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. Introduction

In several recent investigations of the quality of survey data with validation studies, there are findings of

measurement errors on important labor market variables such as earnings and work-hours. From the Panel

Study of Income Dynamic Validation, Bound, Brown, Duncan, and Rogers (1989) have found measurement
errors in survey reports of earnings and work hours variables. The measurement errors of earnings are

negatively correlated with true earnings. The workers with low earnings tend to report higher earnings,

and the workers with high earnings tend to under-report their true earnings. Bound and Krueger (1991)
compared Current Population Survey data and administrative Social Security payroll tax records. They
found that the measurement errors in earning variables are also negatively correlated with true earnings. In

another validation study using different data sources (Rodgers and Herzog (1987)), earnings reporting errors
are negatively correlated with job tenure and positively correlated with schooling levels. These findings raise
concerns on the use of survey data for empirical estimation. It is well known that with measurement errors
in explanatory variables, least squares estimates are inconsistent. The measurement errors reported above
create more complicated situations. With the measurement errors in dependent variables reported in these
studies, the least squares estimates will also be inconsistent even if there are no measurement errors in the
explanatory variables. As an illustration, consider the linear regression model

y = X80 + e,

with the reported variables y and z for y and x, respectively. The least squares estimate of regressing y on
z will converge in probability to f*, where

/5* = [E(z'z)]'E(z'j)

and
A = [E(z'z)]~'{E(z'(9 - y)) - E(z'(z - x)f )}

by using the property E(z'e) = 0. In the classical error-in-variables model, the measurement error u = z - x
is assumed to be uncorrelated with z, i.e., E(x'u) = 0; and the measurement error v = 9 - y is assumed to
be uncorrelated with z. For these situations, A = -[E(z'z)]-'E(u'u)3 0 . For the simple regression model,
such a measurement error of r will bias downward the estimate of the coefficient of x (see Fuller, 1987), but
the measurement error of y does not bias this coefficient. With a measurement error u that is correlated

with x, the biases will be more complicated. The measurement error equation z = x+ u with u correlated

with r implies that E(z'(z - x)) = E(u'u) + E(a'u). The bias due to a measurement error in x is

a.,= -[E(z'z)]~ 1{E(u'u) + E(r'u)}#3.

If u is positively correlated with x, the downward bias will be more severe than the bias of the classical

error case. On the other hand, if u and x are negatively correlated, the magnitude of the bias might be

reduced, depending on the relative magnitudes of E(z'u) and E(u'u). With a measurement error of y, the
measurement error equation # = y -F- v implies that

y- y = E(vz,y) +rj,

where r is a disturbance with E(itz, y) = 0. It follows that E(z'(ji - P)) = E(z'E(vlz, y)). The bias on

/5o due to the rneasurement error of y will depend on the covariance of z and the conditional expectation
function E(vjz, y), which may be rather complicated. If E(vjz, y,) = ary +za 2 happens to be linear in y and
z, then the bias due to the measurernent error of p is

A, =[E(z'z)]~ {E(z'y)&1 + E(z'z)a2 }

1 ~k/o + &2-

If E(vIz, y) depends only on y, i.e., a2 = 0, then the estimate of #3e will be biased proportionally (Bound et

al. (1989)). If $2 # 0, the bias rnight also be subject to a horizontal shift.
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In summary, measurement error biases would be rather difficult to access accurately without validation
data information. One solution is to postulate distributional assumptions on the measurement error. For the
case when only the predictors are measured with error, the maximum likelihood estimation has been proposed
under normality assumption of the conditional distribution of the true covariate x given the surrogate variable
z; see Carroll et al. (1984), Armstrong (1985), Fuller (1987), Schaffer (1987), Burr (1988), etc. Under
functional assumptions of the first and second moments of z given z, small measurement error approximations
are proposed in Stefanski (1985), Stefanski and Carroll (1985), Whitmore (1988), Gleser (1989), Rosner et
al. (1989) and Carroll and Stefanski (1990), etc. Fuller (1987) also introduces the maximum likelihood
estimation and the method of moments estimation for the case when both y and z are measured with error
under normality assumptions.

In the presence of validation data, one might be able to correct biases and derive consistent estimates
from survey data. So far, in the econometric literature, there are few suggestions on how to use validation data
information to improve systematically estimates derived from survey data in either the linear or nonlinear
regression model except for Bound et al (1989) and Sepanski and Carroll (1991) Bound et al (1989) discussed
the use of validation data to correct the bias, A, in a linear regression model. Sepanski and Carroll (1991)
considered the nonlinear regression model with measurement errors in the explanatory variables only. For
the measurement errors-in-variables problem in nonlinear models in econometrics, one can only find a few
studies in the econometric literature (e.g., Hsiao (1989) and Hausrnan et al (1991)). Bias correction in a
general nonlinear regression model might be rather difficult. The article by Hausman et al (1991) considered
only a polynomial regression model.

In this article, we will propose consistent estimation methods for the error-in-variables linear and/or
nonlinear regression models with the presence of validation data information. Several approaches might be
pursued. One possible approach is to impose structural measurement error equations as auxiliary equations
and consider the estimation problem by some principle such as the method of maximum likelihood. This
approach may be subject to severe misspecification error problems, unless we know very well the economic
or psychological reasons for reporting errors. The second approach is to estimate the possible measurement
error equations by nonparametric methods. The approaches in Carroll and Wand (1991) and Sepanski and
Carroll (1991) are nonparametric or semiparametric. In this article, we consider a different approach which
provides consistent estimates which are robust with respect to various measurement error structures.

This article is organized as follows. Section 2 considers models with measurement errors in explanatory
variables. A procedure which utilizes validation data to implement survey data for estimation is introduced.
Consistency and asymptotic distribution issues of the estimator are analyzed. Section 3 considers models with
measurement errors in either the dependent variable or in both the independent and dependent variables.
Two different estimation methods are introduced. Asymptotic properties of the estimators are derived.
Section 4 suggests a procedure for testing the compatibility of validation data with survey data and possible
model misspecification. The possibility of pooling both data sources for efficient estimation is considered.
Some other efficiency issues are also briefly discussed. The differences of the estimators in Sections 2 and 3
and some bias correction procedures for the linear regression model are pointed out in Section 4. Section 5
provides a conclusion.
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2. Measurement Errors in Explanatory Variables

The general (nonlinear) regression model is

y = gzi) + E, (2.1)

where r is a row vector of explanatory variables of dimension k and /3 is a column vector of unknown
parameters of dimension I. In this section, we consider only the case that some or all of the explanatory
variables in x are measured with error. The dependent variable y is either accurately measured or measured
with error of the classical type, where the measurement error has zero mean and can be absorbed in the overall
disturbance c. The survey data are (y, zs), i = 1, .-- ,n, where z is a row vector of proxy or instrumental
variables of dimension ki for x, where k ;> k. The true values r;, i = 1, - - - , n, are not observable in the
survey data. However, a validation data set is valuable. The validation data contain sample observations of
x and z. Let (x,, ,j, z,,,j), j = 1, - - - , m, denote the observations of the validation data.

Let Y = (Yi ,""" -, y)' denote the n-dimensional vector of sample observations of y from the survey data.
Conformably, Z denotes the n x k1 matrix of z from the survey data, while X, denotes the m x k matrix of
x from the validation data, and Z, denotes the m x ki matrix of z from the validation data. Furthermore,
let g(X.,/,) = (g(zv,i,/3), --".-,g(z.,,m,J))' to simplify notation.

A possible estimation method for fl is

min(Y - Z(Z,'Zt,)~1Zjg(X,,13))'(Y - Z(ZZ,)-iZ'g(XU, /3)), (2.2)
pee

where e is a compact parameter space of 0. The intuition behind this estimation method is as follows.
For any possible value / of the true parameter vector #,, a statistical relation of g(z, /3) and z based on
projection can be identified with the validation data. This statistical relation provides a prediction rule
which predicts the unobserved value g(r,,/3) given the observed zi in the survey data. The estimate of /3 is
then derived by minimizing the sum of squared residuals of y; on the predicted value of g(zi, /3) given zi.
The error introduced by this prediction rule is asymptotically uncorrelated with z, which is. important for
the estimator of /o to be consistent.

Let

= Y- Z(Z',Z)-Z'g(X,,))'(Y - Z(Z'Z,) 1 Z'g(X,,#)).
n

The following proposition shows that the estimator from (2.2) is consistent. To be rigorous, the following
regularity conditions are assumed:

Assumption 1:
(1) The parameter space 9 is a compact subset of a Euclidean space of dimension 1. The true parameter

0. is in interior of 6.
(2) Conditional on x, E(ejx) = 0 and the conditional variance E(e2 |z) is finite.
(3) g(x, /5) is a measurable function of x for each /5 and is twice continuously differentiable in j3 for each x.

Assumption 2:
(1) The observations (yi, z=), i = 1, --- , n, of the survey data are i.i.d. with finite first and second moments.
(2) The observations ( z,,,j), j = 1,.-.-.- , rn, of the validation data are i.i.d. The first two moments of

(ze, z,) exist.
(3) (ze,, z,) and (x, z) are identically distributed.
(4) e is uncorrelated with z.
(5) E(z'z) is nonsingular.

Proposition 2.1: In addition to Assumptions 1 and 2, suppose that E(suppge \zg(x,/)|} _< oo, and
the identification condition that E(z[g(a,,) - g(x,/5)]) # 0 for all /5 # fl holds. Then /9 from (2.2) is a
consistent estimator of /5g.

Proof: By the law of large nurnber for i.i.d. random variables, n-'Y'Y .A E(yj2), n-1Z'Z -A E(z'z),
and n-1 Z'Y .& E(z'y,). Similarly, since (z,, zr,) has the same distribution as (az, z), rnm'Z,, A~ E(z'z), and
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m 'Zvg(X, /3) - E(z'g(x~Q/)), uniformly in Q3 E e, by a uniform law of large number (see, e.g., Amemiya
(1985)). It follows that Q~(,8) converges in probability uniformly on e to Q(#3), where

Q(/3) = E(y2 ) - E(g(x,/3)z) [E(z'z)f' E(z'y) - E(yz) [E(z'z)f' E(z'g(x,/3))

+ E(g(z, 3) z) [E(z'z) - E(z'g(z, /))
= [E(yz) - E(g(z, f)z)] [E(z'z)f<' [E(z'y) - E(z'g(z, /))] + c

= E[(g(z, 30 ) - g(x, 3))z] [E(z'z)f'- E[z'(g(x, f30 ) - g(x, fl))] + c+

and c - ~2 - E(yz) [E(z'z)f' E(z'y) is a constant. Q(/3) is minimized at /3 = /3,. The minimum is
unique under the identification condition. The consistency of p3 follows from the uniform convergence of
Qn(/3) to Q(/3), and the unique minimum of Q(/3) at Qg. Q.E.D.

The estimator /3 can also be shown to be asymptotically normally distributed. Its asymptotic distribution

will depend on both the sample sizes of the survey data and the validation data.

Proposition 2.2: In addition to the assumptions in Proposition 2.1, suppose that the uniform inte-
grability conditions E(suppEe Ix11~zI) : oo; E(supee II 0 A x11) :5 co, for aflj = 1,..." ",1, hold; and

E(:,;O.) has rank 1. Then

fl/2(/3/3) = { E (a9(aQ3o)x) [E(z'z)f' E (ai09 fo) 1-' E y [/o z E~z'z f'

{....L. > z (ii - z: [E(z'z)F' E(z'y)) (2.3)

i1

where a = inne (n/rn)" 2 , which is assumed to be finite.

Proof: The estimator Q3 satisfies the first order condition: = 0. By a Taylor series expansion or
the mean value theorem,

0 = (09t(xv/3o~ ) (ZV Z)'1Z' (Y - Zvy-v9X Q)

-_( ( ,Q )ZV Z~)-ZZ~) 1 Og(X1 , )}(A-a).

By the uniform law of large numbers,

'Z'I.(Y - ZZ )-~9X l .4 0;1m 1O9 (tI /o) Zv 4ErOg(X/3o) 1
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On the other hand,

1
Z'(Y- Z(Z,Zi Z,X

- ,Z' (Y - Z[E(z'z)]-'E(z'g(x,#30 )))

-() Z'Z 1Z'Z(ZgX,) - Z,'Z,,E z'z)]-E z'g~,e)-(.1)h/2 (v )v±z 1/- mu2 (Zg(X,f30) vv[( -9 Q )

As limn...oo (n/rn)"2 = A, the result follows. Q.E.D.

The asymptotic distribution of ni/2 (/3 - PO) consists of two components of disturbances. The first
disturbance can be rewritten as

p12 Z (~y - z; [E(z'z)]~ E(z'y))
:=1

z1/2 e ~ + ~rm Zz'"(g(xi, o) - z; [E(z'z)]' E(z'g(x,#3)))
i=1i1

which reflects the structural disturbance in the regression equation and the error in replacing g(x,#/3) by its

population prediction z [E(z'z)]' E(z'g(z, 3o )). As

y =g(z, po)+ E.

(2.4)
= z [E(z'z)]1 E(z'g(, #6))+ I(.,

E = e + g(x, /3) - z [E(z'z)]~1 E(z'g(z,#i3 )) is the overall error. The first component of disturbances in

n1/2(-0 _ #) represents the impact of the overall error of the modified equation (2.4) on the coefficient
estimate. The second component of disturbances captures the variations of the sample moments m-1 Z,'Z,
and m- 1 Z,g(X,,#), which are used to replace E(z'z) and E(z'g(z,#j3 )) in (2.4) for estimation.

The asymptotic distribution of # can be derived from (2.3) by some central limit theorem. The following
corollary provides the asymptotic distribution of # when the validation data are independent of the survey
data.

Corollary 2.1: Under the assumptions in Proposition 2.2, if (y , zi), i = 1, -.- , n, are independent of

(zv,j,zt,j), j =1,..., m, then

n1/2(- #o) -"+ N(0, c),

where

O = E * z ~~~~[E(z'z)~ ' * E*z 'Ezz]

.E aaz E ((Z'E-[E(z'z)]~ E z, g( , ) E * z [E(z z)]~ E z, g( , ) ~

and

E= E { [z'y - z'z[E(z'z)]-'E(z'y)] [z'y - z'z[E(z'z)]- E(z'y)]'

+ A2E { [z'g(x, p3o) - z'z[E(z'z)]-'E(z'g(x,#3w))] [z'g(x, plu) - z'z[E(z'z)]-'E(z'g(x, 1%))] '}.

Proof: This result is immediate, since the validation data are independent of the survey data. Q.E.D.

If the validation data were correlated with some of the survey data, the covariance of the two components
of disturbances in (2.3) should be taken into account in the asymptotic distribution of 13. The rate of
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convergence in distribution of 0 in Proposition 2.2 is of order O(n-1/ 2 ) under the situation that limn-, m =
oo, and limn-,, n/m exists and is finite. In this case, as n and m grow approximately in proportion, the rate
of convergence to distribution of 0 is O(n-1 2 ). In the event that limn.- m = oo but lim. rn/n ='0,
the projection errors from the validation data will dominate, and the rate of convergence in distribution of
0 can only be of order O(m-1 2 ) but not O(n-1/2 ). By a careful inspection of the proof of Proposition 2.2,
the following results are immediate.

Corollary 2.2: Under the assumptions in Proposition 2.2, if A = limn.. (n/rn)11 2 exists and is finite,

m 0/(# -#3) = E *z) [E(z'z)]~ E (,8g9zpo)) E ((#)) [E(z'z)]~

in

1

-- 2 z' ; ((zvo,4, #,) - z.,i [E(z'z)]~1 E(z g(z, i 3)) + o,(1).i=1

On the other hand, if limn... (n/rn)1 2 = co, then

m2(1-)= - {E (g(x#(-) [E(z'z)] 1 E (zEz) E (g(x/3 0 )z [E(z'z)]1J 8/ a3 1
1 m

- z,, (g(xv,,, /3) - zv,i [E(z'z)] 1 E(z'g(z,#,))) + o,(1).
rn/ =1

For the linear regression model y = z/3+ e, the above estimation method is applicable. The estimator
#8 has a closed form expression:

= [X',Z(Z|Z)~Z'Z(Z'Z,)Z'X]~XZ,(Z'Z,)~1Z'Y. (2.5)

This estimator is a least squares estimator found by regressing y on zM, where zM = z(ZvZ,)- 1 ZZX, is
a transformed vector of z. The transformation matrix M = (ZZ,)-'ZX, is the least squares coefficient
estimates found by regressing xz on z,. The validation data are used only to construct the transformation
matrix M. This matrix is the sufficient statistic from the validation data for the linear regression model in
this estimation procedure. This is an advantage of this approach when validation data are confidential in
the individual level detail. In the linear regression model, since /3 has a closed form expression, some of the
regularity conditions in the previous propositions can be relaxed for establishing its asymptotic properties.

Proposition 2.3: LINEAR REGRESSION MODELS Under the Assumptions 1 and 2, suppose that
E(z'z) has full row rank k, then /3 is a consistent estimator of P, and

nh/2(j&- #,)

= {E(x'z)[E(z'z)]-E(z'x)}~ E(x'z)[E(z'z)]~1{ z(y; - z[E(z'z)]-E(z'y))
s=1

- A z,'Z,; (z,,ip. - z,[E(z'z)]-'E(z'z#,0 )) } + op,(i).
i=1l

Furthermore, if(y, z;), i = 1,.-- -,n, are independent of (z~,j, z,), j= 1,.. - ,n, Ihen

n'12 (# - /3,) -. N(0, 0),

where

S= {E(z'z)[E(z'z)-'E(z'z) }~ E(z'z)[E(z'z)~'E[E(z'z)]-'E(z'x) {E~c'z) [E(z'z)~' E(z'z)} -1
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and
E= E {[z'y - z'z[E(z'z)]-E(z'y)] [z'y - z'z[E(z'z)]-E(z'y)]}

+ A2 E [z'xz30 - z'z[E(z'z)]-1 E(z'x3o)] [z'z3f0 - z'z[E(z'z)]~1E(z'zflo)]'}.

3. Measurement Errors in Explanatory and Dependent Variables

The last section discussed a consistent estimation method when some or all of the explanatory variables

are measured with errors, but the dependent variable y is either measured accurately or its measurement

error is of the classical type, that is, independent of all the explanatory or instrumental variables. In this

section, we will consider the cases where either the dependent variable or both the dependent and explanatory
variables are subject to measurement errors of the general type.

Consider the general case that both the dependent and explanatory variables are measured with errors.
The survey data are (;, z;), i = 1,---, n, where 9 measures y with error. As in the previous section, z

is a vector of instrumental variables for x. Let (r,,,,, zU,, ), j = 1,""- -, m, be the validation data for the
explanatory variables, and (yd,j, !/d,j, zd,j), j = 1,. -"-, md, be the validation data for the dependent variable.
In the later validation data, yd measures y accurately.

Assumption 3:
(1) The observations (pi, z;), i = 1,... - , n, of the surve y data are i.i.d. with finite first and second moments.
(2) The observations (yd,,, Yd,j , zd,j), j = 1,... -, md, of the validation data for y are i.i.d. The first two

moments of (yd, Yd, zd) exist.

(3) (yd, zd) and (y, z) are identically distributed.

At least two methods can be introduced to estimate the regression model with this validation infor-

mation, depending on how we predict the true value y given the variables y and z. The first method is to
project the measurement error of the dependent variable, yd - yd, on to Zd to derive a prediction rule for yj:

9, - zj(ZZZd)-1Za(Y - Yd); where Zd is the mad x k1 data matrix of zd, and Yd and Yd are respectively the
md-dimensional vectors of yd and yd. This prediction rule is based on the intuition that the measurement

error 9y- y might not have zero mean, and it might be correlated with some of the explanatory variables or

their instruments. An estimator /31 of /3 can be derived from

min(Y, - Z(ZZv)-1Z'g(X,,))'(Y - Z(Z'Z,)-Z'Ig(Xv,,f)), (3.1)
pE e

where Y, = Y - Z(ZaZ)-'Z'(Yd - Yd).
The consistency and the asymptotic distribution of Q1 can be derived by some uniform law of large

numbers and central limit theorems parallel to the proofs of Propositions 2.1 and 2.2 in Section 2.

Proposition 3.1: Under the Assumptions 1-3, and the assumptions in Proposition 2.1, #1 from (3.1)

is a consistent estimator of 3g.

Proof: Denote

Qd,n = (Y, - Z(ZvZU)~1Ztig(X,,))'(Y - Z(ZUZU)-1Z',9(X .
n

By the uniform law of large number in Amerniya (1985), Qd,n(fl) converges in probability to Qa(/3 ) uniformly
on e, where

Qd(#3) = E(9 2 ) - 2E(9z)[E(z'z)]~'E(z'(9 - y,)) + E((9 - y)z)[E(z'z)]-'E(z'(9 -y)

+ E(g(x,#/)z) [E(z'z)~'E(z'g(z, /3))
- 2E(g(x, /)z)[E(z'z)]- 1E(z'9) + 2E(g(z,#3)z)[E(z'z)]~'E(z'(9 - y))

= E((y - g(z,#))z)[E(z'z)]~'E(z'(yJ - g(x, /3))) + c

= E((g(z,13 0) - g(z, f3))z)[E(z'z)]-'E(z'(g(z,#3) - g(a',f))) + c

7



since E(ze) = 0, and c = E(f2) - E(yz)[E(z'z)]'E(z'y) is a constant. Under the identification condition
in Proposition 2.1, Qd(13) is uniquely minimized at 8 = /3o . Q.E.D.

Proposition 3.2: Under the assumptions in Proposition 3.1 and the assumptions in Proposition 2.2,

iX30) = {E (Og(./3o) ) [E(z'z)f' E (i9g(z./o) } E ao (-T' 3o)z)[E(z'zW'1

{7... z' (!i - zs [E(z'z)-1 E(z'7))

1 md

+ Ad-J ~zi,i (Yd,i - y~ - Zd,i [E(z'z)f'1 E(z'(y -y)Md i=1

1m

- Aml/2 ZZ,i (gizv,i,/3o) - zt~i [E(z'z)K' E(z'g(x, /3o))) + o,,(l),M i=1

where A = lin-,, (n/rn)" 2 and Ad = li n.,, (n/md)"12 , which are assumed to be finite.

Proof: The estimator /3 satisfies the first order condition:= 0. By a Taylor series expansion or
the mean value theorem,

0= (O (Xv o~) (92'Z(Xi a _Z (ZZ 'Z' g(Xv,/3o))vg(v

(0g'(X v /3o Z V) ll 09(X)- v /)(,a -&/).

Since E(zy) = E(zg(x,/30 )),

=/2 Z( Y - Z(ZZ 'ZgX,3)

= Z'(Y -Z[E(z'z)] 1E(z'y~) + - Z'Z(ZZdY'Z(Yd -Ya - Zd[E('z)] E x'(y-

-1 ZZZ ' - Zv[E(z'z)]-'E(z'g(,3 0 ))).

The results follow from similar arguments in the proof of Proposition 2.2. Q.E.D.

The asymptotic distribution of /3 depends on three different projection errors. These errors are mutually
independent if the two validation sets come from different sources and are independent of the survey sample.
In some situations, the validation data for both the independent and dependent variables might come from
one validation study. The following corollary covers these two cases.

Corollary 3.1: Under the assumptions in Proposition 3.2, if (i ,zi), i = 1, ... , n, (X ~z j =
1,. , " rn, mand (v-, -1/d j,-z,i), j i= 1,... , mag are mutual4ui independent samples, then
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and

E=E{ [z'9 - z'z[E(z'z)]'1E(z'y)][z'9 - z'z(E(z'z)L'1E(z'y)]'}

+ A2E{ [z'(y - 9) - z'z[E(z'z)]-'E(z'(y - y)3 [z'(y - 9) - z'z[E(z'z)]-'E(z'(y - 9))],'

+ A2E{ [z'g(x,130) - z'z[E(z'z)f-1E(z'(x, 3o))] [z'g(z,130) - z'z[E(z'zj1E(z'g(z, f30))]'}.

However, if(v) v) j = 1, ". ", m, and (yd,j,9d,j,Zd,j), j = 1, " " ", md, are independent of (y=,,z), i =

1, " ", n, but the validation data come from the same source; i. e., mnd = m and z,,j = Zd,j, for all j, then

E= E { [z'9 - z'z[E(z'z)'}'E(z'y)] [9z - E(yz)[E(z'z)J'iz'z] }

+ A2E{ [z'e - z'9 + z'z[E(z'z)f'1E(z'9)] [z'c - z'9 + z'z[E(z'z)f-1E(z'y)]'}.

Proof: When the validation data come from the same source,

mnd

Ad 1/2 z 4i (Yd,i - Yd,i - Zd,j [E(z'z)]7' E(z'(y - 9)))Md si

-AM1u/2 ZZv,i (g(xv,s,13o) - zv~ [E(z'z)' E(z'g(x, /3o )))

-=Ami2 ~zdi,j (Ed,i - !d,s + Zd,i [E(z'z)V1 E(z'9))

because E(ze) = 0. Q.E.D.

The projection of the measurement error of y, 9 - y, on z in the above method corrects the possible
systematic bias of error, which might be explained by the observed instruments z. In some more complicated
situation, the measurement error 9 - y might even be correlated with 9 in addition to z. In such a situation,
it might be appealing to project 9 - y on 9, or even some finite order polynomial of 9, and z in order to
correct the systematic bias. This motivates the second estimation method. Let p = (9, y2,... " 9 t) where
r > 1 is the specified order of the polynomial; and w = (p, z). Let Wd denote the mnd x (r + k1) matrix of
the validation data of w, and let W be the n x (r + k1) matrix of the survey data of w. An estimator /32 of

/3o is defined from the following minimization:

min(W(WWWd)'1WdYd - Z(ZvZ)-'Zv(Xv, 13))'(W(Wd Wd)'WWYd - Z(Zv'Z~)-Zvg(Xv, 13)). (3.2)
/3Ee

Assumption 4:
(1) The 2r moments of 9 exist.
(2) E(w'w), where w = (p, z), is nonsingular.

Proposition 3.3: Under the Assumptions 1-4, and the assumptions in Proposition 2.1, ,132 is a consistent
estimator of 13g .

Proof: Denote

Qw,71(Q) =_-(W (WWd) W,,Yd - Z(Z.,Z) 1 Z~g(XU , 8))'(W (W",Wd)' W",Yd - Z(Z~ Z)- Zellg(X , 3))"

9



and c = E(vw)[E(w'w)- (E(w'w) - E(w'z)[E(z'z)]1lE(z'w)) [E(w'w)]'E(w'y) is a constant. The last
equality holds because w = (p, z) implies that E(yw)[E(w'w)-E(w'z) = E(yz) and E(yz) = gxB).

As (3o minimizes Qw (ii), the consistency of /32 follows from the identification condition of Proposition 2.1.

Q.E.D.

Proposition 3.4: Under the assumptions in Proposition 3.3 and the assumptions in Proposition 2.2,

nh/2(Q2 - #ou) = { E (o°(13o)z) (E~z'z f E (iO9(z2/%)) }1 E (°;13°l) ) [E~z'z f 1

I 
{ nl2 Zz (w [E(w'w)f 1 E(w') - z; [E(z'z)f' E(z'i,))

+ ad-j 7  xd>>(Y, d,i 'e, [E(w'w)f 1 E('))
m _

- Am1/2 x+ (g(v,i,30 ) - zv,,i [E(z'z)171
LE(zg(xv,d,/3o))) } + o,,(1),

i1

where A = lirn .. ,0 (n/rn) 11 2 and Ad = lim~i..,,,0(1/rn) 11 2.

Proof: By a Taylor series expansion and a uniform law of large numbers,

flh/2(fl2 fo ={QPp()

Since

n 1Z(w( WaW)-
1
WaY - Z(ZvZ4)-'Zog(Xoi 0 ))

=n 1 2 ' {W[E(w'w)]'E(w'i,) - Z[E(z'z)V'lE(z'y,)}

+ - ,jZ'W(WaWdY 1 Wa {Yd - Wd[E(W'W)]E(W y)}

- 112Z'Z(Z ZVY'1Z {g(Xv,flo) - Zv[E(z'z)]'E(z'y) }

= 4,-z' {W[E(w'wW'-E(w'y) - Z[E(z'z)f 1
lE(z'y)}

+ AdE(z'w)[E(w'w)-
1  

1Z a{Yd -Wd[E(w'w)V'lE(wu'y)}

- JE~zz)[~z')]- m12 Z {g(X, 13ol) - Zv[E('z)] E(z'y)} + op(l)

= z' {W[E(w'w)]-1E(w'ii) - Z[E(')f'lE(z'y)}



where

=fE(8(;0/3)) 'o [E(z'z)f' E (zi,xo)' 1 (E z ~oj\[E(z'z)] 1

-Ez' fE (a9(x~/3o)) E (x (x/o) )[E(z'zff' E (zi9(x,/o) -1

and

E= E {[z'w [E(w'w)f' E(w'jy) - z'z[E(z'z)I-1E(zi )]

I Jz'w [E(w'w)f' E(w'y) - z'z[E(zz)]-1E(z'y)]}

+) ~E { [z'y - z'w[E(w'w)]-'E(w'y)] [z'y - z'w[E(w'w)]-'E(w'y)]'}

+ )12E{ [z'g(a,,/3o) - z'z[E(z'z)]-'E(z'(x,l3o))] [z'g(x,/3o) - z'z[E(z'z)-1E(z'g(x,/3ao))]I}.

However, if (xv~j, zv~), j = 1, " ", m, and (Yd,j,~d,j,Zd,j), j = 1, " " ", md, are independent of (y=, z), i =
1, " " , n, but the validation data come from the same source; i. e., mnd = m and zv,j = Zd,jJfor all j, then

E= E{ [ziw [E(w'w)]' E(w'iy) - z'z[E(z'z)]-1E(z'~)]

" [ziw [E(w'w)f 1 E(w'y) - z'z[E(z'z)p-1E(z'y)]}

+ A 2E { [z'e - z'w[E(w'w)]-1E(w'y) + z'z[E(z'z)f-'E(z'y)]

" [z'e - z'w[E(w'w)]- 1E(w'y) + z'z[E(z'z)]-'E(z'y)I'}.

It is interesting to compare the two different estimators. From Proposition 3.2 and Proposition 3.4, the
asymptotic distributions of /C3i and 32 differ from each other only in the terms:

adml/2 EZd~ (Yd,i - Yd,i - Zd,i [E(z'z)]-1 E(z'(y -
di=

in n1/2( /~,but
1 ma ,d: Eww~1 iawj

1/2 z -di di w w) E 'y
md i=1

in n12 - j30). However, these terms have some similarity. Since E(jjw)[E(w'w)]- 1 = (1, 0), the latter
term can be rewritten as

1 m y, d' Eww)F awy'

- 1/2 z~i(Yd,i - Wd,i [E(w'w)]' [E(w'(y- ))
mnd i=1

- 1 j (d~i -- d E w'w E~w'-y) (y - 1



would be relatively more efficient than N1. However, the projection errors are only uncorrelated with zd;
therefore, analytic comparisons of efficiency for the two estimators do not seem to be possible.

For the linear regression model y = xl+ c, both estimators are least squares estimators applied to some
transformed survey data. The estimator #1 from the first approach is

,1 = [X'ZY(Z'Z,)-dZZ(ZvZ,)~ Z'X,]~X Z,(ZI Z,)~ Z'(Y - Z(ZdZ( a- Y)). (3.3)

Here z is transformed to zM by the transformation (ZlZ,)-1 ZvX,, and y is adjusted by subtracting from
it a linear combination of z, namely, z(ZZd)- 1 Z (Yd - Yd). The coefficients of the linear combination are
simply the least squares regression coefficient of yd - yd on zd. The least squares coefficients of z, on z, and
the least squares coefficients of id - yd on zd are the sufficient statistics from the validation data for these
approaches. For the second approach, the estimator #2 becomes

/2 = [ XvZv(Z'Z)-1iZ(Z'Z,)~1ZviX,]~1 X' Zv(ZiZv) 1Z'W(WjWd)~ 1 W WYd. (3.4)

A linear combination of w is used as the dependent variable, where the linear coefficients are the least squares
estimates of yd on wd. In this approach #a2 is the ordinary least squares estimate of regressing this linear
combination of w on zM.

Finally, let us comment on the case where only the dependent variable is subject to a general measure-
ment error, but the explanatory variables x are measured without error. For such a case, one might attempt
to modify the first estimation method to

min(Y, - g(X,))'(IY, - g(X, /)),
PE e

and the second estimation method to

min(W(WjWd)-WjYd - g(X,#3))'(W(WjWd)~'WjYd - g(X,#)).
pee

However, these methods might not necessarily be consistent if g(x,,8) is not linear in z. Consider, for
example, the first modified estimation method. Let Qd,n = n- 1(Y, - g(X, /3))'(Y, - g(X, /3)), which can be
rewritten as

?13,n = -[(A, - Y)(Y -g(X,#j))] 'l[(fr- Y)(Y -2X,)]
n

which will converge in probability to Qd, where

Qd = E(92) + E(yz)[E(z'z)]-1E(z'y) - E(jz)[E(z'z)]- 1E(z')

+ E(y - g(z,3))2 + 2E[(y - y)(y - g(x, /))] - 2E[(# - y)z][E(z'z)]-E[z'(y - g(x,/))].

From this expression, it is not obvious that #, will minimize Qd. Another way to understand this possible
inconsistency is that, while the prediction error (y- y)-z[E(z'z)]- 1E(z'(g -y)) is perpendicular to x when z
contains x, it is not necessarily perpendicular to g(z,#,) - g(z3). If projection were replaced by conditional
expectation, this difference would disappear. The conditional expectation approach is possible only within a
nonparametric framework. To guarantee consistent estimates, it is desirable to project (r,#R) on z and use

the projected regression for estimation. Since X in the survey data are observable in this case, the instrument
variables z should include z or some of its finite order polynomials for such a projection. Explicitly, the
X, and Z, in the previous estimation methods can be X and Z from the survey data, or Xd and Zd from
the validation data. It is also possible to pool X from the survey data and Xd from the validation data to
form X,. Similarly, Z and Zd can be pooled to form Z,. The asymptotic distributions in Propositions 3.2
and 3.4 are valid, but the explicit asymptotic covariance should take into account the various correlations as
the variables are drawn from some common sources. The linear regression is a special case. For the linear
regression model, as Z = X and Z, = X,, X(Z,'Z,)-1Z'(Xi) = X#3 and Z, is irrelevant in the prediction
of Xf3 given X.
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4. Some Related Issues

In this section, we will discuss some related issues on the estimation problem with validation data.

4.1 Pooling Estimators from Survey and Validation Data

If a validation data set is available for all the explanatory and dependent variables x and y, it is possible
to estimate the unknown parameters in the regression model with the validation data. Let (y,,,,, i,,,;x, z,,),
i = 1,.-.-.- , m, be the validation data. Since , and y, measure z and y without errors, #3 can be estimated
by the nonlinear least squares method:

min(Y, - g(Xv,, #)'(Y, - g(Xy,,#)). (4.1.1)
#Ee

The nonlinear least squares estimator /3NL from (4.1.1) will have the following familiar asymptotic property:

1/2 _og(z, po) Bg(x,Q#o) ~1 1 m og zv,,;,#e)

m (NL -/o) = jE 2 , + o,,(1). (4.1.2)

This estimator 3NL and the relevant estimator introduced in the previous sections can be pooled together
to provide an asymptotically more efficient estimator (Theil and Goldberger (1961)). As a by-product, the
pooling procedure also provides a compatibility test statistic; which can be used to test model misspecification
and the compatibility of the validation data with the survey data. Let V be the limiting variance-covariance
matrix of mi/2 (kL - / , ',-Aso)' where 8 is a consistent estimator from the previous sections. Let V
be a consistent estimate of V, and let J = [k, Ik]', where Ik is a k-dimensional identity matrix. A pooled

estimator of / is iG = (J'V-J J'V-1(L, /3')', which is asymptotically normal with mean fl and

asymptotic covariance m- 1 (J'V1J)'. The pooling procedure is a minimum distance procedure. As a
minimum distance procedure,

m(ak ,, ') I2k - J [''~1 J'Y~ Y~-1 Ilk - J J'Y' J J'Y~ ^ ^( NOL l

is asymptotically distributed chi-square with k degrees of freedom (see, e.g., Neyman (1949) or Taylor (1953)).
This test statistic provides an indirect test of the compatibility of the validation data and the survey data
when the regression model is correctly specified. It is possible that the regression model is misspecified, and
the test statistic may pick up this misspecification rather than the compatibility of the data. In any case,
it is useful for a diagnostic check of the data and the model. An alternative test will be some generalized
Hausman type test by comparing the difference of two consistent estimators.

For the case where only the explanatory variables are subject to measurement errors, m 1/2 (I3NL - /o)

could be asymptotically uncorrelated with m /2(3 - i3) in Corollary 2.2 if E(eJr, z) = 0. The pooled

estimator #G is a weighted average of 3
NL and # with weights proportional to the inverses of their variances.

For the case that both the explanatory and dependent variables are measured with errors and the validation
data come from the same source, if the projection error y, - , - z, [E(z'z)]'E(z'(y - y)) in Proposition

3.2 is distributed independently of zv and c., J
3 NL will be asymptotically independent of $1. Similarly, if

the projection error y, - w,[E(w'w)]-1E(w'y) in Proposition 3.4 is distributed independently of z, and e,,
3NL will be asymptotically independent of /32. Pooling the survey data and validation data will improve
efficiency of the estimators.

4.2 Asymptotic Efficiency

The proposed estimators in Sections 2 and 3 have utilized only correlation properties of the true vari-
ables and the instrumental variables in the model. They are robust with respect to specification of structural
relations of measurement errors. For some special measurement error structure, they might also be asymp-
totically efficient. Consider the case where only the explanatory variables are subject to measurement errors
in the linear regression model

y= az/+ e, (4.2.1)
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where e is independent of x and is normally distributed N(0, a?). Suppose the vector of instruments z has
the same dimension as x, and the measurement error has the following structure:

a:=zll+u, (4.2.2)

where u is independent of z and is normally distributed N(O, a). Assume that the survey data (yi, zi),
i = 1, .f-(d, n, and the validation data (z,,,;, z,,) are independent. It follows from (4.2.1) and (4.2.2) that

y = zl/+ w, (4.2.3)

where w = c+ up. Let wi = 1. With the validation data, II can be estimated from (4.2.2) by the ordinary
least squares procedure. Similarly, 7r1 can be estimated with the survey data. These estimates are apparently
the maximum likelihood estimates found by pooling the validation and survey data. Let nm and *1,m denote
these two estimates. Since there is a one-to-one correspondence between (1, 7l) and (II,#1), the maximum
likelihood estimator of # is f8m = n-f*ri,m. Our proposed estimator , in Section 2 is

#=[ X' Z,(Z'IZv)~Z'Z( Zi Zv)~-Z'vX,|~X'vZ, (ZVI zv)~ Z'Y

= [(Znlm)'(ZNm)]'(Zm)'Y

= $~Zm)'m,

which is exactly the maximum likelihood estimate /9m of this model. Therefore, , is asymptotically efficient
for this linear regression model with the specific measurement error structure (4.2.2). However, in general,
it is not hard to imagine for many other specific measurement error structures on z and z, 8 would not
be efficient. The proposed estimators in Sections 3 and 4 are not designed for the estimation of structural
measurement error models.

4.3 Bias Correction in Linear Regression Models

For the linear regression model y = z# + e, when the variables x and/or y are subject to general
measurement errors in survey data, the least squares estimate /LS with the survey data will be inconsistent.
If validation data are available for all the variables z and y, it is possible to use the validation data information
to correct the asymptotic bias of $LS (see, for example, Bound et al (1989). In this section, we point out the
similarities and differences of our estimation procedures from a direct bias correction procedure in a linear
regression model. For nonlinear regression models, bias correction is either impossible or difficult.

Let (g=, z;), i = 1,--. ,n, be the survey data, and (y,,,,,, ,,,z, j) = 1,.---,m, be the validation
data. Let Y, Z, Y,, X,, Y-~, and Z, be the corresponding data matrices. Assuming that z measures x, and
z and a have the same dimension, the ordinary least squares estimator with the survey data is

ILs = (Z'Z)~1Z'Y
1 (4.3.1)=0, + (Z'Z) 1Z'(X - Z) 0 + (Z'Z)~1Z'(Y - Y) + (Z'Z)~Z'E,

where Y, X, and E are the unobserved true matrices of y, x and E. The asymptotic bias of #LS is A, where

A = [E(z'z)] 1{E(z'a - z'z)#0 + E(z'y - z'y)}. (4.3.2)

As the validation data provide enough information, the asymptotic bias in f#LS can be corrected.
Consider the case that only the explanatory variables are measured with error. For this case, Y = Y

and A = [E(z'z)]- 1E(z'z - z'z)$,.. Therefore, f3, can be consistently estimated by 13,, = (XIX,)-1 XIY.,
and A can be estimated by

A,1 = (Z' Z,)~Z'(X, - Z),

This bias can be subtracted from I3Ls to derive a bias adjusted estimator: je = #s- An. The adjusted
estimator #ec is consistent. Since

je. - ho = (Z'Z)~'Z' (Y - Z[E(z'z)]~1E(z'z30 ))

- (Z'Z,)~ 1Zi (X,/ 0 - Z,.[ E(z'z)~1E(z'zPo)) - (Z'ZV)~1Z'(X, -Z)( X - |,,
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n12( c - g )

= [E(z'z)]-{ 1/2 Zz_ (y; - z;[E(z'z)]~E(z'y)) - Az, 2 ',,; (x,,ii - z,,[E(z'z)]- E(z'xfi)) }
=_1 ==1

- A[E(z'z)]-1(E(z'z) - E(z'z))[E(z'x)]- m z'xE,,, + or(1).
i=1

(4.3.3)
This can be compared with the asymptotic disturbance of / in (2.5). Since x and z have the same dimension
and E(z'z) is invertible, Proposition (2.3) implies that

n/2(# - f3) = [E(z'x)]~-I z (y - z[E(z'z)]-'E(z'y))

1=1 (4.3.4)

- Azmi/2 , (,,1p0 - zv,i[E(z'z)]~'E(z'xzp6)) } +o,,(l).
:=1

Except that an additional disturbance term is introduced in (4.3.3) and E(z'z) is used in place of E(z'x),
the expressions in (4.3.3) and (4.3.4) are similar. It is not clear from these expressions whether one estimator
might dominate the other. One thing is clear: 6 requires only validation data (z,, z,) on (x, z), but the bias
corrected procedure requires simultaneously the presence of data yv and (r,,,z,). Thus, for some validation
data, # could be derived while f3c might not.

When both the explanatory and dependent variables are measured with errors, the estimate of the
asymptotic bias is

Ab,n = (Z'Z,)'Z,{(X, -Z)#3, +(Y -Y)}.

The bias adjusted estimator is f3c = Ls - Ab,n. By simple algebraic manipulations,

fc - #3 = (Z'Z)'Z'(Y - Z[E(z'z)]-'E(z'y)) + (ZZ) 1Z{, - Yt, + Zv,[E(z'z)]~'E(z'y)}
- (Z|Z,)~Z'(X, - ZV)(X|XV)-X|ev,

which implies that

n1/2(/e- 90 )

= [E(z'z)~z z (# - z"[E(z'z)]~ 1E(z'9)) + Xz ( - gv, + z ,i[E(z'z)]~ E(z' ))1
n .i=1 m i=1

- A[E(z'z)]-1(E(z'x) - E(z'z))[E(x'z)]~ Z',, ,E, + 0,(1).
i=1

(4.3.5)
For the estimator 31 in (3.3), as z and x have the same dimension, and the validation data come from the
same resource, Proposition 3.2 implies that

n/(1 - p) = [E(z'z)]- -{ Zz(; - z[E(z'z)]-E(z'g))(43)

+ A m 2 Zz' g(ce,i - 9t,i + z,,i[E(z'z)]-4E(z'))} .+ a,(l).

The asymptotic distribution of n'1 2(/c - i3,) differs from the asymptotic distribution of ni/2( 1 - #3.) with
an additional disturbance term and with E(z'z) in place of E(z'x).

For the case where only the dependent variable is measured with error, since Z = X and Z,, = X,,
the bias adjusted least squares estimator is i3e = (X'X)-'X'i - (XIX,,)-'XI(Y, - Ye). The estimator in
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(3.3) can be simplied to #1 = (X'X)'X'(Y - X(X;X)- 1 X,(Y,, - Y,)). The two estimators in this case
are identical.

5. Simulation Results

To evaluate the performance of the proposed methods, simulations were run for the linear model y =
#30 + #1 x + e, where e has a standard normal distribution and (fib,#N1) = (0.5,1). Five hundred simulated
data set were generated for each of the validation data sizes m = 50,100,200 and for each of the survey data
sizes n = 100, 200, 300.

First case considered is when only the explanatory variable z is erroneously measured and therefore
observations on (y, z) are measured in the survey data. The validation data set containing (z, z) or (y, x, z)
were generated such that z = x + 6u, where z is normally distributed with mean 4 and a standard deviation
1 and u has a standard normal distribution. In addition to the proposed estimates (Errorx), three other
estimates were computed. Naive estimates (Naive) were obtained by ignoring the measurement error using
the survey data. The Naive estimates are the ordinary least squares estimates. If the response y is observed
in the validation data set, unbiased estimators (Valid) of parameters can be calculated by linear regression
of y on x based on the validation data. The pooled estimated (Pool) described in section 4.1 were also
computed by using the validation data to obtain an estimate V of V. The results are given in Tables 1.1 and
1.2 for 6 = 0.5 and 0.75 respectively.

We next consider the case when both the response y and the explanatory variable z are measured
with error. In this case, the survey data contains observation on (#, z) and the validation data set contains
observation on (y, y, x, z). There were two sampling situations for the validation data. First, the surrogate
variables y and z were generated such that z = x + 6u, where z has a normal distribution with mean 4
and standard deviation 1 and u is a standard normal variable, and y = 0.5y + 61v, where v is a standard
normal variable. Second, the surrogate z was.generated as in the previous case and y was generated such
that y = 0.5yi+ 0.2y2 + 61 v.

In addition to the naive estimates (Naive) computed by regression of y on z using the survey data, the
estimates (Projer) described in (3.3) and the estimates (Errorxy) in (3.4) with w = (y, z) were also computed.
For the second sampling situation, the estimates (Quard) in (3.4) were calculated with w = (y, 92, z). Since
the true response y and the true predictor z are both observed in the validation data, the Valid estimates
were assessed. Using the validation data, it is possible to estimate the covariance matrix V in section 4.1
and the pooled estimates (Pool) were therefore computed. For the second plan the pooled estimates (Poolq)
were calculated by pooling the estimates Quard and Valid together, since the Quard estimates were more
efficient than Errorxy in this case. Tables 2.1-2.4 give the results based on the mode y = 0.5y + 61v for
each combination of 6 = 0.5,0.75 and 61 = 0.5,0.75. Tables 3.1-3.4 give the results based on the mode
9=0.5y+0.3y2 +61v.

Since these simulations were run for linear model, we also consider the case when only the response y is
observed with error in the survey data. Tables 4.1 and 4.2 give the results for the case when the validation
data set containing (y, y, x) were generated such that z has a normal distribution with mean 4 and standard
deviation 1 and 9 = 0.5y + b1 v, where v is a standard normal variable and 61 = 0.5,0.75. Tables 5.1 and 5.2
give the results for the case when the validation data set were generated such that z has a normal distribution
with mean 4 and standard deviation 1 and 9 = 0.5y + 0.2y2 +6 1v. Naive estimates, the estimates (Projer),
the estimates (Errory) in (3.4), the Valid estimates and the pooled estimates (Pool) were all computed.

The naive estimates are obviously bias for all cases. The proposed estimates Errorx, Errory, Errorxy,
and Projer perform well in terms of bias. The biases are small and they are almost as good as the unbiased

Valid estimates. For the linear model 9 = 0.5y/ + 6iv, the proposed two estimates Projer and Errorxy (or
Errory) for the measurement error cases in the response y are in general compatible. When the measurement
errors of Li have larger variance 61 = 0.75, the Errory (Errorxy) gives slightly more efficient estimates than
the Projer estimates. When 61 = 0.5, the Projer estimates are slightly more efficient. When the error model
is y = 0.5y + 0.2y2 + 61 v, projection on (9,92, z) or (9, 92, z) can capture the nonlinearity of the model and
therefore produced more efficient estimates than projection on (9, z) or (9,zx).

When the Valid estimate using only the correctly measured variables in the validation data is possibly
obtained, pooling the proposed estimate and the Valid estimate together does yield a more efficient estimate.
Indeed, depending on the sample sizes of both the survey and validation data and the variances of the
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measurement errors, our proposed estimates Errorx, Errorxy, Errory, Quard, and Projer can even be more
efficient than the Valid estimates. When the variances 62 or bi of measurement errors are not too large and
the sample size of the survey data are large relative to the sample size of the validation data, the proposed
estimators can be more efficient.

6. Conclusion

This article has introduced consistent methods for the estimation of linear and nonlinear regression
models with measurement errors in variables in the presence of validation data information. The measure-
ment errors can be correlated with the true variables in the model. Validation data provide information
on some properties of measurement errors. By exploiting the general correlation of the true variables and
the instrumental variables with validation data, it is possible to provide consistent estimates of coefficients
even in nonlinear regression models. The estimation procedures can be applied to models with measurement
errors in the explanatory variable, the dependent variable, or both the explanatory and dependent variables.
The estimation procedures do not rely on any particular specification of auxiliary structural measurement
error equations. While these consistent estimation procedures are not nonlinear two-stage estimation proce-
dures (Amerniya (1974)), they share some common features in terms of projection. However, the nonlinear
two-stage least squares method is not defined with the survey data because x is unobserved.

The estimation procedures can be applied even to situations where validation data alone do not permit
possible estimation of the model. When validation data are rich enough for consistent estimation of the
model, survey data are still valuable in improving efficiency of the validation data estimates. The estimation
procedures.can be applied to models and data where direct bias corrections might not be feasible. For the
linear regression model, when direct bias correction is feasible, the proposed estimators share some similarity
with certain direct bias correction estimates.

Alternative methods based on nonparametric regression methods seem possible for the estimation of the
linear and nonlinear regression models with general measurement errors in variables. Such methods have
not been considered here but will be considered in another article. One may expect that for some cases,
nonparametric approaches might be more efficient than the proposed approaches in this article. However,
there are computational advantages in the proposed approaches in this article. The proposed estimation
methods will in general be computationally simpler than any nonparametric method. For the estimation of
linear regression models, validation data information can be summarized in terms of some simple statistics
for the implementation of our estimation procedures, thus the proposed methods may be feasible even when
validation data are confidential in the individual level details (Duncan and Pearson (1991)).
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Table 1.1.
Model:

y = /3° + #31x + E, where z ~. N(4, 1), e~ N(0, 1), and (/3o,#13) = (0.5, 1)
z = x + Su, where u N(0, 1).

6 = 0.5 m=50 m=100 m=200

n=100 Mean SD Mean SD Mean SD
Naive 0.792 0.096 0.804 0.098 0.792 0.099

Errorx 0.997 0.141 1.012 0.136 0.990 0.128
Valid 1.005 0.157 0.996 0.106 1.003 0.070
Pool 1.006 0.113 1.004 0.086 0.999 0.062

n=200 Mean SD Mean SD Mean SD
Naive 0.808 0.070 0.797 0.069 0.804 0.071

Errorx 1.013 0.119 1.001 0.099 1.005 0.093
Valid 0.996 0.140 1.001 0.104 0.998 0.070
Pool 1.009 0.093 1.002 0.073 1.001 0.058

n=300 Mean SD Mean SD Mean SD
Naive 0.799 0.054 0.802 0.059 0.800 0.059

Errorx 1.002 0.102 1.009 0.092 1.002 0.082
Valid 1.005 0.150 0.994 0.104 0.999 0.073

Pool 1.009 0.088 1.004 0.070 1.000 0.055

Table 1.2.

6 = 0.75 m=50 m=100 m=200

n=100 Mean SD Mean SD Mean SD
Naive 0.633 0.090 0.645 0.094 0.632 0.093
Errorx 1.003 0.181 1.020 0.170 0.990 0.155
Valid 1.005 0.157 0.996 0.106 1.003 0.070

Pool 1.009 0.126 1.005 0.092 1.000 0.065

n=200 Mean SD Mean SD Mean SD
Naive 0.647 0.068 0.637 0.065 0.644 0.068
Errorx 1.019 0.161 1.005 0.126 1.007 0.117
Valid 0.996 0.140 1.001 0.104 0.998 0.070

Pool 1.010 0.107 1.004 0.081 1.001 0.061

n=300 Mean SD Mean SD Mean SD
Naive 0.639 0.051 0.642 0.057 0.639 0.056
Errorx 1.005 0.137 1.013 0.120 1.001 0.104
Valid 1.005 0.150 0.994 0.104 0.999 0.073

Pool 1.012 0.105 1.005 0.080 1.000 0.059
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Table 2.1.
Model:

y = #o +I1x+E, wherez~ N(4,1),ec~N(0,1), and (#o,#31) = (0.5,1)
z=x+u,where u~ N(0,1.

= 0.5y+ 61v, where v N(0, 1).

S = 0.5,61 = 0.5 m=50 m=100 m=200

n=100 Mean SD Mean SD Mean SD
Naive 0.403 0.065 0.402 0.068 0.402 0.066
Projer 1.005 0.147 1.006 0.120 1.009 0.099

Errorxy 1.005 0.158 1.006 0.128 1.009 0.105
Valid 0.997 0.138 1.007 0.101 1.001 0.069
Pool 1.002 0.123 1.007 0.092 1.005 0.067

n=200 Mean SD Mean SD Mean SD
Naive 0.397 0.047 0.404 0.046 0.397 0.045
Projer 0.998 0.131 1.007 0.102 0.990 0.084

Errorxy 0.998 0.135 1.008 0.107 0.990 0.088
Valid 0.996 0.140 1.000 0.105 0.996 0.070
Pool 0.998 0.117 1.005 0.090 0.994 0.064

n=300 Mean SD Mean SD Mean SD
Naive 0.401 0.038 0.398 0.037 0.399 0.039
Projer 1.004 0.131 1.001 0.095 1.000 0.076

Errorxy 1.005 0.134 1.002 0.099 1.001 0.081
Valid 1.002 0.157 0.998 0.106 1.001 0.071
Pool 1.005 0.130 1.000 0.088 1.001 0.062

Table 2.2.

S = 0.75,61 = 0.5 m=50 m=100 m=200

n=100 Mean SD Mean SD Mean SD
Naive 0.322 0.061 0.321 0.063 0.323 0.061
Projer 1.006 0.171 1.006 0.139 1.011 0.115

Errorxy 1.007 0.190 1.005 0.153 1.011 0.128
Valid 0.997 0.138 1.007 0.101 1.001 0.069
Pool 1.002 0.127 1.007 0.096 1.005 0.068

n=200 Mean SD Mean SD Mean SD
Naive 0.317 0.043 0.323 0.043 0.317 0.042
Projer 1.001 0.153 1.007 0.118 0.990 0.097

Errorxy 1.001 0.162 1.009 0.127 0.989 0.107
Valid 0.996 0.140 1.000 0.105 0.996 0.070
Pool 1.000 0.122 1.004 0.094 0.994 0.066

n=300 Mean SD Mean SD Mean SD
Naive 0.321 0.035 0.318 0.034 0.319 0.036
Projer 1.008 0.151 1.002 0.109 1.001 0.088

Errorxy 1.009 0.159 1.003 0.117 1.001 0.097
Valid 1.002 0.157 0.998 0.106 1.001 0.071
Pool 1.007 0.135 1.001 0.091 1.002 0.064
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Table 2.3.

6 = 0.5,61 = 0.75 m=50 m=100 m=200

n=100 Mean SD Mean SD Mean SD

Naive 0.404 0.081 0.402 0.085 0.403 0.084
Projer 1.005 0.187 1.006 0.152 1.012 0.128

Errorxy 1.003 0.161 1.006 0.124 1.009 0.097
Valid 0.997 0.138 1.007 0.101 1.001 0.069

Pool 1.000 0.131 1.007 0.097 1.005 0.069

n=200 Mean SD Mean SD Mean SD

Naive 0.397 0.059 0.405 0.059 0.395 0.057
Projer 0.997 0.165 1.009 0.130 0.987 0.106

Errorxy 0.999 0.144 1.005 0.112 0.990 0.086
Valid 0.996 0.140 1.000 0.105 0.996 0.070
Pool 0.998 0.127 1.003 0.098 0.994 0.067

n=300 Mean SD Mean SD Mean SD

Naive 0.401 0.048 0.398 0.046 0.399 0.048
Projer 1.004 0.160 1.003 0.119 1.001 0.096

Errorxy 1.005 0.149 1.002 0.104 1.002 0.079
Valid 1.002 0.157 0.998 0.106 1.001 0.071

Pool 1.004 0.142 1.000 0.095 1.002 0.066

Table 2.4.

6 = 0.75,61 = 0.75 m=50 m=100 m=200

n=100 Mean SD Mean SD Mean. SD
Naive 0.322 0.075 0.320 0.078 0.323 0.076
Projer 1.006 0.214 1.004 0.173 1.014 0.146

Errorxy 1.004 0.189 1.005 0.147 1.011 0.116
Valid 0.997 0.138 1.007 0.101 . 1.001 0.069

Pool 1.001 0.134 1.007 0.101 1.005 0.070

n=200 Mean SD Mean SD Mean SD

Naive 0.317 0.054 0.324 0.053 0.316 0.052
Projer 1.000 0.189 1.008 0.148 0.987 0.120

Errorxy 1.002 0.168 1.006 0.131 0.989 0.101
Valid 0.996 0.140 1.005 0.105 0.996 0.070

Pool 0.999 0.131 1.003 0.100 0.994 0.069

n=300 Mean SD Mean SD Mean SD

Naive 0.321 0.044 0.318 0.042 0.319 0.044
Projer 1.007 0.182 1.004 0.135 1.001 0.109

Errorxy 1.007 0.170 1.004 0.120 1.003 0.093
Valid 1.002 0.157 0.998 0.106 1.001 0.071
Pool 1.006 0.144 1.001 0.097 1.002 0.067
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Table 3.1.
Model:

y = 3o +i1z+E, where x~ N(4,1), e t~ N(0,1), and (of,#i) = (0.5,1)
z = x + 6u, where u ~ N(0,1).
y= 0.5y+0.2y2 + 61 v, where v N(0, 1).

6 = 0.5,61i= 0.5 m=50 m=100 m=200

n=100 Mean SD Mean SD Mean SD
Naive 1.840 0.245 1.845 0.256 1.841 0.240
Projer 1.006 0.446 1.002 0.387 0.997 0.336

Errorxy 1.006 0.157 1.008 0.144 1.002 0.125
Quard 0.999 0.140 1.003 0.130 1.003 0.117
Valid 0.997 0.138 1.007 0.101 1.001 0.069
Poolq 1.000 0.107 1.007 0.082 1.002 0.061

n=200 Mean SD Mean SD Mean SD
Naive 1.829 0.166 1.847 0.162 1.834 0.164
Projer 0.997 0.412 1.023 0.306 0.983 0.263

Errorxy 1.004 0.134 1.009 0.104 0.993 0.097
Quard 0.999 0.115 1.005 0.091 0.990 0.088
Valid 0.996 0.140 1.006 0.105 0.996 0.070
Poolq 0.995 0.102 1.006 0.077 0.994 0.057

n=300 Mean SD Mean SD Mean SD
Naive 1.841 0.139 1.833 0.137 1.834 0.145
Projer 1.017 0.376 0.997 0.283 0.986 0.243

Errorxy 1.011 0.118 1.000 0.095 0.997 0.087
Quard 0.997 0.104 0.996 0.085 0.994 0.079
Valid 1.002 0.157 0.998 0.106 1.001 0.070
Poolq 1.003 0.113 0.998 0.077 0.999 0.055
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Table 3.2.

6 = 0.75,61 = 0.5 m=50 m=100 m=200

n=100 Mean SD Mean SD Mean SD

Naive 1.472 0.233 1.472 0.239 1.476 0.227
Projer 1.011 0.544 1.003 0.455 1.001 0.400

Errorxy 1.008 0.186 1.008 0.172 1.004 0.152
Quard 1.002 0.182 1.004 0.160 1.004 0.144
Valid 0.997 0.138 1.007 0.101 1.001 0.069
Poolq 1.001 0.115 1.007 0.088 1.003 0.063

n=200 Mean SD Mean SD Mean SD
Naive 1.460 0.152 1.475 0.153 1.468 0.584
Projer 1.000 0.494 1.028 0.368 0.982 0.326

Errorxy 1.007 0.168 1.010 0.129 0.993 0.122
Quard 0.990 0.149 1.006 0.115 0.990 0.113
Valid 0.996 0.140 1.000 0.105 0.996 0.070

Poolq 0.998 0.112 1.004 0.084 0.995 0.061

n=300 Mean SD Mean SD Mean SD

Naive 1.475 0.132 1.465 0.131 1.468 0.139
Projer 1.036 0.468 0.999 0.342 0.985 0.296

Errorxy 1.020 0.153 1.002 0.120 0.997 0.109
Quard 1.003 0.139 0.997 0.111 0.994 0.101
Valid 1.002 0.157 0.998 0.106 1.001 0.071

Poolq 1.005 0.125 0.999 0.085 1.000 0.059
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Table 3.3.

6 = 0.5,6k = 0.75 m=50 m=100 m=200

n=100 Mean SD Mean SD Mean SD
Naive 1.841 0.249 1.845 0.261 1.842 0.246
Projer 1.006 0.461 1.001 0.398 1.000 0.347

Errorxy 1.005 0.158 1.007 0.143 1.003 0.124
Quard 1.000 0.144 1.005 0.131 1.004 0.116
Valid 0.997 0.138 1.007 0.101 1.001 0.069
Poolq 1.000 0.109 1.007 0.083 1.003 0.061

n=200 Mean SD Mean SD Mean SD
Naive 1.829 0.170 1.848 0.165 1.833 0.167
Projer 0.997 0.425 1.028 0.314 0.980 0.270

Errorxy 1.004 0.134 1.009 0.104 0.992 0.096
Quard 0.991 0.119 1.006 0.093 0.990 0.089
Valid 0.997 0.140 1.000 0.105 0.996 0.070
Poolq 0.996 0.104 1.004 0.079 0.994 0.058

n=300 Mean SD Mean SD Mean SD
Naive 1.841 0.142 1.832 0.139 1.834 0.149
Projer 1.018 0.386 0.998 0.294 0.986 0.250

Errorxy 1.011 0.119 1.001 0.095 0.997 0.087
Quard 1.000 0.108 0.998 0.088 0.995 0.080
Valid 1.002 0.157 0.998 0.106 1.001 0.071
Poolq 1.004 0.116 0.999 0.079 1.000 0.056
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Table 3.4.

6 = 0.75,61 = 0.75 m=50 m=100 m=200

n=100 Mean SD Mean SD Mean SD

Naive 1.472 0.237 1.472 0.244 1.476 0.231
Projer 1.011 0.561 1.001 0.466 1.004 0.409

Errorxy 1.008 0.195 1.008 0.171 1.005 0.150
Quard 1.003 0.184 1.005 0.160 1.006 0.143
Valid 0.997 0.138 1.007 0.101 1.001 0.069

Poolq 1.001 0.117 1.007 0.089 1.003 0.063

n=200 Mean SD Mean SD Mean SD

Naive 1.460 0.156 1.476 0.155 1.466 0.161
Projer 0.999 0.508 1.030 0.377 0.979 0.332

Errorxy 1.007 0.168 1.010 0.128 0.992 0.120
Quard 0.993 0.152 1.007 0.117 0.989 0.113
Valid 0.996 0.140 1.000 0.105 0.996 0.070

Poolq 0.999 0.113 1.004 0.086 0.995 0.061

n=300 Mean SD Mean SD Mean SD

Naive 1.475 0.134 1.465 0.132 1.468 0.141
Projer 1.035 0.479 1.000 0.352 0.985 0.305

Errorxy 1.019 0.154 1.002 0.119 0.998 0.108
Quard 1.006 0.142 0.999 0.113 0.995 0.101
Valid 1.002 0.157 0.998 0.106 1.001 0.071

Poolq 1.006 0.126 1.000 0.086 1.000 0.060
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Table 4.1.
Model:

y = /#3 + #1zx + E, where z ~ N 4,1), E ~ N(0,1), and (#0o,#j1) = (0.5, 1)
y = 0.5y + 61v, where v ~ N(0, 1.

61 = 0.5 m=50 m=100 m=200

n=100 Mean SD Mean SD Mean SD
Naive 0.495 0.072 0.500 0.071 0.497 0.071
Projer 0.994 0.117 1.004 0.100 0.995 0.089
Errory 0.993 0.120 1.004 0.100 0.994 0.089
Valid 1.001 0.147 1.002 0.104 0.993 0.071
Pool 0.997 0.117 1.003 0.088 0.994 0.070

n=200 Mean SD Mean SD Mean SD
Naive 0.503 0.052 0.504 0.050 0.497 0.052
Projer 0.998 0.111 1.013 0.087 0.997 0.076
Errory 0.999 0.112 1.013 0.087 0.997 0.076
Valid 0.994 0.146 1.006 0.100 0.999 0.075
Pool 0.997 0.116 1.009 0.084 0.998 0.066

n=300 Mean SD Mean SD Mean SD
Naive 0.500 0.041 0.501 0.041 0.498 0.040
Projer 1.008 0.105 1.004 0.083 0.995 0.064
Errory 1.008 0.106 1.004 0.084 0.995 0.064
Valid 1.012 0.147 1.001 0.099 0.997 0.074
Pool 1.010 0.114 1.002 0.082 0.996 0.060

Table 4.2.

S1 = 0.75 m=50 m=100 m=200

n=100 Mean SD Mean SD Mean SD
Naive 0.493 0.091 0.499 0.091 0.496 0.091
Projer 0.991 0.147 1.006 0.126 0.994 0.112
Errory 0.994 0.129 1.004 0.100 0.993 0.085
Valid 1.001 0.147 1.002 0.104 0.993 0.071
Pool 0.998 0.128 1.003 0.094 0.993 0.071

n=200 Mean SD Mean SD Mean SD
Naive 0.505 0.066 0.506 0.064 0.497 0.065
Projer 0.998 0.141 1.017 0.109 0.997 0.095
Errory 0.998 0.126 1.013 0.093 0.998 0.076
Valid 0.994 0.146 1.006 0.100 0.999 0.075
Pool 0.996 0.128 1.010 0.091 0.999 0.070

n=300 Mean SD Mean SD Mean SD
Naive 0.501 0.052 0.501 0.051 0.498 0.051
Projer 1.010 0.133 1.006 0.106 0.994 0.081
Errory 1.012 0.120 1.003 0.091 0.995 0.067
Valid 1.012 0.147 1.001 0.099 0.997 0.074
Pool 1.012 0.126 1.002 0.089 0.996 0.066
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Table 5.1.
Model:

y = /o3+f31x + e, wherex ~ N(4,1),#ec~N(0,1), and (#30,#81)=(0.5,1)
y= 0.5y + 0.2y2 + 61v, where v~ N(0,1).

61 = 0.5 m=50 m=100 m=200

n=100 Mean SD Mean SD Mean SD

Naive 2.228 0.260 2.301 0.251 2.288 0.259
Projer 0.986 0.363 0.997 0.300 0.994 0.269
Errory 0.999 0.119 1.001 0.105 0.994 0.104
Quard 0.989 0.100 0.996 0.096 0.994 0.096
Valid 1.001 0.147 1.002 0.104 0.993 0.071

Pool 0.993 0.093 0.998 0.075 0.993 0.065

n=200 Mean SD Mean SD Mean SD
Naive 2.306 0.180 2.307 0.183 2.287 0.187
Projer 1.016 0.310 1.001 0.246 0.985 0.220
Errory 1.006 0.094 1.005 0.084 0.995 0.080
Quard 0.991 0.077 1.001 0.071 0.994 0.071
Valid 0.994 0.146 1.006 0.099 0.999 0.075

Pool 0.992 0.084 1.003 0.066 0.996 0.056

n=300 Mean SD Mean SD Mean SD

Naive 2.292 0.149 2.305 0.156 2.298 0.148
Projer 0.998 0.298 1.008 0.230 0.996 0.198
Errory 1.006 0.087 1.005 0.077 0.998 0.067
Quard 0.991 0.069 0.997 0.062 0.994 0.057
Valid 1.012 0.147 1.001 0.099 0.997 0.074

Pool 1.000 0.085 0.998 0.063 0.995 0.049
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Table 5.2.

61 = 0.75 m=50 m=100 m=200

n=100 Mean SD Mean SD Mean SD
Naive 2.286 0.267 2.300 0.255 2.287 0.263
Projer 0.982 0.377 0.998 0.311 0.994 0.274
Errory 0.998 0.120 1.002 0.104 0.993 0.102
Quard 0.991 0.104 0.998 0.097 0.994 0.094
Valid 1.001 0.147 1.002 0.104 0.993 0.071
Pool 0.995 0.096 0.999 0.077 0.993 0.067f

n=200 Mean SD Mean SD Mean SD
Naive 2.308 0.184 2.309 0.187 2.287 0.191
Projer 1.016 0.324 1.005 0.254 0.986 0.227
Errory 1.005 0.097 1.007 0.084 0.995 0.079
Quard 0.995 0.085 1.004 0.074 0.995 0.072
Valid 0.994 0.146 1.006 0.100 0.999 0.075
Pool 0.994 0.089 1.005 0.069 0.996 0.057

n=300 Mean SD Mean SD Mean SD
Naive 2.293 0.152 2.306 0.158 2.297 0.151
Projer 0.990 0.314 1.009 0.240 0.995 0.205
Errory 1.007 0.089 1.005 0.078 0.997 0.067
Quard 0.997 0.076 0.999 0.066 0.994 0.059
Valid 1.012 0.147 1.001 0.099 0.997 0.074
Pool 1.003 0.090 1.000 0.066 0.996 0.051
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