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ABSTRACT

Testing for serial homogeneity and pooled correlation for longitudinally measured
biomarkers

by

Su Chen

Chair: Thomas M. Braun

Salivary biomarkers play an important role in predicting oral disease status along with

oral bacterial pathogens. Thus, our work is motivated by a study that longitudinally

measured periodontal biomarkers and levels of bacterial pathogens in the oral cavity

with the intent of testing whether the correlation between each biomarker and each

pathogen is homogeneous over time.

We first developed both frequentist and Bayesian approaches for testing for serial

homogeneity of correlation coefficients. We proposed two Wald tests and an F-test

based on the asymptotic distributions of sample correlation coefficients. We found

that the Wald test based on Fisher’s Z-transformation and the F-test have nominal

sizes when the data fit our assumed model, while the other Wald test has a more

inflated size in small samples. The Wald test based on Fisher’s Z-transformation is

generally robust to mis-specified models and heavier tailed data.

We then applied the concepts of Bayesian credible intervals and Bayesian posterior

predictive p-values. We decomposed the variance/covariance matrix of the data to

xii



standard deviation elements and correlation elements and ran a Metropolis-Hastings

algorithm within Gibbs with a set of parameters being updated at one time. Our

simulation results showed that Bayesian tests provide an alternative way of testing

homogeneity of serial correlations.

Under an assumption of homogeneity, we then developed a Mantel-Haenszel-type

estimator of the pooled correlation coefficient and its asymptotic variance estimate

as the sample size goes to infinity. Through simulations, we found that our proposed

Mantel-Haenszel estimator is very close to the true common correlation, and that the

variance estimator also performs well even with a small sample size. In addition, the

variance estimator remains robust to model mis-specification.

When applied to actual data, we found some significant, time-invariant correlation

did exist between MMP-8 and MMP-9 and some red complex pathogens. These

results are supported by published clinical research and demonstrate the utility of

our methods for providing guidance to investigators as to which biomarker/pathogen

pairs might best describe disease severity over time.
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CHAPTER I

Introduction

Our methods are motivated by data collected from a small longitudinal study of

gingivitis, or inflammation of the gums (gingivae) (Salvi et al., 2010). Investigators

enrolled nine subjects with Type I diabetes and nine control subjects without Type

I diabetes. The eighteen subjects in this study were instructed to refrain from all

oral health practices for 21 days so that the natural progression of gingivitis could

occur. After 21 days, the subjects were instructed to return to usual oral health

practices for two weeks. Each patient was examined at baseline (Day 0), 21 days

after enrollment (Day 21), when progression of gingivitis had occurred, and 35 days

after enrollment (Day 35), when gingivitis would be resolved. At each of these three

time points, investigators collected samples of plaque and gingival crevicular fluid

(GCF), the fluid between gums and teeth, from multiple sites of the mouths of the

eighteen subjects.

The GCF was analyzed for levels of several biomarkers, including tumor necrosis

factor (TNF)-α, calprotectin, matrix metalloproteinase-8 (MMP-8), and MMP-9, all

of which are known inflammatory markers and have been shown to exist in higher

levels in periodontally diseased subjects than in periodontally healthy subjects (Rai

et al., 2008; Yucel et al., 2008). The plaque was analyzed for levels of numerous bac-
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terial pathogens, three of which, Porphyromonas gingivalis, Tannerella forsythia, and

Treponema denticola, are known collectively as the “red complex” (Socransky et al.,

1998) and have been associated with higher levels of gingival inflammation (Socran-

sky et al., 2002; Zhang et al., 2002). Given that both the biomarkers and pathogens

appear to have an association with oral disease, it has been suggested that the level

of oral pathogens may directly trigger an immune response and thereby promote in-

creased levels of inflammatory biomarkers, including those listed (Yakob et al., 2012).

Thus, one goal of the pilot study was to assess the association of GCF biomarkers

and plaque pathogens during the progression and resolution of gingivitis and whether

the associations changed over the course of the study. Specifically, investigators were

curious to know if the association of pathogens and biomarkers would be weak prior

to the development of gingivitis and would become stronger once gingivitis had de-

veloped. The data were summarized as Pearson correlation coefficients between each

biomarker and each pathogen at each of Days 0, 21, and 35, and we began investi-

gating methods for testing the equality of serially-measured correlation coefficients.

Another issue that is of interest is whether there is a summary correlation to describe

the overall association between each biomarker and each pathogen, if the correlation

between them does not change over time.

The data described above generated two questions of interest. The first question

is how to test the equality of serial correlation between two longitudinally measured

continuous variables, and the second question aims to look for a pooled correlation

coefficient for the serial correlations if lack of homogeneity exists. In Chapters II and

III, we provide approaches from both frequentist and Bayesian frameworks, respec-

tively, for inference regarding heterogeneity of longitudinal correlation coefficients,

and in Chapter IV we propose methods for both estimation and inference of a pooled

2



correlation coefficient.

Specifically, in the second chapter, we propose a model for the joint distribution

of the serial biomarker measures and the serial pathogen measures and from this

model, we derive the asymptotic distribution of the sample correlation coefficient of a

biomarker and a pathogen at each time point. To determine if the correlation between

a biomarker and a pathogen is homogeneous over time, we use both a Wald test based

upon Fisher’s Z-transformation and an F-test with estimated degrees of freedom in

order to produce a test with valid size. We examine the performance of both tests

via Monte Carlo simulation in a variety of settings defined by the number of subjects,

the number of time points, and the range of the true correlation coefficients. We also

evaluated the validity of our tests when our assumed model does not match the true

model of the data.

In the third chapter, we propose to evaluate whether the correlation between two

continuous quantities measured at two or more time points are equal using Bayesian

credible intervals and Bayesian posterior predictive p-values. We use Bayesian credible

interval method with simulated data of two repeated measures, and sample the serial

correlations from their posterior distributions. We then evaluate the credible interval

of the samples drawn and decide whether to reject our null hypothesis. We use

Bayesian posterior predictive p-values with simulated data with more than two time

points, and the posterior predictive p-value is evaluated for Wald-like test statistics

and discrepancy measures. To sample parameters from their posterior distributions,

we run a Metropolis-Hastings algorithm within Gibbs with a set of parameters being

updated at one time. We examine the performance of our proposed Bayesian tests

via Monte Carlo simulation in a variety of settings defined by the number of subjects,

the number of time points, the range of the true correlation coefficients, the prior

3



setting, and whether there exists model violations. Our simulation results suggest

that Bayesian approaches have comparable performance in identifying heterogeneity

in medium sized datasets (e.g. n = 50) compared to Wald tests that are based on

asymptotics.

In the fourth chapter, we further explore how to pool serial correlation estimates

after a test of serial heterogeneity lacks statistical significance. We propose a Mantel-

Haenszel-like estimator for the pooled correlation coefficient and derive an asymptotic

variance estimator when the sample size goes to infinity. Unfortunately, we are still

in need of a valid variance formula when the number of time points goes to infinity.

We evaluate the bias of our pooled correlation estimator and the variance estimator

based on the number of subjects going to infinity in different settings via Monte Carlo

simulations.
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CHAPTER II

Tests for Time-invariant Correlation of

Longitudinally Measured Biomarkers

2.1 Introduction

Interest in assessing the equality of correlation coefficients has been examined

in a variety of research settings. Hotelling (1940) proposed methods for determin-

ing whether a calf’s girth or the calf’s length at an early age is a better predictor

of the calf’s ultimate weight. Elston (1975) examined the homogeneity of intra- and

interclass correlation coefficients in a study of the correlation of heights within and be-

tween genders. Donner and Zou (2002) applied several methods to study the equality

of intra-correlations of two techniques used for measuring ventricle-brain ratio. Olkin

and Finn (1990) examined whether the correlation of systolic blood pressure with

body-mass index (BMI) was equal for three different age cohorts.

Several published statistical methods exist for assessing homogeneity of correla-

tion coefficients. Olkin and Siotani (1976) propose using the asymptotic normality

of sample correlation coefficients, and Olkin and Finn (1990) derive an asymptotic

χ2
p−1 test of equality of more than two correlated coefficients when assuming a spe-
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cific form of the variance-covariance matrix. Dunn and Clark (1969) and Dunn and

Clark (1971) present related methods using Fisher’s Z-transformation, defined as

z = ln[(1 + r)/(1 − r)]/2, where r is the sample estimate of ρ (Fisher, 1915, 1921).

Raghunathan et al. (1996) compared the power of a statistic based on the differ-

ence of two correlations and the difference of their Fisher’s Z-transformed values for

testing equality and suggested Fisher’s Z-transformation should be used to obtain

higher power. Meng et al. (1992) extended the work of Dunn and Clark (1969) using

Fisher’s Z transformation with the goal of comparing correlation coefficients between

a dependent random variable and a set of mutually independent random variables.

Raghunathan (2003) then extended Meng et al. (1992)’s methods to allow for missing

values in the data.

The methods cited above focused upon the comparison of two correlation coef-

ficients. However, given our interest in assessing the homogeneity of several corre-

lation coefficients from longitudinal data, an obvious extension of the methods was

needed. We chose to model the data using a more general joint normal distribution

that is more appropriate for a longitudinal study than the model used by Olkin and

Siotani (1976) and Olkin and Finn (1990). We examine the performance of modified

tests using both untransformed correlation coefficients, as well as one using Fisher’s

Z-transformed correlation coefficients. For certain data patterns, an F -test is intro-

duced. In Section 2.2, we describe our model for the joint distribution of the serial

measures of a biomarker and a pathogen and derive the joint asymptotic distribution

of the serial sample correlation coefficients. We then present our three test statistics

and appropriate null distributions for each. In Section 2.3, we assess the empirical

size and power of our proposed tests in a variety of scenarios under two major settings

(medium serial correlations and small serial correlations), motivated by the data col-
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lected in the pilot study described earlier and also apply our methods to data from

another longitudinal periodontal study. Section 2.5 contains our concluding remarks.

2.2 Methods

2.2.1 Notation

We have n subjects who are each examined sequentially at times t1 < t2, . . . , < tm.

Let Xij and Yij, i = 1, 2, . . . , n; j = 1, 2, . . . ,m, denote the respective values of

biomarker X and biomarker Y collected from subject i at time tj. Marginally, we as-

sumeXij ∼ N (µxj, σ
2
j ) and Yij ∼ N (µyj, τ

2
j ). We assume thatXi.={Xi1, Xi2, . . . , Xim}

and Yi. = {Yi1, Yi2, . . . , Yim} have a multivariate normal distribution in which the el-

ements of Xi are assumed to be exchangeably correlated with correlation ρx, and

the elements of Yi are exchangeably correlated with correlation ρy. A common cross-

correlation, ρxy between Xij and Yik is also assumed, where j 6= k. All of these

correlations are nuisance parameters; our primary interest lies in ρ1, ρ2, . . . , ρm, in

which ρj = Corr(Xij, Yij), j = 1, 2, . . .m.

If we then denote Di = {Xi1, Yi1, Xi2, Yi2, · · · , Xim, Yim}t as the (2m× 1) longitu-

dinal vector of pairs of biomarker and pathogen for subject i, Di has a multivariate

normal distribution with mean vector µ and variance Σ in which

µ = {µx1, µy1, µx2, µy2, · · · , µxm, µym} (2.1)
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and

Σ =



σ2
1 ρ1σ1τ1 ρxσ1σ2 ρxyσ1τ2 · · · ρxσ1σm ρxyσ1τm

ρ1σ1τ1 τ 21 ρxyσ2τ1 ρyτ1τ2 · · · ρxyσmτ1 ρyτ1τm

ρxσ1σ2 ρxyσ2τ1 σ2
2 ρ2σ2τ2 · · · ρxσ2σm ρxyσ2τm

ρxyσ1τ2 ρyτ1τ2 ρ2σ2τ2 τ 22 · · · ρxyσmτ2 ρyτ2τm

...
...

...
...

. . .
...

...

ρxσ1σm ρxyσmτ1 ρxσ2σm ρxyσmτ2 · · · σ2
m ρmσmτm

ρxyσ1τm ρyτ1τm ρxyσ2τm ρyτ2τm · · · ρmσmτm τ 2m



(2.2)

2.2.2 Proposed Tests

We are interested in testing the hypotheses H0 : ρ1 = ρ2 = . . . = ρm versus Ha :

two or more of ρ1, ρ2, . . . , ρm are unequal. For time j, let X.j = {X1j, X2j, · · · , Xnj}

and Y.j = {Y1j, Y2j, · · · , Ynj} denote the respective vectors of all subjects’ values of

biomarker X and pathogen Y . For j 6= k, we then denote S̃XXj
as the sample variance

of X.j , S̃Y Yj as the sample variance of Y.j , S̃XXjk
as the sample covariance between

X.j and X.k, S̃Y Yjk as the sample covariance between Y.j and Y.k, S̃XYj as the sample

covariance between X.j and Y.j , and S̃XYjk as the sample covariance between X.j and

Y.k. Elston (1975) has shown that the maximum likelihood estimators ρ̂1, ρ̂2, . . . , ρ̂m,
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ρ̂x, ρ̂y and ρ̂xy for ρ1, ρ2, . . . , ρm, ρx, ρy and ρxy, respectively, are:

ρ̂j =
ρ̂jσjτj√
σ̂2
j

√
τ̂ 2j

=
S̃XYj√
S̃XXj

S̃Y Yj

; j = 1, 2, . . .m (2.3)

ρ̂x =

∑
j 6=k ρ̂xσjσk∑
j 6=k

√
σ̂2
j σ̂

2
k

=

∑
j 6=k S̃XXjk∑

j 6=k

√
S̃XXj

S̃XXk

(2.4)

ρ̂y =

∑
j 6=k ρ̂yτjτk∑
j 6=k

√
τ̂ 2j τ̂

2
k

=

∑
j 6=k S̃Y Yjk∑

j 6=k

√
S̃Y Yj S̃Y Yk

(2.5)

ρ̂xy =

∑
j 6=k ρ̂xyσjτk∑
j 6=k

√
σ̂2
j τ̂

2
k

=

∑
j 6=k S̃XYjk∑

j 6=k

√
S̃XYj S̃XYk

(2.6)

We now derive the variance of each ρ̂j. Let cls be the usual estimate (i.e., sam-

ple covariance) of γls, which is the (l, s)th element of the covariance matrix of a

multivariate normal distribution with n observations. According to Elston (1975),

asymptotically,

cov(cls, crh) =
1

n
(γlhγsr + γlrγsh) (2.7)

Using this asymptotic property, we are able to derive the asymptotic variances and

covariances of ρ̂jσjτj, σ̂
2
j and τ̂ 2j . After some straightforward algebra,

var(σ̂2
j ) =

2

n
σ4
j

var(ρ̂jσjτj) =
σ2
j τ

2
j

n
(1 + ρ2j)

cov(σ̂2
j , τ̂

2
j ) =

σ2
j τ

2
j

n
(1 + ρ2j)

cov(σ̂2
j , σ̂

2
k) =

2

n
(ρxσjσk)

2
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cov(σ̂2
j , τ̂

2
k ) =

2

n
(ρxyσjτk)

2

cov(ρ̂jσjτj, ρ̂jσkτk) =
σjσkτjτk

n
(ρxρy + ρ2xy)

cov(σ̂2
j , ρ̂jσjτj) =

2

n
(ρjσ

3
j τj)

2

cov(σ̂2
j , ρ̂kσjτk) =

2

n
(ρxρxyσ

2
jσkτk)

2

The maximum likelihood estimates of ρ′js can be expressed by Equation 2.3 , a

function of elements whose asymptotic variances and covariances are shown above.

Therefore the asymptotic variance of ρ̂1, ρ̂2, · · · , ρ̂m can be easily obtained by Delta

method.

Therefore, the variance of each ρ̂j is

V ar(ρ̂j) ≈
1

n
(1− ρ̂2j)2, (2.8)

which is a function solely of ρ̂j, while the covariance between ρ̂j and ρ̂k is

Cov(ρ̂j, ρ̂k) ≈
1

n

{
1

2
ρ̂j ρ̂k(ρ̂

2
x + ρ̂2y) + ρ̂2xy(1 + ρ̂j ρ̂k) + ρ̂xρ̂y − ρ̂xy(ρ̂j + ρ̂k)(ρ̂x + ρ̂y)

}
,

(2.9)

which is a function of not only ρ̂j and ρ̂k, but also ρ̂x, ρ̂y, and ρ̂xy. Note that Equations

(2.8) and (2.9) are similar in form to those given by Olkin and Siotani (1976), but

differ in order to reflect the fact that the covariance matrix given in (2.2) differs from

that used by Olkin. We also mention that Yu and Dunn (1982) suggested that the

value n in Equations (2.8) and (2.9) be replaced by the value n−3 in order to improve

the approximation in small samples.

We let ρ = {ρ1, ρ2, . . . , ρm} with corresponding estimator ρ̂ = {ρ̂1, ρ̂2, . . . , ρ̂m},

so that ρx, ρy, and ρxy are viewed as nuisance parameters. Let Σ̂ρ be an m × m
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matrix with diagonal element (j, j) equal to V ar(ρ̂j) as given by Equation (2.8), and

off-diagonal element (j, k) equal to Cov(ρ̂j, ρ̂k), as given by Equation (2.9). Also let

L be an m× (m− 1) contrast matrix for the pairwise differences, i.e.

L =



1 −1 0 0 · · · 0

0 1 −1 0 · · · 0

...
...

...
...

. . .
...

0 0 · · · 0 1 −1


Then the null hypothesis H0 : ρ1 = ρ2 = . . . = ρm can be tested using the Wald

statistic χ2
ρ = (Lρ̂)T (LΣ̂ρL

T )−1(Lρ̂) which has an asymptotic chi-square distribution

with m− 1 degrees of freedom under the null hypothesis.

However, we discovered in simulations with small sample sizes and small serial

correlations that comparison of χ2
ρ to a chi-squared distribution with m−1 degrees of

freedom led to over-rejection of the null hypothesis whether or not the denominators

in Equations (2.8) and (2.9) were equal to n or n− 3. In order to create a test with

a size closer to the nominal level desired, we adopted the idea of Kenward and Roger

(1997) as follows. Instead of comparing χ2
ρ to a chi-squared distribution with m − 1

degrees of freedom, we will instead compare Fρ = λχ2
ρ/(m− 1) to an F -distribution

with m − 1 numerator degrees of freedom and δ denominator degrees of freedom,

in which both λ and δ are estimated by equating the first two moments of Fρ with

the first two moments of the reference F -distribution. Over a grid search of possible

values of n and m, we found that a scale factor λ = (n+50− (m−1))/(n+49) which

is a number slightly smaller than 1 when m > 2, and δ = n+ 20− (m− 1) led to very

similar moments and a test with improved size.

An alternate test would be based on Fisher’s Z-transformation, ẑ = {ẑ1, ẑ2, · · · , ẑm},
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leading to the statistic χ2
z = (Lẑ)T (LΣ̂zL

T )−1(Lẑ), in which Σ̂z is the variance of ẑ

obtained through the Delta method. Specifically, Σ̂z has diagonal element (j, j) equal

to 1/n and off-diagonal element (j, k) equal to Cov(ρ̂j, ρ̂k)/[(1 − ρ̂2j)(1 − ρ̂2k)]. We

note again that Yu and Dunn (1982) suggest replacing the value n with n− 3 in the

variance and covariance expressions. This statistic also has an asymptotic chi-square

null distribution with m− 1 degrees of freedom. We found in simulations with small

sample sizes that unlike the test using χ2
ρ, a test using χ2

z had nominal size when the

value n − 3 was used as a replacement to n in the denominators of Equations (2.8)

and (2.9).

2.3 Application of Methods

2.3.1 Simulation Study

We first examined the performance of the test with both proposed statistics χ2
ρ

and χ2
z under various settings for hypothetical longitudinal datasets based upon the

data from our motivating example. For each subject i, i = 1, 2, . . . , n, biomarker X

and pathogen Y are both observed at m time points. We assume Xij ∼ N (µxj, σ
2
j )

and Yij ∼ N (µyj, τ
2
j ), in which µxj = 2.5 and µyj = 4.0, σj = 0.3, and τj =

0.40 − 0.05(j − 1). Note that correlation is location and scale invariant, so that

our results are generalizable to other values of location and scale. In terms of the

joint distribution of the data, we considered two settings. In the first setting, which

we call an ”autoregressive nuisance” setting, the elements of Xi. have an autoregres-

sive correlation structure with correlation ρ
|j−k|
x0 , the correlation between Yij and Yik

is similarly set to be ρ
|j−k|
y0 , and the cross-correlation between Xij and Yik or between

Xik and Yij is cρ
|j−k|
xy0 , where c is a positive constant. In our second setting, which we

12



call a ”constant nuisance” setting, the elements of Xi are exchangeably correlated

with correlation ρx, and the elements of Yi are exchangeably correlated with correla-

tion ρy. We also assume a common cross-correlation, ρxy between Xij and Yik, where

j 6= k. Thus, the autoregressive nuisance setting violates our assumed model, whereas

the constant nuisance setting matches our assumed model.

We first present simulation results for the setting with autoregressive nuisance

correlations. We selected the values ρx0 = 0.5, ρy0 = 0.6, ρxy0 = 0.7 and c =

1.7×ρx0ρy0 . With regard to the correlation parameters of interest, {ρ1, ρ2, . . . , ρm}, a

specific set of values was defined by two quantities, ρmin ∈ {0.2, 0.3, 0.4, 0.5} and ∆ ∈

{0.0, 0.1, 0.3}. We set ρ1 = ρmin, ρm = ρmin+ ∆, and all other correlation parameters

ρ2, ρ3, . . . , ρm−1 were equally spaced between ρ1 and ρm. Thus, a value of ∆ = 0

represents the null hypothesis, while ∆ > 0 represents the alternative hypothesis. For

each combination of ρmin and ∆, we simulated Di={Xi1, Yi1, Xi2, Yi2, · · · , Xim, Yim},

the data for each subject i, from a multivariate normal distribution with mean µ

and variance as described above. We considered sample sizes of n ∈ {50, 100, 500}

and the number of time points m ∈ {2, 3, 4, 5}. We performed a test of equality of

correlation coefficients over time by comparing χ2
ρ and χ2

z, each computed with n− 3

in the denominator of Equations (2.8) and (2.9), to a chi-squared distribution with

m− 1 degrees of freedom.

Table 2.1 presents the empirical size of tests using either of the two proposed

statistics for various combinations of n,m, and ρmin. Based upon a 95% confidence

interval around a desired size of 0.05, we would expect the number of rejections in

5,000 simulation for a nominal test would lie in the interval (4.5, 5.6). Overall, with

a sample size of n = 500, both modified tests have nominal size, regardless of the

number of time points and the value of ρmin. With sample sizes of n = 100 and
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n = 50, a test using χ2
z continued to remain nominal, while the size of the test using

χ2
ρ was slightly inflated in some scenarios but not far from the upper bound of the

interval. Moreover, the inflated test size when using χ2
ρ increased with the number of

time points. Thus, tests using either statistic are generally robust under this setting,

although we suggest caution when using χ2
ρ in small samples with several time points.

Table 2.1: Size of tests with autoregressive nuisance correlation. Each value is the
percentage of simulations out of 5,000 in which the null hypothesis is re-
jected. χ2

z=Test based on Fisher’s Z-transformation; χ2
ρ=Test based on

original ρj ’s.
n = 500 n = 100 n = 50

m ρmin χ2
z χ2

ρ χ2
z χ2

ρ χ2
z χ2

ρ

2 0.2 5.0 5.0 4.7 4.8 5.4 5.6
0.3 5.0 5.0 4.8 4.8 5.3 5.3
0.4 5.0 5.0 4.8 4.7 5.1 5.0
0.5 5.0 4.9 4.8 4.6 5.1 4.6

3 0.2 5.0 5.2 4.9 5.3 5.2 5.9
0.3 5.2 5.2 4.9 5.2 5.1 5.7
0.4 5.1 5.2 4.8 5.2 5.1 5.4
0.5 5.1 5.0 4.9 4.9 5.1 4.9

4 0.2 4.5 4.7 5.4 5.7 5.0 6.2
0.3 4.6 4.7 5.4 5.7 5.1 5.9
0.4 4.5 4.5 5.1 5.4 5.2 5.5
0.5 4.4 4.4 5.1 5.2 5.1 5.0

5 0.2 5.0 5.1 5.3 5.6 5.1 6.3
0.3 4.9 5.0 5.3 5.8 4.9 6.1
0.4 4.9 5.0 5.2 5.5 5.0 5.7
0.5 4.9 5.0 5.3 5.3 5.1 5.3

Table 2.2 presents the power of the tests using χ2
z and χ2

ρ it the setting with au-

toregressive nuisance correlation. For reference, Table 2.2 also includes the estimated

power of a test of equality of correlation coefficients using the formula proposed by

Tu et al. (2006). However, the formula is based upon a correlation structure different
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from ours, so we expect the empirical power of our test to deviate slightly from that

found via the formula. From the results in Table 2.2, we see first that both tests have

comparable power, and the empirical power of each is higher than that predicted by

the power formula of Tu et al. (2006), especially in large data. The results suggest

that the more the serial correlations depart from zero, we see an increase in power of

both tests. For example, when n = 100 and m = 3 and ∆ = 0.1, as ρmin increases

from 0.2 to 0.5, the power of both tests increases from about 0.11 to 0.15. With

∆ = 0.3, as ρmin increases from 0.2 to 0.5, the power of both tests increases from

about 0.65 to 0.97. The results in Table 2.1 also suggest that power decreases as the

number of time points increases. For example, with n = 100, ∆ = 0.1 and ρmin = 0.2,

the power of χ2
ρ decreases from just over 0.50 when m = 2 to just over 0.30 when

m = 5.

We now present simulation results with constant nuisance correlation. Given

that we have just shown that our tests are robust to model mis-specification, we

expect our tests to perform equally as well when the joint distribution of the data

matches that assumed in our test statistics. The means and variances are the same

as those used in the earlier simulations. For the nuisance correlation parameters,

we set ρx = 0.5, ρy = 0.7, and ρxy = 0. We once again determined values for

the correlation parameters of interest, {ρ1, ρ2, . . . , ρm}, by considering two quantities,

ρmin ∈ {−0.2,−0.1, 0, 0.1, 0.2} and ∆ ∈ {0.0, 0.1, 0.3}. We set ρ1 = ρmin, ρm =

ρmin + ∆, and all other correlation parameters ρ2, ρ3, . . . , ρm−1 were equally spaced

between ρ1 and ρm. We also considered sample sizes of n ∈ {50, 100, 500} and the

number of time points m ∈ {2, 3, 4, 5}.

We note that the values of the correlation parameters are of lower magnitude than

those used in setting with autoregressive nuisance correlation. This is because the
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Table 2.2: Empirical and theoretical power of both tests when ∆=0.1 and 0.3 with
autoregressive nuisance correlation. Each value is the number of simula-
tions out of 5,000 in which the p-value is less than 0.05. χ2

z=Test based
on Fisher’s Z-transformation; χ2

ρ=Test based on original ρj ’s; PFTu=Tu’s
power function.

∆=0.1 n = 500 n = 100 n = 50
m ρmin χ2

z χ2
ρ PFTu χ2

z χ2
ρ PFTu χ2

z χ2
ρ PFTu

2 0.2 51.8 51.9 50.7 14.1 14.4 14.3 10.1 10.4 9.6
0.3 55.8 55.8 53.8 15.1 15.0 15.1 10.6 10.6 10.0
0.4 63.1 63.0 57.9 17.0 16.7 16.2 11.6 11.0 10.5
0.5 75.3 75.1 62.7 20.6 20.0 17.5 13.8 12.5 11.2

3 0.2 37.8 38.1 32.7 10.8 11.2 9.9 8.1 8.6 7.4
0.3 41.3 41.4 35.8 11.6 11.6 10.4 8.3 8.7 7.6
0.4 47.9 47.8 40.3 12.7 12.5 11.3 8.9 8.7 8.0
0.5 58.7 58.5 46.7 15.0 14.5 12.5 10.0 9.2 8.6

4 0.2 34.7 35.0 27.2 10.3 10.7 8.7 7.6 8.7 6.8
0.3 37.9 38.2 30.4 10.8 11.1 9.2 7.8 8.6 7.0
0.4 44.5 44.4 35.4 12.0 12.1 10.1 8.4 8.7 7.4
0.5 55.2 55.2 43.4 14.2 13.7 11.5 9.5 8.8 8.1

5 0.2 31.8 32.0 24.8 9.3 9.9 8.2 7.3 8.6 6.6
0.3 35.2 35.4 28.1 9.7 10.2 8.7 7.5 8.4 6.8
0.4 41.1 41.1 33.8 10.4 10.8 9.6 7.8 8.2 7.2
0.5 51.8 51.7 43.9 12.3 12.2 11.3 8.9 8.6 7.9

∆=0.3 n = 500 n = 100 n = 50
m ρmin χ2

z χ2
ρ PFTu χ2

z χ2
ρ PFTu χ2

z χ2
ρ PFTu

2 0.2 100.0 100.0 100.0 81.1 81.0 80.2 50.7 50.7 51.1
0.3 100.0 100.0 100.0 87.8 87.5 83.4 58.7 57.6 54.5
0.4 100.0 100.0 100.0 95.5 95.2 86.5 71.8 69.2 58.2
0.5 100.0 100.0 100.0 99.8 99.7 88.8 90.4 88.5 61.2

3 0.2 100.0 100.0 100.0 65.4 65.6 61.1 37.0 37.5 33.9
0.3 100.0 100.0 100.0 73.9 73.6 67.0 43.6 43.1 37.9
0.4 100.0 100.0 100.0 86.1 85.9 73.9 55.0 53.4 43.3
0.5 100.0 100.0 100.0 97.1 96.9 80.7 75.3 72.9 49.5

4 0.2 100.0 100.0 99.9 61.5 62.3 53.8 32.6 33.8 28.6
0.3 100.0 100.0 100.0 70.1 70.2 61.5 38.9 39.0 33.2
0.4 100.0 100.0 100.0 82.0 81.6 71.6 50.2 48.9 40.4
0.5 100.0 100.0 100.0 94.9 94.7 83.1 68.7 66.7 50.8

5 0.2 100.0 100.0 99.9 58.6 59.8 51.1 32.2 33.8 26.6
0.3 100.0 100.0 100.0 68.2 68.5 60.4 37.3 38.0 32.0
0.4 100.0 100.0 100.0 80.8 80.8 73.8 47.1 46.5 41.3
0.5 100.0 100.0 100.0 93.6 93.8 89.6 66.0 63.7 58.0
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empirical correlations in our motivating data were in the interval [−0.20, 0.20] and we

wanted to examine the performance of our tests with data simulated under conditions

similar to those we observed. In this setting, since we discovered that comparison of

χ2
ρ to a chi-squared distribution with m−1 degrees of freedom led to over-rejection of

the null hypothesis, we also compared Fρ to an F -distribution with m− 1 numerator

degrees of freedom and n + 20 − (m − 1) denominator degrees of freedom. The size

and power of the three tests in each setting were estimated from the rejection rates

in 5,000 simulated datasets.

Table 2.3 presents the empirical size of tests using the three statistics for various

combinations of n,m, and ρmin. Overall, with a sample size of n = 500, all three tests

have nominal size, regardless of the number of time points and the value of ρmin.

With sample sizes of n = 100 and n = 50, a test using χ2
z continued to maintain a

nominal size, while the size of the test using χ2
ρ was inflated in some settings. Relative

to the results seen in Table 2.1, the magnitude of inflation in Type I error rate when

using χ2
ρ is bigger in our current setting, which has smaller serial correlations than

those in the previous setting. Thus, general use of χ2
ρ in small samples with small

serial correlations is not advised. In contrast, the size of our proposed F -test using

the statistic Fρ remains nominal regardless of the sample size.

Table 2.4 presents the power of the tests using χ2
z and Fρ; the test using χ2

ρ was

not be examined for power due to its invalid size. From the results in Table 2.4, we

see first that the tests using Fρ and χ2
z have comparable power, and the empirical

power of each is fairly close to that predicted by the power formula of Tu et al. (2006).

Lastly, we investigated the effect of non-normality on the size of our tests. We

repeated the simulations summarized in Tables 2.1 and 2.3 on heavier tailed, corre-

lated logistic data. Now for each subject, we first sampled a vector of independent
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Table 2.3: Size of tests using χ2
ρ and χ2

z under setting II. Each value is the percentage
of simulations out of 5,000 in which the null hypothesis is rejected. χ2

z=Test
based on Fisher’s Z-transformation; χ2

ρ=Test based on original ρj ’s; Fρ=F -
test with estimated denominator degrees of freedom.

n = 500 n = 100 n = 50
m ρmin χ2

z χ2
ρ Fρ χ2

z χ2
ρ Fρ χ2

z χ2
ρ Fρ

2 -0.2 5.0 5.1 5.0 4.9 5.0 4.8 5.5 5.6 5.2
-0.1 4.9 4.9 4.9 4.9 5.0 4.9 5.3 5.6 5.2

0 4.9 4.9 4.9 4.9 5.1 4.8 5.3 5.7 5.3
0.1 4.9 5.0 4.9 4.6 4.9 4.6 5.4 5.7 5.3
0.2 4.8 4.8 4.8 4.9 4.9 4.7 5.5 5.7 5.3

3 -0.2 5.1 5.2 5.0 5.3 5.5 5.2 5.3 6.1 5.3
-0.1 5.0 5.1 4.9 5.2 5.7 5.1 5.4 6.1 5.2

0 5.0 5.1 5.0 5.3 5.7 5.3 5.5 6.2 5.4
0.1 5.2 5.3 5.1 5.4 5.7 5.3 5.5 6.2 5.4
0.2 5.2 5.3 5.1 5.3 5.5 5.1 5.5 6.2 5.2

4 -0.2 4.9 4.9 4.8 5.9 6.3 5.5 5.7 6.3 5.3
-0.1 4.9 4.9 4.7 5.7 6.2 5.4 5.7 6.7 5.3

0 4.8 4.9 4.7 5.7 6.1 5.4 5.6 6.6 5.5
0.1 4.9 5.0 4.8 5.7 6.1 5.4 5.5 6.6 5.4
0.2 5.0 5.1 4.8 5.7 6.0 5.6 5.5 6.6 5.3

5 -0.2 5.2 5.3 5.1 5.5 6.1 5.1 5.7 6.9 5.2
-0.1 5.2 5.4 5.0 5.5 5.9 5.1 5.4 6.8 5.0

0 5.2 5.3 5.1 5.4 6.1 5.1 5.2 6.7 4.8
0.1 5.2 5.3 5.1 5.5 6.1 5.1 5.3 6.6 5.0
0.2 5.2 5.3 5.1 5.5 6.1 5.1 5.4 7.0 5.2
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Table 2.4: Empirical and theoretical power of both tests when ∆=0.1 and 0.3 with
constant nuisance correlation. Each value is the number of simulations
out of 5,000 in which the p-value is less than 0.05. χ2

z=Test based on
Fisher’s Z-transformation; Fρ=F -test with estimated denominator degrees
of freedom; Tu=Tu’s power function.

∆=0.1 n = 500 n = 100 n = 50
m ρmin χ2

z Fρ Tu χ2
z Fρ Tu χ2

z Fρ Tu
2 -0.2 53.0 53.0 51.6 14.3 14.2 14.6 10.4 10.0 9.7

-0.1 50.2 50.1 50.3 13.4 13.4 14.2 10.0 9.9 9.5
0 49.9 49.9 50.7 13.3 13.2 14.3 10.2 10.0 9.6
0.1 53.1 53.0 52.8 14.1 13.9 14.8 10.6 10.5 9.8

3 -0.2 43.3 43.2 41.6 11.7 11.6 11.5 8.6 8.4 8.1
-0.1 40.8 40.6 40.3 11.2 11.1 11.3 8.5 8.4 8.0
0 40.3 40.2 40.7 11.2 11.1 11.3 8.5 8.4 8.1
0.1 43.0 42.9 42.7 11.9 11.8 11.7 8.9 8.5 8.2

4 -0.2 42.4 42.2 39.6 11.7 11.3 10.8 8.6 8.3 7.8
-0.1 40.1 39.8 38.4 11.3 11.0 10.6 7.9 7.7 7.7
0 40.2 40.0 38.8 11.2 11.0 10.7 8.1 7.8 7.7
0.1 43.2 42.9 40.9 11.7 11.4 11.0 8.6 8.2 7.9

5 -0.2 41.3 40.8 39.5 10.8 10.0 10.5 7.9 7.5 7.6
-0.1 38.3 38.0 38.3 10.2 9.8 10.3 7.7 7.2 7.5
0 38.5 38.1 38.8 10.4 9.7 10.4 7.6 7.2 7.6
0.1 41.2 40.7 40.9 10.9 10.3 10.8 8.0 7.4 7.7

∆=0.3 n = 500 n = 100 n = 50
m ρmin χ2

z Fρ PFTu χ2
z Fρ PFTu χ2

z Fρ PFTu
2 -0.2 100.0 100.0 100.0 75.2 75.1 76.5 46.2 46.1 47.5

-0.1 100.0 100.0 100.0 75.5 75.2 77.7 46.2 46.0 48.6

3 -0.2 100.0 100.0 100.0 65.3 65.0 66.8 36.6 36.2 37.8
-0.1 100.0 100.0 100.0 65.4 65.1 68.2 36.1 36.1 38.8

4 -0.2 100.0 100.0 100.0 64.5 63.8 65.1 33.8 32.8 35.6
-0.1 100.0 100.0 100.0 64.5 64.0 66.7 33.7 33.0 36.8

5 -0.2 100.0 100.0 100.0 64.3 63.1 65.7 33.4 32.2 35.4
-0.1 100.0 100.0 100.0 64.5 63.1 67.7 33.3 31.9 36.7
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values from a logistic distribution with mean 0 and variance 1 and then multiplied

this vector by the Cholesky decomposition of the true covariance matrix (Equation

2.2) to obtain data with the desired correlations and variances. The same tests for

each setting, autoregressive and constant cross-correlation were performed and the

resulting sizes of the tests are shown in Tables 2.5 and 2.6, respectively. In Table 2.5,

we see that the sizes of both the χ2
z and χ2

ρ tests are inflated, indicating that mild

lack of normality in addition to a model mis-specification (autoregressive nuisance

correlations) has some impact on the size of the tests. In Table 2.6, the same χ2
z,

χ2
ρ and Fρ tests were performed. The size of all three tests are inflated, especially in

data with ρmin far from 0 and with a larger number of time points. The test using Fρ

produces nominal sizes in most scenarios although the size is inflated in some cases.

Nonetheless, the test using Fρ still performs better than the χ2
z and χ2

ρ tests. Table

2.6 indicates that as long as there is no model mis-specification (constant nuisance

correlations), mild lack of normality has some impact on the size of the tests, but not

much.

2.4 Motivating example

Since the original data that motivated our work has only 18 subjects whose

observations at the third time point were completely missing, we analyzed a sim-

ilar set of data from a longitudinal periodontal study described by Kinney et al.

(2011) and Ramseier et al. (2009). 79 subjects contributed complete data during 12-

month study, including levels of four serum-derived biomarkers: TNF-α, Calprotectin,

metalloproteinase-8 (MMP-8), and MMP-9, and four saliva-derived biomarkers: IL-

1β, MMP-8, MMP-9 and OPG, and three periodontal plaque biofilm pathogens:

P.gingivalis, T.forsythia, and T.denticola examined at baseline (denoted Month 0), 6
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Table 2.5: Size of tests using χ2
ρ and χ2

z when data follows a multivariate logistic
distribution with autoregressive nuisance correlation. Each value is the
percentage of simulations out of 5,000 in which the null hypothesis is re-
jected. χ2

z=Test based on Fisher’s Z-transformation; χ2
ρ=Test based on

original ρj ’s.
n = 500 n = 100 n = 50

m ρmin χ2
z χ2

ρ χ2
z χ2

ρ χ2
z χ2

ρ

2 0.2 6.1 6.1 6.1 6.2 5.8 6.0
0.3 5.8 5.8 6.0 6.1 5.9 5.9
0.4 6.1 6.1 6.1 6.1 6.0 5.6
0.5 6.3 6.2 6.8 6.4 6.2 5.6

3 0.2 6.1 6.3 6.5 6.9 6.3 7.0
0.3 5.8 5.8 6.1 6.2 5.6 5.9
0.4 5.8 6.0 5.8 5.9 5.5 5.5
0.5 6.5 6.5 6.2 6.1 6.0 5.6

4 0.2 6.4 6.6 6.4 6.9 6.4 7.5
0.3 5.7 5.8 5.9 6.3 5.7 6.5
0.4 5.5 5.6 6.0 6.2 5.8 6.3
0.5 6.0 6.2 6.4 6.5 6.5 6.2

5 0.2 6.9 7.1 6.6 7.3 6.1 7.3
0.3 6.3 6.3 5.9 6.4 5.5 6.5
0.4 6.1 6.2 5.9 6.0 5.5 5.8
0.5 6.9 6.9 6.3 6.2 6.2 6.0
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Table 2.6: Size of tests using χ2
ρ and χ2

z with constant nuisance correlations, while the
data follows a multivariate logistic distribution. Each value is the percent-
age of simulations out of 5,000 in which the null hypothesis is rejected.
χ2
z=Test based on Fisher’s Z-transformation; χ2

ρ=Test based on original
ρj ’s; Fρ=F -test with estimated degrees of freedom.

n = 500 n = 100 n = 50
m ρmin χ2

z χ2
ρ Fρ χ2

z χ2
ρ Fρ χ2

z χ2
ρ Fρ

2 -0.2 5.8 5.8 5.8 5.2 5.3 5.0 5.9 6.0 5.7
-0.1 5.1 5.1 5.0 5.1 5.2 5.1 5.3 5.6 5.2

0 4.8 4.8 4.7 5.2 5.4 5.1 5.2 5.5 5.1
0.1 5.0 5.0 5.0 5.3 5.5 5.2 5.4 5.7 5.3
0.2 5.4 5.4 5.4 5.8 5.9 5.8 5.6 5.7 5.3

3 -0.2 6.2 6.2 6.1 6.5 6.9 6.3 5.8 6.4 5.6
-0.1 5.7 5.8 5.6 6.1 6.5 6.0 4.8 5.3 4.7

0 4.8 4.9 4.8 5.7 6.0 5.6 4.7 5.6 4.8
0.1 5.0 5.1 5.0 5.8 6.3 5.6 5.2 5.9 5.0
0.2 6.0 6.0 5.9 6.4 6.7 6.1 6.1 6.6 5.8

4 -0.2 6.0 6.2 5.9 6.6 7.0 6.3 6.0 7.1 5.8
-0.1 5.2 5.3 5.1 5.8 6.1 5.4 5.4 6.4 5.2

0 5.2 5.3 5.2 5.3 5.8 5.0 5.1 6.3 4.9
0.1 5.5 5.6 5.3 5.4 6.1 5.2 5.7 6.5 5.5
0.2 6.2 6.3 6.0 6.4 7.0 6.1 6.7 7.5 6.4

5 -0.2 6.0 6.2 6.0 6.3 7.2 5.8 6.1 7.7 5.9
-0.1 5.4 5.4 5.2 5.4 6.2 5.0 5.3 6.7 5.0

0 5.1 5.3 5.0 5.0 5.8 4.8 5.2 6.6 4.9
0.1 5.2 5.3 5.1 5.4 6.1 4.9 5.7 7.0 5.3
0.2 6.3 6.5 6.3 6.8 7.5 6.4 6.7 8.3 6.5
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months and 12 months. Ramseier et al. (2009) found that the concentration levels

of MMP-8, MMP-9 and calprotectin were strong predictors of periodontitis and all

three plaque pathogens demonstrated stronger associations than the four biomarkers.

Considering the ability of both biomarkers and pathogens as predictors of periodontal

disease, it is natural to expect some degree of correlation between them. Our primary

question is whether or not the correlation between each biomarker and each pathogen

is constant over time. Before analyzing the data, we first added 1.0 to all measures

(as some had values equal to zero) and then took the natural logarithm of each.

2.4.1 Serum biomarker dataset

Table 2.7 contains the serial correlations of each serum biomarker with each

pathogen after the transformation described above. Most serial correlations ranged

between -0.2 and 0.2. The range of minimum serial correlation was [−0.2, 0] and the

difference between the largest and smallest correlation coefficients over time varied

from 0.09 for MMP-8 and T.denticola to 0.33 for MMP-9 and T.gingivalis. Further-

more, most combinations had both positive and negative correlations over the three

time points. To test the hypothesis time-homogeneous correlation between a serum

biomarker and a pathogen, χ2
z, χ

2
ρ and F tests were performed, and Table 2.7 con-

tains the resulting p-values. All three tests gave comparable results and we fail to

find evidence for concluding that correlation varies over time for most biomarker-

pathogen combinations. However, we do find significant heterogeneity exists between

TNF-α and T.forsythia, MMP-9 and P.gingivalis, and MMP-8 and P.gingivalis. In

these pathogen/biomarker pairs, the correlation is highest at six months, which is the

end of the disease monitoring (no treatment given) period when periodontal damage

would be greatest. During the disease recovery period (6 to 12 months), treatment

23



was given to the patients, thereby repairing periodontal damage. Previous biological

findings found the pathogenicity of the red complex, especially P.gingivalis, is related

to periodontal tissue destruction associated with periodontitis (both soft and hard

tissues), while MMP-8 and MMP-9 proteins are triggered by periodontitis to follow

an anti-inflammatory process and play an important role in inhibiting periodontal

destruction (Kuula et al., 2009; Gamonal et al., 2011). Thus, one might hypothesize

that correlation is strongest when periodontal disease is greatest and lowest when

periodontal disease is low; this conjecture agrees with our findings, which produce an

interesting hypothesis that could be investigated in a larger study.

Table 2.7: Empirical serial correlations between serum biomarkers and pathogens at
0, 6, and12 months and resulting p-values for test of equality; χ2

z=Test
based on Fisher’s Z-transformation; χ2

ρ=Test based on original ρj ’s; Fρ=F -
test with estimated denominator degrees of freedom.

Pathogen Biomarker Serial correlation p-value
0 6 12 χ2

z χ2
ρ Fρ

P.gingivalis TNF-α -0.17 0.07 -0.07 0.107 0.103 0.110
Calprotectin -0.18 -0.01 0.11 0.147 0.139 0.146
MMP-8 -0.01 0.28 0.04 0.059 0.052 0.058
MMP-9 0.12 0.19 -0.14 0.021 0.018 0.022

T.forsythia TNF-α -0.19 0.07 -0.19 0.005 0.005 0.007
Calprotectin -0.21 -0.02 0.05 0.160 0.151 0.159
MMP-8 0.00 0.22 0.13 0.182 0.178 0.186
MMP-9 0.13 0.19 -0.03 0.136 0.133 0.141

T.denticola TNF-α -0.13 -0.04 0.03 0.365 0.362 0.368
Calprotectin -0.17 0.01 0.13 0.109 0.101 0.109
MMP-8 -0.01 0.08 0.00 0.785 0.784 0.786
MMP-9 0.17 0.02 -0.02 0.271 0.264 0.272
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2.4.2 Salivary biomarker dataset

Table 2.8 contains the serial correlations of each salivary biomarker with each

pathogen after the transformation described above. Most serial correlations ranged

between -0.1 and 0.5. The range of minimum serial correlation was [−0.15, 0.2], and

the difference between the largest and smallest correlation coefficients over time var-

ied from 0.06 for IL-1β and T.forsythia to 0.66 for MMP-8 and T.forsythia. The table

shows that all three tests gave comparable results and we fail to find evidence for con-

cluding that correlation varies over time for most biomarker-pathogen combinations.

However, we do find significant heterogeneity exists in pairs between salivary MMP-8

and T.forsythia (max-min difference is 0.66), salivary MMP-8 and P.gingivalis (max-

min difference is 0.37), salivary MMP-9 and T.forsythia (max-min difference is 0.45),

salivary OPG and T.denticola (max-min difference is 0.44). Here, MMP-8 again

shows its strong correlation with different rex complex pathogens, consistent with the

findings reviewed by Kuula et al. (2009) and Gamonal et al. (2011).

2.5 Conclusion

In this chapter we examined methods that are a modification to the test of Olkin

and Finn (1990), to perform tests of equality of correlation coefficients for longitudinal

studies. Our method assumes fewer nuisance parameters that require estimation for

our test statistics, thereby reducing computational burden. We describe our model

for the joint distribution of a biomarker and a plaque pathogen and derive asymp-

totic distributions for testing homogeneity of their correlation over time, using both

untransformed (χ2
ρ test) and Fisher’s Z-transformed (χ2

z test) sample correlation co-

efficients. Since the χ2
ρ test tends to be liberal in small samples, we proposed an
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Table 2.8: Empirical serial correlations between salivary biomarkers and pathogens
at 0, 6, and12 months and resulting p-values for test of equality; χ2

z=Test
based on Fisher’s Z-transformation; χ2

ρ=Test based on original ρj ’s; Fρ=F -
test with estimated denominator degrees of freedom.

Pathogen Biomarker Serial correlation p-value
0 6 12 χ2

z χ2
ρ Fρ

P.gingivalis IL-1β 0.21 0.04 0.07 0.680 0.674 0.680
MMP-8 0.38 0.40 0.03 0.099 0.104 0.117
MMP-9 0.30 0.20 -0.03 0.330 0.324 0.336
OPG 0.26 0.02 -0.08 0.262 0.245 0.259

T.forsythia IL-1β 0.23 0.26 0.20 0.948 0.948 0.948
MMP-8 0.35 0.56 -0.10 <0.001 <0.001 <0.001
MMP-9 0.30 0.13 -0.15 0.101 0.088 0.101
OPG 0.27 -0.01 0.16 0.360 0.354 0.366

T.denticola IL-1β 0.36 -0.03 0.16 0.135 0.123 0.137
MMP-8 0.41 0.41 0.20 0.351 0.367 0.379
MMP-9 0.35 0.41 0.07 0.227 0.232 0.246
OPG 0.38 0.21 -0.06 0.098 0.089 0.102
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alternate Fρ statistic derived from χ2
ρ to maintain a nominal test size. The empirical

size and power of our proposed tests in a variety of settings motivated by the data

collected in our motivating study were collected. Conclusions are: (1) When data

is under our assumed model, Fρ tests have nominal size, while χ2
z test has inflated

size in some settings in the small sample, and χ2
ρ test has more inflated size in small

sample and some medium sized sample. Accordingly, χ2
z and Fρ tests have similar

power while χ2
z is a little superior. (2) When data is mis-specified such that the cross

correlations are not kept constant as assumed, χ2
z is generally robust. (3) When data

are heavier tailed, the size of all tests are inflated in small sample, while the Fρ is still

the closest to the nominal size than χ2
z. χ

2
ρ is the most liberal. (4) When the absolute

value of ρmin increases, the power of all three tests increases as well.

Lastly, we found suitable values for λ and δ needed for our F -test through a grid

search of possible values. However, the values could be found directly by equating

the first two moments of λχ2
ρ/(m − 1) and F (m − 1, d). However, this approach

requires use of the Delta method to obtain the variance of a function of all the

correlation parameters, which is computationally intensive. Finding these values and

comparing them to those we used would prove interesting to determine if the added

computational burden is warranted.
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CHAPTER III

A Bayesian Approach of Testing for Serial

Homogeneity in the Correlation of Longitudinally

Measured Biomarkers

3.1 Introduction

Our method is motivated by studies that measure several biomarkers longitudi-

nally with the goal of predicting for future disease occurrence. An example is the

data collected from a small longitudinal study of gingivitis, or inflammation of the

gums (gingivae) (Salvi et al., 2010). Our current goal is to determine how correlated

the biomarkers are with each other at each time point and if the serial correlations

are homogeneous and can be pooled into a single time-invariant value that quanti-

fies the correlation of the biomarkers. The method we introduced in Chapter 2 used

asymptotic frequentist methods for inference, which in small samples, may fail to

have nominal size or satisfactory power. In this chapter, we explore alternative ap-

proaches using Bayesian inferential methods, specifically posterior credible intervals

and Bayesian posterior predictive p-values, both of which we introduce next.
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3.1.1 Posterior credible intervals

In some simple circumstances such as longitudinal data that have only two time

points, we may use a credible interval, or Bayesian confidence interval, to construct

a Bayesian test. In Bayesian statistics, a credible interval is an interval within the

posterior distribution of a parameter, describing the uncertainty of that parameter.

A 100(1− α)% credible interval for a parameter has the property that the posterior

probability that the parameter lies in the interval is 1− α. To test if two correlation

parameters, ρ1 and ρ2, are equal, we could draw values of ρ1 and ρ2 from their joint

posterior distribution many times to obtain a number of samples of ρ1−ρ2 from which

we can compute a 100(1 − α)% credible interval for ρ1 − ρ2. If the credible interval

includes zero, we have evidence for H0.

A 100(1−α)% credible interval can be defined in several ways. When the marginal

posterior distribution is symmetric, we can easily obtain the credible interval by

calculating the (100α/2)th and 100(1 − α/2)th quantiles of the posterior sample. If

a posterior distribution is not symmetric, we can choose the narrowest interval, also

called the 100(1 − α)% highest posterior density (HPD) interval, since every point

covered in the interval has higher probability density than any point outside the

interval (Chen and Shao, 1999).

3.1.2 Bayesian predictive p-value

In data with more than two time points, determining an HPD interval is more

difficult. Thus, we instead approach our hypothesis testing problem as a model se-

lection problem. Specifically, if we take the null and alternative hypotheses as two

different models, we then compare which model is more likely given the data. There

are many Bayesian model selection methods; the most commonl of which is the Bayes
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factor. However, Bayes factors are often difficult to calculate, especially for models

that involve many random effects, large numbers of unknown parameters or improper

priors. Another useful tool in checking a model’s adequacy is the posterior predic-

tive p-value via MCMC as proposed by Meng (1994) and Gelman et al. (1996). The

advantage of this method is the ability to assess the fit of a single model without

the need for an alternative model. Let D denote the observed data, H denote the

model to be checked, φ denote the unknown model parameter, and T (D) denote a

test statistic. If Drep denotes a replication of D that could be observed and has the

distribution PA[Drep|H,φ], where A represents auxiliary statistics that are functions

of the original data and are assumed to be constant in each replication, the classical

p-value is

pc(D,φ) = PA[T (Drep) ≥ T (D)|H,φ].

Note that the value of pc is obtainable only when it does not contain unknown nuisance

parameters.

If we denote the posterior distribution of φ as P (φ|H,D), the posterior predictive

distribution of the replicated data Drep is

PA(Drep|H,D) =

∫
PA(Drep|H,φ)P (φ|H,D)dφ.

The corresponding tail-area probability of the posterior distribution of T (D), is an

example of posterior predictive p-value

pb(D) = PA[T (Drep) ≥ T (D)|H,D] =

∫
pc(D,φ)P (φ|H,D)dφ

which is the classical p-value, pc(D,φ) averaged over the posterior distribution of φ.
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The posterior predictive p-value is generalized as a tail-area probability of the pos-

terior distribution of a discrepancy measure. The discrepancy measure is an equation

that either involves nuisance parameters, denoted as Q(D;φ), or does not involve

nuisance parameters, such as a test statistic like T (D, the example above. The ref-

erence distribution for a selected discrepancy measure, Q(D;φ), is derived from the

joint posterior distribution of Drep and φ:

PA(Drep,φ|H,D) = PA(Drep|H, θ)P (φ|H,D)

Then the tail-area probability corresponding to the posterior reference distribution

of Q is

pb(D) = PA[Q(Drep;φ) ≥ Q(D;φ)|H,D]

=

∫
PA[Q(Drep;φ) ≥ Q(D;φ)|H,φ]P (φ|H,D)dφ

With this generalized formulation, we are able to compare directly the discrepancy

between the observed data and the model when the null hypothesis is true.

3.1.3 Bayesian modeling of multivariate data parameters

Markov Chain Monte Carlo (MCMC) is most often used to obtain samples from a

distribution in complex settings. In our setting, sampling parameters of the model un-

der the null hypothesis involves modeling a variance-covariance structure Σ; Daniels

and Kass (1999) reviewed several prior choices for Σ. The first choice is the in-

verse Wishart distribution, which is the conjugate prior with a multivariate normal

likelihood. However, this prior allows only one precision parameter for all elements

in Σ and does not have enough flexibility for our setting. Furthermore, when the
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sample size is small, the specification of the scale matrix (the parameter defining an

Inverse-Wishart prior) can be quite influential. The second prior choice for Σ is a

nonconjugate reference prior, such as Jeffreys’ prior. However, such a prior can lead

to an improper posterior distribution. A third class of priors for Σ are hierarchical

priors, some of which are based on different parameterizations. One hierarchical prior

is a Wishart prior that considers the degrees of freedom ν to be unknown and to vary

uniformly between m− 1 and a large number, where m is the dimension of Σ.

Finally, a direct variance/covariance decomposition suggested by Barnard et al.

(2000) that allows us to work with standard deviations and a correlation matrix is of

most interest to us. The idea is simple: Σ can be written as Σ = diag(S) R diag(S),

where S is the vector of p standard deviations and R is the m × m correlation

matrix. According to Barnard et al. (2000), their separation strategy “has a strong

practical motivation since most practitioners are trained to think in terms of standard

deviations and correlations.” In addition, different priors can be put on S and R. For

example, we can put a normal distribution on the Fisher’s Z-transformation of the

correlations: Zρ = 1/2 log[(1 − ρ)/(1 + ρ)] ∼ N (0, τ 2), and as suggested by Daniels

(1992), we put another prior on τ 2, i.e. π(τ 2) ∝ (c + τ 2)−2, where c is chosen

to be 1/(n − 3), the asymptotic variance of Zρ. Barnard et al. (2000) suggested

assuming uniform priors for correlations, and they also showed that it is easy to derive

constraints on the correlations to keep R positive definite. They also suggested log-

normal priors for the parameters in S. In our study, we choose to use marginally

uniform priors for correlations, and both informative Gamma priors and improper

priors for the precision parameters.

In Section 3.2, the specific priors and the full conditional distributions of each

parameter are defined with detail. We then present the posterior predictive p-value
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method in our data setting, as well as a detailed procedure of sampling from the

posterior distribution and obtaining posterior p-values. Since credible intervals are

straightforward, details about them are not presented in Section 3.2. In Section 3.3,

we assess the empirical size and power of our credible interval method and proposed

posterior predictive tests in a variety of settings motivated by the data collected in

the pilot study described earlier and also apply our methods to data from another

longitudinal periodontal study. Section 3.4 contains our concluding remarks.

3.2 Methods

3.2.1 Notation

The setting is the same as Chapter 2. We have n subjects who are each exam-

ined sequentially at times t1 < t2, . . . , < tm. Let Xij and Yij, i = 1, 2, . . . , n; j =

1, 2, . . . ,m, denote the respective values of biomarker X and pathogen Y collected

from subject i at time tj. Marginally, we assume Xij ∼ N (µxj, σ
2
j ) and Yij ∼

N (µyj, τ
2
j ), where µxj and µyj are m× 1 vectors of parameters quantifying the means

of Xij and Yij, respectively. The elements of Xi are assumed to be exchangeably

correlated with each other with correlation ρx, and the elements of Yi are exchange-

ably correlated with each other with correlation ρy. We also assume a common

cross-correlation, ρxy between Xij and Yik, where j 6= k. The parameters we are

interested in are ρ1, ρ2, . . . , ρm, the within-time correlation of Xij and Yij defined to

be ρj = Corr(Xij, Yij), j = 1, 2, . . .m, while all other parameters are nuisance. Let

Di denote the (2m × 1) longitudinal vector of pairs of biomarker and pathogen for

subject i, and D denote the observations for all subjects. Di has a multivariate

normal distribution with mean vector µ and variance Σ as defined in Equations (2.1)
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and (2.2).

3.2.2 Prior specifications

According to the direct decomposition strategy suggested by Barnard et al. (2000),

we decompose Σ in Equation (2.2) into S={σ1, τ1, σ2, τ2, · · · , σm, τm} and

R =



1 ρ1 ρx ρxy · · · ρx ρxy

ρ1 1 ρxy ρy · · · ρxy ρy

ρx ρxy 1 ρ2 · · · ρx ρxy

ρxy ρy ρ2 1 · · · ρxy ρy

...
...

...
...

. . .
...

...

ρx ρxy ρx ρxy · · · 1 ρm

ρxy ρy ρxy ρy · · · ρm 1



(3.1)

so that Σ = diag(S)R diag(S). Since under our null hypothesis, ρ1 = · · · = ρm = ρ0,

where ρ0 is not specified, all serial correlations from ρ1 to ρm in the above expression

are replaced by ρ0. We set an uninformative prior for mean parameters µxj and µyj,

π(µxj) ∝ 1, π(µyj) ∝ 1, and a Unif(-1,1) prior for {ρ0, ρx, ρy, ρxy}. Let A(ρ) be the

range of all correlation parameters such that the correlations are bounded between

-1 and 1 and the R matrix is positive definite. Two sets of priors were specified for

the precision parameters: (1) an improper prior: π(σ−2j ) ∝ σ2
j , π(τ−2j ) ∝ τ 2j ; (2) an

informative Gamma prior with both its shape and rate parameters being 2 for the

precision parameters in standardized data.

For specification (1), the joint posterior is
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π(µ, σ−21 , τ−21 , σ−22 , τ−22 , · · · , σ−2m , τ−2m , ρ0, ρx, ρy, ρxy | D)

∝ σ2
1 τ

2
1 σ

2
2 τ

2
2 · · · σ2

m τ 2m I[ρ′s ∈ A(ρ)]|Σ|−
n
2 exp{−1

2

n∑
i=1

(Di − µ)TΣ−1(Di − µ)}

∝ (σ−21 τ−21 σ−22 τ−22 · · · σ−2m τ−2m )
n
2
−1I[ρ′s ∈ A(ρ)]|R|−

n
2

exp{−1

2

n∑
i=1

(Di − µ)TΣ−1(Di − µ)}

The full conditional distribution for µ given all other parameters and the data is

[µ|·] ∼MVN(D̄,Σ/n), and the full conditional distribution of each σ−2j or τ−2j is

π(σ−2j |·) ∝ (σ−2j )
n
2
−1exp{−1

2

n∑
i=1

(Di − µ)TΣ−1
σ2
j
(Di − µ)}

π(τ−2j |·) ∝ (τ−2j )
n
2
−1exp{−1

2

n∑
i=1

(Di − µ)TΣ−1
τ2j

(Di − µ)}

where Σσ2
j

and Στ2j
denote covariance matrices in which all parameters are fixed

except for σ2
j or τ 2j , respectively.

The full conditional distributions of ρ0, ρx, ρy and ρxy have similar forms. As an

example, the full conditional of ρ0 can be written as

π(ρ0|·) ∝ I[ρ0 ∈ A(ρ)]|Rρ0|−
n
2 exp{−1

2

n∑
i=1

(Di − µ)TΣ−1ρ0 (Di − µ)}

where Σρ0 and Rρ0 denote a covariance matrix and correlation matrix, respectively,

in which all parameters are fixed except for ρ0, in which all parameters are fixed

except for ρ0.

With the Gamma (2,2) prior, we work on the standardized data, denoted as D∗

with parameters µ∗, σ∗21 , τ
∗2
1 , σ

∗2
2 , τ

∗2
2 , · · · , σ∗2m , τ ∗2m , ρ0, ρx, ρy, ρxy. Note that µ∗ should
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be close to 0, and σ∗−21 , τ ∗−21 , σ∗−22 , τ ∗−22 , · · · , σ∗−2m , τ ∗−2m are centered around 1, with a

Gamma(2,2) prior assigned to each. The joint posterior is

π(µ∗, σ∗−21 , τ ∗−21 , σ∗−22 , τ ∗−22 , · · · , σ∗−2m , τ ∗−2m , ρ0, ρx, ρy, ρxy | D∗)

∝ {σ∗−21 τ ∗−21 · · · σ∗−2m τ ∗−2m }exp(−σ∗−21 − τ ∗−21 − · · · σ∗−2m − τ ∗−2m )

I[ρ′s ∈ A(ρ)]|Σ∗|−
n
2 exp{−1

2

n∑
i=1

(D∗i − µ∗)TΣ∗−1(D∗i − µ∗)}

∝ (σ∗−21 τ ∗−21 · · · σ∗−2m τ ∗−2m )
n
2
+1I[ρ′s ∈ A(ρ)]|R|−

n
2

exp{−1

2

n∑
i=1

(D∗i − µ∗)TΣ∗−1(D∗i − µ∗)− σ∗−21 − τ ∗−21 − · · · σ∗−2m − τ ∗−2m }

The full conditional distribution for µ∗ given all other parameters and data is

[µ∗|·] ∼MVN(D̄∗,Σ∗/n)

The full conditional distribution of each σ∗−2j or τ ∗−2j is

π(σ∗−2j |·) ∝ (σ∗−2j )
n
2
+1exp{−1

2

n∑
i=1

(D∗i − µ∗)TΣ∗−1
σ∗2j

(D∗i − µ∗)− σ∗−2j }

π(τ ∗−2j |·) ∝ (τ ∗−2j )
n
2
+1exp{−1

2

n∑
i=1

(D∗i − µ∗)TΣ∗−1
τ∗2j

(D∗i − µ∗)− τ ∗−2j }

where Σ∗σ∗2j
and Σ∗τ∗2j

denote covariance matrix in which all parameters are fixed but

σ∗2j or τ ∗2j .

The full conditional distributions of each correlation parameter, including ρ0, ρx, ρy

and ρxy have similar expressions. As an example, the full conditional of ρ0 can be

written as

π(ρ0|·) ∝ I[ρ0 ∈ A(ρ)]|Rρ0|−
n
2 exp{−1

2

n∑
i=1

(D∗i − µ∗)TΣ∗−1ρ0
(D∗i − µ∗)}
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where Σ∗ρ0 and Rρ0 denote a covariance matrix and correlation matrix, respectively,

in which all parameters are fixed except for ρ0.

3.2.3 Bayesian posterior predictive methods for longitudinal data with

two or more time points

We are interested in testing the hypotheses H0 : ρ1 = ρ2 = . . . = ρm versus Ha :

two or more of ρ1, ρ2, . . . , ρm are unequal. For time j, let X.j = {X1j, X2j, · · · , Xnj}

and Y.j = {Y1j, Y2j, · · · , Ynj} denote the respective vectors of all subjects’ values of

biomarker X and pathogen Y . For j 6= k, we then denote S̃XXj
as the sample variance

of X.j , S̃Y Yj as the sample variance of Y.j , S̃XXjk
as the sample covariance between

X.j and X.k, S̃Y Yjk as the sample covariance between Y.j and Y.k, S̃XYj as the sample

covariance between X.j and Y.j , and S̃XYjk as the sample covariance between X.j and

Y.k. Let ρ̂1, ρ̂2, . . . , ρ̂m, ρ̂x, ρ̂y and ρ̂xy be:

ρ̂j =
ρ̂jσjτj√
σ̂2
j

√
τ̂ 2j

=
S̃XYj√
S̃XXj

S̃Y Yj

; j = 1, 2, . . .m

ρ̂x =

∑
j 6=k ρ̂xσjσk∑
j 6=k

√
σ̂2
j σ̂

2
k

=

∑
j 6=k S̃XXjk∑

j 6=k

√
S̃XXj

S̃XXk

ρ̂y =

∑
j 6=k ρ̂yτjτk∑
j 6=k

√
τ̂ 2j τ̂

2
k

=

∑
j 6=k S̃Y Yjk∑

j 6=k

√
S̃Y Yj S̃Y Yk

ρ̂xy =

∑
j 6=k ρ̂xyσjτk∑
j 6=k

√
σ̂2
j τ̂

2
k

=

∑
j 6=k S̃XYjk∑

j 6=k

√
S̃XYj S̃XYk

Define θjj as

θjj =
1

n
(1− ρ2j)2 (3.2)

with corresponding estimate θ̂jj = 1
n
(1− ρ̂2j)2
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and define θjk as

θjk =
1

n

{
1

2
ρjρk(ρ

2
x + ρ2y) + ρ2xy(1 + ρjρk) + ρxρy − ρxy(ρj + ρk)(ρx + ρy)

}
(3.3)

with corresponding estimate

θ̂jk =
1

n

{
1

2
ρ̂j ρ̂k(ρ̂

2
x + ρ̂2y) + ρ̂2xy(1 + ρ̂j ρ̂k) + ρ̂xρ̂y − ρ̂xy(ρ̂j + ρ̂k)(ρ̂x + ρ̂y)

}
.

Let Σρ be an m × m matrix with diagonal element (j, j) equal to θjj as given

by Equation (3.2), and off-diagonal element (j, k) equal to θjk, as given by Equation

(3.3). Let Σ̂ρ be an m × m matrix with diagonal element (j, j) equal to θ̂jj and

off-diagonal element (j, k) equal to θ̂jk. Also let L be an (m− 1)×m contrast matrix

for the pairwise differences, i.e.

L =



1 −1 0 0 · · · 0

0 1 −1 0 · · · 0

...
...

...
...

. . .
...

0 0 · · · 0 1 −1


To construct a posterior predictive p-value to test the null model H0 : ρ1 = ρ2 =

. . . = ρm, the test statistic Tρ(D) = (Lρ̂)T (LΣ̂ρL
T )−1(Lρ̂) and discrepancy variable

Qρ(D,φ) = (Lρ̂)T (LΣρL
T )−1(Lρ̂) are chosen. Tρ(D) is totally data based and is

the same as the Wald test statistic χ2
ρ we used in Chapter 2. Qρ(D,φ) contains

unknown parameters, including the parameter ρ we are interested, as well as the

nuisance correlation parameters ρx, ρy and ρxy.

An alternate test would be based on Fisher’s Z-transformation, ẑ = {ẑ1, ẑ2, · · · , ẑm},
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leading to the statistic Tz(D) = (Lẑ)T (LΣ̂zL
T )−1(Lẑ), in which Σ̂z has diagonal el-

ement (j, j) equal to 1/n and off-diagonal element (j, k) equal to θ̂jk/[(1− ρ̂2j)(1− ρ̂2k)].

Identically, a discrepancy measure Qz(D,φ) = (Lẑ)T (LΣzL
T )−1(Lẑ) is also chosen

in which Σz has diagonal element (j, j) equal to 1/n and off-diagonal element (j, k)

equal to θjk/[(1− ρ̂2j)(1− ρ̂2k)].

The difference between a test statistic T (D) and a generalized discrepancy variable

Q(D,φ) is whether it contains unknown parameters.

3.2.4 Computational details

Given a set of posterior draws of parameters using the Metropolis-Hastings (MH)

algorithm within Gibbs sampling, φj, j = 1, · · · , J , we perform the following two

steps for each j:

1. Given φj, draw a simulated replicated data set, Drep,j, from the sampling

distribution, PA(Drep|H0,φ
j).

2. Calculate T (D), T (Drep,j) and Q(D,φj) and Q(Drep,j,φj).

Having obtained T (D), T (Drep,j) and Q(D,φj) and Q(Drep,j,φj), j = 1, · · · , J ,

we can make a histogram of T (Drep,j) with T (D) located on it to make a graphical

assessment, and estimate pb by the proportion of the J pairs for which T (Drep,j)

exceeds T (D), namely

pb =
1

J

J∑
j=1

1[T (Drep,j) > T (D)]

and we can plot Q(Drep,j,φj) against Q(D,φj) and estimate pb by the proportion of
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the J pairs for which Q(Drep,j,φj) exceeds Q(D,φj), namely

pb =
1

J

J∑
j=1

1[Q(Drep,j,φj) > Q(D,φj)]

Since we have derived the full conditional posterior (up to a proportionality con-

stant) of all parameters, it is convenient to compute the posterior using the Gibbs sam-

pler. To get draws from (µ, S, R), we use Gibbs Sampler and draw µx1 , µy1 , · · · , µxm ,

µym together from its multivariate normal conditional posterior, and draw each of the

components from S and R one at a time. However, since the conditional posterior

for each component of S and R is not a kernel of any known distribution, we need

to do another MH algorithm within Gibbs sampling. While sampling components

from S, we perform an independent MH by choosing a Gamma distribution as the

proposal density. For example, for prior specification (1), the proposal density we

use to sample σ−21 is G[n/2,
∑

i(µx1 − Xi1)
2/2]. Note this is actually the full con-

ditional posterior under the special R structure where all off-diagonal elements are

zero. While sampling components from R, we do a random walk MH using a normal

distribution truncated between -1 and 1. An extra step before updating each sample

with the proposal sample is to check if R is positive definite for the proposal sample.

If that condition is not satisfied, the sample takes the value of the previous sample.

3.3 Application of Methods

3.3.1 Simulation Study

We now examine the performance of the proposed credible interval methods and

the posterior predictive tests under various settings for hypothetical longitudinal

datasets based upon the data from our motivating example. Here we define the sim-
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ulation setting of the posterior predictive method. For each subject i = 1, 2, . . . , n,

biomarker X and pathogen Y are both observed at m time points. We assume

Xij ∼ N (µxj, σ
2
j ) and Yij ∼ N (µyj, τ

2
j ), in which µxj = 2.5 and µyj = 4.0, σj = 0.3,

and τj = 0.40− 0.05(j − 1). Note that correlation is location and scale invariant, so

that our results are generalizable to other values of location and scale. In our first

setting, where the model matches the correlation structure of the data, we selected

the values ρx = 0.5, ρy = 0.7, and ρxy = 0 for the nuisance correlation parameters.

These values are also set to attempt to match the true data we will present in the

example. With regard to the correlation parameters of interest, {ρ1, ρ2, . . . , ρm}, we

defined a simulation setting with two quantities, ρmin ∈ {−0.2,−0.1, 0, 0.1, 0.2} and

∆ ∈ {0.0, 0.3}. We set ρ1 = ρmin, ρm = ρmin + ∆, and all other correlation pa-

rameters ρ2, ρ3, . . . , ρm−1 were equally spaced between ρ1 and ρm. Thus, a value of

∆ = 0 represents the null hypothesis, while ∆ > 0 represents the alternative hy-

pothesis. For each combination of minimum serial correlation and ∆, we simulated

Di={Xi1, Yi1, · · · , Xim, Yim}, the data for each subject i, from a multivariate normal

distribution with mean µ and variance Σ, with µ and Σ defined in Equations (2.1)

and (2.2). We considered sample sizes of n ∈ {25, 50, 100} and the number of time

points m ∈ {2, 3, 4, 5}.

Since our assumption that the nuisance parameters ρx, ρy and ρxy are constant

over time is rarely met in practice, we introduced model mis-specification in our

second simulation setting. We selected the values ρx0 = 0.5, ρy0 = 0.6, ρxy0 = 0.7 and

defined a constant c = 1.7 × ρx0ρy0 = 0.51 for the nuisance correlation parameters.

Then, the within-X, within-Y and cross-X, Y correlation between time j and j are

ρ
|j−j′|
x0 , ρ

|j−j′|
y0 and c × ρ

|j−j′|
xy0 respectively. The simulation setting of {ρ1, ρ2, . . . , ρm}

was defined by ρmin ∈ {0.2, 0.3, 0.4, 0.5} and ∆ ∈ {0.0, 0.3}. Similarly, ρ1 = ρmin,
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ρm = ρmin + ∆, and all other correlation parameters ρ2, ρ3, . . . , ρm−1 were equally

spaced between ρ1 and ρm.

The settings used for the posterior credible interval method are the same as those

used with the posterior predictive method, and no model violation is assumed. The

credible interval method is only applied to settings in which m = 2.

To evaluate the posterior predictive method in each setting, we simulated 500

datasets for n = 100 and 1,000 datasets for n ∈ {25, 50} and ran 2,000 iterations for

each. We also examined the use of both proper and improper priors for the precision

parameters. With an improper prior, Metropolis-Hastings within Gibbs sampling was

used as follows:

1. Draw µx1 , µy1 , · · · , µxm , µym together from their multivariate normal conditional

posterior.

2. Draw each of the components in S one at a time by performing an independent

MH step by choosing a Gamma distribution as the proposal density for an individual

precision parameter. The proposal density we use to sample σ−21 is G[n/2,
∑

i(µx1 −

Xi1)
2/2].

3. Assuming our null model: ρ1 = ρ2 = · · · = ρm = ρ0, where ρ0 is undefined, the

components of R include {ρ0, ρx, ρy, ρxy}. For sampling ρx and ρy, we do a random

walk MH using a normal distribution truncated between -1 and 1. While drawing

each of ρx, ρy one at a time, we draw ρ0 and ρxy jointly from a bivariate truncated

normal proposal distribution with correlation 0.6, since a large cross-correlation was

observed between ρ0 and ρxy. An extra step before updating each sample with the

proposal sample is to check if R is positive definite. If that condition is not satisfied,

the sample takes the value of the previous sample.

With a proper prior, each simulated data was first standardized, and then in step
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1 above, instead of drawing µ, we draw µ∗ which is the standardized mean. In step 2

above, instead of drawing σ−21 , τ−21 , σ−22 , τ−22 , · · · , σ−2m , τ−2m , we draw σ∗−21 , τ ∗−21 , σ∗−22 ,

τ ∗−22 , · · · , σ∗−2m , τ ∗−2m which are the new precision parameters after standardization.

Step 3 above is unchanged.

For credible interval method, we only consider the use of improper priors and we

do not assume the two serial correlations are equal to each other. Therefore, we will

sample the two individual serial correlations instead of sampling a uniform ρ0.

The proposal variance was tuned every 25 iterations during the burn-in period

for the truncated normal proposal density to get an acceptance rate of between 30%

to 40%. Trace plots, autocorrelation plots and histogram plots were generated to

evaluate convergence. A burn-in sample of the first 400 observations was discarded.

Histograms and summary statistics including mean and 95% credible interval were

obtained based on the remaining 1,600 samples. Having obtained T (D), T (Drep,j),

Q(D,φj) and Q(Drep,j,φj), p-values were obtained by calculating the proportion of

the J pairs for which T (Drep,j) exceeds T (D) and the proportion of the J pairs for

which Q(Drep,j,φj) exceeds Q(D,φj). A small p-value indicates poor fit. The test

was rejected at size level α=0.05. The size and power of the tests in each scenario

were estimated from the rejection rates in 1,000 simulated datasets for n ∈ {25, 50}

and 500 simulated datasets for n = 100.

To evaluate the performance of the credible interval method, instead of computing

a test statistic/discrepancy variable given each parameter drawn, the credible interval

method computed the difference of the two individual serial correlations drawn during

each iteration. By evaluating the 95% HPD region or credible interval based on

J = 1, 600 differences, we made a decision about whether to reject the homogeneity

hypothesis according to whether the interval covered 0. We simulated 1,000 datasets,
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and the size and power of the credible interval “test” were estimated from the rejection

rate in these datasets.

3.3.2 Evaluation of Bayesian credible interval method

Table 3.1 presents the empirical size, e.g. ∆ = 0, of the Bayesian credible interval

method using both 95% HPD region and quantile based (QB) credible interval for

various combinations of n,m, and ρmin. The two columns under each sample size

show the empirical size of credible interval test based on 1,000 simulations. Based

upon a 95% confidence interval around a desired size of 0.05, we would expect the

number of rejections in 1,000 simulations for a nominal test would lie in the interval

(3.7, 6.4). Overall, the size of tests based on both HPD and QB intervals fall into the

interval (3.7, 6.4) while HPD tends to be more conservative and QB tend to be more

liberal. HPD is thus preferred than 95% QB.

Table 3.1: Size of test based on Bayesian estimation of 95% Highest Posterior Density
(HPD) regions and quantile based credible interval (QB). Each value is
the percentage of simulations out of 1,000 in which the null hypothesis is
rejected (when HPD or QB does not cover zero).

n = 100 n = 50 n = 25
m ρmin HPD QB HPD QB HPD QB
2 0 5.8 5.0 5.1 5.9 4.1 5.7

0.1 3.9 4.7 5.1 6.2 3.8 5.3
0.2 6.0 6.8 4.2 4.1 5.4 5.6

Table 3.2 presents the estimated power of the credible interval method using both

95% HPD region and QB when ∆ = 0.3. Since QB interval is more liberal than HPD,

here we observe a higher power for QB than HPD. The power drops down as sample

size decreases.
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Table 3.2: Power of test based on Bayesian estimation of 95% Highest Posterior Den-
sity (HPD) regions and 95% quantile based credible interval (QB). Each
value is the percentage of simulations out of 1,000 in which the null hy-
pothesis is rejected (when HPD or QB does not cover zero).

n = 100 n = 50 n = 25
m ρmin HPD QB HPD QB HPD QB
2 -0.1 77.1 78.2 47.6 48.7 24.2 25.3

-0.2 78.1 79.2 47.3 48.6 23.1 25.2

3.3.3 Evaluation of posterior predictive method

Table 3.3 presents the empirical size, e.g. ∆ = 0, of various posterior predictive

tests using the four statistics Tz, Tρ, Qz and Qρ defined in Section 3.2.3 for various

combinations of n,m, and ρmin when ρx, ρy and ρxy are constant over time, an

improper prior was used to sample the precision parameters. The first two columns

under each sample size show the empirical size of posterior predictive tests Tz and

Tρ, the third and fourth columns are the empirical size of posterior predictive tests

Qz and Qρ, obtained from 500 simulations when n = 100 and 1,000 simulations when

n = 50 and 25, while the fifth column is the empirical size of the Wald test, obtained

from 5,000 simulations based on the asymptotic distribution of Z-transformation.

Based upon a 95% confidence interval around a desired size of 0.05, we would expect

the percentage of rejections in 500, 1,000 and 5,000 simulations for a nominal test

would lie in the interval (3.1, 6.9), (3.7, 6.4) and (4.5, 5.6), respectively. Overall, all

four posterior predictive tests have nominal size, regardless of the number of time

points and the value of ρmin. However, as the sample size drops to n = 25, posterior

predictive tests tend to become conservative, especially when there are fewer time

points. Although as all four statistics lead to conservative results, the size of Tρ is

closer to 0.05 compared to Tz. In fact, the conservativeness of the four approaches

can be ordered as Tρ ≈ Tz < Qρ < Qz. The Wald Z-test, in contrast, becomes more
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liberal as the sample size decreases and as the number of time points increases. One

last finding is that when the number of time points increases, the size of all four tests

increases. Relative to the amount of Monte Carlo error, there is no difference in size

between Tρ, Tz and Qρ. Qz is very conservative when n = 25.

Table 3.4 presents the empirical size of posterior predictive tests using the four

statistics Tz, Tρ, Qz and Qρ when ρx, ρy and ρxy are constant over time. A Gamma

(informative) prior was used to sample the precision parameters of standardized data.

The sizes of Tz and Tρ are now close, and they remain nominal while being conservative

as the sample size decreases. The size of Qz and Qρ, however, is much smaller than

their corresponding values in Table 3.3 and too small to be explained by the Monte

Carlo error. Since a discrepancy variable contains unknown parameters, Qz and Qρ

depend largely on the parameters sampled. Therefore, they are more sensitive to how

the parameters were sampled, i.e., the parameters sampled may be biased since they

are based on the standardized data.

Table 3.5 presents the empirical power of the posterior predictive tests using Tρ,

Tz, Qρ and Qz and Wald Z-test at ∆ = 0.3 when ρx, ρy and ρxy are constant over time,

and an improper prior was used to sample the precision parameters . As a general

trend, the power goes down as the number of time points goes up. With a sample

size of n = 100 or 50, all tests have similar power, but when n goes down, the power

of the posterior predictive tests drops quickly. Consistent with the conservativeness

level as shown in Table 3.3, it can also be noticed that Tρ has slightly higher power

than Tz, Qρ has slightly higher power than Qz. As the sample size goes down, the

power difference between the four statistics gets bigger. As the sample size goes up

or the number of time points goes down, the power goes up.

Table 3.6 presents the empirical power of the posterior predictive tests using Tρ,
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Tz, Qρ and Qz and Wald Z-test at ∆ = 0.3 when ρx, ρy and ρxy are constant over

time, and a Gamma (informative) prior was used to sample the precision parameters

of the standardized data. As expected, the power of Qρ and Qz is much lower than

Tρ and Tz.

Tables 3.7-3.10 evaluates the posterior predictive tests under model mis-specification

such that the data are simulated without assuming ρx, ρy and ρxy being constant. Ta-

ble 3.7 compares the empirical size of the posterior predictive tests Tz, Tρ, Qρ and Qz

assuming autoregressive ρx, ρy under improper prior and Wald Z-test. When model

mis-specification is present, the posterior predictive tests Tz, Tρ and Qz remain the

nominal size while and Qρ is too conservative under some scenarios where n = 50

and n = 25 even having monte carlo error being considered. Table 3.8 presents the

size of the posterior predictive tests under model mis-specification through sampling

the variance parameters from the standardized data. Tz and Tρ do not change much,

while Qz and Qρ, impacted the same way as shown in Table 3.4, become more con-

servative. Qρ falls out of the monte carlo interval while the other three are closer to

nominal size compared to Qρ.

Regarding the empirical power under model mis-specification, Table 3.9 and 3.10

show the simulation results comparing the posterior predictive tests Tz, Tρ, Qz, Qρ,

and Wald Z-test at ∆ = 0.3. As a general trend, power goes down as the number of

time points goes up and ρmin gets closer to 0. Similar to the results shown in Table 3.5,

With a sample size of n = 100 or 50, Tz, Tρ tests and Wald test have similar power,

but when n goes down, the power of the posterior predictive tests drops. Opposite to

results shown in Table 3.5, Tz here has slightly higher power than Tρ when n = 100

or 50, and much higher power than Tρ when n = 25 under mis-specified setting. The

power of Qz is slightly lower than Tρ, while the power of Qρ is the lowest. This is
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consistent with the biased size of Qρ and Qz shown in Table 3.7 and 3.8.

3.3.4 Motivating example

In this section, we illustrate the proposed tests with real data. We analyzed a

longitudinal periodontal study conducted by Kinney et al. (2011) and Ramseier et al.

(2009). 79 subjects completed the 12-month study, with samples of serum-derived

biomarkers (TNF-α, calprotectin, metalloproteinase (MMP)-8, MMP-9) and saliva-

derived biomarkers (IL-1β, MMP-9, MMP-9, OPG) and periodontal plaque biofilm

pathogens (P.gingivalis T.forsythia, T.denticola) examined at baseline (Day 0), 6

months and 12 months. Ramseier et al. (2009) found that the concentration levels of

salivary biomarkers MMP-8, MMP-9 and calprotectin were associated with stages of

periodontal disease, and can be used as good predictors of periodontitis because of

large odds ratios; moreover, all the plaque biofilm pathogens listed above demonstrate

even higher diagnostic ability than biomarkers.

Considering the ability of both biomarkers and pathogens as periodontol disease

predictors, it is natural to expect some degrees of correlation between them. We would

now like to assess whether there is a constant correlation between certain combination

of biomarker and pathogen. We first add 1 to all the measured values and take a log-

transformation. Shown in Table 3.11 and 3.12 are the sample serial correlations for

each pair of biomarker and pathogen after the transformation described above. For

serum biomarker data, most sample serial correlations range between -0.2 and 0.2.

The minimum serial correlation ranges from -0.21 to 0. The maximum-minimum

correlation difference is between 0.09 (MMP-8 and T.denticola) and 0.33 (MMP-9

and P.gingivalis). Most pairs have both positive and negative correlations at the

three time points. We also calculated the sample cross-correlations and most of them

54
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are close to 0 so that they can be considered as equal. For salivary biomarker data,

most sample serial correlations range between -0.1 and 0.5. The maximum-minimum

correlation difference is between 0.06 (IL-1β and T.forsythia) and 0.66 (MMP-8 and

T.forsythia).

To test the hypothesis whether the correlation between a biomarker and a pathogen

at each time point is equal, posterior preditive tests, Tρ, Tz, Qz and Wald Z-test (in

Chapter 2) were performed. Since Qρ does not achieve nominal size, the result is

not presented here. Improper prior for the original data (non-standardized) was used

to sample variance parameters. Table 3.11 and Table 3.12 summarize the posterior

predictive p-values for serum and salivary data respectively. Three tests gave compa-

rable results and most pairs have homogenous serial correlations based on our tests.

As shown in Table 3.11, using 0.1 as a critical value, heterogeneity exists in pairs be-

tween serum TNF-α and T.forsythia (max-min difference is 0.22), serum MMP-9 and

P.gingivalis (max-min difference is 0.33), serum MMP-8 and P.gingivalis (max-min

difference is 0.29). Consistent with simulation studies with setting I (Table 3.3 and

3.5), regarding conservativeness, Qz > Tz ≈ Tρ > χ2
z. However the same conclusion

is drawn from each test. As shown in Table 3.12, heterogeneity exists in pairs be-

tween salivary MMP-8 and T.forsythia (max-min difference is 0.66), salivary MMP-8

and P.gingivalis (max-min difference is 0.37), salivary MMP-9 and T.forsythia (max-

min difference is 0.45), salivary OPG and T.denticola (max-min difference is 0.44).

Consistent with simulation studies with setting I (Table 3.3 and 3.5), regarding con-

servativeness, Qz > Tz ≈ Tρ > χ2
z. However the same conclusion is drawn from each

test. We conclude that the serial correlation in the pairs mentioned above changes

over the twelve months.
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Table 3.11: Sample serial correlations between combinations of serum biomarkers and
pathogens, and testing equality of serial correlations at 0, 6,12 months.
Tρ=posterior predictive test using test statistic χ2

ρ; Tz=posterior predic-
tive test using test statistic χ2

z; Qz=posterior predictive test using dis-
crepancy statistic χ2

z

Pathogen Biomarker Sample serial correlation p-value
0 6 12 Tz Tρ Qz

P.gingivalis TNF-α -0.17 0.07 -0.07 0.110 0.111 0.153
Calprotectin -0.18 -0.01 0.11 0.149 0.148 0.155
MMP-8 -0.01 0.28 0.04 0.060 0.059 0.077
MMP-9 0.12 0.19 -0.14 0.025 0.026 0.036

T.forsythia TNF-α -0.19 0.07 -0.19 0.006 0.007 0.010
Calprotectin -0.21 -0.02 0.05 0.162 0.160 0.166
MMP-8 0 0.22 0.13 0.181 0.182 0.189
MMP-9 0.13 0.19 -0.03 0.137 0.139 0.149

T.denticola TNF-α -0.13 -0.04 0.03 0.377 0.377 0.404
Calprotectin -0.17 0.01 0.13 0.106 0.106 0.112
MMP-8 -0.01 0.08 0.00 0.788 0.788 0.796
MMP-9 0.17 0.02 -0.02 0.275 0.273 0.299
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Table 3.12: Sample serial correlations between combinations of salivary biomark-
ers and pathogens, and testing equality of serial correlations at 0, 6,12
months. Tρ=posterior predictive test using test statistic χ2

ρ; Tz=posterior
predictive test using test statistic χ2

z; Qz=posterior predictive test using
discrepancy statistic χ2

z

Pathogen Biomarker Sample serial correlation p-value
0 6 12 Tz Tρ Qz

P.gingivalis IL-1β 0.21 0.04 0.07 0.668 0.665 0.675
MMP-8 0.38 0.40 0.03 0.094 0.105 0.097
MMP-9 0.30 0.20 -0.03 0.319 0.324 0.335
OPG 0.26 0.02 -0.08 0.257 0.252 0.271

T.forsythia IL-1β 0.23 0.26 0.20 0.946 0.946 0.945
MMP-8 0.35 0.56 -0.10 0.001 0.000 0.000
MMP-9 0.30 0.13 -0.15 0.098 0.099 0.108
OPG 0.27 -0.01 0.16 0.360 0.360 0.358

T.denticola IL-1β 0.36 -0.03 0.16 0.134 0.133 0.162
MMP-8 0.41 0.41 0.20 0.348 0.365 0.377
MMP-9 0.35 0.41 0.07 0.213 0.224 0.221
OPG 0.38 0.21 -0.06 0.090 0.093 0.109
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3.4 Conclusions and Discussion

In this chapter, we described two Bayesian approaches to perform tests of equality

of correlation coefficients for longitudinal studies. In Bayesian confidence interval

method, we evaluated the tests based on two types of intervals: highest posterior

density region (HPD) and quantile based credible interval (QB). Both of them have

a nominal size, while HPD tend to be more conservative and QB tend to be more

liberal. When there are only two time points, HPD is suggested to use.

We borrowed the classical Wald χ2
ρ and χ2

z statistics to construct posterior pre-

dictive p-values. The empirical size and power of our proposed tests in a variety

of settings motivated by the data collected in our motivating study were collected.

Conclusions are: (1) Posterior predictive tests Tz and Tρ are conservative compared

to Wald Z-test, yet after considering monte carlo errors the three tests have com-

parable size. (2) Posterior predictive tests Tz and Tρ have similar power compared

to Wald χ2
z in medium sample size (n=100, 50), and χ2

z is superior in small sample

size (n=25). The size and power of Tz and Tρ are not significantly impacted by sam-

pling methods (i.e., prior setting and whether the data is standardized). (3) Posterior

predictive tests Qz and Qρ are conservative compared with Tz and Tρ. Qz and Qρ de-

pend largely on the parameters sampled from standardized data. (4) Our assumption

of equal cross correlation (ρx, ρy and ρxy) in Σ is generally robust to data without

equal cross correlation, yet the posterior predictive approach is still more sensitive

to mis-specification than Wald test. (5) Tz and Tρ are preferable than Qz and Qρ in

our setting, since they reach a nominal size when model is not mis-specified, and are

robust to model mis-specification and different prior choices.

Although in our particular problem, Bayesian posterior predictive method does

not seem to provide a better power than Wald test, it offers an alternative way of
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examining the hypothesis testing problem. We introduce discrepancy variables into

our test, and this allows us to incorporate unknown nuisance parameters into test

statistics, rather than plugging an estimator (e.g., maximum-likelihood estimator)

obtained from the original data for the parameters.
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CHAPTER IV

Pooled Correlation Coefficients for Longitudinally

Measured Biomarkers

4.1 Introduction

In order to measure the association between two categorical variables X and Y ,

both of which are measured on nj subjects in stratum j = 1, 2, . . .m, a 2× 2 table is

made for each stratum, in which aj and dj are the number of subjects in strata j, who

haveX = Y = 1 andX = Y = 0, respectively, bj is the number of subjects withX = 0

and Y = 1, and cj is the number of subjects with X = 1 and Y = 0. Let ψj denote

the population odds ratio in strata j, whose estimate is ψ̂j = Rj/Sj = ajdj/(bjcj).

A test of homogeneity of the stratum-specific odds ratios attributed to Breslow

and Day (1980) is usually applied to determine if there is evidence that the stratum-

specific odds ratios are equal. If the test fails to provide evidence of heterogeneity,

then it is often assumed the association of X and Y is constant among all strata,

necessitating an estimator for the pooled odds ratio for X and Y .
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The Mantel-Haenszel (Mantel and Haenszel, 1959) estimator for ψ is

ψ̂MH =
R

S
=

∑m
j=1Rj∑m
j=1 Sj

=

∑m
j=1 ajdj/nj∑m
j=1 bjcj/nj

Historically, several variance estimators have been proposed for ψ̂MH , which can

be divided into two classes. In the first class, the number of tables remains fixed

while the counts in the individual cells increase and have no bound (n → ∞). One

estimator based on this class was proposed by Hauck (1979):

VH =
ψ̂2
MH(

∑m
j=1 S

2
j /wj)

(
∑m

j=1 Sj)
2

(4.1)

in which w−1j = (1/aj + 1/bj + 1/cj + 1/dj). This estimator can be easily derived

from the mean and variance of the individual ψ̂j’s, which are MLE and consistent

estimators of ψj’s, by re-writing ψ̂MH as a weighted average of the ψ̂j’s (Hauck, 1979;

Silcocks, 2005), i.e.,

ψ̂MH =

∑m
j=1Rj∑m
j=1 Sj

=
m∑
j=1

Rj

Sj

Sj∑m
j=1 Sj

=
m∑
j=1

ψ̂j
Sj∑m
j=1 Sj

In the second class, the number of tables increases while the cell sizes are bounded

(m→∞). Many variance estimators in this class exist (Robins et al., 1986; Breslow

and Liang, 1982) and are derived from the expression

√
m(ψ̂MH − ψ) =

√
m(R− ψS)/m

S/m
=

√
m
∑m

j=1(Rj − ψSj)/m∑m
j=1 Sj/m

(4.2)

Since E(Rj − ψSj) = 0, the Central Limit Theorem states that the numerator of

63



Equation (4.2) is asymptotically normal with mean zero and variance

limm→∞V ar(
m∑
j=1

(Rj − ψSj))/m

The denominator of Equation (4.2) converges to its mean
∑m

j=1E(Sj)/m, as m→

∞. Applying Slutsky’s theorem such that

limm→∞mV ar(ψ̂MH) =
limm→∞V ar(

∑m
j=1(Rj − ψSj))/m

[limm→∞
∑m

j=1E(Sj)/m]2
(4.3)

Different versions of the numerator and the denominator of Equation (4.3) have

been suggested. For example, Breslow (1981) proposed an empirical Mantel-Haenszel

variance, that is

VB =

∑m
j=1(Rj − ψ̂MHSj)

2

(
∑m

j=1 Sj)
2

(4.4)

Robins et al. (1986) proposed another estimator with the numerator for (4.4), or

V ar(
∑m

j=1(Rj − ψSj)) replaced by an unbiased estimator. With some algebra, their

MH variance estimator became:

VU = [

∑m
j=1 PjRj

2R2
+

∑m
j=1(PjSj +QjRj)

2RS
+

∑m
j=1QjSj

2S2
](ψ̂MH)2 (4.5)

where Pj = (aj + dj)/nj, Qj = (bj + cj)/nj.

Lastly, there are some “hybrid” versions of Mantel-Haenszel variance estimators

that fit both models above. An example is that proposed by Breslow and Liang
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(1982):

VC =
nVH +m2VB
n+m2

where n =
∑m

j=1 nj. This estimator incorporate the variance estimators in Equations

(4.1) and (4.4), and allows either estimator to dominate according to total counts in

all cells and number of strata.

In the previous two chapters, we discussed two ways to test if the correlation

between each biomarker and each pathogen is homogeneous over time. After testing

the homogeneity hypothesis, and lack of significance is found, a decision can be made

to pool the various correlation coefficients into a single time-invariant value that

quantifies the correlation between a biomarker and a pathogen. In this study, we are

interested in finding a pooled serial correlation estimator for longitudinal data. Our

proposed pooled correlation coefficient estimator, rMH is based on Mantel-Haenszel

methods. In Section 4.2 we will derive two variance estimators of rMH analogous to

the methods just described (m → ∞; n → ∞). We use Monte Carlo simulations to

evaluate the bias of these estimators in Section 4.3.

4.2 Methods

4.2.1 Notation and Definition of Pooled Correlation Coefficient Estimate

We have n subjects who are each examined sequentially at times t1 < t2, . . . , < tm.

Let Xij and Yij, i = 1, 2, . . . , n; j = 1, 2, . . . ,m, denote the respective values of

biomarker X and pathogen Y collected from subject i at time tj. Marginally, we

assume Xij ∼ N (µxj, σ
2
j ) and Yij ∼ N (µyj, τ

2
j ), where µxj and µyj are param-

eters quantifying the means of Xij and Yij, respectively. The elements of Xi =

(Xi1, Xi2, · · · , Xim), are assumed to be exchangeably correlated with each other with
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correlation ρx, and the elements of Yi = (Yi1, Yi2, · · · , Yim) are exchangeably corre-

lated with each other with correlation ρy. We also assume a common cross-correlation,

ρxy between Xij and Yik, for j 6= k. The time-specific correlation of Xij and Yij is

defined to be ρj = Corr(Xij, Yij) and are the parameters of interest. Explicitly, let

Di = {Xi1, Yi1, Xi2, Yi2, · · · , Xim, Yim}t denote the (2m × 1) longitudinal vector of

pairs of biomarker and pathogen for subject i, and assume Di has a multivariate

normal distribution with mean vector µ and variance Σ in which

µ = {µx1 , µy1 , µx2 , µy2 , · · · , µxm , µym} (4.6)

and

Σ =



σ2
1 ρ1σ1τ1 ρxσ1σ2 ρxyσ1τ2 · · · ρxσ1σm ρxyσ1τm

ρ1σ1τ1 τ 21 ρxyσ2τ1 ρyτ1τ2 · · · ρxyσmτ1 ρyτ1τm

ρxσ1σ2 ρxyσ2τ1 σ2
2 ρ2σ2τ2 · · · ρxσ2σm ρxyσ2τm

ρxyσ1τ2 ρyτ1τ2 ρ2σ2τ2 τ 22 · · · ρxyσmτ2 ρyτ2τm

...
...

...
...

. . .
...

...

ρxσ1σm ρxyσmτ1 ρxσ2σm ρxyσmτ2 · · · σ2
m ρmσmτm

ρxyσ1τm ρyτ1τm ρxyσ2τm ρyτ2τm · · · ρmσmτm τ 2m



(4.7)

same as Equations 2.1 and 2.2.

The correlation of Xij and Yij at time tj is defined to be

ρj =

∑n
i=1(Xij − µX)(Yij − µY )√∑n

i=1(Xij − µX)2
∑n

i=1(Yij − µY )2
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whose corresponding sample estimate is

ρ̂j =

∑n
i=1(Xij −Xj)(Yij − Y j)√∑n

i=1(Xij −Xj)2
∑n

i=1(Yij − Y j)2

=

∑n
i=1 X̃ijỸij√∑n

i=1 X̃
2
ij

∑n
i=1 Ỹ

2
ij

=
Cj
Bj

After testing for homogeneity and if we fail to reject H0, we pool the values of

ρ̂1, ρ̂2, . . . , ρ̂m into a single time-invariant estimate of the correlation of X and Y by

applying the idea of Mantel and Haenszel (1959) to a setting with continuous data.

Specifically, we define

r
MH

=

∑m
j=1

∑n
i=1 X̃ijỸij∑m

j=1

√∑n
i=1 X̃

2
ij

∑n
i=1 Ỹ

2
ij

=

∑m
j=1Cj∑m
j=1Bj

=
C

B
(4.8)

Although the computation of rMH is straightforward, a variance estimate for rMH

is not. We now derive two asymptotic variance estimates for rMH , one in which the

number of time points, m, goes to infinity, and one in which the number of subjects,

n, goes to infinity.

4.2.2 Asymptotic variance as n→∞

Similar to the work of Hauck (1979) and Silcocks (2005) for V ar(ψ̂MH), rMH can

be rewritten as a weighted average of each ρ̂j:

rMH =
m∑
j=1

∑n
i=1 X̃ijỸij√∑n

i=1 X̃
2
ij

∑n
i=1 Ỹ

2
ij

.

√
1

n−1
∑n

i=1 X̃
2
ij.

1
n−1

∑n
i=1 Ỹ

2
ij∑m

j=1

√
1

n−1
∑n

i=1 X̃
2
ij.

1
n−1

∑n
i=1 Ỹ

2
ij

=
m∑
j=1

ρ̂jωj/
m∑
j=1

ωj (4.9)
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where ωj =
√

1
n

∑n
i=1 X̃

2
ij.

1
n

∑n
i=1 Ỹ

2
ij = σ̂j τ̂j.

Notice that (ρ̂1, ρ̂2, · · · , ρ̂m) are MLEs (and therefore consistent estimators) of the

respective serial correlations ρ1, ρ2, . . . , ρm, and σ̂2
j and τ̂ 2j are consistent estimators of

σ2
j and τ 2j . As a result, rMH converges in probability to ρMH =

∑m
j=1 ρjνj/

∑m
j=1 νj,

where νj = σjτj.

Recall that in Chapter 2 we derived the asymptotic joint distribution:

√
n{(ρ̂1, ρ̂2, · · · , ρ̂m)T − (ρ1, ρ2, · · · , ρm)T} →d MVN(0,Σρ)

Yu and Dunn (1982) suggested that the value n be replaced by the value n − 3 in

order to improve the approximation in small samples. Σρ is an m×m matrix with

diagonal element θjj and off-diagonal element θjk equal to

θjj = (1− ρ2j)2 (4.10)

θjk =

{
1

2
ρjρk(ρ

2
x + ρ2y) + ρ2xy(1 + ρjρk) + ρxρy − ρxy(ρj + ρk)(ρx + ρy)

}
(4.11)

By Slutsky’s Theorem,

√
n− 3(rMH − ρMH) =

√
n− 3{ω(ρ̂1, ρ̂2, · · · , ρ̂m)T − ν(ρ1, ρ2, · · · , ρm)T}

→d MVN(0,νΣρν
T ) (4.12)

where ω = (ω1, ω2, ..., ωm)/
∑m

j=1(ωj), and ν = (ν1, ν2, ..., νm)/
∑m

j=1(νj).

When there is a common serial correlation ρ, rMH is a consistent estimator of ρ.
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Therefore, rMH has approximate variance

V arn(MH) = ωΣ̂ρω
T/(n− 3)

= {
∑

j 6=k ωjωk
{

1
2
r2MH(ρ̂2x + ρ̂2y) + ρ̂2xy(1 + r2MH) + ρ̂xρ̂y − 2ρ̂xyrMH(ρ̂x + ρ̂y)

}
(Σjωj)2

+

∑m
j=1 ω

2
j (1− r2MH)2

(
∑m

j=1 ωj)
2

}/(n− 3) (4.13)

4.2.3 Asymptotic variance as m→∞

Let ρ denote the true common serial correlation under null hypothesis. rMH can

be expressed as

√
m(rMH − ρ) =

√
m(C/m− ρB/m)

B/m
(4.14)

In order to derive the asymptotic variance for rMH , we will show that
√
m(C/m −

ρB/m) has a limiting normal distribution and that B/m converges in probability to

a constant so that the variance of rMH is simply the variance of the limiting variance

of
√
m(C/m− ρB/m) scaled by the square of the limiting constant for B/m.

We now derive the limiting value for B/m. If we define Uj =
∑n

i=1 X̃
2
ij/σj and

Vj =
∑n

i=1 Ỹ
2
ij/τj, B can be expressed as

∑m
j=1 σjτj

√
UjVj. Note that Uj and Vj follow

χ2 with (n− 1) degrees of freedom.

Let Wj =
√
UjVj, the square root of the product of two χ2 random variables.

Then B can be written as
∑m

j=1 σjτjWj. A second-order Taylor expension around

E(Uj) = n− 1 and E(Vj) = n− 1 gives us an approximation for E(Wj):
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Wj ≈
√
µUµV +

Uj − µU
2

√
µV
µU

+
Vj − µV

2

√
µU
µV

−(Uj − µU)2

8

√
µV
µ3
U

+
(Uj − µU)(Vj − µV )

4
√
µUµV

− (Vj − µV )2

8

√
µU
µ3
V

=
√

(n− 1)(n− 1) +
Uj − (n− 1)

2

√
n− 1

n− 1
+
Vj − (n− 1)

2

√
n− 1

n− 1

−(Uj − (n− 1))2

8

√
n− 1

(n− 1)3
+

(Uj − (n− 1))(Vj − (n− 1))

4
√

(n− 1)2

−(Vj − (n− 1))2

8

√
n− 1

(n− 1)3

=
Uj + Vj

2
− (Uj − (n− 1))2 + (Vj − (n− 1))2

8(n− 1)
+

(Uj − (n− 1))(Vj − (n− 1))

4(n− 1)

Therefore,

E(Wj) ≈ n− 1− V ar(Uj) + V ar(Vj)

8(n− 1)
+
Cov(Uj, Vj)

4(n− 1)

= n− 3

2
+
Cov(Uj, Vj)

4(n− 1)

where

Cov(Uj, Vj) = Cov(
n∑
i=1

X̃2
ij,

n∑
i=1

Ỹ 2
ij)/σ

2
j τ

2
j

=
n∑
i=1

Cov(X̃2
ij, Ỹ

2
ij)/σ

2
j τ

2
j +

n∑
j 6=j′

Cov(X̃2
ij, Ỹ

2
i′j)/σ

2
j τ

2
j

= nCov(X̃2
ij, Ỹ

2
ij)/σ

2
j τ

2
j + n(n− 1)Cov(X̃2

ij, Ỹ
2
i′j)/σ

2
j τ

2
j

= {nE(X̃2
ijỸ

2
ij) + n(n− 1)E(X̃2

ijỸ
2
i′j)− n2E(X̃2

ij)E(Ỹ 2
ij)}/σ2

j τ
2
j

After some manipulations, we find that Cov(Uj, Vj) = 2(n− 1)ρ2j .
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so that

E(Wj) ≈ n− 3

2
+
ρ2

2
≈ n− a (4.15)

where a is a value ranging between 1 and 3/2. We also derived the third order term

of the Taylor expansion, and found it contained a negligible amount (approximately

1/4
∑m

j=1 σjτj). Although higher order terms in the Taylor series expansion are not

completely ignorable, their magnitude is small enough to allow us to ignore them in

our approximation. Therefore, based on a second-order Taylor expansion, as m gets

large B/m gets close to
∑m

j=1 (n− 3/2 + ρ2/2)σjτj/m.

To compute the limiting distribution for
√
m(C/m − ρB/m), which appears in

the numerator of Equation (4.14), we need to derive V ar(C − ρB) = V ar(C) +

ρ2V ar(B)− 2ρCov(C,B).

In the setting of a pooled odds ratio, one crucial assumption for deriving the

limiting distribution for the pooled odds ratio as m → ∞ was the data for each

stratum (each time point in our setting) was independent. However, due to a lack of

independence of data from different time points, deriving both V ar(B) and Cov(B,C)

has proved impossible after a number of months of various attempts to approximate

the joint distribution of B and C. As a result, we do not have an explicit asymptotic

variance estimate for the pooled correlation coefficient estimate. Nonetheless, we do

present our derivation for V ar(C) and the form the asymptotic variance would take

if and when values for V ar(B) and Cov(B,C) are found.

To derive V ar(C), we need to derive E(Cj), V ar(Cj), and Cov(Cj, Cj′). To derive
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E(Cj), we need to first derive Cov(X̃ij, Ỹij).

Cov(X̃ij, Ỹij) = Cov(Xij − X̄j, Yij − Ȳj)

= Cov(Xij, Yij) + Cov(X̄j, Ȳj)− Cov(Xij, Ȳj)− Cov(X̄j, Yij)

= ρjσjτj +
1

n2

n∑
i=1

Cov(Xij, Yij)− Cov(Xij, Ȳj)− Cov(X̄j, Yij)

= ρjσjτj +
n

n2
ρjσjτj −

1

n
Cov(Xij, Yij)−

1

n
Cov(Xij, Yij)

=
n− 1

n
ρjσjτj (4.16)

Based on the equation above,

E(Cj) =
n∑
i=1

E(X̃ijỸij) = nE(X̃ijỸij)

= n{Cov(X̃ij, Ỹij) + E(X̃ij)E(X̃ij)}

= (n− 1)ρjσjτj (4.17)

V ar(Cj) = V ar(
n∑
i=1

X̃ijỸij)

=
n∑
i=1

V ar(X̃ijỸij) +
∑
i 6=i′

Cov(X̃ijỸij, X̃i′jỸi′j)

= nV ar(X̃ijỸij) + n(n− 1)Cov(X̃ijỸij, X̃i′jỸi′j)

= n{E(X̃2
ijỸ

2
ij)− E2(X̃ijỸij)}+ n(n− 1){E(X̃ijỸijX̃i′jỸi′j)

−E(X̃ijỸij)E(X̃i′jỸi′j)}

= nE(X̃2
ijỸ

2
ij) + n(n− 1){E(X̃ijỸijX̃i′jỸi′j)} − n2E2(X̃ijỸij)

To deriveE(X̃2
ijỸ

2
ij) andE(X̃ijỸijX̃i′jỸi′j), we need to first derive V ar(X̃ij), V ar(Ỹij),
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Cov(X̃ij, X̃i′j), Cov(Ỹij, Ỹi′j), Cov(X̃ij, Ỹi′j), and Cov(Ỹij, X̃i′j). First, we have

V ar(X̃ij) = V ar(Xij − X̄j)

= V ar(Xij) + V ar(X̄j)− 2Cov(Xij, X̄j)

=
n+ 1

n
σ2
j − 2Cov(Xij, X̄j)

=
n+ 1

n
σ2
j −

2

n
V ar(Xij)

=
n− 1

n
σ2
j (4.18)

and similarly to Equation (4.18),

V ar(Ỹij) =
n− 1

n
τ 2j (4.19)

We also find

Cov(X̃ij, X̃i′j) = Cov(Xij − X̄j, Xi′j − X̄j)

= Cov(Xij, Xi′j)− Cov(Xij, X̄j)− Cov(Xi′j, X̄j) + Cov(X̄j, X̄j)

= 0− 1

n
Cov(Xij, Xij)−

1

n
Cov(Xi′j, Xi′j) + V ar(X̄j)

= − 2

n
σ2
j +

1

n
σ2
j

= − 1

n
σ2
j (4.20)

and similarly,

Cov(Ỹij, Ỹi′j) = − 1

n
τ 2j (4.21)

Cov(X̃ij, Ỹi′j) = Cov(Ỹij, X̃i′j) = − 1

n
ρjσjτj (4.22)
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Derivation of E(X̃2
ijỸ

2
ij) and E(X̃ijỸijX̃i′jỸi′j) takes advantage of the fourth order

moment information for the multivariate normal distribution (Isserlis, 1918). Note

that (X̃ij, Ỹij, X̃i′j, Ỹi′j) form a multivariate normal vector with covariance matrix

based on Equations (4.18), (4.19), (4.16), (4.20), (4.21) and (4.22):

Σ∗ =



n−1
n
σ2
j

n−1
n
ρjσjτj − 1

n
σ2
j − 1

n
ρjσjτj

n−1
n
ρjσjτj

n−1
n
τ 2j − 1

n
ρjσjτj − 1

n
τ 2j

− 1
n
σ2
j − 1

n
ρjσjτj

n−1
n
σ2
j

n−1
n
ρjσjτj

− 1
n
ρjσjτj − 1

n
τ 2j

n−1
n
ρjσjτj

n−1
n
τ 2j


(4.23)

As a result, we have:

E(X̃2
ijỸ

2
ij) = Σ∗11Σ

∗
22 + 2(Σ∗12)

2

=
(n− 1)2

n2
(σ2

j τ
2
j + 2ρ2jσ

2
j τ

2
j ) (4.24)

and

E(X̃ijỸijX̃i′jỸi′j) = Σ∗12Σ
∗
34 + Σ∗13Σ

∗
24 + Σ∗14Σ

∗
23

=
(n− 1)2

n2
ρjσjτjρjσjτj +

1

n2
σ2
j τ

2
j +

1

n2
ρ2jσ

2
j τ

2
j

=
(n− 1)2 + 1

n2
ρ2jσ

2
j τ

2
j +

1

n2
σ2
j τ

2
j (4.25)
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Therefore,

V ar(Cj) = nE(X̃2
ijỸ

2
ij) + n(n− 1){E(X̃ijỸijX̃i′jỸi′j)} − n2E2(X̃ijỸij)

= n
(n− 1)2

n2
(σ2

j τ
2
j + 2ρ2jσ

2
j τ

2
j ) + n(n− 1)

(n− 1)2 + 1

n2
ρ2jσ

2
j τ

2
j

+
1

n2
σ2
j τ

2
j − n2 (n− 1)2

n2
ρ2jσ

2
j τ

2
j

= (n− 1)ρ2jσ
2
j τ

2
j (4.26)

Cov(Cj, Cj′) = Cov(
n∑
i=1

X̃ijỸij,
n∑
i=1

X̃ij′Ỹij′)

= nCov(X̃ijỸij, X̃ij′Ỹij′) + n(n− 1)Cov(X̃ijỸij, X̃i′j′Ỹi′j′)

= nE(X̃ijỸijX̃ij′Ỹij′)− nE(X̃ijỸij)E(X̃ij′Ỹij′)

+n(n− 1){E(X̃ijỸijX̃i′j′Ỹi′j′)− E(X̃ijỸij)E(X̃i′j′Ỹi′j′)}

= nE(X̃ijỸijX̃ij′Ỹij′) + n(n− 1)E(X̃ijỸijX̃i′j′Ỹi′j′)

−n2E(X̃ijỸij)E(X̃ij′Ỹij′)

To derive E(X̃ijỸijX̃ij′Ỹij′) and E(X̃ijỸijX̃i′j′Ỹi′j′), we need to further derive cross-

time covariances. Without showing the derivation details, we have the following

equations:

Cov(X̃ij, X̃ij′) =
n− 1

n
ρxσjσj′ (4.27)

Cov(Ỹij, Ỹij′) =
n− 1

n
ρyτjτj′ (4.28)
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Cov(X̃ij, Ỹij′) =
n− 1

n
ρxyσjτj′ (4.29)

Cov(X̃ij′ , Ỹij) =
n− 1

n
ρxyσj′τj (4.30)

Cov(X̃ij, X̃i′j′) = − 1

n
ρxσjσj′ (4.31)

Cov(Ỹij, Ỹi′j′) = − 1

n
ρyτjτj′ (4.32)

Cov(X̃ij, Ỹi′j′) = − 1

n
ρxyσjτj′ (4.33)

Cov(Ỹij, X̃i′j′) = − 1

n
ρxyσj′τj (4.34)

Note that (X̃ij, Ỹij, X̃ij′ , Ỹij′) form a multivariate normal vector whose covariance

matrix Σ∗∗ can be extracted from Equations (4.18)-(4.19), (4.27)-(4.30):

Σ∗∗ =



(n−1)
n
σ2
j

(n−1)
n
ρjσjτj

(n−1)
n
ρxσjσj′

(n−1)
n
ρxyσjτj′

(n−1)
n
ρjσjτj

(n−1)
n
τ 2j

(n−1)
n
ρxyσj′τj

(n−1)
n
ρyτjτj′

(n−1)
n
ρxσjσj′

(n−1)
n
ρxyσj′τj

(n−1)
n
σ2
j′

(n−1)
n
ρj′σj′τj′

(n−1)
n
ρxyσjτj′

(n−1)
n
ρyτjτj′

(n−1)
n
ρj′σj′τj′

(n−1)
n
τ 2j′


(4.35)
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As a result, we have:

E(X̃ijỸijX̃ij′Ỹij′) = Σ∗12Σ
∗
34 + Σ∗13Σ

∗
24 + Σ∗14Σ

∗
23

=
(n− 1)2

n2
(ρjσjτjρj′σj′τj′ + ρxσjσj′ρyτjτj′ + ρxyσjτj′ρxyσj′τj)

=
(n− 1)2

n2
{σjτjσj′τj′(ρjρj′ + ρxρy + ρ2xy)}

Also, (X̃ij, Ỹij, X̃i′j′ , Ỹi′j′) form a multivariate normal vector whose covariance ma-

trix Σ∗∗∗ can be extracted from Equations (4.16), (4.18), (4.19), (4.31)-(4.34):

Σ∗∗∗ =



n−1
n
σ2
j

n−1
n
ρjσjτj − 1

n
ρxσjσj′ − 1

n
ρxyσjτj′

n−1
n
ρjσjτj

n−1
n
τ 2j − 1

n
ρxyσj′τj − 1

n
ρyτjτj′

− 1
n
ρxσjσj′ − 1

n
ρxyσj′τj

n−1
n
σ2
j′

n−1
n
ρj′σj′τj′

− 1
n
ρxyσjτj′ − 1

n
ρyτjτj′

n−1
n
ρj′σj′τj′

n−1
n
τ 2j′


(4.36)

then we have:

E(X̃ijỸijX̃ij′Ỹij′) = Σ∗12Σ
∗
34 + Σ∗13Σ

∗
24 + Σ∗14Σ

∗
23

=
(n− 1)2

n2
ρjσjτjρj′σj′τj′ +

1

n2
ρxσjσj′ρyτjτj′ +

1

n2
ρxyσjτj′ρxyσj′τj

=
1

n2
{σjτjσj′τj′ [(n− 1)2ρjρj′ + ρxρy + ρ2xy]}

Therefore,

Cov(Cj, Cj′) = n
(n− 1)2

n2
{σjτjσj′τj′(ρjρj′ + ρxρy + ρ2xy)}

+n(n− 1)
1

n2
{σjτjσj′τj′ [(n− 1)2ρjρj′ + ρxρy + ρ2xy]}

−n2 (n− 1)2

n2
(ρjσjτj)(ρj′σj′τj′)

= (n− 1)σjτjσj′τj′(ρxρy + ρ2xy) (4.37)
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Let ρ denote the true common serial correlation, ρj = ρ under H0. We substitute

ρ for ρj and have the following:

E(Cj) = (n− 1)ρσjτj (4.38)

V ar(Cj) = (n− 1)(1 + ρ2)σ2
j τ

2
j (4.39)

Cov(Cj, Cj′) = (n− 1)σjτjσj′τj′(ρxρy + ρ2xy) (4.40)

Therefore, C =
∑m

j=1Cj has variance

{
m∑
j=1

(n− 1)(1 + ρ2)σ2
j τ

2
j +

∑
j 6=j′

(n− 1)σjτjσj′τj′(ρxρy + ρ2xy)}

Once we obtain the approximations to the values for V ar(B) and Cov(C,B),

which we denote as v and φ, respectively, then
√
m(C/m − ρB/m) has asymptotic

variance

{
m∑
j=1

(n− 1)(1 + ρ2)σ2
j τ

2
j +

∑
j 6=j′

(n− 1)σjτjσj′τj′(ρxρy + ρ2xy) + ρ2v − 2ρφ)}/m.

And given that B/m converges in probability to
∑m

j=1 (n− 3/2 + ρ2/2)σjτj/m, the

asymptotic variance for rMH as m→∞, denoted as V arm(rMH), is

∑m
j=1 (n− 1)(1 + ρ2)σ2

j τ
2
j +

∑
j 6=j′(n− 1)σjτjσj′τj′(ρxρy + ρ2xy) + ρ2v − 2ρφ

{
∑m

j=1 (n− 3/2 + ρ2/2)σjτj}2

We estimate the denominator of B with the sums of squares and plug in rMH for

ρ, giving us the estimate ̂V arm(rMH) that has the following expression:

∑m
j=1 (n− 1)(1 + r2MH)σ̂

2
j τ̂

2
j +

∑
j 6=j′(n− 1)σ̂j τ̂jσ̂j′ τ̂j′(ρ̂xρ̂y + ρ̂2xy) + r2MHv − 2rMHφ

(
∑m

j=1

√∑n
i=1 X̃

2
ij

∑n
i=1 Ỹ

2
ij)

2

(4.41)

78



4.3 Numerical Examples

4.3.1 Simulation Study

In this section, simulations were performed under settings similar to those exam-

ined in Chapter II and III. We examined the bias of our pooled correlation estimate

as well as its variance estimate as n→∞; our simulations do not include a variance

estimate when m→∞ due to the complications described in Section 4.2.3. For each

subject i, i = 1, 2, . . . , n, biomarker X and pathogen Y are both observed at m time

points. We assume Xij ∼ N (µxj, σ
2
j ) and Yij ∼ N (µyj, τ

2
j ), in which µx = 2.5 and

µy = 4.0, σj = 0.3, and τj = 0.40− 0.05(j − 1). In terms of the joint distribution of

the data, we still considered two settings, the constant nuisance correlation setting

that matches our assumed model and autoregressive nuisance correlation setting that

has a model violation. However, we also considered several new scenarios in each

setting that were not examined in previous chapters.

We first present simulation settings with constant nuisance correlation. The means

and variances are the same as those used in the earlier simulations. For the nui-

sance correlation parameters, three sets of settings were considered: I. zero cross-

correlations, in which we set ρx = ρy = ρxy = 0; II: medium cross-correlations, in

which we set ρx = ρy = 0.3 and ρxy = 0; III. large cross-correlations, in which we

set ρx = 0.5, ρy = 0.7, and ρxy = 0. We chose values for the common correla-

tion of interest, ρ ∈ {0, 0.2, 0.4, 0.6} in settings I and II, and ρ ∈ {0, 0.2} in setting

III. The reason we did not let the common serial correlation be larger than 0.2 in

sub-setting III was that larger values led to a non-positive definite covariance ma-
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trix for the data. For each combination of ρ and nuisance setting, we simulated

Di={Xi1, Yi1, Xi2, Yi2, · · · , Xim, Yim}, the data for each subject i, from a multivariate

normal distribution with mean µ and variance as described above. We considered

sample sizes of n ∈ {50, 100, 500} and the number of time points m ∈ {3, 4, 5}. We

computed the Mantel-Haenszel pooled correlation and its variance based on two vari-

ance formula, and also the empirical variance of the 1,000 Mantel-Haenszel correlation

estimates.

We then present simulation settings for the setting with autoregressive nuisance

correlation. The elements of Xi. have an autoregressive correlation structure with

correlation ρ
|j−k|
x0 , the correlation between Yij and Yik is similarly set to be ρ

|j−k|
y0 , and

the cross-correlation between Xij and Yik or between Xik and Yij is cρ
|j−k|
xy0 , where c

is a positive constant. For the nuisance correlation parameters, two sets of settings

were considered: I: medium cross-correlations, in which we selected the values ρx0 =

ρy0 = 0.3, ρxy0 = 0.7 and c = 1.7 × ρx0ρy0 ; II. large cross-correlations, in which we

set ρx0 = 0.5, ρy0 = 0.6, ρxy0 = 0.7 and c = 1.7 × ρx0ρy0 . The correlation parameter

of interest, ρ, was chosen to be ρ ∈ {0.2, 0.4, 0.6}. We also considered sample sizes of

n ∈ {50, 100, 500} and the number of time points m ∈ {3, 4, 5}.

4.3.2 Simulation Results

Table 4.1 presents the true common serial correlation and its empirical standard

error, as well as the Mantel-Haenszel serial correlation estimate and its proposed

theoretical (formula based as n → ∞) variances (presented in terms of standard

error) when there is zero cross correlations for various combinations of n,m, and ρ.

The performance was evaluated out of 1,000 simulations. Each theoretical value is

the average of 1,000 formula-based values.
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Overall, the Mantel-Haenszel pooled correlation is close to the true common cor-

relation. Regarding standard error estimates, when ρ is small (≤ 0.2), with a sample

size of n = 500, the estimates are very close to the true value ES(MH), regardless of

the number of time points. With sample sizes of n = 50, the standard errors obtained

by formula derived based on n→∞ are slightly inflated, but still within an accept-

able range. As ρ increases, the standard error developed based on the asymptotics

of n remains almost the same as the true value or inflates just by a small amount in

small samples (n = 50).

A similar trend can be seen when a medium level of constant cross correlations

exist, as shown in Table 4.2. Finally, Table 4.3 shows the performance of the proposed

variance estimator in data with large constant cross correlations. With a large or

medium sample size (n = 500 or 100), the variance estimates are close to the true

value, while with sample sizes of n = 50, our variance estimate tends to underestimate

the true value slightly when m = 4 or m = 5.

We should expect that our variance estimator performs the best when sample

size is large, according to its asymptotic features. In general, that is what we have

observed. We repeated the simulations with n = 25 (results not shown) and the

proposed variance estimator V arn(MH) still performs well.

We then examined a situation when there is model mis-specification. Table 4.4 and

Table 4.5 contain rMH and the estimated standard error Sn(MH) for simulated data

with medium and large autoregressive nuisance correlations. The Mantel-Haenszel

pooled correlation remains close to the true common correlation in our settings. Table

4.4 indicates that if medium autoregressive nuisance correlations exist and ρ is as small

as 0.2, the formula based n → ∞ gave relatively accurate estimation with a sample

size of n = 500. As ρ goes up or the sample size decreases, Sn(MH) remains close to
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Table 4.1: The estimated pooled serial correlation rMH and the corresponding stan-
dard error estimator with zero nuisance correlation (1000 replications).
Sn(MH) = standard error obtained by formula derived based on n→∞;
ES(MH) = empirical standard error of rMH .

n = 500
m ρ rMH Sn(MH) ES(MH)
3 0 -0.002 0.026 0.026

0.2 0.198 0.025 0.025
0.4 0.398 0.022 0.022
0.6 0.599 0.017 0.017

4 0 -0.001 0.023 0.023
0.2 0.199 0.022 0.022
0.4 0.400 0.019 0.019
0.6 0.600 0.015 0.014

5 0 -0.001 0.021 0.021
0.2 0.199 0.020 0.020
0.4 0.400 0.017 0.017
0.6 0.600 0.013 0.013

n = 100
3 0 0.000 0.059 0.056

0.2 0.201 0.057 0.054
0.4 0.401 0.050 0.047
0.6 0.601 0.038 0.036

4 0 -0.002 0.052 0.052
0.2 0.198 0.050 0.050
0.4 0.399 0.043 0.044
0.6 0.599 0.033 0.033

5 0 -0.002 0.047 0.047
0.2 0.199 0.045 0.045
0.4 0.400 0.039 0.040
0.6 0.600 0.030 0.030

n = 50
3 0 0.000 0.085 0.082

0.2 0.201 0.082 0.079
0.4 0.402 0.071 0.069
0.6 0.602 0.054 0.052

4 0 -0.002 0.074 0.071
0.2 0.199 0.071 0.068
0.4 0.400 0.063 0.060
0.6 0.600 0.048 0.045

5 0 0.002 0.067 0.066
0.2 0.203 0.065 0.063
0.4 0.404 0.057 0.055
0.6 0.604 0.043 0.042
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Table 4.2: The estimated pooled serial correlation rMH and the corresponding stan-
dard error estimator with medium constant nuisance correlation (1000
replications).Sn(MH) = standard error obtained by formula derived based
on n→∞; ES(MH) = empirical standard error of rMH .

n = 500
m ρ rMH Sn(MH) ES(MH)
3 0 -0.002 0.028 0.029

0.2 0.198 0.027 0.028
0.4 0.398 0.025 0.025
0.6 0.598 0.021 0.021

4 0 -0.001 0.026 0.025
0.2 0.199 0.025 0.025
0.4 0.399 0.023 0.023
0.6 0.600 0.020 0.020

5 0 -0.001 0.024 0.024
0.2 0.200 0.023 0.023
0.4 0.400 0.022 0.021
0.6 0.600 0.019 0.019

n = 100
3 0 -0.001 0.064 0.063

0.2 0.199 0.062 0.061
0.4 0.400 0.056 0.056
0.6 0.600 0.048 0.048

4 0 -0.002 0.058 0.058
0.2 0.198 0.056 0.057
0.4 0.399 0.052 0.052
0.6 0.600 0.045 0.046

5 0 -0.003 0.054 0.054
0.2 0.198 0.053 0.052
0.4 0.399 0.049 0.049
0.6 0.599 0.044 0.044

n = 50
3 0 -0.001 0.092 0.091

0.2 0.200 0.089 0.088
0.4 0.401 0.081 0.080
0.6 0.601 0.068 0.068

4 0 -0.004 0.083 0.080
0.2 0.198 0.081 0.077
0.4 0.400 0.074 0.071
0.6 0.601 0.064 0.062

5 0 0.002 0.077 0.078
0.2 0.203 0.075 0.076
0.4 0.404 0.070 0.070
0.6 0.604 0.062 0.062
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Table 4.3: The estimated pooled serial correlation rMH and the corresponding stan-
dard error estimator with large constant nuisance correlation (1000 repli-
cations). Sn(MH) = standard error obtained by formula derived based on
n→∞; ES(MH) = empirical standard error of rMH .

n = 500
m ρ rMH Sn(MH) ES(MH)
3 0 -0.003 0.034 0.034

0.2 0.197 0.033 0.034

4 0 -0.001 0.032 0.032
0.2 0.199 0.032 0.032

5 0 0.000 0.031 0.031
0.2 0.200 0.031 0.031

n = 100
3 0 -0.003 0.076 0.077

0.2 0.198 0.075 0.076

4 0 -0.002 0.073 0.073
0.2 0.199 0.072 0.073

5 0 -0.004 0.070 0.070
0.2 0.197 0.070 0.069

n = 50
3 0 -0.002 0.109 0.110

0.2 0.200 0.107 0.108

4 0 -0.005 0.103 0.101
0.2 0.198 0.103 0.100

5 0 0.002 0.100 0.104
0.2 0.204 0.100 0.103
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the true value. With large autoregressive nuisance correlations (Table 4.5), in some

data scenarios Sn(MH) is smaller than the true standard error, but only by a very

small amount. Therefore, Sn(MH) is fairly robust to model mis-specification.

4.3.3 Real Data Example

We analyzed the same two sets of data as that in previous chapters described by

Kinney et al. (2011) and Ramseier et al. (2009). For the serum biomarker dataset,

the concentration levels of MMP-8, MMP-9 and calprotectin were found to be strong

predictors of periodontitis and all three plaque pathogens demonstrated stronger as-

sociations than the four biomarkers (Ramseier et al. (2009)). After checking whether

or not the correlation between each biomarker and each pathogen were constant

over time, we found significant heterogeneity exists between TNF-α and T.forsythia,

MMP-9 and P.gingivalis at α = 0.05 level, and MMP-8 and P.gingivalis α = 0.10

level. In the salivary biomarker dataset, we found significant heterogeneity exists

between MMP-8 and T.forsythia at α = 0.05 level, OPG and T.denticola , between

MMP-9 and T.forsythia, MMP-8 and P.gingivalis, OPG and T.denticola at α = 0.10

level. For the rest pairs in the two datasets, there is no evidence of heterogeneity,

leading to a decision of pooling serial correlations such that the association between a

pathogen and a biomarker can be summarized by one single value for all time points.

4.3.3.1 Serum biomarker dataset

Table 4.6 contains the serial correlations of each log-transformed serum biomarker

with each log-transformed pathogen. The table also summarizes the Mantel-Haenszel

pooled serial correlation between combinations of biomarkers and pathogens, the stan-

dard error (se) of rMH computed from the formula assuming the number of subjects
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Table 4.4: The estimated pooled serial correlation rMH and the corresponding stan-
dard error estimator with medium autoregressive nuisance correlation
(1000 replications). Sn(MH) = standard error obtained by formula de-
rived based on n→∞; ES(MH) = empirical standard error of rMH .

n = 500
m ρ rMH Sn(MH) ES(MH)
3 0.2 0.198 0.026 0.027

0.4 0.398 0.023 0.023
0.6 0.598 0.018 0.018

4 0.2 0.199 0.023 0.023
0.4 0.399 0.020 0.020
0.6 0.600 0.015 0.016

5 0.2 0.199 0.021 0.021
0.4 0.400 0.018 0.019
0.6 0.600 0.014 0.015

n = 100
3 0.2 0.199 0.059 0.058

0.4 0.400 0.052 0.051
0.6 0.600 0.041 0.041

4 0.2 0.198 0.052 0.053
0.4 0.399 0.045 0.046
0.6 0.599 0.035 0.036

5 0.2 0.199 0.047 0.048
0.4 0.399 0.041 0.042
0.6 0.600 0.032 0.033

n = 50
3 0.2 0.200 0.085 0.085

0.4 0.401 0.075 0.075
0.6 0.602 0.058 0.059

4 0.2 0.198 0.075 0.072
0.4 0.399 0.065 0.063
0.6 0.600 0.051 0.050

5 0.2 0.203 0.067 0.068
0.4 0.404 0.059 0.060
0.6 0.604 0.045 0.047
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Table 4.5: The estimated pooled serial correlation rMH and the corresponding stan-
dard error estimator with large autoregressive nuisance correlation (1000
replications). Sn(MH) = standard error obtained by formula derived
based on n→∞; ES(MH) = empirical standard error of rMH .

n = 500
m ρ rMH Sn(MH) ES(MH)
3 0.2 0.199 0.030 0.031

0.4 0.399 0.026 0.026
0.6 0.599 0.019 0.020

4 0.2 0.200 0.027 0.028
0.4 0.400 0.023 0.023
0.6 0.600 0.017 0.018

5 0.2 0.199 0.024 0.026
0.4 0.399 0.020 0.021
0.6 0.600 0.015 0.016

n = 100
3 0.2 0.199 0.068 0.068

0.4 0.399 0.058 0.058
0.6 0.600 0.044 0.044

4 0.2 0.199 0.061 0.062
0.4 0.399 0.051 0.052
0.6 0.600 0.039 0.040

5 0.2 0.200 0.055 0.057
0.4 0.400 0.046 0.048
0.6 0.601 0.035 0.037

n = 50
3 0.2 0.199 0.097 0.098

0.4 0.400 0.083 0.083
0.6 0.601 0.064 0.064

4 0.2 0.199 0.087 0.087
0.4 0.400 0.073 0.074
0.6 0.602 0.056 0.056

5 0.2 0.199 0.079 0.082
0.4 0.401 0.067 0.069
0.6 0.602 0.050 0.052
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goes to infinity, and the p-value of Z-test of whether the pooled Mantel-Haenszel

correlation is zero. The test statistic Z was computed by Z = rMH/se. sen is

the standard error obtained by the formula derived based on n → ∞; p.n is the p-

value obtained by sen. Since we found significant heterogeneity between TNF-α and

T.forsythia and MMP-9/MMP-8 and P.gingivalis, we did not compute rMH for these

combinations.

Since our data indicate that most serial correlations are close to 0 and ranged

between -0.2 and 0.2, and the cross correlations (nuisance correlation) are nearly con-

stant, which is similar to our first simulation data setting. As we expected, Table 4.6

shows that the Mantel-Haenszel pooled correlation estimate is close to zero. How-

ever, none of the p-values (p.n) is less than 0.05, showing no evidence that the pooled

correlation is significantly different from zero in any pathogen-biomarker combination.

4.3.3.2 Salivary biomarker dataset

Table 4.7 contains the serial correlations of each salivary biomarker with each

pathogen after the transformation and Mantel-Haenszel pooled serial correlation to-

gether with the standard error and p-values. Our results show that among the

pathogen/biomarker pairs demonstrating a homogeneous serial correlation, the pooled

correlation is significantly different from zero between MMP-8/MMP-9 and T.denticola.

As shown in Table 4.7, the greatest rMH values (> 0.3) exist between MMP-8/MMP-9

and T.denticola, while the pooled correlations obtained from all the other pairs are be-

low 0.3. These findings, along with the previous biological findings in Gamonal et al.

(2011) about the progressive increase in MMP-8 and MMP-9 levels in saliva samples

as the degree of periodontitis develops, have provided both statistical and biological

evidence of a homogeneous and substantial correlation between MMP-8/MMP-9 and
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red complex pathogens.

4.4 Conclusion

In this Chapter, we propose a Mantel-Haenszel-type estimator of the pooled corre-

lation coefficient and the corresponding variance estimators. Two variance estimators

are proposed based on the asymptotics as number of time points or number of subjects

goes to infinity. Our proposed Mantel-Haenszel pooled correlation and the variance

estimator based on n → ∞ perform well according to the bias evaluation in differ-

ent settings via simulations. Conclusions are: (i) Mantel-Haenszel pooled correlation

rMH is close to the true common correlation. (ii) Sn(MH), the standard error given

by our variance formula is close to ES(MH) obtained empirically from the 1000 sim-

ulated data. (iii) The simulation setting indicates that even if autoregressive nuisance

correlations exist such that the true data violates our model assumption of constant

nuisance correlations, our formula (4.13) still maintains an accurate estimation. (iv)

Even with a smaller sample size, V̂ arn(rMH) still stays close to the true value.
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CHAPTER V

Summary and Future Work

Motivated by a periodontal study that longitudinally measured serum and salivary

biomarkers and levels of bacterial pathogens in the oral cavity, this dissertation aimed

to look at two issues in longitudinal studies: developing tests for the equality of serial

correlation between two longitudinally measured continuous variables over time, and

pooling serial correlation coefficients after they are tested to be homogeneous. In

Chapter II, we constructed a χ2
ρ test and a χ2

z test based on asymptotic distributions

for both untransformed and Fisher’s Z-transformed sample correlation coefficients,

respectively. We also proposed an Fρ statistic that is derived from χ2
ρ. We evaluated

the empirical size and power of our proposed tests in a variety of settings. We found

that Fρ and χ2
z tests have nominal sizes when the data fit our assumed model, and they

are generally robust to mis-specified models and heavier tailed data. The χ2
ρ test has

a more inflated size in small samples and some medium sized samples. In Chapter III,

we introduced Bayesian posterior credible intervals and Bayesian posterior predictive

p-values to perform tests of equality of correlation coefficients for longitudinal studies.

We evaluate two types of credible intervals–HPD and QB in a simple data setting with

only two repeated measures. When there are only two time points, HPD is preferred

to QB. When the number of time points is bigger than two, the credible interval
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is hard to obtain. Therefore, we explored Bayesian posterior predictive p-values in

data with more than two repeated measures. We borrowed the classical Wald χ2
ρ and

χ2
z statistics from Chapter II to construct test statistics Tρ and Tz, and discrepancy

measures Qρ and Qz. Our simulation results suggest that the posterior predictive p-

values based on Tρ and Tz have comparable performance in identifying heterogeneity

in medium sized datasets (e.g. n = 50) compared to Wald tests that are based

on asymptotics. In Chapter IV, we proposed a Mantel-Haenszel-type estimator of

the pooled correlation coefficient, denoted as rMH , and developed the corresponding

asymptotic variance estimate, denoted as V arn(MH), as the sample size goes to

infinity. We observed that the Mantel-Haenszel estimator for the pooled correlation

is close to the true common correlation, and that V arn(MH) also performs well even

with a small sample size. In addition, V arn(MH) remains stable and robust to model

mis-specification.

Our proposed tests for homogeneity and estimators for pooled correlation coeffi-

cient have been applied to a longitudinal periodontal study to investigate the associ-

ation of pathogenic bacteria and serum/salivary biomarkers in gingivitis. We found

heterogeneity between certain red complex pathogens and inflammatory biomarkers,

suggesting for these particular pairs, the time-specific correlation, especially at the

time point with the biggest correlation is of most interest, rather than the overall

correlation. Our findings suggested that we can identify the highest time-specific

correlation (such as month six in our example, which is interestingly the period when

periodontal disease is the most severe), and the pair of pathogen/biomarker at this

particular time point can be jointly examined to quantify disease severity. On the

other hand, among the pathogen/biomarker pairs with homogeneous serial correla-

tion, the correlation between T. denticola and salivary MMP8/MMP9 is significantly
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different from 0. The take-home message from this finding is that T. denticola and

salivary MMP8/MMP9 are constantly correlated over time and they can be used

jointly as a stable predictor of oral inflammatory/disease progression. The particular

pairs with constant, non-zero correlations may be very valuable predictors and can

save the cost of performing bioassays on many other biomarkers that demonstrate

less relevance with periodontitis-pathogenic bacteria.

In Chapter II, a limitation of our method is that we found suitable values for λ and

δ needed for our F -test through a grid search of possible values. However, it should

be noted that the values could be found directly by equating the first two moments

of λχ2
ρ/(m − 1) and F (m − 1, d). However, this approach requires use of the Delta

method to obtain the variance of a function of all the correlation parameters, which is

computationally intensive. Finding these values and comparing them to those we used

would prove interesting to determine if the added computational burden is warranted.

Another limitation is that our tests have poor power when the sample size de-

creases or the number of time points increases. Furthermore, when the distribution

of the data does not follow an exact multivariate normal distribution, simulations

showed that our tests have inflated size. An asymptotically exact test maybe devel-

oped to assess homogeneity in small samples or non-normal samples. Sakaori (2002a)

used an asymptotically exact permutation test for the equality of two correlation

coefficients for data from a trivariate normal distribution. He also developed an

asymptotically exact permutation test for equality of correlation coefficients in two

independent populations (Sakaori, 2002b), which was extended by Omelka and Pauly

(2012) to incorporate non-normal data. Although our setting is more complicated

than the settings of the cited works, we may also develop a permutation test to de-

termine if serial correlation is time-invariant to address the issue of inflated Type I
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error rates of our asymptotic tests.

In Chapter III, the posterior predictive tests in our simulations are generally

conservative. Meng (1994) suggested that under the prior predictive distribution,

posterior predictive p-value puts less weight to the extreme values, thus it is more

closely centered around 1/2 compared with a uniform variable. This indicates that

there exists an α0 small enough such that for all α ∈ [0, α0] the probability of observing

a p-value less than α given the null hypothesis will never exceed α. Thus, our finding

that the posterior predictive tests in our simulations are conservative is supported

by Meng (1994) who stated that a posterior predictive test often will have a level

close to or less than that desired. Although in our particular problem, Bayesian

posterior predictive method does not seem to provide a better power than Wald test,

it offers an alternative way of examining the hypothesis testing problem. Besides, the

concept of discrepancy variables has been introduced to our test, which allows us to

incorporate unknown nuisance parameters into test statistics, rather than plugging

an estimator (e.g., maximum-likelihood estimator) obtained from the original data

for the parameters.

The biggest challenge we were faced with in Chapter III was that our methods

involved sampling parameters from their posterior distribution and generating repli-

cated data in each iteration, and several thousand iterations were needed to get a

posterior predictive p-value. The computation time is much longer than performing

a Wald test in the R environment. One future step to improve current method is to

perform MCMC sampling using another programming language, for example, C, to

shorten the computation time.

In Chapter IV, we have yet to derive a variance formula as the number of time

points goes to infinity, which is analogous to the methods of Breslow (1981). However,
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unlike Breslow (1981)’s 2 × 2 table settings in which each stratum is independent,

the assumption of independence is not appropriate for longitudinal data since within-

subject correlation exists among time points. As a future direction, we will look for

solutions to obtain the asymptotic variance of C − ρB as the number of time points

goes to infinity. An alternative approach would be to bootstrap the data and then

directly compute the variance of rMH over the bootstrap samples.

Our estimators have been only applied to normal data. It is desired to evaluate

the estimators in skewed (non-normal) data. Moreover, our current test statistics

in Chapter II and Chapter III and estimators in Chapter IV do not accommodate

missing data and a common sample size is assumed for all time points. However,

in real studies with repeated measures, dropouts is a common issue and needs to be

considered. We will do sensitivity analyses in our future simulations to evaluate our

methods assuming data are missing at random. Furthermore, it may be of interest

to develop a variation form of test statistics or estimators to allow the sample size to

vary from one time point to another.
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