate model, which is particularly attractive as a significant number of patients

would not have DLTs from a new agent. While the functional form of the hazard

function of a single administration can be chosen to reflect the background of a specific

study, another major advantage of our method lies in the flexibility to model any

sequence of dose and administration combinations. Furthermore, we have proposed
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an algorithm to optimize the intra-patient dose-schedule reassignment in addition to

the conventional method for inter-patient optimization. Simulations indicate that

our design identifies correct dose and schedule combinations as well as the traditional

method that does not allow for intra-patient doses-schedule reassignments, but with

a larger number of patients assigned to those combinations.

Finally, we generalize the Phase I dose-schedule-finding design to allow for mod-

eling both toxicity and efficacy in Phase I/II dose-schedule-finding clinical trials. We

propose marginal time-to-toxicity and time-to-response models based on the cure rate

model for multiple administrations with the per-administration dose as a covariate

through the cure parameter of the hazard function for each single administration.

The bivariate model is then constructed using a copula function. Furthermore, we

describe both toxicity and efficacy acceptability criteria for selecting the optimal dose-

schedule regimen as well as for stopping the trial early in case of a overly toxic or

inefficacious trial.

We have discussed the future work for each project in the corresponding discus-

sion section for each chapter. However, one important next step common to all three

projects is to write, validate, document and publish robust, efficient and open-source

routines to implement each method, using uniform syntax and a parsimonious set of

control parameters. This will generate a simulation platform that can be used by any

member of the statistical community to compare the operating characteristics of vari-

ous trial designs or to modify our source code to tailor to their specific studies. These

routines will be maintained in a single R package and posted on CRAN. Furthermore,

we are also planning to develop user-friendly software or a web-based application to

allow better bench-to-bedside translational statistical tools.
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