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Estimating the Dispersion of Tastes and
Willingnes's to Pay

by

E. Philip Howrey and Hal R. Varian

In the standard approach to demand estimation the

observed demand behavior is assumed to derive from

maximization of a representative consumer's utility function

subject to a budget constraint. The assumption of a

representative consumer is adopted not for its inherent

realism but for its analytical convenience; and in many

cases it seems to work well as a tentative hypothesis.

However in some situations we may well desire a more

general model that allows for differences in tastes across

households. The most general alternative specification

would be a model with all consumers having arbitrarily

different utility functions. However, such a general model

is usually impractical to specify and esimate.

A reasonable intermediate case is one where tastes are

allowed to vary across the population according to some

parametrically specified distribution. In this case we may

well be able to estimate the parameters of the frequency

distribution that reflects the variation in tastes across

the population.

A circumsrance where the estimation of the distribution

of tasres is of particular interest is when we are

interested in evaluating the distributional impact of some

proposed policy change. In many situations we would like to
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know not only the average "willingness to pay" for a policy

change, but also the distribution of the willingness to pay

across the population.

King [1982) has described how one might go about

estimating the variation in willingness to pay across the

population when this variation depends on differences in

observed demographic and economic variables. However, there

will typically be further differences in willingness to pay

that are not directly attributable to observed demographic

differences in households. We interpret these differences

as differences in tastes, although other interpretations may

be possible.

Burtless and Hausman [1978) have estimated a model

incorporating variation in tastes in the context of labor

supply. They specified that the frequency distribution of

an income elasticity was truncated normal and estimated the

parameters of this distribution by an iterative maximum

likelihood technique. They did not explicitly calculate the

welfare distribution implied by their estimated parameter

distribution but were well aware that this would be

possible. Below we show that much simpler estimation

techniques can be used when the distribution of tastes can

be assumed to be normal, rather than truncated normal, and

we use the parameters derived by our estimation procedure to

calculate the distribution of Millingness to pay.

The remainder of the paper proceeds as follows. F'irst we

examine the concept of willingness to pay and show how this
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concept can be explicitly calculated as a function of the

unknown parameters of the utility function in the one

consumer case. We then postulate a model where the

parameters of the utility function vary across the

population.according to some frequency distribution. We can

then derive the implied demand equations and estimate the

unknown parameters of the distribution of tastes using a

variation of the standard error components model. The

estimated parameters can then be used to calculate the

distribution across the population of the willingness to pay

for any particular policy change. Finally we illustrate

these methods using some data involving time-of-day pricing

of electricity.

The Compensation Function

What do we mean by the willingness to pay? In this

section we attempt to give a meaningful empirical content to

this concept. Further discussion can be found in King

[1981] and Varian [1979], [1983].

We begin with the indirect utility function for some

scecific individual which we denote by v(p,y). The indirect

u:lity function measures the maximum utility the consumer

can attain given prices p and income y. Associated with

this indirect utility function is its inverse, the

expenditure function? denoted by e(p,u). The expenditure

function measures the minimum expenditure necessary to

achieve a particular utility level u.
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Suppose now that we are comparing two possible

configurations of prices and income which we denote by (p,y)

and (p',y'). We can ask how much money the consumer would

need at prices p to be as well off as he would be in the

situation described by (p',y'). We denote this number by

y(p;p',y'). From the definition of the indirect utility

function and the expenditure function, we have:

y.i(p; p' ,y') e (p,v (p',y')

Following Hurwicz and Uzawa [1971) we refer to the

function y(p;p',y') as the "income compensation function" or

sometimes just as the "compensation function". King [1981)

refers to the same concept as the "equivalent income

function."

A reasonable measure of the willingness to pay to avoid

a movement from the situation (p,y) to the situation (p',y')

is given by:

W = u(p;p,y) - y(p;p',y') = y - P(p;p',y')

By construction, a consumer who has income y-W at prices p

can reach the same level of utility as he could with income

y' facing prices p'. Hence this seems like a sensible way

to measure the welfare imDact of some policy change. Of

course, W as we have defined it above, is simply the

negative of Hick's notion of the "equivalent variation"

-- it is how much income would have to change at prices p so

as to make the welfare situation of the consumer at prices p

eauivalent to that obtained at (p',y').

The compensation function can also be used in ratio
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form to define various measures of the "change in the cost

of living". Consider for example the expression:

S= y(p;p',y')/y1(p;p,y) = y(p;p')/y

The price index T measures how much income one would need at

prices p to be as well off as one would be at (p',y'),

expressed as a fraction of actual income at prices p.

It is worthwhile to note that y4(p;p',y') behaves exactly

like an expenditure function with respect to variations in

p, holding (p',y') fixed. It also behaves like an indirect

utility function with respect to (p',y') holding p fixed.

This can easily be seen from the definition: for fixed p,

e(p,u) is an increasing function of u -- if you want to get

more utility at fixed prices you have to spend more money.

Hence e(p,v(p',y')) is simply a monotonic transformation of

tie indirect utility function v(p',y') and is therefore

itself an indirect utility function.

As an example of the above ideas, suppose that the

indirect utility function is given by:

v(p,y) = G(p) + y-b/(1-b) [1.1)

where G(p) is some negative monotonic, quasiconvex function

of prices. Such a utility function is of special interest

because it generates demand functions which exhibit constant

income elasticity. By Roy's law the demand for good j is

given by:

ln x.(p,y) = in(-3G(p)/2p ) +~ b ln y [1.21

If b = 1 (the case of homothetic demand) then the

indirect utility function in [1.1) takes the form
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v(p,y) = G(p) + In y

so that the demand functions have the form:

In x.(p,y) = ln(-3G(p)/ap.) + ln y.

The expenditure function for an indirect utility

function of. form [1.1) can be found by solving for income as

a function of utility:

e(p,u) = [(1-b)(u - G(p))]1/(1-b)

Substituting v(p',y') = u we have the income compensation

function:

V(p;p',y') = [(1-b)(G(p') - G(p)) + y'1-b]1/(1-b)[1. 3 ]

In the homothetic case, similar calculations show that:

y(p;p',y') = exp[G(p')-G(p)]y'

Thus parametric specification and estimation of the

function G(p) is sufficient to identify.and calculate the

compensation function y4pIp',y'). For a specific example,

which we will refer to later, consider the Cobb-Douglas

specification in which G(p) = I>jln p. Then:

lny(p;p'ry') = ln y + I..(in p. - in pj')

or:

y(p;p',y'7) = y 1i(p/p.')Sj
j J J

Of course when estimating a system of equations it is

essential to verify (or impose) the relevant cross-equation

restrictions involving the appropriate Slutsky conditions.

The concept of willingness to pay only makes sense if the

demand behavior can be taken to derive from utility

maximization in the first place.
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2. Variations in Tastes

We turn now to the specification of taste

variation. Suppose that household i has an indirect utility

function v(p,y,6,s) where 6 is a vector of parameters

specif-ic to the household, and c is a non-household specific

error term. We suppose that 6 is distributed across

households according to the frequency function h(6,L) where

A is a vector of unobserved parameters, and that e has the

usual properties of an error term.

The demand function for the good j by the household

with characteristics 6 and error term c is given by:

x. = - v(p,y,'6,)/p. / v(p,y,6,s)/;y
JJ

Given observations on (p,xy) for a number of households, it

will typically be possible to estimate the parameters in A

and thereby construct an estimate of the variation in tastes

across the population.

Suppose for example that we observe several choices made

by household i over time and that the indirect utility

function for household i takes the Cobb-Douglas form:

v(p,y,65, i) = ln yit + ( + 6.. + sijt)ln pijt

In this case, the share eauations for household i for good j

at time t take the form:

iJt iJt

The random variable . is specific to household i and

remains fixed over time. The random~ variable e. is an

additive disturbance term that varies over bothn households

and time. The variation of 6.. over households is what we
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refer to as variation in tastes. The share equations thus

form a system of regression equations with an additive

components disturbance term.

3. Estimation of Systems of Equations with Error Components

We now consider how to estimate the parameters of a

system of equations with error components using panel data.

The general form that we consider derives from the

expenditure share equations shown above; namely,

yij = Xijt j +uijt

where yi jt is the observed value of the dependent variable

in equation j at time t for household i, xijt is a vector of

k. explanatory variables, and ' is a vector of k.
J ~JJ

regression coefficients. (We have changed our notation a bit

to conform with econometric practice.) The disturbance term

u..t is assumed to be of the form

Uijt 0 Eij ijt

where 6.. is that part of the disturbance term specific to

equation j of household i.

The T time-series observations for equation j of

household i can be written in matrix form as

where y.is a column vector with elements (7.

t=1,2,...,T), x.. is a T x k. matrix with x. in row t,

and uj is a column vector wirth elements (u. .. ;

t=1,2,...,T). The vector u.. can similarly be written as
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7j. 
J eT :i

where eT is a column vector of ones and " is a column

vector with elements (Ei;t t=1,2,...,T). The mT

observations for individual i can now be written as

y. = z. + U.

where

Y. =
1

Yi 1.

yi2.

yim.

7mU.
1

U1.

U1 2 .

ui.

and

xi. 0 0

00 x2
Z" =1

0 0 "11 x.:n m

The disturbance vector can

U0
U"

be expressed as

1i2 eT

iiG&

+

~i 1

Li2

0 i1 a T £1

where G. i CT denotes the Rroneckper product of the vectors
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6. and eT.

Linear restrictions on the vector of regression

coefficients,

RS = r,

are easily handled by transforming the variables. If R is a

g x k matrix of rank g, it is possible to express g of the

elements of 6 in terms of the remaining k - g elements.

Thus, by reordering the variables in xijt if necessary, we

can partition 6 in such a way that

R1* + R2 ** = r

were R2 is a nonsingular g x g matrix. Solving for

yields

S =R r-R2 R

so that

-R 2 RRj 2

=R*Q* -- r'

Substituting this expression into the regression model

y ields

Yi = Z. + U.
1. 1 1.

where
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Y. = Y. Z.r
1 1 1

and

z.= Z.R*.
1 1

Thus homogeneity and symmetry restrictions are easily

handled for linear systems of demand equations.

The standard assumptions about the error components;

namely,

E(6. .) = 0,
1J

E(6. .6 ) =- ,
1] ik -Ak~

E(-. -) = 0,
1Jt

S t = s

jt iks 0t s,

and

E(6 -ikt ) = 0,

imply that

E(U ) = 0

and

E(U.U.) = p = AIT JT

where IT is a T x T identity matrix and Jy = eTeT is a T x T

matrix with each element equal to one. These assumptions

allow for correlation among the individual specific effects

6 . as well as contemporaneous correlation ('f thie

disturbances a..t across equations. The assumption that the

error components are normally distributed and independent
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across individuals completes the specification of the model.

It is shown in the Appendix that maximum likelihood

estimates of the parameters 6 (or ) A = (ajk ' and =

( 2jk)can be obtained by iterating the usual generalized

least squares estimation procedure until convergence is

achieved. In addition the structure of the covariance

matrix T can be used to simplify estimation of the elements

in A and 2. A relatively simple expression for T_-1 which is

needed to calculate the generalized least squares estimates

of S is also given in the Appendix.

4. Empirical Results

We now turn to an investigation of the demand for

electricity by time-of-day. We consider a two-stage

budgeting process of the form:

= qp1 ,p 2 ' 3 Ie)

e = e(4, )2'

where

q= demand for electricity during period i (i=1,2,3),

pi= price of electricity during period i,

e = expenditure on electricity,

= price index of electricity,

.2 = price index of all other goods, and

y = household income.

Our empirical results are based on data collected in

1976 by the Arizona Public Service Company. A random sample

of 80 households in the Phoenix and Yumna service areas were



13

assigned at random to the 16 time-of-day rates shown in

Table 1. Electricity usage of these households was recorded

for a six-month interval. The following results are based

on the records of 60 of these households for the last five

months of the experiment.-

The subutility function for electricity consumption on

which our empirical results are based is

v(p,e) = ln e - I. . ln p.
J J J

This leads to the expenditure share equations

wijt ijt

= - + 6.. + E-j IJ+1jt

for individual i at time t. Since these expenditure shares

sum to one, it follows that 6l + 32 + 3 1, and that

v(p,e) = ln e - Z. 6 In (p/pk'

so that only two of the equations need to be estimated. The

maximu likelihood esrimates of the parameters are shown in

Table 2.

These parameter estimates exhibit two interesting

features. First, the variation in the across households

is substantial. The estimated standard deviation of 8i,

:or example, is /.0070 = 0.084 which is more than twice the

estimated standard deviation of eilt (/.0016 = .04).

Second, the estimated covariance between 6and S i2 i

negative. Thus households tha: spend relatively more for

'A detailed description of the experimental design is
given in Hill et al. (1979). Incomplete data prevented the
use of all 80 households in our analysis.
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Table 1

ARIZONA TOD EXPERIMENTAL RATE SCHEDULES
(4/kWh)

Periods

Rate Group Shoulder
Peak 9 am - 2 pm Base

2 pm - 5 pm 5 pm - 10 pm 10pm -9garm

1 16 5 3
2 15 4 2
3 15 7 4
4 14 4 2
5 14 6 4
6 13 3 3
7 13 4 2
8 13 7 3
9 12 5 1

10 12 6 3
11 11 4 2
12 11 7 4
13 10 4 1
14 10 6 3
15 9 5 2
16 8 4 1

Source: Taylor (1979).
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Table 2

Maximum Likelihood Estimates of
the Expenditure Share Equations

and Error Variances

Coefficient Estimate

A2 2

A 1 2

G22

212

.4124

.4481

.0070

.0049

-. 0048

.0016

'0009

-. 0007
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electricity during one of these periods would generally

spend less during the other period.

We close this section with the remark that we are well

aware of the restrictive nature of the Cobb-Douglas

specification of the subutility function. It would be

preferable to use a more flexible functional form such as

the translog. Indeed, we initially examined the translog

form but found that the quasi-convexity condition required

of indirect utility functions was not satisfied by the

parameter estimates at any of the rates shown in Table 1.

Rather than estimate the parameters subject to the

restriction of quasiconcavity, which is a relatively

difficult procedure in our problem, we decided to impose the

Cobb-Douglas form which guarantees the.appropriate curvature

in order to illustrate the method we have derived. In

future work we intend to examine methods of estimation in

which we can impose curvature restrictions on the estimated

indirect utility function.

5. Estimating the Distribution of Willingness to Pay

The Arizona time of day pricing experiments are an

interesting example for our purposes since they were

specifically conducted in order to determine the feasibility

of time-of-day pricing of electricity. The feasibility of

time of day pricing depends, at least in part, on the

willingness of households to accept those rates. Any

initial resistance to time of day rates would presumably
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evaporate if households were to find that they were better

off with TOD rates. Furthermore, the optimal design of

time-of-day prices depends on consumers' utility functions

for electricity consumption. Thus the estimation of the

utility impact of TOD pricing seems of considerable

interest.

Hence we consider now how to measure the expenditure

necessary at some time varying prices p to achieve the same

level of subutility for electricity expenditure achieved at

a flat rate schedule p and initial expenditure e; that is,

we wish to calculate y(p;p,5).

Using the expression for the Cobb-Douglas compensation

function derived in Section 1:

y (p;p,e) =en i(p /p ) j

or:

y~p~b5) = (p,p)e

where v(p,p) = E (p./p )Vj.

The fraction:

= y(p,)/p = vp,)

measures the relative change in the compensation function

when movinc from flat rates to time o day rates. It

measures how much money one would need to have a: the TOD

rate schedule to have the same subutility one had at the

flat rate schedule, expressed as a fraction of the

expenditure at the flat rate schedule.

Since electricity consumption is only part of the-

entire consumption bundle, we cannot interpret ix as a
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measure of the change in overall welfare. However, 7 can be

interpreted as a kind of price index for electricity

consumption. We will briefly describe this interpretation

below.

Recall the two stage budgeting process mentioned

earlier. The utility maximization problem involved can be

written as:

maxxq u(x,w(q))

s.t. rx + pg=y

where (r,x) are the vectors of prices and quantities of

nonelectricity consumption, and (p,q) are the analogous

vectors for electricity consumption. The subutility

function for electricity consumption, w(q), is assumed to be

homothetic. It follows that the compensation function will

be of the form y(p;p,) = u(pp)e.

Using the compensation function as an indirect

subutility function for electricity consumption, we can

rewrite the consumer's maximization problem as:

max -u(x, v(Pp-b)e)

s.t. rx- e = y

Letting Q = e be a "quantity index" for electricity

consumption, we can write this problem as:

maxQ u(x,Q)

s.t. rx Q/u(p,p) = y

Thus, 1/vu(p,5) serves as a price index for electricity

consumption. The ratio:
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T= v(p,p)/v(pp)

can be referred to as an index of the change in the cost of

electricity. If 7 is greater than 1 then the price of

electricity consumption has risen in the move from flat to

TOD rates,.and if it is less than 1, the price of

electricity has fallen. Note that this price index can be

given a welfare interpretation: if 7T is greater than 1, and

no other prices change, the consumer is definitely worse off

at time-of-day prices than at flat rate prices.

The above discussion is true for an arbitrary homothetic

subutility function. For the Cobb-Douglas case used in our

empirical study, Tr is given by the explicit formula:

I0 ) = / j

The value of 7 is shown in Table 3 for each of the 16

rate schedules of Table 1 and for 4 different flat rates: p

= 4, 6, 8, and 10. The values in this table are computed

for the average, or "representative" household in the

sample.

Prior to the experiment, households faced a declining

block rate schedule and paid an average of approximately 44

per kwh. It is clear from the entries in Table 3 that from

the point of view of households none of the TOD rate

schedules is superior to the 49 flat rare. Discounts of up

to 50% are required to make households indifferent between

the TOD rates and the 44 flat rate. As the flat rate

increases, several of the TOD schedules become quite

attractive, as we would expect. All of the TOD schedules
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Table 3

Estimate of the Change in the Cost of Electricity

Flat Rates
Rate PEQ

Schedule 4 6 8 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1.8806

1.5658

2.2163

1.5219

2.0104

1.3731

1.4761

2.0071

1.4329

1.8124

1.3778

1.9502

1.2026

1.6811

1.4018

1.0969

1.2537

1.0439

1.4776

1.0146

1.3403

0.9154

0.9840

1.3381

0.9552

1.2082

0.9185

1.3002

0.8017

1.1207

0.9345

0.7313

0.9403

0.7829

1.1082

0.7609

1.0052

0.6865

0.7380

1.00.36

0.7164

0.9062

0.6889

0.9751

0.6013

0.8405

0.7009

0.5484

0.7522

0.6263

0.8865

0.6088

0.8042

0.5492

0.5904

0.8029

0.5731

0.7249

0.5511

0.7801

0.4810

0.6724

0.5607

0.4388

7.52

6.26

8.87

6.09

8.04

5.49

5.90

8.03

5.73

7.25

5.51

7.80

4.81

6.72

5.61

4.39
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are superior to a 104 flat rate.

The last column in Table 3 gives the flat rate that is

equivalent to the corresponding TOD schedule in the sense

that the same expenditure on electricity gives the same

level of subutility with the TOD rates and the equivalent

flat rate. For example, the equivalent flat rate for rate

schedule 1 is 7.524 per kwh. Flat rates below 7.524/kwh are

preferable to TOD schedule 1 whereas for flat rates above

7.524/kwh, the TOD schedule is preferable.

The above figures are presented for the representative

household. Since our econometric results indicated

significant dispersion of tastes across households we also

examine the variation in willingness to pay for TOD rates

across households. In particular, the value of the

compensation function for household i Is given by:

y = (v(prp) + hi)eg.

where

h. = exp(Z. 6. In p.)
1. J IJJ

The variability of hi can be characterized in several ways.

One way is to note that since 6-.iis a Normal random

variable, h. is also Normally distributed, and we can easily

compute its variance. However, that number itself does not

have much intuitive content. A more interesting way to

characterize the variability of h. is to calculate the

probability that v(PP).+ h. 5 1. This is tne probability

that a household selected at random would benefit from a

switch from flat to TOD rates. The results of this
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calculation are shown in Table.4.

For rate schedule 1, for example, virtually none of the

households would benefit from a switch to TOD rates from a

4{ flat rate. If the flat rate were 84/kwh, 68% of the

households would benefit from a switch to the TOD

schedule. The corresponding entry in Table 3 indicates that

the representative household would benefit from this change.

Thus while the representative household would be better off

with the TOD rates, 32% of the households would lose in the

sense that in order to attain the same level of utility they

would have to pay more for electricity.

Another way to characterize the variability across

households is to obtain a value for the equivalent price

such that the probability is at least a that a household

selected at random would be betrer off with the TOD rate

than with the equivalent flat rate. This is the value of p

such that the probability that ln v(P,5) < 0 is a. The 90%

certainty equivalent flat rate is shown as PEQ* in Table 4.

For TOD schedule 1, the 90% certainty equivalent rate is

8.88{. This means that at least 90% of the households would

prefer TOD schedule 1 to any flat rate in excess of 8.884/

kwh.

6. Summary

We have shown how one can estimate the distribution of

willingness to pay across the population using panel

data. In our example, there seems to be a significant

dispersion of willingness to pay for time-of-day pricing of
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electricity. Such dispersion should be taken into account

in examining the welfare implications of policy choices.

Table 4

Probability of Benefit from a Switch
from Flat to TOD Rates

Flat Rate PEQ*
RaStcee

Schedule 4 6 8 10

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

.00

.00

.00

.00

.00

.00

.00

.00

.03

.00

.01

.00

.00

.00

.28

.04

.39

.00

.46

.00

.76

.54

.00

.59

.04

.74

.00

.89

.11

.72

.97

.68

.94

.16

.97

.48

1. 00

.98

.49

.96

.82

1.00

.63

.00

.97

1.00

00

.99

1.00

.88

1.00

.99

1.00

1 .0C

1. 00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

8.88

7.64

10.09

7.38

9.10

6.43

7.10

9.27

7.33

8.30

6.52

8.62

6.04

7.57

6.50

5.39
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Appendix

Maximum Likelihood Estimation of Seemingly
Unrelated Regressions with Error Components

In this appendix maximum likelihood estimates of the

parameters of a set of regression equations with additive

error components are obtained. This provides a

generalization of the single-equation results given by

Graybill [1961) for the model

Yit = + 6i + Cit'

The recent work by Avery [1977) and Baltagi [1980), building

on earlier results obtained by Wallace and Hussain [1969),

Amemiya [1971), Nerlove [1971), and Maddala [1971), deals

with systems of equations of the form

i it + 6K++ + it*

In the model considered here, the at'term is missing. The

essential feature of this simpler model is that for a given

value of , maximum likelihood estimates of the variances of

the error components can be calculated recursively. The

operational result is that maximum likelihood estimates can

be obtained by iterating the usual generalized least squares

estimation procedure with analysis of variance estimates of

tne covariance matrices of the error components.
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1. The Error Components Model

The model consists of m seemingly unrelated regression

equations for each of n individuals. Thus, at time t, we

have

it xit + uit 1,2, ... , n

jJ= 1,2, ... , m
t = 1,2, .. , T

where yijt is the observed value of the dependent variable

in equation j at time t for individual i, xiJt is a vector

of k. explanatory variables, and . is a vector of k
J J

regression coefficients. The disturbance term u. .tis

assumed to be of the form

13t il 1

where 6.. is that part of the disturbance term specific to

equat ion j of individual i.

The observations for equation j of individual i can be

written in matrix notation as

y.. = x-j +*u

where y. denotes the column vector with elements (y..t; t

= 1,2, ... , T), x. is the T x k. matrix with x. ., in row

tand u. s the column vector with elements (ug~t; t =

i,2, ... , T). The vector u:.can similarly be written as
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Ui=6b..eT 4+-Ei

where eT 'is a column vector of ones arnd c is the column

vector with elements (£1"]t; t=1,2, , T). The mnT

observations for individual i can now be written as

y. _ Z. +*i-u

where

Y. =
1

Yi 1.

yi 2 .

rim.

1

N

2

Q

N

u.1

U.

ui2.

Ui.

r

xi.

0

0 0

xi 2 .
Z. =

1

x.0 0

The disturbance vector can be expressed as
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U.
Z

eT

Si2eT

6imeT

+

5 i 1.

Sj 2

i.

-o7 cS.' +£e

where 1e denotes the Kronecker

arnd eT . The standard assumptions
components; namely,

product of the vectorsS

about the error

E(6,.,,) = 0,

t--S

k )s
0 t~s,

and

Eo1ij£1k)}=0,

:mll1/iy Vthat
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E(U.) = 0

and

E(U.U.) 1= eIT + 60JT

where IT is a TxT identity matrix and JT = eTeT is a TxT

matrix with each element equal to one. The assumption that

the error components are normally distributed and

independent across individuals completes the specification

of the model.

2. The Likelihood Equations

We now seek the equations that the parameter estimates

must satisfy if they are to maximize the likelihood

function. The log-likelihood function for y 't is

n
= E log f(Y-).

i=1

Since each Yi is a multivariate normal vector with meani =

Z. iand covariance matrix = AI - LaJ, it follows that

f(Y.) = (2ir) |T/1  ~ ex((.ZS' (Y.-Z.8)/2).

emitt ing the inessential constant ;erm and multiplying by

two, the (modified) log-likelihood for Yi is



29

= - log '-2)

and the corresponding log-likelihood for Y is

n *

. L*= I L
i=1

n
= - n log 1'| - Iz (Y -zip) 'T (Y -2p).

1=1

In principle, maximum likelihood estimates could be

obtained by maximizing the likelihood function directly

using numerical methods. However, it is possible in this

case to take advantage of the structure of the covariance

matrix '' to obtain the likelihood equations explicitly. An

iterative procedure can then be used to solve the likelihood

equations for the maximum likelihood estimates.

Setting the derivative cf L* wi:h respect to e equal to

zero, it follows that the likelihood equation for 6 is

n 1 -1n
Z= ( x 2.' Z.) ( Z Z.1 Y.);

i=1 i=1

that is, the maximum likelihood estimates 5 and ' must

satisfy this equation. Thus e is simply the generalized

least scuares estimnate of S based on the maximum likelihood

estimate T of T.

Inl order to obtain the likelihood equations for A and g~,
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the likelihood function is written as

n -1
L = - n log I'I - I UiT Ug

i=1

where U"J = Y -Zip is obviously a function of S but not of

either A or c1. The following results will be used to

rewrite the likelihood function in a more convenient form

and then obtain the maximum.

Proposition 1. The determinant of T = S 1 T + LeJT

is:-

IWI = T- 10 +I TLf

Proof. Since y may be factored according to

= (c?1 )}(1C + 21 ALJ),

it follows that

H = ZI III +£ L3j1
provided, of course, that £ is non-singular. Recall

that the determinant of a matrix is the product of

its characteristic roots which, in the case of AeB

are the products of the characteristic roots of A

and B (Theil [1971, 305]). The characteristic roots

of neI are the characteristic roots o1 w2 ' of E

2 each repeated T times so that
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= TT T

1- = 1 2 '''

EPT

The characteristic roots of I + S AeJ are equal to

one plus the characteristic roots of S~1LeJ. The

symmetric matrix J has unit rank and therefore only

one non-zero characteristic root which is equal to

T. The non-zero characteristic roots of £ AeJ are

therefore T times the characteristic roots X1 , 2'
-1

... , 1 of 2 A. Thus

-1
I + G 9J = 1111 + X.T)

= I + Th 1 /

j= + 1a,+ TL .

and the desired result follows.

Proposition 2. Provided : is nonsingular, the

inverse of '1- = neT + bel is
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1 = E2 1I - (tm 1  QJ.

Proof. Using the property that

(AeB)(CD) = ACaBD,

it is easy to verify that T{'1I =

Proposition 3. Let

T
-1 = lu"

= I.

and

£1 t U1ij.t 1]

so that

U.= --eT.

Then

Liu1 U. = )E + T6.(S +T) 16.

Proof . As a preliminary matter, notice that

Tso that for any matrix 
A with m columns
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(A eT ,c = 0

anid

(A 31J ~ = 0.

Now using the result of Proposition 2 for '

Ut ' 1 U.= U(e - Re3)U"

= ui (QQI )ui - ui(ReJ)Ui

whereQ = Q and R = (Q+Tii A2-. The first term

Ui (QQI )Ui can be expressed as

Ui (QQI )U: ( " +S, eT) (Q&i ) (". + . e

E" QQIE"+ c(Q~.oe
- 1 1 1 1 T

-

"£a 
r E0 

" )(Q aIT) + T 1

11 1

nf view of the o t hoc::a y-1, c f and

Similarly the second term becomes
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£U(3)Re+J .URd se=
1 1 11

+ T Re A + TzR

Combining these two results, we have

u! (Q&I)U. = s(Q eI)". + Tai(Q -TR)s..

Finally,

Q-TR =21 - T( +TL~) 1L2-

- (+TL) 1[( -) 1 - TGA '

which yields the desired result.

Proposition 4. if

f(A) =-N 1og 1A -trA B

t(Bwhere 
A = (a *) and B = (b. ) are positive definite

matrices of order p, f (A) assumes the maximum value
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-Nlog1N.1BI pN

when A =N- 1 B.

Proof. See Anderson (1958), Lemma 3.2.2 and Lemma

3.2.3.

Armed with these results, we see that L * can now be

written as

L=- n(T-1)logI~I - n logj 2+4TL j -(2 I )c.
i=1

n ^ 1A

=1

.4 f ollow's from P ropos ition 4 that the maximum likelihood
estimate of r, =r + TL is

- n
IL = Tn Zil

Thus the likelihood equation for LG is

L£=n iE. c T -

When~ i deermnedaccrdig t ths euator1 th

ilLkeyihooc fune ion s
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n ' , -1
= k - n(T-1)log| - E .(S~0I)}.

where k is a function of 65. and hence S but not a function

of 9. A direct calculation reveals that

n -1 -1
E CO(O~ I) Ei = tr (cE)

1=1

where the typical element of E is

n T
Ejk =iEt£iitsikt

i=1t=1

Hence the likelihood equation for 2 is

Q = n~1I(T- 1) -E.

3. Maximum Likelihood Estimates.

Collecting the results of the previous section, the

maximum likelihood estimates must satisfy three sets of

equations:

n n
S = ( Z.2T Z.) ( I 2.) 'Y.

i=1 i=1u1v

1-1 -1

1=1 2. .

S = n 1 (T-1) E.
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The usual generalized least squares estimator provides the

first step of an iterative process which, if it converges,

will produce maximum likelihood estimates of the parameters.

In particular, let $(1) be the least squares estimator of S.

Define U(1), 6.(1) and C.(1) corresponding to this value of

S. Initial estimates of 2(1) and A(1) can now be obtained

from the likelihood equations. This yields an initial

estimate T(1) of T which can be used to obtain $(2), the

generalized least squares estimate of S. This estimate can

then be used to define U(2), S"(2), and c1(2). Revised

estimates U (2), E(2), and $(2) would then be obtained.

Continuing in this way until convergence is achieved yields

estimates that satisfy the likelihood equations.
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