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Chapter I 

 

A Resurgence in Channel Activity 

 

Introduction.  Voltage-gated sodium channels are critical for action potential 

initiation and propagation in a variety of cell types.  Mammalian voltage-gated 

channel proteins were first purified in 1981 (Hartshorne and Catterall, 1981; Tamkun 

and Catterall, 1981), and the sodium channel gene cDNAs Scn1a and Scn2a were 

cloned in 1986 (Noda et al., 1986).  The Scn8a gene, which encodes voltage-gated 

sodium channel Nav1.6, was identified in 1995 by positional cloning of a mouse 

neurological mutant in the Meisler lab (Burgess et al., 1995b) and by isolation of a 

novel rat cDNA in the Caldwell lab (Schaller et al., 1995).  The human gene was 

mapped to chromosome 12q13 in 1998 (Plummer et al., 1998).  My thesis is focused 

on three aspects of the biology of sodium channel Nav1.6: the neuron-specific 

alternative splicing of exons 18A and 18N (Chapter II), the protein interaction with 

Map1b involved in trafficking (Chapter III), and the discovery of human mutations in 

patients with severe epileptic encephalopathy (Chapters IV and V).  In this 

introduction, I describe the biology of Nav1.6 as context for my work. 

Voltage-gated sodium channels.  The ! subunits of voltage-gated sodium 

channels are large, ~2000 residue proteins comprised of 4 homologous domains, 
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!
Figure 1.1.  Structure of the ! subunit of the voltage-gated sodium channel.  Domains are labeled in Roman 
numerals; transmembrane segments are labeled in Arabic numerals (boxed). p, pore domain. 
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each consisting of 6 transmembrane segments as well as cytoplasmic N-terminal 

and C-terminal domains, and 3 large intracellular loops (Figure 1.1).  Voltage-gated 

sodium channels open in response to membrane depolarization, allowing an influx of 

sodium down the concentration gradient from extracellular to intracellular.  ! 

subunits interact with small " subunits that function as cell adhesion molecules and 

modulate the electrophysiological properties of ! subunits (Isom et al., 1994; Isom, 

2001; Patino and Isom, 2010). 

Voltage-gated channels are dependent on changes in membrane potential for 

function.  Transmembrane segment S4 of each domain contains 3-5 positively 

charged residues that are essential for the channel response to changes in 

membrane potential.  In response to membrane depolarization, electrostatic 

interactions between positively charged residues and the depolarized cytoplasm 

force S4 towards the extracellular surface.  This results in a conformational change 

in S5-S6 that opens the channel pore and allows sodium influx (Yarov-Yarovoy et 

al., 2012).  After approximately 0.5 ms (Ulbricht, 2005), the intracellular loop 

between domains 3 and 4, called the inactivation gate, moves into the pore region.  

This prevents any additional current flow and inactivates the channel.  The channel 

then transitions from an inactive state to one of several closed states.  The closed 

channel can respond to further changes in membrane potential (Hille, 1992).  

Evolution of the voltage-gated sodium channel gene family.  Voltage-

gated channels evolved before the development of nervous systems, as evidenced 

by discovery of voltage-gated channel-like proteins in bacteria, multicellular 

choanoflagellates, and placozoans (e.g., NaChBac and NavAb) (Zakon, 2012).  
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These bacterial single-domain sodium channels show high levels of homology to 

mammalian channels, especially in transmembrane domains.  Like voltage-gated 

potassium channels, bacterial sodium channels tetramerize to form a functional 

channel.  The bacterial homotetramer lacks the intracellular domains present in 

vertebrate four-domain channels, including the inactivation gate (Payandeh et al., 

2012) which renders the bacterial channel incapable of fast inactivation.  The 

bacterial channel NavAb, has been crystallized in open and inactivated states 

(Payandeh et al., 2011; Payandeh et al., 2012).  Crystallization of the channel 

provides a model for channel structure and the intramolecular interactions critical to 

pore opening and closing in mammalian channels, including the identification of 

hydrophilic interactions critical for stabilization of open and closed states (Payandeh 

et al., 2011; Payandeh et al., 2012).  One unanticipated finding was the identification 

of membrane fatty acids that penetrate into the pore (Payandeh et al., 2011).  It is 

likely that these fatty acids facilitate drug entry into this domain. 

The four-domain cation channel is likely to have evolved through a series of 

tandem duplications, from a one-domain channel to a two-domain channel, similar to 

the TPC1/TPC2 channel, that later duplicated to generate the current four-domain 

channel (Hille, 2001).  The sodium channel ! subunit appears to have evolved from 

the homologous four-domain calcium channel ! subunit through mutations in the 

pore loop.  Calcium selectivity is conferred by presence of residues E/E/E/E or 

E/E/D/D at critical locations in the pore loops of domains I-IV, respectively.  Mutation 

to the sodium-selective pore sequence D/E/E/A occurred in metazoans, and later 

evolved to the D/E/K/A sequence of tetrapod voltage-gated sodium channels 
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(Zakon, 2012).  Evolution of the ability to use sodium as a “signal” allowed a portion 

of neuronal communication to become independent of the extensive calcium-based 

intracellular signaling (Zakon et al., 2011).  It has been hypothesized that sodium 

channel NaChBac is the one-domain ancestor of sodium and calcium channels, 

since it can, under certain circumstances, permit calcium influx as well as sodium 

influx (Payandeh et al., 2011). 

Duplication of the voltage-gated sodium channel genes in the vertebrate 

lineage occurred coincidentally with duplication of the HOX gene clusters in 

tetrapods (Lundin, 1993; Plummer and Meisler, 1999).  Invertebrate genomes such 

as Drosophila contain one voltage-gated sodium channel, para, linked to one HOX 

gene cluster.  The pufferfish genome contains four sodium channel genes 

orthologous to Scn1a, Scn4a, Scn5a, and Scn8a, each linked to one HOX gene 

cluster.  Further tandem duplication events within two of these chromosome regions 

generated the Scn3a/Scn2a/Scn1a/Scn9a cluster and the Scn5a/Scn10a/Scn11a 

cluster in mammals.  In eutherian mammals, an additional duplication within the 

Scn3a/Scn2a/Scn1a/Scn9a cluster generated the sodium channel-related gene 

Scn7a/Nax (Widmark et al., 2011).   

Expansion of gene families allows for specialization of the properties and 

subcellular localization of individual family members.  Voltage-gated sodium 

channels have diverged with respect to tissue-specificity in their major expression 

patterns (Table 1.1).  Scn4a predominates in skeletal muscle and Scn5a is the  
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Table 1.1.  The mammalian voltage-gated sodium channel family.  TTX, tetrodotoxin.  TTX-S (sensitive), binding 
affinity between 5 and 15 nM.  TTX-R (resistant), binding affinity in the micromolar range 
Gene Scn1a Scn2a Scn3a Scn4a Scn5a Scn8a Scn9a Scn10a Scn11a 

Protein Nav1.1 Nav1.2 Nav1.3 Nav1.4 Nav1.5 Nav1.6 Nav1.7 Nav1.8 Nav1.9 

Major Expression CNS/ 

PNS 

CNS/ 

PNS 

CNS/ 

PNS 

Skeletal 

muscle 

Heart CNS/ 

PNS 

PNS PNS PNS 

Mouse chromosome 

band 

2qC1.3 2qC1.3 2qC1.3 11qE1 9qF3 15qF1 2qC1.3 9qF3 9qF3 

Human chromosome 

band 

2q24.3 2q24.3 2q24.3 17q23.3 3p22.2 12q13.13 2q24.3 3p22.2 3p22.2 

TTX sensitivity S S S S R S S R R 

.
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major channel in cardiac tissue.  The other seven channels are predominantly 

expressed in neuronal subpopulations of the CNS and PNS.  The neuronal voltage-

gated sodium channel Scn8a, which is highly expressed in the CNS and PNS, is the 

focus of the remainder of this chapter. 

Scn8a, a neuronal sodium channel.  The gene SCN8A encodes the 

voltage-gated sodium channel Nav1.6, which is essential for axon potential initiation 

and propagation in the central and peripheral nervous systems.  The Scn8a gene is 

located on distal chromosome 15 in mouse (Burgess et al., 1995b) and on 

chromosome 12q13.13 in human (Plummer et al., 1998).  Scn8a is a large gene, 

with 27 exons, and encodes a 1980 residue protein.  

Nav1.6 is concentrated at the axon initial segment and nodes of Ranvier in 

myelinated axons (Schaller and Caldwell, 2000; Boiko et al., 2001; Boiko et al., 

2003; Van Wart and Matthews, 2006; Van Wart et al., 2007; Lorincz and Nusser, 

2008, 2010), and is also found at lower abundance in neuronal soma and dendrites 

(Krzemien et al., 2000; Lorincz and Nusser, 2010).  The full-length SCN8A transcript 

is highly expressed in mouse and human brain, and undergoes neuron-specific 

alternative splicing (Plummer et al., 1997; O'Brien et al., 2012a).   

Murine Nav1.6 mutations.  Complete inactivation of mouse Scn8a results in 

ataxia, tremor (Burgess et al., 1995b; Kohrman et al., 1996), prolonged cardiac 

action potentials (Noujaim et al, 2012), and early lethality (Burgess et al., 1995b; 

Kohrman et al., 1996).  Six spontaneous alleles, eight ENU-induced alleles, and one 

transgenic insertion allele of mouse Scn8a have been characterized (Figure 1.2).  

All of these mutant alleles result in recessive phenotypes.  Half are null alleles (med, 



!

8 
8!

med-tg, dmu, nmf2, nmf5, ataxia3, 8J), and homozygotes do not survive past 3 

weeks of age.  Two severe hypomorphic alleles (medJ, nmf58) cause minor tremor, 

severe dystonia, ataxia, muscle weakness and wasting, but mice survive past P21.  

The other 5 hypomorphic alleles (medjo, jolting2J, tremorD, Clth, 9J) produce 

tremor, ataxia and reduced body size, and no juvenile lethality.  Phenotype severity 

in hypomorphs appears to depend on the extent of functional impairment of the 

allele.   

Heterozygous null mice are grossly normal, but exhibit spike-wave discharges 

indicative of absence epilepsy (Papale et al., 2009), disrupted sleep architecture 

(Papale et al., 2010), resistance to induced seizures (Martin et al., 2010), and 

behavioral deficits including anxiety (McKinney et al., 2008).  These observations 

suggest that haploinsufficiency of the human channel could cause similar problems. 

Human Nav1.6 mutations.  Five potentially pathogenic mutations have been 

identified in Nav1.6 (Figure 1.3).  In 2006, we first described a heterozygous null 

allele, P1719RfsX1724, that segregated with cognitive deficits in one pedigree 

(Trudeau et al., 2006).  The haploinsufficient phenotype in these patients is 

consistent with observations in heterozygous null mice.  The second human 

mutation was discovered in 2011 by whole genome sequencing.  This dominant de 

novo gain of function mutation, p.Asn1768Asp, was identified in a patient with a 

severe epileptic encephalopathy that included features of autism, intellectual 

disability and ataxia, with sudden unexplained death at age 15 (Veeramah et al., 

2012).  Characterization of this mutation is described in Chapter IV.   
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 Allele Phenotype of 
homozygotes 

Mutation Comments Reference 

1 ataxia3 null S21P Trafficking 
mutant 

(Sharkey et al., 2009a) 

2 med null LINE insertion into 
exon 2 

 (Kohrman et al., 1996) 

3 med-tg null 20 kb deletion at 
transgene insertion 
site 

 (Kohrman et al., 1995)  

4 dmu null single nucleotide 
deletion in exon 10A  

 (De Repentigny et al., 
2001) 

5 nmf2 null N1370T  (Buchner et al., 2004) 
6 nmf5 null I1392F  (Buchner et al., 2004) 
7 8J null V929F Spike wave 

discharge in 
heterozygotes 

(Papale et al., 2009) 

8 med-J Severe 
hypomorph 

4 base pair deletion 
in 5' donor site of 
exon 3  

5-10% wt 
splicing, strain 
dependent 

(Kohrman et al., 1996) 

9 nmf58 Severe 
hypomorph 

L1404H  (Buchner et al., 2004) 

10 med-jo Mild 
hypomorph 

A1319T 10 mV positive 
shift in voltage 
dependence of 
activation 

(Smith and Goldin, 
1999) 

11 tremorD Mild 
hypomorph 

W935L 
 

 Timms H; Smart NG; 
Beutler B 2008 (JAX, 
unpublished) 

12 Clth Mild 
hypomorph 

D981V 
 

Hearing tested, 
defective 

(Mackenzie et al., 2009) 

13 9J Mild 
hypomorph 

delI1757  (Jones et al., 2013) 

 jolting2J Mild 
hypomorph 

Not sequenced  Thompson... Davis et al 
2004 (JAX, 
unpublished) 

 
Figure 1.2.  Mutations of mouse Scn8a.  Filled circles, null alleles.  Grey circles, 
hypomorphic alleles. 
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 Mutation Genetics Pathology Mechanism  Reference 

1 R223G de novo Epileptic 
encephalopathy 

In progress unpublished 

2 T767I de novo Epileptic 
encephalopathy 

In progress unpublished 

3 R1617Q de novo Intellectual 
disability 

In progress (Rauch et 
al., 2012) 

4 P1719RfsX6 dominant Intellectual 
disability, ataxia 

haploinsufficiency (Trudeau et 
al., 2006) 

5 N1768D de novo Epileptic 
encephalopathy 
+ SUDEP 

Increased 
persistent current 

(Veeramah 
et al., 2012) 

 

Figure 1.3.  Mutations of human SCN8A.  Filled circles, mutations identified in 
patients with epilepsy.  Grey circles, mutations identified in patients with cognitive 
deficits.  
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In 2012, the de novo mutation p.Arg1617Gln was identified in a single patient 

by exome sequencing of patients with IQ <50, supporting the hypothesis that 

mutations in Nav1.6 may be associated with intellectual disability (Rauch et al., 

2012).  Two additional dominant de novo mutations in SCN8A, pArg223Gly and  

p.Thr767Ile, were subsequently identified in other patients with severe epileptic 

encephalopathy.  These mutations are described in Chapter V.  Three other 

mutations in SCN8A have been recently identified by exome sequencing of patients 

with epilepsy (M. Hammer, personal communication).  The availability of sensitive 

electrophysiological assays of sodium channel function permits functional analysis of 

putative pathogenic mutations identified in patients more efficiently than for many 

other genes. 

Electrophysiological properties of Nav1.6.  The electrophysiological 

properties of Nav1.6 have been characterized in cultured cells and in neurons from 

mouse.  Cell culture studies allow Nav1.6 to be studied in isolation from other 

channels, which is important for understanding its specific electrophysiological 

properties.  In vivo studies of Nav1.6 have focused on using null mouse mutants to 

remove this channel in the context of the entire neuron, and provide critical insight 

into the role of this channel in the complex regulation of neuronal firing. 

Persistent current (Figure 1.4A) is a steady-state sodium current (Smith et 

al., 1998; Rush et al., 2005; Osorio et al., 2010) that is involved in action potential 

initiation at membrane voltages near the threshold of firing (Crill, 1996).  Persistent 

current is important for populations of neurons that undergo repetitive firing.  

Abnormally high levels of persistent Nav1.6 current causes neuronal hyperexcitability 
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and leads to epilepsy (Veeramah et al., 2012).  The magnitude of persistent current 

depends on the specific cell type (Rush et al., 2005; Chen et al., 2008), suggesting 

that this property can be modulated by other factors.   

Resurgent current is a voltage- and time-dependent property of Nav1.6 in 

which depolarization after the initial event elicits a small, transient current (Figure 

1.4B).  It has been hypothesized that resurgent current contributes to increased 

excitability in cerebellar Purkinje cells, leading to spontaneous firing and multi-

peaked action potentials.  However, resurgent current does not occur in all neurons 

that express Nav1.6.  For example, wild type hippocampal CA3 neurons have 

minimal resurgent current (Raman and Bean, 1997).   

Resurgent current may be caused by a temporary block of the channel by an 

open-state channel blocker that prevents entry of Nav1.6 into the true inactive state.  

Blocking the entry of the inactivation gate into the pore results in a temporarily 

inactive state that is easily reversed by minor hyperpolarization of the cell (Aman 

and Raman, 2010).  This rapidly reversible form of inactivation allows neurons to fire 

rapidly and repetitively.  In cerebellar Purkinje neurons (Grieco et al., 2005) and 

cerebellar granule cell neurons (Bant and Raman, 2010), the channel blocker for 

Nav1.6 may be the !4 sodium channel subunit, but the blocking peptide may vary by 

neuron type (Raman and Bean, 2001).  

Larger relative levels of persistent and resurgent current render membranes 

containing Nav1.6 more excitable than membranes containing the neuronal channels 

Nav1.1 and Nav1.2.  This increased excitability, combined with subcellular  
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Figure 1.4.  Examples of persistent and resurgent current.  (A) Persistent current 
is a steady-state sodium current that is involved in action potential initiation at 
membrane voltages near the threshold of firing.  Nav1.6 has higher levels of 
persistent current than Nav1.2.  (B) Resurgent current is a voltage- and time-
dependent property of Nav1.6 in which depolarization after an initial event elicits a 
small, transient current.  Adapted from Chen et al., 2008. 
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localization at the AIS and nodes, accounts for the role of Nav1.6 as an action 

potential initiator and propagator in vivo. 

Nav1.6 electrophysiology in cultured cells.  Direct comparison of Nav1.6 to 

Nav1.2 in HEK-tsA-201 cells did not detect a significant difference in voltage 

dependence of activation or inactivation (Chen et al., 2008).  Nav1.6 displayed a 

more positive voltage dependence of slow inactivation in this system, passing ~10% 

more current in the -35 mV to -25 mV range than Nav1.2.  In tsA-201 cells, Nav1.6 

also displayed persistent currents which amounted to ~12% of total current in 

Nav1.6, compared with ~2% in Nav1.2 (Figure1.4A) (Chen et al., 2008). 

The electrophysiological properties of Nav1.6 and Nav1.2 have also been 

studied in transfected cultured neurons and neuron-derived cell lines.  Nav1.6 has a 

~10 mV depolarizing shift in voltage dependence of fast activation and fast 

inactivation compared to Nav1.2 in transfected cultured DRG neurons (Rush et al., 

2005).  Nav1.6 is also less likely to inactivate at higher stimulation frequencies (20-

100 Hz) but inactivates more quickly from a single 40 ms depolarizing stimulus in 

transfected cells (Rush et al., 2005).  Persistent Nav1.6 current is  ~2% of maximal 

current in transfected ND7/23 cells (Veeramah et al., 2012), compared to 12% in 

tsA-201 cells (Chen et al., 2008).  These differences demonstrate the importance of 

neuronal factors in determining the functional properties of Nav1.6. 

Effects of loss of Nav1.6 on neuronal excitability in vivo.  After the 

description of Scn8a null mice in 1995 (Burgess et al., 1995b), several groups used 

this model to evaluate the effects of Nav1.6 deficiency in vivo (Table 1.2).  Neurons 

from Scn8a null mice consistently display defects in repetitive firing  
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 Table 1.2.  Reduced activity of neurons from Scn8a null mice. 

 Neuron type Reduced neuronal activity in null mice Reference 

1 Cerebellar Purkinje cells Reduced repetitive firing, reduced 

resurgent current (-70%), reduced 

transient current (-50%)  (med-tg, med)  

(Raman et al., 

1997; Aman and 

Raman, 2007) 

2 Cerebellar nucleus No significant changes (med) (Aman and 

Raman, 2007) 

3 Cerebellar granule cells Reduced persistent current, reduced firing 

rate (flox/flox; BAC-!6 CRE) 

(Osorio et al., 

2010) 

4 DRG large and small 

diameter 

Reduced resurgent current (-100%) (med) (Cummins et al., 

2005) 

5 Trigeminal-

mesencephalic 

Reduced resurgent current (-40%), 

reduced persistent current (-75%), reduced 

repetitive firing  (like Purkinje) (med) 

(Enomoto et al., 

2007) 

6 Subthallamic Reduced resurgent current, altered firing 

(med) 

(Do and Bean, 

2004) 

7 Retinal ganglion Reduced repetitive firing (med) (Van Wart and 

Matthews, 2006) 

8 Prefrontal cortical 

pyramidal 

Reduced resurgent current (med) (Maurice et al., 

2001) 

9 Hippocampal CA1 Reduced persistent, reduced resurgent, 

significant elevation of spike threshold, 

altered spike initiation, reduced spike gain 

(med) 

(Royeck et al., 

2008) 

10 Motor neurons Reduced conduction velocity (med-J) (Kearney et al., 

2002) 

11 Globus pallidus neurons Impaired pacemaking, impaired capacity 

for fast spiking (med-tg) 

(Mercer et al., 

2007) 
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 (Raman and Bean, 1997; Raman et al., 1997; Van Wart and Matthews, 2006; Aman 

and Raman, 2007), suggesting that Nav1.6 is required for this process.  In Purkinje 

cells isolated from Scn8a null mice, persistent current was reduced by ~100 pA 

(70%) compared to wild type (Raman et al., 1997).  In Scn8a floxed mice crossed 

with the cerebellar granule neuron-specific BAC!6-Cre, overall sodium current and 

resurgent current were unaffected in cerebellar granule neurons, but there was a 

significant decrease in persistent current from ~2% of total current in wild type to 

1.2% in the null (Osorio et al., 2010).  There was also an 85% reduction in resurgent 

current in Scn8a null cerebellar Purkinje cells compared to wild type, suggesting that 

Nav1.6 is the major source of resurgent current in these neurons (Table 1.2) (Raman 

et al., 1997).  Thus, Nav1.6 has an essential role in generating persistent and 

resurgent current in mouse cerebellum, and is consequently essential for repetitive 

firing. 

Nav1.6 function at the axon initial segment.  A large part of the overall 

decrease in neuronal excitability in Scn8a null mice can be attributed to the role of 

Nav1.6 at the axon initial segment (AIS).  The AIS is the membrane region at the 

proximal end of the axon where sodium channels are concentrated and electrical 

signals from the soma and dendrites are summed (and the threshold for action 

potential initiation is lowest) (Royeck et al., 2008).  The channel composition of the 

AIS differs between neurons (Lorincz and Nusser, 2008), and determines the firing 

threshold of the AIS.  Nav1.6 is localized at the AIS and has a critical role in axon 

potential initiation and modulation of neuronal excitability.  The decreased excitability 

observed in Scn8a null neurons (Table 1.2) would affect neuronal signaling within 
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the brain and to the periphery, resulting in the muscle atrophy, weakness, tremor, 

and paralysis observed in Scn8a null mice. 

Nav1.6 is highly concentrated in the distal half of the AIS in many types of 

neurons, including cerebellar granule cells and cerebellar Purkinje cells (Van Wart 

and Matthews, 2006; Lorincz and Nusser, 2008; Royeck et al., 2008).  Van Wart and 

Matthews investigated the role of Nav1.6 in action potential initiation in cerebellar 

granule cells.  The threshold for action potential initiation in null Scn8amedtg granule 

cells was 4.2 mV more positive than in wild type cells (Van Wart and Matthews, 

2006), demonstrating that neurons lacking Nav1.6 are less excitable than wild type 

neurons.  Immunohistochemistry revealed that in the AIS of null cerebellar granule 

cells, Nav1.1 and Nav1.2 replace Nav1.6 (Van Wart and Matthews, 2006).  The 

change in channel composition is likely to explain the observed decrease in 

excitability. 

Royeck and colleagues investigated the role of Nav1.6 in AIS excitability of 

cultured hippocampal cells.  Scn8a-null hippocampal CA1 pyramidal cells had a ~5 

mV positive shift in the voltage dependence of activation compared to wild type 

(Royeck et al., 2008), making null cells less sensitive to depolarizing stimuli.  Null 

neurons also had a 58% reduction in persistent current and approximately a 75% 

reduction in resurgent current (Royeck et al., 2008).  This combination of more 

positive voltage for activation, decreased persistent current, and reduced resurgent 

current, renders Scn8a null neurons less excitable than their wild type counterparts.  

This is reflected in an 8 mV depolarizing (rightward) shift in the spike threshold of 

null CA1 neurons (Royeck et al., 2008), consistent with the previous study. 
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Studies of cortical pyramidal neurons revealed that action potentials tend to 

initiate at the distal part of the AIS, where sodium channel concentrations are 

highest (Van Wart et al., 2007; Kole et al., 2008; Kole and Stuart, 2008). 

Immunohistochemistry of the AIS of cortical pyramidal neurons demonstrated that 

the proximal AIS contains predominantly Nav1.2, while the distal AIS contains 

predominantly Nav1.6 (Hu et al., 2009).  Consistent with this channel distribution, 

step-depolarizations of patched neurons revealed that the activation threshold in the 

distal AIS was -55 mV, while the activation threshold in the proximal AIS closest to 

the soma was -43 mV (Hu et al., 2009).  These results support the role of Nav1.6 in 

lowering the threshold of action potential initiation.   

Action potentials are primarily directed away from the soma and down the 

axon.  However, backpropogation, i.e., an action potential from the AIS into the 

soma, occurs at low frequency (Hu et al., 2009).  To investigate the roles of Nav1.2 

and Nav1.6 in backpropogation, rat cortical neurons were isolated and the axon was 

removed to produce a cell with a soma and an “axonal bleb” that retains the AIS (Hu 

et al., 2009).  Current was injected into different locations in the axonal bleb, and 

action potentials were recorded from the soma to detect backpropogation.  Injecting 

current into the distal AIS, containing predominately Nav1.6, did not result in 

backpropagation, while current injection at the proximal AIS, containing 

predominantly Nav1.1 and Nav1.2, resulted in detectable action potentials in the 

soma (Hu et al., 2009).   
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Taken together, these data support the view that localization of Nav1.6 to the 

distal AIS results in a lower threshold for action potential initiation and also directs 

the action potential down the axon and away from the soma. 

Proposed roles of Nav1.6 in non-neuronal cells.  In addition to its well-

characterized role in neurons, some recent studies have presented preliminary 

evidence consistent with novel activity of Nav1.6 in other cell types. 

Cardiac myocytes.  Nav1.5 is the predominant voltage-gated sodium 

channel in cardiomyocytes, but Nav1.6 is present in low quantities (Maier et al., 

2003; Maier et al., 2004; Du et al., 2007; Noujaim et al., 2012).  The functional role 

of Nav1.6 in cardiac myocytes is unclear.  Nav1.6 colocalizes by immunostaining with 

markers for transverse tubules, invaginations of the sarcolemma that are essential 

for excitation-contraction coupling.  Cardiomyocytes cultured from the null mutant 

Scn8aataxia3 displayed decreased current amplitudes (~3.5 pA, vs. ~9 pA in wild type) 

(Noujaim et al., 2012).  The decrease in current amplitude in null cardiomyocytes 

was partially mimicked by addition of tetrodotoxin to wild type cells, consistent with 

the contribution of a tetrodotoxin-sensitive channel, such as Nav1.6.  Action potential 

duration was prolonged in Nav1.6 null heart, suggesting that Nav1.6 has an essential 

function in excitation-contraction coupling and cardiac function (Noujaim et al., 

2012). 

Vas deferens.  Patch-clamp studies of smooth muscle myocytes of the 

mouse vas deferens identified a TTX-sensitive current that was not detectable in null 

Scn8amed mice (Zhu et al., 2008).  Electrophysiological studies comparing wild type 

and null myocytes attributed the resurgent-like currents in these cells to Nav1.6, 
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consistent with its contribution to resurgent current in neuronal populations (Zhu et 

al., 2010; Teramoto et al., 2012). 

Cellular invasion in macrophages.  It has been reported that Nav1.6 

regulates podosome formation in macrophages (Carrithers et al., 2009).  

Podosomes are actin-rich structures located on the extracellular membrane that are 

important for macrophage adhesion, migration, and invasion.  RT-PCR of 

macrophage RNA identified only the !18 transcript of Scn8a, which splices directly 

from exon 17 to exon 19 (Carrithers et al., 2009).  The protein product of this 

transcript is not predicted to function as a voltage-gated sodium channel (Plummer 

et al., 1997).  Localization of !18-Nav1.6 protein to the podosome was observed by 

immunocytochemistry using polyclonal anti-Nav1.6 (Alomone) in the human 

monocyte-macrophage cell line THP-1.  Inhibition of Nav1.6 by TTX, siRNA, and the 

med mutation all resulted in reduced macrophage invasion in cultured cell assays, 

suggesting that Nav1.6 may function in macrophage biology.   

Cancer.  Voltage-gated channels may also enhance the migration of cancer 

cells.  qRTPCR of cervical biopsies demonstrated that ectopic expression of Nav1.6 

was increased 40-fold in tumor samples compared to normal samples (Hernandez-

Plata et al., 2012).  Nav1.7 (Scn9a) was also upregulated 20-fold.  Blocking Nav1.6 

activity with the Nav1.6-specific "-scorpion toxin Cn2 (Schiavon et al., 2006) reduced 

the invasive capability of cervical cancer primary cultures in a cell culture migration 

assay, suggesting that Nav1.6 may contribute to cellular migration in tumors 

(Hernandez-Plata 2011). 



!

21 
21
!

Conserved noncoding exons and the 5’ UTR of the Scn8a transcript.  

Previous work from our lab identified the transcription start site of Scn8a 

approximately 70 kb upstream of the translation initiation site (Drews et al., 2005).  

The 5’UTR is encoded by four closely spaced noncoding exons designated 1a-1d 

that are conserved between mouse and human (Drews et al., 2005).  A 4.8-kb 

genomic fragment containing exons 1a-d flanked by 1.5 kb of sequence upstream 

and 1.5kb of downstream sequence was sufficient to drive luciferase activity in motor 

neuron-derived cell lines (Drews et al., 2005).   

Exon 1c is highly conserved in all vertebrates, suggesting that it was the 

ancestral noncoding exon and that exons 1a, 1b, and 1d result from a mammal-

specific duplication (Drews et al., 2007).  Exon 1c contains four sequence elements 

with approximately 75% nucleotide conservation between mammals and fish: A (22 

bp), B (20 bp), DR1 (18 bp) and DR2 (18 bp).  This unusually high level of 

conservation for noncoding sequence is suggestive of conserved function (Drews et 

al., 2007).  In silico analysis of the four sequence elements identified potential 

binding sites for transcription factors Pou6f1/Brn5, YY1, and REST/NRSF (Drews et 

al., 2007), factors implicated in regulation of neuronal genes.  In transgenic mice, 

exon 1c was sufficient to drive LacZ expression in neurons throughout the brain, with 

highest expression in hippocampal and Purkinje neurons (Drews et al., 2007), 

consistent with the endogenous expression patterns of Scn8a. 

Mutually exclusive alternatively spliced exons.  Scn8a contains two pairs 

of mutually exclusive alternative exons, 5N/5A and 18N/18A.  These pairs encode 

the S3-S4 transmembrane segments in domain I and domain III (Plummer et al., 
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1997).  Exons 5N/5A and 18N/18A are thought to have a common evolutionary 

origin, with exons 5A and 5N resulting from duplication of a single exon followed by 

duplication of the two-domain channel (Figure 1.5) (Plummer et al., 1997).   

We demonstrated that transcripts containing exon 18A are restricted to mature 

neurons (O'Brien et al., 2012).  Transcripts containing exon 18N have an in-frame 

stop codon (Plummer et al., 1997) and are subject to nonsense-mediated decay 

(O'Brien et al., 2012).  Thus, alternative splicing of exon18 provides temporal and 

spatial regulation of Nav1.6 and serves as an on/off switch for the active channel.  

The molecular mechanism of this alternative splicing is the subject of Chapter II of 

this thesis. 

Alternative polyadenylation sites.  3’ RACE was used to identify two 

alternative polyadenylation sites in Scn8a that are conserved through chicken and 

are located 4 kb and 6.5 kb downstream from the termination codon (Drews et al., 

2005).  Northern blot of mouse brain poly-A RNA detected the short and long 3’UTR 

in transcripts of 9 kb and 12 kb, respectively (Drews et al., 2005).  The functional 

consequences of the alternate polyadenylation sites have not been investigated. 

Protein interactions of Nav1.6.  Voltage-gated sodium channels are part of 

large, multi-protein complexes that are cell-type and subdomain specific.  The known 

sites of interaction of Nav1.6 with other proteins are represented in Figure 1.6. 

Map1b.  A novel interaction between the N-terminus of Nav1.6 and the light 

chain of the microtubule-associated protein Map1b (residues 77-80) is described in 

Chapter III. 
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Figure 1.5.  Proposed model for the evolutionary origin of exons 5N/5A and 
18N/18A.  From Plummer et al., 1997. 
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Protein kinases.  Immunohistochemistry of hippocampal neurons 

demonstrated that the MAP kinase p38 co-localizes with Nav1.6 (Gasser et al., 

2010).  This stress-activated kinase phosphorylates Nav1.6 at serine 553 in an in 

vitro kinase assay using the first intracellular loop as a substrate (Wittmack et al., 

2005).  This phosphorylation creates a PXpS/TP motif (residues 551-554) that 

facilitates binding of E3 ubiquitin ligases (Sudol and Hunter, 2000; Zarrinpar and 

Lim, 2000).  Thus, phopsphorylation by p38 indirectly results in ubiquitination and 

degradation of Nav1.6 (Gasser et al., 2010).  Activation of p38 by anisomycin 

reduced Nav1.6 current amplitude from 95 to 52 pA in the ND7/23 cell line (Wittmack 

et al., 2005) and from ~1200 pA to ~800 pA in hippocampal neurons (Gasser et al., 

2010).  No effect of p38 on sodium current was observed in Scn8a null (med) 

hippocampal neurons, suggesting that Nav1.6 is the predominant sodium channel 

target of activated p38 (Gasser et al., 2010). 

The neuronal voltage gated sodium channel Nav1.2 is modulated by the 

kinases PKA and PKC in vitro.  Phosphorylation of Nav1.2 reduces the mean peak 

sodium current by 35% for PKC and 22% for PKA (Chen et al., 2008).  In contrast, 

the reduction of Nav1.6 current is only 7% by PKC and 8% by PKA, despite multiple 

predicted PKA and PKC phosphorylation sites (Chen et al., 2008). 

Ankyrin.  Ankyrins are adaptor proteins that attach membrane proteins to  
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Figure 1.6.  Locations of protein interactions with Nav1.6.  Filled circles represent binding sites that have been 
localized to specific residues of Nav1.6: Map1b (77-80), p38 (553), ankyrin (1089-1122), calmodulin (1902-1912), and 
Nedd4 (551-554 and 1943-1945).  Grey circles represent binding sites that have not been mapped to specific residues. 
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spectrin components of the cytoskeleton.  Direct interaction between ankyrins and 

voltage-gated sodium channels is well documented (Srinivasan et al., 1988; Davis et 

al., 1996; Hill et al., 2008).  All vertebrate voltage-gated sodium channels share a 

conserved ankyrin-binding motif in the second cytoplasmic loop (Nav1.6 residues 

1089-1122) (Lemaillet et al., 2003; Gasser et al., 2012).  This motif evolved 

independently in the voltage-gated potassium and sodium channels (Zakon, 2012), 

suggesting that interaction with ankyrin is critical for localization the AIS and nodes 

of Ranvier.  Although the specific sequence of the ankyrin-binding motif varies 

across voltage-gated sodium channels, the proximal half of this motif is consistently 

rich in valine and proline and the distal half is enriched in glutamic acid and serine 

residues (Garrido et al., 2003; Lemaillet et al., 2003; Gasser et al., 2012).  The 

ankyrin-binding motif is sufficient to localize a single transmembrane reporter 

construct to the AIS in cultured hippocampal neurons (Garrido et al., 2003; Lemaillet 

et al., 2003) and to localize a reporter to the nodes of Ranvier in transfected dorsal 

root ganglion neurons co-cultured with myelinating Schwann cells (Gasser et al., 

2012). 

The role of the ankyrin-binding motif in subcellular localization of channels 

was recently investigated in the context of full length Nav1.6.  Mutation of the 

invariant glutamic acid E1100 to alanine within the ankyrin-binding motif prevented 

localization of transfected Nav1.6 to the AIS and nodes of Ranvier in cultured rat 

hippocampal neurons (Gasser et al., 2012).  Significantly reduced localization of the 

mutant to AIS and nodes of somatosensory cortex neurons was observed in mice 

electroporated with the mutant channel in utero at E14 (Gasser et al., 2012).  These 
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data confirm that ankyrin binding is necessary for targeting and localization of Nav1.6 

in cell culture and in vivo.  Interestingly, mutations in conserved residues of the 

ankyrin-binding motif do not alter the electrophysiological properties of Nav1.6 

(Gasser et al., 2012).  

Intracellular FGF.  The proteins FGF11-FGF14 are members of the 

intracellular fibroblast growth factor (iFGF) family.  Unlike FGF1-FGF10, iFGF 

proteins are not secreted and do not bind fibroblast growth factor receptors.  iFGFs 

interact with intracellular targets, including the ! subunit of voltage-gated sodium 

channels (Wittmack et al., 2004; Laezza et al., 2009; Shakkottai et al., 2009). FGF13 

interacts with the C-terminus of Nav1.6 in co-immunoprecipitation and yeast-2-hybrid 

assays (Wittmack et al., 2004), and colocalizes with Nav1.6 in neurons from 

hippocampus, dorsal root ganglia, and dorsal root of the sciatic nerve, as well as 

cerebellar Purkinje neurons (Wittmack et al., 2004; Rush et al., 2006; Shakkottai et 

al., 2009).  FGF13 has multiple isoforms, including isoforms FGF13-1a and FGF13-

1b which are encoded by alternative first exons (Munoz-Sanjuan et al., 2000).  Co-

transfection of Nav1.6 and FGF13-1a in ND7/23 cells increases Nav1.6 current 

amplitude approximately two-fold, but causes a ~15 mV depolarizing (rightward) shift 

in channel availability (Rush et al., 2006).  Co-expression of Nav1.6 and FGF13-1b in 

these cells also increases current amplitude by two-fold, but causes a 4 mV 

depolarizing shift in voltage-dependent inactivation of the channel (Wittmack et al., 

2004).  These different effects of FGF13 isoforms on channel properties may allow 

specific sub-populations of neurons to fine-tune firing properties via alternative 

splicing of FGF13. 
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FGF14 also regulates Nav1.6 activity.  Fgf14 null mice develop ataxia and 

~80% of Fgf14 null cerebellar Purkinje cells do not fire repetitively (Shakkottai et al., 

2009).  Reduced Nav1.6 protein at the cell surface was observed in Fgf14 null 

cerebellar Purkinje neurons by immunohistochemistry, suggesting that FGF14 is 

required for Nav1.6 function (Shakkottai et al., 2009).  The two alternate N-termini of 

FGF14 affect Nav1.6 properties differently in cultured cells.  Co-expression of 

FGF14-1b and Nav1.6 reduces current density, while co-expression with the FGF14-

1a has no effect (Laezza et al., 2009).  FGF14 constructs lacking the N-terminus 

increased current density when co-expressed with Nav1.6 (Laezza et al., 2009).  The 

difference between repression of current in cells and enhancement of current in mice 

highlights the complex nature of the FGF14-Nav1.6 interaction.  

Voltage-gated sodium channel ! subunits.  The voltage-gated sodium 

channel ! subunits !1- !4 are single-transmembrane cell-adhesion molecule 

proteins with multiple functions including modulating current and surface expression 

of the " subunit (Patino and Isom, 2010).  !2 and !4 are covalently linked to the " 

subunit by disulfide bonds; !1 and !3 interact with the C-terminus of the " subunit in 

a non-covalent manner (Leterrier et al., 2011).   

 Studies of mice null for the !1 subunit (Scn1b-/-) suggest that interaction 

between !1 and Nav1.6 is required for wild-type expression levels of Nav1.6 at the 

distal AIS in vitro and in vivo (Brackenbury et al., 2010).  A higher proportion of 

Nav1.1 was observed at the AIS in cultured cerebellar granule neurons and 

cerebellar Purkinje neuron slices from Scn1b-/- mice (Brackenbury et al., 2010).  As a 

consequence of reduced Nav1.6 at the AIS, slightly reduced levels of resurgent 
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current were observed in cerebellar granule neuron slices (Brackenbury et al., 

2010).  Thus, the interaction between !1 and Nav1.6 is important for localization and 

function of the channel.    

Neurite extension during development is mediated by sodium channel activity 

(Brackenbury et al., 2010).  Transfection of !1 subunits into a monolayer of Chinese 

Hamster Lung cells co-cultured with isolated mouse brain neurons positively affects 

neurite extension in wild type neurons.  Transfection of !1 had no effect on Scn8a 

null neurons in this co-culture system, demonstrating that some sodium channel 

current-dependent neurite outgrowth is mediated by Nav1.6 (Brackenbury et al., 

2010). 

As described above, !4 subunits have been implicated in the generation of 

resurgent Nav1.6 current (Aman et al., 2009).  Addition of the cytoplasmic tail of the 

!4 subunit is sufficient to restore resurgent current capabilities in cultured neurons 

treated with proteases to degrade the endogenous channel blocker (Grieco et al., 

2005).  In cultured cerebellar neurons, the !4 subunit is required for generation of 

resurgent current and contributes to persistent current and repetitive firing (Bant and 

Raman, 2010).  Knockdown of !4 by siRNA in cultured cerebellar granule cells 

reduced resurgent current from ~9% of transient current in control cells to ~3.7% in 

treated cells.  !4 knockdown resulted in a 7.7 mV hyperpolarizing shift in the voltage 

dependence of inactivation and a decrease in repetitive firing, changes that are 

predicted to reduce neuronal excitability.  Most, but not all, subpopulations of 

neurons that have resurgent current express the !4 subunit (Bant and Raman, 

2010).  However, full-length !4 is not sufficient to generate resurgent sodium current 
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in HEK cells co-transfected with Nav1.6 (Chen et al., 2008; Aman et al., 2009), 

suggesting that other molecules are involved in regulating resurgent current in 

different neuronal populations. 

Calmodulin.  The IQ motif [I,L,V]QXXXRXXXX[R,K] (Nav1.6 C-terminal 

domain residues 1902-1912) binds the calcium responsive protein calmodulin 

(CAM).  The same motif binds apo-CAM, the Ca2+ deficient form of calmodulin, and 

Ca2+-bound CAM (Bahler and Rhoads, 2002).  All of the voltage-gated sodium 

channels contain an IQ motif in the C-terminus (Yu and Catterall, 2003; Feldkamp et 

al., 2011).  

In transfected DRG-derived cell lines, mutation of the invariant glutamine in 

the IQ motif of Nav1.6 to a glutamic acid resulted in a 62% decrease in current 

amplitude and increased the time constant of inactivation by approximately 50% 

(Herzog et al., 2003b).  Mutation of the corresponding residue in Nav1.4 ablated 

current (Herzog et al., 2003b), demonstrating that the effects of CAM binding are 

channel-specific.   

Addition of Ca2+ to the system, converting apo-CAM to CAM, slowed wild-

type Nav1.6 inactivation by ~50% (Herzog et al., 2003b), similar to the effect of 

mutating the IQ domain of Nav1.6.  The authors suggest that binding of apo-CAM to 

Nav1.6 causes channels to inactivate more quickly and that addition of Ca2+ 

increases excitability (Herzog et al., 2003b). 

Nedd4.  The E3 ubiquitin ligase Nedd4 has a type-I WW domain that binds 

PXY motifs (residues 1943-1945), and a type-IV WW domain that binds PXpS/pTP 

motifs (residues 551-554) (Abriel et al., 2000; Sudol and Hunter, 2000; Fotia et al., 
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2004; Ingham et al., 2004; van Bemmelen et al., 2004; Rougier et al., 2005).  Gasser 

and colleagues showed that S553 in loop 1 of Nav1.6 is phosphorylated by p38 

MAPK to generate a PXpS/pTP motif.  In vitro studies using chimeric reporter 

constructs containing either the PXY motif, the PGSP motif, or both motifs fused to 

eGFP demonstrated that both the PXY motif in the C-terminus and the 

phosphorylated PGSP motif in loop 1 are necessary for Nedd4 binding and 

internalization of the reporter construct (Gasser et al., 2010).  Reporter constructs 

containing only one of these domains are not internalized (Gasser et al., 2010).  

Binding of Nedd4 is predicted to cause ubiquitination of Nav1.6, targeting it for 

internalization and degradation.  The authors suggest that p38/Nedd4-mediated 

modulation of Nav1.6 current density may be part of the neuronal stress response. 

Conclusion.  The voltage gated sodium channels are a family of large 

transmembrane proteins that are critical for electrical signaling in neurons, muscles, 

and heart.  Evolutionary expansion has allowed individual channels to diverge in 

properties and regulation.  The electrophysiological properties of Nav1.6, including 

persistent and resurgent current, are related to its functions in action potential 

initiation and repetitive neuronal firing in the cerebellum. 

Translational and transcriptional regulation of Nav1.6 ensures that this 

channel is expressed in the right cells and at the proper developmental time points.  

Additional post-transcriptional regulation dictates the subcellular location of the 

channel and can modify the firing properties.  Together, these provide a mechanism 

for neurons to subtly alter their firing properties to fulfill specific niches in vivo. 
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In vivo mutations in mutant mice and human patients demonstrate that 

hypoactivity and hyperactivity of Nav1.6 are both detrimental, but with different 

effects.  Haploinsufficiency appears to cause impaired cognition (Trudeau et al., 

2006; McKinney et al., 2008; Rauch et al., 2012), while hyperactivity is associated 

with epilepsy (Veeramah et al., 2012) (Chapter V).  Analysis of mutant and wild type 

channels in vivo and cell culture will continue to provide critical insight into structure-

function relationships in Nav1.6 and the mechanism of pathogenesis for novel 

mutations in this channel. 
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Chapter II 
 
 

Rbfox proteins regulate alternative splicing of neuronal sodium channel 
SCN8A1 

 

Abstract 

 The SCN8A gene encodes the voltage-gated sodium channel Nav1.6, a major 

channel in neurons of the CNS and PNS.  SCN8A contains two alternative 

exons,18N and 18A, that exhibit tissue specific splicing.  In brain, the major SCN8A 

transcript contains exon 18A and encodes the full-length sodium channel.  In other 

tissues, the major transcript contains exon 18N and encodes a truncated protein, 

due to the presence of an in-frame stop codon.  Selection of exon 18A is therefore 

essential for generation of a functional channel protein, but the proteins involved in 

this selection have not been identified. Using a 2.6 kb Scn8a minigene containing 

exons 18N and 18A, we demonstrate that co-transfection with Fox-1 or Fox-2 

initiates inclusion of exon 18A.  This effect is dependent on the consensus Fox 

binding site located 28 bp downstream of exon 18A.  

_______________________________ 

1This work has been published in: O'Brien, J.E., Drews, V.L., Jones, J.M., Dugas, 
J.C., Barres, B.A., and Meisler, M.H. (2012). Rbfox proteins regulate alternative 
splicing of neuronal sodium channel SCN8A. Mol Cell Neurosci 49, 120-126, with 
the exception of the discussion of the cis elements in splicing of exon 18. 
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We examined the alternative splicing of human SCN8A and found that the postnatal 

switch to exon 18A is completed later than 10 months of age.  In purified cell 

populations, transcripts containing exon 18A predominate in neurons but are not 

present in oligodendrocytes or astrocytes.  Transcripts containing exon 18N appear 

to be degraded by nonsense-mediated decay in HEK cells.  Our data indicate that 

RBFOX proteins contribute to the cell-specific expression of Nav1.6 channels in 

mature neurons. 

 

Introduction 

 The gene SCN8A encodes sodium channel Nav1.6, one of the major voltage-

gated sodium channels responsible for generation and propagation of action 

potentials in mammalian neurons.  Nav1.6 is concentrated at the axon initial segment 

and nodes of Ranvier, and is also present in dendrites and soma of most neurons in 

the central and peripheral nervous systems (Schaller and Caldwell, 2000; Lorincz 

and Nusser, 2010).  Mutations of Nav1.6 cause severe movement disorders in the 

mouse, including tremor, dystonia, ataxic gait, and premature lethality (Meisler et al., 

2004).  The critical role of Nav1.6 in the neuronal firing has been demonstrated by 

the abnormal firing patterns in neurons from mutant mice, including cerebellar 

Purkinje cells (Raman et al., 1997), dorsal root ganglia C-fibers (Black et al., 2002), 

spinal sensory neurons (Cummins et al., 2005), trigeminal neurons (Enomoto et al., 

2007), subthallamic neurons (Do and Bean, 2004), retinal ganglion cells (Van Wart 

and Matthews, 2006), prefrontal cortical pyramidal neurons (Maurice et al., 2001), 

hippocampal CA1 neurons (Royeck et al., 2008), globus pallidus neurons (Mercer et 
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al., 2007) and cerebellar granule cells (Levin et al., 2006).  Reduced repetitive firing 

and reduced persistent current are common abnormalities.  Haploinsufficiency of 

SCN8A has been associated with intellectual disability in a human pedigree 

(Trudeau et al., 2006). 

  Neuron-specific alternative splicing is an important component of regulated 

gene expression in the nervous system (Li et al., 2007).  The alternative exons 18A 

and 18N of SCN8A are the product of exon duplication and encode domain 3 

transmembrane segments 3 and 4 (Plummer et al, 1997) (Figure 2.1A). Transcripts 

containing exon 18A predominate in brain and encode the active, full-length channel 

protein (Figure 2.1B).  Other tissues express two types of SCN8A transcripts that do 

not encode an active channel, transcripts containing exon 18N with an in-frame stop 

codon, and transcripts that skip exon 18 (!18) (Figure 2.1B).  An invertebrate 

homolog of the truncated protein encoded by 18N transcripts was shown to be 

inactive in functional assays channel activity (Tan et al, 2002).  The protein encoded 

by the !18 transcript has altered topology of transmembrane domains and is unlikely 

to fold into an active channel. Inclusion of exon 18A is thus essential for production 

of functional Nav1.6.  

 SCN8A exon 18N is conserved in vertebrates from fish to mammals 

(Plummer et al., 1997; Tan et al., 2002).  The related sodium channels SCN1A, 

SCN2A, SCN3A, and SCN9A contain different duplicated alternative exons with in-

frame stop codons that also truncate the channel in domain 3 (Oh and Waxman, 

1998; Alessandri-Haber et al., 2002; Kerr et al., 2008).  Alternative splicing of these 

stop-codon-containing exons may reinforce the specificity conferred by 
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Figure 2.1. Alternative splicing of SCN8A. (A) Structure of the full length, four 
domains, 1980 amino acid residue Nav1.6 channel protein. The transmembrane 
segments encoded by exon 18 are shown in black. (B) Genomic structure of exons 
18A and 18N. SCN8A contains 26 protein coding exons; exons 17 to 19 are 
expanded. Exon 18N contains an in- frame stop codon. (C) A consensus Fox 
binding site is located downstream of exon 18A in SCN8A genes from human (H), 
mouse (M) and fugu (F). 
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 transcriptional regulation, by preventing the expression of active channel in non-

neuronal cells (Plummer et al., 1997).    

The mammalian Fox gene family of RNA binding proteins encodes three 

related proteins, Rbfox1 (A2BP1), Rbfox2 (RBM9) and Rbfox3 (HRNBP3/NeuN) 

(Shibata et al., 2000; Lieberman et al., 2001; McKee et al., 2005; Kim et al., 2009). 

Rbfox1 (Fox-1) and Rbfox2 (Fox-2) are known to regulate neuronal exon splicing 

(Underwood et al., 2005).  In this report, we demonstrate a role for the Fox proteins 

in the alternative splicing of SCN8A.   

 

Materials and Methods 

DNA constructs.  Fox-1 and Fox-2 cDNAs in the vector pcDNA3.1 were 

previously described (Underwood et al., 2005) and generously provided by Dr. 

Douglas Black, UCLA. To generate the SCN8A minigene, a 2.6 kb genomic DNA 

fragment containing exon 18N and exon 18A with 0.9 kb of upstream sequence and 

1.2 kb of downstream sequence was amplified from genomic DNA from mouse 

strain 129X1/SvJ (The Jackson Laboratory, Bar Harbor, ME) and cloned in the 

vector pDUP4-1 (Modafferi and Black, 1997) (Addgene, Cambridge, MA).  pDUP4-1 

contains exons 1 and 2 of the beta-globin gene, which provide initiation and 

termination signals and can be used to distinguish the minigene transcripts  from 

endogenous Nav1.6 transcripts.  ApaI and BglII sites were added using primers 1 

and 2 (Table 2.1).  The previously described Fox consensus site mutations TGCgTG 

and TGacgt (Tang et al., 2009) were introduced into the minigene Fox site 28 bp 
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downstream of exon 18A by QuikChange Mutagenesis (Agilent) with primer sets 3-4 

and 5-6 (Table 2.1) using conditions recommended by the supplier.  

Cell culture.  HEK293T cells were grown in DMEM:F12 media containing 1% 

Penicillin-Streptomycin supplemented with 10% FBS at 370C in 5% CO2.  

Transfections were performed using Fugene 6 (Roche) and Opti-MEM.  HEK293T 

cells were grown in BD Falcon 6-well plates to 50% confluence and transfected with 

2 ug Fox cDNA.  Medium was renewed after 24 hours and cells were cultured for an 

additional 48 hours.  For minigene assays, cells were transfected with 1 ug of 

minigene DNA and 1 ug of Fox cDNA, the medium was changed after 24 hours, and 

cells were incubated for an additional 24 hours.  

RT-PCR.  Cells were recovered by scraping into RLT media (Qiagen) with !-

mercapthoethanol (0.3 ml/well) and lysed by centrifugation over Qiashedder 

columns (Qiagen, Valencia, CA).  RNA was prepared using the RNEasy kit 

(Qiagen).  Samples were treated with DNAse I prior to 1st strand synthesis.  cDNA 

was synthesized from 5 ug RNA using the Superscript 1st strand cDNA kit 

(Invitrogen, Carlesbad, CA) with an oligo-dT primer for endogenous trancripts and 

random hexamer probes for minigene transcripts.  Primers 11-16 (Table 2.1) were 

used in various combinations for RT-PCR.  Amplification was initiated by incubation 

for 3 min at 94°C, followed by 30-40 cycles of 45 seconds at 94°C, 45 seconds at 

60°C, and 45 seconds at 72°C, with a final extension for 10 minutes at 72°C.   
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 Table 2.1.  Primers used in cloning and RT-PCR reactions.  Primer 
concentrations were 5 uM for RT-PCR and 125 ng/ul for Quikchange reactions.  F, 
forward; R, reverse. 
 

Primer  
 

Description Sequence (5’ to 3’) 

1 ApaI exon 18 
minigene F 

GCGGG CCCCC ATAAT CGGGT ATAAA TAGAA 
CAGAC TGC 

2 BglII exon 18 
minigene R 

GCGAG ATCTG GTCTC AGAAC TAGCT GATAT 
GCCGT CACC 

3 Fox site 1bp 
mutant F 

GTAGC CGATC CTTCT GCGTG CCAGT GGAAA CTG 
 

4 Fox site 1bp 
mutant R 

CAGTT TCCAC TGGCA CGCAG AAGGA TCGGC TAC 
 

5 Fox site 4bp 
mutant F 

GACAC TAAGA GTAGC CGATC CTTCT GACGT 
CCAGT GGAAA CTGTT AAAGC ATGCT AG 

6 Fox site 4bp 
mutant R 

CTAGC ATGCT TTAAC AGTTT CCACT GGACG 
TCAGA AGGAT CGGCT ACTCT TAGTG 

7 18N 5’ splice 
site mut F 

GTGTG TATTT ATCTG TATTC TTTTC CATCT 
GTTCC ATTAA GTTTG TCTGG 

8 18N 5’ splice 
site mut R: 5’ 

CCAGA CAAAC TTAAT GGAAC AGATG GAAAA 
GAATA CAGAT AAATA CACAC 

9 18N 3’ splice 
site mut F 

CAGAC TGTAA AGGGC GAGGA CAAGG CTCTT 
GTCAC CTCTT C 

12 18N 3’ splice 
site mut R 

GAAGA GGTGA CAAGA GCCTT GTCCT CGCCC 
TTTAC AGTCT G 

11 new exon 17F AAGTG GACAG CCTAT GGCTT CGTC 
12 new exon 19R AGCCA GAAGA TGAGA CACAC CAGC 
13 exon 18A F CTACT CGGAA CTAGG TGCCA TAAG 
14 exon 18A R CTCTT AAGGG TCTCA AAGCT CTTAG G 
15 pDUP4-1 F CTGAG GAGAA GTCTG CCGTT ACTGC 
16 pDUP4-1 R AACAG CATCA GGAGT GGACA GATCC C 
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 Products were separated on 2% agarose gels, visualized by ethidium bromide 

staining, and isolated from the gel for sequencing. 

Samples of human brain cortex were obtained from the Harvard Brain Tissue 

Resource Center (#B4925, 9 years; #B3829, 22 years; #B4503, 56 years) and from 

Stratagene (#540157, fetal 18 weeks).  RNA preparation with the Trizol reagent 

(Invitrogen) and 1st strand cDNA synthesis using Superscript (Invitrogen) were 

carried out as described (Drews et al., 2005).  The quality of RNA preparations was 

demonstrated by the presence of intact 18S and 28S ribosomal RNA on agarose 

gels.   

Purified neurons, astrocytes and oligodendrocytes.  Purified cell 

populations were isolated at Stanford by the Barres lab and have been characterized 

in detail (Barres et al., 1988; Barres et al., 1992).  Rat retinal ganglion cells (P6-7) 

and mature oligodendrocytes (P10-12) were purified by immunopanning as 

described (Goldberg et al., 2002; Dugas et al., 2006).  Cells adherent to the final 

positive selection panning plates after extensive rinsing (T11D7 for RGCs, GC for 

oligodendrocytes) were scraped off in RLT media. RNA was prepared with the 

RNEasy kit (Qiagen).  

Cortical astroglia (P1-2) were purified by the shake-off method, as described 

by McCarthy and de Vellis (McCarthy and de Vellis, 1980).  Cortical tissue was 

papain-digested and plated in medium that does not allow neurons to survive.  After 

4 days, non-adherent cells were removed by shaking and adherent cells were 

incubated another 2-4 days to allow the monolayer to refill.  Medium was then 

replaced with fresh medium containing AraC (10 mM) to eliminate contaminating 
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fibroblasts, and incubated for 48 hours.  Astrocytes were trypsinized and plated onto 

10 cm tissue culture dishes at 2 x 106 cells/plate.  After 2 days, cells were removed 

by scraping for preparation of RNA. 

 

Results 

Fox-1 and Fox-2 catalyze splicing of exon 18A from an Scn8a minigene.  

We constructed an Scn8a minigene containing a 2.6 kb genomic fragment with exon 

18N, exon 18A, and adjacent introns, including the Fox binding site located 28 bp 

downstream of exon 18A (Figure 2.2A). In the minigene vector, the Scn8a 

sequences are located between globin exon 1, which provides the initial splice donor 

site for minigene transcripts, and globin exon 2, which provides the final splice 

acceptor site.  HEK cells transfected with the minigene alone produced transcripts 

that were spliced from the !-globin donor exon 1 in the construct to exon 18N, and 

then to globin exon 2, by passing exon 18A completely (Figure 2.2B, lane 1).  This 

pattern is typical for non-neural tissues and cells (Plummer et al., 1997).  Co-

transfection of the minigene with either Fox-1 cDNA or Fox-2 cDNA generated a 

novel product that contains exon 18A (Figure 2.2B).  This product results from 

splicing of the minigene transcript from exon 18N to 18A.  This novel transcript is not 

seen in vivo, and may reflect the overexpression of minigene transcript relative to 

available splice factors, or the absence of a critical factor from HEK cells.  However, 

the production of the 18N plus 18A transcript demonstrates the capability of the Fox 

proteins to initiate inclusion of exon 18A.  
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Figure 2.2. Splicing of an Scn8a minigene. (A) Structure of the 2.6 kb minigene 
containing exon 18N, exon 18A, and the Fox binding site TGCATG (asterisk). The 
CMV promoter and !-globin exons 1 and 2 are indicated; intron sizes in kb; exons 
not to scale. (B) RT-PCR products amplified from RNA isolated after transfection of 
HEK cells with the minigene alone (none) or co-transfection with Fox-1 or Fox-2. (C) 
RT-PCR products from HEK cells transfected with a minigene carrying a 1 bp 
mutation in the Fox binding site (from TGCATG to TGCgTG). w, wildtype minigene; 
m1, mutant minigene. RT-PCR primers 15 and 16 in !-globin exons 1 and 2, 
respectively (Table 2.1). Predicted lengths in bp: 8N + A = 352, 18A = 284, 18N = 
229, "18 = 161. The identity of all RT-PCR products in this and other figures was 
confirmed by sequencing. 
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Splicing of minigene exon 18A is dependent on the downstream Fox 

binding site.  A perfect copy of the Fox consensus site TGCATG is located 28 bp 

downstream of exon 18A (Figure 2.1C).  To determine whether this site is required 

for splicing of exon 18A by Fox-1 and Fox-2, we introduced a 1 bp mutation that was 

previously shown to impair Fox protein function (Tang et al., 2009) (Figure 2.2C).  

Co-transfection of the mutated minigene with Fox-1 or Fox-2 resulted in greatly 

reduced inclusion of exon 18A (Figure 2.2C). The data indicate that Fox binding to 

the consensus site is required for Fox-mediated inclusion of exon 18A.  

Fox-1 alters splicing of endogenous SCN8A transcripts in HEK cells.  To 

avoid the high level of minigene transcript expression and to determine whether 

direct splicing from exon 17 to exon 18A could be generated by the Fox proteins, we 

examined the splicing of endogenous Scn8a transcripts in HEK cells.  In non-

transfected HEK cells, the 18N and !18 transcripts of Scn8a can be detected, but 

expression of exon 18A is missing, as expected in non-neural tissue (Figure 2.3A).  

Transfection of HEK cells with the Fox-1 cDNA resulted in the appearance of 

transcripts that are directly spliced from exon 17 to exon 18A, using a reverse primer 

in exon 18A (Figure 2.3B).  Fox-1 is thus sufficient to initiate normal inclusion of 

exon 18A in a non-neuronal cell.   

Effect of cycloheximide on transcripts containing exon 18N.  The stop 

codon in exon 18N is located more than 55 bp upstream of the final exon junction, 

making transcripts containing exon 18N candidates for nonsense-mediated decay 

(Nicholson et al., 2010).  Since cycloheximide inhibits the pioneer round of mRNA 
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Figure 2.3. Splicing of endogenous SCN8A trancripts in HEK cells. (A) RT-PCR 
products amplified from RNA from untransfected HEK cells with a forward primer in 
exon 17 and reverse primer in exon 19.  PCR product lengths: 18N = 216 bp; !18 = 
146 bp. The product containing 18A (269 bp) is not present. (B) Transcripts 
containing exon 18A alone can be amplified only after transfection of the Fox-1 
cDNA. Forward primer in exon 17, reverse primer in exon 18A. M, markers: 100-bp 
ladder. 
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 translation that is required for nonsense-mediated decay, it can be used as an 

indicator of transcript susceptibility to nonsense-mediated decay.  In untreated HEK 

cells, as shown above, the abundance of transcripts containing exon 18N is low 

(Figure 2.4A).  However, treatment with cycloheximide for 5 hours resulted in a 

substantial increase in the abundance of exon 18N-containing transcripts (Figure 

2.4A).  There was no increase of !18 transcripts amplified by the same primers 

(Figure 2.4A) or of the control transcripts ATP7A and FIG4 that lack internal in-

frame stop codons (Figure 2.4B). Although cycloheximide does not specifically 

affect the proteins involved in nonsense mediated decay, the data are consistent 

with the possibility that transcripts containing exon 18N are degraded in vivo by 

nonsense-mediated decay.  

Transcripts containing exon 18A are present in neurons but not in two 

types of glia.  It was previously reported that cultured hippocampal neurons express 

Scn8a transcripts containing exon 18A but epithelial cells from the inner ear do not 

(Mechaly et al., 2005).  To extend this limited data, we examined astrocytes, 

oligodendrocytes and retinal ganglion neurons purified from whole rat brain between 

postnatal days P1 and P12.  The characteristics of these purified cells have been 

described in detail (Barres et al., 1988; Barres et al., 1992).  During the first two 

weeks of postnatal life, there is a major switch in the proportion of Scn8a transcripts 

containing exon 18A in rat brain.  At P1, there is a comparable abundance of 

transcripts with and without exon 18A, while at P12 there is a large excess of 

transcripts containing exon 18A (Figure 2.5A).  In cells isolated during this time 
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Figure 2.4. Treatment with cycloheximide increases the abundance of SCN8A 
transcripts containing exon 18N. (A) HEK cells were incubated with cycloheximide 
(CHX, 500 µg/ml) for 5 h. RT-PCR was carried out with primers 11–12 (Table 2.1). 
Product sizes: 18N = 216 bp, !18 = 146 bp. (B) RT-PCR products from transcripts of 
ATP7A and FIG4 that do not contain in-frame stop codons. Control, no CHX.  
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 interval, there was robust expression of exon 18A in the purified retinal ganglion 

neurons (Figure 2.5A).  In contrast, exon 18A could not be detected in RNA from 

purified astrocytes or oligodendrocytes (Figure 2.5A).  This data provides 

experimental support for the view that transcripts encoding the full length Nav1.6 

channel in brain are concentrated in neuronal cells as a consequence of neuron-

specific splicing of exon 18A.  

Developmental switch in splicing of human SCN8A.  The expression of 

alternatively spliced transcripts of SCN8A in human brain has not previously been 

characterized.  In human fibroblasts, transcripts containing exon 18N and the !18 

transcript can be amplified, similar to human HEK cells (Figure 2.5B).  In fetal brain 

at 18 weeks of gestation, transcripts containing exon 18A are present, at 

comparable levels to the other two transcripts (Figure 2.5B).  By 10 months 

postnatal, there is only small increase in the proportion of SCN8A transcripts 

containing exon 18A, relative to the two non-neuronal transcripts.  The pattern in 

human brain at 10 months is similar to rodent brain in the early postnatal period up 

to weaning (Figure 2.5A and (Plummer et al., 1997)).  By 9 years of age, transcripts 

containing exon 18A predominate, and the other transcripts were not detected.  This 

pattern persists in at 22 years and 56 years of age  (Figure 2.5B).  The 

developmental switch to predominance of exon 18A is conserved in human brain, 

and appears to be delayed until later than 10 mos of age. 
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Figure 2.5. SCN8A expression in purified neurons and human brain. (A) RT-
PCR of RNA from rat brain at ages P1, P12 and adult demonstrates the postnatal 
switch to transcripts containing exon 18A. Purified retinal ganglia neurons (RGC) 
(P6–7) express predominantly exon 18A. Purified astrocytes (P1) and 
oligodendrocytes (P12) do not contain transcripts with exon 18A. M, molecular 
weight markers in bp. (B) Time course of developmental switch to exon 18A in 
human brain. The pattern is delayed in comparison with rodent brain; the human 
pattern at 10 months postnatal resembles rodent brain at postnatal day 1 (P1). fibr, 
human fibroblast control; E18w, 18 weeks of gestation. Forward primer in exon 17, 
reverse primer in exon 19; predicted product sizes, 18A = 286, 18N = 231, !18 = 
163; identity of RT-PCR products was confirmed by sequencing. M, molecular 
weight markers in bp. 
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Discussion 

Fox proteins and splicing of SCN8A exon 18A.  The experiments 

described here provide evidence for a direct role of the neuronal splice factors Fox-1 

and Fox-2 in generation of SCN8A transcripts that contain exon 18A and encode the 

active channel protein.  These observations provide a satisfying answer to the 

mechanism of tissue specificity raised when this pair of duplicated, alternatively 

spliced exons was described 14 years ago (Plummer et al., 1997).  The negative 

effect of mutating the Fox consensus binding site in the minigene construct strongly 

supports the role of the Fox proteins in splicing of exon 18A.    

Recent studies using knock-out mice provide supporting evidence that the 

Fox proteins are involved in splicing of exon 18A in vivo.  Mice with inactivation of 

Rbfox1 were recently described, but splicing of exons 18A and 18N was not included 

in that study (Gehman et al., 2011).  However, in mice that are homozygous for 

inactivation of Fox-2 and heterozygous for inactivation of Fox-1, the proportion of 

cerebellar Scn8a transcripts containing exon 18A is reduced from 80% to 40% 

(Gehman et al., 2012).  The analysis of transfected cells described here, together 

with the observations in the knock-out mice, provide strong evidence that Fox-1 and 

Fox-2 contribute to the neuronal expression of full-length Nav1.6 in mammalian 

brain. 

This conclusion is consistent with previous evidence that the Fox proteins are 

expressed in neurons (Underwood et al., 2005; Cahoy et al., 2008; Tang et al., 

2009).  During development of mouse brain, both Fox proteins and SCN8A are first 

detected at embryonic day 12 (Plummer et al., 1997; Underwood et al., 2005; Tang 
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et al., 2009), and in cultured P19 cells, differentiation towards a neuronal cell fate 

results in up-regulation of Fox-1 as well as initiation of splicing of Scn8a exon 18A 

(Plummer et al., 1997; Hakim et al., 2010).  Fox proteins were previously shown to 

regulate splicing of another neuronal voltage-gated ion channel gene, Cav1.2 (Tang 

et al., 2009), and 5 statistically significant changes in ion channel splicing were 

recently observed in Fox-1-/- mouse brain (Gehman et al., 2011).  

Other cis elements contributing to alternative splicing of exon 18.  

Zubovic and colleagues identified an exonic splice enhancer (ESE) in exon 18N and 

an exonic splice silencer (ESS) in exon 18A (Zubovic et al., 2012).  Inclusion of exon 

18N and exclusion of exon 18A is greatly supported by the binding of the splice 

factors SRSF1/2 to the ESE in exon 18N together with binding of hnRNPs and PTB 

to the ESS in exon 18A.  The binding of trans splice factors to these cis elements 

along with the binding of Rbfox proteins creates a combinatorial control that results 

in the in vivo splicing pattern of exon 18 (Zubovic et al., 2012). 

Fox proteins and Scn8a in non-neural tissues.   In addition to neuronal 

expression, Fox proteins are expressed in ovary and heart (Underwood et al, 2005).  

We recently reported the presence of transcripts containing exon 18A in isolated 

cardiac ventricular myocytes (Noujaim et al, 2011), and Nav1.6 protein has been 

detected by immunostaining in transverse tubules of ventricular myocytes (Maier et 

al., 2004; Du et al., 2007; Lopez-Santiago et al., 2007). Fox proteins have also been 

detected in oligodendrocyte precursors, but not in mature oligodendrocytes 

(Underwood et al., 2005; Cahoy et al., 2008). Similarly, sodium currents have been 

observed in oligodendrocyte precursors but not in mature oligodendrocytes (Barres 
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et al., 1990; De Biase et al., 2010). Sodium currents have also been detected in 

other types of glia (Karadottir et al, 2008; Steinhauser et al, 2002).  These 

observations suggest that Fox proteins may play a role in expression of full length 

Nav1.6 in non-neuronal cells.   

 Biological function of alternative exon 18N with the in-frame stop codon.  

Exons containing an in-frame stop codon have been referred to as “poison 

cassettes” (Lareau et al., 2007) that induce nonsense-mediated decay and down-

regulate gene expression (Nicholson et al., 2010). Based on DNA sequence alone, 

inclusion of exon 18N appears to be favored over exon 18A by higher G-C content of 

adjacent introns and the more favorable nucleotide at the -6 position of the splice 

acceptor site .  Although the level of SCN8A transcripts in non-neuronal cells is low, 

even a small amount of sodium channel protein in these cells could be deleterious to 

the maintenance of cellular membrane potential (Williams, 1970).  Thus the 

requirement for a neuronal splice factor to generate active channel protein provides 

added protection against negative effects of low-level expression of channel protein 

in non-neuronal cells (Figure 2.6). 

 The cockroach sodium channel para contains three alternatively spliced copies 

of the exon that corresponds to Nav1.6 exon 18.  The copy designated G3 contains 

an in-frame stop-codon and incorporation of this exon results in a truncated protein 

that is nearly identical to the 18N protein (Tan et al., 2002).  The available genomic 

sequence for sodium channels from other invertebrates and vertebrates is not of 

sufficient quality to determine whether para exon G3 and vertebrate exon 18N are 

derived from a common ancestor or are of independent origin. The truncated 
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cockroach sodium channel protein failed to generate sodium currents in the 

Xenopus oocyte system (Tan et al., 2002). This is consistent with biophysical studies 

of site-directed channel mutations in domain 3 that inactivate channel activity 

(Stuhmer et al., 1989).  Truncating mutations of SCN1A in patients with Dravet 

Syndrome that are in domain 3 are clinically as severe as stop codons near the N-

terminus of the protein, supporting the view that truncation in domain 3 inactivates 

the channel (Meisler and Kearney, 2005b).  These observations indicate that the 

truncated Nav1.6 protein encoded by exon 18N is unlikely to retain channel activity.  

Consistent with our evidence for nonsense-mediated decay of transcripts containing 

exon 18N, we have been unable to detect the truncated protein on Western blots of 

brain homogenates or purified membrane fractions (unpublished observations).   

 Relationship to alternative exons 5A and 5N.  SCN8A contains another pair 

of duplicated, developmentally regulated alternative exons, 5N and 5A, that share a 

common evolutionary origin with exon 18N and exon 18A (Plummer et al., 1997; 

Plummer and Meisler, 1999). The structural relationship between the two pairs of 

exons predicts that the exon duplication event occurred in a two-domain channel 

prior to generation of the modern four-domain channel.  There is a consensus Fox 

binding site located 359 bp downstream of exon 5A which could enhance inclusion 

of this exon (Kuroyanagi, 2009), and splicing of exon 5A is reduced in Fox-1-/- mice 

(Gehman et al., 2011).  Exons 5A and 5N confer different biophysical properties in 

the paralogous channel SCN5A, and the splicing switch from exon 5N to exon 5A 

may be important during neuronal development (Onkal et al., 2008). Additional  
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Figure 2.6. Model for restriction of active Nav1.6 channels to neurons. Splice 
factors Fox-1 and Fox-2 in neurons generate transcripts containing exon 18A that 
encode the active sodium channel. In the absence of Fox-1 and Fox-2 in non-
neuronal cells, transcripts containing exon 18N are produced and degraded by 
nonsense-mediated decay. Translation of remaining 18N transcripts generates a 
truncated protein lacking channel activity (Plummer et al., 1997). The much greater 
total abundance of Nav1.6 transcripts in neurons compared with other cells is also a 
consequence of regulation at the level of transcription. 



!

54 
54
!

heterogeneity of SCN8A brain transcripts results from use of four alternative 5-

noncoding exons and two alternative polyadenylation sites (Drews et al., 2005). 

Non-coding regulatory elements and disease.  Trans-acting genetic 

variation in the splice factor SCNM1 and cis-acting variation in its binding site in 

exon 3 of Scn8a both modify disease severity in Scn8amedJ mice (Buchner et al., 

2003; Howell et al., 2007). Similarly, mutations in the Fox protein coding sequence 

or in its binding sites in SCN8A could influence the level of expression of full-length 

Nav1.6.  Haploinsufficiency of Nav1.6 results in anxiety-related behavior and 

impaired sleep in the mouse (McKinney et al., 2008; Papale et al., 2010), and 

cognitive impairment in human patients (Trudeau et al., 2006).  Cognitive impairment 

is also seen in patients with Fox-1 mutations (Bhalla et al., 2004; Martin et al., 

2007a), and copy number variants of Fox-1 have been associated with autism 

(Sebat et al., 2007).  The overlap in phenotypes suggests that impaired splicing of 

SCN8A could contribute to the neuropsychiatric effects of Fox-1 mutations.  The 

functional relationship between SCN8A and Fox proteins described here will 

contribute to understanding genetic interactions between these loci and their role in 

human disease.  
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Chapter III 

 

Interaction of voltage-gated sodium channel Nav1.6 (SCN8A) with microtubule-
associated protein Map1b2 

 

Abstract 

The mechanism by which voltage-gated sodium channels are trafficked to the 

surface of neurons is not well understood.  Our previous work implicated the 

cytoplasmic N-terminus of the sodium channel Nav1.6 in this process.  We report 

that the N terminus plus the first transmembrane segment (residues 1-153) is 

sufficient to direct a reporter to the cell surface.  To identify proteins that interact with 

the 117 residue N-terminal domain, we carried out a yeast-two-hybrid screen of a 

mouse brain cDNA library. Three clones containing overlapping portions of the light 

chain of microtubule associated protein Map1b (Mtap1b) were recovered from the 

screen.  Interaction between endogenous Nav1.6 channels and Map1b in mouse  

______________________________ 

2This work has been published in: O'Brien, J.E., Sharkey, L.M., Vallianatos, C.N., 
Han, C., Blossom, J.C., Yu, T., Waxman, S.G., Dib-Hajj, S.D., and Meisler, M.H. 
(2012). Interaction of voltage-gated sodium channel Nav1.6 (SCN8A) with 
microtubule-associated protein Map1b. J Biol Chem 287, 18459-18466, with the 
exception of the text of the results describing Figure 3.4A. 
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brain was confirmed by co-immunoprecipitation.  Map1b interacts with the N-termini 

of the related channels Nav1.1 and Nav1.2 with reduced affinity.  Alanine-scanning 

mutagenesis of the Nav1.6 N-terminus demonstrated that residues 77 to 80 (VAVP) 

contribute to interaction with Map1b. Co-expression of Nav1.6 with Map1b in 

neuronal cell line ND7/23 resulted in a 50% increase in current density, 

demonstrating a functional role for this interaction.  Mutation of the Map1b binding 

site of Nav1.6 prevented generation of sodium current in transfected cells.  The data 

indicate that Map1b facilitates trafficking of Nav1.6 to the neuronal cell surface. !

 

Introduction 

 The voltage-gated sodium channel Nav1.6 is widely expressed in neurons of 

the central and peripheral nervous system, and is highly concentrated at the axon 

initial segment and nodes of Ranvier (Schaller and Caldwell, 2000; Lorincz and 

Nusser, 2010).  Nav1.6 is required for repetitive firing and generation of resurgent 

currents in cerebellar Purkinje cells (Raman et al., 1997; Khaliq et al., 2003; Levin et 

al., 2006) and sensory neurons in dorsal root ganglia (Cummins et al., 2005), and 

contributes to firing patterns in other types of neurons [reviewed in (O'Brien et al., 

2012)].  Spontaneous mutations of Nav1.6 in the mouse result in neurological 

disorders including tremor, dystonia, ataxic gait, paralysis and juvenile lethality 

(Meisler et al., 2004). Two mutations of human SCN8A have been described, an 

inherited protein truncation allele in a family with ataxia and cognitive impairment 

(Trudeau et al., 2006), and a de novo gain-of-function mutation in a child with 

epileptic encephalopathy (Veeramah et al., 2012). 
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 Voltage-gated sodium channels interact with multiple binding partners that 

regulate gating properties and subcellular localization (Dib-Hajj and Waxman, 2010).  

Several protein interaction sites have been mapped to the intracellular loops and C-

terminus of the channels.  Sequence analysis has identified putative protein-protein 

interacting motifs and sites for post-translational modification.  The only previously 

described interaction of the N-terminus with cytoplasmic proteins is the specific 

interaction of Nav1.8 with the annexin II light chain, which increases channel 

trafficking to the plasma membrane (Okuse et al., 2002; Poon et al., 2004). 

 We recently characterized the ENU-induced mouse mutant Scn8aataxia3, in 

which the amino acid substitution S21P results in trapping of the Nav1.6 channel 

protein in the Golgi (Sharkey et al., 2009a).  The location of this mutation in the N-

terminus suggested that this region might be involved in protein-protein interactions 

required for trafficking of the channel protein to the cell surface.  To test this 

prediction, we carried out a yeast-two-hybrid screen of a mouse brain cDNA library 

to identify proteins that interact with the 117 residue N-terminus of the channel.  We 

now report the interaction of Nav1.6 with the light chain of Map1b, a cytoskeletal 

protein that binds microtubules and actin (Riederer, 2007).  The major sites of 

expression of Map1b are brain and spinal cord.  Among other known cargoes, the 

light chain of Map1b binds and transports two neuronal membrane-bound proteins, 

the 5-HT3a receptor (Sun et al., 2008) and the NMDA receptor subunit N3A 

(Eriksson et al., 2010).  The work reported here provides evidence that Nav1.6 is 

subject to microtubular transport to the plasma membrane mediated by interaction 

with the light chain of Map1b.  
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Materials and Methods 

Yeast-two-hybrid assay.  The cytoplasmic N-terminus of Nav1.6 (residues 1-

117) was amplified from mouse brain cDNA (strain C57BL/6J) and cloned into the 

vector pGBKT7 for use as 'bait' in the yeast two hybrid screen.  The prey consisted 

of the mouse brain cDNA library in the vector pGADT7 (Clontech #630489).  The 

yeast-two hybrid screen and directed tests were performed according to 

recommendations except that yeast were prepared for transformation by placing a 2-

3 mm colony into 50 mL YPDA broth. The culture was incubated at 30 °C for 16-20 

hours until OD600 >1.5. The culture was diluted in YPDA to an OD of 0.2-0.3 and 

incubated, with shaking, at 30 °C, until an OD=0.4-0.6 was reached. Transformation 

of yeast with 0.5 ug of each plasmid was performed using the Clonetech 

Yeastmaker Yeast Transformation System 2 protocol (Clonetech #630439). All 

transformed yeast grew on –Leu/-Trp media, which selects for presence of the bait 

and prey constructs. Interactants were identified by growth on selective –Leu/-Trp/-

His/-Ade media which requires interaction between the transformed proteins.  The 

cDNA fragment encoding Map1b (residues 1924-2464) was amplified from mouse 

brain cDNA and cloned into pGADT7.  This fragment encodes the 541 C-terminal 

residues of Map1b, including the approximately 374 residues of the light chain 

(Riederer, 2007).  The stability of the encoded protein fragment in transfected cells 

was demonstrated by Western blot.  Hybrid N-terminal constructs were cloned by 

PCR fusion of cDNA residues 1-54 of Nav1.1 and 55-117 of Nav1.6 (1A/8A), or 

residue 1-54 of Nav1.6 and 55-117 of Nav1.1 (8A/1A).  The fusion products were 
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cloned into pGBKT7.  Deletion constructs based on NdeI and EcoRI restriction sites 

were generated in vector pGBKT7 by Dr. W. Clay Brown at the High Throughput 

Protein Lab, Life Sciences Institute, University of Michigan.  Alanine residues were 

introduced into the N-terminal domain of Nav1.6 by Quikchange XL mutagenesis 

(Agilent) using the primers listed in Table 3.1.   

Cloning of the Nav1.6-CD74 fusion protein.  A cDNA fragment encoding the 

N-terminus plus first transmembrane segment of Scn8a (residues 1-153) was 

amplified from the Nav1.6 cDNA clone pcDNA3mod-Nav1.6R (Herzog et al., 2003a).  

The pcDNA3-CD74 clone encoding full length human CD74 (residues 1-232), was 

provided by Dr. Blanch Schwappach, University of Manchester, U.K. (Zuzarte et al., 

2009).  Residues 1-71 of CD74 were replaced with residues 1-153 of Nav1.6, which 

removed the cell surface localization signal in the first transmembrane domain of 

CD74 (Zuzarte et al., 2009).  The ataxia3 mutation p.S21P was introduced into the 

Nav1.6-CD74 fusion protein by Quikchange XL mutagenesis (Agilent).  The coding 

regions of all constructs were analyzed by Sanger sequencing at the University of 

Michigan DNA Sequencing core before use in transfection experiments. 

Site-directed mutagenesis of the Nav1.6R cDNA clone. The VAVP(77-

80)AAAA mutation was introduced into the tetrodotoxin-resistant Nav1.6 cDNA clone 

Nav1.6R (Herzog et al., 2003a) by Quikchange XL mutagenesis (Agilent) using the 

primers listed in Table 3.1. The entire 6-kb open reading frame was sequenced to 

confirm the absence of additional mutations prior to functional testing. 
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Table 3.1.  Alanine scanning Quikchange forward primer sequences.  Reverse 
primers are the reverse complement of the forward primer. 
 

 Forward Primer Sequence 5’ to 3’ 
Residue 73-76 
AAAA 

GAAGA GTTTG CCTTT CATCT ACGGG GACAT CGCGG 
CAGCC GCGGT TGCGG TTCCC CTGGA GGACT TTGAC 

Residue 75-78 
AAAA 

GAAGA GTTTG CCTTT CATCT ACGGG GACAT CCCGC 
AAGCC GCGGC TGCGG TTCCC CTGGA GGACT TTG 

Residue 77-80 
AAAA 

CTTTC ATCTA CGGGG ACATC CCGCA AGGCC TGGCT 
GCGGC TGCCC TGGAG GACTT TGACC CGTAC TATTT G 

Residue 79-82 
AAAA 

CTTTC ATCTA CGGGG ACATC CCGCA AGGCC TGGTT 
GCGGC TGCCG CGGCG GACTT TGACC CGTAC TATTT G 

Residue 81-84 
AAAA 

GACAT CCCGC AAGGC CTGGT TGCGG TTCCC GCGGC 
GGCCG CTGAC CCGTA CTATT TGACG CAGAA AACTT 
TTGTA GTATT AAAC 

Residue 83-86 
AAAA 

CAAGG CCTGG TTGCG GTTCC CCTGG AGGCC GCTGC 
CGCGT ACTAT TTGAC GCAGA AAACT TTTG 

Residue 85-88 
AAAA 

CAAGG CCTGG TTGCG GTTCC CCTGG AGGAC TTTGC 
CGCGG CCGCT TTGAC GCAGA AAACT TTTGT AGTAT 
TAAAC 

Residue 87-90 
AAAA 

CTGGT TGCGG TTCCC CTGGA GGACT TTGAC CCGGC 
CGCTG CGGCG CAGAA AACTT TTGTA GTATT AAACA 
GAGGG AAAAC 
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Immunocytochemistry.  HEK293 cells were transfected with 6 ug of DNA 

using Fugene 6 (Roche).  Glass coverslips (Fisherband Microscope Coverglass, 12-

545-81, 12CIR.-1.5) were prepared for cell culture by coating with poly-L-lysine 

(Sigma, 0.01% solution, P4832) and sterilized under UV light.  After 24 hours, 

transfected cells were washed with sterile PBS and fixed with 4 % 

paraformaldehyde-PBS solution (16% PFA, Thermo Scientific, product # 28908).  

Cells were blocked in 10% donkey serum in PBS (Sigma D9663) and incubated at 4 

°C overnight with a 1:750 dilution of anti-CD74 (Santa Cruz Biotechnology CD74 (C-

16) goat polyclonal IgG, sc-5438) in 20% donkey serum-PBS. Incubation with DAPI 

and the secondary antibody, donkey anti-goat (Alexa Flor-488, Invitrogen, A11055, 

1:1000 in 1% donkey serum/PBS) was carried out at room temperature for 1 hour. 

Coverslips were mounted on glass slides (Fisherbrand Superforst Microscope 

Slides, precleaned, cat# 12-550-143) with Invitrogen ProLong Gold antifade reagent 

(P36930). Imaging was performed at the University of Michigan Microscopy and 

Image Analysis Laboratory using an Olympus FluoView 500 Laser Scanning 

Confocal Microscope mounted on Olympus IX-71 inverted microscope. 

Immunoprecipitation and western blotting.  HEK-293 cells were co-

transfected with Nav1.6-CD74 and myc-Map1b as described above.  Cell extracts 

were prepared and immunoprecipitated as described (McEwen et al., 2004). 10 cm 

plates of confluent cells were lysed in 1 ml of buffer containing 60 mM Tris HCl, pH 

7.5, 180 mM NaCl, 1% TritonX-100, and 6 mM EDTA.  Lysates were pre-incubated 

for 1 hr at 4 °C with 5 ul IgG and washed Protein G Sepharose beads.  After 

centrifugation, the supernate was incubated for 1 h at 4 °C with primary antibody, 25 
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ul anti-CD74 (Santa Cruz Biotechnology, Inc., sc-5438) or 5 ul monoclonal anti-c-

myc (Clonetech, 3631206). Protein G Sepharose beads were added and incubated 

for 1 hr at 4 °C.   Beads were centrifuged and washed 3x; the final wash buffer 

included 0.1% TritonX-100 and 0.02% SDS.  Proteins were eluted into 80 ul of 

electrophoresis sample buffer (0.125 M Tris HCl pH 6.8, 2.5% SDS, 0.025% 

bromophenol blue, 1 mM !-mercaptoethanol, and 22.5% glycerol in 0.5X PBS).  

Western blotting was carried out with antibody to CD74 (1:200) and c-myc (1:500) as 

previously described (Sharkey et al., 2009a).  

Brain membrane fractions were prepared from wild type and Scn8amedTg null 

homozygous mice by homogenation in 50 mM Tris HCL, pH 7.5, containing 10 mM 

EGTA and 5 tablets of Roche Complete Mini Protease Inhibitor Cocktail per 50 ml of 

buffer. After centrifugation at 3,500 rpm, membrane proteins were pelleted from the 

supernate by centrifugation at 100,000 x g for 30 min.  The membrane pellet was 

suspended in 0.2 ml of homogenation buffer by tituration and 25 ul aliquots were 

stored at -80oC.  For immunoprecipitation, one aliquot of stored membrane protein 

was diluted to 1 ml in 60 mM Tris HCl buffer containing 1% Triton X-100 (see above) 

and incubated with 5 ug monoclonal pan-neuronal sodium channel antibody (Sigma, 

S8809-1MG) for 8 hr at 4 °C.  Western blotting was carried out with polyclonal 

antibody to Nav1.6 (Alomone, ASC-009, 1:100) or polyclonal antibody tothe light 

chain of Map1b (Santa Cruz Biotechnology, Inc., sc-8971, 1:100). 

Electrophysiology.  The DRG-derived cell line ND7/23 (Wood et al., 1990) 

was cultured on 12-mm glass coverslips coated with poly-D-lysine/laminin (BD 

Biosciences) and transfected using Lipofectamine 2000 (Invitrogen) with 1 ug 
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DNA/well (0.6 ug of Nav1.6 cDNA, 0.2 ug of pEGFP-C1 (Clontech), and 0.2 ug of 

either vector pcDNA3 (Clontech) or the Map1b cDNA construct. After 48 hours, cells 

with robust green fluorescence were selected for recording.  Whole-cell voltage-

clamp recording was done essentially as described previously (Sharkey et al., 

2009b) with a few modifications:1) EPC-9 amplifier (HEKA Electronics, 

Lambrecht/Pfalz, Germany) was used in this study; 2) data were filtered at 2.9 kHz, 

and sampled at a rate of 20 kHz; 3) current-voltage relationship was determined by 

recording from cells held at -120 mV and stepped to a range of potentials (-80 to 40 

mV in 5 mV increments) for 100 ms each; 4) Steady-state fast-inactivation was 

achieved with a series of 500 ms prepulses (-150 to 0 mV in 10 mV increments), and 

the fraction of non-inactivated channels were measured by a 40 ms test pulse to 0 

mV; 5) dextrose instead of sucrose was used to adjust the osmolarity of pipette 

solution (315 mosmol/lit) and external solution (323 mosmol/lit); 6) data were 

analyzed using Pulsefit 8.74 software (HEKA Electronics) and OriginPro 8.1 

software (Microcal Software, Northampton, MA), and statistical significance was 

tested using unpaired Student's t test because data followed a normal distribution. 

 

Results 

 Cell membrane localization of the CD74 reporter.  To determine whether the 

N-terminus of Nav1.6 is sufficient to direct protein localization to the cell membrane, 

we used the extracellular domain of CD74 (residues 72-232) as a cell surface 

reporter (Zuzarte et al., 2009). Transfection of HEK293 cells with the CD74 

extracellular fragment alone yields diffuse cytoplasmic staining (Figure 3.1A).  We 
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cloned a hybrid construct containing the N-terminus and 1st transmembrane segment 

of Nav1.6 (residues 1-153) upstream of the extracellular domain of CD74.  This 

protein is localized to the cell surface (Figure 3.1B).  Introduction of the ataxia3 

mutation p.S21P into the hybrid construct did not prevent surface localization 

(Figure 3.1C).  The S21P mutation does prevent surface localization of full length 

Nav1.6 in primary cultured neurons; the reason for the lack of effect on the CD74 

construct in HEK cells is not clear.  The experiments indicate that additional residues 

in the N-terminus are involved in transport of Nav1.6 to the cell surface.  

 Yeast-two-hybrid screen.  To identify proteins involved in surface localization 

of Nav1.6, we screened a mouse brain cDNA library using the N-terminal fragment of 

Nav1.6 (residues 1-117) as bait (Figure 3.2A). Growth on selective medium 

identified three independent overlapping clones containing portions of the light chain 

of the microtubule-associated protein Map1b (Figure 3.2B).  The interaction was 

confirmed by a directed yeast-two-hybrid assay using a 541-residue Map1b 

fragment (residues 1924-2464) including the light chain (Figure 3.2C). 

 Interaction between the Nav1.6-CD74 fusion protein and Map1b.  To 

determine whether the N-terminus of Nav1.6 interacts with Map1b in mammalian 

cells, we cloned the Map1b fragment into the myc-tagged mammalian expression 

vector pCMV-myc.  myc-Map1b and the fusion protein Nav1.6-CD74 were co-

transfected into HEK293 cells.  Lysates from co-transfected cells were 

immunoprecipitated with antibody against CD74 and Western blots were probed with 

anti-myc antibody.  A band corresponding to the myc-tagged Map1b was detected in  
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Figure 3.1. The N-terminus and first transmembrane segment of Nav1.6 are 
sufficient to direct a reporter protein to the cell surface. Confocal images of 
HEK293 cells transfected with the reporter constructs and probed with anti-CD4 
antibodies are shown. Green, anti-CD74; blue, DAPI. (A) extracellular domain of 
CD74 lacking membrane-targeting N-terminus. (B) N-terminus and first 
transmembrane segment of Nav1.6 fused to the extracellular domain of CD74. (C) 
ataxia3 mutation S21P not disrupting surface localization.
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Figure 3.2. Yeast two-hybrid screen using the N-terminus of Nav1.6 as bait identified Map1b as an interactant. (A) 
schematic of Nav1.6 channel. Residues 1–117 were used as the bait for the yeast two-hybrid screen. (B) location of the 
three independent clones of Map1b identified in the screen. Residues 1924 –2426 were cloned into the prey vector for the 
directed yeast two-hybrid and into pCMV-myc for mammalian cell culture experiments. (C) yeast two-hybrid experiments 
confirming interaction between N-terminus of Nav1.6 and Map1b.
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the immunoprecipitate, demonstrating interaction  (Figure 3.3A). The S21P mutation 

did not prevent co-immunoprecipitation (data not shown). 

 Interaction of endogenous full length Nav1.6 with the light chain of 

Map1b.  To assess in vivo interaction, we carried out immunoprecipitation of mouse 

brain membrane protein using a pan-sodium channel antibody, followed by Western 

blotting with an antibody to the light chain of Map1b. Nav1.6 was co-

immunoprecipitated with the light chain of Map1b from wildtype brain (Figure 3.3B). 

These results demonstrate that the interaction detected in the yeast-two-hybrid 

system also occurs in vivo with full-length endogenous proteins.  Map1b was not co-

immunoprecipitated from Scn8a null brain that lacks Nav1.6 (Figure 3.3B). Since the 

null brain extracts contain normal levels of the other major sodium channels Nav1.1 

and Nav1.2 [(Levin and Meisler, 2004) and unpublished observations], the lack of 

immunoprecipitation of Map1b from null brain suggested that interaction with Map1b 

might be specific to Nav1.6.  

Map1b binds the N-termini of Nav1.1 and Nav1.2 with lower affinity.  To 

directly evaluate the channel specificity of the interaction, we tested the binding of 

Map1b to the N-terminal domains of Nav1.1 and Nav1.2.  In a yeast two-hybrid 

growth experiment, the interaction between the Nav1.6 N-terminus and Map1b 

resulted in colony growth on 13/15 plates, while the control interaction with empty 

vector gave growth on 0/7 plates.  In the same experiment, the N-terminus of Nav1.1 

gave growth on 10/15 plates and Nav1.2 gave growth on 8/15. This data suggests 

that Nav1.1 and Nav1.2 may bind Map1b with lower affinity than Nav1.6.  It will be  
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Figure 3.3. Interaction of Nav1.6 with Map1b. (A) HEK293 cells co-transfected with Nav1.6-CD74 and myc-Map1b. 
Map1b light chain co-immunoprecipitates with Nav1.6-CD74 fusion protein from co-transfected cells. (B) voltage-gated 
sodium channels and Map1b light chain co-immunoprecipitated from brain membrane fractions from wild-type (+/+) but 
not Nav1.6 null (-/-) mice. Lanes contain 50 ug of protein (brain) or 100 ug of protein (immunoprecipitate).



!

70 
70
!

necessary to carry out Western blots to confirm that the protein expression levels of 

the three N-termini in transformed yeast are comparable. 

To localize the Map1b binding site of Nav1.6, we constructed hybrid clones 

consisting of residues 1-54 from one channel and residues 55-117 from the other.  

The construct containing residues 55-117 of Nav1.6 (1A/8A) interacted with Map1b 

in the yeast-two-hybrid assay, but the reciprocal construct containing (8A/1A) did not 

interact (Figure 3.4B).  This result localized the binding site to residues 55-117 of 

the N-terminus of Nav1.6, which differ at 16/62 positions from Nav1.1 (Figure 3.4C).  

Localization of the Map1b binding site in Nav1.6.  To further define the 

Map1b binding site in the distal half of the Nav1.6 N-terminus, we generated two sets 

of C-terminal deletion constructs, beginning either at residue 7 or at residue 13 

relative to the first methionine in the N-terminus (Figure 3.5A). In both sets of 

constructs, deletion of residues 90-117 did not prevent binding of Map1b, but 

deletion to residue 80 did prevent binding (Figure 3.5A, asterisks).  The internal 

fragment containing residues 38-90 was sufficient for interaction with Map1b (Figure 

3.5A). 

To identify the critical amino acids, we generated seven overlapping 4-residue 

alanine-substitution mutations of the Nav1.6 N-terminus between residues 73 to 90 

of Nav1.6.  Six of the 7 alanine-substitution constructs retained interaction with 

Map1b (Figure 3.5B).  The only non-interacting construct resulted from substitution 

of AAAA for VAVP (residues 77-80) (Figure 3.5B). The corresponding sequence of 

Nav1.1 (VSEP) differs from Nav1.6 at two residues.  These experiments localized the 

Map1b binding site near the center of the cytoplasmic N-terminus of Nav1.6. 
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Figure 3.4. Map1b does not bind the N-terminus of Nav1.1 with high affinity. Co-transformed yeast were plated on 
selective !Leu/!Trp/!His/!Ade medium. All transformed yeast grew on !Leu/!Trp medium, which selects for presence of 
the constructs (data not shown). (A) yeast two-hybrid interaction of Map1b with the N-terminus of Nav1.6 (8A) and Nav1.1 
(1A). (B) yeast two-hybrid interaction of Map1b with the hybrid constructs 1A(1–54)/8A(55–117) and 8A(1–54)/1A(55– 
117). (C) residues 55–117 of Scn8a and Scn1a differ at 16 of 64 residues.
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The effect of three pathogenic missense mutations was examined: p.S21P (Sharkey 

et al., 2009b), p.E82D (Kanai et al., 2004), and p.S107G (Kanai et al., 2004).  None 

of these mutations altered interaction with Map1b, consistent with the mapping data 

above.  

Functional effect of Map1b on Nav1.6 current in ND7/23 cells.  

Measurement of sodium current provides a sensitive assay for the presence of 

functional sodium channels at the cell surface.  To test the effect of Map1b on 

transport of full length Nav1.6 to the cell surface, we measured sodium current 

density in neuron-derived cells transfected with Nav1.6 alone or co-transfected with 

Map1b. The transfected ND7/23 cells were analyzed using whole-cell voltage-clamp 

electrophysiology.   

Endogenous ND7/23 currents were blocked by addition of 300nM TTX to the 

culture medium (Wittmack et al., 2004).  ND7/23 cells were transiently transfected 

with the TTX-resistant construct Nav1.6R alone or together with Map1b.  Robust 

sodium currents were detected in both transfections (Figure 3.6A, B).  However, co-

transfection with Map1b resulted in an increase in current density by 50% (p=0.008) 

(Figure 3.6C and Table 3.2). Map1b did not affect the voltage-dependence of 

channel activation and fast-inactivation (Table 3.2 and Figure 3.6D) or cell 

capacitance (control: 22.5±1.7 pF, n=23; Map1b: 20.2±1.0 pF, n=20; p>0.05).  

The data indicate that interaction with Map1b light chain mediates transport of 

Nav1.6 to the cell surface.  The dependence of Nav1.6 transport on Map1b may be  
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Figure 3.5. Localization of Map1b interaction site within the N-terminus of 
Nav1.6. (A) 15 deletion constructs assayed for interaction with Map1b using the 
yeast-2-hybrid assay. C-terminal deletion to residue 80 or beyond prevented 
interaction with Map1b (asterisks). The internal residue 38 –90 was sufficient for 
interaction. (B) alanine-scanning constructs spanning the region between residues 
73 and 90. Mutation of residues 77– 80 prevented interaction with Map1b. +, growth 
on stringent selection plates; -, no growth. 
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 underestimated in this experiment, since there is robust expression of endogenous 

Map1b in untransfected ND7/23 cells (Figure 3.7), and the Nav1.6-transfected cells 

may include cells that did not co-express the Map1b construct. 

The VAVP(77-80)AAAA mutation that prevents interaction with Map1b 

(Figure 3.5B) was introduced to the Nav1.6R cDNA by site-directed mutagenesis.  

The mutated and wildtype cDNAs were co-transfected with Map1b into ND7/23 cells.  

Sodium current was not detected in cells transfected with the AAAA mutant cDNA 

(Figure 3.8).  This observation is consistent with an essential role for Map1b in 

trafficking of Nav1.6 to the cell surface.   

 

Discussion 

 A novel Nav1.6 protein interaction.  The functions of the cytoplasmic N-

terminus of voltage gated sodium channels are currently not well understood.  We 

demonstrate here that the N-terminus of Nav1.6 interacts with the adaptor protein 

Map1b, resulting in an increase in current density without a change in activation or 

fast-inactivation of the channel.  The N-terminus in combination with the first 

transmembrane segment is also sufficient to direct the CD74 extracellular reporter to 

the cell surface.  Interaction between the mature full-length Nav1.6 protein and the 

light chain of Map1b was demonstrated by co-immunoprecipitation from brain 

extracts.  Co-transfection with Map1b resulted in a 50% increase in the sodium 

current density generated by transfected Nav1.6, and mutation of the Map1b binding 

site prevented the generation of sodium currents.  The data support a model in 

which interaction with the light chain of the microtubule-associated protein Map1b  
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Figure 3.6. Co-expression of Map1b increases Nav1.6 peak current density in 
ND7/23 cells transfected with Nav1.6R. A and B, representative sodium currents 
were recorded from ND7/23 cells transiently co-transfected with Nav1.6R, EGFP, and 
vector (n=23) (A) or Map1b (n=20) (B). Cells were held at -120 mV, and sodium 
currents were elicited by a series of step depolarizations from -80 to -40 mV in 5-mV 
increments. C, co-expression of Map1b significantly increases current density of 
Nav1.6 in ND7/23 cells (**, p<0.01). D, Map1b does not alter activation or steady-
state fast inactivation of Nav1.6. 
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Table 3.2. Map1b increases the amplitude of Nav1.6 current in ND7/23 Cells. 

 
 Current 

Density 
 

Activation Fast-inactivation 

 pA/pF 
 

V1/2 (mV) k V1/2 (mV) k 

Nav1.6 65.5±8.7 
(n=23) 

-14.2±1.1 
(n=14) 

7.4±0.4 
(n=14) 

-59.9±1.6 
(n=9) 

7.0±0.2 
(n=9) 

 
Nav1.6  

and 
Map1b 

98.7±8.0 
(n=20)** 

-14.5±0.6 
(n=19) 

7.1±0.2 
(n=19) 

-59.7±1.2 
(n=15) 

6.5±0.2 
(n=15) 
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Figure 3.7.  The light chain of Map1b is expressed endogenously in ND7/23 
cells.  1st strand cDNA was amplified using the forward primer 5’ CCTCC CTGTG 
TATTT GGACC TGTG and the reverse primer 5’ CACTG TGCTG CTGCT TGCTA 
AAACC.  Brain, human brain positive control.  M, 100 bp ladder. 
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Figure 3.8. Mutation of the Map1b binding site of Nav1.6R prevents generation 
of sodium current in transfected ND7/23 cells. Cells were transfected with Map1b 
and wild-type Nav1.6R or the mutant VAVP(77-80)AAAA-Nav1.6R and analyzed by 
whole cell voltage clamp electrophysiology as described in Figure 3.6. The threshold 
of 400 pA for peak current represents the minimum required to construct an 
unambiguous I-V curve. Peak current amplitude for wild-type channels was !1000 
pA (n=9), whereas cells transfected with the Nav1.6R mutant channel (n=14) did not 
produce current above threshold. 
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mediates transport of Nav1.6 to the cell surface.   

Biological role of Map1b.  The microtubule-associated protein Map1b 

contributes to trafficking of several channel and receptor proteins. It directly interacts 

with the ligand-gated serotonin channel 5-HT3a to mediate channel desensitization 

(Sun et al., 2008), and binds NMDA receptor subunit 3A (NR3A), which indirectly 

affects the conductance of the receptor (Eriksson et al., 2010).  GABARAP, a 

molecule with homology to the light chain of Map1b, interacts with the GABAa 

receptor and acts as an anchor protein (Everitt et al., 2004).  Our work suggests that 

Nav1.6 is another neuronal protein that is trafficked along the microtubule network to 

the cell surface.  

 The nine paralogous mammalian sodium channel genes share a highly 

conserved tertiary structure and extensive sequence conservation within the 

transmembrane segments, but their cytoplasmic domains are more divergent 

(Catterall et al., 2005; Meisler et al., 2010).  Interestingly, the VAVP motif of Nav1.6 

required for interaction with Map1b is not conserved in the other channels.  The 

yeast-two hybrid results suggest that other neuronal voltage-gated sodium channels 

are capable of interacting with Map1b, but whether they do so in vivo has not yet 

been determined.  We hypothesize that Nav1.1 and Nav1.2 bind Map1b at a reduced 

affinity compared to Nav1.6 due to the difference in residues in the binding site.  In 

vertebrate orthologs of Scn8a, the VAVP motif is conserved in reptiles, birds, and 

marsupials, but not in fish. Further work will be necessary to define a consensus 

binding motif for the light chain of Map1b. 
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 Consequences of Map1b deficiency in the mouse.  Inactivation of Map1b in 

targeted knockout mice results in juvenile lethality of 55% of homozygotes prior to 4 

weeks of age (Meixner et al., 2000).  The surviving homozygotes have unexplained 

weakness and loss of body weight that resemble the effects of muscle atrophy in 

Nav1.6 knockout mice (Meixner et al., 2000). Mice carrying a dominant negative 

allele of Map1b display a more severe phenotype, with embryonic lethality of 

homozygotes and a movement disorder in heterozygotes that resembles Scn8a 

mutants, including ataxia, hind limb tremor, paralysis (Edelmann et al., 1996). 

Impaired trafficking of Nav1.6 could contribute to the phenotype of these mice as 

well. Unfortunately, the mice are not available for further testing.  

 Trafficking and subcellular localization of voltage-gated ion channels.  

The subcellular trafficking of voltage-gated potassium channels in neurons has been 

studied extensively (Jensen et al., 2011).  These channels appear to be selectively 

transported to their final locations, rather than randomly transported to the cell 

surface with subsequent selective removal.  Vesicles containing dendritically 

localized potassium channels are trafficked by myosinV and/or dynein, which are 

unable to enter the axon due to steric or directional constraints.  Neuronal activity 

appears to regulate the trafficking of voltage-gated potassium channels to specific 

subcellular locations (Jensen et al., 2011). 

 Less is known about the clustering and trafficking of voltage-gated sodium 

channels. Two alternative models for clustering of sodium channels at the axon 

initial segment (AIS) have been considered: transport to the AIS followed by direct 

insertion, or nonspecific transport to the cell surface followed by lateral diffusion to 
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tether points including the AIS (Leterrier et al., 2011). Sodium channels are 

stabilized at the AIS and at nodes of Ranvier by ankyrin-G, which interacts with a 

binding site in cytoplasmic loop II-III (Bennett and Lambert, 1999; Dzhashiashvili et 

al., 2007; Hill et al., 2008).  Adhesion proteins derived from glial cells are also 

thought to contribute to localization of sodium channels at nodes of Ranvier in 

myelinated axons. It has been suggested that voltage-gated ion channels are 

inserted directly into mature nodes, with diffusion limited by myelin and other 

proteins at the paranode (Leterrier et al., 2011).  Analysis of axonal transport in 

transected sciatic nerve suggests that sodium channels reach the nodes by 

vesicular trafficking, possibly from the cell body (Zhang et al., 2012).  However, the 

molecular mechanism of transport along the axon to the nodes remains unclear.  

Since microtubules extend along the full length of the axon, Map1b could play a role 

in localization of Nav1.6 to both the AIS and the nodes of Ranvier.  Overall, our data 

support a model in which microtubular trafficking of Nav1.6 to the cell surface is 

mediated by interaction with the adaptor protein Map1b (Figure 3.9).  
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Figure 3.9. Potential role of interaction between Nav1.6 and Map1b in 
trafficking of Nav1.6 to the cell membrane. According to this model, interaction 
with Map1b facilitates trafficking of Nav1.6 along axonal microtubules to the AIS or 
node of Ranvier. At these sites, the channel is stabilized by ankyrin G and other 
molecules. M, Map1b light chain. 
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Chapter IV 

 

De novo pathogenic mutation of SCN8A identified by whole genome 
sequencing of a family quartet with infantile epileptic encephalopathy and 

SUDEP3 
 

Abstract 

 Individuals with severe, sporadic disorders of infantile onset represent an 

important class of disease for which discovery of the underlying genetic architecture 

is not amenable to traditional genetic analysis. Full genome sequencing of affected 

individuals and their parents provides a powerful alternative strategy for gene 

discovery. We performed whole genome sequencing (WGS) of a family quartet 

containing an affected proband and her unaffected parents and sibling. The 15-year-

old female proband had a severe epileptic encephalopathy consisting of early-onset 

seizures, features of autism, intellectual disability, ataxia, and SUDEP (sudden 

unexplained death in epilepsy).  

_____________________________________ 

3This work has been published in: Veeramah, K.R., O'Brien, J.E., Meisler, M.H., 
Cheng, X., Dib-Hajj, S.D., Waxman, S.G., Talwar, D., Girirajan, S., Eichler, E.E., 
Restifo, L.L., Erickson, R.P., and Hammer, M.F. (2012). De Novo Pathogenic 
SCN8A Mutation Identified by Whole-Genome Sequencing of a Family Quartet 
Affected by Infantile Epileptic Encephalopathy and SUDEP. Am J Hum Genet 90, 
502-510. 
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We discovered a de novo heterozygous missense mutation (c.5302, p.Asn1768Asp) 

in the voltage-gated sodium channel gene SCN8A in the proband. This mutation 

alters an evolutionarily conserved residue in Nav1.6, one of the most abundant 

sodium channels in the brain. Analysis of the biophysical properties of the mutant 

channel demonstrated a dramatic increase in persistent sodium current, incomplete 

channel inactivation, and a depolarizing shift in the voltage dependence of steady-

state fast-inactivation. Current-clamp analysis in hippocampal neurons transfected 

with p.Asn1768Asp channels revealed increased spontaneous firing, paroxysmal 

depolarizing shift (PDS)-like complexes, and an increased firing frequency, 

consistent with a dominant gain-of-function phenotype in the heterozygous proband. 

This work identifies an SCN8A mutation in an individual with epilepsy and 

demonstrates the value of WGS for the identification of pathogenic mutations 

causing severe, sporadic neurological disorders. 

 

Introduction 

 Massively parallel sequencing technologies are revolutionizing the discovery 

process for genetic variants that cause disease (Bamshad et al., 2011). 

Neurodevelopmental disorders such as epilepsy, autism spectrum disorders (ASDs), 

intellectual disability (ID), and schizophrenia represent a considerable challenge for 

molecular genetic analysis because of marked genetic heterogeneity, environmental 

effects on severity and the frequent co-occurrence of seizure, autism, and cognitive 

phenotypes. Studies of copy number variation (CNV) demonstrated the contribution 

of de novo variants in these disorders (Morrow, 2010; Mitchell, 2011). However, 
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CNVs appear to contribute to only between 10-25% of affected cases (Girirajan and 

Eichler, 2010). It is hypothesized that rare or novel point mutations may contribute to 

many of the remaining cases, under the common disease-multiple rare variant 

(CD/MRV) model (Gorlov et al., 2010). When the observed phenotype is particularly 

severe and there is no prior family history of the disorder, it is reasonable to consider 

a disease model that involves a dominant de novo mutation.  

Support for this model comes from studies of epileptic encephalopathies, 

where de novo mutations of the sodium channel SCN1A (MIM 182389) are a major 

cause of Dravet Syndrome (MIM 607208) (Marini et al., 2011) while de novo 

mutations in STXBP1 (MIM 602926) and ARX (MIM 300382) have been found in a 

number of individuals with Early Infantile Epileptic Encephalopathy (MIM 308350) 

(Pavone et al., 2011).  When such mutations arise they are expected to be quickly 

removed by strong purifying selection (because affected individuals rarely 

reproduce), and hence would be extremely rare or unique in the population. While 

the human mutation rate is on the order of 1-2 x 10-8 per site per generation (Roach 

et al., 2010; Conrad et al., 2011), thousands of genes are potentially involved in 

neurodevelopment (Sepp et al., 2008), suggesting that the number of de novo 

pathogenic mutations could be substantial. Thus, although each individual is 

expected to have only 0.5 to 1 de novo mutation per exome (Lynch, 2010), a model 

of rare mutations across many genes may explain why severe neurological disorders 

are relatively common (Vissers et al., 2010). 

Whole exome sequencing of parent-offspring trios offers a cost-effective 

method for screening coding regions for mutations and has been successful in 
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identifying candidate de novo variants in sporadic cases of ID (Vissers et al., 2010), 

ASDs (O'Roak et al., 2011), and schizophrenia (Girard et al., 2011). However, the 

limitations of current exome capture and sequencing methodologies include 

incomplete or variable coverage of exons and the inability to infer ploidy across the 

genome or survey regulatory variation.  Whole genome sequencing (WGS) studies 

are not limited by these aspects and when implemented in a quartet framework have 

many attractive analytical advantages. For example, it is possible to precisely infer 

haplotype phase and the location of recombination events (Roach et al., 2010; 

Dewey et al., 2011), which can substantially improve the detection and correction of 

sequencing errors.  

 In this study, WGS was applied to a family quartet with a sporadic case of 

severe epileptic encephalopathy. Informed consent was obtained from the family 

quartet and approved by the Institutional Review Board. The female proband 

presented with unexplained refractory epilepsy consisting of early-onset brief (2-10 

seconds) generalized seizures, beginning at 6 months of age, and later-onset 

epileptic spasms, beginning at 4 years of age. She also manifested intellectual 

disability, developmental delay, hypotonia, and coordination and balance difficulties. 

The proband was able to walk independently just before age 3 and started to use 5-

6 word phrases before the age of 4. With the onset of epileptic spasms speech and 

language skills began to regress over the course of 1-2 years, resulting in the use of 

occasional single words only. These language and communication problems, in 

combination with regression in social interaction and development of obsessive-

compulsive and repetitive behaviors, led to the classification of autism at the age of 
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5 years. She was the first-born child of two phenotypically-unaffected parents. Initial 

electroencephalograms (EEGs) at 6 months showed bi-frontal spikes and brief 

bursts of fronto-centrally predominant, generalized spike-wave activity lasting for a 

few seconds at a time. Some of the bursts were associated with clinical seizures. 

Initial seizures showed no association with fever or illness and occurred very 

frequently up to 40-50 times per day. Subsequent EEGs after the age of 5 years 

showed diffuse slowing, multifocal spikes, bifrontal and frontally-predominant 

generalized spikes, and runs of frontally-predominant slow spike-wave discharges. 

Several brain MRI scans between the ages of 5 and 15 were normal and a PET 

scan failed to show any focal abnormalities. At 15 years of age the proband died 

from sudden unexplained death in epilepsy (SUDEP). An autopsy showed 

pulmonary edema, consistent with seizure activity prior to death, and did not reveal 

any other etiology for the sudden demise. Brain microscopic evaluation showed only 

mild temporal lobe subpial gliosis, consistent with chronic epilepsy. 

Given the severity of the disorder and a negative family history, the 

involvement of a de novo mutation was probable. To detect rare CNVs, array-based 

comparative genomic hybridization (CGH) experiments were performed. We utilized 

a custom 2x400K Agilent microarray targeted to genomic hotspot regions flanked by 

segmental duplications or Alu repeats with median probe spacing of 500 bp and 

probe spacing of 14 kb in the genomic backbone. After quality control filtering and 

manual curation, 93 CNV calls were identified (see manuscript supplemental data).  

To identify rare variants of pathogenic significance the CNV pattern was compared 

to the global CNV map developed from 8,329 controls (Cooper et al., 2011) and 377 
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additional controls analyzed on the same microarray platform. Allowing for a 

frequency of <1% in the general population in regions with sufficient coverage (>10 

probes), no novel pathogenic CNVs in our proband or any that were previously 

associated with known genomic disorders were found (Girirajan and Eichler, 2010). 

 WGS was carried out to look for candidate point mutations or small insertions 

or deletions. WGS was performed for the quartet by Complete Genomics 

Incorporated (CGI). CGI performs a massively parallel short-read sequence-by-

ligation methodology (Drmanac et al., 2010). Details of library generation, read-

mapping to the NCBI reference genome (Build 37, RefSeq Accessions CM000663-

CM000686), local de novo assembly, and variant-calling protocols have been 

previously described (Drmanac et al., 2010; Roach et al., 2010). Mean unique 

sequence coverage ranged from 57X to 77X and. 96-97% of the genome was 

considered fully called across the quartet.  A nucleotide position is determined to be 

fully called if it meets a minimum required confidence score threshold (20 decibals 

for homozygotes and 40 decibals for heterozygotes) which is calculated taking into 

account read depth, base call quality values and mapping probabilities.  All variants 

were annotated using ANNOVAR (Wang et al., 2010) based on the UCSC Known 

Genes Hg19 database, which covers 84,177,555 bp of coding sequence.   

31,931 variants were identified from the reference sequence within exons or 

at splice-site boundaries on all chromosomes. For variants on autosomes, there 

were 13,395 potentially function-altering variants within the quartet.  

 To increase variant call quality using Mendelian inheritance rules and 

information inherent in the quartet, a Hidden Markov Model (HMM) (Roach et al., 



!

90 
90
!

2010) was applied to infer the position of recombination events that demarcate 

inheritance state (IS) blocks between the two siblings, which has been shown to 

identify ~70% of expected CGI-generated sequencing errors. Among the potentially 

functional variants 205 errors were identified based on IS consistency analysis and 

to unambiguously recover the complete quartet genotype of 58% (1,229/2,103) of 

the variants that contained missing data. 

For the 11,292 variants fully called within the quartet there were 34 violations 

of Mendelian inheritance rules that would be consistent with a de novo mutation 

within the proband (i.e. the mutation is present in the proband but not in either parent 

or sibling). Ten of these variants were discarded because they were found in the 

1000 Genome Project May 2011 release or the 69 CGI public genomes, or mapped 

within (a) error-prone regions (defined as containing at least 5 Mendelian Inheritance 

Errors, with no more than 1000 bp separating any two errors), (b) known segmental 

duplications (Database of Genomic Variants), (c) repeat sequence (UCSC-defined 

tracks), (d) suspicious genomic blocks identified by the HMM IS block analysis, or 

(e) sites that differed significantly in coverage from the genome-wide average. 

Sanger sequencing demonstrated that 23 of the remaining 24 candidates were false 

positives, leaving a single, true de novo variant in the proband.  

 To identify potential cis-acting regulatory variants in the whole genome 

sequence, we evaluated 44,851 variants within the 5’ untranslated (UTR) region or 

within 1 kb upstream of the transcription start site. Of these, 80 qualified as potential 

de novo variants in the proband. After applying the same filtering approach as 

above, 23 putative de novo variants were identified.  None of these were validated 
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as a true variant after Sanger sequencing.  There were no de novo candidates 

(including the 5’ UTR or 1 kb upstream) on the proband’s X chromosomes. 

 The single validated de novo variant was an A > G transition at nucleotide 

position c.5302 in the coding sequence of SCN8A (MIM 600702), resulting in an 

asparagine (Asn) to aspartate (Asp) substitution at amino acid 1768 (Asn1768Asp). 

SCN8A is one of nine members of the gene family encoding the voltage-gated 

sodium channel pore-forming alpha subunits (Meisler et al., 2010). The SCN8A-

encoded channel, Nav1.6, is composed of four homologous domains, D1 to D4, each 

containing six transmembrane segments. The subcellular localization of Nav1.6 

includes concentration at the axon initial segment and nodes of Ranvier, and it is 

widely expressed in the CNS where it regulates firing patterns of excitatory and 

inhibitory neurons (O'Brien et al., 2012a)" The mutated residue is located in the final 

transmembrane segment adjacent to the C-terminal cytoplasmic domain of the 

channel (Figure 4.1). Asn1768 is invariant in vertebrate and invertebrate sodium 

channels (Figure 4.1). The substitution Asn1768Asp is predicted to be highly 

deleterious by Polyphen-2 analysis (Adzhubei et al., 2010) (HumDiv score = 0.992, 

HumVar score = 0.990). Interestingly, an individual with another form of epileptic 

encephalopathy (Dravet Syndrome) carries a de novo mutation in the corresponding 

residue of the related sodium channel SCN1A (Depienne et al., 2009), though the 

actual functional consequence of this variant has not yet been assessed.  

 To evaluate the functional consequences of the de novo SCN8A mutation, the 

p.Asn1768Asp amino acid substitution was introduced into the tetrodotoxin (TTX)- 
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Figure 4.1.  The de novo proband substitution p.Asn1768Asp in sodium 
channel SCN8A. The altered amino acid residue is located at the cytoplasmic end 
of transmembrane segment 6 in domain 4 of the channel (for simplicity of display, 
we use 1-letter amino acid codes). Residue 1768 is evolutionarily conserved in 
mammalian and invertebrate sodium channels, as indicated by the examples shown 
on the right. The polar asparagine residue is altered to the charged residue 
aspartate in our proband. A substitution in the corresponding residue of SCN1A, 
Asn1788Lys, was identified as a de novo mutation in an individual with Dravet 
syndrome, another early-onset epileptic encephalopathy.  The following 
abbreviations are used: h, human; a, anole lizard; f, fish (Fugu); Dm, Drosophila 
melanogaster; para, fly voltage-gated sodium channel (encoded by paralytic); 
hSCN5A, human cardiac sodium channel; hSCN1A, human neuronal sodium 
channel; N, Asn; D, Asp; and K, Lys. Dots represent amino acid identity. 
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 resistant derivative of the Nav1.6 cDNA clone Nav1.6R (Herzog et al., 2003a; Dib-

Hajj et al., 2009). The entire 6-kb open reading frame was sequenced to confirm the 

absence of additional mutations prior to functional testing by transfection into the 

dorsal root ganglion (DRG) neuron-derived cell line ND7/23 (Wood et al., 1990) as 

previously described (Sharkey et al., 2009a). In the presence of 300 nM TTX, 

endogenous sodium currents are blocked, and currents derived from the transfected 

Nav1.6R clones can be studied in isolation . Forty-eight hours after transfection, cells 

with robust green fluorescence were selected for recording.  

Representative families of traces of Na+ currents from voltage-clamp 

recordings are shown in Figure 4.2A. The persistent currents at 100 msec after the 

onset of step-depolarization, normalized to peak transient current, are increased by 

7-fold, from an average of 1.8% for wild-type to 13% in the mutant channel (Figure 

4.2A insets and Table 4.1). Despite a 56% reduction in peak current density for cells 

transfected with the mutant channel, the absolute values of the persistent current [61 

+/- 6 pA (n=11) for WT; and 353 +/- 51 pA (n=11) for Asn1768Asp] and persistent 

current density [2.02 +/- 0.20 pA/pF (n=11) for WT; and 10.51 +/- 1.57 pA/pF (n=11) 

for Asn1768Asp] were more than five-fold larger for the mutant channels. The 

voltage-dependence of the persistent current is shown in Figure 4.2B, and is 

greatest at +15 mV. The Asn1768Asp mutation also causes a 13 mV depolarizing 

shift in the voltage dependence of steady-state fast-inactivation and increases the 

non-inactivating component of the current (Figure 4.2C, arrow). The development of 

closed-state inactivation is slower for the mutant channels (data for -60 mV shown in 

Figure 4.2D) and, as expected, Asn1768Asp channels produce a substantially 
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Figure 4.2. Effect of the de novo SCN8A substitution p.Asn1768Asp on 
biophysical properties of the channel. (A) Representative inward currents 
recorded from ND7/23 cells transiently transfected with Nav1.6R WT or mutant 
channels. Cells were held at -120 mV, and a family of step depolarizations (-80 to -
60 mV in 5 mV increments) were applied every 5 s. Insets show persistent inward 
currents (normalized by maximal transient peak currents) from WT and 
p.Asn1768Asp channels at the end of a 100 ms step depolarization to -80 mV 
(black) and -20 mV (red).  (B) Voltage dependence of persistent current. The 
amplitude of persistent current was measured as the mean value of currents 93–98 
ms after the onset of depolarization and is presented as a percentage of the 
maximal transient peak current. (C) Voltage dependence of channel activation and 
steady-state fast inactivation. Channel activation was analyzed as previously 
described. Steady-state fast inactivation was assessed with a series of 100 ms step 
depolarizations (-130 to -10 mV in 10 mV increments) and was followed by a test 
pulse (-10 mV) so the remaining fraction of noninactivated channels could be 
measured. The p.Asn1768Asp channels do not completely inactivate, which is 
consistent with the large persistent current. (D) Development of closed-state 
inactivation at -60 mV. Cells were held at -120 mV, and closed-state inactivation was 
assessed with a prepulse set to -60 mV with a duration varying from 0 to 500 ms, 
and remaining available channels were assessed with a test pulse set to 0 mV (20 
ms). (E) Mean ramp currents generated by WT (black) and p.Asn1768Asp (red) 
channels. The response to a slow ramp stimulus was evaluated with a ramp 
depolarization from -120 to -40 mV over 800 ms. The p.Asn1768Asp mutation 
increases the amplitude of the ramp current (normalized by transient peak current; 
p.Asn1768Asp [13.6 +/- 1.9%, n=5, p < 0.05] versus WT [1.2 +/-0.2%, n=7]). 
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Table 4.1.  Biophysical effects of the SCN8A p.Asn1768Asp substitution.  Whole-cell voltage-clamp recordings were 
performed with an Axopatch 200B amplifier (Molecular Devices, Sunnyvale, CA). The pipette solution contained (in mM) 
140 CsF, 10 NaCl, 1 EGTA, 10 Dextrose, 10 HEPES (pH 7.3) (with CsOH), and osmolarity was adjusted to 315 
mosmol/liter with sucrose. The extracellular bath solution contained (in mM) 140 NaCl, 3 KCl, 20 tetraethylammonium, 1 
MgCl2, 1 CaCl2, 10 HEPES, 5 CsCl, 0.1 CdCl2 (pH 7.3) (with NaOH); osmolarity was 325 mosmol/liter. 300 nM 
tetrodotoxin was added to the extracellular bath solution to block endogenous voltage-gated sodium currents in 
ND7/23.26 All record- ings were conducted at room temperature (~22_ C). Currents were acquired with Clampex 9.2 5 
min after establishing whole-cell configuration, sampled at 50 or 100 kHz, and filtered at 5 kHz. The following 
abbreviations are used: INa, voltage-gated sodium current; Ipersistent, sodium current that is resistant to fast inactivation 
at the end of 100 ms step depolarization; Ipeak, the maximal transient peak sodium current; V1/2,act, the potential at 
which activation of sodium channels reaches half maximal; k, the slope factor; A%, the percentage of sodium channels 
that are resistant to fast inactivation or slow inactivation; n, number of cells.  *, p value < 0.05 compared to WT 

 
 
.
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enhanced (11-fold larger) response to slow, ramp-like depolarizing stimuli (Figure 

4.2E). All of these changes are known to increase neuronal excitability; it has been 

shown that persistent sodium currents contribute to the generation of paroxysmal 

depolarizing shifts (PDS), a cellular response predictive of recurrent seizures (Chen 

et al., 2011). The mutation causes a small depolarizing shift of 4 mV in the voltage-

dependence of activation (Figure 4.2C) and shifts the voltage-dependence of 

steady-state slow-inactivation by -11.6 mV (not shown), which would reduce the pro-

excitatory effects. 

The biophysical properties of Asn1768Asp channels are summarized in Table 

4.1. In heterozygous neurons, mutant and wildtype alpha subunits would be co-

expressed and act independently. The direction and magnitude of the pro-excitatory 

effects of the Asn1768Asp mutation are consistent with a dominantly-expressed 

phenotype of abnormal neuronal excitability. To test this prediction, we examined the 

firing patterns of cultured hippocampal neurons expressing transfected mutant and 

wildtype Scn8a cDNAs using current-clamp recordings (Figure 4.3A-C). 

Spontaneous firing was detected in 3/17 (18%) of neurons transfected with 

the wildtype Scn8a cDNA, and in a significantly higher percentage (10/17; 59%, 

p<0.05) of neurons transfected with Asn1768Asp (Figure 4.3B), which also 

displayed PDS-like complexes (Figure 4.3Aii). In response to current injection, the 

frequency of action potentials was 2-fold higher in cells expressing the mutant 

channels (Figure 4.3C). These observations demonstrate that expression of the 

mutant channel results in a phenotype of neuronal hyperexcitability including 

increased spontaneous firing and PDS-like complexes. 
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Figure 4.3.  Effect of the de novo SCN8A Substitution p.Asn1768Asp on 
hippocampal neuronal excitability. (A) p.Asn1768Asp channels increase 
excitability of hippocampal neurons. (Ai) An example of spontaneous firing in a 
neuron transfected with p.Asn1768Asp channels. (Aii) Representative PDS-like 
complexes recorded from two hippocampal pyramidal neurons transfected with 
p.Asn1768Asp. The dashed lines indicate -80 mV. (B) Percentage of neurons 
displaying spontaneous firing. The asterisk indicates p < 0.05. (C) Number of action 
potentials (APs) evoked by a series of 1 s step depolarizating current injections 
(from 5 to 40 pA with a 5 pA increment). Neurons transfected with p.Asn1768Asp 
produce more APs than neurons transfected with WT. An asterisk indicates p < 0.05. 
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Discussion 

A de novo pathogenic mutation of SCN8A in severe epilepsy.  Several 

factors support a causal role for the SCN8A p.Asn1768Asp mutation in the 

phenotype observed in the proband: (a) SCN8A encodes a neuronal sodium channel 

that is highly abundant in brain (Schaller and Caldwell, 2000; O'Brien et al., 2012a), 

(b) the mutation produces substantial increase in persistent and ramp currents and 

results in neuronal hyperexcitability that includes increased spontaneous activity and 

PDS-like complexes, and (c) heterozygous mutations with similar properties in other 

closely related neuronal sodium channels are causal for epilepsy (Meisler et al., 

2010). This result demonstrates the power of the WGS approach for unbiased 

discovery of pathogenic mutations in neurological disorders of unknown etiology. 

Causative variants in severe, early-onset neurological disease are likely to be rare 

and distributed across many genes, some of which are not on candidate-gene lists 

(Lu and Wang, 2009). This study presents the fifth member of the voltage-gated 

sodium channel gene family to be implicated in seizure disorders, in addition to 

SCN1A, SCN2A (MIM 182390), SCN3A (MIM 182391) and SCN9A (MIM 603415) 

(Meisler et al., 2010). SCN8A is the third sodium channel, in addition to SCN1A and 

the cardiac channel SCN5A (MIM 600163), to be implicated in SUDEP, which 

accounts for deaths in up to 38% of people with epilepsies (Devinsky, 2011). In this 

context, it is interesting that both Scn1a and Scn8a are expressed at a low level in 

cardiac myocytes (Maier et al., 2004) and cardiac function is impaired in Scn8a null 

mice (Noujaim et al., 2012)" 
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Nav1.6 mutations in vivo.  The in vivo physiological roles of Nav1.6 have 

been extensively studied in the mouse. The allele series of recessive Scn8a 

mutations includes missense, hypomorphic, and null alleles (Burgess et al., 1995a; 

Meisler et al., 2004; Meisler and Kearney, 2005a; Sharkey et al., 2009a). Motor 

deficits are prevalent due to the important role of Nav1.6 at nodes of Ranvier in 

motor neurons. Homozygotes for partial and complete loss-of-function alleles exhibit 

ataxic gait, tremor, dystonia, muscle atrophy, loss of hind limb function, and juvenile 

lethality caused by loss of neurotransmitter release at the neuromuscular junction. 

The single previously reported human SCN8A mutation is a premature stop codon 

identified in a proband with cerebellar ataxia; the mutation co-segregated with 

cognitive impairment but did not result in seizures (Trudeau, 2006). Likewise, 

heterozygous Scn8a+/- mice exhibit an anxiety-like behavioral disorder but do not 

have spontaneous seizures (McKinney et al., 2008). Thus haploinsufficiency of 

SCN8A does not cause epilepsy in human or mouse. However, spike-wave 

discharge patterns are seen in certain Scn8a heterozygotes (Papale et al., 2009), 

and heterozygosity for an Scn8a null allele can suppress seizures in a mouse 

Scn1a+/- model of Dravet Syndrome (Martin et al., 2007b), demonstrating 

physiological interaction between these two sodium channels in determining 

neuronal excitability. 

Gain of function mutations in voltage-gated sodium channels lead to 

hyperexcitability.  The mutation in the proband is a gain-of-function allele of 

SCN8A and causes a large increase in ramp and persistent currents and incomplete 

channel inactivation. Increased persistent current is a common characteristic of gain-
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of-function mutations of SCN1A in individuals with generalized epilepsy with febrile 

seizures plus (GEFS+), and is characteristic of pathogenic mutations of SCN2A and 

SCN3A (Spampanato et al., 2001; Vanoye et al., 2006; Holland et al., 2008; 

Estacion et al., 2010; Liao et al., 2010; Volkers et al., 2011). The Q54 mouse model 

expresses an Scn2a mutant channel with elevated persistent current that causes a 

dominant seizure disorder (Kearney et al., 2001). Notably, transfection of 

hippocampal neurons with p.Asn1768Asp channels resulted in hyperexcitability that 

included increased spontaneous activity and PDS-like complexes. The effect of the 

proband's SCN8A mutation on persistent current is considerably more severe than 

the other reported examples, which strongly supports a causal role in the severe, 

dominant epileptic encephalopathy.  

Identification of an epileptic encephalopathy distinct from Dravet 

syndrome.  Mutations in human SCN1A are the most common genetic cause of 

inherited and sporadic epilepsy, with >700 proband mutations reported thus far, 

including >80% of individuals with Dravet Syndrome (Catterall et al., 2008; Marini et 

al., 2011; Poduri and Lowenstein, 2011). More than 90% of the SCN1A mutations in 

individuals with Dravet Syndrome arose de novo and more than 50% are loss-of-

function mutations, demonstrating that, unlike with SCN8A, haploinsufficiency for 

SCN1A results in seizures (Meisler and Kearney, 2005a; Meisler et al., 2010). Our 

proband displays many features typically found in individuals with Dravet Syndrome, 

such as onset in infancy of seizures that ultimately become refractory to therapeutic 

intervention with concomitant regression of developmental abilities leading to 

epileptic encephalopathy. However, consistent with a distinct genetic basis, there 
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are also important differences: (a) our proband did not manifest prolonged 

generalized or unilateral febrile and afebrile seizures in the first year of life; (b) rather 

than distinct myoclonic seizures as seen in typical Dravet Syndrome, our proband 

had late-onset epileptic spasms characterized by repetitive clusters of jerks with the 

classical EEG pattern of spasms (i.e., high-amplitude delta wave followed by 

background suppression); and (c) a period of normal development was not seen in 

our proband. Further characterization of individuals with SCN8A mutations will help 

to delineate the clinical variability within this group and distinguish the phenotypes of 

carriers of pathogenic mutations at SCN8A and SCN1A.  

Candidate variants from a recessive disease model.  We also evaluated 

the WGS data from our quartet for a model of inherited homozygous recessive 

disease. Variants with a frequency >1% in the 1000 Genomes Project or present in 

the CGI public genomes were excluded as potential candidates. Seven genes fit a 

recessive inheritance pattern in the proband only (Table 4.2). Two of these (NRP2 

and UNC13C) were cases of compound heterozygosity that appeared functionally 

relevant based on the Autworks database and biomedical literature. Both parents 

were heterozygous for non-synonymous variants of NRP2 (neuropilin 2, MIM 

602070) and UNC13C (Homolog of C. elegans UNC13C). The inherited variants 

were predicted to be deleterious by PolyPhen-2 analysis (HumDiv >0.993) and were 

extremely rare, with frequencies <1.0% in the NHLBI Exome Sequencing Project 

(NHLBI Exome Sequencing Project (ESP). Seattle, 2011). The maternally-inherited 

NRP2 allele, also transmitted to the brother, is p.Arg334Cys (rs14144673) while the 
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Table 4.2. Candidate variants under a homozygote recessive disease model. 
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paternally-inherited allele is p.Arg428Trp (rs139711818). The maternally-

inherited UNC13C allele is p.Asp304Glu (rs149448818) and the paternally-

inherited allele is p.Val2196Ala (rs146433220).  

NRP2 is a transmembrane receptor for class 3 semaphorins, secreted 

proteins that are essential for guiding axon pathfinding and sorting during central 

and peripheral nervous system development (Pellet-Many et al., 2008). NRP2 

polymorphisms have been associated with autism (Wu et al., 2007) and NRP2 is 

a candidate gene for juvenile myoclonic epilepsy (Ratnapriya et al., 2010). Nrp2-

deficient mice display increased neuronal excitability and susceptibility to 

chemically induced seizures (Gant et al., 2009). Loss-of-function Nrp2 mutations 

in homozygous mice cause defects of axon-tract formation, with fiber bundles 

misrouted, disorganized, or missing (Pellet-Many et al., 2008). Moreover, loss of 

Nrp2 causes increased cortical and hippocampal dendritic spine numbers (Tran 

et al., 2009) and decreased numbers of hippocampal interneurons and 

GABAergic synapses (Gant et al., 2009). The UNC13 gene family encodes highly 

conserved proteins, most of which are expressed in neurons where they serve a 

crucial function in synaptic vesicle fusion for neurotransmitter release (Brose et 

al., 2000; Basu et al., 2007). Disrupting the function of any single Unc13 gene 

can impair neuronal function in mouse mutants, including synaptic plasticity 

(Rosenmund et al., 2002) and motor learning (Augustin et al., 2001), without 

disrupting neuronal morphology. 

It has often been suggested that inheritance of modifier loci contributes to 

the wide phenotypic variability of individuals with SCN1A mutations (Meisler et 
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al., 2010). With WGS data it is now possible to predict the identity of specific 

candidate modifier variants in individuals. In the present case, NRP2 variants 

could plausibly enhance seizures through neuronal hyperexcitability and loss of 

inhibitory synapses, while UNC13C variants could reduce seizure activity by 

inhibiting synaptic vesicle release and thereby increasing the threshold for 

synaptic transmission. Animal models will be required to test the role of genetic 

interactions in modifying the phenotypic expression of SCN8A gain-of-function 

mutations. 

 In summary, by performing high-coverage WGS of a family quartet we 

have identified a de novo mutation in SCN8A that can account for the epileptic 

encephalopathy that eventually resulted in SUDEP in the proband. Recent whole 

genome and whole exome approaches have been remarkably successful in 

identifying amino-acid altering de novo mutations in individuals with severe 

neurological disorders. However, in most cases to date, direct support for 

causality has been lacking, and knowledge of the gene or protein function has 

allowed only predictions about the consequences of a particular mutation. We 

have confirmed the pathogenicity of our candidate SCN8A-Asn1768Asp mutation 

through biophysical characterization of the channel and electrophysiological 

analysis in primary neurons. Given the likely importance of rare variants with 

large effects in disease etiology (Gorlov et al., 2010; Robinson et al., 2011), such 

follow-up functional analysis will be vital as an increasing number of de novo or 

extremely rare variants are discovered through WGS of probands and their 

families. 
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Chapter V 

 

Generation of Nav1.6 cDNA constructs for electrophysiology and 
intracellular trafficking experiments. 

 

 

Introduction.  The Nav1.6 cDNA constructs (Figure 5.1) (Herzog et al., 

2003a; Gasser et al., 2012) are critical reagents for the characterization of 

human and mouse mutations of SCN8A.  Mammalian Nav1.6 cDNA is notoriously 

unstable, so the generation of a stable and modifiable cDNA construct by the 

Waxman lab (2003) was a significant advancement in the voltage-gated sodium 

channel field.  pcDNA3Nav1.6R (Herzog et al., 2003a) and pcDNA3Nav1.6R-GFP 

(Gasser et al., 2012) are low-copy, large (12 and 14 kb, respectively), and prone 

to rearrangement and introduced mutations during all bacterial growth steps.  

Both cDNAs contain the p.Tyr371Ser mutation, which eliminates the tetrodotoxin-

sensitivity of Nav1.6.  This permits specific recording from cDNA constructs in the 

presence of endogenous Nav1.6, which is necessary for electrophysiological 

characterization of mutant plasmids in transfected neurons.   

We first described a de novo mutation in SCN8A, p.Asn1768Asp, in a 

patient with epileptic encephalopathy (Chapter IV) (Veeramah et al., 2012).  

Since then, five additional SCN8A mutations have been identified in patients with  
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Figure 5.1.  Nav1.6 cDNA constructs (A) pcDNA3Nav1.6R (Herzog et al., 
2003a) and (B) pcDNA3Nav1.6R-GFP (Gasser et al., 2012).  These plasmids 
contain a CMV promoter (nucleotides 251-961), mouse Nav1.6 cDNA (993-6929), 
an SV40 polyadenylation site, modifications which render them low copy, and an 
ampicillin resistance cassette. Both constructs have the Y371S mutation, which 
renders the channel resistant to tetrodotoxin.  This permits specific recording 
from these cDNAs in the presence of endogenous Nav1.6.  In pcDNA3Nav1.6R-
GFP, a 19-residue linker joins the Nav1.6 and eGFP open reading frames (see 
Gasser et al., 2012 for details).  Drawn to scale. 
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infantile onset epileptic encephalopathy (M. Hammer, Univ. Arizona, pers. 

comm.).  Heterozygous null mutations in Nav1.6 have been implicated in 

intellectual disability (Trudeau et al., 2006).  The electrophysiological properties 

of these human mutations are tested by mutagenesis of the Nav1.6 cDNA, 

followed by transfection of mutant cDNA into the dorsal root ganglion (DRG) 

neuron-derived cell line ND7/23 (Wood et al., 1990) and cultured primary 

hippocampal neurons (Veeramah et al., 2012) by the Waxman lab at Yale 

University.  These functional assays can detect subtle changes in the 

electrophysiological properties of the mutant channels that may predispose them 

to hyper- or hypoexcitability.  

The ability to introduce mutations into the Nav1.6 cDNA is necessary for 

evaluation of mutant channels in cell culture.  I have generated ten mutant 

constructs from the wild-type Nav1.6 cDNA clones described above (Table 5.1), 

and developed an efficient protocol for the mutagenesis of these plasmids.  In 

this chapter, I describe the process and provide details that may assist in 

recognizing false positive clones. I also describe constructs that I generated for 

further characterization of human mutations and channel trafficking assays.  

Methods for cloning Nav1.6 cDNA.  The Nav1.6 cDNA constructs are 

prone to rearrangement and introduction of undesired mutations during bacterial 

growth.  Therefore, bacterial growth on plates and in liquid media is carried out at 

27°C for 40 hours.  A high concentration of ampicillin [100 ug/mL] is necessary to 

provide selection for 40 hours.  Visible bacterial growth after only 16 hours is 

indicative of contamination, plasmid rearrangement, or defective selection. 
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Table 5.1.  Mutated Nav1.6 cDNA clones generated during this thesis 
research.  The mutations were introduced into pcDNA3Nav1.6R, except for #10, 
which is in pcDNA3Nav1.6R-GFP. 
 Mutation Project Source of Mutation, 

Comments 

1 p.Ser21Ala Phospo-dead S21 

(ataxia3 follow-up) 

(Sharkey et al 2009a) 

Unpublished, current density 

~75% of wild type (L. Lopez-

Santiago) 

2 p.Ser21Glu Phospho-mimetic S21 

(ataxia3 follow-up) 

Unpublished, current density 

~50% of wild type (L. Lopez-

Santiago) 

3 p.VAVP(77-80)AAAA Map1b binding site Chapter III 

4 p.Arg223Gly Patient mutation, 

epileptic 

encephalopathy 

M. Hammer, pers. comm.  

(Utrect, the Netherlands) 

5 p.Thr767Ile Patient mutation, 

epileptic 

encephalopathy 

M. Hammer, pers. comm.  

(Mississippi, Baylor) 

6 p.Arg1617Gln Patient mutation, 

intellectual disability 

Rauch et al., 2012 

7 p.Asn1768Asp Patient mutation, 

epileptic 

encephalopathy  

Chapter IV 

8 p.Arg1907Trp Patient mutation, ALS unpublished 

9 p.Ile1750del Mouse mutant, 

Scn8a9J 

Jones et al., 2013, in 

preparation 

10 p.VAVP(77-80)AAAA Live-cell trafficking 

studies, J. Salzer 

unpublished 
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Bacterial colonies that contain intact Nav1.6 are usually smaller than standard 

bacterial colonies, but larger than the satellite colonies that develop when 

antibiotic selection has failed. 

 I have found QuikChange XL II mutagenesis (Agilent) to be the most 

efficient way to introduce point mutations or deletions into the Nav1.6 cDNA.  The 

process is described in Figures 5.2 and 5.3.  The efficiency of mutagenesis is 

fairly high (~75%).  I use a plasmid-specific positive control for all QuikChange 

reactions.  Agilent recommends using their internal control, but I have found that 

the conditions for mutagenesis of the Agilent control are too different from those 

used for mutagenesis of Nav1.6 cDNA to serve as an effective control.  I have 

used the p.Ser21Ala mutagenesis reaction as a positive control, but any 

previously successful mutagenesis reaction would suffice.  The positive control 

serves as an indicator for the quality of the reagents and the effectiveness of the 

cycling protocol.  QuikChange reactions are carried out as recommended by the 

manufacturer, with the modifications noted in Figure 5.2. 

The probability of rearrangement during the bacterial growth stage after 

transformation of the QuikChange reaction is ~80%, and therefore 40-50 

minipreps must be screened.  We use the restriction enzymes PvuII and NcoI to 

determine if plasmids are rearranged (Figure 5.4).  A positive control, preferably 

the QuikChange reaction template, is necessary for all restriction digests to 

assess for completeness of digestion.  The mutated site in plasmids with wild 

type diagnostic digest patterns is sequenced using primers surrounding the  
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Figure 5.2.  QuikChange mutagenesis and miniprep screening protocol for 
Nav1.6 cDNA.  NcoI and PvuII restriction patterns are shown in Figure 5.4. 
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Figure 5.3.  Maxiprep preparation and screening protocol for Nav1.6 cDNA.  
NcoI and PvuII restriction patterns are shown in Figure 5.4. 
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introduced mutation.  Miniprep yields are generally 20-80 ng/ul.  Higher 

concentrations are indicative (but not entirely predictive) of rearranged plasmids. 

Sequencing the entire 6 kb cDNA is necessary to ensure that no additional 

mutations have been introduced during bacterial growth.  This requires 12.5 ug of 

DNA and 25 sequencing primers (Table 5.2).  Therefore, maxipreps are 

necessary to obtain enough plasmid for sequencing and subsequent experiments 

(Figure 5.3).  2 ml starter cultures are incubated at 27°C for 8 hours and then 

used to prime the 500 ml maxiprep cultures.  Plasmids are isolated from 

maxiprep cultures using the Epoch kit with one modification: after the addition of 

isopropanol to precipitate the DNA, the solution is incubated at -20°C overnight; 

this increases DNA yield approximately 2-fold.  Approximately 1 out of 3 

maxiprep cultures will yield plasmid without newly introduced point mutations.  I 

set up 2-4 maxiprep cultures per miniprep plasmid in order to obtain enough 

plasmid for both sequencing and subsequent experiments (>100ug DNA).  It is 

advisable to resuspend maxipreps in 0.5X-1X TE instead of ddH2O to stabilize 

the DNA.  Typical maxiprep concentrations are usually 0.1-0.5 ug/ul.  Higher 

concentrations are, as above, indicative of rearrangements or other point 

mutations. 

Constructs for characterization of novel human mutations.  I have 

generated three cDNA constructs for electrophysiological characterization of 

patient mutations.  One patient, from Utrect, is heterozygous for the de novo 

mutation p.Arg223Gly (Figure 5.5A) in DIS4 (the voltage sensing 

transmembrane segment S4 of domain 1) (Figure 1.1).  The functional effects of  
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Figure 5.4.  Wild-type restriction digest fragment patterns for 
pcDNA3Nav1.6R.  Maxipreps A, B, and C were digested with NcoI (left) and PvuII 
(right).  Plasmid B was rearranged, as demonstrated by the PvuII digest.  +, 
positive control (intact Nav1.6 cDNA previously confirmed by digest and full 
sequencing). M, 1 kb ladder.  Sizes of predicted NcoI fragments: 4028 bp, 2613 
bp, 1614 bp, 1485 bp, 813 bp, 735 bp, 462 bp, 366 bp, 12 bp.  Sizes of predicted 
PvuII fragments: 4285 bp, 3127 bp, 2037 bp, 1521 bp, 1097 bp, 61 bp.  PvuII 
does not always digest as predicted, so it is essential to use a positive control. 
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Table 5.2.  Sequencing primers for the coding sequence of pcDNA3Nav1.6R 
and pcDNA3Nav1.6R-GFP.  Primer start position: location in the plasmid of the 
first nucleotide of the primer.  The 5’ UTR is derived from CMV (nucleotides 251-
961).  The Nav1.6 open reading frame initiates at nucleotide 993.  The GFP open 
reading frame initiates at nucleotide 6986.  Primers were designed by L. 
Sharkey. 
 

Primer 
No. 

Primer start 
position 

Sequencing 
direction 

Primer sequence 5’ to 3’ 

1 725 F TCAAC GGGAC TTTCC A 
2 1058 R CAGCG ACTCG GGGGT G 
3 1168 F TGGAG GCGGG GAAGA G 
4 1498 R TAAAT CCCTG TGAAT G 
5 1979 F CGCCG GGCAA TGCCC A 
6 1996 R TCTGG GCATT GCCCG G 
7 2358 F GGCAC CGTCT CAGAA G 
8 2429 R CTCAG ATGAG CTCCT C 
9 2887 F GCCTG CGGCG CAGCG T 
10 2902 R ACGCT GCGCC GCAGG C 
11 3334 R TGTTC GAATT GTGGC G 
12 3916 F TGAGC TCCTT CAGCG C 
13 4309 R AGGTT CTCGA AATCA G 
14 4441 F GGAAT ACTTG GATCC A 
15 4869 R GGGAC TTTAT GGCAC C 
16 4921 F GGGTG GTGGT GAACG C 
17 5339 R GCCGA AGATG ATGAA G 
18 5420 F CATCT TCATG ACAGA G 
19 5831 R TAGGG TCGGG GAGAC G 
20 5924 F GTCGC TGCCC GCCCT G 
21 6317 R GGCGC TTTCC TCTGT G 
22 6407 F GCTGG CCGAC TTTGC C 
23 6771 R GTGCC TCCAT TCTCC A 
24 7113 R GTGGC ACCTT CCAGG G 
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mutation of the Arg223 residue in other sodium channels are summarized in 

Table 5.3.  Arg223 is invariant in all sequenced vertebrate, invertebrate, and 

bacterial sodium channels (Figure 5.5A). The p.Arg223Gly mutation is predicted 

to be probably (HumDiv=0.986) or possibly damaging (HumVar=0.715) by 

PolyPhen-2 (Adzhubei et al., 2010).  The corresponding residue of SCN5A 

(Arg222) is mutated to glutamine in patients with reversible ventricular ectopy 

(Mann et al., 2012).  We recently found that the p.Arg223Gly mutant channel is 

not stable in transfected HEK cells cultured at 37°C (Figure 5.6).  Recording of 

this channel at 30°C indicates an increased response to a small slow 

depolarization (ramp current), consistent with a hyperexcitability phenotype (S. 

Dib-Hajj and S. Waxman, pers. comm.). 

A second epileptic encephalopathy patient from Mississippi is 

heterozygous for the de novo mutation p.Thr767Ile (Figure 5.5B).  Thr767 is 

located in DIIS1 (the first transmembrane segment of domain 2).  This residue is 

conserved in vertebrates and invertebrates (Figure 5.5B).  The patient mutation 

p.Thr767Ile is predicted to be deleterious (HumDiv=1.000, HumVar=0.999).  This 

channel is stable in transfected HEK cells cultured at 37°C (Figure 5.6). 

Recording of the p.Thr767Ile mutant channel in ND7/23 cells indicates a 10 mV 

hyperpolarizing (leftward) shift in the voltage dependence of activation, 

consistent with hyperexcitability (S. Dib-Hajj and S. Waxman, pers. comm.).  The 

Waxman lab is currently testing the properties of the p.Thr767Ile channel in 

transfected hippocampal neurons. 
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Figure 5.5.  De novo patient mutations in SCN8A.  The mutated residues are 
conserved in vertebrate orthologs and paralogs and in invertebrate channels.  (A) 
Arg223 is located in the voltage sensing transmembrane segment of domain 1.  
(B) Thr767 is located in the first transmembrane segment of domain 2. (C) 
Arg1617 is located in the voltage sensing transmembrane segment of domain 4. 
Abbreviations: h, human; a, anole lizard; f, fish (Fugu); Dm, Drosophila 
melanogaster; para, fly voltage-gated sodium channel (encoded by paralytic), 
NaChBac, bacterial one-domain voltage gated sodium channel; hSCN5A, human 
cardiac sodium channel; hSCN1A, human neuronal sodium channel.  One-letter 
amino acid codes are used. Dots represent amino acid identity. 
 
.
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Table 5.3.  SCN8A p.Arg223Gly: Functional effects of corresponding mutations in other sodium channels.

Channel Organism Substitution Functional effect Reference 

NaChBac Bacteria R->C Slight leftward shift in conductance/voltage relationship (DeCaen et al., 
2011) 

Nav1.2 Rat R->Q Leftward shift in voltage of activation (Stuhmer et al., 
1989) 

NaChBac Bacteria R->C Destabilization of resting state (Yarov-Yarovoy 
et al., 2012) 

NaChBac Bacteria R->K More positive voltage dependence of activation; 
“interaction of E43 with R2 stabilizes closed state” 

(Paldi and 
Gurevitz, 2010) 

Nav1.5 Human R->Q “unique differential leftward voltage-dependent shifts in 
activation and inactivation properties of human voltage-
gated Na(+) channels with the R222Q mutation, consistent 
with increasing channel excitability at precisely the 
voltages corresponding to the resting membrane potential 
of cardiomyocytes.” 

(Mann et al., 
2012; Nair et al., 
2012) 

Nav1.6 Human, 
Mouse 

R->G Decreased stability, increased ramp current S. Dib-Hajj and S. 
Waxman, pers. 
comm. 
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Figure 5.6.  p.Arg223Gly is less stable than wild type channel in HEK cells.  
Western blot of lysates from HEK-293 cells transfected with wild-type or mutant 
Nav1.6 cDNA.   Lysates were run on a 4-15% gradient BioRad Criterion gel.  Br, 75 
ug of wild type brain membrane protein.  Cells were transfected with 1 ug cDNA and 
incubated at 37˚C for 24 hours before lysis.  1° antibody, polyclonal anti-Nav1.6 
(Alomone ASC-009), 1:100.  2° antibody, anti-rabbit, 1:5000. Nav1.6 from 
transfected cells consistently migrates more slowly than Nav1.6 from brain.  The 
basis for this difference is not known, but may be excess glycosylation of the 
channel. 
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The de novo mutation p.Arg1617Gln (Figure 5.5C) was recently identified in 

a patient with severe intellectual disability (Rauch et al., 2012).  Arg1617 is located 

in DIVS4 (the voltage sensing transmembrane segment of domain 4) and is invariant 

in vertebrate and invertebrate sodium channels.  p.Arg1617Gln is predicted to be 

deleterious (HumDiv=1.000, HumVar=0.999).  We are collaborating with the 

Waxman lab to test the functional effects of this mutation in cultured cells. 

Nav1.6 cDNA construct for trafficking studies in cell culture.  To follow up 

the experiments described in Chapter III, we are interested in elucidating the role of 

Map1b in trafficking and subcellular localization of Nav1.6.  Dr. James Salzer at NYU 

is examining the trafficking of wild type and Map1b-binding-site-mutant Nav1.6 in cell 

culture models of myelinated dorsal root ganglion neurons (Zhang et al., 2012).  Co-

cultures of neurons and Schwann cells develop an axon initial segment and nodes of 

Ranvier, which will allow us to determine whether interaction with Map1b is critical 

for localization of Nav1.6 to these regions.  Using the Nav1.6-GFP fusion protein will 

permit examination of channel trafficking in real-time and specific detection of mutant 

channel in the presence of endogenous Nav1.6. 

To this end, I introduced the Map1b binding site mutation VAVP(77-80)AAAA 

(Chapter III) into the tetrodotoxin-resistant Nav1.6-GFP fusion protein (Gasser et al., 

2012).  The primers used to introduce the AAAA mutation into pcDNA3Nav1.6R 

(O’Brien et al., 2012b) (Chapter III) were also used for the generation of this clone.  

Colonies were grown, prepared, and screened as described in Figures 5.2 and 5.3. 

Wild type and mutant Nav1.6 have been nucleofected into co-cultured dorsal 

root ganglion neurons by the Salzer lab as previously described (Zhang et al., 2012), 
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and trafficking assays are currently in progress.  Preliminary evidence suggests that 

the mutant channel may be less efficiently localized to nodes. 

Conclusion.  Working with the Nav1.6 cDNA plasmids is technically difficult.  

I have developed protocols to efficiently mutagenize these plasmids.  These 

methods, combined with the previously described growth conditions (Herzog et al., 

2003), have made possible the electrophysiological characterization of several 

human epilepsy mutations.  Additional constructs will be functionally tested during 

the coming months.  Electrophysiological analysis of mutant constructs allows us to 

identify mutants with functional abnormalities, such as increased persistent current, 

hyperpolarizing (leftward) shifts in activation, or depolarizing (rightward) shifts in 

inactivation, that may account for the clinical abnormalities in patients.  Mutants with 

unusual properties may warrant further study in the mouse.  

Acknowledgements.  I thank Christen Frei for assistance in cloning the 

p.Arg1617Gln mutation into the Nav1.6 cDNA. 
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Chapter VI 

 

Conclusions 

 

Dissertation Findings and Significance.  The work described in this 

dissertation has advanced the voltage-gated sodium channel field in three areas.  

First, I described a splicing mechanism that is partially responsible for restricting 

expression of full-length Nav1.6 to neuronal tissues (Chapter II).  Mutually exclusive 

splicing of exon 18A and exon 18N was first described in 1997.  I identified the role 

of RBFOX splice factors in this splicing event.  Binding of neuron-specific RBFOX 

proteins downstream of exon 18A promotes its inclusion in neuronal tissues.  In the 

absence of these factors, there is inclusion of exon 18N and generation of 

transcripts containing an upstream in-frame stop codon that are targeted for 

nonsense-mediated decay.  Thus, alternative splicing of exon 18 serves as an on/off 

switch for full-length Nav1.6. 

 Second, I identified interaction between the N-terminus of Nav1.6 and the light 

chain of microtubule-associated protein Map1b (Chapter III).  This is the first known 

interaction localized to the N-terminus of Nav1.6.  Nav1.6 and Map1b co-

immunoprecipitated from mouse brain membrane fractions, verifying this interaction 
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in vivo.  Co-transfection of Map1b with Nav1.6 increased current density without 

altering electrophysiological properties of the channel, suggesting that the interaction 

increases the number of stable channels at the cell surface. 

Third, I contributed to characterization of three de novo mutations in Nav1.6 in 

patients with severe epileptic encephalopathy.  The first of these mutations, 

p.Asn1768Asp, renders the channel hyperexcitable due to increased persistent 

current (Chapter IV).  This supports a mechanism of pathogenesis in which 

overactivity of Nav1.6 causes neurons to fire aberrantly and leads to an epileptic 

phenotype.  This mutation was the first to implicate SCN8A as a cause of severe 

epilepsy.  The second mutation, p.Thr767Ile causes a hyperpolarizing shift in the 

voltage dependence of activation, which also leads to hyperexcitability (Chapter V).  

The characterization of the third de novo mutation, p.Arg223Gly, is in progress 

(Chapter V).  We have initiated a collaboration with the Waxman Lab at Yale 

University to assess pathogenicity of novel protein-coding variants in Nav1.6 in which 

we introduce mutations into the Nav1.6 cDNA (Chapters IV and V), and the Waxman 

Lab determines the electrophysiological properties of the mutant channels in 

transfected neuron-derived ND7/23 cells and cultured hippocampal neurons.   

Non-pathogenic variation in SCN8A.  Nine predicted deleterious amino acid 

substitutions have been identified in more than one individual in the Exome Variant 

Server, a catalog of variants in patients with heart, lung, and blood disorders 

(http://evs.gs.washington.edu/EVS/) (Table 6.1).  Interestingly, none of these 

variants are located in the highly conserved transmembrane segments, and no stop  
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Table 6.1.  Recurring missense variants in SCN8A identified in patients with 
heart, lung, and blood disorders (http://evs.gs.washington.edu/EVS/).  

 

 Variant Domain Heterozygote  

Frequency 

Allele 

Frequency 

Polyphen 

prediction 

1 p.Trp45Arg N-terminus 2/6,263 0.00016 probably 

damaging 

2 p.Gln475Arg I-II Loop 3/5,890 0.00025 possibly 

damaging 

3 p.Thr607Ala I-II Loop 2/6,075 0.00016 benign 

4 p.Asn686Asp I-II Loop 2/5,906 0.00017 possibly 

damaging 

5 p.Ser1050Gly II-III Loop 2/6,434 0.00016 benign 

6 p.Trp1055Arg  II-III Loop 2/6,452 0.00015 probably 

damaging 

7 p.Arg1237Lys  IIIS1-2 linker 2/6,492 0.00015 benign 

8 p.Thr1583Ile IVS2-3 linker 2/6,310 0.00016 benign 

9 p.Pro1921Thr  C-terminus 2/6,132 0.00016 benign 
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codons have been observed.  This suggests that the most deleterious and 

pathogenic types of SCN8A mutations are very rare in the general population. 

Modeling human mutations of SCN8A.  The currently identified mutations 

in SCN8A fall into two distinct groups: those associated with severe epilepsy 

(Chapters IV and V), and those associated with intellectual disability (Trudeau et al., 

2006; Rauch et al., 2012).  Analysis of the p.Asn1768Asp mutation suggests that 

some Nav1.6 mutations that cause epileptic encephalopathy are gain-of-function 

changes that result in channel hyperactivity (Veeramah et al., 2012).   

We are currently examining functional consequences in cultured cells of the 

p.Arg1617Gln mutation that was identified in a patient with intellectual disability 

(Rauch et al., 2012).  We predict that this mutant channel will have reduced 

excitability or function because of the cognitive deficits previously described in 

haploinsufficient individuals (Trudeau et al., 2006).  Loss-of-function mutations in 

SCN8A may be more common than has been reported to date.  These alleles may 

remain unobserved because phenotypes associated with haploinsufficiency are sub-

clinical, or whole genome and/or exome sequencing has not yet been undertaken on 

a sufficiently large scale. 

Mutant channels can be tested for pathogenicity by electrophysiology in 

transfected cells.  Although electrophysiological assessment is an essential part of 

the characterization of a mutant channel, it does not reveal how a mutation affects 

the complex neuronal firing in the brain.  Characterizing mutations in mouse models 

provides a more complete model of channel pathogenicity.  For dominant mutations, 

transgenic models can be used.  Although the effects of overexpressing wild-type 
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Nav1.6 in mice have not been tested, overexpression of the closely related neuronal 

channel Nav1.2 is not detrimental (Kearney et al., 2001).  The normal temporal 

regulation of Nav1.6 (Plummer et al., 1997) may be difficult to recapitulate in a 

transgene driven by a non-endogenous promoter (Kearney et al., 2001).  Nav1.6 can 

also be targeted by homologous recombination (Levin and Meisler, 2004), but this 

process is inefficient in Scn8a compared to genes that are actively expressed in 

mouse ES cells (e.g., ~10% targeting in Fig4) (Ferguson et al., 2012).   

Because of these difficulties, we are investigating the use of TAL effector 

nuclease (TALEN) targeting technology (Sung et al., 2013) to introduce the 

p.Asn1768Asp epilepsy mutation into mice.  TALEN-targeted alleles have the 

capability to combine the endogenous gene regulation of a knock-in with the cost 

and generation time of a transgenic model, making them an attractive option for 

generation of mouse models.  Homologous recombination induced by TALENs was 

recently accomplished in fertilized mouse eggs using either oligodeoxynucleotides or 

a targeting vector as a substrate (Wefers et al., 2013).  

In unpublished experiments, we designed two TALENs that will bind and 

induce a double stranded break in exon 24 of Scn8a near amino acid residue 1768.  

TALEN activity was tested by PNA Bio Inc. using an assay that detects TALEN-

induced mismatch repair.  Briefly, TALEN pairs are transfected into NIH3T3 cells.  

Genomic DNA is isolated and amplified using primers specific to the targeted region 

(Scn8a exon 24).  PCR products are treated with the mismatch-repair-sensitive 

endonuclease T7E1 and products are visualized on an agarose gel.  Since there is 

no substrate for homologous recombination in this assay, all TALEN-induced breaks 
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in the genome are repaired using the mismatch repair pathway.  Thus, the level of 

T7E1 digestion serves as an indicator of TALEN activity.   

The most active pair of TALEN mRNAs was co-injected into the male 

pronucleus of (SJLxB6)F2 fertilized eggs with a circular targeting plasmid containing 

~4 kb of mouse genomic DNA, including the p.Asn1768Asp mutation and 

synonymous substitutions in the TALEN binding sites (to ensure that the TALENs 

would not cut repeatedly).  The double stranded break introduced by the TAL 

effector nucleases permits homologous recombination with the plasmid and 

incorporation of the engineered DNA sequence into exon 24.  Preliminary 

genotyping by PCR indicates that the engineered sequence was introduced 

successfully in the homozygous and heterozygous state (J. M. Jones, pers. comm.).  

Southern blots to confirm these observations are in progress. 

One difficulty in generating TALENs for voltage-gated sodium channels is the 

high level of sequence identity between family members.  Off–target binding of the 

TALENs could lead to integration of the p.Asn1768Asn mutation into Scn4a or 

Scn5a, the channels that have the highest nucleotide similarity in the TALEN binding 

sites (only 2 mismatches, compared to 3+ mismatches in the other sodium 

channels).  We observed 11 on-target mutations in Scn8a, two mutations in Scn5a, 

and no mutations in Scn4a among the first 20 pups. 

We will use the p.Asn1768Asp mouse model to examine the effect of 

hyperexcitability of Nav1.6 on specific subpopulations of neurons in the brain.  

Inhibitory Purkinje neurons and excitatory cortical pyramidal neurons will be of 

particular interest, since they rely heavily on Nav1.6 for their firing properties.  This 
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mouse model will also allow us to test the role of p.Asn1768Asp in the sudden 

unexplained death in epilepsy observed in the patient carrying this mutation 

(Veeramah et al., 2012).  If the mouse model exhibits premature lethality, we could 

monitor mutants using EEGs to detect potential seizure events associated with 

death.  We also plan to evaluate treatments for this disease using this mouse.  Since 

the p.Asn1768Asp channel does not close completely (as evidenced by the 

increased persistent current), low doses of open-state channel blocker drugs such 

as phenytoin might preferentially target the mutant channel and ameliorate a seizure 

phenotype. 

Map1b in trafficking and subcellular localization of Nav1.6.  As described 

in Chapter III, I investigated the role of microtubule-associated protein Map1b in cell-

surface localization of Nav1.6.  Mutation of the Map1b binding site in Nav1.6 resulted 

in reduced current density, suggesting that mutant channel has reduced ability to 

reach the cell surface.  Possible mechanisms include retention of the mutant 

channel in the ER or Golgi, or defective trafficking of the channel after insertion into 

trafficking vesicles.   

To further investigate the role of Map1b in channel trafficking and localization, 

I mutated the Map1b binding site VAVP to AAAA in the GFP-Nav1.6 cDNA (Gasser 

et al., 2012) (Chapter V).  We are collaborating with Dr. James Salzer at NYU, who 

will study the trafficking of the mutant channel in nucleofected dorsal root ganglia co-

cultured with Schwann cells (Zhang et al., 2012).  These co-cultures develop an AIS 

and nodes, and will allow us to examine whether Map1b binding is necessary for 

subcellular localization of Nav1.6 to these sites.  We will also be able to determine 
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the intracellular location of the mutant Nav1.6 to identify which step in trafficking is 

defective.   

It may also be possible to assess channel trafficking in brains of mice 

electroporated with the VAVP(77-80)AAAA-Nav1.6-GFP channel in utero at E14 

using the method described by Hedstrom and colleagues (2007).  Electroporated 

mice were sacrificed at P27, and the location of the mutant protein was determined 

by immunohistochemistry using antibodies against GFP (Hedstrom et al., 2007; 

Gasser et al., 2012).  This would provide a way to assay the trafficking of the mutant 

channel in the context of the brain in vivo. 

 Recent work from the Waxman lab has shown that the ankyrin-binding motif 

in intracellular loop 2 is necessary for localization of Nav1.6 to the AIS and nodes 

(Gasser et al., 2012).  The authors write that the ankyrin-binding motif is “sufficient” 

for localization of the channel to these domains.  However, sufficiency was 

determined in the context of a single-transmembrane reporter construct (Gasser et 

al., 2012).  Since Nav1.6 already contains an ankyrin-binding motif, a traditional test 

of sufficiency may be logically impossible.  A more appropriate test would be to add 

the ankyrin-binding domain to a large, multi-domain transmembrane protein, such as 

Cav3.1, that is not normally located at the AIS or nodes. 

 In the context of the full-length channel, Map1b and ankyrin may work 

sequentially during targeting and localization.  For example, Map1b may tether 

vesicles containing Nav1.6 to microtubules during transport from the Golgi to the 

axon.  On reaching the AIS, sodium channels could bind ankyrin and be targeted to 

their subcellular locations in the axon.  Map1b may alternatively function as a 
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secondary anchor once the channel is inserted into the extracellular membrane, 

working in concert with ankyrin.  A combination of Map1b and ankyrin might tether 

Nav1.6 to both microtubules and spectrin components of the cytoskeleton, providing 

a more secure anchoring system for the channel at the AIS and nodes.  Experiments 

using the mutated VAVP(77-80)AAAA-Nav1.6-GFP channel (Chapter V) could help 

determine the role of Map1b in the extensive targeting and trafficking process. 

Potential non-conducting functions of Nav1.6 suggested by study of the 

mutant Scn8a9J.  We are characterizing a spontaneous mutation of Nav1.6, 

Scn8a9J, which deletes isoleucine residue 1750 in DIVS6 (Jones et al., 2013).  The 

mutant channel has no detectable current in transfected HEK cells or ND7/23 cells.  

There was no repetitive firing in Purkinje neurons from mutant brain slices.  

However, this mutant survives much longer than Scn8a null mice, with 40% of 

homozygotes surviving past 8 months of age and a maximum lifespan of longer than 

a year.  Mutant protein is present in membrane fractions and at nodes in the sciatic 

nerve (Jones et al., 2013).  It is possible that mutant channels are 

electrophysiologically active in cell types that were not analyzed to date.  It will be 

important to examine the gating current of Scn8a9J mutant channels to determine 

whether they are capable of responding to changes in membrane potential.   

Another possibility is that alternative, non-conducting functions of Nav1.6 are 

preserved in Scn8a9J.  For example, the Scn8a9J mutant protein is localized to nodes 

of Ranvier (Jones et al., 2013), where it may contribute to protein-protein 

interactions that stabilize other proteins such as voltage-gated potassium channels.  

Mutants of Nav1.6 lacking channel protein would then result in both sodium channel 
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and potassium channel deficiencies, either of which could prevent action potentials.  

It could be of interest to examine potassium currents in neurons cultured from 

Scn8a9J homozygous mutant mice.  Scn8a9J mice will be useful for investigation of 

alternative functions of voltage-gated sodium channels in vivo. 

Future identification of novel binding partners of Nav1.6.  The function 

and regulation of Nav1.6 is a complex process that requires the action of many 

different proteins.  The known interactions of Nav1.6 were summarized in Figure 1.6.  

Nav1.6 may interact with additional molecules in vivo, and these interactions could 

contribute to trafficking, subcellular localization, non-channel functions, and 

regulation of the electrophysiological properties of the channel. 

 We propose to insert an avidin tag into Nav1.6 for biotin labeling and pulldown 

followed by mass spectrometry to identify interacting proteins.  It will be important to 

insert this tag at a location that will not interfere with the subcellular localization or 

function of Nav1.6.  For example, Nav1.6 cDNA has been tagged at the C-terminus 

with GFP and RFP without affecting electrophysiological properties or localization of 

the channel (Gasser et al., 2012), suggesting that the C-terminus would be a good 

location for adding an intracellular avidin tag.  Alternatively, intracellular regions with 

low evolutionary conservation could provide locations to insert the tag. 

 There are multiple ways to introduce the avidin tag, including TALEN-based 

homologous recombination or recombineering in a rat BAC that contains the Nav1.6 

genomic DNA sequence and endogenous promoter.  It may be useful to use 

homozygous tagged channel alleles in order to eliminate competition with the wild 

type channel. 
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Interactions identified using mass spectroscopy could be verified by co-

immunoprecipitation with Nav1.6 from brain membrane fractions, co-localization in 

mouse neurons or sciatic nerves, or co-transfection with Nav1.6 in cells to detect the 

functional effect on the electrophysiology of the channel.  Identification of novel 

interacting proteins would provide potential targets for therapies for patients with 

neurological disorders. 

Haploinsufficiency of neuronal voltage-gated sodium channels.  

Mutations in the major neuronal voltage-gated sodium channels are associated with 

seizure disorders (e.g., epileptic encephalopathies, Dravet syndrome, GEFS+), and 

intellectual disability and autism (Weiss et al., 2003; Trudeau et al., 2006; Catarino 

et al., 2011; Rauch et al., 2012).  Loss-of-function mutations in SCN1A (Nav1.1) are 

a major cause of Dravet Syndrome, a severe form of epilepsy with neuronal 

hyperexcitability (Catarino et al., 2011).  It is surprising that loss-of-function 

mutations in a voltage-gated sodium channel cause a phenotype associated with 

overactivity of neurons.  Catterall and others have proposed that reduced levels of 

Nav1.1 in inhibitory GABAergic neurons causes reduced firing of these neurons, 

leading to global hyperexcitability and seizures in a Scn1a+/- mouse model of Dravet 

Syndrome (Yu et al., 2006; Cheah et al., 2012).  However, both inhibitory bipolar 

neurons and excitatory pyramidal neurons derived from Dravet patient iPSCs have 

approximately 3-fold increased sodium currents and spontaneous bursting (Liu et al., 

2013), with no change in the voltage dependences of activation and inactivation of 

the channels.  Additionally, not all Nav1.1 epilepsy mutations are loss-of-function.  

p.Arg1648His is a gain-of-function mutation in Nav1.1 identified in a GEFS+ patient.  
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This mutation causes increased recovery from inactivation and leads to 

hyperexcitability (Spampanato et al., 2001).  The data support a model in which 

global hyperexcitability, originating by multiple mechanisms, leads to epilepsy. 

Loss-of-function mutations in Nav1.6 have been associated with intellectual 

disability in humans (Trudeau et al., 2006; Rauch et al., 2012) and anxiety-like 

phenotypes in mice (McKinney et al., 2008).  Mutations that cause gross 

hyperexcitability may cause epilepsy, while mutations that result in hypoexcitability 

may be more likely to cause intellectual disability. 

A proposed mechanism for haploinsufficiency of neuronal voltage-

gated sodium channels.  Haploinsufficiency of Nav1.1 or Nav1.6 may result in 

some subcellular locations normally filled by these channels to be occupied by other 

voltage-gated sodium channels (Figure 6.1).  Channel mislocalization would alter 

the firing properties of the neuron and cause the channel-specific haploinsufficiency 

phenotypes described above. 

Potential increased localization of Nav1.6 to replace Nav1.1 at the AIS in 

Dravet (SCN1A+/-) neurons is predicted to increase the probability of axon potential 

initiation, because Nav1.6 has a more hyperpolarized voltage dependence of 

activation than Nav1.1 in heterologous systems and cultured neurons (Chen et al., 

2008; Kole et al., 2008; Royeck et al., 2008; Hu et al., 2009).  Thus, increased 

Nav1.6 at the AIS would lower the action potential threshold, leading to overall 

neuronal hyperexcitability in mutant neurons.  Increased accumulation of Nav1.6 at 

the AIS (approximately twice wild type levels) has been associated with seizures in 

Celf4-/- mice (Sun et al., 2013). 
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Figure 6.1.  Proposed model of haploinsufficiency.  The channel composition of the AIS may change in response to 
deficiency of specific channels, leading to hyperexcitability and epilepsy or to hypoexcitability and intellectual disability.
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In the Scn8amed null mouse, Nav1.2 is localized to the distal AIS (Van Wart 

and Matthews, 2006), demonstrating that a channel with different 

electrophysiological properties can replace the missing channel in vivo.  

Replacement of Nav1.6 with Nav1.2 may decrease action potential firing (Van Wart 

and Matthews, 2006; Chen et al., 2008).  Likewise, reduced Nav1.6 at the AIS in 

patients with intellectual disability could reduce neuronal activity. 

Specific populations of neurons, including the cortical and cerebellar 

interneurons (Lorincz and Nusser, 2008), retinal ganglion cells, and a subset of CA3 

hippocampal neurons (Van Wart et al., 2007), exhibit distinct localizations of Nav1.1 

to the proximal AIS and Nav1.6 to the distal AIS.  In Scn1a+/- mice and Dravet patient 

derived neurons, there may be encroachment of Nav1.6 into the proximal AIS.  

Conversely, neurons from Scn8a+/- mice and patients with intellectual disability could 

contain increased Nav1.1 or Nav1.2 localization at the distal AIS (Figure 6.1).  To 

test this model, one could co-stain wild type, Scn1a+/-, and Scn8a+/- neurons for 

ankyrin (to mark the total AIS), Nav1.1, and Nav1.6, to determine the proportion of 

AIS containing Nav1.6 as described previously (Van Wart et al., 2007; Lorincz and 

Nusser, 2008). 

Biomedical Implications.  The work described in this dissertation has 

provided insight into the basic biology and mechanism of disease of Nav1.6.  The 

Meisler lab has carried out candidate gene screening of SCN8A in ataxia, essential 

tremor (Sharkey et al., 2009b), autism, and amyotrophic lateral sclerosis 

(unpublished), but few mutations were identified.  When I started my work, in 2007, a 

single inherited variant in Nav1.6 had been identified in a family with intellectual 
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disability (Trudeau et al., 2006).  Since then, the introduction of next-generation 

sequencing has identified several de novo mutations of Nav1.6 in patients with 

epileptic encephalopathy and intellectual disability (Chapters IV and V).  We 

collaborated with electrophysiologists to characterize the first gain-of-function 

pathogenic human mutation in Nav1.6 (Veeramah et al., 2012).  In doing so, we 

established an effective ongoing collaboration for future characterization of 

additional newly identified human variants of Nav1.6 in cultured cells.  Several more 

mutations are in the pipeline.  The development of mouse models for some of these 

human mutations will provide insight into the role of Nav1.6 in epilepsy and 

intellectual disability in vivo.  Mouse models may also permit testing potential 

treatments for these disorders, such as sodium channel blockers or newly identified 

compounds, as well as screening for genetic modifiers defining novel therapeutic 

targets. 
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