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When Random Assignment Is Not Enough:  
Accounting for Intentional Selectivity in Experimental Research 

 
Abstract 

 

A common goal in marketing research is to understand how one evaluates products that have 
been filtered through some type of screening or selection process. Typical examples include post-
choice satisfaction ratings, certain free recall tasks, or the development of consideration sets followed 
by brand choice. In such situations, behavior is contingent not only on the alternatives being 
evaluated, but the choice context in which they have become available, creating differing degrees of 
selectivity.  

In this paper, we consider situations in which a polytomous selection process limits which 
items offer up subsequent information. We propose that not flexibly modeling the correlation between 
choice and evaluation across conditions can lead to systematic, erroneous interpretations of covariate 
effects on evaluation. We illustrate this by analyzing two experiments in which subjects choose 
among, and then evaluate, a frequently-purchased consumer good, as well as data first examined by 
Ratner, Kahn and Kahneman (1999). Results indicate not only strong selectivity effects, but that 
traditional specifications of the choice process – presuming the degree of selectivity is invariant 
across choice contexts – can lead to markedly different interpretations of variable effects. Our 
findings show that the size and composition of a choice set affects the degree of correlation between 
choice and evaluation, and further suggest that foregone alternatives can play a disproportionate role 
in selectivity. Moreover, failing to account for selectivity across experimental conditions, even in 
well-designed experimental settings, can lead to inaccurate substantive inferences about consumers’ 
choice processes. 

 

 

Keywords: Choice Models, Consumer Behavior, Decision-Making, Econometric Models, Sample 
Selection, Heckman Model, Markov chain Monte Carlo, Hierarchical Bayes 
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INTRODUCTION 

Selectivity artifacts are common problems in academic disciplines characterized by field 
research – labor economics and sociology, for example – in which it is not often possible to guarantee 
a random sample of the population of interest. In these fields, researchers have come to rely on 
statistical models designed to correct for respondents’ providing feedback only on items that have 
been selected in some manner. There is a long history of such models in economics, dating back to the 
classic papers of Tobin (1958) and Heckman (1976, 1979), and they are becoming such fundamental 
tools that full scale reviews have appeared in cognate disciplines (e.g., Berk 1983, Winship and Mare 
1992, Vella 1998), as well as economics proper (Heckman 1990, Heckman et al. 1998, Puhani 2000). 

More recently, there has been a surge of interest in the topic among quantitative researchers in 
marketing, starting with the pioneering work of Krishnamurthi and Raj (1988) and Jedidi, Mela, and 
Gupta (1999) on jointly modeling brand choice and purchase incidence, and presently encompassing a 
wide variety of data settings, including models: accounting for panel attrition (Danaher 2002); 
assessing the long-run effects of promotion using RFM variables (Anderson and Simester 2004); of 
duration and customer profitability, observed only for customers that are acquired (Reinartz, Thomas, 
and Kumar 2005); of customers’ online banking decisions conditional on having signed up and logged 
in (Lambrecht, Seim, and Tucker 2011); allowing for correlated errors in incidence and strength of 
online product opinions (Moe and Schweidel 2012; Ying et al. 2006); serving as robustness checks 
against those providing particular information, like word-of-mouth (Yang et al. 2012); to interrelate 
content creation and purchase decisions (as well as their utilities;  Albuquerque et al. 2012); and 
culminating in Wachtel and Otter’s (2013) comprehensive framework to account for multiple waves 
of selectivity (e.g., scoring and targeting) enacted deliberately by marketers. Notably, the vast 
majority of such work in empirical modeling has had to contend with selectivity in field data, over 
which investigators have little, if any, direct control. 

By contrast, corresponding problems in experimental consumer research are often tacitly 
assumed to be nonexistent, or at worst minor. Because they often have the luxury of randomly 
assigning subjects to experimental conditions, laboratory researchers have been considered largely 
exempt from the need to be concerned with selectivity. This was noted in an influential paper by 
Degeratu, Rangaswamy, and Wu (2000), who suggested that, to study internet purchase patterns, one 
would ideally need to conduct a randomized experiment in which some people are assigned to shop 
online and some offline. Specifically, they contrast the controlled experimental settings typical to 
behavioral researchers with that encountered in field data. Random assignment in experimental 
settings is taken as sufficient to control for selectivity artifacts that can arise, for example, when 
people provide product ratings only for items they have chosen. While in many cases it does, in others 
it does not. 

In this paper, we show that selectivity artifacts can arise even in well-designed experimental 
settings, and should be both measured and carefully modeled in order to obtain appropriate 
substantive inferences. Specifically, selection or screening processes are frequently a critical, if 
unheralded, part of experimental research in marketing and decision theory. Consider, for example, 
the following situations: 

 A consumer chooses among alternatives, then indicates satisfaction with his/her choice (Ratner, 
Kahn, and Kahneman 1999; Zhang and Fitzsimons 1999; Shiv and Huber 2000; Diehl and Poynor 
2010; Litt and Tormala 2010). 

 A consumer chooses among alternatives, then makes a follow-up choice (Iyengar and Lepper 
2000), or decides whether to switch to another brand (Read and Loewenstein 1995; Fitzsimons 
2000); or a consumer chooses what product information to examine, then chooses a brand (Braun 
1999); 

 A consumer develops a consideration set then makes a final choice (Haübl and Trifts 2000; 
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Chakravarti and Janiszewki 2003; Van Nierop et al. 2010); or a consumer makes a sequence of 
choices reducing the set of alternatives by stages until only one remains (Tversky 1972, Levin et 
al. 1991, 1998). 

These are commonly encountered experimental situations in which selectivity artifacts may be 
relevant, because only certain items ‘survive’ to be observed at a later stage: we observe a post-choice 
satisfaction rating for Brand X only if it is the brand actually selected; we can observe a switch away 
from Brand Y only if Brand Y was indeed chosen in the first place; we can observe choice of Brand Z 
only if Brand Z made it into the consideration set. In short, results stemming from later stages of such 
processes are of great interest to behavioral researchers and practitioners, yet any artifacts stemming 
from having survived the selection process are rarely statistically accounted for. 

Frameworks stemming from Heckman’s (1979) original formulation, and further work specific to 
experimental settings (Heckman et al. 1998), have helped researchers account for various types of 
selectivity (Heckman 1990), across a variety of disciplines (e.g., Winship and Mare 1992). The 
earliest and still most common of these models presumes a binary selection mechanism, although 
extensions have appeared in the literature (e.g., Lee 1983), along with methods to estimate them 
(Vella 1998). These models are of limited applicability in consumer choice and decision theory in 
several important ways, three of which we explore in depth here. First, binary selection assumes that 
each item in a choice can be selected in isolation from others; yet this is seldom the case in individual 
decision making: for example, when making a single choice among two alternatives, the choice of one 
eliminates the possibility of choosing the second, no matter how appealing it may be. Second, we 
should not presume that the degree of selectivity – ordinarily represented by a single model parameter 
– is invariant across various consumer or experimental groups. The final point is methodological: 
given that experiments rarely offer up “big data”, limited sample sizes can call to question the 
asymptotic arguments on which classical estimation methods for selectivity models are known to 
hinge (e.g., Puhani 2000). Throughout, we will make use of a moderate extension of the classic 
selectivity framework to allow for “multinomial selection” (i.e., a polytomous choice mechanism), 
varying degrees of selectivity across experimental manipulations, and accessible Bayesian estimation 
techniques. 

Our main goals in this paper, therefore, are: to develop models from the Marketing Science 
tradition that, while similar in spirit to standard selectivity models, are more directly applicable to the 
problems typically encountered in marketing and other disciplines where choices and evaluative 
processes are commonly studied; to extend these models to allow for varying degrees of selectivity 
across substantively important groupings; to provide readily accessible tools for their estimation by 
behavioral researchers; and to present empirical evidence, from different settings, for their importance 
using experimental choice data. 

We start by briefly reviewing standard selectivity models, then showing how to extend and 
estimate them, as discussed earlier, using both classical and Bayesian methods. The importance of 
carefully modeling selectivity is then demonstrated in three data settings, two involving post-choice 
satisfaction for a frequently-purchased consumer good, and the third a new analysis of data first 
examined in Ratner, Kahn and Kahneman (1999). Results not only indicate the substantive 
importance of selectivity artifacts, but more importantly of modeling them separately across 
experimental conditions.  

THE HECKMAN FRAMEWORK AND EXTENSION TO POLYTOMIES 

The standard Heckman (1979) selectivity model is typically given by a two-stage system of 
the following type: 

      ௦ܻ ൌ ܺ௦ߚ௦ ൅  ௦,      (1)ߝ
݌ܻ     ൌ ݌ߚ݌ܺ ൅ σε݌	if	ܻݏ ൐ 0,    (2) 
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    ൫εݏ, ε݌൯ ∼ ܰሾ0, 0, 1, 1, ρሿ.    (3) 

The (second-stage) prediction variable, ܻ݌, is observed only in cases where the (first-stage) selection 

variable, ܻݏ, is positive. Each equation has its own set of regressors, ൛ܺݏ,  ൟ, so that each could be݌ܺ
readily estimated separately were their errors uncorrelated (ρ = 0). The full system (1)-(3) is ordinarily 
estimated by maximum likelihood techniques, though early lack of computation power spawned an 
extensive literature on two-step estimation approaches (Nelson 1984). The degree of selectivity is 
measured by ρ, and, when it is substantial, the two-step approach can be quite inaccurate (Puhani, 
2000) and sensitive to covariate specification for both portions of the model (see, for example, 
Hartmann 2006). Throughout, we will instead rely on both classical MLE-based and Bayesian 
methods. 

The nature of the binary selection submodel (1) dictates that each item entered into the 
selection equation is considered independently of all other items. This is justified when each of a set 
of items is considered on its own merits, as in university admissions, where students are not directly 
compared with one another, so that the qualities of one student might render another less likely to 
‘make the cut’. In most marketing contexts, however, items do compete for inclusion. Consider 
choosing an entrée from a menu. Whether the restaurant is of high quality (many of the entrées are 
appealing) or poor (few or none are appealing), we do not choose multiple items in the first case or 
zero in the second, but one in each. In terms of the selection submodel, then, we choose exactly one 
item from a given set, and all that will matter is the between-item comparison. Such a mechanism is 
foundational in brand choice models, which seek to explain which of a set of competing brands is 
chosen, given that a single choice is observed. 

We therefore consider a ‘polytomous’ selection submodel, operationalized through a 
multinomial probit specification, whose conjugacy properties are especially amenable to Bayesian 
computation.  

DATA AND NOTATION 

To simplify exposition, it is helpful to refer to data for two specific subjects, who are faced 
with choice sets that may differ in composition, size, or other experimental manipulation: 

ݐ݊݁݀݊݋݌ݏܴ݁
ݎܾ݁݉ݑܰ

݂݋	ݎܾ݁݉ݑܰ
ݏ݁ݒ݅ݐܽ݊ݎ݁ݐ݈ܣ

:݊݋݅ݐ݈ܿ݁݁ܵ
ݏݑ݋݉݋ݐݕ݈݋ܲ

:݊݋݅ݐܿ݅݀݁ݎܲ
݈ܽݒݎ݁ݐ݊ܫ

݊݋݅ݐ݈ܿ݁݁ܵ
ݏ݁ݐܽ݅ݎܽݒ݋ܥ

݊݋݅ݐܿ݅݀݁ݎܲ
ݏ݁ݐܽ݅ݎܽݒ݋ܥ

ሺݎሻ ሺ݇ݎሻ ሺܻݏሻ ሺܻ݌ሻ 						ሺܺݏሻ 					ሺܺ݌ሻ
1 2 1 9 ሾ1∶2ሿ,1,ݏܺ ሾ1∶2ሿ,1,݌ܺ
1 2 0 െ ሾ2∶2ሿ,1,ݏܺ ሾ2∶2ሿ,1,݌ܺ
2 3 1 6 ሾ1∶3ሿ,2,ݏܺ ሾ1∶3ሿ,2,݌ܺ
2 3 0 െ ሾ2∶3ሿ,2,ݏܺ ሾ2∶3ሿ,2,݌ܺ
2 3 0 െ ሾ3∶3ሿ,2,ݏܺ ሾ3∶3ሿ,2,݌ܺ

 

We denote selection and prediction estimates as ܷݎ,ݏ,ሾ݅∶݇ݎሿ ൌ ሿݎ݇∶ሾ݅,ݎ,݌ܷ and ݏሿβݎ݇∶ሾ݅,ݎ,ݏܺ ൌ
 subscript can be suppressed where clarity is not sacrificed, and, for simplicity, we ݎ The .݌ሿβݎ݇∶ሾ݅,ݎ,݌ܺ

number the alternative chosen (i.e., selected) by each subject as ሾ1: ݇௥ሿ or simply as 1. We therefore 
observe second-stage values only for i = 1, so that we refer unambiguously to ܷ݌,ሾ1∶݇ݎሿ or ܷ1,݌. 

Selectivity is accounted for by considering joint error draws from a standard bivariate normal 
distribution, ൫εݏ, ε݌൯ ∼ ܰሾ0, 0, 1, 1, ρሿ.1 The dependent measure in the prediction submodel, ܻ݌, is 

                                                            
1 We will eventually allow ρ to vary by experimental condition, but leave it unsubscripted here. 
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interval in our applications, although extensions to ordinal and other dependent variable types are 
possible with relatively minor adjustments (e.g., Ying et al. 2006). Thus, the joint density for a 
particular observation (that is, suppressing k) is:2 

ܲ ቂ ௦ܷ,ଵ ൅ ε௦,ଵ ൐ ൛ ௦ܷ,௜ ൅ ε௦,௜ൟ௜வଵ	and		 ௣ܻ ൌ ܷ௣,ଵ ൅ σε௣,ଵቃ,	      (4) 

This is a “mixed” likelihood, where selection yields a discrete pmf and prediction a continuous pdf, 
for which σ is an estimated dispersion parameter. If ൛εݏ,݅ൟ are multinormal with zero mean and identity 

covariance matrix,3 (4) can be readily evaluated by isolating ε1,ݏ, decomposing ε1,݌ ൌ ρε1,ݏ ൅ ρതz, for 
z a standard normal draw, and ρതଶ ൌ 1 െ ρଶ. We can therefore rewrite (4): 

ܲ ቂε௦,ଵ ൐ ൛ሺ ௦ܷ,௜ െ ௦ܷ,ଵሻ ൅ ε௦,௜ൟ௜வଵ	and		 ௣ܻ ൌ ܷ௣,ଵ ൅ σ൫ρε௦,ଵ ൅ ρതz൯ቃ 

This can in turn be simplified by fixing θ ൌ ε௦,ଵ and integrating across θ: 

ܲ ൤θ ൐ ൛ሺ ௦ܷ,௜ െ ௦ܷ,ଵሻ ൅ ε௦,௜ൟ௜வଵ	and		z ൌ
൫௒೛െ௎೛,భ൯െ஢஡஘

஢஡ഥ
൨, 

which then cleaves into two probabilistic statements: one about ൛εݏ,݅ൟ, and one about z, all of which 
are standard normal by construction; we can therefore simply integrate across θ: 

∏൬	θ∈ℝϕሺθሻ׬
݅൐1
Φൣθ െ ൫ܷݏ,݅ െ 1൯൧൰,ݏܷ 	Φ ቂ

൫ܻ1,݌ܷି݌൯ିσρθ

σρത
ቃ 	݀θ,	 (5) 

It is straightforward to estimate the parameters implied by (5) – σ, ρ, and the coefficients 
coupled with ௦ܷ and ܷ௣ – using quadrature, simulated likelihood, or other (classical) methods. We 
estimate all models in the likelihood built up from (5) across observations and respondents, using both 
standard (e.g., gradient search) classical techniques, and via Bayesian methods. In all cases, there was 
good agreement between classical and Bayesian (MCMC) estimates. Because some of our key tests 
will involve bounded parameters like ρ, which by definition cannot have a limiting normal or t 
density, we report Bayesian highest density regions (HDRs) for all model parameters that are either 
bounded or whose posteriors differ substantially from that summarized by a reported mean and 
standard error. [All programs for both classical and Bayesian estimation are available from the 
authors.] Bayesian estimates are based on a burn-in of 20,000 iterations, inference on an additional 
20,000, and convergence checked by evaluating trace plots, examining parameter autocorrelations, 
and the usual suite of diagnostics (e.g., Gelman-Rubin, Geweke) using multiple chains. Model 
comparison is carried out for nested models and parametric restrictions via likelihood ratio tests (as 
opposed to associated t or F tests on the focal model only), and for nonnested models using DIC 
(Spiegelhalter et al. 2002). We report posterior means for all parameters, noting that standard MLE 
estimates correspond to a posterior mode under a flat prior, while we used highly diffuse, but weakly 
informative, conjugate priors for all parameters but ρ, for which no conjugate prior is available. 
Finally, we follow convention in selectivity models in reporting the near-normal transform, atanh(ρ), 
so that standard tests against a null of 0 (for ρ) are approximately symmetric and meaningful in a 
classical setting.  

In comparing models in any of our data settings, we stress one point: the Prediction submodel 
does not itself change. Rather, our main concern is how presence of and type of error correlation 
codified by the Selection model affect deductions based on the Prediction model. Across the three 

                                                                                                                                                                                         

 
2 For conciseness, we use ݔ ൒ ሼݕ௜ሽ to mean ݔ ൒ max௜ሼݕ௜ሽ. 
 
3 We shall test this empirically for our data, finding support in all three experiments. 
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data sets, we will focus on two questions above all: is there evidence of selectivity overall?; and is the 
degree of selectivity substantially different across experimental conditions? The theory-based reasons 
to believe degree of selectivity might change across conditions will differ for each application, and 
will be discussed there. 

EMPIRICAL APPLICATIONS 

We illustrate the importance of accounting for selectivity, by applying it to data from three 
studies. The first study is a re-analysis of Ratner, Kahn and Kahneman’s (1999; Experiment 5) data 
suggesting that, when the number of available alternatives increases, consumers choose more varied 
sequences of items “for the sake of variety” rather than choosing items that are more preferred a 
priori.  We test for selection bias and explore whether the degree of selectivity should be accounted 
for by choice set size condition.  Study 2 explores a similar question about differing selectivity by 
choice set size, but for a different choice context – selecting multiple items at once now, to consume 
later, versus selecting the items one-at-a-time, just before consuming each one (e.g., Simonson 1990), 
a choice task typically employed to examine the so-called diversification bias (Read and Loewenstein 
1995).  Finally, in Study 3, we hold choice set size constant to test whether differences in the relative 
attractiveness of available items can lead to varying degrees of selectivity across conditions.  Our goal 
across all three studies is not to engage in a substantive examination of these data per se, but to use 
them as a basis for demonstrating the need to statistically account for selectivity by experimental 
condition when the experimental design setup warrants it.  Our descriptions of the experimental 
procedures and data are deliberately concise.  

STUDY 1 

A number of studies (c.f., Simonson 1990) suggest that consumers can behave as if varied 
sequences – of products or other experiences – were intrinsically superior to repetitive ones. And, so 
the logic goes, they will consume items they are less fond of to achieve that ‘variedness’. Contrary to 
the hypothesis that one’s tendency to choose less-preferred items stems from satiation on frequently-
consumed favorite items, Ratner, Kahn, and Kahneman (1999; henceforth RKK) demonstrated that 
more varied sequences of popular songs resulted in diminished enjoyment during consumption (even 
though participants did not become satiated with top-ranked songs). RKK’s analysis made use of 
straightforward statistical methods and, because their paper dealt with many topics substantively 
unrelated to selectivity, no Heckman- or Tobit-type corrections were applied. 

RKK (Experiment 5) studied the effects of number of available alternatives on selection and 
ratings of popular songs using a two-cell within-subjects experimental design.4 Participants first 
provided a priori ratings, on a 100-point scale, for 12 popular songs that were presented to them 
through a computer program. Idiosyncratic preference rankings were constructed based on these 
initial ratings.  Participants were next presented with either a set of three items (ranked 1,3,6 or 2,4,7) 
or a set of six (those ranked 2,4,7,10,11,12 or 1,3,6,8,9,10), chose, listened to and rated the song of 
their choice, also on a 100-point scale; this was done 10 times. For an additional 10 occasions, 
participants were presented with the other-sized choice set and completed similar choice and rating 
tasks. Because these data involve two phases – choice (of which song one listens to) from sets of 
varied sizes, and ratings (of satisfaction or liking of the chosen song) – it is well suited to the models 
developed here, and the potential for evaluating the substantive implications of choice-based 
selectivity. 

Prior research findings suggest the potential for effects of selection to differ for larger versus 
smaller choice sets.  Larger assortments are associated with higher product expectations, greater 
choice difficulty, greater regret about foregone alternatives, and lower evaluations of chosen items 

                                                            
4 We thank the authors for allowing us to re-analyze their experimental data. Forty-eight participants from their 
study are retained here for analysis. 
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(Iyengar and Lepper 2000; Broniarczyk 2008; Diehl and Poynor 2010).  While typical behavioral lab 
experiments randomly assign subjects to experimental conditions to avoid selection bias, evaluations 
of items resulting from a non-random selection process – such as choosing songs to listen to – are by 
their very nature vulnerable to selectivity effects.  Further, as choice set size increases, there are 
potentially more foregone alternatives, especially when the number of choice occasions is fewer than 
the number of available alternatives (e.g., choosing three items from a set of six versus twelve 
alternatives).  For these reasons, degree of selectivity is expected to increase with choice set size. 

Our re-analysis is narrowly focused, on whether the act of having chosen (Selection) affects 
the degree to which one is satisfied with one’s choice (Prediction). To this end, we predict posterior 
ratings (RATING) using prior ratings (PRIOR), how frequently an item has been chosen in past 
occasions (FREQUENCY), whether the song was chosen last time (CHOICELAG), and the size of the choice 
set (SETSIZE: either 3 or 6 songs), while accounting for selectivity effects arising from the choice 
process by accounting for its prior ratings (PRIOR), how often it was chosen (FREQUENCY) and, again 
whether the song was chosen last time (CHOICELAG).5 We standardize all covariates, except for binary 
variables, which are mean-centered, to aid in estimation and interpretation of models with interaction 
terms.  The model specification reported here as “best” – in fact for any of our three data sets – is the 
result of an exhaustive search of the model space, beginning with standard stepwise regression and 
stepwise logit procedures, each run both “forwards” and “backwards”, conducted using commercially 
available statistical software (Stata and MATLAB), and culminating in checking all “nearby” models, 
an approach commonly used by researchers in marketing and applied economics. That is, the resulting 
“best” model is such that: (1) all its covariates are significant; (2) no excluded covariates are 
significant; and (3) if a higher-order interaction appears, all lower-order interactions (significant or 
not) for those same covariates do as well, in order to allow for appropriate interpretation of higher-
order effects. As such, for example, we do not include all possible two-way interaction effects, only 
those identified as improving fit. Model estimates are given in TABLE 1. 

[TABLE 1 about here] 

We do not engage in a substantive re-interpretation of the very rich RKK data from this 
experiment, nor link it to the numerous companion studies in that paper. We can, however, consider 
model implications strictly from the vantage point of selectivity, which results do indicate for these 
data, as we discuss next. We note here as well that selectivity was similarly indicated for a wide range 
of combinations of covariate effects, arguing against its significance being an artifact of the particular 
covariate specification for the “best” model. 

Results 

We discuss three models, in order of their appearance in TABLE 1: (1) assuming no selectivity 
(restricting ρ = 0); (2) allowing for an identical degree of selectivity across conditions (free ρ); and (3) 
allowing selectivity to vary across choice set conditions (ρSETSIZE). In this way, one can ‘decompose’ the 
influences of the various modeling constructs systematically. Because all parameters are estimated via 
Bayesian techniques, we assess significance via Highest Density Regions (HDR) for posteriors. Thus, 
‘significant’ denotes zero lies outside a specific HDR, usually at the .05 level, although for 
convenience we list traditional means and standard errors. 

The model estimates reveal an intriguing and, to our knowledge, novel pattern of selection 
effects across conditions. Allowing for selection, but assuming ρ equal across (choice set size) 

                                                            
5 Including the same covariates in the Selection and Prediction submodels is permissible, particularly so when, 
as here, theory suggests doing so. In particular, omitting PRIOR in the selection model might literally give rise to 
a large value of ρ. SETSIZE cannot appear in the selection model, as it is constant within choice condition. An 
additional covariate representing the highest ranked item in each set (FAVORITE) was also tested in the Selection 
and Prediction submodels; it was not statistically significant and is not discussed further. 
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conditions, yields a ρ estimate that is not significantly different from zero (ߩො ൌ 0.043, HDR = [-0.289, 
0.332]). This would appear to suggest there are no selection effects for these data. However, allowing 
ρ to vary by condition reveals significant selectivity – but only for the larger choice set condition: 
ොௌ௠௔௟௟ߩ) ൌ -0.125, HDR = [-0.404, 0.138]; ߩො௅௔௥௚௘ ൌ 0.571, HDR = [0.353, 0.727]). Substantively, 
degree of selectivity increases with choice set size, that is, as the number of foregone alternatives is 
also likely to increase. Specifically, we find no significant selection effects for the small choice set, 
when the number of choice occasions (ten) far exceeds the number of available items (three); in the 
small choice set, respondents have ample opportunity to sample each item at least once, should they 
wish to. By contrast, in the larger choice set, respondents are less likely to select every available item, 
so the potential for never sampling one or more items (and subsequent selection bias) increases. 

Importantly, we also find that allowing for selectivity by condition impacts estimated effect 
sizes. Substantively, the pattern of effects for the selection model is of lesser interest, as coefficients 
across the various models (listed RKK1-3 in TABLE 1) are very close; HDRs overlap to a degree that 
render them statistically indistinguishable. A very different story emerges across the Prediction 
models: while the effects of prior ratings (PRIOR),	how frequently an item has been chosen	
(FREQUENCY), and whether a song was chosen last time (CHOICELAG), are always quite strong (and of 
roughly equal strength), the effects of SETSIZE, the main construct under study, are vastly different. 
When there is no selection (ρ = 0) or equal selection across choice set size conditions (common ρ), the 
effects of SETSIZE are significantly positive and not statistically distinguishable (β෠݁ݖ݅ݏݐ݁ܵ,݌ ൌ 0.126, 

RKK1; β෠0.119 = ݁ݖ݅ݏݐ݁ܵ,݌, RKK2). That is, if one analyzed only the RATING (i.e., Prediction) data, 

choice set size could be confidently claimed as positively affecting evaluation. However, when 
selectivity is accounted for across set size conditions (ߩௌ௘௧௦௜௭௘), we see that SETSIZE has a strongly 
negative effect (β෠0.322- = ݁ݖ݅ݏݐ݁ܵ,݌, p < .003, RKK3). This is consistent with extant literature 

demonstrating that consumers tend to be less satisfied with items chosen from relatively larger 
assortments (e.g. Iyengar and Lepper 2000; Diehl and Poynor 2010). A posteriori, in comparing a 
choice set of size 3 to one of size 6 (as RKK did), chosen items are rated about 32% lower, on 
average, when chosen from the larger set. The valence of an important main effect is therefore 
reversed when the Ratings data are analyzed in the absence of an associated model for choice.  

The interaction between SETSIZE and how frequently an item has been chosen	(FREQUENCY) 
also has strongly differing effects. When selectivity is not accounted for by condition (RKK1-2), the 
interaction effect is not significantly different from zero, β෠୮,୊୰ୣ୯୳ୣ୬ୡ୷ൈୗୣ୲ୱ୧୸ୣ= 0.03 (p > .25). 
However, when selectivity is allowed to vary across conditions (ρSetsize, RKK3), the interaction 
between FREQUENCY and SETSIZE becomes larger and significant, β෠୮,୊୰ୣ୯୳ୣ୬ୡ୷ൈୗୣ୲ୱ୧୸ୣ= 0.099 (p < 
.02). In other words, the more frequently an item has been chosen, the weaker the effect of set size 
becomes, suggesting that more consistent choice sequences are less prone to set size effects on 
evaluation. 

Finally, one is left with the question of which model represents the data best, which can be 
assessed via both Bayesian and classical metrics. DIC speaks clearly for RKK3, the values of which, 
for RKK1-3, are {4253, 4255, 4244}. Likelihood ratio tests corroborate the DIC comparison, while 
allowing statistical tests for nested models (like RKK1-3): the model allowing selection to vary by 
choice set size (RKK3) offers a better fit for the data than both the model with no selection (RKK1; 
LLdiff = 6.58, df = 2, p < .002) and the model restricting selection to be equal across set size conditions 
(RKK2; LLdiff = 6.51, df = 1, p < .001). The models with no selection versus equal selection across set 
size conditions exhibit no difference in fit (RKK1 vs. RKK2; LLdiff = 0.07, df = 1, p > .5); this is 
consistent with the non-significance of ρ in RKK2.  The slightly less parsimonious model thus more 
than compensates for its additional complexity, and allowing the correlation between selection and 
prediction to differ across conditions not only improves fit, but affects interpretation of focal 
substantive effects. 

 



9 
 

STUDY 2 

The previous analysis, based on data collected in a classic prior experimental study, 
demonstrated the potential for selection effect strength to vary across experimental conditions with 
differing choice set sizes.  Study 2 was designed and conducted with an explicit goal in mind: to 
examine whether the same potential exists for another well-known repeated choice phenomenon that 
has been well documented in the marketing and psychology literatures. Numerous prior studies have 
observed that people choosing multiple items at once now, to consume later, tend to choose a more 
varied set of items than if they had chosen the items one-at-a-time, just before consuming each one 
(e.g., Simonson 1990, Read and Loewenstein 1995).  While prior research has focused on the impact 
of these two choice modes on variety-seeking, we will instead focus our analysis on evaluation of the 
chosen items. More specifically, we examine the influence of the size of the available choice set on 
evaluation and selectivity.  

Participants chose three snacks, either from a set of six snacks or from a set of twelve snacks.  
Half the participants chose all three snacks at once (“simultaneous choice”); the remaining 
participants chose each snack one-at-a-time across three choice occasions (“sequential choice”). A 2 
(simultaneous choice vs. sequential choice) X 2 (small choice set vs. large choice set) between-
subjects design was employed.   

Snacks included well-known brands of crackers, chips, candy bars, cookies, and nuts. The 
small set condition included six snack options, and the large set condition included those six snacks 
plus six more. The small set condition stimuli and task replicate experiments found in Simonson 
(1990) and Read and Loewenstein (1995). The six additional snacks in the large set were chosen to 
mirror the six snacks in the small choice set, in terms of both product attributes and market share, so 
as not to increase perceptions of attribute variety or general product desirability. One hundred four 
undergraduate students participated in the study to earn course credit in an introductory marketing 
course. 

The study was composed of four sessions spaced one week apart. In session one, participants’ 
prior preferences were measured; participants rated how much they liked each snack using an 11-
point Likert scale (“1” = dislike very much, “11” = like very much). Participants also ranked the 
snacks from their most favorite to their least favorite. The choice tasks took place during sessions two, 
three and four; we refer to these as choice weeks one, two, and three, respectively. Participants in the 
sequential condition chose and ate one snack in choice week one, chose and ate a second snack during 
week two, and chose and ate a third snack in week three.  Participants in the simultaneous condition 
selected all three snacks in choice week one, designating the first snack to be eaten in choice week 
one, the second snack in choice week two, and the third in choice week three.  Immediately after 
participants ate each of their chosen snacks, they rated how much they liked the snack using an 11-
point Likert scale (“1” = dislike very much, “11” = like very much). 

The snack evaluation rating measured immediately after a participant ate his/her chosen snack 
is the dependent variable, and it is observed only for the single item chosen for that time period. 
Regressors for the selection model (for which item is chosen) are PRIOR	(the a priori item rating),	
FAVORITE (whether the item was designated the favorite; a priori rank equals one), CHOICELAG 
(whether the item had been chosen in the prior time period), CHOICELAG×FAVORITE interaction, and 
CHOICELAG×SEQ, where SEQ represents the choice mode manipulation (equals one for sequential 
choice, zero for simultaneous choice) and.  The regressors for the prediction model (for the single 
brand chosen) include PRIOR,	FAVORITE, CHOICELAG, and CHOICELAG×FAVORITE interaction, as well as 
SETSIZE (equals one for the large set, zero for the small set).  We explored the entire solution space, as 
in Study 1, to arrive at this particular set of model covariates.  

[TABLE 2 about here] 
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Results 

As found in Study 1, results will indicate that ignoring selectivity entails the possibility of 
drawing incorrect conclusions. TABLE 2 summarizes model estimation results in a manner similar to 
Study 1, featuring three candidate models that differ in how flexibly they allow for selection: no 
selectivity (ρ = 0, “M20”), selectivity common across conditions (free ρ, “M2Common”), and selectivity 
varying across choice set conditions (ρSETSIZE, “M2Setsize”).  The pattern of results in Table 2 shows 
strong evidence of selectivity in the large choice set condition (ߩො௅௔௥௚௘ ൌ 0.568, HDR = [0.280, 
0.787]; M2Setsize), but not in the small choice set condition (ߩොௌ௠௔௟௟ ൌ -0.273, HDR = [-0.731, 0.433]; 
M2Setsize).  This is consistent with the results in Study 1, and the estimated values of ρSMALL and ρLARGE 
are remarkably similar across the two studies.  The model allowing for selectivity, but restricting ρ to 
be constant across conditions (M2Common), yields an estimated ρ value that is significantly positive 
ොߩ) ൌ 0.413, HDR = [0.055, 0.703]). Thus selection effects are clearly evident in the data; however, 
presuming that degree of selectivity is the same across all choice set conditions would be erroneous in 
this case, just as in Study 1. 

These differences in selectivity reveal their substantive importance when one compares the 
estimated FAVORITE and SETSIZE effect strengths between the ρ ൌ 0 prediction submodel (i.e., no 
selection effects at all; M20) and its more flexibly modeled variants.  Allowing for common selectivity 
(M2Common) yields β෠p,0.340 = ݁ݐ݅ݎ݋ݒܽܨ, a significant effect; presuming there is no selectivity (M20) 

yields β෠p,0.193 = ݁ݐ݅ݎ݋ݒܽܨ, a non-significant value about half the size.  Allowing selectivity to differ 

across conditions (M2Setsize) also yields a positive effect of most-favored status, β෠p,0.273 = ݁ݐ݅ݎ݋ݒܽܨ. 

Thus, allowing for selectivity reveals a crucial role of the favorite option in evaluation: the most-
favored option gets a “boost” in evaluation, over and above that accounted for by its higher prior 
rating.  Note that a significant negative interaction between Favorite and Choice Lag is observed in all 
three models – β෠p,ChoiceLagൈ0.675- = ݁ݐ݅ݎ݋ݒܽܨ when ρ = 0, β෠p,ChoiceLagൈ0.808- = ݁ݐ݅ݎ݋ݒܽܨ when ρ is 

unrestricted, and β෠p,ChoiceLagൈ0.711- = ݁ݐ݅ݎ݋ݒܽܨ when ρ is allowed to vary across set size conditions – 

suggesting that, in the case where the favorite was chosen in the prior period, the favorite item’s 
evaluation is discounted. Thus, for these data, failing to account for selectivity leads to the erroneous 
conclusion that the favorite option may be discounted (when chosen repeatedly), but never “given a 
boost” in the evaluation process. In other words, a modeling approach that allows for selectivity 
reveals the important insight that the favorite option almost always “gets a boost” in evaluation, 
except in the case when it was chosen last time. 

A second important substantive implication of failing to appropriately account for selectivity 
is that the estimated effect of choice set size on evaluation is very different. The pattern of results 
resembles that found in Study 1. The estimated effects of SETSIZE are not distinguishable from zero 
when there is no selection (β෠0.034 = ݁ݖ݅ݏݐ݁ܵ,݌; M20) or equal selection across choice set size conditions 

(β෠0.065- = ݁ݖ݅ݏݐ݁ܵ,݌; M2Common). However, when selectivity is accounted for across set size conditions, 

choice set size has a very large negative effect (β෠0.881- =  ݁ݖ݅ݏݐ݁ܵ,݌; M2Setsize). This is consistent with 

our Study 1 result that, when a model allowing varying degrees of selectivity across choice set 
conditions is employed, the results reveal that participants tend to be less satisfied with items chosen 
from the larger choice set.  

Lastly, in addition to the substantive insights gained from allowing for selectivity, we find 
better model fits for both models with unrestricted ρ, as measured using DIC: 1655, 1652, and 1646 
for M20, M2Common, and M2Setsize, respectively. This evidence is bolstered by likelihood ratio tests: the 
model with free common ρ offers a better fit than one restricting ρ to zero (LLdiff = 2.67, df = 1, p < 
.03); and the model allowing selectivity to vary across choice set conditions fits the data better both 
than one restricting ρ to be constant across conditions (LLdiff = 4.23, df = 1, p < .005) and the model 
restricting ρ to be zero (LLdiff = 6.90, df = 2, p < .002).  Overall, analysis of these data provides 
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evidence that appropriately accounting for selectivity adds substantially to both model fit and 
interpretation of effects.  

STUDY 3 

The prior two studies demonstrated that degree of selectivity can vary with the number of 
alternatives in a choice set.  This study assesses whether selection effects can vary across choice set 
conditions even when the number of selection alternatives stays constant.  We explore this question 
with the same choice task employed in Study 2, and we examine the impact of varying the relative 
attractiveness of items in the choice set on degree of selectivity and the value of ρ.  

Heckman (1979) noted in his seminal article that if the probability of being included in the 
sample is identical for all observations, then beta estimates of prediction covariates will not be biased.  
In the present choice context, this suggests that when a choice set contains items a decision-maker 
perceives as equally attractive, the corresponding prediction model is less prone to selection bias than 
if the choice set contains items with more varied perceived attractiveness levels (which we 
operationalize here as a priori rating).  We examine the potential relationship between relative 
attractiveness of choice set items and degree of selectivity in this study. We define attractiveness 
similarity as the degree to which a choice set contains items that are perceived to be equally attractive 
to each other, from the decision-maker’s perspective. For example, a choice set comprised of six 
equally attractive items or one with six equally unattractive items would be high in attractiveness 
similarity. Note that we treat attractiveness similarity as a characteristic of the choice set itself, not as 
a characteristic of any one item in the set. We expect that attractiveness similarity will have a negative 
relationship with degree of selectivity (and ρ). 

Participants followed a four week procedure analogous to that in study 2. They were asked to 
rate and rank twelve snacks in week one (the same as those in the study 2 large set condition).  
Number of items chosen together was again manipulated (sequential choice versus simultaneous 
choice) across three choice occasions, each separated by one week.  Participants evaluated their 
chosen snacks immediately after eating each one, using a 1-11 rating scale, as in study 2. The number 
of available items was held constant across conditions, at six, and we manipulated choice set 
attractiveness similarity. To this end, the items available in the choice set varied across three 
attractiveness similarity conditions based on the idiosyncratic rankings provided by each participant: 
similar-attractive (ranks 1, 2, 3, 4, 5, 12); dissimilar (ranks 1, 4, 6, 8, 10, 12); and similar-unattractive 
(ranks 1, 8, 9, 10, 11, 12). We include the similar-unattractive condition in the experimental design to 
assess whether any potential impact of high similarity is conditional on the similar alternatives being 
perceived as (more) attractive; we will allow separate measures of selectivity for all three conditions, 
to determine whether, empirically, ρ estimates for similar-attractive and similar-unattractive are close 
in magnitude. Note that all choice sets include both the most-favored item (rank = 1) and the least-
favored item (rank = 12), so that the range of relative attractiveness of all items in the set is consistent 
across conditions. 

As in study 2, the snack evaluation rating measured immediately after a participant ate his/her 
chosen snack is the dependent variable. Available regressors for the selection and prediction models 
are similar to those in study 2, with the choice set size variable replaced by two binary variables 
representing attractiveness similarity: DISSIM (equals one for the dissimilar condition, zero for similar-
attractive and similar-unattractive), and SIMATTR (equals one for similar-attractive, zero for dissimilar 
and similar-unattractive). More specifically, the selection submodel regressors are a priori rating 
(PRIOR), a priori most-favored item (FAVORITE), whether an item was chosen last time (CHOICELAG), 
choice lag interacted with sequential-simultaneous choice mode (CHOICELAG×SEQ), choice lag 
interacted with prior rating (CHOICELAG×PRIOR), and most-favored item interacted with the two choice 
set condition indicator variables (SIMATTR×FAVORITE and DISSIM×FAVORITE). Prediction submodel 
regressors are PRIOR, FAVORITE, CHOICELAG, SEQ, SIMATTR, DISSIM, PRIOR×SEQ, CHOICELAG×SEQ, 
SIMATTR×PRIOR, DISSIM×PRIOR, SIMATTR×FAVORITE, and DISSIM×FAVORITE. As in the two previous 
studies, we standardize all variables, except binary (dummy) variables, which are mean-centered.  The 
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model specifications discussed here were the end result of an exhaustive search of the solution space 
for each submodel separately, and then that for the conjoined (full) model including selectivity, 
similar to the approach used in studies 1 and 2.   

[TABLE 3 about here] 

Results 

We again find strong evidence of selectivity, this time for all choice set conditions, with the 
value of ρ systematically varying with attractiveness similarity. TABLE 3 presents estimation results 
for three models differing in how flexibly selectivity is modeled: no selection (ρ = 0, “M30”); 
restricting selectivity to be constant across choice set conditions (free ρ, “M3Common”); and allowing 
selectivity to differ across choice set conditions (ρSIMILARITY, “M3Similarity”). Restricting ρ to be constant 
across conditions (M3Common) yields an estimated ρ value that is significantly positive (ߩො ൌ 0.518, 
HDR = [0.187, 0.778]). Allowing ρ to differ across conditions (M3Similarity) reveals that degree of 
selectivity varies with attractiveness similarity: the dissimilar choice set produced the greatest degree 
of selectivity (ߩො஽௜௦௦௜௠ ൌ 0.830, HDR = [0.576, 0.957]), while the similar-attractive and similar-
unattractive choice sets generated lower, and nearly identical, degrees of selectivity (ߩොௌ௜௠஺௧௧௥ ൌ 
0.445, HDR = [0.043, 0.735], ߩොௌ௜௠௎௡௔௧௧௥ ൌ 0.447, HDR = [0.032, 0.823]). Consistent with both 
studies 1 and 2, we find clear evidence of selection effects in the data, but it varies in degree across 
choice set conditions – in this case, without varying choice set size; increasing dissimilarity of the 
attractiveness of available options increases degree of selectivity. 

Turning next to the substantive findings, comparing the prediction submodels with increasing 
flexibility of accounting for selection, reveals striking differences in three of the prediction covariates: 
FAVORITE, DISSIM,	and	CHOICELAG	×	SEQ. First, the estimated effect of FAVORITE doubles in size when 
selectivity is accounted for in the model (β෠୮,ி௔௩௢௥௜௧௘ = 0.316 in M30; β෠୮,ி௔௩௢௥௜௧௘ = 0.595 in M3Common; 

β෠୮,ி௔௩௢௥௜௧௘ = 0.633 in M3Similarity), consistent with our finding in Study 2. Second, when selectivity is 
restricted to be zero (ρ = 0, M30) or common across choice set conditions (free ρ, M3Common), DISSIM is 
estimated to have a positive effect on evaluation (β෠୮,஽௜௦௦௜௠ = 0.408 in M30; β෠୮,஽௜௦௦௜௠ = 0.395 in 
M3Common).  However, when ρ is allowed to vary across conditions, the estimated effect of DISSIM 
shrinks dramatically to non-significance (β෠୮,஽௜௦௦௜௠ = 0.076 in M3Similarity). This stark change in the 
estimated effect of choice set condition when ρ is allowed to vary with relative attractiveness mirrors 
the results found in studies 1 and 2 for the estimated effect of choice set size condition on evaluation.   

Third, we find that the estimated effect of CHOICELAG×SEQ without selection 
(β෠୮,஼௛௢௜௖௘௅௔௚ൈௌாொ = 0.282; M30) nearly doubles and becomes statistically significant when selectivity 

is accounted for in the model (β෠୮,஼௛௢௜௖௘௅௔௚ൈௌாொ = 0.486 in M3Common; β෠୮,஼௛௢௜௖௘௅௔௚ൈௌாொ = 0.531 in 
M3Similarity). Note also that CHOICELAG×SEQ always has a positive and significant effect on choice in 
the selection submodel (for all estimated models; β෠ୱ,஼௛௢௜௖௘௅௔௚ൈௌாொ ൌ 0.921 in model M3Similarity), 
indicating a tendency toward more inertial choice behavior in the sequential choice mode. Thus, for 
these data, failing to account for selectivity would lead the analyst to erroneously conclude that 
inertial choices have no distinct effect on evaluation, when they do: an item chosen repeatedly in SEQ 
receives a “boost” in evaluation, even after accounting for prior preference rating (PRIOR). 

Finally, we assess model fit and find that it consistently improves as selection is more flexibly 
accounted for in the model. Model fit, as measured using DIC, improves when ρ is assumed constant 
across choice set conditions (M3Common; 1885 versus 1892), and improves further when ρ is allowed to 
vary across choice set conditions (M3Similarity; 1883 versus 1885).  Likelihood ratio tests also indicate 
that model fit improves: presuming free (common) ρ improves fit versus restricting ρ to zero (LLdiff = 
5.01, df = 1, p < .003); allowing selectivity to vary across choice set conditions improves fit versus 
presuming zero ρ (LLdiff = 8.00, df = 2, p < .002); and allowing ρ to vary across choice set conditions 
marginally improves model fit versus presuming common ρ (LLdiff = 2.99, df = 1, p ≈ .05). In 
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conclusion, the findings from this study offer further support for the importance of accounting for 
selectivity by experimental condition (when warranted), as well as its potential impact on both model 
fit and substantive interpretation of effects. 

CONCLUSIONS AND POTENTIAL EXTENSIONS 

Model frameworks developed by Heckman, Tobin, and others have allowed researchers to 
understand the effects of failing to account for selectivity. These models have been applied widely to 
field data, since researchers clearly need to comprehend and correct for selectivity effects that they 
cannot hope to control. Although the so-called “Heckman model” and related variants have become 
standard tools for field data studies in marketing, the need for selectivity correction for laboratory 
work – which typically offers the luxury of random assignment to conditions – has been tacitly seen 
as less pressing, or perhaps non-existent. It is also possible that the form of the classic Heckman 
model – a binary selection mechanism, specifically – may have limited its applicability in behavioral 
research, where choices are typically freely made from a set of options, with information collected 
subsequently. 

Our intent in this paper has been to demonstrate that similar selectivity mechanisms are 
intrinsic to a broad class of decision problems common in consumer and psychological research, and 
to show how researchers can account for them in a general setting. Three studies – one a reanalysis of 
an influential, classic data set, and two theory-driven experiments designed specifically for this 
purpose – converged on similar conclusions, namely that: selectivity effects can be significant even in 
fully controlled randomized laboratory studies; accounting for selectivity can alter some focal 
substantive results; allowing for different degrees of selectivity across experimental conditions can be 
crucial; selectivity appears to follow predictable patterns in terms of the nature of ‘foregone options’ 
and ‘similarity of attractiveness’ of available choice alternatives. 

Although we have not reported on them in this paper, we have successfully extended the 
model to allow for different types of selection and prediction types, including ‘pick-any’ and ranked 
selection (i.e., the field is narrowed not to just one, but to several, options, which may be ranked) and 
both ordinal (i.e., on a discrete, ordered scale) and discrete choice prediction (i.e., we observe only 
what was finally chosen, but not any rating or evaluation of it). A common example of such 
extensions is the process of purchasing a car, which typically involves several distinct phases – 
information-gathering, visiting dealers, test driving – before a choice is made. Researchers ignoring 
the individual-specific selection phase(s) preceding eventual choice may be led astray in gauging just 
what drives the market. For example, price may determine which cars are eliminated early on, and 
may thus appear relatively unimportant if only later stages of the purchase process are analyzed. 
Applying an appropriate member of this class of models would allow one to disentangle the effects of 
(perhaps multiple phases of) selection, as in Wachtel and Otter’s (2013) general setting.  

We can envision several fruitful extensions of the basic methodology. For example, 
‘selection’ in our model requires full knowledge of available options and item covariates, which are 
rarely available in field data, and require care and foresight in experimental settings. We have also not 
explored, other than by exhaustive search and stepwise methods on each of the selection and 
prediction submodels separately, how one chooses the best regressor set for the “full” conjoined 
model; and, if so, whether forms of stepwise or LARS procedures might be fruitful, given that the 
covariate space for the conjoined model can be vast, especially when, as in our applications, 
interaction effects are considered. We view these as primarily issues of implementation and 
processing speed, and to only be presently prohibitive for models with many regressors or 
interactions. The models presented here can be readily estimated using a variety of available software 
platforms with modest run-times, and as such would be methods behavioral researchers could readily 
avail of “out of the box” to determine whether selectivity effects were presented in their experimental 
data. 
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TABLE 1: RATNER, KAHN AND KAHNEMAN (1999) DATA MODEL COMPARISONS 

Posterior Means for Selection, Prediction, ρ, and σ 

 

Parameter Estimates (Std. Dev.) 

Model RKK1: No ρ RKK2: Common ρ RKK3: Multiple ρ 

Selectivity / ρ ρ = 0 free ρ ρSetsize 

Selection Model             

Prior Rating 0.440 (.039) 0.439 (.039) 0.432 (.038) 

Choice Lag -0.496 (.078) -0.495 (.079) -0.481 (.077) 

Frequency 0.190 (.063) 0.186 (.066) 0.168 (.061) 

Choice Lag × Prior Rating -0.242 (.068) -0.242 (.068) -0.226 (.067) 

Choice Lag × Frequency 0.762 (.098) 0.761 (.101) 0.791 (.096) 

Prediction Model            
Intercept 0.033 (.021) 0.009 (.091) -0.129 (.054) 

Prior Rating 0.713 (.021) 0.717 (.025) 0.747 (.023) 

Choice Lag 0.175 (.058) 0.173 (.060) 0.155 (.058) 

Frequency 0.134 (.027) 0.138 (.032) 0.167 (.029) 

Set Size 0.126 (.042) 0.119 (.048) -0.322 (.112) 

Frequency × Prior Rating -0.127 (.021) -0.128 (.022) -0.147 (.022) 

Frequency × Set Size 0.026 (.043) 0.027 (.043) 0.099 (.047) 

σ 0.621 (.014) 0.625 (.015) 0.651 (.100) 

ρa 0.043 [-0.289, 0.332]   
atanh(ρ)a 0.044 [-0.298, 0.345]   
ρ, Small Set Size, ρSetSize

a -0.125 [-0.404, 0.138]
ρ, Large Set Size, ρSetSize

a 0.571 [0.353, 0.727] 
atanh(ρSETSIZE), Small Set Sizea -0.129 [-0.428, 0.139]

atanh(ρSETSIZE), Large Set Sizea 0.659 [0.369, 0.923] 

Number of parameters 13 14 15 
DIC 4252.867 4254.891 4243.864 
Log Likelihood -2113.411 -2113.344 -2106.836 

Likelihood Ratio Tests: p-values           

Common ρ vs. No ρ 0.714 

Multiple ρ vs. No ρ 0.001 

Multiple ρ vs. Common ρ 0.000 

Notes. Bold denotes statistical significance.
a Numbers in brackets represent the 95% Highest Density Region. 
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TABLE 2: STUDY 2 (DIVERSIFICATION BIAS) MODEL COMPARISONS 

Posterior Means for Selection, Prediction, ρ, and σ 

 

Parameter Estimates (Std. Dev.) 

Model No ρ Common ρ Multiple ρ 

Selectivity / ρ ρ = 0 free ρ ρSetsize 

Selection Model             

Prior Rating 0.516 (.054) 0.518 (.053) 0.527 (.054) 

Favorite 0.327 (.111) 0.322 (.110) 0.315 (.109) 

Choice Lag -0.226 (.140) -0.243 (.138) -0.289 (.138) 

Choice Lag × SEQ 0.872 (.270) 0.918 (.263) 0.970 (.267) 

Choice Lag × Favorite -0.862 (.308) -0.855 (.304) -0.792 (.299) 

Prediction Model          
Intercept 0.012 (.050) -0.419 (.199) -0.185 (.187) 

Prior Rating 0.485 (.058) 0.554 (.065) 0.493 (.064) 

Favorite 0.193 (.120) 0.340 (.140) 0.273 (.134) 

Choice Lag 0.272 (.154) 0.276 (.157) 0.286 (.153) 

Set Size 0.034 (.103) -0.065 (.112) -0.881 (.322) 

Choice Lag × Favorite -0.675 (.297) -0.808 (.313) -0.711 (.310) 

Sigma, σ 0.845 (.036) 0.895 (.055) 0.901 (.048) 

ρa 0.413 [0.055, 0.703]   
atanh(ρ)a 0.458 [0.055, 0.872]   
ρ, Small Set Size, ρSetSize

a -0.273 [-0.731, 0.433] 
ρ, Large Set Size, ρSetSize

a 0.568 [0.280, 0.787] 
atanh(ρSETSIZE), Small Set Sizea -0.308 [-0.930, 0.463] 

atanh(ρSETSIZE), Large Set Sizea 0.666 [0.288, 1.065] 

Number of parameters 12 13 14 
DIC 1655.320 1652.189 1645.995 
Log Likelihood -815.604 -812.930 -808.703 
Likelihood Ratio Tests: p-values           

Common ρ vs. No ρ 0.021 
Multiple ρ vs. No ρ 0.001 
Multiple ρ vs. Common ρ 0.004 

Notes. Bold denotes statistical significance.
a Numbers in brackets represent the 95% Highest Density Region. 
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TABLE 3: STUDY 3 (DIVERSIFICATION BIAS) MODEL COMPARISONS 

Posterior Means for Selection, Prediction, ρ, and σ 

Parameter Estimates (Std. Dev.) 

Model No ρ Common ρ Multiple ρ 

Selectivity / ρ ρ = 0 free ρ ρSimilarity 

Selection Model             

Prior Rating 0.391 (.065) 0.442 (.068) 0.453 (.067) 

Favorite 0.620 (.122) 0.552 (.122) 0.516 (.120) 

Choice Lag 0.023 (.119) -0.016 (.120) 0.000 (.117) 

Choice Lag × SEQ 0.916 (.241) 0.923 (.239) 0.880 (.233) 

Choice Lag × Prior Rating -0.278 (.120) -0.257 (.116) -0.268 (.115) 

Prior Rating × SEQ -0.175 (.091) -0.212 (.093) -0.194 (.093) 

Similar-attractive × Favorite -0.506 (.222) -0.452 (.223) -0.420 (.223) 

Dissimilar × Favorite  0.072 (.208) 0.090 (.207) 0.076 (.207) 

Prediction Model             
Intercept -0.102 (.048) -0.540 (.155) -0.595 (.128) 

Prior Rating 0.472 (.057) 0.525 (.060) 0.543 (.060) 

Favorite 0.316 (.123) 0.595 (.154) 0.633 (.155) 

Choice Lag -0.071 (.103) -0.054 (.107) -0.067 (.108) 

SEQ -0.088 (.085) -0.087 (.086) -0.076 (.085) 

Similar-attractive 0.237 (.123) 0.152 (.126) 0.151 (.257) 

Dissimilar 0.408 (.114) 0.395 (.114) 0.076 (.213) 

Prior Rating × SEQ -0.184 (.087) -0.220 (.088) -0.239 (.088) 

Choice Lag × SEQ 0.282 (.204) 0.486 (.224) 0.531 (.220) 

Similar-attractive × Favorite -1.276 (.315) -1.615 (.333) -1.574 (.385) 

Dissimilar × Favorite -0.556 (.311) -0.722 (.314) -0.484 (.373) 

Similar-attractive × Prior Rating 0.520 (.141) 0.551 (.139) 0.542 (.151) 

Dissimilar × Prior Rating 0.151 (.140) 0.200 (.138) 0.255 (.140) 

Sigma, σ 0.802 (.030) 0.863 (.050) 0.888 (.046) 

ρa 0.518 [0.187, 0.778]   
atanh(ρ)a 0.597 [0.189, 1.039]   
ρ, Similar-attractive, ρSimAttr

a 0.445 [0.043, 0.735] 
ρ, Dissimilar, ρDissim

a 0.830 [0.576, 0.957] 
ρ, Similar-unattractive, ρSimUnattr

a 0.447 [0.032, 0.823] 

atanh(ρSimAttr), Similar-attractivea 0.500 [0.043, 0.939] 
atanh(ρDissim), Dissimilara 1.278 [0.657, 1.911] 
atanh(ρSimUnattr), Similar-unattractivea 0.521 [0.032, 1.164] 

Number of parameters 22 23 25 
DIC 1892.286 1884.578 1882.726 
Log Likelihood -924.025 -919.016 -916.022 
Likelihood Ratio Tests: p-values           

Common ρ vs. No ρ 0.002 
Multiple ρ vs. No ρ 0.001 
Multiple ρ vs. Common ρ 0.050 


