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ABSTRACT

Testing for serial homogeneity and pooled correlation for longitudinally measured
biomarkers

by

Su Chen

Chair: Thomas M. Braun

Salivary biomarkers play an important role in predicting oral disease status along with
oral bacterial pathogens. Thus, our work is motivated by a study that longitudinally
measured periodontal biomarkers and levels of bacterial pathogens in the oral cavity
with the intent of testing whether the correlation between each biomarker and each
pathogen is homogeneous over time.

We first developed both frequentist and Bayesian approaches for testing for serial
homogeneity of correlation coefficients. We proposed two Wald tests and an F-test
based on the asymptotic distributions of sample correlation coefficients. We found
that the Wald test based on Fisher’s Z-transformation and the F-test have nominal
sizes when the data fit our assumed model, while the other Wald test has a more
inflated size in small samples. The Wald test based on Fisher’s Z-transformation is
generally robust to mis-specified models and heavier tailed data.

We then applied the concepts of Bayesian credible intervals and Bayesian posterior

predictive p-values. We decomposed the variance/covariance matrix of the data to

xii



standard deviation elements and correlation elements and ran a Metropolis-Hastings
algorithm within Gibbs with a set of parameters being updated at one time. Our
simulation results showed that Bayesian tests provide an alternative way of testing
homogeneity of serial correlations.

Under an assumption of homogeneity, we then developed a Mantel-Haenszel-type
estimator of the pooled correlation coefficient and its asymptotic variance estimate
as the sample size goes to infinity. Through simulations, we found that our proposed
Mantel-Haenszel estimator is very close to the true common correlation, and that the
variance estimator also performs well even with a small sample size. In addition, the
variance estimator remains robust to model mis-specification.

When applied to actual data, we found some significant, time-invariant correlation
did exist between MMP-8 and MMP-9 and some red complex pathogens. These
results are supported by published clinical research and demonstrate the utility of
our methods for providing guidance to investigators as to which biomarker/pathogen

pairs might best describe disease severity over time.
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CHAPTER 1

Introduction

Our methods are motivated by data collected from a small longitudinal study of
gingivitis, or inflammation of the gums (gingivae) (Salvi et al., 2010). Investigators
enrolled nine subjects with Type I diabetes and nine control subjects without Type
I diabetes. The eighteen subjects in this study were instructed to refrain from all
oral health practices for 21 days so that the natural progression of gingivitis could
occur. After 21 days, the subjects were instructed to return to usual oral health
practices for two weeks. Each patient was examined at baseline (Day 0), 21 days
after enrollment (Day 21), when progression of gingivitis had occurred, and 35 days
after enrollment (Day 35), when gingivitis would be resolved. At each of these three
time points, investigators collected samples of plaque and gingival crevicular fluid
(GCF), the fluid between gums and teeth, from multiple sites of the mouths of the
eighteen subjects.

The GCF was analyzed for levels of several biomarkers, including tumor necrosis
factor (TNF)-a, calprotectin, matrix metalloproteinase-8 (MMP-8), and MMP-9, all
of which are known inflammatory markers and have been shown to exist in higher
levels in periodontally diseased subjects than in periodontally healthy subjects (Rai

et al., 2008; Yucel et al., 2008). The plaque was analyzed for levels of numerous bac-



terial pathogens, three of which, Porphyromonas gingivalis, Tannerella forsythia, and
Treponema denticola, are known collectively as the “red complex” (Socransky et al.,
1998) and have been associated with higher levels of gingival inflammation (Socran-
sky et al., 2002; Zhang et al., 2002). Given that both the biomarkers and pathogens
appear to have an association with oral disease, it has been suggested that the level
of oral pathogens may directly trigger an immune response and thereby promote in-
creased levels of inflammatory biomarkers, including those listed (Yakob et al., 2012).
Thus, one goal of the pilot study was to assess the association of GCF biomarkers
and plaque pathogens during the progression and resolution of gingivitis and whether
the associations changed over the course of the study. Specifically, investigators were
curious to know if the association of pathogens and biomarkers would be weak prior
to the development of gingivitis and would become stronger once gingivitis had de-
veloped. The data were summarized as Pearson correlation coefficients between each
biomarker and each pathogen at each of Days 0, 21, and 35, and we began investi-
gating methods for testing the equality of serially-measured correlation coefficients.
Another issue that is of interest is whether there is a summary correlation to describe
the overall association between each biomarker and each pathogen, if the correlation
between them does not change over time.

The data described above generated two questions of interest. The first question
is how to test the equality of serial correlation between two longitudinally measured
continuous variables, and the second question aims to look for a pooled correlation
coefficient for the serial correlations if lack of homogeneity exists. In Chapters II and
I, we provide approaches from both frequentist and Bayesian frameworks, respec-
tively, for inference regarding heterogeneity of longitudinal correlation coefficients,

and in Chapter IV we propose methods for both estimation and inference of a pooled



correlation coefficient.

Specifically, in the second chapter, we propose a model for the joint distribution
of the serial biomarker measures and the serial pathogen measures and from this
model, we derive the asymptotic distribution of the sample correlation coefficient of a
biomarker and a pathogen at each time point. To determine if the correlation between
a biomarker and a pathogen is homogeneous over time, we use both a Wald test based
upon Fisher’s Z-transformation and an F-test with estimated degrees of freedom in
order to produce a test with valid size. We examine the performance of both tests
via Monte Carlo simulation in a variety of settings defined by the number of subjects,
the number of time points, and the range of the true correlation coefficients. We also
evaluated the validity of our tests when our assumed model does not match the true
model of the data.

In the third chapter, we propose to evaluate whether the correlation between two
continuous quantities measured at two or more time points are equal using Bayesian
credible intervals and Bayesian posterior predictive p-values. We use Bayesian credible
interval method with simulated data of two repeated measures, and sample the serial
correlations from their posterior distributions. We then evaluate the credible interval
of the samples drawn and decide whether to reject our null hypothesis. We use
Bayesian posterior predictive p-values with simulated data with more than two time
points, and the posterior predictive p-value is evaluated for Wald-like test statistics
and discrepancy measures. To sample parameters from their posterior distributions,
we run a Metropolis-Hastings algorithm within Gibbs with a set of parameters being
updated at one time. We examine the performance of our proposed Bayesian tests
via Monte Carlo simulation in a variety of settings defined by the number of subjects,

the number of time points, the range of the true correlation coefficients, the prior



setting, and whether there exists model violations. Our simulation results suggest
that Bayesian approaches have comparable performance in identifying heterogeneity
in medium sized datasets (e.g. n = 50) compared to Wald tests that are based on
asymptotics.

In the fourth chapter, we further explore how to pool serial correlation estimates
after a test of serial heterogeneity lacks statistical significance. We propose a Mantel-
Haenszel-like estimator for the pooled correlation coefficient and derive an asymptotic
variance estimator when the sample size goes to infinity. Unfortunately, we are still
in need of a valid variance formula when the number of time points goes to infinity.
We evaluate the bias of our pooled correlation estimator and the variance estimator
based on the number of subjects going to infinity in different settings via Monte Carlo

simulations.



CHAPTER 11

Tests for Time-invariant Correlation of

Longitudinally Measured Biomarkers

2.1 Introduction

Interest in assessing the equality of correlation coefficients has been examined
in a variety of research settings. Hotelling (1940) proposed methods for determin-
ing whether a calf’s girth or the calf’s length at an early age is a better predictor
of the calf’s ultimate weight. Elston (1975) examined the homogeneity of intra- and
interclass correlation coefficients in a study of the correlation of heights within and be-
tween genders. Donner and Zou (2002) applied several methods to study the equality
of intra-correlations of two techniques used for measuring ventricle-brain ratio. Olkin
and Finn (1990) examined whether the correlation of systolic blood pressure with
body-mass index (BMI) was equal for three different age cohorts.

Several published statistical methods exist for assessing homogeneity of correla-
tion coefficients. Olkin and Siotani (1976) propose using the asymptotic normality
of sample correlation coefficients, and Olkin and Finn (1990) derive an asymptotic

Xf,_l test of equality of more than two correlated coefficients when assuming a spe-



cific form of the variance-covariance matrix. Dunn and Clark (1969) and Dunn and
Clark (1971) present related methods using Fisher’s Z-transformation, defined as
z =In[(1+7r)/(1 —r)]/2, where r is the sample estimate of p (Fisher, 1915, 1921).
Raghunathan et al. (1996) compared the power of a statistic based on the differ-
ence of two correlations and the difference of their Fisher’s Z-transformed values for
testing equality and suggested Fisher’s Z-transformation should be used to obtain
higher power. Meng et al. (1992) extended the work of Dunn and Clark (1969) using
Fisher’s Z transformation with the goal of comparing correlation coefficients between
a dependent random variable and a set of mutually independent random variables.
Raghunathan (2003) then extended Meng et al. (1992)’s methods to allow for missing
values in the data.

The methods cited above focused upon the comparison of two correlation coef-
ficients. However, given our interest in assessing the homogeneity of several corre-
lation coefficients from longitudinal data, an obvious extension of the methods was
needed. We chose to model the data using a more general joint normal distribution
that is more appropriate for a longitudinal study than the model used by Olkin and
Siotani (1976) and Olkin and Finn (1990). We examine the performance of modified
tests using both untransformed correlation coefficients, as well as one using Fisher’s
Z-transformed correlation coefficients. For certain data patterns, an F-test is intro-
duced. In Section 2.2, we describe our model for the joint distribution of the serial
measures of a biomarker and a pathogen and derive the joint asymptotic distribution
of the serial sample correlation coefficients. We then present our three test statistics
and appropriate null distributions for each. In Section 2.3, we assess the empirical
size and power of our proposed tests in a variety of scenarios under two major settings

(medium serial correlations and small serial correlations), motivated by the data col-



lected in the pilot study described earlier and also apply our methods to data from

another longitudinal periodontal study. Section 2.5 contains our concluding remarks.

2.2 Methods

2.2.1 Notation

We have n subjects who are each examined sequentially at times t; < to,..., < t,,.

Let X;; and Y;, ¢ = 1,2,...,n;5 = 1,2,...,m, denote the respective values of
biomarker X and biomarker Y collected from subject ¢ at time ¢;. Marginally, we as-
sume X;; ~ N (fiz5, UJQ») and Yi; ~ N (py;, 7']2) We assume that X; ={X;1, X2, ..., Xim}
and Y;. = {Y;1, Y, ..., Y, } have a multivariate normal distribution in which the el-
ements of X; are assumed to be exchangeably correlated with correlation p,, and
the elements of Y; are exchangeably correlated with correlation p,. A common cross-
correlation, p,, between X;; and Yj, is also assumed, where j # k. All of these
correlations are nuisance parameters; our primary interest lies in pq, pa, ..., pm, Iin
which p; = Corr(X;;,Y;5),7 =1,2,...m.

If we then denote D; = {X;1, Yi1, Xio, Yio, -+, Xim, Yim }© as the (2m x 1) longitu-

dinal vector of pairs of biomarker and pathogen for subject 7, D; has a multivariate

normal distribution with mean vector g and variance 3 in which

B = {1, Pty a2y Hy2s s Pams ym } (2.1)



and

U% P101T1  Pz0102  Pzy01T2  **°  P2010m  Pay01Tm
P101T1 712 Pzy02T1  PyT1T2 - PazyOmT1  PyTiTm
Pz0102  Pry02T1 03 P202Ty -+ PzO020m  Pgy02Tm
2= Pzy01T2  PyTiT2 P202T2 7'22 o PryOmT2 PyT2Tm (2'2)
Pz010m  PzyOmT1  Pz020m  PzyOmT2 - U72n PmOmTm
Pzy01Tm  PyT1Tm  Pzy02Tm  PyT2Tm o PmOmTm 7—731

2.2.2 Proposed Tests

We are interested in testing the hypotheses Hy : p1 = po = ... = p,,, versus H, :
two or more of py, pa, ..., pm are unequal. For time j, let X ; = {Xy;, Xoj, -, Xy}
and Y; = {Y1;,Y5;, -+ ,Y,;} denote the respective vectors of all subjects’ values of

biomarker X and pathogen Y. For j # k, we then denote Sy x; as the sample variance
of X ;, Syyj as the sample variance of Y, S XX, as the sample covariance between
X jand X, gyyjk as the sample covariance between Y ; and Yy, S xy; as the sample
covariance between X j and Y ;, and S XY, s the sample covariance between X ; and

Y. Elston (1975) has shown that the maximum likelihood estimators g, o, . . ., P,



Pz, Py and pgy for p1, pa, ..., pm, pz, py and pyy, respectively, are:

o —

S
= P9 XY i=12,...m (2.3)
\/ \/ \/SXX SYY

po = Z””“ Po0s0k ___ Dujh Sx s (2.4)

Zﬁsk \/ 02% > ik SXX SXXk
pAy . Z];ﬁk pyTJTk . Z];ﬁk‘ SYYJk (25>

D itk 2713 > ik A/ Svy, Sy,

2y O i T] S

boy = Z;;ﬁkﬁ voi'k _ Zﬁékz XY, (2.6)

2222
Z#k 05Tk Z#k SXYj SXYk

We now derive the variance of each p;. Let ¢;s be the usual estimate (i.e., sam-
ple covariance) of 7, which is the (I, s)th element of the covariance matrix of a

multivariate normal distribution with n observations. According to Elston (1975),

asymptotically,
1
COU(Clsy crh) - E(’Ylh’ysr + Vlr/ysh) (27)

Using this asymptotic property, we are able to derive the asymptotic variances and

. —_— A~ A .
covariances of pjo;7;, 67 and 77. After some straightforward algebra,




cov(63,77) = E(pmijTk)2

— O;0kT;Tk

COU(pT‘O-\jij ,OjUka) = (pzpy + Piy)

R 2
conld? 75775) = 2oyt
COU(&?,@) - ﬁ(pxpmyo-?aka)2

The maximum likelihood estimates of pgs can be expressed by Equation 2.3 , a
function of elements whose asymptotic variances and covariances are shown above.
Therefore the asymptotic variance of pq, po,-- - , p can be easily obtained by Delta
method.

Therefore, the variance of each p; is

S|

Var(p;) = ~(1 - 32)°, (2.8)

which is a function solely of p;, while the covariance between p; and py, is

Cov(pys ) % 3 { 30007 + )+ 2y o) + iy sl + )0+ 50)

(2.9)
which is a function of not only p; and gy, but also p,, p,, and p,,. Note that Equations
(2.8) and (2.9) are similar in form to those given by Olkin and Siotani (1976), but
differ in order to reflect the fact that the covariance matrix given in (2.2) differs from
that used by Olkin. We also mention that Yu and Dunn (1982) suggested that the
value n in Equations (2.8) and (2.9) be replaced by the value n—3 in order to improve
the approximation in small samples.

We let p = {p1,p2,.-.,pm} With corresponding estimator p = {p1, P2, .-, Pm},

so that p,, py, and p,, are viewed as nuisance parameters. Let ¥, be an m x m

10



matrix with diagonal element (7, j) equal to Var(p;) as given by Equation (2.8), and
off-diagonal element (j, k) equal to Cov(p;, pr), as given by Equation (2.9). Also let

L be an m x (m — 1) contrast matrix for the pairwise differences, i.e.

1 -1 0 0 0
0 1 -1 0 0
I —
0 0 0 1 -1
Then the null hypothesis Hy : py = p2 = ... = p, can be tested using the Wald

statistic X2 = (Lp)T(LY,LT) 1 (Lp) which has an asymptotic chi-square distribution
with m — 1 degrees of freedom under the null hypothesis.

However, we discovered in simulations with small sample sizes and small serial
correlations that comparison of X,Q) to a chi-squared distribution with m — 1 degrees of
freedom led to over-rejection of the null hypothesis whether or not the denominators
in Equations (2.8) and (2.9) were equal to n or n — 3. In order to create a test with
a size closer to the nominal level desired, we adopted the idea of Kenward and Roger
(1997) as follows. Instead of comparing X% to a chi-squared distribution with m — 1
degrees of freedom, we will instead compare F, = Ax>/(m — 1) to an F-distribution
with m — 1 numerator degrees of freedom and § denominator degrees of freedom,
in which both A and ¢ are estimated by equating the first two moments of F, with
the first two moments of the reference F-distribution. Over a grid search of possible
values of n and m, we found that a scale factor A = (n+50— (m —1))/(n+49) which
is a number slightly smaller than 1 when m > 2, and 6 = n+ 20— (m — 1) led to very
similar moments and a test with improved size.

An alternate test would be based on Fisher’s Z-transformation, 2 = {21, 25, - -+ , 2., },

11



leading to the statistic x2 = (L2)T(L2,L7)~*(L%), in which 3, is the variance of 2
obtained through the Delta method. Specifically, 3, has diagonal element (j, 7) equal
to 1/n and off-diagonal element (j, k) equal to Cov(p;, pr)/[(1 — p3)(1 — p7)]. We
note again that Yu and Dunn (1982) suggest replacing the value n with n — 3 in the
variance and covariance expressions. This statistic also has an asymptotic chi-square
null distribution with m — 1 degrees of freedom. We found in simulations with small
sample sizes that unlike the test using X%, a test using x? had nominal size when the

value n — 3 was used as a replacement to n in the denominators of Equations (2.8)

and (2.9).

2.3 Application of Methods

2.3.1 Simulation Study

We first examined the performance of the test with both proposed statistics X%
and x? under various settings for hypothetical longitudinal datasets based upon the
data from our motivating example. For each subject ¢, + = 1,2,...,n, biomarker X
and pathogen Y are both observed at m time points. We assume X;; ~ N (15, 032-)
and Y;; ~ /\/'(,uyj,sz), in which p,; = 2.5 and p,; = 4.0, 0; = 0.3, and 7, =
0.40 — 0.05(y — 1). Note that correlation is location and scale invariant, so that
our results are generalizable to other values of location and scale. In terms of the
joint distribution of the data, we considered two settings. In the first setting, which
we call an ”autoregressive nuisance” setting, the elements of X; have an autoregres-

. . . . —k .
sive correlation structure with correlation p‘ggo |, the correlation between Y;; and Yy,

_k;|

is similarly set to be pgo , and the cross-correlation between X;; and Yj; or between

Xir and Yj; is chij ‘, where c is a positive constant. In our second setting, which we

12



call a "constant nuisance” setting, the elements of X; are exchangeably correlated
with correlation p,, and the elements of Y; are exchangeably correlated with correla-
tion p,. We also assume a common cross-correlation, p,, between X;; and Yj;, where
j # k. Thus, the autoregressive nuisance setting violates our assumed model, whereas
the constant nuisance setting matches our assumed model.

We first present simulation results for the setting with autoregressive nuisance
correlations. We selected the values p,, = 0.5, py,, = 0.6, pgy, = 0.7 and ¢ =
1.7 X pgopy,- With regard to the correlation parameters of interest, {p1, p2,...,pm}, a
specific set of values was defined by two quantities, pyi, € {0.2,0.3,0.4,0.5} and A €
{0.0,0.1,0.3}. We set p1 = pmin, Pm = Pmin + A, and all other correlation parameters
P2, P35 - - - Pm—1 Were equally spaced between p; and p,,. Thus, a value of A = 0
represents the null hypothesis, while A > 0 represents the alternative hypothesis. For
each combination of p,,;, and A, we simulated D;={ X1, Y1, Xio, Yo, -, Xim, Yim },
the data for each subject ¢, from a multivariate normal distribution with mean p
and variance as described above. We considered sample sizes of n € {50,100, 500}
and the number of time points m € {2,3,4,5}. We performed a test of equality of
correlation coefficients over time by comparing XZ and x?, each computed with n — 3
in the denominator of Equations (2.8) and (2.9), to a chi-squared distribution with
m — 1 degrees of freedom.

Table 2.1 presents the empirical size of tests using either of the two proposed
statistics for various combinations of n, m, and p,,;,. Based upon a 95% confidence
interval around a desired size of 0.05, we would expect the number of rejections in
5,000 simulation for a nominal test would lie in the interval (4.5,5.6). Overall, with
a sample size of n = 500, both modified tests have nominal size, regardless of the

number of time points and the value of p,;,,. With sample sizes of n = 100 and
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n = 50, a test using x? continued to remain nominal, while the size of the test using
X,% was slightly inflated in some scenarios but not far from the upper bound of the
interval. Moreover, the inflated test size when using Xi increased with the number of
time points. Thus, tests using either statistic are generally robust under this setting,
although we suggest caution when using XZ in small samples with several time points.
Table 2.1: Size of tests with autoregressive nuisance correlation. Each value is the

percentage of simulations out of 5,000 in which the null hypothesis is re-

jected. x2=Test based on Fisher’s Z-transformation; x>=Test based on
original pj;’s.

n = 500 n = 100 n = 50

M pmin  Xe Xa X2 X X2 X5
2 02 50 50 47 48 54 56
03 50 50 48 48 53 53

04 50 50 48 47 51 50

05 50 49 48 46 5.1 46

3 0.2 5.0 5.2 49 5.3 5.2 5.9
0.3 2.2 3.2 49 5.2 5.1 5.7
0.4 5.1 5.2 4.8 5.2 5.1 54
0.5 5.1 5.0 49 49 5.1 4.9

4 0.2 4.5 4.7 5.4 5.7 5.0 6.2
0.3 4.6 4.7 2.4 5.7 5.1 5.9
0.4 45 45 5.1 54 5.2 5.5
0.5 4.4 44 5.1 5.2 5.1 5.0

) 0.2 2.0 5.1 5.3 5.6 5.1 6.3
0.3 49 5.0 5.3 5.8 49 6.1
0.4 49 5.0 5.2 5.5 5.0 5.7
0.5 49 5.0 2.3 9.3 5.1 5.3

Table 2.2 presents the power of the tests using x? and Xﬁ it the setting with au-
toregressive nuisance correlation. For reference, Table 2.2 also includes the estimated
power of a test of equality of correlation coefficients using the formula proposed by

Tu et al. (2006). However, the formula is based upon a correlation structure different

14



from ours, so we expect the empirical power of our test to deviate slightly from that
found via the formula. From the results in Table 2.2, we see first that both tests have
comparable power, and the empirical power of each is higher than that predicted by
the power formula of Tu et al. (2006), especially in large data. The results suggest
that the more the serial correlations depart from zero, we see an increase in power of
both tests. For example, when n = 100 and m = 3 and A = 0.1, as p,,;, increases
from 0.2 to 0.5, the power of both tests increases from about 0.11 to 0.15. With
A = 0.3, as pmin increases from 0.2 to 0.5, the power of both tests increases from
about 0.65 to 0.97. The results in Table 2.1 also suggest that power decreases as the
number of time points increases. For example, with n = 100, A = 0.1 and py,;, = 0.2,
the power of Xﬁ decreases from just over 0.50 when m = 2 to just over 0.30 when
m =5.

We now present simulation results with constant nuisance correlation. Given
that we have just shown that our tests are robust to model mis-specification, we
expect our tests to perform equally as well when the joint distribution of the data
matches that assumed in our test statistics. The means and variances are the same
as those used in the earlier simulations. For the nuisance correlation parameters,
we set p, = 0.5, p, = 0.7, and p;y = 0. We once again determined values for
the correlation parameters of interest, {p1, pa, ..., pm}, by considering two quantities,
Pmin € {—0.2,—-0.1,0,0.1,0.2} and A € {0.0,0.1,0.3}. We set p1 = pmin, Pm =
pmin + A, and all other correlation parameters po, ps, ..., pm_1 Were equally spaced
between p; and p,,. We also considered sample sizes of n € {50,100,500} and the
number of time points m € {2,3,4,5}.

We note that the values of the correlation parameters are of lower magnitude than

those used in setting with autoregressive nuisance correlation. This is because the
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Table 2.2: Empirical and theoretical power of both tests when A=0.1 and 0.3 with
autoregressive nuisance correlation. Each value is the number of simula-
tions out of 5,000 in which the p-value is less than 0.05. x?=Test based
on Fisher’s Z-transformation; Xf):Test based on original p;’s; PFp,=Tu’s
power function.

A=0.1 n = 500 n = 100 n = 50

M Pmin X2 X, PFn, X2 x5 PFn, X X, PFr,

2 0.2 51.8 519 50.7 141 144 143  10.1 104 9.6
0.3 558 558 53.8 151 150 151  10.6 10.6  10.0
0.4 63.1 630 579 17.0 167 162 116 11.0 105
0.5 753 751 627 206 200 175  13.8 125 11.2

3 0.2 37.8 381 327 108 112 99 81 86 74
0.3 413 414 358 116 11.6 104 83 87 76
0.4 479 478 403 127 125 113 89 87 80
0.5 58.7 585 46.7 150 145 125 100 92 8.6

4 02 347 350 272 103 107 8.7 76 87 68
0.3 37.9 382 304 108 111 9.2 78 86 7.0
0.4 445 444 354 120 121 101 84 87 74
0.5 55.2 552 434 142 137 115 95 88 81

5 0.2 31.8 320 24.8 93 99 82 73 86 6.6
0.3 35.2 354 281 9.7 102 87 75 84 68
0.4 411 411 338 104 108 96 78 82 72
0.5 51.8 517 439 123 122 11.3 89 86 7.9

A=0.3 n = 500 n = 100 n =50

M Prin X2 X2 PFp, X2 x; PFr, X2 X, PFr,

2 02 100.0 100.0  100.0 81.1 81.0 80.2 50.7 50.7  51.1
0.3 100.0 100.0  100.0 87.8 875 834 8.7 57.6 545
0.4 100.0 100.0  100.0 955 952  86.5 71.8 69.2 582
0.5 100.0  100.0  100.0 99.8 99.7 888 90.4 885 61.2

3 0.2 100.0 100.0  100.0 654 656 61.1 37.0 375 339
0.3 100.0 100.0  100.0 73.9 736 67.0 43.6 431 379
0.4 100.0  100.0  100.0 86.1 859 739 25.0 534 433
0.5 100.0 100.0  100.0 97.1 96.9  80.7 75.3 729  49.5

4 0.2 100.0 100.0  99.9 61.5 623  53.8 32.6 338  28.6
0.3 100.0  100.0  100.0 70.1 70.2 615 389 390 33.2
0.4 100.0 100.0  100.0 82.0 81.6 71.6 50.2 489 404
0.5 100.0 100.0  100.0 949 94.7 831 68.7 66.7  50.8

5 0.2 100.0 100.0  99.9 58.6 59.8 511 32.2 338 266
0.3 100.0  100.0  100.0 68.2 68.5 604 37.3 38.0 320
0.4 100.0  100.0  100.0 80.8 80.8 73.8 471 46.5 413
0.5 100.0 100.0  100.0 93.6 93.8 89.6 66.0 63.7  58.0
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empirical correlations in our motivating data were in the interval [—0.20, 0.20] and we
wanted to examine the performance of our tests with data simulated under conditions
similar to those we observed. In this setting, since we discovered that comparison of
XZ to a chi-squared distribution with m — 1 degrees of freedom led to over-rejection of
the null hypothesis, we also compared F}, to an F-distribution with m — 1 numerator
degrees of freedom and n 4 20 — (m — 1) denominator degrees of freedom. The size
and power of the three tests in each setting were estimated from the rejection rates
in 5,000 simulated datasets.

Table 2.3 presents the empirical size of tests using the three statistics for various
combinations of n, m, and p,;,. Overall, with a sample size of n = 500, all three tests
have nominal size, regardless of the number of time points and the value of pp.
With sample sizes of n = 100 and n = 50, a test using x? continued to maintain a
nominal size, while the size of the test using Xf; was inflated in some settings. Relative
to the results seen in Table 2.1, the magnitude of inflation in Type I error rate when
using X?) is bigger in our current setting, which has smaller serial correlations than
those in the previous setting. Thus, general use of X,% in small samples with small
serial correlations is not advised. In contrast, the size of our proposed F-test using
the statistic F, remains nominal regardless of the sample size.

Table 2.4 presents the power of the tests using x2 and F); the test using X% was
not be examined for power due to its invalid size. From the results in Table 2.4, we
see first that the tests using F), and x2? have comparable power, and the empirical
power of each is fairly close to that predicted by the power formula of Tu et al. (2006).

Lastly, we investigated the effect of non-normality on the size of our tests. We
repeated the simulations summarized in Tables 2.1 and 2.3 on heavier tailed, corre-

lated logistic data. Now for each subject, we first sampled a vector of independent
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Table 2.3: Size of tests using X,% and x? under setting II. Each value is the percentage
of simulations out of 5,000 in which the null hypothesis is rejected. x?=Test
based on Fisher’s Z-transformation; Xi:Test based on original p;’s; F,=F-
test with estimated denominator degrees of freedom.

n = 500 n = 100 n = 50
m opmin X2 X, F, X2 X0 F, X2 X2 F,
2 -0.2 50 5.1 5.0 4.9 5.0 438 55 56 5.2
-0.1 4.9 4.9 49 4.9 5.0 4.9 53 5.6 5.2
0 4.9 49 49 4.9 51 4.8 53 5.7 5.3
0.1 4.9 5.0 4.9 4.6 4.9 4.6 54 5.7 53
0.2 4.8 4.8 4.8 4.9 4.9 4.7 5.5 5.7 53

3 -0.2 5.1 5.2 5.0 5.3 5.5 5.2 5.3 6.1 5.3
-0.1 5.0 5.1 49 5.2 5.7 5.1 54 6.1 5.2

0 5.0 5.1 5.0 2.3 5.7 5.3 5.5 6.2 54

0.1 0.2 53 5.1 0.4 5.7 5.3 2.5 6.2 54

0.2 5.2 53 5.1 5.3 5.5 5.1 55 6.2 5.2

4 -0.2 49 49 4.8 5.9 6.3 5.5 5.7 6.3 5.3
-0.1 49 49 47 2.7 6.2 54 5.7 6.7 5.3

0 4.8 4.9 4.7 2.7 6.1 54 2.6 6.6 5.5

0.1 49 5.0 48 5.7 6.1 54 2.5 6.6 54

0.2 5.0 5.1 48 5.7 6.0 5.6 2.5 6.6 5.3

5 -0.2 5.2 53 5.1 2.5 6.1 5.1 5.7 6.9 5.2
-0.1 5.2 54 5.0 5.5 59 5.1 54 6.8 5.0

0 5.2 53 5.1 54 6.1 5.1 9.2 6.7 438

0.1 5.2 53 5.1 5.5 6.1 5.1 5.3 6.6 5.0

0.2 5.2 53 5.1 5.5 6.1 5.1 54 7.0 5.2
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Table 2.4: Empirical and theoretical power of both tests when A=0.1 and 0.3 with
constant nuisance correlation. Each value is the number of simulations
out of 5,000 in which the p-value is less than 0.05. y?=Test based on
Fisher’s Z-transformation; F,=F-test with estimated denominator degrees
of freedom; Tu=Tu’s power function.

A=0.1 n = 500 n = 100 n = 50

M Pmin XE F, Tu Xz F, Tu xﬁ E, Tu

2 -0.2 53.0 53.0 51.6 14.3 14.2 14.6 10.4 10.0 9.7
-0.1 50.2  50.1  50.3 134 134 14.2 10.0 9.9 9.5
0 49.9 499  50.7 13.3 13.2 14.3 10.2 10.0 9.6
0.1 53.1 53.0 528 14.1 13.9 14.8 10.6 10.5 9.8

3 -0.2 43.3 432 416 11.7 11.6 11.5 8.6 84 8.1
-0.1 40.8  40.6  40.3 11.2 11.1 11.3 8.5 84 8.0
0 40.3 40.2  40.7 11.2 11.1 11.3 8.5 84 8.1
0.1 43.0 429 427 11.9 11.8 11.7 8.9 85 8.2

4 -0.2 42.4 422 39.6 11.7 11.3 10.8 8.6 83 7.8
-0.1 40.1  39.8 384 11.3 11.0 10.6 79 T 7.7
0 40.2  40.0 38.8 11.2 11.0 10.7 8.1 7.8 7.7
0.1 43.2 429 409 11.7 114 11.0 8.6 82 7.9

5 -0.2 41.3  40.8  39.5 10.8 10.0 10.5 79 75 7.6
-0.1 38.3 38.0 383 10.2 9.8 10.3 7T 7.2 7.5
0 385 38.1 388 104 9.7 104 76 7.2 7.6
0.1 41.2  40.7 409 10.9 10.3 10.8 8.0 74 7.7

A=0.3 n = 500 n = 100 n = 50

M Pmin % F, PFp, x: F, PFr, X2 F, PFr,

p
2 -0.2 100.0 100.0 100.0 75.2 75.1 76.5 46.2 46.1 47.5
-0.1 100.0 100.0  100.0 75.5 75.2 177 46.2 46.0  48.6

3 -0.2 100.0  100.0  100.0 65.3 65.0 66.8 36.6 36.2 378
-0.1 100.0  100.0  100.0 65.4 65.1  68.2 36.1 36.1  38.8

4 -0.2 100.0 100.0  100.0 64.5 63.8 65.1 33.8 328 356
-0.1 100.0 100.0  100.0 64.5 64.0 66.7 33.7 33.0 36.8

5 -0.2 100.0  100.0  100.0 64.3 63.1 65.7 334 322 354
-0.1 100.0 100.0  100.0 64.5 63.1  67.7 33.3 319  36.7
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values from a logistic distribution with mean 0 and variance 1 and then multiplied
this vector by the Cholesky decomposition of the true covariance matrix (Equation
2.2) to obtain data with the desired correlations and variances. The same tests for
each setting, autoregressive and constant cross-correlation were performed and the
resulting sizes of the tests are shown in Tables 2.5 and 2.6, respectively. In Table 2.5,
we see that the sizes of both the x2 and x2 tests are inflated, indicating that mild
lack of normality in addition to a model mis-specification (autoregressive nuisance
correlations) has some impact on the size of the tests. In Table 2.6, the same x?,
X?) and F), tests were performed. The size of all three tests are inflated, especially in
data with py:, far from 0 and with a larger number of time points. The test using F,
produces nominal sizes in most scenarios although the size is inflated in some cases.
Nonetheless, the test using F), still performs better than the x2 and x tests. Table
2.6 indicates that as long as there is no model mis-specification (constant nuisance
correlations), mild lack of normality has some impact on the size of the tests, but not

much.

2.4 Motivating example

Since the original data that motivated our work has only 18 subjects whose
observations at the third time point were completely missing, we analyzed a sim-
ilar set of data from a longitudinal periodontal study described by Kinney et al.
(2011) and Ramseier et al. (2009). 79 subjects contributed complete data during 12-
month study, including levels of four serum-derived biomarkers: TNF-«, Calprotectin,
metalloproteinase-8 (MMP-8), and MMP-9, and four saliva-derived biomarkers: IL-
18, MMP-8, MMP-9 and OPG, and three periodontal plaque biofilm pathogens:

P.gingivalis, T.forsythia, and T.denticola examined at baseline (denoted Month 0), 6
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Table 2.5: Size of tests using Xg and x? when data follows a multivariate logistic
distribution with autoregressive nuisance correlation. Each value is the
percentage of simulations out of 5,000 in which the null hypothesis is re-
jected. y?=Test based on Fisher’s Z-transformation; Xf):Test based on
original p;’s.

n=500 n=100 1 =50

m pmin X Xa X2 X2 X2 Xd
2 02 61 61 6.1 62 58 6.0
03 58 58 60 61 59 59

04 61 61 61 6.1 60 56

05 63 62 68 64 62 56

3 0.2 6.1 6.3 6.5 6.9 6.3 7.0
0.3 5.8 5.8 6.1 6.2 5.6 5.9
0.4 5.8 6.0 2.8 5.9 9.5 9.5
0.5 6.5 6.5 6.2 6.1 6.0 5.6

4 02 6.4 6.6 6.4 6.9 6.4 7.5
0.3 5.7 5.8 2.9 6.3 5.7 6.5
0.4 2.5 2.6 6.0 6.2 5.8 6.3
0.5 6.0 6.2 6.4 6.5 6.5 6.2

5 0.2 69 7.1 6.6 7.3 6.1 7.3
0.3 6.3 6.3 59 6.4 2.5 6.5
0.4 6.1 6.2 2.9 6.0 9.5 5.8
0.5 6.9 6.9 6.3 6.2 6.2 6.0
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Table 2.6: Size of tests using Xf) and x? with constant nuisance correlations, while the
data follows a multivariate logistic distribution. Each value is the percent-
age of simulations out of 5,000 in which the null hypothesis is rejected.
x2=Test based on Fisher’s Z-transformation; Xz:Test based on original
p;’s; F,=F-test with estimated degrees of freedom.

n = 500 n = 100 n =50
m opmin X2 Xo F, X2 X2 F, X2 x2 F,
2 -0.2 5.8 5.8 5.8 52 53 5.0 59 6.0 5.7
-0.1 51 5.1 5.0 51 5.2 5.1 53 5.6 5.2
0 4.8 4.8 4.7 5.2 54 5.1 5.2 5.5 5.1
0.1 5.0 5.0 5.0 5.3 5.5 5.2 54 5.7 5.3
0.2 54 54 54 5.8 59 538 5.6 5.7 5.3

3 -0.2 6.2 6.2 6.1 6.5 69 6.3 5.8 64 5.6
-0.1 5.7 5.8 5.6 6.1 6.5 6.0 4.8 53 4.7

0 4.8 49 48 2.7 6.0 5.6 4.7 56 4.8

0.1 5.0 5.1 5.0 2.8 6.3 5.6 9.2 59 5.0

0.2 6.0 6.0 5.9 6.4 6.7 6.1 6.1 6.6 5.8

4  -0.2 6.0 6.2 5.9 66 7.0 6.3 6.0 7.1 58
-0.1 5.2 53 5.1 5.8 6.1 54 04 64 5.2

0 2.2 53 5.2 5.3 58 5.0 5.1 6.3 4.9

0.1 5.5 5.6 5.3 54 6.1 5.2 5.7 6.5 5.5

0.2 6.2 6.3 6.0 6.4 7.0 6.1 6.7 75 64

5 -0.2 6.0 6.2 6.0 6.3 7.2 58 6.1 7.7 59
-0.1 54 54 5.2 504 6.2 5.0 5.3 6.7 5.0

0 5.1 53 5.0 5.0 5.8 4.8 5.2 6.6 4.9

0.1 5.2 53 5.1 54 6.1 49 5.7 7.0 5.3

0.2 6.3 6.5 6.3 6.8 75 64 6.7 83 6.5
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months and 12 months. Ramseier et al. (2009) found that the concentration levels
of MMP-8, MMP-9 and calprotectin were strong predictors of periodontitis and all
three plaque pathogens demonstrated stronger associations than the four biomarkers.
Considering the ability of both biomarkers and pathogens as predictors of periodontal
disease, it is natural to expect some degree of correlation between them. Our primary
question is whether or not the correlation between each biomarker and each pathogen
is constant over time. Before analyzing the data, we first added 1.0 to all measures

(as some had values equal to zero) and then took the natural logarithm of each.

2.4.1 Serum biomarker dataset

Table 2.7 contains the serial correlations of each serum biomarker with each
pathogen after the transformation described above. Most serial correlations ranged
between -0.2 and 0.2. The range of minimum serial correlation was [—0.2,0] and the
difference between the largest and smallest correlation coefficients over time varied
from 0.09 for MMP-8 and T.denticola to 0.33 for MMP-9 and T.gingivalis. Further-
more, most combinations had both positive and negative correlations over the three
time points. To test the hypothesis time-homogeneous correlation between a serum
biomarker and a pathogen, x?, XZ and F' tests were performed, and Table 2.7 con-
tains the resulting p-values. All three tests gave comparable results and we fail to
find evidence for concluding that correlation varies over time for most biomarker-
pathogen combinations. However, we do find significant heterogeneity exists between
TNF-a and T.forsythia, MMP-9 and P.gingivalis, and MMP-8 and P.gingivalis. In
these pathogen/biomarker pairs, the correlation is highest at six months, which is the
end of the disease monitoring (no treatment given) period when periodontal damage

would be greatest. During the disease recovery period (6 to 12 months), treatment
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was given to the patients, thereby repairing periodontal damage. Previous biological
findings found the pathogenicity of the red complex, especially P.gingivalis, is related
to periodontal tissue destruction associated with periodontitis (both soft and hard
tissues), while MMP-8 and MMP-9 proteins are triggered by periodontitis to follow
an anti-inflammatory process and play an important role in inhibiting periodontal
destruction (Kuula et al., 2009; Gamonal et al., 2011). Thus, one might hypothesize
that correlation is strongest when periodontal disease is greatest and lowest when
periodontal disease is low; this conjecture agrees with our findings, which produce an

interesting hypothesis that could be investigated in a larger study.

Table 2.7: Empirical serial correlations between serum biomarkers and pathogens at
0, 6, and12 months and resulting p-values for test of equality; y?=Test
based on Fisher’s Z-transformation; XZ:Test based on original p;’s; F,=F-
test with estimated denominator degrees of freedom.

Pathogen Biomarker Serial correlation p-value
0 6 12 X2 Xi E,
P.gingivalis TNF-« -0.17  0.07 -0.07 0.107 0.103 0.110
Calprotectin -0.18 -0.01 0.11 0.147 0.139 0.146
MMP-8 -0.01  0.28 0.04 0.059 0.052 0.058
MMP-9 0.12 0.19 -0.14 0.021 0.018 0.022
T.forsythia TNF-« -0.19 0.07 -0.19 0.005 0.005 0.007
Calprotectin -0.21 -0.02 0.05 0.160 0.151 0.159
MMP-8 0.00 0.22 0.13 0.182 0.178 0.186
MMP-9 0.13 0.19 -0.03 0.136 0.133 0.141
T.denticola TNF-« -0.13 -0.04 0.03 0.365 0.362 0.368
Calprotectin -0.17  0.01 0.13 0.109 0.101 0.109
MMP-8 -0.01  0.08 0.00 0.785 0.784 0.786
MMP-9 0.17 0.02 -0.02 0.271 0.264 0.272
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2.4.2 Salivary biomarker dataset

Table 2.8 contains the serial correlations of each salivary biomarker with each
pathogen after the transformation described above. Most serial correlations ranged
between -0.1 and 0.5. The range of minimum serial correlation was [—0.15, 0.2}, and
the difference between the largest and smallest correlation coefficients over time var-
ied from 0.06 for IL-1/5 and T.forsythia to 0.66 for MMP-8 and T.forsythia. The table
shows that all three tests gave comparable results and we fail to find evidence for con-
cluding that correlation varies over time for most biomarker-pathogen combinations.
However, we do find significant heterogeneity exists in pairs between salivary MMP-8
and T.forsythia (max-min difference is 0.66), salivary MMP-8 and P.gingivalis (max-
min difference is 0.37), salivary MMP-9 and T.forsythia (max-min difference is 0.45),
salivary OPG and T.denticola (max-min difference is 0.44). Here, MMP-8 again
shows its strong correlation with different rex complex pathogens, consistent with the

findings reviewed by Kuula et al. (2009) and Gamonal et al. (2011).

2.5 Conclusion

In this chapter we examined methods that are a modification to the test of Olkin
and Finn (1990), to perform tests of equality of correlation coefficients for longitudinal
studies. Our method assumes fewer nuisance parameters that require estimation for
our test statistics, thereby reducing computational burden. We describe our model
for the joint distribution of a biomarker and a plaque pathogen and derive asymp-
totic distributions for testing homogeneity of their correlation over time, using both
untransformed (XZ test) and Fisher’s Z-transformed (x? test) sample correlation co-

efficients. Since the X% test tends to be liberal in small samples, we proposed an
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Table 2.8: Empirical serial correlations between salivary biomarkers and pathogens
at 0, 6, and12 months and resulting p-values for test of equality; y>=Test
based on Fisher’s Z-transformation; Xf):Test based on original p;’s; F,=F-
test with estimated denominator degrees of freedom.

Pathogen Biomarker  Serial correlation p-value
0 6 12 X2 X?, F,
P.gingivalis IL-15 0.21 0.04 0.07 0.680  0.674  0.680
MMP-8 0.38 0.40 0.03 0.099  0.104  0.117
MMP-9 0.30 0.20 -0.03 0.330  0.324  0.336
OPG 0.26 0.02 -0.08 0.262  0.245  0.259
T.forsythia IL-15 0.23 0.26 0.20 0.948 0948  0.948
MMP-8 0.35 0.56 -0.10 <0.001 <0.001 <0.001
MMP-9 0.30 0.13 -0.15 0.101 0.088  0.101
OPG 0.27 -0.01 0.16 0.360  0.354  0.366
T.denticola IL-1p3 0.36 -0.03 0.16 0.135  0.123  0.137
MMP-8 0.41 041 0.20 0.351 0.367  0.379
MMP-9 0.35 041 0.07 0.227  0.232  0.246
OPG 0.38 0.21 -0.06 0.098  0.089  0.102
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alternate [, statistic derived from X,2> to maintain a nominal test size. The empirical
size and power of our proposed tests in a variety of settings motivated by the data
collected in our motivating study were collected. Conclusions are: (1) When data
is under our assumed model, F, tests have nominal size, while x? test has inflated
size in some settings in the small sample, and Xﬁ test has more inflated size in small
sample and some medium sized sample. Accordingly, x? and F, tests have similar
power while x? is a little superior. (2) When data is mis-specified such that the cross
correlations are not kept constant as assumed, x? is generally robust. (3) When data
are heavier tailed, the size of all tests are inflated in small sample, while the F), is still
the closest to the nominal size than 2. Xf; is the most liberal. (4) When the absolute
value of p,;, increases, the power of all three tests increases as well.

Lastly, we found suitable values for A and ¢ needed for our F-test through a grid
search of possible values. However, the values could be found directly by equating
the first two moments of Ax2/(m — 1) and F(m — 1,d). However, this approach
requires use of the Delta method to obtain the variance of a function of all the
correlation parameters, which is computationally intensive. Finding these values and
comparing them to those we used would prove interesting to determine if the added

computational burden is warranted.
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CHAPTER I11

A Bayesian Approach of Testing for Serial
Homogeneity in the Correlation of Longitudinally

Measured Biomarkers

3.1 Introduction

Our method is motivated by studies that measure several biomarkers longitudi-
nally with the goal of predicting for future disease occurrence. An example is the
data collected from a small longitudinal study of gingivitis, or inflammation of the
gums (gingivae) (Salvi et al., 2010). Our current goal is to determine how correlated
the biomarkers are with each other at each time point and if the serial correlations
are homogeneous and can be pooled into a single time-invariant value that quanti-
fies the correlation of the biomarkers. The method we introduced in Chapter 2 used
asymptotic frequentist methods for inference, which in small samples, may fail to
have nominal size or satisfactory power. In this chapter, we explore alternative ap-
proaches using Bayesian inferential methods, specifically posterior credible intervals

and Bayesian posterior predictive p-values, both of which we introduce next.
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3.1.1 Posterior credible intervals

In some simple circumstances such as longitudinal data that have only two time
points, we may use a credible interval, or Bayesian confidence interval, to construct
a Bayesian test. In Bayesian statistics, a credible interval is an interval within the
posterior distribution of a parameter, describing the uncertainty of that parameter.
A 100(1 — @)% credible interval for a parameter has the property that the posterior
probability that the parameter lies in the interval is 1 — a.. To test if two correlation
parameters, p; and ps, are equal, we could draw values of p; and p, from their joint
posterior distribution many times to obtain a number of samples of p; — po from which
we can compute a 100(1 — «)% credible interval for p; — ps. If the credible interval
includes zero, we have evidence for Hy.

A 100(1—«)% credible interval can be defined in several ways. When the marginal
posterior distribution is symmetric, we can easily obtain the credible interval by
calculating the (100c/2)th and 100(1 — «/2)th quantiles of the posterior sample. If
a posterior distribution is not symmetric, we can choose the narrowest interval, also
called the 100(1 — a))% highest posterior density (HPD) interval, since every point
covered in the interval has higher probability density than any point outside the

interval (Chen and Shao, 1999).

3.1.2 Bayesian predictive p-value

In data with more than two time points, determining an HPD interval is more
difficult. Thus, we instead approach our hypothesis testing problem as a model se-
lection problem. Specifically, if we take the null and alternative hypotheses as two
different models, we then compare which model is more likely given the data. There

are many Bayesian model selection methods; the most commonl of which is the Bayes
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factor. However, Bayes factors are often difficult to calculate, especially for models
that involve many random effects, large numbers of unknown parameters or improper
priors. Another useful tool in checking a model’s adequacy is the posterior predic-
tive p-value via MCMC as proposed by Meng (1994) and Gelman et al. (1996). The
advantage of this method is the ability to assess the fit of a single model without
the need for an alternative model. Let D denote the observed data, H denote the
model to be checked, ¢ denote the unknown model parameter, and T(D) denote a
test statistic. If D"? denotes a replication of D that could be observed and has the
distribution P4[D""|H, ¢|, where A represents auxiliary statistics that are functions
of the original data and are assumed to be constant in each replication, the classical

p-value is

pc(D7 ¢> - PA[T(Drep) > T(D)’H7 d)]

Note that the value of p, is obtainable only when it does not contain unknown nuisance
parameters.
If we denote the posterior distribution of ¢ as P(¢|H, D), the posterior predictive

distribution of the replicated data D" is
PAD™|H.D) = [ PA(D™|H.¢)P(¢|, D)o,

The corresponding tail-area probability of the posterior distribution of T'(D), is an

example of posterior predictive p-value
p(D) = PA[T(D™) = T(D)|1,D) = [ p.(D.4)P(¢|H.D)ds

which is the classical p-value, p.(D, ¢) averaged over the posterior distribution of ¢.
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The posterior predictive p-value is generalized as a tail-area probability of the pos-
terior distribution of a discrepancy measure. The discrepancy measure is an equation
that either involves nuisance parameters, denoted as Q(D; ), or does not involve
nuisance parameters, such as a test statistic like 7'(D, the example above. The ref-
erence distribution for a selected discrepancy measure, Q(D; ¢), is derived from the

joint posterior distribution of D" and ¢:
PA('DTepa ¢|H7 D) - PA(DTEP|HJ Q)P(¢|H7 D)

Then the tail-area probability corresponding to the posterior reference distribution

of Q) is

w(D) = PAQ(D™;¢) > Q(D;¢)|H, D]

- / PA[Q(D™; ¢) > Q(D; ¢)|H, $|P(¢|H, D)dgp

With this generalized formulation, we are able to compare directly the discrepancy

between the observed data and the model when the null hypothesis is true.

3.1.3 Bayesian modeling of multivariate data parameters

Markov Chain Monte Carlo (MCMC) is most often used to obtain samples from a
distribution in complex settings. In our setting, sampling parameters of the model un-
der the null hypothesis involves modeling a variance-covariance structure 32; Daniels
and Kass (1999) reviewed several prior choices for 3. The first choice is the in-
verse Wishart distribution, which is the conjugate prior with a multivariate normal
likelihood. However, this prior allows only one precision parameter for all elements

in 3 and does not have enough flexibility for our setting. Furthermore, when the
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sample size is small, the specification of the scale matrix (the parameter defining an
Inverse-Wishart prior) can be quite influential. The second prior choice for ¥ is a
nonconjugate reference prior, such as Jeffreys’ prior. However, such a prior can lead
to an improper posterior distribution. A third class of priors for 3 are hierarchical
priors, some of which are based on different parameterizations. One hierarchical prior
is a Wishart prior that considers the degrees of freedom v to be unknown and to vary
uniformly between m — 1 and a large number, where m is the dimension of 3.

Finally, a direct variance/covariance decomposition suggested by Barnard et al.
(2000) that allows us to work with standard deviations and a correlation matrix is of
most interest to us. The idea is simple: ¥ can be written as 3 = diag(S) R diag(S),
where S is the vector of p standard deviations and R is the m x m correlation
matrix. According to Barnard et al. (2000), their separation strategy “has a strong
practical motivation since most practitioners are trained to think in terms of standard
deviations and correlations.” In addition, different priors can be put on S and R. For
example, we can put a normal distribution on the Fisher’s Z-transformation of the
correlations: Z, = 1/2 log[(1 — p)/(1 + p)] ~ N(0,72), and as suggested by Daniels
(1992), we put another prior on 72, i.e. m(72) o< (¢ + 72)72, where ¢ is chosen
to be 1/(n — 3), the asymptotic variance of Z,. Barnard et al. (2000) suggested
assuming uniform priors for correlations, and they also showed that it is easy to derive
constraints on the correlations to keep R positive definite. They also suggested log-
normal priors for the parameters in S. In our study, we choose to use marginally
uniform priors for correlations, and both informative Gamma priors and improper
priors for the precision parameters.

In Section 3.2, the specific priors and the full conditional distributions of each

parameter are defined with detail. We then present the posterior predictive p-value
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method in our data setting, as well as a detailed procedure of sampling from the
posterior distribution and obtaining posterior p-values. Since credible intervals are
straightforward, details about them are not presented in Section 3.2. In Section 3.3,
we assess the empirical size and power of our credible interval method and proposed
posterior predictive tests in a variety of settings motivated by the data collected in
the pilot study described earlier and also apply our methods to data from another

longitudinal periodontal study. Section 3.4 contains our concluding remarks.

3.2 Methods

3.2.1 Notation

The setting is the same as Chapter 2. We have n subjects who are each exam-
ined sequentially at times t; < t3,...,< t,,. Let X;; and Vj;, ¢« = 1,2,...,n;j =
1,2,...,m, denote the respective values of biomarker X and pathogen Y collected
from subject ¢ at time ¢;. Marginally, we assume X;; ~ ./\f(,uxj,a]?-) and Yj; ~
N (fay; sz), where 1,5 and p,; are m x 1 vectors of parameters quantifying the means

of X;; and Y]

ij» respectively. The elements of X are assumed to be exchangeably
correlated with each other with correlation p,, and the elements of Y; are exchange-
ably correlated with each other with correlation p,. We also assume a common
cross-correlation, p,, between X;; and Yj;, where j # k. The parameters we are
interested in are pi, pa, ..., pm, the within-time correlation of X;; and Y;; defined to
be p; = Corr(X,;,Yi;),7 = 1,2,...m, while all other parameters are nuisance. Let
D; denote the (2m x 1) longitudinal vector of pairs of biomarker and pathogen for

subject 7, and D denote the observations for all subjects. D, has a multivariate

normal distribution with mean vector g and variance X as defined in Equations (2.1)
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and (2.2).

3.2.2 Prior specifications

According to the direct decomposition strategy suggested by Barnard et al. (2000),

we decompose ¥ in Equation (2.2) into S={o1, 71,092, 72, ,0m, T} and
1 P1 Pz Pxy - Pz Pzxy
P1 1 Pzy Py °° Pxy Py
Pz Pzy 1 P2 Pz Pzy
R=1 pyy py p2 1 - ooy py (3.1)
Pzy Py Pzy Py " Pm 1
so that ¥ = diag(S) R diag(S). Since under our null hypothesis, p; = -+ = p,, = po,

where pg is not specified, all serial correlations from p; to p,, in the above expression
are replaced by py. We set an uninformative prior for mean parameters p,; and f,;,
m(pay) o< 1, w(py;) o< 1, and a Unif(-1,1) prior for {po, pz, py, Pay}- Let A(p) be the
range of all correlation parameters such that the correlations are bounded between

-1 and 1 and the R matrix is positive definite. Two sets of priors were specified for

) o 02, w(T;?

2, m(17%) o< 775 (2) an

the precision parameters: (1) an improper prior: 7(o; > i

j
informative Gamma prior with both its shape and rate parameters being 2 for the

precision parameters in standardized data.

For specification (1), the joint posterior is
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71'([1,,0'1 yT1 09 ,To 5 30, Ty 7p0apw7py7pacy|D)

n
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< i 7oy T e on T Il's € A)][B] Eeap{—5 D (Di — w) ST (Di — p)}

i=1

x (o722 oyt e a2 ) s € A(p)]| R
1 . Two—1
696’]9{—5 Z(Di—ﬂ) X7(D; — p)}

=1

The full conditional distribution for p given all other parameters and the data is

(1| ~ MV N(D,X/n), and the full conditional distribution of each o2 or 7,72 is

n
n

w2 o (o) eap{—5 S (D: = =L (Di = w)

T () ey YD S (D~ )

i=1

where 3,2 and ¥ 2 denote covariance matrices in which all parameters are fixed
J J
except for o3 or 77, respectively.
The full conditional distributions of py, p;, p, and pg, have similar forms. As an

example, the full conditional of pg can be written as

n

w(pol) o< Tl € A(p)]| Ry | Beap{—3 DD, — )5, (D, — o)}

i=1

where 3, and R,  denote a covariance matrix and correlation matrix, respectively,
in which all parameters are fixed except for py, in which all parameters are fixed
except for py.

With the Gamma (2,2) prior, we work on the standardized data, denoted as D*

with parameters p*, 032, 772, 032, 52, - -+, 022,722, po, Pas Pys Py~ Note that p* should
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*—2 *—2 *—2 *—2 *—2

be close to 0, and o2, 7772, 0572, 752, .-+ , 0572, 772 are centered around 1, with a

* k=2 _x—2 _x—2 __%x—2 *—2 __*x—2 *
7T<H’701 T 509 5T 5 0, 5Ty 7p0>pw>pyapxy|D)
*—2 __*—2 *—2 __%x—2 *—2 *—2 *—2 *—2
o< {o7 Tt oy Ty eap(—oy T =TT = 0 =T )

n

Tl's € AWIS'| Serp{—5 (D5 — w)'S (D} — )

i=1
o (o772 o P ) s € Ap)]|RITE
]' - * * *— * * *— *— *— *—
e:cp{—§Z(Di —p )Tz 1(Di —p) = =T o =
i=1

The full conditional distribution for pu* given all other parameters and data is
(W[}~ MVN(D*, 5" /n)

The full conditional distribution of each a}"Q or 7, “1s

n

*— *—2\ 2 ]‘ * * *— * * *
w0y 1) o (o) eap(—y (D] - ) S (D] ) — ;)
=1

*— *—2\ 2 1 * * *— * * *—
(7] ) o (7; 2)2+1e$p{—§ Z(Dz —H )TET;«?I(Di —u) =T “}
i=1
where ¥7., and ., denote covariance matrix in which all parameters are fixed but
J J

*2 *2
Uj or Tj .

The full conditional distributions of each correlation parameter, including po, pz, py
and p,, have similar expressions. As an example, the full conditional of py can be

written as

n

wlpol) o Tlpn € Ap)|[ Ryl Fep{—3 S(DF = )55, (D} — o)}

i=1
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where 37 and R, denote a covariance matrix and correlation matrix, respectively,

in which all parameters are fixed except for py.

3.2.3 Bayesian posterior predictive methods for longitudinal data with

two or more time points

We are interested in testing the hypotheses Hy : p1 = po = ... = p,,, versus H, :
two or more of py, ps, ..., pm are unequal. For time j, let X ; = {Xy;, Xoj, -+, Xy, }
and Y; = {Y1;,Y5;, -+ ,Y,;} denote the respective vectors of all subjects’ values of

biomarker X and pathogen Y. For j # k, we then denote Sx x, as the sample variance
of X j, gyyj as the sample variance of Y, S XX, a8 the sample covariance between
X jand X, gyyjk as the sample covariance between Y ; and Y, gxyj as the sample

covariance between X ; and Y ;, and S Xv;, as the sample covariance between X ; and

Y. Let p1,p2, ..., pm, Pz, Py and pgy be:

_ P97 SXY m
NN
L Zﬁék Pz0j0k _ Zﬁfk SXXJk
' Zﬁék 02% > itk SXX SXXk
N Z];ékpyTka _ Zﬁgk SYY
B S SRy o
Doy = Zﬁék Pzy@iTk _ Zﬁék SXY

2212
Zj;ék 05Tk Z#k SXYj SXYk

Define 0;; as

ii = l(1 —p5)? (3.2)

with corresponding estimate éjj =11-p3)?
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and define 0, as

1(1
O = — {§pjpk(pi + 02) + Py (L4 pipr) + Pepy — Pay(p; + pr) (P + py)} (3.3)

with corresponding estimate

Oy = {§pjpk(pi + 0y) + Py (L4 pipr) + bupy — Pay(D + Pr) (P + py)} :

Let 3, be an m x m matrix with diagonal element (j,j) equal to 6;; as given
by Equation (3.2), and off-diagonal element (j, k) equal to 0%, as given by Equation
(3.3). Let 3, be an m x m matrix with diagonal element (4, ) equal to ,; and
off-diagonal element (74, k) equal to éjk. Also let L be an (m — 1) X m contrast matrix

for the pairwise differences, i.e.

1 -1 0 O 0

0O 1 —-120 0
L -

0 O 0 1 -1

To construct a posterior predictive p-value to test the null model Hy : p; = po =
... = pm, the test statistic T,(D) = (Lp)T(LX,LT)"*(Lp) and discrepancy variable
Q,(D,¢) = (Lp)"(LE,LT)"*(Lp) are chosen. T,(D) is totally data based and is
the same as the Wald test statistic X?) we used in Chapter 2. Q,(D, ¢) contains
unknown parameters, including the parameter p we are interested, as well as the
nuisance correlation parameters p,, p, and pg,.

An alternate test would be based on Fisher’s Z-transformation, 2 = {21, 25, -+ , 2,1 },
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A~

leading to the statistic T,(D) = (L2)T(LX,LT)"*(L2), in which 3, has diagonal el-
ement (j, 7) equal to 1/n and off-diagonal element (j, k) equal to 8,;/[(1 —03)(1=p¢)].
Identically, a discrepancy measure Q. (D, ¢) = (L2)T(LX,LT)"'(L2) is also chosen
in which X, has diagonal element (j,j) equal to 1/n and off-diagonal element (7, k)
equal to 034/[(1 — 72)(1 = )]

The difference between a test statistic 7'(D) and a generalized discrepancy variable

Q(D, ¢) is whether it contains unknown parameters.

3.2.4 Computational details

Given a set of posterior draws of parameters using the Metropolis-Hastings (MH)
algorithm within Gibbs sampling, ¢’, j = 1,---,.J, we perform the following two
steps for each j:

1. Given ¢’, draw a simulated replicated data set, D7 from the sampling
distribution, P4(D"?|Hy, ¢’).

2. Calculate T(D), T(D""7) and Q(D, ¢’) and Q(D""7, ¢).

Having obtained T'(D), T(D ") and Q(D, ¢’) and Q(D™", ¢"), j =1,---,J,
we can make a histogram of T'(D"*”7) with T(D) located on it to make a graphical
assessment, and estimate p, by the proportion of the J pairs for which T'(D")

exceeds T'(D), namely
1< :
n = FUND™) > T(D)

and we can plot Q(D"?7 ¢’) against Q(D, ¢’) and estimate p, by the proportion of
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the J pairs for which Q(D"" ¢’) exceeds Q(D, ¢’), namely

J
p =5 1QD"™, 1) > Q(D, &)
j=1

Since we have derived the full conditional posterior (up to a proportionality con-
stant) of all parameters, it is convenient to compute the posterior using the Gibbs sam-
pler. To get draws from (p, S, R), we use Gibbs Sampler and draw ji,,, fy,, - -, fa,,
Iy, together from its multivariate normal conditional posterior, and draw each of the
components from S and R one at a time. However, since the conditional posterior
for each component of S and R is not a kernel of any known distribution, we need
to do another MH algorithm within Gibbs sampling. While sampling components
from S, we perform an independent MH by choosing a Gamma distribution as the
proposal density. For example, for prior specification (1), the proposal density we
use to sample 072 is G[n/2, > (e, — Xi1)?/2]. Note this is actually the full con-
ditional posterior under the special R structure where all off-diagonal elements are
zero. While sampling components from R, we do a random walk MH using a normal
distribution truncated between -1 and 1. An extra step before updating each sample
with the proposal sample is to check if R is positive definite for the proposal sample.

If that condition is not satisfied, the sample takes the value of the previous sample.

3.3 Application of Methods

3.3.1 Simulation Study

We now examine the performance of the proposed credible interval methods and
the posterior predictive tests under various settings for hypothetical longitudinal

datasets based upon the data from our motivating example. Here we define the sim-
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ulation setting of the posterior predictive method. For each subject i = 1,2,...,n,
biomarker X and pathogen Y are both observed at m time points. We assume
Xij ~ N(pay, 03) and Yij ~ N (py;,77), in which ji,; = 2.5 and py; = 4.0, 0 = 0.3,
and 7; = 0.40 — 0.05(j — 1). Note that correlation is location and scale invariant, so
that our results are generalizable to other values of location and scale. In our first
setting, where the model matches the correlation structure of the data, we selected
the values p, = 0.5, p, = 0.7, and p,, = 0 for the nuisance correlation parameters.
These values are also set to attempt to match the true data we will present in the
example. With regard to the correlation parameters of interest, {p1, pa, ..., pm}, we
defined a simulation setting with two quantities, p, € {—0.2,—0.1,0,0.1,0.2} and
A € {0.0,0.3}. We set p1 = Pmin, Pm = Pmin + A, and all other correlation pa-
rameters pg, p3, ..., pm_1 Were equally spaced between p; and p,,. Thus, a value of
A = 0 represents the null hypothesis, while A > 0 represents the alternative hy-
pothesis. For each combination of minimum serial correlation and A, we simulated
D;={X;1,Y, , Xim, Yim}, the data for each subject i, from a multivariate normal
distribution with mean p and variance ¥, with g and ¥ defined in Equations (2.1)
and (2.2). We considered sample sizes of n € {25,50,100} and the number of time
points m € {2,3,4,5}.

Since our assumption that the nuisance parameters p,, p, and p,, are constant
over time is rarely met in practice, we introduced model mis-specification in our
second simulation setting. We selected the values p,, = 0.5, p,, = 0.6, pgy, = 0.7 and
defined a constant ¢ = 1.7 X pyp,, = 0.51 for the nuisance correlation parameters.
Then, the within-X, within-Y and cross-X,Y correlation between time j and j are
p'ﬁo_j/', pg;ﬂ and ¢ X plﬁg;)j" respectively. The simulation setting of {p1, p2,..., pm}

was defined by pmin € {0.2,0.3,0.4,0.5} and A € {0.0,0.3}. Similarly, p1 = pimin,
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Pm = Pmin + A, and all other correlation parameters ps, ps, ..., pm_1 Were equally
spaced between p; and p,,.

The settings used for the posterior credible interval method are the same as those
used with the posterior predictive method, and no model violation is assumed. The
credible interval method is only applied to settings in which m = 2.

To evaluate the posterior predictive method in each setting, we simulated 500
datasets for n = 100 and 1,000 datasets for n € {25,50} and ran 2,000 iterations for
each. We also examined the use of both proper and improper priors for the precision
parameters. With an improper prior, Metropolis-Hastings within Gibbs sampling was
used as follows:

L. Draw fig,, fy, -« 5 oy My, together from their multivariate normal conditional
posterior.

2. Draw each of the components in S one at a time by performing an independent
MH step by choosing a Gamma distribution as the proposal density for an individual
precision parameter. The proposal density we use to sample o772 is G[n/2, >, (4tzy —
Xi1)?/2].

3. Assuming our null model: p; = py = -+ = p,, = po, Where pg is undefined, the
components of R include {po, pz, py, Puy}- For sampling p, and p,, we do a random
walk MH using a normal distribution truncated between -1 and 1. While drawing
each of p,, p, one at a time, we draw py and p,, jointly from a bivariate truncated
normal proposal distribution with correlation 0.6, since a large cross-correlation was
observed between py and p,,. An extra step before updating each sample with the
proposal sample is to check if R is positive definite. If that condition is not satisfied,
the sample takes the value of the previous sample.

With a proper prior, each simulated data was first standardized, and then in step
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1 above, instead of drawing u, we draw p* which is the standardized mean. In step 2

above, instead of drawing o2, 7,2, 052,75 2, - -+ , 0,2, 72, we draw o} 2,772, 032,
752, .-+ 0572 7*=2 which are the new precision parameters after standardization.

Step 3 above is unchanged.
For credible interval method, we only consider the use of improper priors and we
do not assume the two serial correlations are equal to each other. Therefore, we will

sample the two individual serial correlations instead of sampling a uniform py.

The proposal variance was tuned every 25 iterations during the burn-in period
for the truncated normal proposal density to get an acceptance rate of between 30%
to 40%. Trace plots, autocorrelation plots and histogram plots were generated to
evaluate convergence. A burn-in sample of the first 400 observations was discarded.
Histograms and summary statistics including mean and 95% credible interval were
obtained based on the remaining 1,600 samples. Having obtained T'(D), T(D"%7),
Q(D, ¢’) and Q(D""7 ¢’), p-values were obtained by calculating the proportion of
the J pairs for which T(D"%7) exceeds T(D) and the proportion of the J pairs for
which Q(D"?7, ¢’) exceeds Q(D,¢’). A small p-value indicates poor fit. The test
was rejected at size level a=0.05. The size and power of the tests in each scenario
were estimated from the rejection rates in 1,000 simulated datasets for n € {25,50}
and 500 simulated datasets for n = 100.

To evaluate the performance of the credible interval method, instead of computing
a test statistic/discrepancy variable given each parameter drawn, the credible interval
method computed the difference of the two individual serial correlations drawn during
each iteration. By evaluating the 95% HPD region or credible interval based on
J = 1,600 differences, we made a decision about whether to reject the homogeneity

hypothesis according to whether the interval covered 0. We simulated 1,000 datasets,
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and the size and power of the credible interval “test” were estimated from the rejection

rate in these datasets.

3.3.2 Evaluation of Bayesian credible interval method

Table 3.1 presents the empirical size, e.g. A = 0, of the Bayesian credible interval
method using both 95% HPD region and quantile based (QB) credible interval for
various combinations of n,m, and p,,;,. The two columns under each sample size
show the empirical size of credible interval test based on 1,000 simulations. Based
upon a 95% confidence interval around a desired size of 0.05, we would expect the
number of rejections in 1,000 simulations for a nominal test would lie in the interval
(3.7,6.4). Overall, the size of tests based on both HPD and QB intervals fall into the
interval (3.7,6.4) while HPD tends to be more conservative and B tend to be more

liberal. HPD is thus preferred than 95% QB.

Table 3.1: Size of test based on Bayesian estimation of 95% Highest Posterior Density
(HPD) regions and quantile based credible interval (QB). Each value is
the percentage of simulations out of 1,000 in which the null hypothesis is
rejected (when HPD or QB does not cover zero).

n = 100 n =950 n =25
M Pmin HPD QB HPD QB HPD QB
2 0 5.8 5.0 51 5.9 41 5.7
0.1 3.9 4.7 51 6.2 3.8 5.3
0.2 6.0 6.8 4.2 4.1 54 5.6

Table 3.2 presents the estimated power of the credible interval method using both
95% HPD region and QB when A = 0.3. Since QB interval is more liberal than HPD,
here we observe a higher power for QB than HPD. The power drops down as sample

size decreases.
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Table 3.2: Power of test based on Bayesian estimation of 95% Highest Posterior Den-
sity (HPD) regions and 95% quantile based credible interval (QB). Each
value is the percentage of simulations out of 1,000 in which the null hy-
pothesis is rejected (when HPD or QB does not cover zero).

n = 100 n = 50 n =25
M Pmin HPD QB HPD QB HPD QB
2 -0.1 771 78.2 47.6 48.7 24.2 253
-0.2 78.1 79.2 47.3 48.6 23.1 25.2

3.3.3 Evaluation of posterior predictive method

Table 3.3 presents the empirical size, e.g. A = 0, of various posterior predictive
tests using the four statistics 7, T,, @), and @), defined in Section 3.2.3 for various
combinations of n,m, and pp;, when p,, p, and p,, are constant over time, an
improper prior was used to sample the precision parameters. The first two columns
under each sample size show the empirical size of posterior predictive tests T, and
T,, the third and fourth columns are the empirical size of posterior predictive tests
Q. and @Q,, obtained from 500 simulations when n = 100 and 1,000 simulations when
n = 50 and 25, while the fifth column is the empirical size of the Wald test, obtained
from 5,000 simulations based on the asymptotic distribution of Z-transformation.
Based upon a 95% confidence interval around a desired size of 0.05, we would expect
the percentage of rejections in 500, 1,000 and 5,000 simulations for a nominal test
would lie in the interval (3.1,6.9), (3.7,6.4) and (4.5,5.6), respectively. Overall, all
four posterior predictive tests have nominal size, regardless of the number of time
points and the value of p,.;,,. However, as the sample size drops to n = 25, posterior
predictive tests tend to become conservative, especially when there are fewer time
points. Although as all four statistics lead to conservative results, the size of T}, is
closer to 0.05 compared to 7,. In fact, the conservativeness of the four approaches

can be ordered as T, = T, < (), < ().. The Wald Z-test, in contrast, becomes more
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liberal as the sample size decreases and as the number of time points increases. One
last finding is that when the number of time points increases, the size of all four tests
increases. Relative to the amount of Monte Carlo error, there is no difference in size
between T, T, and @Q,. @), is very conservative when n = 25.

Table 3.4 presents the empirical size of posterior predictive tests using the four
statistics 7%, T,, @, and @, when p,, p, and p,, are constant over time. A Gamma
(informative) prior was used to sample the precision parameters of standardized data.
The sizes of T, and T}, are now close, and they remain nominal while being conservative
as the sample size decreases. The size of (), and @),, however, is much smaller than
their corresponding values in Table 3.3 and too small to be explained by the Monte
Carlo error. Since a discrepancy variable contains unknown parameters, ), and @,
depend largely on the parameters sampled. Therefore, they are more sensitive to how
the parameters were sampled, i.e., the parameters sampled may be biased since they
are based on the standardized data.

Table 3.5 presents the empirical power of the posterior predictive tests using 7,
T., Q,and @, and Wald Z-test at A = 0.3 when p,, p, and p,, are constant over time,
and an improper prior was used to sample the precision parameters . As a general
trend, the power goes down as the number of time points goes up. With a sample
size of n = 100 or 50, all tests have similar power, but when n goes down, the power
of the posterior predictive tests drops quickly. Consistent with the conservativeness
level as shown in Table 3.3, it can also be noticed that 7T, has slightly higher power
than 7., @, has slightly higher power than ().. As the sample size goes down, the
power difference between the four statistics gets bigger. As the sample size goes up
or the number of time points goes down, the power goes up.

Table 3.6 presents the empirical power of the posterior predictive tests using 7,
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T,, Q, and ), and Wald Z-test at A = 0.3 when p,, p, and p,, are constant over
time, and a Gamma (informative) prior was used to sample the precision parameters
of the standardized data. As expected, the power of (), and (), is much lower than
T, and 7.

Tables 3.7-3.10 evaluates the posterior predictive tests under model mis-specification
such that the data are simulated without assuming p,, p, and p,, being constant. Ta-
ble 3.7 compares the empirical size of the posterior predictive tests 7%, T,, @, and @,
assuming autoregressive p,, p, under improper prior and Wald Z-test. When model
mis-specification is present, the posterior predictive tests 7., T, and (), remain the
nominal size while and @), is too conservative under some scenarios where n = 50
and n = 25 even having monte carlo error being considered. Table 3.8 presents the
size of the posterior predictive tests under model mis-specification through sampling
the variance parameters from the standardized data. T, and 7}, do not change much,
while @), and @),, impacted the same way as shown in Table 3.4, become more con-
servative. (), falls out of the monte carlo interval while the other three are closer to
nominal size compared to @,,.

Regarding the empirical power under model mis-specification, Table 3.9 and 3.10
show the simulation results comparing the posterior predictive tests T, T, Q)., @,
and Wald Z-test at A = 0.3. As a general trend, power goes down as the number of
time points goes up and p,,;, gets closer to 0. Similar to the results shown in Table 3.5,
With a sample size of n = 100 or 50, T3, T, tests and Wald test have similar power,
but when n goes down, the power of the posterior predictive tests drops. Opposite to
results shown in Table 3.5, T, here has slightly higher power than 7}, when n = 100
or 50, and much higher power than 7}, when n = 25 under mis-specified setting. The

power of @), is slightly lower than T, while the power of (), is the lowest. This is
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consistent with the biased size of (), and (), shown in Table 3.7 and 3.8.

3.3.4 Motivating example

In this section, we illustrate the proposed tests with real data. We analyzed a
longitudinal periodontal study conducted by Kinney et al. (2011) and Ramseier et al.
(2009). 79 subjects completed the 12-month study, with samples of serum-derived
biomarkers (TNF-a, calprotectin, metalloproteinase (MMP)-8, MMP-9) and saliva-
derived biomarkers (IL-18, MMP-9, MMP-9, OPG) and periodontal plaque biofilm
pathogens (P.gingivalis T.forsythia, T.denticola) examined at baseline (Day 0), 6
months and 12 months. Ramseier et al. (2009) found that the concentration levels of
salivary biomarkers MMP-8, MMP-9 and calprotectin were associated with stages of
periodontal disease, and can be used as good predictors of periodontitis because of
large odds ratios; moreover, all the plaque biofilm pathogens listed above demonstrate
even higher diagnostic ability than biomarkers.

Considering the ability of both biomarkers and pathogens as periodontol disease
predictors, it is natural to expect some degrees of correlation between them. We would
now like to assess whether there is a constant correlation between certain combination
of biomarker and pathogen. We first add 1 to all the measured values and take a log-
transformation. Shown in Table 3.11 and 3.12 are the sample serial correlations for
each pair of biomarker and pathogen after the transformation described above. For
serum biomarker data, most sample serial correlations range between -0.2 and 0.2.
The minimum serial correlation ranges from -0.21 to 0. The maximum-minimum
correlation difference is between 0.09 (MMP-8 and T.denticola) and 0.33 (MMP-9
and P.gingivalis). Most pairs have both positive and negative correlations at the

three time points. We also calculated the sample cross-correlations and most of them
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are close to 0 so that they can be considered as equal. For salivary biomarker data,
most sample serial correlations range between -0.1 and 0.5. The maximum-minimum
correlation difference is between 0.06 (IL-13 and T.forsythia) and 0.66 (MMP-8 and
T.forsythia).

To test the hypothesis whether the correlation between a biomarker and a pathogen
at each time point is equal, posterior preditive tests, T, T, (), and Wald Z-test (in
Chapter 2) were performed. Since (), does not achieve nominal size, the result is
not presented here. Improper prior for the original data (non-standardized) was used
to sample variance parameters. Table 3.11 and Table 3.12 summarize the posterior
predictive p-values for serum and salivary data respectively. Three tests gave compa-
rable results and most pairs have homogenous serial correlations based on our tests.
As shown in Table 3.11, using 0.1 as a critical value, heterogeneity exists in pairs be-
tween serum TNF-« and T.forsythia (max-min difference is 0.22), serum MMP-9 and
P.gingivalis (max-min difference is 0.33), serum MMP-8 and P.gingivalis (max-min
difference is 0.29). Consistent with simulation studies with setting I (Table 3.3 and
3.5), regarding conservativeness, Q, > T, ~ T, > x2. However the same conclusion
is drawn from each test. As shown in Table 3.12, heterogeneity exists in pairs be-
tween salivary MMP-8 and T.forsythia (max-min difference is 0.66), salivary MMP-8
and P.gingivalis (max-min difference is 0.37), salivary MMP-9 and T.forsythia (max-
min difference is 0.45), salivary OPG and T.denticola (max-min difference is 0.44).
Consistent with simulation studies with setting I (Table 3.3 and 3.5), regarding con-
servativeness, @, > T, ~ T, > x2. However the same conclusion is drawn from each
test. We conclude that the serial correlation in the pairs mentioned above changes

over the twelve months.
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Table 3.11: Sample serial correlations between combinations of serum biomarkers and
pathogens, and testing equality of serial correlations at 0, 6,12 months.
T,=posterior predictive test using test statistic X,%% T, =posterior predic-
tive test using test statistic x?; @,=posterior predictive test using dis-
crepancy statistic x?

Pathogen Biomarker Sample serial correlation p-value
0 6 12 T, T, Q.
P.gingivalis TNF-a -0.17  0.07 -0.07 0.110 0.111 0.153
Calprotectin -0.18 -0.01 0.11 0.149 0.148 0.155
MMP-8 -0.01  0.28 0.04 0.060 0.059 0.077
MMP-9 0.12 0.19 -0.14 0.025 0.026 0.036
T.forsythia TNF-« -0.19 0.07 -0.19 0.006 0.007 0.010
Calprotectin -0.21 -0.02 0.05 0.162 0.160 0.166
MMP-8 0 022 0.13 0.181 0.182 0.189
MMP-9 0.13 0.19 -0.03 0.137 0.139 0.149
T.denticola TNF-« -0.13 -0.04 0.03 0.377 0.377 0.404
Calprotectin -0.17  0.01 0.13 0.106 0.106 0.112
MMP-8 -0.01  0.08 0.00 0.788 0.788 0.796
MMP-9 0.17 0.02 -0.02 0.275 0.273 0.299
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Table 3.12: Sample serial correlations between combinations of salivary biomark-
ers and pathogens, and testing equality of serial correlations at 0, 6,12
months. T,=posterior predictive test using test statistic X,%? T.=posterior
predictive test using test statistic x?; @, =posterior predictive test using
discrepancy statistic x?

Pathogen Biomarker Sample serial correlation p-value
0 6 12 T, T, Q.
P.gingivalis IL-15 0.21 0.04 0.07 0.668 0.665 0.675
MMP-8 0.38 0.40 0.03 0.094 0.105 0.097
MMP-9 0.30 0.20 -0.03 0.319 0.324 0.335
OoPG 0.26 0.02 -0.08 0.257 0.252 0.271
T.forsythia IL-1p3 0.23 0.26 0.20 0.946 0.946 0.945
MMP-8 0.35 0.56 -0.10 0.001  0.000 0.000
MMP-9 0.30 0.13 -0.15 0.098 0.099 0.108
OoPG 0.27 -0.01 0.16 0.360 0.360 0.358
T.denticola IL-1p3 0.36 -0.03 0.16 0.134 0.133 0.162
MMP-8 0.41 0.41 0.20 0.348 0.365 0.377
MMP-9 0.35 0.41 0.07 0.213 0.224 0.221
OPG 0.38 0.21 -0.06 0.090 0.093 0.109
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3.4 Conclusions and Discussion

In this chapter, we described two Bayesian approaches to perform tests of equality
of correlation coefficients for longitudinal studies. In Bayesian confidence interval
method, we evaluated the tests based on two types of intervals: highest posterior
density region (HPD) and quantile based credible interval (QB). Both of them have
a nominal size, while HPD tend to be more conservative and QB tend to be more
liberal. When there are only two time points, HPD is suggested to use.

We borrowed the classical Wald XZ and x? statistics to construct posterior pre-
dictive p-values. The empirical size and power of our proposed tests in a variety
of settings motivated by the data collected in our motivating study were collected.
Conclusions are: (1) Posterior predictive tests 7, and 7, are conservative compared
to Wald Z-test, yet after considering monte carlo errors the three tests have com-
parable size. (2) Posterior predictive tests T, and T, have similar power compared
to Wald 2 in medium sample size (n=100, 50), and x? is superior in small sample
size (n=25). The size and power of T, and T}, are not significantly impacted by sam-
pling methods (i.e., prior setting and whether the data is standardized). (3) Posterior
predictive tests (), and (), are conservative compared with 7, and T,. ), and @, de-
pend largely on the parameters sampled from standardized data. (4) Our assumption
of equal cross correlation (p,, p, and p,,) in 3 is generally robust to data without
equal cross correlation, yet the posterior predictive approach is still more sensitive
to mis-specification than Wald test. (5) 7, and T}, are preferable than @), and @, in
our setting, since they reach a nominal size when model is not mis-specified, and are
robust to model mis-specification and different prior choices.

Although in our particular problem, Bayesian posterior predictive method does

not seem to provide a better power than Wald test, it offers an alternative way of
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examining the hypothesis testing problem. We introduce discrepancy variables into
our test, and this allows us to incorporate unknown nuisance parameters into test
statistics, rather than plugging an estimator (e.g., maximum-likelihood estimator)

obtained from the original data for the parameters.
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CHAPTER IV

Pooled Correlation Coefficients for Longitudinally

Measured Biomarkers

4.1 Introduction

In order to measure the association between two categorical variables X and Y,
both of which are measured on n; subjects in stratum j =1,2,...m, a 2 x 2 table is
made for each stratum, in which a; and d; are the number of subjects in strata j, who
have X =Y =1land X =Y = 0, respectively, b; is the number of subjects with X = 0
and Y =1, and ¢; is the number of subjects with X =1 and Y = 0. Let v; denote
the population odds ratio in strata j, whose estimate is @ﬁj = R;/S; = a;d;/(b;c;).

A test of homogeneity of the stratum-specific odds ratios attributed to Breslow
and Day (1980) is usually applied to determine if there is evidence that the stratum-
specific odds ratios are equal. If the test fails to provide evidence of heterogeneity,
then it is often assumed the association of X and Y is constant among all strata,

necessitating an estimator for the pooled odds ratio for X and Y.
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The Mantel-Haenszel (Mantel and Haenszel, 1959) estimator for ¢ is

Historically, several variance estimators have been proposed for ’Q/ZJ\MH, which can
be divided into two classes. In the first class, the number of tables remains fixed
while the counts in the individual cells increase and have no bound (n — o0). One

estimator based on this class was proposed by Hauck (1979):

2/’MH(Z:; 19 S3 Jw;)

S SINCHE

(4.1)

in which wj_1 = (1/a; +1/bj + 1/c; + 1/d;). This estimator can be easily derived
from the mean and variance of the individual ﬁj’s, which are MLE and consistent

estimators of 1;’s, by re-writing 1/AJMH as a weighted average of the dj’s (Hauck, 1979;

Silcocks, 2005), i.e

~ YR, mR
Lag=1"" ZZ:F

wMH Z] 15 :2:: ]Z] lS

In the second class, the number of tables increases while the cell sizes are bounded
(m — 00). Many variance estimators in this class exist (Robins et al., 1986; Breslow

and Liang, 1982) and are derived from the expression

) m(R — m my " (R —S;)/m
N

Since E(Rj — ¢S;) = 0, the Central Limit Theorem states that the numerator of
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Equation (4.2) is asymptotically normal with mean zero and variance

m

limm_moVar(Z(Rj —S;))/m

=1

The denominator of Equation (4.2) converges to its mean » 7" | E(S;)/m, as m —

0o. Applying Slutsky’s theorem such that

lim oo Var (301 (R — ¥S;))/m
it 00 3 5ey E(S})/m]?

limmﬁoomVar(iﬁMH) = (4.3)

Different versions of the numerator and the denominator of Equation (4.3) have
been suggested. For example, Breslow (1981) proposed an empirical Mantel-Haenszel

variance, that is

> (R — brreS;)?
(32721 55)?

Vg = (4.4)

Robins et al. (1986) proposed another estimator with the numerator for (4.4), or
Var(3J7L (R — 1S;)) replaced by an unbiased estimator. With some algebra, their

MH variance estimator became:

SRR SRS HQR) Y108,

Vu IR2 2RS 252

| (W) (4.5)

where P; = (a; + d;)/n;, Q; = (b; +¢;)/n;.
Lastly, there are some “hybrid” versions of Mantel-Haenszel variance estimators

that fit both models above. An example is that proposed by Breslow and Liang
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(1982):
. nVH + mQVB

v
© n + m?2

where n = 37" n;. This estimator incorporate the variance estimators in Equations
(4.1) and (4.4), and allows either estimator to dominate according to total counts in
all cells and number of strata.

In the previous two chapters, we discussed two ways to test if the correlation
between each biomarker and each pathogen is homogeneous over time. After testing
the homogeneity hypothesis, and lack of significance is found, a decision can be made
to pool the various correlation coefficients into a single time-invariant value that
quantifies the correlation between a biomarker and a pathogen. In this study, we are
interested in finding a pooled serial correlation estimator for longitudinal data. Our
proposed pooled correlation coefficient estimator, ry;y is based on Mantel-Haenszel
methods. In Section 4.2 we will derive two variance estimators of r;5 analogous to
the methods just described (m — oo; n — 00). We use Monte Carlo simulations to

evaluate the bias of these estimators in Section 4.3.

4.2 Methods

4.2.1 Notation and Definition of Pooled Correlation Coefficient Estimate

We have n subjects who are each examined sequentially at times t; < to,..., < t,,.
Let X;; and Y;, ¢ = 1,2,...,n;5 = 1,2,...,m, denote the respective values of
biomarker X and pathogen Y collected from subject ¢ at time ¢;. Marginally, we
assume Xi; ~ N(pgy,07) and Yy; ~ N(uy;,77), where pg; and p,; are param-

eters quantifying the means of X;; and Yj;, respectively. The elements of X; =

IR

(Xi1, Xio, - -+, Xim), are assumed to be exchangeably correlated with each other with
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correlation p,, and the elements of Y; = (Y;1, Yia, -+ ,Y},) are exchangeably corre-

lated with each other with correlation p,. We also assume a common cross-correlation,

Py between X;; and Y, for j # k. The time-specific correlation of X;; and Yj; is

defined to be p; = Corr(X;;,Y;;) and are the parameters of interest. Explicitly, let

D; = {X,Y, X, Yia, -+, Xim, Yim}' denote the (2m x 1) longitudinal vector of

pairs of biomarker and pathogen for subject 7, and assume D; has a multivariate

normal distribution with mean vector g and variance ¥ in which

B = {Mfmnuyu:uwz?p“yw T 7ILL-73m7l’['ym}

and
2
01 P1O1T1  Pz0102  Pzy01T2  **°  P2010m  Pay01Tm
2
P101T1 T Pxy02T1  PyT1T2 - PazyOmT1  PyTiTm
2
Pz0102  Pay02T1 ) P202T2 -+ Pz020m,  Pry02Tm
Y= 2 ..
Pzy01T2  PyTiT2 P202T2 T ’ PzyOmT2  PyT2Tm
2

Pz010m  PryOmT1  P2020m  PryOmT2 - Om PmOmTm

2

Pzy01Tm PyT1Tm Pzy02Tm PyT2Tm 0 PmOmTm T

same as Equations 2.1 and 2.2.

The correlation of X;; and Yj; at time ¢; is defined to be

2 (X — ) (Vi — )
Vi (Xij — px)? 2 (Yij — oy )?

Pj
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whose corresponding sample estimate is

[) Z?:l(Xij - 7])(}% - ])
j = —
\/Z?:l(Xij X])2 Z:L:l(Y;J - 3)2
?—1 Xz'jYz‘j Cj

After testing for homogeneity and if we fail to reject Hy, we pool the values of
P1, P2, - - -, Pm into a single time-invariant estimate of the correlation of X and Y by
applying the idea of Mantel and Haenszel (1959) to a setting with continuous data.

Specifically, we define

YL XYy Y6 C (4.8)
> et \/Z?  XEYL Y R

MH

Although the computation of r,,g is straightforward, a variance estimate for vy g
is not. We now derive two asymptotic variance estimates for rj;g, one in which the
number of time points, m, goes to infinity, and one in which the number of subjects,

n, goes to infinity.

4.2.2 Asymptotic variance as n — oo

Similar to the work of Hauck (1979) and Silcocks (2005) for Var(dap), rau can

be rewritten as a weighted average of each p;:

r _ Em: E:L:l)?zi \/n 1Zz lXjn 121 1Y
MH —
jzwz& YL VE Y Mlzuyz

= Z piw;/ Z wj (4.9)
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_ JIST N2 LNy soa
where w; = \/n > X D iy Y5 =0;7;.

Notice that (p1, p2, -+ , pm) are MLEs (and therefore consistent estimators) of the

respective serial correlations pi, p2, ..., pm, and &JZ and %]-2 are consistent estimators of
oj and 77. As a result, rarg converges in probability to pym = D71, pvs/ Y il vy,

where v; = 0,7;.

Recall that in Chapter 2 we derived the asymptotic joint distribution:

\/ﬁ{<ﬁ17ﬁ27 e aﬁm)T - (/717/)2, t 7,0m)T} —d MVN(O,ZP)

Yu and Dunn (1982) suggested that the value n be replaced by the value n — 3 in
order to improve the approximation in small samples. X, is an m x m matrix with

diagonal element 6;; and off-diagonal element 6} equal to

0;;=(1—p})? (4.10)

1
O = {§pjpk(pi +02) + pay (L4 pipr) + pepy — Pay(p; + i) (P + py)} (4.11)

By Slutsky’s Theorem,

Vi =3(rmm —pun) = Vn—3{w(pi, 2, Pm)t —v(p1, 2y s pm) T}

—4 MVN(0,v2,07) (4.12)

where w = (W1, ws, ..., wm)/ D0 (wj), and v = (v1, Ve, ooy Um) [ D250, (V5).

When there is a common serial correlation p, rp;g is a consistent estimator of p.
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Therefore, rj;g has approximate variance

Var,(MH) = w3,w’ /(n — 3)
B {E#k wiwi {573 (02 + 53) + P2y (L +1311) + Puby — 20wyraan (Pe + py) }
- (Bjw;)?

}/(n—3) (4.13)

2w (=)

(o @)

4.2.3 Asymptotic variance as m — o

Let p denote the true common serial correlation under null hypothesis. ry;y can
be expressed as
Vm(C/m — pB/m)

Vintra —p) = Y (410

In order to derive the asymptotic variance for ry;g, we will show that /m(C/m —
pB/m) has a limiting normal distribution and that B/m converges in probability to
a constant so that the variance of r,,5 is simply the variance of the limiting variance
of /m(C/m — pB/m) scaled by the square of the limiting constant for B/m.

We now derive the limiting value for B/m. If we define U; = > 7, )?12] /o; and
Vi=>", EN/I?/Tj, B can be expressed as ) | 0;7; v/U;V;. Note that U; and V; follow
x? with (n — 1) degrees of freedom.

Let W; = \/W, the square root of the product of two x? random variables.
Then B can be written as Z;nzl o;7;W;. A second-order Taylor expension around

E(U;) =n—1and E(V;) =n — 1 gives us an approximation for E(W):
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/ Vi — /
W, ~ (T + ,UV MV ZU
Vv v

Uy = pw)? Mv+ uu)(V pwv) (Vi —uv)® oo
8 1 4/t v 8 1

. ¢<n_1><n_1>+Uj—<;—1> A =
1

Wi fn=l (U= (=)= (e 1))
8 (n—1)° 4y/(n — 1)

(Vi=(n=1)* [ n—1

8 (n—1)3
UtV (U= =1+ (Vi— (n— 1) LU= =)V = (n-1)
2 8(n—1) 4(n —1)
Therefore,

Var(U;) +Var(V;) = Cov(U;, V)
8(n—1) 4(n—1)
3 Cou(U;,V;)

= n — —

2 4(n—1)

where

Cov(U;,V;) = Cov(zn: WZ
i=1

= ZCOU (X2,Y2) /U?TJZ—FZCOU (X2 Y2)/<7]2-7'j2

YR igo +ilj
J#5’
= ”COU(X2 Y2) /0272 +n(n —1)Cou(X2, V) /o272

ig) T g ijy ']

= {nE(X2Y2) +n(n - )E(X2YE) — n*E(X2)E(Y2)} oir?

LV (]

After some manipulations, we find that Cov(U;,V;) = 2(n — 1)p3.
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so that

P
2

&
3
2
3
|
N o
_|_

~An—a (4.15)

where a is a value ranging between 1 and 3/2. We also derived the third order term
of the Taylor expansion, and found it contained a negligible amount (approximately
1/4% 77", 0;7;). Although higher order terms in the Taylor series expansion are not
completely ignorable, their magnitude is small enough to allow us to ignore them in
our approximation. Therefore, based on a second-order Taylor expansion, as m gets
large B/m gets close to 37", (n — 3/2 + p*/2)oy7;/m.

To compute the limiting distribution for /m(C/m — pB/m), which appears in
the numerator of Equation (4.14), we need to derive Var(C — pB) = Var(C) +
p*Var(B) — 2pCov(C, B).

In the setting of a pooled odds ratio, one crucial assumption for deriving the
limiting distribution for the pooled odds ratio as m — oo was the data for each
stratum (each time point in our setting) was independent. However, due to a lack of
independence of data from different time points, deriving both Var(B) and Cov(B, C)
has proved impossible after a number of months of various attempts to approximate
the joint distribution of B and C'. As a result, we do not have an explicit asymptotic
variance estimate for the pooled correlation coefficient estimate. Nonetheless, we do
present our derivation for Var(C') and the form the asymptotic variance would take
if and when values for Var(B) and Cov(B, C) are found.

To derive Var(C'), we need to derive E(C}), Var(C;), and Cov(C;, Cjr). To derive
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E(C}), we need to first derive Cov(X;;,Y;).

Cov(X;3,Yy) = Cov(Xy — X;,Yy; =)
= Cov(Xy;,Yy) + Cov(X;,Y;) — Cov(Xy;,Y;) — Cov(X;, Vi)

1 ¢ _
= Pi0iTit ; Cov(Xyj,Yij) — Cov(X5;, Y;) — Cov(X;, Vi)

n 1 1
= P07+ —pi0m — —Cov(Xy;, Yy;) — —Cov(X5;, Vi)
n n n
n—1
= T, Pi%iT (4.16)

Based on the equation above,

E(C)) = > E(X;Yy) =nE(X;Yy)
=1

= (n—1)pjo;7; (4.17)

VCLT(Cj) = VCLT’(Z )’ZUS;;J)
=1

= ) Var(XyYy) + Y Cov(X,;Yiy, XiYe))
i—1 il
= nVaT()ziji;ij) +n(n — l)C’ov()zijij, )Z'i/jf/i,j)
= n{B(X2Y2) - B*(X;Yi)} +n(n — D{E(X;;Y;; Xy;Ye;)

] 1]
—B(X;;Y;)E(Xy;Yi;)}

= nBE(X2Y2) +n(n — W{E(X;Y; X0 Ye)} — n*EB*(X,;Yy)

ij i

To derive E(X2Y2) and E(X;;Y;;Xy,;Yy;), we need to first derive Var(Xy;), Var(Y;,),

ij = ij
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C'Ov()zij,)N(i/j), C’ov(ij,f/@-/j), C’ov()?ij,f/i/j), and C’ov(f/@-j,f(ﬂj). First, we have

VCLT()A(/Z‘J‘) = VCLT(XZ‘]' — X])

= Var(Xy) + Var(X;) — 2Cov(X;;, X;)
n+1

= o7 —2Cov(X;5, X;)
n
n+1l 5, 2
= n (7]- - EVCZT'(XU)
—1
- ”n o2 (4.18)

and similarly to Equation (4.18),

Var(Y;;) = T3 (4.19)

We also find

COU(Xij,Xi/j) = OOU(XZ'J' — Xj7Xi’j — Xj)
= COU(XZ‘J'7XZ'/]‘) - COU(XZ']‘,X]‘) — CO’U(Xi/j,X ) + COU( X )

1 1 _
= 0-— —OOU(Xij, ng) — ECOU(X’”ﬁ Xi’j) + Var(Xj)

n
2 2 1 2
= _Eaj—i_naj
1 2
= ——0 (4.20)
and similarly,
1 2
Cov(Yy;,Yy;) = ——T; (4.21)
n
-~ o~ -~ - 1
COU(XZ']‘,}/;‘/]‘) = COU(}/;j,XZ/j):—EpJO']TJ (422)



Derivation of F (ij Yj) and F (X Y Xy Y/ ;) takes advantage of the fourth order

moment information for the multivariate normal distribution (Isserlis, 1918)

. Note

that (XIJ,YU,Xl ],Y/ ) form a multivariate normal vector with covariance matrix

based on Equations (4.18), (4.19), (4.16), (4.20), (4.21) and (4.22):

n—1_2 . 1 LT
9 P;jO;Tj 0; PjO;T;
n—1 n—1,2 1.2
o _ n Pi%iT; n PioiTi  TRT;
1.2 T n=1 .2 T
— 07 P;i0;Tj —0; P;i0;Tj
2 L, n=1_2
PjO;Tj T Pjo;Tj n g
As a result, we have:
E(X2Y?) S5 4 2(55,)
177 1J 114722 12
(n — 1) 2 2 2 2 2
= 5 (o575 + 2p50575)
and
vy v v o\ * * * * * *
E(X;;Yi; Xi;Yi;) Ylodigy + Lysdiny + 27,205,
(n—1)?
= ijaﬂjpjaﬂj + 3 O'jT +

(n—1)+1222 122
- n2 ,07'+ 957;

74

(4.23)
(4.24)

Lo
(4.25)



Therefore,

Var(C;) = nE(X2Y?2) +n(n— D{E(X;;Y;; Xv,;Yi;)} — n2E*(X,;Y;;)

1y

(n—1)*

= e ot + - )"0 ot
I 55 2(n—1)2222
TR0 T PiOT]
_ 2 2 2
= (n—l)ijjTj (426)
COU(Cj,Cj/) = COU(Z)?’ijijvz)?ij’ij’)
i=1 i=1

= TLOO'U(XUY;J', )A(:Zj/zjl) + n(n — 1)00’[)(55@]}7;], jzi/j/i;;/j/)
= nB(Xi;YiXiyYiy) — nE(Xi;Yi5) E(XipYig)
+n(n — D{E(XyYii Xy Yiry) — E(Xi;Yy) E(Xiry Yiry )}

= nE(XyYy Xy Vi) +nln — D) EXyY Xy Yoy)

—n’B(X;;Yy) E(X;:Yiy)
To derive E()?ijﬁj)?ij/ﬁj/) and E()Z'ijﬁj)?i/j/ﬁ/j/), we need to further derive cross-
time covariances. Without showing the derivation details, we have the following

equations:

~ = -1
COU(XZ‘j,Xij/) = n—pr'jO'j/ (427)
n

~ = n—1

Cou(Yi;,Yiy) =

pyTjTj’ (428)
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= = n—1
Cov(Xij,Yij) = Py iTj:
=~ = n—1
Cou(Xij,Yy) = ——PuyoyT
- - 1
Cov(Xij, Xoyr) = —puojoy
_ 1
Cov(Yy;, Yiryr) = o PyTiTy
Cov(Xij, Yuy) = = payoyTy
- 1
COU(Y;‘J',Xi/]’/) = —prya'j/Tj

Note that (XVU, }/;jv Xij’; 1/;]"
matrix X** can be extracted from Equations (4.18)-(4.19), (4.27)-(4.30):

(n—1) ;2 (nil)PjUjTj (nil)pmajaj' Mpxy(fﬂ'j’
n J n n "
Sr L) p o7 wlz2 by o o
(nr_zl)PmUjUj/ (ngl)pxyaj’Tj (nn;l)o,?/ (";1)pj/aj/7'j/
(nn;l)/)a:yaﬂj' (n—ﬁl)/)yTjTj' (nn;l)Pj'Uj’Tj’ (n:)TJ%
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(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

) form a multivariate normal vector whose covariance

(4.35)




As a result, we have:

B(XiYyXipYiy) = XloN3, + X135, + X125

(n—1)2
N T(pjajijj’Jj'Tj’ + P00 PyTiTjr + Pay05Tjr Pay0yrT;)
(n—1)2

= T{UjTjUj’Tj’ (pjpjr + papy + Pf;y)}

Also, (Xi;,Y;;, Xijr, Yirjr) form a multivariate normal vector whose covariance ma-

trix X*** can be extracted from Equations (4.16), (4.18), (4.19), (4.31)-(4.34):

mot BpiopTy = pPe0i0y oy PeyOiTy
n—1 n—1,2 1 1
Srx _ O3 Tj j yO3'Tj yT57j (4.36)
—%pmajaj/ —%pxyajfrj — UJ2-, %pjlaj/Tj/
—%pnyjTj/ _%pyTjTj’ nT_lpj/O'j/Tj/ %7}2/
then we have:
E(Xininij’Yij’) = Eizz& + ET3Z§4 + 214233
(n—1)?
= ijUjijj/O'j/le + ﬁpmajo-j’pyTjTj’ + prijTj’nyUj’Tj
1
= E{UjTjUj/Tj’[(n — 1)’ p;pjr + papy + Piy]}
Therefore,
(n — 1)2 2
Cov(C;,Cy) = L {07073 (jpjr + Papy + Pry) }
1
+n(n — 1)@@7%’%’%’/[(” —1)%pjpjr + pupy + 03]}
(n—1)?
—HQT(WJ'TJ')(PJ"%’T]")
= (n—=1)o;705T(papy + P3,) (4.37)
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Let p denote the true common serial correlation, p; = p under Hy. We substitute

p for p; and have the following:

E(C]) = (n — 1)p0'j’7'j (438)
Var(C;) = (n—1)(1+p*oir; (4.39)
Cov(Cy,Cy) = (n— 107057 (pepy + pay) (4.40)

Therefore, C =Y "" , C; has variance
) =1

m

{Z (n—1)1+p )‘7272 + Z Vo705 7j(pepy + pxy)}
j=1 i#y’

Once we obtain the approximations to the values for Var(B) and Cov(C, B),

which we denote as v and ¢, respectively, then \/m(C/m — pB/m) has asymptotic

variance
{Z n—1)(1+p*)oir; + Z 1)o;750575 (papy + P2,) + P70 — 2pP) } /.
j=1 J#3’

And given that B/m converges in probability to >>7", (n — 3/2 + p?/2)o;7;/m, the

asymptotic variance for ry; g as m — oo, denoted as Var,(ryg), is

Doy (= 1)L+ p*)oi7} + 30,5 — 1)oy1i05 7y (pupy + p3y) + p70 — 209
(2o (n—=3/2 4 p?/2)0;7;}?

We estimate the denominator of B with the sums of squares and plug in 7,y for

o —

p, giving us the estimate Var,,(ry ) that has the following expression:

oy (=) (U413 5)0377 + 30, (0 — 1)6,7565 75 (bepy + P2,) + T3 e¥ — 2rmm®
(S, /S, X2 S, V)2

(4.41)
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4.3 Numerical Examples

4.3.1 Simulation Study

In this section, simulations were performed under settings similar to those exam-
ined in Chapter IT and ITI. We examined the bias of our pooled correlation estimate
as well as its variance estimate as n — oo; our simulations do not include a variance
estimate when m — oo due to the complications described in Section 4.2.3. For each
subject 7, 2 = 1,2,...,n, biomarker X and pathogen Y are both observed at m time
points. We assume X;; ~ N (pig;,07) and Yi; ~ N(py;,77), in which p, = 2.5 and
py = 4.0, 05 = 0.3, and 7; = 0.40 — 0.05(5 — 1). In terms of the joint distribution of
the data, we still considered two settings, the constant nuisance correlation setting
that matches our assumed model and autoregressive nuisance correlation setting that
has a model violation. However, we also considered several new scenarios in each
setting that were not examined in previous chapters.

We first present simulation settings with constant nuisance correlation. The means
and variances are the same as those used in the earlier simulations. For the nui-
sance correlation parameters, three sets of settings were considered: I. zero cross-
correlations, in which we set p, = p, = pyy = 0; II: medium cross-correlations, in
which we set p, = p, = 0.3 and p,, = 0; III. large cross-correlations, in which we
set p, = 0.5, p, = 0.7, and p,, = 0. We chose values for the common correla-
tion of interest, p € {0,0.2,0.4,0.6} in settings I and II, and p € {0,0.2} in setting
ITI. The reason we did not let the common serial correlation be larger than 0.2 in

sub-setting III was that larger values led to a non-positive definite covariance ma-
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trix for the data. For each combination of p and nuisance setting, we simulated
D;={X;1,Yi, Xi2,Yio, -+, Xim, Yim}, the data for each subject ¢, from a multivariate
normal distribution with mean g and variance as described above. We considered
sample sizes of n € {50, 100,500} and the number of time points m € {3,4,5}. We
computed the Mantel-Haenszel pooled correlation and its variance based on two vari-
ance formula, and also the empirical variance of the 1,000 Mantel-Haenszel correlation
estimates.

We then present simulation settings for the setting with autoregressive nuisance
correlation. The elements of X; have an autoregressive correlation structure with

correlation plgfo_k‘, the correlation between Y;; and Yj;, is similarly set to be p%—k‘, and

the cross-correlation between X;; and Yy, or between X, and Yj; is cpl,%kl, where ¢
is a positive constant. For the nuisance correlation parameters, two sets of settings
were considered: I: medium cross-correlations, in which we selected the values p,, =
Pyo = 0.3, pay, = 0.7 and ¢ = 1.7 X pypy,; 1I. large cross-correlations, in which we
set pz, = 0.5, py, = 0.6, pyy, = 0.7 and ¢ = 1.7 X p,py,. The correlation parameter

of interest, p, was chosen to be p € {0.2,0.4,0.6}. We also considered sample sizes of

n € {50, 100,500} and the number of time points m € {3,4,5}.

4.3.2 Simulation Results

Table 4.1 presents the true common serial correlation and its empirical standard
error, as well as the Mantel-Haenszel serial correlation estimate and its proposed
theoretical (formula based as n — oo) variances (presented in terms of standard
error) when there is zero cross correlations for various combinations of n,m, and p.
The performance was evaluated out of 1,000 simulations. Each theoretical value is

the average of 1,000 formula-based values.
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Overall, the Mantel-Haenszel pooled correlation is close to the true common cor-
relation. Regarding standard error estimates, when p is small (< 0.2), with a sample
size of n = 500, the estimates are very close to the true value ES(M H), regardless of
the number of time points. With sample sizes of n = 50, the standard errors obtained
by formula derived based on n — oo are slightly inflated, but still within an accept-
able range. As p increases, the standard error developed based on the asymptotics
of n remains almost the same as the true value or inflates just by a small amount in
small samples (n = 50).

A similar trend can be seen when a medium level of constant cross correlations
exist, as shown in Table 4.2. Finally, Table 4.3 shows the performance of the proposed
variance estimator in data with large constant cross correlations. With a large or
medium sample size (n = 500 or 100), the variance estimates are close to the true
value, while with sample sizes of n = 50, our variance estimate tends to underestimate
the true value slightly when m =4 or m = 5.

We should expect that our variance estimator performs the best when sample
size is large, according to its asymptotic features. In general, that is what we have
observed. We repeated the simulations with n = 25 (results not shown) and the
proposed variance estimator Var, (M H) still performs well.

We then examined a situation when there is model mis-specification. Table 4.4 and
Table 4.5 contain 7,y and the estimated standard error S, (M H) for simulated data
with medium and large autoregressive nuisance correlations. The Mantel-Haenszel
pooled correlation remains close to the true common correlation in our settings. Table
4.4 indicates that if medium autoregressive nuisance correlations exist and p is as small
as 0.2, the formula based n — oo gave relatively accurate estimation with a sample

size of n = 500. As p goes up or the sample size decreases, S, (M H) remains close to
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Table 4.1: The estimated pooled serial correlation ry;gz and the corresponding stan-
dard error estimator with zero nuisance correlation (1000 replications).
S, (M H) = standard error obtained by formula derived based on n — o0;
ES(MH) = empirical standard error of 7.

n = 500
m p rvg So(MH) ES(MH)
3 0 -0.002 0.026 0.026
0.2 0.198 0.025 0.025
0.4 0.398 0.022 0.022
0.6 0.599 0.017 0.017
4 0 -0.001 0.023 0.023
0.2 0.199 0.022 0.022
0.4 0.400 0.019 0.019
0.6 0.600 0.015 0.014
) 0 -0.001 0.021 0.021
0.2 0.199 0.020 0.020
0.4 0.400 0.017 0.017
0.6 0.600 0.013 0.013
n = 100
3 0 0.000 0.059 0.056
0.2 0.201 0.057 0.054
0.4 0.401 0.050 0.047
0.6 0.601 0.038 0.036
4 0 -0.002 0.052 0.052
0.2 0.198 0.050 0.050
0.4 0.399 0.043 0.044
0.6 0.599 0.033 0.033
) 0 -0.002 0.047 0.047
0.2 0.199 0.045 0.045
0.4 0.400 0.039 0.040
0.6 0.600 0.030 0.030
n = 50
3 0 0.000 0.085 0.082
0.2 0.201 0.082 0.079
0.4 0.402 0.071 0.069
0.6 0.602 0.054 0.052
4 0 -0.002 0.074 0.071
0.2 0.199 0.071 0.068
0.4 0.400 0.063 0.060
0.6 0.600 0.048 0.045
5) 0 0.002 0.067 0.066
0.2 0.203 0.065 0.063
0.4 0.404 0.057 0.055
0.6 0.604 0.043 0.042
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Table 4.2: The estimated pooled serial correlation ry;g and the corresponding stan-
dard error estimator with medium constant nuisance correlation (1000
replications).S,, (M H) = standard error obtained by formula derived based
on n — oo; ES(MH) = empirical standard error of 7y p.

n = 500
m p rvg So(MH) ES(MH)
3 0 -0.002 0.028 0.029
0.2 0.198 0.027 0.028
0.4 0.398 0.025 0.025
0.6 0.598 0.021 0.021
4 0 -0.001 0.026 0.025
0.2 0.199 0.025 0.025
0.4 0.399 0.023 0.023
0.6 0.600 0.020 0.020
) 0 -0.001 0.024 0.024
0.2 0.200 0.023 0.023
0.4 0.400 0.022 0.021
0.6 0.600 0.019 0.019
n = 100
3 0 -0.001 0.064 0.063
0.2 0.199 0.062 0.061
0.4 0.400 0.056 0.056
0.6 0.600 0.048 0.048
4 0 -0.002 0.058 0.058
0.2 0.198 0.056 0.057
0.4 0.399 0.052 0.052
0.6 0.600 0.045 0.046
) 0 -0.003 0.054 0.054
0.2 0.198 0.053 0.052
0.4 0.399 0.049 0.049
0.6 0.599 0.044 0.044
n = 50
3 0 -0.001 0.092 0.091
0.2 0.200 0.089 0.088
0.4 0.401 0.081 0.080
0.6 0.601 0.068 0.068
4 0 -0.004 0.083 0.080
0.2 0.198 0.081 0.077
0.4 0.400 0.074 0.071
0.6 0.601 0.064 0.062
5) 0 0.002 0.077 0.078
0.2 0.203 0.075 0.076
0.4 0.404 0.070 0.070
0.6 0.604 0.062 0.062
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Table 4.3: The estimated pooled serial correlation ry;z and the corresponding stan-
dard error estimator with large constant nuisance correlation (1000 repli-
cations). S, (M H) = standard error obtained by formula derived based on
n — oo; ES(MH) = empirical standard error of 7y p.

n = 500
mp rug Sn(MH) ES(MH)
3 0 -0.003 0.034 0.034
0.2 0.197 0.033 0.034
4 0 -0.001 0.032 0.032
0.2 0.199 0.032 0.032
5 0 0.000 0.031 0.031
0.2 0.200 0.031 0.031

n = 100
3 0 -0.003 0.076 0.077
0.2 0.198 0.075 0.076
4 0 -0.002 0.073 0.073
0.2 0.199 0.072 0.073
5 0 -0.004 0.070 0.070
0.2 0.197 0.070 0.069

n =50
3 0 -0.002 0.109 0.110
0.2 0.200 0.107 0.108
4 0 -0.005 0.103 0.101
0.2 0.198 0.103 0.100
5 0 0.002 0.100 0.104
0.2 0.204 0.100 0.103
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the true value. With large autoregressive nuisance correlations (Table 4.5), in some
data scenarios S,(M H) is smaller than the true standard error, but only by a very

small amount. Therefore, S, (M H) is fairly robust to model mis-specification.

4.3.3 Real Data Example

We analyzed the same two sets of data as that in previous chapters described by
Kinney et al. (2011) and Ramseier et al. (2009). For the serum biomarker dataset,
the concentration levels of MMP-8, MMP-9 and calprotectin were found to be strong
predictors of periodontitis and all three plaque pathogens demonstrated stronger as-
sociations than the four biomarkers (Ramseier et al. (2009)). After checking whether
or not the correlation between each biomarker and each pathogen were constant
over time, we found significant heterogeneity exists between TNF-« and T.forsythia,
MMP-9 and P.gingivalis at o = 0.05 level, and MMP-8 and P.gingivalis o = 0.10
level. In the salivary biomarker dataset, we found significant heterogeneity exists
between MMP-8 and T.forsythia at a = 0.05 level, OPG and T.denticola , between
MMP-9 and T.forsythia, MMP-8 and P.gingivalis, OPG and T.denticola at o = 0.10
level. For the rest pairs in the two datasets, there is no evidence of heterogeneity,
leading to a decision of pooling serial correlations such that the association between a

pathogen and a biomarker can be summarized by one single value for all time points.

4.3.3.1 Serum biomarker dataset

Table 4.6 contains the serial correlations of each log-transformed serum biomarker
with each log-transformed pathogen. The table also summarizes the Mantel-Haenszel
pooled serial correlation between combinations of biomarkers and pathogens, the stan-

dard error (se) of rp g computed from the formula assuming the number of subjects
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Table 4.4: The estimated pooled serial correlation ry;y and the corresponding stan-
dard error estimator with medium autoregressive nuisance correlation
(1000 replications). S,(MH) = standard error obtained by formula de-
rived based on n — oo; ES(M H) = empirical standard error of ry/p.

n = 500
mop rug Sn(MH) ES(MH)
3 0.2 0.198 0.026 0.027
04  0.398 0.023 0.023
0.6  0.598 0.018 0.018
4 0.2 0.199 0.023 0.023
0.4 0.399 0.020 0.020
0.6 0.600 0.015 0.016
5 0.2 0.199 0.021 0.021
0.4 0.400 0.018 0.019
0.6 0.600 0.014 0.015
n = 100
3 0.2 0.199 0.059 0.058
0.4 0.400 0.052 0.051
0.6  0.600 0.041 0.041
4 0.2 0.198 0.052 0.053
0.4 0.399 0.045 0.046
0.6 0.599 0.035 0.036
5 0.2 0.199 0.047 0.048
0.4 0.399 0.041 0.042
0.6 0.600 0.032 0.033
n =50
3 0.2 0.200 0.085 0.085
0.4 0.401 0.075 0.075
0.6  0.602 0.058 0.059
4 0.2 0.198 0.075 0.072
0.4 0.399 0.065 0.063
0.6 0.600 0.051 0.050
5 0.2 0.203 0.067 0.068
0.4 0.404 0.059 0.060
0.6 0.604 0.045 0.047
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Table 4.5: The estimated pooled serial correlation ry;y and the corresponding stan-
dard error estimator with large autoregressive nuisance correlation (1000
replications). S, (MH) = standard error obtained by formula derived
based on n — o0o; ES(M H) = empirical standard error of ry/p.

n = 500
mop rug Sn(MH) ES(MH)
3 0.2 0.199 0.030 0.031
04  0.399 0.026 0.026
0.6  0.599 0.019 0.020
4 0.2 0.200 0.027 0.028
0.4 0.400 0.023 0.023
0.6 0.600 0.017 0.018
5 0.2 0.199 0.024 0.026
0.4 0.399 0.020 0.021
0.6 0.600 0.015 0.016
n = 100
3 0.2 0.199 0.068 0.068
0.4 0.399 0.058 0.058
0.6  0.600 0.044 0.044
4 0.2 0.199 0.061 0.062
0.4 0.399 0.051 0.052
0.6 0.600 0.039 0.040
5 0.2 0.200 0.055 0.057
0.4 0.400 0.046 0.048
0.6 0.601 0.035 0.037
n =50
3 0.2 0.199 0.097 0.098
0.4 0.400 0.083 0.083
0.6  0.601 0.064 0.064
4 0.2 0.199 0.087 0.087
0.4 0.400 0.073 0.074
0.6 0.602 0.056 0.056
5 0.2 0.199 0.079 0.082
0.4 0.401 0.067 0.069
0.6 0.602 0.050 0.052
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goes to infinity, and the p-value of Z-test of whether the pooled Mantel-Haenszel
correlation is zero. The test statistic Z was computed by Z = ryp/se. se, is
the standard error obtained by the formula derived based on n — oo; p.n is the p-
value obtained by se,. Since we found significant heterogeneity between TNF-a and
T.forsythia and MMP-9/MMP-8 and P.gingivalis, we did not compute 7,5 for these
combinations.

Since our data indicate that most serial correlations are close to 0 and ranged
between -0.2 and 0.2, and the cross correlations (nuisance correlation) are nearly con-
stant, which is similar to our first simulation data setting. As we expected, Table 4.6
shows that the Mantel-Haenszel pooled correlation estimate is close to zero. How-
ever, none of the p-values (p.n) is less than 0.05, showing no evidence that the pooled

correlation is significantly different from zero in any pathogen-biomarker combination.

4.3.3.2 Salivary biomarker dataset

Table 4.7 contains the serial correlations of each salivary biomarker with each
pathogen after the transformation and Mantel-Haenszel pooled serial correlation to-
gether with the standard error and p-values. Our results show that among the
pathogen/biomarker pairs demonstrating a homogeneous serial correlation, the pooled
correlation is significantly different from zero between MMP-8 /MMP-9 and T.denticola.
As shown in Table 4.7, the greatest g values (> 0.3) exist between MMP-8/MMP-9
and T.denticola, while the pooled correlations obtained from all the other pairs are be-
low 0.3. These findings, along with the previous biological findings in Gamonal et al.
(2011) about the progressive increase in MMP-8 and MMP-9 levels in saliva samples
as the degree of periodontitis develops, have provided both statistical and biological

evidence of a homogeneous and substantial correlation between MMP-8/MMP-9 and
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red complex pathogens.

4.4 Conclusion

In this Chapter, we propose a Mantel-Haenszel-type estimator of the pooled corre-
lation coefficient and the corresponding variance estimators. Two variance estimators
are proposed based on the asymptotics as number of time points or number of subjects
goes to infinity. Our proposed Mantel-Haenszel pooled correlation and the variance
estimator based on n — oo perform well according to the bias evaluation in differ-
ent settings via simulations. Conclusions are: (i) Mantel-Haenszel pooled correlation
ram is close to the true common correlation. (ii) S, (M H), the standard error given
by our variance formula is close to E.S(M H) obtained empirically from the 1000 sim-
ulated data. (iii) The simulation setting indicates that even if autoregressive nuisance
correlations exist such that the true data violates our model assumption of constant
nuisance correlations, our formula (4.13) still maintains an accurate estimation. (iv)

Even with a smaller sample size, @(TM m) still stays close to the true value.
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CHAPTER V

Summary and Future Work

Motivated by a periodontal study that longitudinally measured serum and salivary
biomarkers and levels of bacterial pathogens in the oral cavity, this dissertation aimed
to look at two issues in longitudinal studies: developing tests for the equality of serial
correlation between two longitudinally measured continuous variables over time, and
pooling serial correlation coefficients after they are tested to be homogeneous. In
Chapter II, we constructed a XZ test and a x? test based on asymptotic distributions
for both untransformed and Fisher’s Z-transformed sample correlation coefficients,
respectively. We also proposed an F), statistic that is derived from Xf,. We evaluated
the empirical size and power of our proposed tests in a variety of settings. We found
that F, and x? tests have nominal sizes when the data fit our assumed model, and they
are generally robust to mis-specified models and heavier tailed data. The Xg test has
a more inflated size in small samples and some medium sized samples. In Chapter III,
we introduced Bayesian posterior credible intervals and Bayesian posterior predictive
p-values to perform tests of equality of correlation coefficients for longitudinal studies.
We evaluate two types of credible intervals—HPD and QB in a simple data setting with
only two repeated measures. When there are only two time points, HPD is preferred

to QB. When the number of time points is bigger than two, the credible interval
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is hard to obtain. Therefore, we explored Bayesian posterior predictive p-values in
data with more than two repeated measures. We borrowed the classical Wald X% and
x? statistics from Chapter II to construct test statistics 7, and T}, and discrepancy
measures (), and ),. Our simulation results suggest that the posterior predictive p-
values based on T, and T, have comparable performance in identifying heterogeneity
in medium sized datasets (e.g. n = 50) compared to Wald tests that are based
on asymptotics. In Chapter IV, we proposed a Mantel-Haenszel-type estimator of
the pooled correlation coefficient, denoted as ry;y, and developed the corresponding
asymptotic variance estimate, denoted as Var,(MH), as the sample size goes to
infinity. We observed that the Mantel-Haenszel estimator for the pooled correlation
is close to the true common correlation, and that Var, (M H) also performs well even
with a small sample size. In addition, Var,(M H) remains stable and robust to model
mis-specification.

Our proposed tests for homogeneity and estimators for pooled correlation coeffi-
cient have been applied to a longitudinal periodontal study to investigate the associ-
ation of pathogenic bacteria and serum/salivary biomarkers in gingivitis. We found
heterogeneity between certain red complex pathogens and inflammatory biomarkers,
suggesting for these particular pairs, the time-specific correlation, especially at the
time point with the biggest correlation is of most interest, rather than the overall
correlation. Our findings suggested that we can identify the highest time-specific
correlation (such as month six in our example, which is interestingly the period when
periodontal disease is the most severe), and the pair of pathogen/biomarker at this
particular time point can be jointly examined to quantify disease severity. On the
other hand, among the pathogen/biomarker pairs with homogeneous serial correla-

tion, the correlation between T. denticola and salivary MMP8/MMP9 is significantly
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different from 0. The take-home message from this finding is that 7. denticola and
salivary MMP8/MMP9 are constantly correlated over time and they can be used
jointly as a stable predictor of oral inflammatory/disease progression. The particular
pairs with constant, non-zero correlations may be very valuable predictors and can
save the cost of performing bioassays on many other biomarkers that demonstrate
less relevance with periodontitis-pathogenic bacteria.

In Chapter II, a limitation of our method is that we found suitable values for A and
0 needed for our F-test through a grid search of possible values. However, it should
be noted that the values could be found directly by equating the first two moments
of Ax3/(m — 1) and F(m — 1,d). However, this approach requires use of the Delta
method to obtain the variance of a function of all the correlation parameters, which is
computationally intensive. Finding these values and comparing them to those we used
would prove interesting to determine if the added computational burden is warranted.

Another limitation is that our tests have poor power when the sample size de-
creases or the number of time points increases. Furthermore, when the distribution
of the data does not follow an exact multivariate normal distribution, simulations
showed that our tests have inflated size. An asymptotically exact test maybe devel-
oped to assess homogeneity in small samples or non-normal samples. Sakaori (2002a)
used an asymptotically exact permutation test for the equality of two correlation
coefficients for data from a trivariate normal distribution. He also developed an
asymptotically exact permutation test for equality of correlation coefficients in two
independent populations (Sakaori, 2002b), which was extended by Omelka and Pauly
(2012) to incorporate non-normal data. Although our setting is more complicated
than the settings of the cited works, we may also develop a permutation test to de-

termine if serial correlation is time-invariant to address the issue of inflated Type I
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error rates of our asymptotic tests.

In Chapter III, the posterior predictive tests in our simulations are generally
conservative. Meng (1994) suggested that under the prior predictive distribution,
posterior predictive p-value puts less weight to the extreme values, thus it is more
closely centered around 1/2 compared with a uniform variable. This indicates that
there exists an « small enough such that for all & € [0, ap] the probability of observing
a p-value less than a given the null hypothesis will never exceed «. Thus, our finding
that the posterior predictive tests in our simulations are conservative is supported
by Meng (1994) who stated that a posterior predictive test often will have a level
close to or less than that desired. Although in our particular problem, Bayesian
posterior predictive method does not seem to provide a better power than Wald test,
it offers an alternative way of examining the hypothesis testing problem. Besides, the
concept of discrepancy variables has been introduced to our test, which allows us to
incorporate unknown nuisance parameters into test statistics, rather than plugging
an estimator (e.g., maximum-likelihood estimator) obtained from the original data
for the parameters.

The biggest challenge we were faced with in Chapter III was that our methods
involved sampling parameters from their posterior distribution and generating repli-
cated data in each iteration, and several thousand iterations were needed to get a
posterior predictive p-value. The computation time is much longer than performing
a Wald test in the R environment. One future step to improve current method is to
perform MCMC sampling using another programming language, for example, C, to
shorten the computation time.

In Chapter IV, we have yet to derive a variance formula as the number of time

points goes to infinity, which is analogous to the methods of Breslow (1981). However,

95



unlike Breslow (1981)’s 2 x 2 table settings in which each stratum is independent,
the assumption of independence is not appropriate for longitudinal data since within-
subject correlation exists among time points. As a future direction, we will look for
solutions to obtain the asymptotic variance of C' — pB as the number of time points
goes to infinity. An alternative approach would be to bootstrap the data and then
directly compute the variance of rj;y over the bootstrap samples.

Our estimators have been only applied to normal data. It is desired to evaluate
the estimators in skewed (non-normal) data. Moreover, our current test statistics
in Chapter II and Chapter III and estimators in Chapter IV do not accommodate
missing data and a common sample size is assumed for all time points. However,
in real studies with repeated measures, dropouts is a common issue and needs to be
considered. We will do sensitivity analyses in our future simulations to evaluate our
methods assuming data are missing at random. Furthermore, it may be of interest
to develop a variation form of test statistics or estimators to allow the sample size to

vary from one time point to another.
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