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ABSTRACT

Although fluid inclusions were apparently known to early naturalists, actual research on fluid and melt inclusions

began only in the mid-1800s and grew very slowly for the next 100 years. Russian scientists began systematic

studies of inclusions in the 1930s, but it was not until about 1960 that publications mentioning or using fluid

inclusions began to increase from a few each year to the present annual level of about 700. Early research

focused on ore deposits, first on temperatures and salinities of ore fluids and then on their stable isotopic and

major element compositions. Later work extended to fluids in sedimentary and metamorphic environments. Publi-

cations using or mentioning melt inclusions only began to increase in number in about 1980 and have grown to

today’s level of about 200 per year. Early work on melt inclusions focused on igneous rocks with an emphasis on

immiscibility and volatile elements and then on rare elements. Recent research on both fluid and melt inclusions

has taken advantage of single inclusion analytical methods to investigate speciation and partitioning in both natu-

ral and experimental magmatic and aqueous systems.
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INTRODUCTION

Fluid inclusions have been of interest to naturalists for mil-

lennia. The first reference to what were probably fluid

inclusions is found in the Natural History of Pliny the

Elder written in about 75 AD. In about 400 AD, Claudius

Claudianus wrote a poem entitled ‘On a crystal enclosing a

drop of water’ that almost certainly is about a large fluid

inclusion in a quartz crystal. According to Lemmlein

(1950; quoted in Roedder 1984), the first specific descrip-

tion of fluid inclusions was by Abu Raihan al-Biruni in the

11th century in his book Kitab al-Jawahir (Precious

Stones). In the 13th century, Ahmad al-Tifashi in Cairo

wrote ‘Azhar al Afkar’ (Best Thoughts on the Best of

Stones) in which he mentions inclusions (‘uyub’), liquid

(inclusion) (‘ma’), air bubble (‘rih’), and mud inclusion

(‘teen’). Also, at approximately the same time, Albertus

Magnus, a German medieval scholar and Archbishop of

Cologne, wrote a book on lapidary (‘de mineralibus’) with

a note on fluid inclusions in beryl, that states ‘Beryl is a

shining and transparent gemstone of pale color. The most

precious kind is the one, in which you see water moving

when you turn him’ (translation from German provided by

Albert Gilg). The earliest known description in English was

by Robert Boyle (1672), who described a moving bubble

in a quartz crystal.

Systematic observations of fluid and melt inclusions

really began in the 1800s with the pioneering microscopic

studies of Davy (1822), Brewster (1823), Sorby (1857),

and Zirkel (1873), but then languished for most of the

next century. The lack of follow-up to these original stud-

ies is puzzling because Sorby (1858) described aqueous

inclusions in vein quartz, with homogenization tempera-

tures that decreased outward from an intrusion, the perfect

source for ore-forming hydrothermal fluids. When atten-

tion finally returned to fluid and melt inclusions, however,

they provided critically important information on a wide

and growing range of geologic processes from volcanism

to ore formation.

FLUID INCLUSION STUDIES

Fluid inclusion studies that trickled into the literature dur-

ing the late 1800s and early 1900s focused largely on ore
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deposits and indicated that they contained fluids with a wide

range of compositions. Sorby & Butler (1869) reported

CO2-bearing inclusions in sapphire; Phillips (1875)

described aqueous inclusions in the Cornish tin veins; Lind-

gren (1905) reported salt crystals in fluid inclusions at the

Clifton-Morenci porphyry copper deposit; and Newhouse

(1932, 1933) described saline fluids without salt crystals in

Mississippi Valley-type (MVT) deposits. By the 1930s, Rus-

sian geologists had begun fluid inclusion research on a wide

range of ore deposits that was summarized by Ermakov

et al. (1950), Zakharchenko (1950), and Lemmlein (1956)

(see also the discussion in Roedder 1984, p.4–6). Work out-

side Russia was less comprehensive, but included early stud-

ies on geothermometry by Ingerson (1947), pegmatites by

Cameron et al. (1951), and decrepitation by Smith (1952),

as well as the historical summary of previous work on fluid

and melt inclusions by Smith (1953).

Wider application of these pioneering studies was limited

in part by the debate about whether fluid inclusions leaked

(Kennedy 1950; Skinner 1953) and by the lack of suitable

equipment to measure homogenization and freezing tem-

peratures. Resolution of the leakage dispute by the experi-

ments of Roedder & Skinner (1968) and development of

simple heating and freezing equipment for use on micro-

scopes by Roedder (1962, 1963) resulted in wider accep-

tance of fluid inclusion research. By about 1970,

publications using or mentioning fluid inclusions became

common and research grew rapidly from a few papers per

year to the present rate of over 700 per year (Fig. 1A).

Some of the earliest fluid inclusion studies were surveys

showing the range of temperatures and salinities in various

ore deposit types (Fig. 2A), including MVT Pb-Zn-Ba-F

(Roedder 1967), Bolivian tin (Kelly & Turneaure 1970),

and porphyry Cu deposits (Roedder 1971). This work,

when combined with analyses of inclusion leachates (Hall

& Friedman 1963) and isotopic compositions (Rye &

O’Neil 1968), provided support for efforts to determine

the different sources from which hydrothermal solutions

were derived (White 1957, 1974). Later studies shed light

on processes occurring during ore formation, including

boiling in epithermal systems (Kamilli & Ohmoto 1977)

and halite saturation in porphyry copper and chimney–man-

to systems (Erwood et al. 1979; Wilson et al. 1980), as

well as on vertical zoning in inclusion fluids in epithermal,

porphyry copper, and orogenic gold systems (Bodnar & Be-

ane 1980; Robert & Kelly 1983; Dilles & Einaudi 1992).

After about 1980, fluid inclusion studies began to be

applied to problems in sedimentary and metamorphic geol-

ogy (Hollister & Crawford 1981; Roedder 1984; Gold-

stein & Reynolds 1994) (Fig. 2B). Topics of greatest

interest included characterization of metamorphic fluids

(Crawford 1981; Touret 1981) basin evolution and fluid

expulsion, including hydrocarbons (McLimans 1981; Bur-

russ et al. 1983), variations in chemistry of seawater

through time (Channer et al. 1997; Timofeef et al. 2006),

generation of evaporites (Ayora et al. 1994), and dolomiti-

zation (Machel 1987; Aulstead et al. 1988). This work

expanded rapidly, and by 2012, the proportion of fluid

inclusion studies that focused on ore deposits had

decreased from 100% of all papers in the early 1960s to

about 35% (Fig. 1A).

Fluid inclusion studies were enhanced greatly by the

development of a method to synthesize inclusions of

known composition under controlled conditions (Sterner

& Bodnar 1984; Bodnar & Sterner 1985). This led to a

burst of studies that used synthetic inclusions to investigate

a wide range of geochemical problems (Fig. 3), including a

series of important studies of phase equilibria in H2O-salt-

gas systems starting with Bodnar et al. (1985) and extend-

ing to Lin & Bodnar (2010). Ironically, synthetic inclu-

sions were also used to confirm that fluid inclusions could

leak under special circumstances (Hall & Sterner 1993,

1995; Sterner et al. 1995).

By about 2000, just as the number of synthetic inclu-

sion studies had tapered off (Fig. 3), analysis of single

Fig. 1. Growth of peer-reviewed publications that mention fluid or melt

inclusions or that mention both ore deposits and fluid or melt inclusions.

Note that fluid inclusion studies began to grow sooner than melt inclusion

studies, and that ore deposit studies have made up a much greater fraction

of fluid inclusion studies. This figure, and the two that follow, is based on

Georef searches for publications written in English or with titles or abstracts

that were translated into English. This approach is comprehensive with the

exception of early studies by Russian and French authors, some of which

are mentioned here.
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fluid inclusions had improved so much that trace ele-

ments were detectable. Earlier efforts to analyze individ-

ual inclusions had used Raman and quadrupole MS

methods that were most effective on gaseous inclusion

contents (Blamey 2012; Frezzotti et al. 2012). Develop-

ment and validation of particle-induced X-ray/gamma-ray

emission (PIXE/PIGE) and laser ablation, inductively

coupled mass spectrometry (LA-ICP-MS) methods for

analyzing trace elements in individual fluid and melt

inclusions (Heinrich et al. 1992, 2003; and Aud�etat et al.

2000a,b; Allan et al. 2005) offered a new way to link

fluid inclusions to migration of trace elements in the

crust. Use of infrared light microscopic methods (Camp-

bell et al. 1984) also allowed analysis of single inclusions

in opaque ore minerals (Kouzamanov et al. 2010). More

recently, infrared synchrotron X-ray fluorescence, X-ray

absorption near edge structure (XANES) measurements

have been used to determine element speciation in single

inclusions (Richard et al. 2012).

MELT INCLUSION STUDIES

Melt inclusions were also recognized in early studies

(Sorby 1858), but little attention was given to them dur-

ing the next hundred years. Their 20th century renaissance

was also much slower; whereas fluid inclusion studies

began to grow in about 1960, the rise in melt inclusion

studies did not begin until about 1980 (Fig. 1B). The

stage for this rise was set between 1940 and 1980, when

Russian geologists described observations on igneous

rocks, including some pegmatites, which indicated exten-

sive immiscibility in silicate systems (Zakharchenko 1968;

Clocchiatti 1975; Sobolev & Kostyuk 1975). Elsewhere,

Roedder & Coombs (1967) described complex inclusions

containing silicate glass, saline fluid, and gas that were

thought to represent ‘simultaneous coexistence of immisci-

ble silicate and saline fluid phases in the granitic melt’, and

Roedder & Weiblen (1970, 1971) showed the importance

of immiscibility in lunar samples.

Early melt inclusion studies had their own controversy

about leakage (Anderson 1991; Lowenstern & Mahood

1991), as well as the question of whether boundary layer

effects around the host crystal meant that the trapped melt

did not represent the bulk melt (Watson et al. 1982;

Bacon 1989). While guidelines for melt inclusion observa-

tions and interpretations have improved over the years

(Lowenstern 1995, 2003; Bodnar & Student 2006) and

have provided a foundation for wider application of melt

inclusion studies, controversies remain concerning the

validity and interpretation of melt inclusion data (c.f.,

Danyushevsky et al. 2002; Steele-MacInnis et al. 2011).

(A)

(B)

(C)

Fig. 2. Growth in number of peer-reviewed publications that mention fluid

inclusions in epithermal, porphyry copper, and MVT deposits (A) and in dia-

genetic and evaporite settings (B) and melt inclusions in volcanic rocks, ore

deposits, and pegmatites (C) (data from Georef). There is considerable

overlap in some of these categories, especially between MVT deposits and

evaporites.

Fig. 3. Change in peer-reviewed publications focused on synthetic inclu-

sions (as mentioned in title) compared with the change in publications that

mention single inclusion analyses by PIXE or ICP-MS methods (data from

Georef). Note the increase in synthetic inclusion publications after about

2000 related to experimental studies using single inclusion analyses.

© 2013 John Wiley & Sons Ltd, Geofluids, 13, 398–404
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The first generation of modern melt inclusion studies

focused on felsic and mafic volcanic rocks to evaluate the

degassing of H2O, CO2, S, and Cl and the role of volatiles

in volcanic eruptions (Harris & Anderson 1984; Anderson

et al. 1989; Dunbar et al. 1989). Melt inclusions in volca-

nic rocks were also used to evaluate the spatial heterogene-

ity of volatile contents in magma chambers; rates,

locations, and timing of crystal growth; and magma mixing

(Metrich & Clocchiatti 1989; Dunbar & Hervig 1992;

Christensen & Halliday 1996; Roggensack et al. 1997).

Early studies of melt inclusions in intrusive rocks focused

on granites enriched in fluorine, tin, and other rare ele-

ments (Naumov et al. 1977; Kovalenko et al. 1984) and

on the vapor phase and/or highly saline liquid that was

present in many inclusions (Roedder 1984; Frezzotti

1992). These studies went on to estimate the partitioning

between magma and vapor or between magma and aque-

ous phase of volatile constituents (Stix & Graham 1996),

as well as ore elements that were concentrated enough to

be detected by microprobe (Reyf 1997; Webster et al.

1997). Development of PIXE and laser-ablation ICP-MS

methods (Fig. 3) allowed an increase in studies of ore ele-

ments in melt inclusions from deposit types associated with

igneous rocks, including tin and molybdenum deposits

(Webster et al. 1996; Dietrich et al. 2000; Audetat 2010),

porphyry copper deposits (Student & Bodnar 2004), geo-

thermal systems (Chambefort et al. 2012), carbonatites

and rare earth elements (Qin et al. 2007; Xie et al. 2009),

and IOCG deposits (McPhie et al. 2011).

THE FUTURE

The much lower detection limit for most elements afforded

by PIXE/PIGE, LA-ICP-MS, and other advanced analyti-

cal methods has opened a new chapter in inclusion

research. Most early single inclusion analytical studies

focused on natural inclusions with an emphasis on changes

in element concentrations in fluids as they evolved through

the ore-forming process or on partitioning of elements

between or among magma, fluid, and vapor (Ulrich et al.

1999, 2001; Aud�etat et al. 2000a,b; Appold et al. 2004).

As methods were perfected, they have been extended to

analyze inclusions in experimental charges that were gener-

ated under known conditions (Simon 2003; Bell et al.

2011; Frank et al. 2011). These studies are providing basic

information on equations of state and solubilities that are

needed to develop rigorous chemical models for the gener-

ation and evolution of magmas and magmatic fluids, and

the migration and deposition of trace elements in all types

of hydrothermal solutions. Future inclusion research will

undoubtedly expand to take on new questions. Possible

directions include age measurements of inclusion fluids

(Wayne et al. 1996), the use of biomarkers, noble gas iso-

topes and halogens to trace the source of inclusion fluids

(Dutkiewicz et al. 2006; Kendrick et al. 2011), and the

study of microorganisms in fluid inclusions (Naumov et al.

2013).

ACKNOWLEDGEMENTS

RJB thanks Albert Gilg for discussions and information

concerning the earliest references to fluid inclusions. TM

publishes with the permission of the CEO of Geoscience,

Australia.

REFERENCES

Allan MM, Yardley BWD, Forbes LJ, Shmulovich KI, Banks DA,

Shepherd TJ (2005) Validation of LA-ICP-MS fluid inclusion
analysis with synthetic fluid inclusions. American Mineralogist,
90, 1767–75.

Anderson AT Jr (1991) Hourglass inclusions: theory and

application to the Bishop rhyolitic tuff. American Mineralogist,
76, 530–47.

Anderson AT Jr, Newman S, Williams SN, Druitt TH, Skirius C,

Stolper E (1989) H2O, CO2, Cl and gas in Plinian and ash-flow
Bishop rhyolite. Geology, 17, 221–5.

Appold MS, Numelin TJ, Shepherd TJ, Chenery SR (2004)

Limits on the metal content of fluid inclusions in gangue

minerals from the Viburnum Trend, Southeast Missouri,
determined by laser ablation ICP-MS. Economic Geology, 99,
185–98.

Audetat A (2010) Source and evolution of molybdenum in the

porphyry Mo(-Nb) deposit at Cave Peak, Texas. Journal of
Petrology, 51, 1739–60.

Aud�etat A, Gu
̈
nther D, Heinrich CA (2000a) Causes for large-

scale metal zonation around mineralized plutons: fluid inclusion

LA-ICP-MS evidence from the Mole Granite, Australia.
Economic Geology, 95, 1563–81.

Aud�etat A, Gu
̈
nther D, Heinrich CA (2000b) Magmatic-

hydrothermal evolution in a fractionating granite: a
microchemical study of the Sn-W-F mineralized Mole Granite

(Australia). Geochimica et Cosmochimica Acta, 64, 3373–93.
Aulstead KL, Spencer RJ, Krouse RH (1988) Fluid inclusion and

isotopic evidence on dolomitization, Devonian of Western
Canada. Geochimica et Cosmochimica Acta, 52, 1027–35.

Ayora C, Garcia-Veigas J, Pueyo J-J (1994) The chemical and

hydrological evolution of an ancient potash-forming evaporite

basin as constrained by mineral sequence, fluid inclusion
composition, and numerical simulation. Geochimica et
Cosmochimica Acta, 58, 3379–94.

Bacon CR (1989) Crystallization of accessory phases in magmas
by local saturation adjacent to phenocrysts. Geochimica et
Cosmochimica Acta, 53, 1055–66.

Bell AS, Simon AC, Guilong M (2011) Gold solubility in oxidized

and reduced, water-saturated mafic melt. Geochimica et
Cosmochimica Acta, 75, 1718–32.

Blamey NJF (2012) Composition and evolution of crustal,

geothermal and hydrothermal fluids interpreted using

quantitative fluid inclusion gas analysis. Journal of Geochemical
Exploration, 116–117, 17–27.

Bodnar RJ, Beane RE (1980) Temporal and spatial variations in

hydrothermal fluid characteristics during vein filling in preore
cover overlying deeply buried porphyry copper-type

mineralization at Red Mountain, Arizona. Economic Geology, 75,
876–93.

© 2013 John Wiley & Sons Ltd, Geofluids, 13, 398–404

Role of inclusion studies 401



Bodnar RJ, Sterner SM (1985) Synthetic fluid inclusions in natural

quartz. II. Application to PVT studies. Geochimica et
Cosmochimica Acta, 49, 1855–9.

Bodnar RJ, Student JJ (2006) Melt inclusions in plutonic rocks:

petrography and microthermometry. Mineralogical Association of
Canada Short Course, 36, 1–25.

Bodnar RJ, Burnham CW, Sterner SM (1985) Synthetic fluid
inclusion in natural quartz; III, Determination of phase

equilibrium properties in the system H2O-NaCl to 1000

degrees C and 1500 bars. Geochimica et Cosmochimica Acta, 49,
1861–73.

Boyle R (1672) An Essay About the Origin and Virtues of Gems.
William Godbid, London.

Brewster D (1823) On the existence of two new fluids in the

cavities of minerals, which are immiscible, and possess
remarkable physical properties. Transactions Royal Society of
Edinburgh, 10, 1–14.

Burruss RC, Cercone KR, Harris PM (1983) Fluid inclusion
petrography and tectonic-burial history of the Al Ali No. 2 well.

Evidence for the timing of diagenesis and oil migration,

northern Oman Foredeep. Geology, 11, 567–70.
Cameron EN, Rowe RB, Weis PL (1951) Fluid inclusion in beryl
and quartz from pegmatites of the Middletown District,

Connecticut (Part 1). American Mineralogist, 36, 11–2.
Campbell AR, Rye D, Petersen U (1984) Internal features of

minerals seen with the infrared microscope. Economic Geology,
79, 1387–1392.

Chambefort I, Rae A, Bignall G (2012) Direct magmatic input in

geothermal systems of the Taupo Volcanic Zone. Mineralogical
Magazine, 76, 1–20.

Channer DMDeR, de Ronde CEJ, Spooner ETC. (1997) The

Cl�-Br�-I� composition of similar to 3.23 Ga modified

seawater. implications for the geological evolution of ocean
halide chemistry. Earth and Planetary Science Letters, 3–4,
325–35.

Christensen JN, Halliday AN (1996) Rb-Sr ages and Nd isotopic

compositions of melt inclusions from the Bishop Tuff and the
generation of silicic magma. Earth and Planetary Science Letters,
144, 547–61.

Clocchiatti R (1975) Les inclusions vitreuses des cristaux de
quartz. �Etude optique, thermo-optique et chimique.

Applications geologiques. [Glass (melt) inclusions in quartz.

Optical, microthermometric and chemical study. Geologic

applications]. Memoires de la Soci�et�e G�eologique de France, LIV,
122, 1–96 [in French].

Crawford ML (1981) Fluid inclusions in metamorphic rocks; low

and medium grade. Mineralogical Society of American Short
Course Handbook, 6, 157–81.

Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental

and petrological studies of melt inclusions in phenocrysts from

mantle-derived magmas: an overview of techniques, advantages

and complications. Chemical Geology, 183, 5–24.
Davy H (1822) On the state of water and aeriform matter in

cavities found in certain crystals. Philosophical Transactions Royal
Society of London, 2, 367–76.

Dietrich A, Lehmann B, Wallianos A (2000) Bulk rock and melt

inclusion geochemistry of Bolivian tin porphyry systems.

Economic Geology, 95, 313–26.
Dilles JH, Einaudi MT (1992) Wall-rock alteration and
hydrothermal flow paths about the Ann-Mason porphyry copper

deposit, Nevada; a 6-km vertical reconstruction. Economic
Geology, 87, 963–2001.

Dunbar NW, Hervig RL (1992) Petrogenesis and volatile
stratigraphy of the Bishop Tuff; evidence from melt inclusion

analysis. Journal of Geophysical Research, 97, B11, 15, 129–15,
150.

Dunbar NW, Hervig RL, Kyle PR (1989) Determination of pre-
eruptive H2O, F, and Cl contents of silicic magmas using melt

inclusions. examples from Taupo volcanic center, New Zealand.

Bulletin of Volcanology, 51, 177–84.
Dutkiewicz A, Volk H, George SC, Ridley J, Buick R (2006)
Biomarkers from Huronian oil-bearing fluid inclusions: an

uncontaminated record of life before the Great Oxidation

Event. Geology, 34, 437–40.
Ermakov NP (1950) Research on the nature of mineral-forming
solutions. University of Kharkov Press, Kharkov, 460 p. translated

in Ermakov NP (1965) International Series of Monographs in

Earth Sciences, 22, Pergamon, New York, 743 p.

Erwood RJ, Kesler SE, Cloke PL (1979) Compositionally distinct,
saline hydrothermal solutions, Naica Mine, Chihuahua, Mexico.

Economic Geology, 74, 95–106.
Frank MR, Simon AC, Pettke T, Candela PA, Piccoli PM (2011)
Gold and copper partitioning in magmatic-hydrothermal

systems at 800 degrees C and 100 MPa. Geochimica
Cosmochimica Acta, 75, 2470–82.

Frezzotti M-L (1992) Magmatic immiscibility and fluid phase
evolution in the Mount Genis granite (southeastern Sardinia,

Italy). Geochimica Cosmochimica Acta, 56, 21–33.
Frezzotti ML, Tecce F, Casagli A (2012) Raman spectroscopy for

fluid inclusion analysis. Journal of Geochemical Exploration, 112,
1–20.

Goldstein RH, Reynolds TJ (1994) Systematics of fluid

inclusions in diagenetic minerals. SEPM Short Course Notes,
31, 199.

Hall WE, Friedman I (1963) Composition of fluid inclusions,

Cave-in-Rock fluorite district, Illinois and Upper Mississippi

Valley zinc-lead district. Economic Geology, 58, 886–911.
Hall DL, Sterner SM (1993) Preferential water loss from synthetic

fluid inclusion. Contributions to Mineralogy and Petrology, 114,
489–500.

Hall DL, Sterner SM (1995) Experimental diffusion of hydrogen
into synthetic fluid inclusion in quartz. Journal of Metamorphic
Geology, 13, 345–55.

Harris D, Anderson AT Jr (1984) Volatiles H2O, CO2, and Cl in
a subduction related basalt. Contributions to Mineralogy and
Petrology, 87, 120–8.

Heinrich CA, Ryan CG, Mernagh TP, Eadington PJ (1992)

Segregation of ore metals between magmatic brine and vapor. a
fluid inclusion study using PIXE microanalysis. Economic
Geology, 87, 1566–83.

Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Aud�etat A,

Gu
̈
nther D, Hattendorf B, Bleiner D, Guillong M, Horn I (2003)

Quantitative multi-element analysis of minerals, fluid and melt

inclusions by laser-ablation inductively-coupled-plasma mass-

spectrometry. Geochimica et Cosmochimica Acta, 67, 3473–97.
Hollister LS, Crawford ML, Editors (1981) Fluid Inclusions.
Applications to Petrology. Mineralogic Association of Canada,

Ontario, Short Course Handbook, 6, 304 p.

Ingerson E (1947) Liquid inclusions in geologic thermometry.
American Mineralogist, 32, 375–88.

Kamilli J, Ohmoto H (1977) Paragenesis, zoning, fluid inclusion,

and isotopic studies of the Finlandia Vein, Colqui District,

central Peru. Economic Geology, 72, 950–82.
Kelly WC, Turneaure FS (1970) Mineralogy, paragenesis and

geothermometry of the tin and tungsten deposits of the eastern

Andes, Bolivia. Economic Geology, 65, 609–80.
Kendrick MA, Honda M, Walshe J, Petersen K (2011) Fluid
sources and the role of abiogenic-CH4 in Archean gold

© 2013 John Wiley & Sons Ltd, Geofluids, 13, 398–404

402 S. E. KESLER et al.



mineralization: constraints from noble gases and halogens.

Precambrian Research, 189, 313–27.
Kennedy GC (1950) “Pneumatolysis” and the liquid inclusion
method of geologic thermometry. Economic Geology, 45, 533–47.

Kouzamanov K, Pettke T, Heinrich CA (2010) Direct analysis of

ore-precipitating fluids: combined IR microscopy and LA-ICP-

MS study of fluid inclusions in opaque ore minerals. Economic
Geology, 105, 351–73.

Kovalenko VI, Kovalenko NI, Didier J (1984) Problems of the

origin, ore-bearing and evolution of rare-metal granitoids.

Physics of the Earth and Planetary Interiors, 35, 51–62.
Lemmlein GG (1956) Formation of fluid inclusions and their use

in geological thermometry. Geochemistry, 6, 630–42.
Lin F, Bodnar RJ (2010) Synthetic fluid inclusion XVIII;

experimental determination of the PVTX properties of H2O-
CH4 to 500 C, 3 kbar and XCH4 ≤ 4 mole%. Geochimica
Cosmochimica Acta, 74, 3260–73.

Lindgren W (1905) The copper deposits of the Clifton-Morenci
district, Arizona. U.S. Geological Survey Professional Paper 43

375.

Lowenstern JB (1995) Applications of silicate melt inclusions to

the study of magmatic volatiles. In: Thompson, J.F.H. (ed.)
Magmas, Fluid and Ore Deposits. Mineralogical Association of
Canada Short Course, 23, 71–99.

Lowenstern JB (2003) Melt inclusions come of age. Volatiles,

Volcanoes, and Sorby’s Legacy, In: Melt Inclusions in Volcanic
Systems. Methods, Applications and Problems. Developments in

Volcanology 5 (eds de Vivo B, Bodnar RJ), pp. 1–22. Elsevier
Press, Amsterdam.

Lowenstern JB, Mahood GA (1991) New data on magmatic H2O

contents of pantellerites, with implications for petrogenesis and

eruptive dynamics at Pantelleria. Bulletin of Volcanology, 54, 78–
83.

Machel H-G (1987) Saddle dolomite as a by-product of chemical

compaction and thermochemical sulfate reduction. Geology, 15,
936–40.

McLimans RK (1981) Applications of fluid inclusion studies to
reservoir diagenesis and petroleum migration; Smackover

Formation, U.S. Gulf Coast, and Fateh Field, Dubai. AAPG
Bulletin, 65, 957.

McPhie J, Kamenetsky V, Allen S, Ehrig K, Agangi A, Bath A

(2011) The fluorine link between a supergiant ore deposit and a

silicic large igneous province. Geology, 39, 1003–6.
Metrich N, Clocchiatti R (1989) Melt inclusion investigation of
the volatile behaviour in historic alkali basaltic magmas of Etna.

Bulletin of Volcanology, 51, 185–98.
Naumov VB, Kovalenko VI, Ivanova GF, Vladykin NV (1977)

The genesis of topaz according to the data on microinclusions.
Geochemistry International, 14.2, 1–8.

Naumov VB, Prokof’ev VYu, Vapnik EA (2013) Studies of

microorganisms in fluid inclusions in natural quartz.

Geochemistry International, 51, 417–20.
Newhouse WH (1932) The composition of vein solutions as shown

by liquid inclusions in minerals. Economic Geology, 27, 419–36.
Newhouse WH (1933) The temperature of formation of the
Mississippi Valley lead, zinc deposits. Economic Geology, 28,
744–50.

Phillips JA (1875) The rocks of the mining districts of Cornwall

and their relations to metalliferous deposits. Geological Society of
London Quarterly Journal, 31, 319–345.

Qin C, Qiu Y, Zhou G, Wang Z, Zhang T (2007) Fluid inclusion

study of carbonatite dykes/veins and ore-hosted dolostone at

the Bayan Obo ore deposit. Yanshi Xuebao=Acta Petrologica
Sinica, 23, 161–8.

Reyf FG (1997) Direct evolution of W-rich brines from

crystallizing melt within the Mariktikan granite pluton, west

Transbaikalia. Mineralium Deposita, 32, 475–90.
Richard A, Cauzid J, Cathelineau M, Boiron M-C, Mercadier J,

Cuney M (2012) Synchrotron XRF and XANES investigation of

uranium speciation and element distribution in fluid inclusions

from unconformity-related uranium deposits. Geofluids, 13,
101–11.

Robert F, Kelly WC (1983) Ore-forming fluids in archean gold-

bearing quartz veins at the Sigma Mine, Abitibi Greenstone

Belt, Quebec, Canada. Economic Geology, 82, 1464–82.
Roedder E (1962) Studies of fluid inclusions I: low temperature

application of a dual-purpose freezing and heating stage.

Economic Geology, 57, 1045–61.
Roedder E (1963) Studies of fluid inclusions II: freezing data and
their interpretation. Economic Geology, 58, 167–211.

Roedder E (1967) Environment of deposition of stratiform

(Mississippi Valley type) ore deposits from studies of fluid
inclusions in J.S. Brown, ed, Genesis of Stratiform Lead Zinc

Barite Flourite Deposits (Mississippi Valley Type Deposits).

Economic Geology, 3, 349–63.
Roedder E (1971) Fluid inclusion studies on the porphyry-type
ore deposits at Bingham, Utah, Butte, Montana and Climax

Colorado. Economic Geology, 66, 98–120.
Roedder E (1984) Reviews in Mineralogy, Mineralogical Society of

America 12, 646 p.
Roedder E, Coombs DS (1967) Immiscibility in granitic melts,

indicated by fluid inclusions in ejected granitic blocks from

Ascension Island. Journal of Petrology, 8, 417–51.
Roedder E, Skinner BJ (1968) Experimental evidence that fluid

inclusions do not leak. Economic Geology, 63, 715–30.
Roedder E, Weiblen PW (1970) Silicate liquid immiscibility in

lunar magmas, evidenced by melt inclusion in lunar rocks.
Science, 167, 641–4.

Roedder E, Weiblen PW (1971) Petrology of silicate melt

inclusions, Apollo 11 and Apollo 12 and terrestrial equivalents,

in Proc. Lunar Science Conf., 2nd Proc. v. 1. Geochimica
Cosmochimica Acta, 2, 507–28.

Roggensack K, Hervig RL, McKnight SB, Williams SN (1997)

Explosive basaltic volcanism from Cerro Negro volcano.
Influence of volatiles on eruptive style. Science, 277, 1639–
42.

Rye RO, O’Neil JR (1968) The O18 Content of Water in Primary

Fluid Inclusions from Providencia, North-Central Mexico.
Economic Geology, 63, 232–8.

Simon A (2003) Experimental determination of Au solubility in

rhyolite melt and magnetite; constraint on magmatic Au

budgets. American Mineralogist, 88, 1644–51.
Skinner BJ (1953) Some considerations regarding liquid inclusions

as geologic thermometers. Economic Geology, 48, 541–50.
Smith FG (1952) Decrepitation characteristics of garnet.

American Mineralogist, 37, 470–91.
Smith FG (1953) Historical Development of Inclusion
Thermometry. University of Toronto Press, Toronto, Canada.

Sobolev VS, Kostyuk VP (1975) Magmatic crystallization based
on a study of melt inclusions. Fluid Inclusion Research, 9,
182–235.

Sorby HC (1857) On some peculiarities in the microscopical

structure of crystals, applicable to the determination of the
aqueous or igneous origin of minerals and rocks. Philosophical
Magazine, 4–15, 152–4.

Sorby HC (1858) On the microscopic structures of crystals,

indicating the origin of minerals and rocks. Journal of the
Geological Society of London, 14, 453–500.

© 2013 John Wiley & Sons Ltd, Geofluids, 13, 398–404

Role of inclusion studies 403



Sorby HC, Butler PJ (1869) On the structure of rubies, sapphires,

diamonds and some other minerals. Proceedings Royal Society,
17, 291–303.

Steele-MacInnis M, Esposito R, Bodnar RJ (2011)

Thermodynamic model for the effect of post-entrapment

crystallization on the H2O-CO2 systematics of volatile-saturated

silicate melt inclusions. Journal of Petrology, 52, 2461–82.
Sterner SM, Bodnar RJ (1984) Synthetic fluid inclusions in natural

quartz; 1, Compositional types synthesized and applications to

experimental geochemistry. Geochimica et Cosmochimica Acta,
48, 2659–68.

Sterner SM, Hall DL, Keppler H (1995) Compositional re-

equilibration of fluid inclusions in quartz. Contributions to
Mineralogy and Petrology, 119, 1–15.

Stix J, Graham LD (1996) Gas saturation and evolution of volatile
and light lithophile elements in the Bandelier magma chamber

between two caldera-forming eruptions. Journal of Geophysical
Research, 101 B11, 25181–96.

Student JJ, Bodnar RJ (2004) Silicate melt inclusion in porphyry

copper deposits. identification and homogenization behavior.

Canadian Mineralogist, 42, 1583–99.
Timofeef MN, Lowenstein TK, Marins da Silva MA, Harris NB
(2006) Secular variation in the major-ion chemistry of seawater.

Evidence from fluid inclusion in Cretaceous halites. Geochimica
Cosmochimica Acta, 70, 1977–94.

Touret J (1981) Fluid inclusion in high-grade metamorphic rocks.
Mineralogical Society of America Short Course Handbook, 6,
182–208.

Ulrich T, Gu
̈
nther D, Heinrich CA (1999) Gold concentrations of

magmatic brines and the metal budget of porphyry copper

deposits. Nature, 399, 676–9.
Ulrich T, Gu

̈
nther D, Heinrich CA (2001) The evolution of a

porphyry Cu-Au deposit, based on LA-ICPMS analysis of fluid
inclusions. Bajo de la Alumbrera, Argentina. Economic Geology,
96, 1743–74.

Watson EB, Sneeringer MA, Ross A (1982) Diffusion of dissolved

carbonate in magmas. experimental results and applications.

Earth and Planetary Science Letters, 61, 346–58.
Wayne DM, Miller MF, Scrivener RC, Banks DA (1996) U-Pb

and Rb-Sr isotopic systematics of fluids associated with

mineralization of the Dartmoor granite, southwest England.

Geochimica Cosmochimica Acta, 60, 653–66.
Webster JD, Burt DM, Aguillon RA (1996) Volatile and

lithophile trace-element geochemistry of Mexican tin rhyolite

magmas deduced from melt inclusions. Geochimica
Cosmochimica Acta, 60, 3267–83.

Webster JD, Thomas R, Rhede D, Foerster H-J, Seltmann R

(1997) Melt inclusions in quartz from an evolved peraluminous

pegmatite; geochemical evidence for strong tin enrichment in

fluorine-rich and phosphorus-rich residual liquids. Geochimica et
Cosmochimica Acta, 61, 2589–604.

White DE (1957) Magmatic, connate, and metamorphic waters.

Bulletin of the Geological Society of America, 68, 1659–82.
White DE (1974) Diverse origins of hydrothermal ore fluids.

Economic Geology, 69, 954–73.
Wilson JYJ, Kesler SE, Cloke PL, Kelly WC (1980) Fluid inclusion

geochemistry of the Granisle and Bell porphyry copper deposits,
British Columbia. Economic Geology, 75, 45–61.

Xie Y, Hou Z, Yin S, Dominy SC, Xu J (2009) Continuous

carbonatitic melt-fluid evolution of a REE mineralization system;

evidence from inclusions in the Maoniuping REE deposit,
western Sichuan, China. Ore Geology Reviews, 36, 90–105.

Zakharchenko AI (1950) Study of liquid inclusions in quartz (in

Russian). L’vov Geol. Obshch. Mineral. Sbornik, 4, 167–87.
Zakharchenko AI (1968) Gas-solid inclusions of residual melts in
granites, aplites, and pegmatites and results of their investigation.
Vses. Nauch.-Issl. Inst. Sinteza Mineral, Syr’ya, Moscow

(Referenced in Georef).
Zirkel F (1873) Die mikroscopische Beschaftenheit der Mineralien
und Gesteine. Wilhelm Englemann, Leipzig.

© 2013 John Wiley & Sons Ltd, Geofluids, 13, 398–404

404 S. E. KESLER et al.



Volume 13, Number 4, November 2013
ISSN 1468-8115

Geofluids

This journal is available online at Wiley Online Library. 
Visit onlinelibrary.wiley.com to search the articles and register 
for table of contents and e-mail alerts.

Geofluids is abstracted/indexed in Chemical Abstracts

CONTENTS

395 EDITORIAL: Introduction to thematic issue on fluid and melt inclusions
R.J. Bodnar, T.P. Mernagh, I.M. Samson and C.E. Manning

398 Role of fluid and melt inclusion studies in geologic research
S.E. Kesler, R.J. Bodnar and T.P. Mernagh

405 Nanogranite inclusions in migmatitic garnet: behavior during piston-cylinder remelting experiments
O. Bartoli, B. Cesare, S. Poli, A. Acosta-Vigil, R. Esposito, A. Turina, R.J. Bodnar, R.J. Angel and J. Hunter

421 Melt inclusion evidence for magma evolution at Mutnovsky volcano, Kamchatka
K. Robertson, A. Simon, T. Pettke, E. Smith, O. Selyangin, A. Kiryukhin, S.R. Mulcahy and J.D. Walker

440 Investigation of long-term geochemical variations and magmatic processes at Mount St. Helens
M.J. Severs, K.J. Gryger, S.A. Makin, R.J. Bodnar and W.B. Bradford

453 Zircon-bearing, crystallized melt inclusions in peritectic garnet from the western Adirondack Mountains, New York
State, USA
R.S. Darling

460 Are silicate-rich inclusions in spodumene crystallized aliquots of boundary layer melt?
A.J. Anderson

467 Observations on the crystallization of spodumene from aqueous solutions in a hydrothermal diamond-anvil cell
J. Li, I.-M. Chou, S. Yuan and R.C. Burruss

475 Fluid inclusion evidence for a genetic link between simple antimony veins and giant silver veins in the Coeur 
d’Alene  mining district, ID and MT, USA
A.H. Hofstra, E.E. Marsh, T.I. Todorov and P. Emsbo

494 An evaluation of hydrogen sulfide in orogenic gold fluids and the uncertainties associated with vapor-rich
 inclusions
T.P. Mernagh and E.N. Bastrakov

506 Geology, fluid inclusion, and isotope constraints on ore genesis of the Neoproterozoic Jinshan orogenic gold
deposit, South China
C. Zhao, P. Ni, G.-G. Wang, J.-Y. Ding, H. Chen, K.-D. Zhao, Y.-T. Cai and Y.-F. Xu

528 Fluid inclusions at different depths in the Sanshandao gold deposit, Jiaodong Peninsula, China
F.F. Hu, H.R. Fan, X.H. Jiang, X.C. Li, K.F. Yang and T. Mernagh

542 Boiling as a mechanism for colour zonations observed at the Byrud emerald deposit, Eidsvoll, Norway: fluid
 inclusion,  stable isotope and Ar–Ar studies
L. Loughrey, D. Marshall, P. Ihlen and P. Jones

559 A fluid inclusion study of diagenetic fluids in Proterozoic and Paleozoic carbonate rocks, Victoria Island, NWT
J. Mathieu, D.J. Kontak and E.C. Turner

579 Acid saline fluid inclusions: examples from modern and Permian extreme lake systems
K.C. Benison

594 Multiple hydrocarbon charging events in Kuh-e-Mond oil field, Coastal Fars: evidence from biomarkers in oil
 inclusions
Z. Shariatinia, S. Feiznia, A. Shafiei, M. Haghighi, A. Mousavi Dehghani, M. Memariani and N. Farhadian

gfl_13_4_Issue toc_OC  10/25/2013  3:46 PM  Page 1


