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ABSTRACT

This paper is concerned primarily with the asymptotic distribution of the

least squares estimator in a linear equation with stochastic regressors. We

prove a central limit theorem dealing with a sequence of products of random

variables. The theorem is then applied to show asymptotic normality of the

least squares estimator in a wide variety of cases, including: a) autoregressive

regressors, b) moving average regressors, c) lagged dependent variable regres-

sors. The results are generalized to handle Aitken estimation with stochastic

regressors, and instrumental variable estimation in simultaneous equation

models.



I. Motivation

This paper is concerned with the asymptotic distribution of the least squares

estimator of S in the regression model

yt- Oxt + e t (t - 1, 2, ... , T)

where {at) is a sequence of independent, identically distributed (i.1.d.)

random variables and xt is a scalar stochastic regressor .! In particular, the

asymptotic distribution of the stabilized least squares estimator

r( ) TI 4 fxT~IxtE t

is derived under alternative assumptions about the stochastic process governing

the generation of the regressor xt. Provided that T' x has a finite, non-

zero probability limit, it follows from the convergence theorem of Cramer [1946;
A

p. 254] that rf (0 - 0) will be asymptotically normally distributed if

IT T b1 XxtEt converges in distribution to normality. In Sections

III and IV of the paper we state and prove a central limit theorem dealing with

a stochastic sequence of the form {xtCt). Section V of the paper applies the

general theorem to the regression model under alternative assumptions about the

generation of xt * The paper concludes with Section VI which discusses extensions

of the basic results . Before turning to the theorem itself, we present a brief

review of the existing literature relating to the central question of the paper.

Most econometrics textbooks provide an explicit derivation of the asymptotic

distribution of the least squares estimator only for the "fixed -regressor" case'.

It is generally assumed that the regressor (or vector of regressors) ier nonstoch-

astic or, if stochastic, fully independent of the disturbance vector c -in which-
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A

case the asymptotic distribution of /T(8 - 0) is obtained conditional on the

observed values of the regressor. For example, Theil [1971, pp. 380-1] uses the

familiar Lindeberg-Levy central limit theorem to prove the asymptotic

normality of the least squares estimator for the fixed regressor case. Hannan

[1961] considers what amounts to a system of seemingly unrelated regressions.

Using the Liapunov form of the central limit theorem, he proves asymptotic

normality of the least squares estimator conditional on regressors which satisfy

a form of strong law convergence.

In connection with autoregressive models which contain lagged values of the

dependent variable among the regressors, both Theil [1971, pp. 412-13] and

Malinvaud [1966, p. 453], for example, state without proof theorems which assert

that the least squares estimator is asymptotically normally distributed. They

both cite Mann and Wald [1943] as the original reference for this result. More

recent treatments of this problem include Koopmans, Rubin, and Leipnik [1950],

Grenander and Rosenblatt [1957], and Durbin [1960]. Koopmans, Rubin and Leipnik

were primarily concerned with the extension of the Mann and 'old results to

the case where (nonstochastic) exogenous variables are present among the regres-

sors. Moreover, as Durbin notes, the results given in Koopmans, Rubin, and

Leipnik depend on a theorem attributed to Rubin [1948] the proof of which was

never published. In their proof of the asymptotic distribution of the least

squares estimator, Grenander and Rosenblatt refer to Diananda [1953] who in turn

uses a result from Mann and Wild. A careful reading of the Durbin paper reveals

that at a critical point in his proof, a result from Mann and Wald is again

used.

Thus, while there appears at first glance to be several complete discus-

sions of the asymptotic properties of the least squares estimator in the case
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of stochastic regressors, the fundamental theorem is that of Mann and Iald. The

original proof of the theorem by Mann and Wald is inaccessible to many students of

econometrics for a number of reasons. First, Mann and Wald maintain a level of

generality which renders their notation and derivations cumbersome and difficult

to follow. Second, their primary focus on the presence of a lagged dependent

variable in the single-equation model makes it somewhat difficult to see the

generalization of their result to a stochastic regressor other than a lagged

dependent variable. In view of the importance of the stochastic regressor case

in econometrics, a uniform treatment which is fairly simple and sufficiently

general to include the classic Mann and Wald result as well as other stochastic

regressor cases seems to be highly desirable.

III. Statement of the Theorem

In the statement and proof of the theorem we use notation which translates

naturally into the linear regression context in which the theorem is to be

applied. Thus we are concerned with the expression /T T xtet which is in

turn constructed from the sequences {xt} and {etl* The following five assump-

tions specify the properties of {xt} and {et).
A.1) The stochastic sequence {et}, t e [-T, TI, is i.i.d. with mean

zero and variance o2.

A.2) The stochastic sequence {vt}, t s [-T, TI, is i.i.d. with mean zero

and variance 62,
A.3) The random variables et and vt..j are stochastically independent

for j > 0 and j < -L where L is a finite positive integer.

A.4) The stochastic sequence (xt} is defined by xt ) I jvt-.j.

where the aj (not all zero) are scalar constants which are absolutely and
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hence square-summable, i .e ., c |akl and ca2 are finite .
j-o j2-0

A.5) The stochastic sequences {et} and {vt} satisfy E(Iviv:jvkEEmcnl) < H < .

T

Theorem. Assumptions (A.1) - (A.5) imply that as T + e, R T~ 1 xtet
t-1

converges in distribution to the Normal distribution with mean zero and variance

o2 8 2 A, where A - a2.
j-0

Before proving the theorem, we note that in the proof it will be shown that

the sequence {xtEt) is uncorrelated, though not independent. It may be thought

that uncorrelatedness (orthogonality) would be sufficient to establish the theorem.

Unfortunately, this is not the case; there exists no general central limit theorem

for uncorrelated random variales.2/

A theorem similar to ours was proved by Moran [1947]. Our proof, like the

proofs of Moran and Mann and Wild, relies on a form of the Liapunov central limit

theorem for a doubly subscripted sequence of random variables . This theorem

involves only a modest extension of the standard Lindeberg-Lvy central limit

theorem. WI' first state a lemma that indicates the essential features of this

extension.

Lemma. (Chung (1974, p. 199)] Let {0Tt, t=1, 2, ... , K(T), T-1, 2, ... }

denote a sequence of complex numbers where K(T) + - as T+ +ca. If this sequence

satisfies the conditions

a) lim [ max IGTt I] - 0,
T+- 14t(K(T)

K(T)
b) { 'ITt' C < M = and

t-1

K(T)
c) lim [ I OTt] - e, where 8 is a finite complex number,

T+ t-1
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then

T
lim (1+OTt)i-exp(e).
Two t-1

This lemma permits a simple, almost mechanical proof of the following

result.

Liapunov Theorem. Let {YTt, t=1, 2, ... , K(T), T=l, 2, ... } denote a sequence

of random variables where K(T) + as T + .. If

i) YTs and YTt are independent for t#s,

ii) E(YTt) = 0 for all T, t,

K(T)
iii) Var (YTt)*oTtwith I0Tt+ a2asT+.,

t-1

K(T)
iv) E(IYTt 3 )*Y Tt with X YTt + 0 as T +,

t-1

then

K(T) D
ZT * YTt=+N(O, a2),

t-1

i.e., ZT converges in distribution to a normal random variable with mean zero

and variance a2 .

The proof of this theorem relies on the Taylor series expansion of the

characteristic function of YTt:

*Tt(s) = 1 - aTts2/2 + XTt Tts3/ 6  ATt' < 1.

The characteristic function of Zt is thus

K(T) K(T)
*T(s) = H $Tt(s) = U (1 + OTt)

t=1 t=1



where 0Tt * ~0Tts2/ 2 + XTtTTts3/6. It is straight forward to verify

that conditions iii) and iv) in the statement of this theorem imply that 0Tt

satisfies the conditions of the previous lemma2 ' so that

22 D
DT(s) + exp(-ols2/2) as T + a, and YT + N(0, 02).

IV. Proof of the Theorem

The proof of the theorem stated at the beginning of Section III requires the

following six results.

R.1) xt has mean zero and a finite variance. This follows directly from

(A.2) and (A.4).

R.2) xt and e t+,t are stochastically independent for IS> 0. This follows

from (A.3) and the definition of xt.

R.3) E(xtet) - 0 and Var(xtet) - E(xtet)2 - a2Var xt. These follow

from (R.2) with £ - 0, (R.1), and (A.1).

RA) E(xtEtxt+tEt+1) - 0 for £ > 0. To see this, we observe that

E(xtetxt+Et+,) - E((xtctxt+t)E(et+tixtEtxt+t)]

- E[(xtetxt+t)(0)]

- 0,

with the conditional expectation of et+t being zero by virtue of (A.1) and

(R.2). Note that this implies that {xtet} is an uncorrelated sequence.

Let

q
x4 - i ajvt-j

and

x[- 2 jv-
j-q+1

so that

xt = x4 + xt *
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x Nt

R 5) It is clear that (R.1)- (R.4) apply with xt replaced by xt or by

R.6) Var xt =m62 a 2=. 2 A

Var xt ' 2  a 2 '..52q where&4 in1 a2
j=.0 Jn0

Var xt = 2  a a 2 (A-A).
j'q+l

These follow from (A.1) and (A.4) . The latter implies that A is finite and

positive and, of course, A A4 .

We proceed now to the formal proof of the theorem.

Proof :

1) In the definition of x15 and x" choose

q - T 0 0 < 1

It follows that

TIf1 T~ T

t=1 t=1

T

Ixtt
t-1

where

i) E ( r T T'1 xtet) 0 (R.3, R.5 /

and

ii) Va r (/T T" x~st)

- Var x t)
T

(R.4, R .5)
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- a a2 Var x"
T

T T
-r 2 d22(A - Ag)

T t-1q

(R.3, R.5)

(R.6)

- a2 82 (A - Aq) .

Since

A a-o2
Q j-0

and q - T,

Iim A - Lim
T+ q T+-

o -

Hence,

Lim Var ( ?T' xtEt) - Lim a2 62 (A - A) - 0.
T-0-t T q

Thus,

Plim FT T x"e 0

and the asymptotic distribution of T T" xtet is the same as that of

R T-1 x'tet, which follows from the Convergence Theorem of Cramer

(1946, p . 2541. We shall write

R ~ tE t t t

to indicate that the lefthand term has the same asymptotic distribution as the

righthand term.
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2) Now choose M such that!J

M -Tu 0 <u<, 1

and define K as

K = [TIM], where the notation [TIM] signifies the largest integer

less than or equal to TIM.

Obviously, the product KM is (an integer) always less than or equal to T and we

have

KM +P =T, 0 < p < M.

T
Thus the T elements of the sum IXl~c t can be rewritten as the sum of K

t-1
partial sums each containing M products of the form xict and a remainder sum
containing P products of the form 't

T
I Xe

t"1
- (4ei + X C2 + .*.** 4-M

+ (x!*6!.. + ... + x M1E214

+ (X M1c2M*1 + 0 .. + x*

+ (XtK..)M~lC(K..1U*41 + """ + XkJMII)

+ (4.m*1eK1*1+ 00""+ XI%+PSKM+p

K M P

I 1 I 1Xtk1)M C(k.1)144.m + p)ixkM.psKM+p.
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Now note that

f) E(/rT 1r E -p 0~p

P

CR.3, R .5)

and

3i) Var(ff T" 1 J xiM.PeM+p)

P

s u
T

P

T
P

Var(xkM.PeKM+P) (R.4, R.*5)

02Va r x'~ 1 (R .3, R.5)

(R .6)-1 Q2 ~6 2 A
T q

p

" P a26 2
T -

But the definitions of P. K, and M imply

0 < P/T < (M-1)/T = (TP--1)/T

8o that

o < Lim P/T < Lim (T"-1) /T = 0

Hencev

im Var(fT rl I xkM+,,ps p)Lim f %2 62Aq inO.
Ta PT.. T

Thus,

Film 11 T- 1  ' PE -0,

P
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and

r l I . /f T r k-I X' (k-.1)Mi(k 1)4in)

3) Now consider the term

M

rn1 l (a )M

By the definitions of M and q,

qT 8e

so that for sufficiently large T, MH> q + L - r where L is as specified in A.3.

Hence the M terms in the above sum can be rewritten as the sum of the first (M-r)

terms and the remaining r terms;

M
I tkki)H+n(kmi)Mim

- CXtk~i)H4.ic(kmi)H+.i + """ + Xtki)+(M.r)(k.)Mfl.M4..r)]

+ t1 (.+)
t k)+Mr1 + """ + xj{jckplJ.

Letting Wk~ and Sk denote the first and second sums, respectively, on the righthand

side of the preceding equation,

M
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4) Wenow show that Plim/rT T 1  I Sk =O
k=i

I SOd-O

k-i

since 8k is a sum of 1lCt products each of which has a zero mean.

K
ii) Var (1i-Tr 1  I 5k)

k'i

K
=T V k=-iS

But the St's are mutually uncorrelated because they are sums of distinct X'tt

products which are urcorrelated * And each Sk has variance r Var 1lCt since

there are r uncorrelated terms in each 5k. Hence

Var (/rFT r' S~
k=i

K

- 1. Varx~k

T k-i

K

T k-ira2V x (R.3, R.5)

1 r!rt 2 K 2 A rK2 6



But

rK _ (Te + LM[T/MJ (T8+ L)(T/14)- (T'8 + L)Tl"i - T8'O' + LTAI

T T T

so that

Limes -0.

T+m T

Thus

Lim VarC/T T 1  S) i 2d2A-o
T+.. k T-.. T q

and

Plim (/iT r l S1 ) = 0

k

which implies

/-TT 1  .te /T T1 W

t k-I

5) Now consider two successive W's, say VI and W2 .

-l=xs + X~C2 + ... + X14.rM-.r

W2 x 1.lc 1EM, + *." + X MrC2Mr "

The last term in W1 involves xf4.r, while the first term in W2 involves 4k+gi.

But
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and

q
xk.l- Z jvMel-j

j-0

- OVM+1 + a 1vM + ... + aqvM+1-q -

By construction, the Wk contain distinct vt' s; i .e ., no two Wk's contain any of

the same vt' s. And, of course, no two Wk's contain any of the same et' s .

Moreover, the time separation between an t in Wk and a vt+g in Wks is at least

L + 1. Hence, while each Wk itself is a sum of uncorrelated but dependent

x'te t products, the sequence {Wk) k - 1, 2, ... , K is a sequence of

independent random variables; in fact, for a given value of T, an i .i.d . sequence,

since the Wk are identically constructed across k.

6) We now consider the doubly subscripted sequence of random variables

defined by

Zn - Wk/IT, k - 1, 2, ... , K(T), T - 1, 2, ...

_ D
so thatV/T T~1x tet + , . Note further that

t k

i) ZTk and ZTs are independent if k # s,

ii) E(Zk) - 0,

and

iii) oTk - Var(ZTk)

- Var(ZTl)

M-r
- Var( x ~cem/HT)

m-m1

M-'r
- T f Var(xiem) (R4, R.5)

in-l
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M-r
_ I T 'G 2 Var(x')

rn-i

-(M-r)cr 2 62 A /T.

(R.6)

It follows that

K22X am - K(M-r~i 2 82 A /T .
k-i q

In view of the definitions of K, M, and r, we have

urn K(M-r)/T - urn KM/T - uin rK/T
T+ .T...T-0o

= urn KM/T =- urn
Ts .T+o.

(1-R/T) - 1

thus

k
urn X
T-'o k=i

a =k - 2A

We conclude that {Z}1 satisfies the first three conditions of the Liapunov

Central Limit Theorem.

7) To complete our proof, we must examine

K

-KE(IZTi 
j3)

M-r
-KE(G Xx'c/F

rnM= m
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M-r3

where HT = max E(IxIhxxc~cmcn I) . In view of the definition of xj, we

have

HT =max EC I(al(stVhris~j-tCL~m~n)
1 it-i1

r St
(A S5)

c q3 aH

where a - max jc~j. Thus

K

XY1Tk

-aH[T/MJ (H/IT) 3 q3

- H(T)M2T3e/T3 / 2

< aH(T)T2I'T 3 O/T3/ 2

- QT2 I+ 3 0i/2.

For e < u

condition

tha t

< i/iO, 2u + 30 - i/2 < 0, so that IXYmk+ Oss T +a*. Hence the fourth

of the Liapunov Central Limit Theorem is satisfied and we conclude

K D
Z+ DN(O, cv2 62 A)

k-i
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and since

T D K
/YT~ 1 xtet+ ZTk,

t-1 k-1

it follows, finally, that

/T T~ I xtet + N(O, a26 2 A).

V. Econometric Applications

The central limit theorem of the preceding section is directly applicable

to a number of specific models that are commonly encountered in econometrics.

This section is devoted to a discussion of the following special cases: 1) the

regressor xt is generated by an autoregressive process, 2) xt is generated by a

finite moving average process, 3) xt is an i.i.d. sequence, 4) xt is a lagged

dependent variable, 5) xt is an endogenous variable in a Wold recursive system,

6) xt is an exogenous variable to be used as an instrument in a simultaneous

equations model.

In each of the cases considered below the estimator to be examined is of

the form

/'T(B-).D /TT'Xxet(8-S)-Dr T T tt *

The asymptotic normality of /T (B - B) is obtained by applying the central

limit theorem to /T~ fr xtt after observing that DT converges in probability

to a finite non-zero constant. In the first three cases that are considered,

DT~ is given by

T-T 1 x2
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With xt defined by (A.2) and (A.4),7 it is not difficult to verify that

plim xT~"1 12=6 2 A

provided vt has a finite fourth moment .S This means that the sample second

moment is a consistent estimator of the variance of xt -- an assumption commonly

made in the econometric literature. If {xt} is an i.i.d . sequence as in case 3,

second moment consistency follows immediately from the weak law of large numbers.

If (xt} is a correlated sequence, second moment consistency is not so obvious.

However, it is true that the sample variance is a consistent estimator of the

population variance if a finite fourth moment is assumed.

1) Autoregressive xt. In this case the model is written as

yt - xt +t

where

i) xt - pxt-1 + vt, IP 1

ii) A.1, A.2, A.3, and A.5 are satisfied.2 '

From i) it follows that the moving average representation of xt is

x t GCpvt-j

j-0

so that a - pi in (A.4). Since IpI(1, the aj are square-summable and

A a - 1/(1 - p2 ). Thus the assumptions of the theorem are satisfied

and we conclude that

D

,{ T~1 [ xtt+ N(O, 0262A)

and, since

plim DT - 62/( - p2)
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we have

, D

S( - B) + N[0, (1 - p2)o2/b2),

We merely note that a similar result holds if xt is generated by a stable auto-

regressive process of any finite order. The moving-average representation as

well as the expression for the variance of xt (62A) are more complicated but

no further difficulties are involved in the consideration of higher order auto-

regressive processes.

2) Finite Moving Average xt * With a finite moving average regressor the

model is written as

yt * 8Xt + Et

where

i) xt - ajvt-j
j-0

ii) A.1, A.2, A.3, and A.5 are satisfied.

Since xt is already in moving average form, the central limit theorem applies .0-

-1 D 2 2 q 2
Hence r T Ixtct + N(0, a262A) where A - a . In addition,

plim DT . 62 A so that ( ( + N[ , a2/(6A)] .

3) I.i.d. xt . This is a special case of moving average xt where q - 0

D
and a0- 1 Hence we conclude immediately that IT (a - S) + N(0, a2/62) .

4) xt * yt-1i* In the lagged dependent variable case, the model is

yt * 8xt + et181<1

with



-20-

i) xt * t-1 t- t 8ivt-j
j-1 j-0

ii) vt - et-1l~ i .i.d . (0, a2),.

It is clear from the definition of vt that et and vt- j are independent for all

j > 0 and j < -1 . Lider the restriction that 11<1, it follows that

Var xt a2/(1 .8 2) and this case is thus equivalent to case 1 with L - 1

Hence we conclude that

- D
r (8 - 8) + N[0, (1 - 82)]

Note that the model y t * 8Xt + et with xt - Y t-2 can be handled in exactly

the same fashion and would correspond to the particular case L - 2.

5) Wold Recursive System. Suppose that xt is an endogenous variable in

the recursive system

Xt - YZt + at

Yt sBXt + Et

where

)zt ~i1d 0 z

ii) n t~ i .d . (0, a2) and inde pendent of z t- for all j

iii) at~ i.i.d . (0, a2)

iv) t is independent of and for all j > 0 and j < -L.

It follows that vt - yzt + atis i.i.d . (0, c2) where a- Yz2+ a

and e t is independent of vt-.j for all j >0 . This case is therefore equivalent

to Case 3 and we conclude that
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T2- ) + N(O, / 2 ),

We note in passing that if assumption i) is relaxed to allow the exogenous

variable zt to be generated by either an autoregressive or a moving average

process, xt is no longer of the form postulated in (A.4). Pbr example, suppose

zt is generated by

Zt - pzt-1 +Ct

wheret~ i.i.d. (0, Q2) and e and(t are independent for all

j > 0 and j < -L. Then xt becomes

xt I t + I J p=0 t-j-0

which is not directly of the form Xacj vt. j. It would not be difficult,

however, to modify our theorem to accomodate such a case.

6) Simultaneous Equations Model. Consider a single equation

yt- Syg + et

embedded in a simultaneous system where yf is also an endogenous variable. If

xt is an exogenous variable, an instrumental variable estimator of 0 is

S- + (Xxy) ~ ttt

and

/T (8 - B) - DT /T T~1 { xtet

where

D- T xt*.DT -T 1 X t
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If Et ~ i.i4d. (0, a2) and xt is a) i.i.d., b) autoregressive, or c) moving

average, the conditions of the central limit theorem will be satisfied. Therefore

D2
/i T~1 { xtet + N[0, 2 Var(xt)*

Provided that DT converges in probability to a finite positive constant, say Q, we

conclude that

-D

T( - ) + N[0, 02 Var(xt)/Q 2 ]

VI. Extensions and Conclusions

The central limit theorem of Section III is readily applied to establish

asymptotic normality of the Aitken estimator corresponding to a regression

equation with an autoregressive error term. We present the result for the case of

first-order autoregression; the generalization to any finite order stable auto-

regressive process is immediately apparent. Suppose that

y;- 8x4+ ut

where

i) Ut - put-1 + et IpI<1

ii) A.1, A.2, and A.3 are satisfiec4 /

iii) the stochastic sequence {xt} is defined by xt - avt-j

j-0

where the a (not all zero) are scalar constants and absolutely

summa ble, and {( t} and {vt} satisfy (A .5) .

Let

yt * 7t -97-

Xt - X - x-i
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so that the original equation may be transformed to yield:

Yt " SXt +Ct*

Now observe that

Xt - X a t- j -P p -1Vt-j
j-o i-1

- X ajvt-j
j-o

where

a0 " aO

aj- a- pa 1, for j > 1.

Further,

a2, forj-O

a2+ p 2 a 2 - 2pa. 1 ac, for j > 1

so that

a2= g2 + p2  a 2-2p
j-0 j-0 j=1 j-1

By assumption, the first two sums on the righthand side of the preceding equation

are finite. With respect to the third sum, it follows from Schwarz' s Inequality

that

j-1 j j



-24-

so that absolute and hence square-summability of the al implies finiteness of

Ia~ a. Thus, the aj are square-summable. It follows that the

transformed equation

Yt - 8Xt + Ct

satisfies all of the conditions for the central limit theorem of Section III

to be applied and

A D
T ( - 8) - 1I/T ~ xtet + N[0, 2/(62 A)]

T~1jx2

where

E el=(2, E v 62 ,and a -A.

But when expressed in terms of the original variables,

T -S)T-T(x- - px 1)(utC - put-1)
T -1(x - pxt..) 2

so that 8 is the Aitken estimator of 8 .1

Up to now we have restricted attention to the case of a single explanatory

variable. Our results, however, can be extended to the multiple regression model

without difficulty. We first state the multivariate analogue of the central

limit theorem of Section III and then show how the result would be used in

practice.

The assumptions that underlie the multivariate central limit theorem are

as follows.

A' .1) et i.i4d. co, o2),

A' .2) Vt i i d.- (0, A) where Vt is a (P x 1) vector.

A' .3) et is independent of (each element of) Vt-.j for j >0 and j < -L.
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A' .4) The random vector X' is defined as

X - Y Vi-j D( aj)
J-0

where D(ag) denotes a diagonal matrix with elements of the vector aj' -

(aij a2j ... pj) on the diagonal. The sequence of vectors (aj} is

assumed to satisfy the condition

aajcij-A,
j-o

where A is a non-null matrix of finite constants.

A' .5) The stochastic sequences {st} and {vjt} satisfy

E(Ivjrvjsvjtctmcnl) < H < m, where vjt is the jth element of Vt.

It is readily apparent that the assumptions are generalizations of those in

Section III and guarantee that each element of the vector Xt satisfies the con-

ditions which were previously postulated for the scalar xt.

Theorem. Assumptions A' .1-A' .5 imply that as T + cm, /T T~ ) X'te

converges in distribution to the P-variate normal with mean vector 0 and covariance

matrix a2 (A*A), where A*A denotes the element by element product of A and

A (each of which is P x P).

A proof of this theorem is obtained by going through the steps of Section IV

for the vector case. Rather than do this here, we simply show how the covariance

matrix of /f T 1  X'tE is obtained . Since E(X'et) - 0 it follows that

the covariance matrix (denoted in general by 0) of Xtet is

From the definition of X', the covariance matrix of Xt is
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a0

X - i: E {D(aj) Vt..j vt-j D(aj))
t j-0

imo
D(aj) A D(aj).

*Further, it can be shown that

D(ag) A D(a)-
jm0

[air air], is R - 1,2, 0""'p

- A*A

where [aib] - A as defined in

used to denote the element by

(A' .4) and, as a notational matter, A*A is

element product of A and A. We conclude that

QXtE t

Further, since successive elements of the sum I XtEt are uncorrelated,
t

Q (/T T, X'tC ) - d2(o*A) .

Thus the assumption in (A' .4) guarantees that /T T X et has a finite

covariance matrix.

As an illustration of the use of this theorem in practice, consider the

multiple regression model

yt X't +et t 19 29 """, T)

where S is now a (P x 1) vector. The stabilized least squares estimator is

given by

n (0 -(T XtXt)- i ' vt)t.

Provided that i) XI and et satisfy (A'.1) - (A'.5), and ii) Xt t
T
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converges in probability to A*A, and iii) A*A is nonsingular, it follows that

- D
/T (B - B) + N[O, a 2 (A*A)'].

Clearly, the elements of Xt can be any mixture of autoregressive, moving average,

or lagged dependent variables which satisfy the assumptions (A' .2) - (A' .5).

As a final illustration we re-cast the preceding example in the matrix

notation most used in the econometric literature. The matrix A*A is, of course,

the population covariance matrix associated with the vector of regressors Xi.

The form A*A emphasizes the functional dependence of Xj on the sequence

{Vt.jl . Ignore this dependence and denote the matrix A*A by Mx. Write the

multiple regression model in matrix form as

Y-X +e

where Y is (T x 1), X is (T x P), B is (P x 1), and e is (T x 1). Assume

Plim (T~1 X'X) - M, and KA non-singular.

Then if the rows of the matrix X satisfy the assumptions of the central limit

theorem, it follows that

/T (0 - B) + N(0, 2 g1).

The extension of the multiple regression result to allow for Aitken estimation

of the vector B when et is a stable autoregressive process is entirely ana-

logous to the extension already presented for the simple regression case.

In effect, this paper shows that under fairly general conditions, it is

valid to assume asymptotic normality of the least squares (or Aitken) estimator

in a multivariate, stochastic regressor, linear model - just as most of us have

done all along.
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FOOTNOTES

.1/ In the final section of the paper we extend our basic result to the case

of a vector of regressors and also relax the assumption of an i.id. error

structure. For expositional purposes, however, the bulk of the paper focuses

on the simple regression model with i.i.d. errors.

See Grenander and Rosenblatt (1957, pp. 180-1) for several examples of

uncorrelated random variables whose stabilized means are not asymptotically

Normal.

In particular, it follows from Liapunov's inequality oT 2 
< Ttand

assumption iv) that

2<M T / axY ttT+0asT+ e.
t t

This verifies that condition a) of the Lemma is satisfied . Conditions

b) and c) of the Lemma are also satisfied because, as T + e,

|ITtI X cTts2/ 2 + X YTts 0282/2

and

e 8Tt- ~- Tts5 /2 + X ATtTTts3/6 + - 0282/2.

At Strictly speaking, q must be an integer and q - T0 must be thought of as

defining the largest integer less than or equal to T6. Fbr any choice of

e c(O, 1), this causes no difficulty as long as T exceeds some finite value

T(8) . Since we shall be letting T increase without limit, we choose to let

the proof proceed a bit more clearly using q - T0 .

5/ This notation is used to indicate which of the previous results are used

to obtain the current result.

6/ Again, M - T should be thought of as defining the greatest integer less

than or equal to Tu.



-29-

2! The assumption that xt is generated by A.4 means that there is an infinite

amount of pre-sample history. There are ways to get around this assumption

by conditioning on initial values or by moving the origin of the sample as

T increases. Such complications hardly seem worthwhile since most econometric

applications would not likely involve quantitatively large a j for large

values of J.

It is immediately apparent from (R.6) that E(T~1  x2) - 62 A. A

sufficient condition for T~ L x to converge in probability to 62A

is that Lim Var(T~ 1 x2) - 0 or equivalently, for the case at hand, that

Lrn E[(T~" J 2- 64 A2 . If (T 1  x) 2 is written in terms of the
T+o.

generating process xt - )ajvt..j, an examination of the expectation of the

resulting expression indicates that the limiting variance of T-1  xt 2 is

zero if vt has a finite fourth moment. A proof of this assertion is given

by Fuller (1976), pp. 239-240.

92 If E and vs are independent for all t and s, assumption A.5 will be

satisfied if both e.t and vs have a finite third absolute moment.

10/ In the proof given in Section IV, q was represented as q = TO9 . The

purpose of this was to render the term /T T x" negligible as T + ca. With

xt defined as a finite moving average to begin with, there is no x'

term; i.e ., xt xt and the first step of the proof can be eliminated .

11/ Assumption A.5 will be satisfied in this case if at has a finite sixth

absolute moment .

-Assumptions A .1 and A .3 refer to {c t}, not {uti*

32/ Obviously, there is no need to be concerned with the so-called "first-

observation problem" in this asymptotic context .
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