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SOME NEW RESULTS ON RIDGE REGRESSION ESTIMATION

Abstract

In this paper we consider various interpretations of the

ordinary ridge regression estimator with a given shrinkage

factor k, and report the results of an extensive Monte

Carlo of several ridge regression estimators involving

sample-based rules for selecting k. A major distinguishing

feature of the study is the use of a general loss

structure, the p-norm, in the evaluation process. Other

factors taken into consideration include different

degree of ill-conditioning of data, different number of

explanatory variables, and different shape and non-centrality

of the regression coefficients. The main results are:

(i) With minor exceptions, all the ridge regression

estimators considered yield a smaller average loss

regardless of the loss function used.

(ii) The reduction in the average loss of the ridge

regression estimators increases when the degree ill-

conditioning of data increases. The reduction reaches

a substantial level when the degree of ill-

conditioning is only moderate.

(iii) On the basis of our experiment it is possible to make a

recommendation concerning the rule of selecting k.
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SOME NEW RESULTS ON RIDGE REGRESSION ESTIMATION

1. Introduction

The introduction by Hoerl and Kennard (1970a,1970b) of

a ridge regression estimator to deal with the problem of

multicollinearity in regression has been followed by a

large number of papers in the statistical literature. In the

area of econometrics, though, the method of ridge regression

has only recently been given some attention.') One of the

reasons for the lack of interest in ridge regression on the

part of the econometricians may be the fact that Hoerl and

Kennard have justified their method on pragmatic grounds

without providing any interpretation. Other reasons for the

reluctant reception of ridge regression by econometricians

are likely to include the difficulty in selecting a

suitable value of the shrinking factor, which is important

in securing a dominance over least squares, and the

restrictive nature of the mean-square-error criterion, on

which the claim of this dominance rests.

In this paper we address all of the above mentioned

issues. The plan is as follows. The ridge regression method

and its properties are described in the remainder of this

section. In section 2 we provide several interpretations of

the ridge regression method and discuss the meaning of the

shrinking factor. In section 3 we consider the case where

the value of the shrinking factor is not given a priori

and describe a number of rules for choosing its value on

the basis of sample observations. Section 4 contains a

description of an extensive Monte Carlo experiment designed
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to check the dominance of the ridge regression estimation

over least squares under various loss structures in a

situation when the value of the shrinking factor is not

known a priori. The results of the experiment are

evaluated in section 5 and concluding remarks are presented

in section 6.

1.1 Ordinary Ridge Regression

Thr.oughout this paper we consider the problem of

estimating the coefficients of the standard linear regression

model

y = X13+E (1)

where y is a nxl vector of observed values of the

dependent variable, Xis a nxp matrix of the nonstochastic

values of the explanatory variables, B is a pxl vector of the

coefficients to be estimated, and c a nxl vector of stochastic

disturbances assumed to be distributed N(Oa 21 )

Following Hoerl and Kennard (1970a) we define the

ordinary ridge regression estimator (ORR) as follows:

-(k) = (X'X+kI)~X'y ~(2)

= (X'X+kI)'X'X8

= [I+k(X'X) ] 1

where k is a positive scalar and i is an ordinary least

squares (OLS) estimator of 13. Note that 13(k) shrinks 13 in the

sense that 1(k)'13(k) < 13'1. For a given k, 13(k) is biased

but consistent provided that plim(X'X)/n exists.
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The main attractive feature of the ORR estimator,

established by Hoerl and Kennard (1970a,1970b), is that

there exists a k>0 such that

E[6(k)-6]'[6(k)-6] < E 6 '( - )(3)

i.e., that

tr MSE[6(k)] < tr MSE(6).

An important extension of the above result was provided

by Theobald (1974) who proved that

(a) the statement in (3) above also holds if we use an

arbitrary non-negative definite weighting matrix W, i.e.,

E[6(k)-6]'W![6(k)-6] < E 6 6 ' ( - )(4)

(b) the condition in (4) above is equivalent to the

condition that

is non-negative definite;

(c) a sufficient condition for (4) to hold (i.e., for the

mean-square-error dominance of ORR over OLS) is that

k < 262 (5)

where * is the coefficient vector in (1) with each of the

explanatory variable normalized so that its sample sum of

squares is unity.
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2. Interpretation of ORR

2.1. ORR as a Mixed Estimator

We note that the ORR estimator of B can be obtained by

an application of the least squares method to the following:

y X E(6

= 6 +(6)
0 V-kIP v

where 0 a pxl vector of zeros. Let us compare this with

the mixed estimator of 6 of the model in (1) estimated with

the restriction that very likely

a < < b (j = 1,2,...,p) (7)

where a and b are constants to be determined in such a way

that the application of OLS to (6) yields 6(k). Following

Theil and Goldberger (1961) we write

=lb+ u (8)

where u.%N[0,(b-a)2/16]. The p-pieces of information about

each of the p-regressors can then be represented as

a = 1x0+62x0+...+63x1+6j+1x0+...+69xO+(-u.) . (9)

But since Var(u.) = (b-a) 2 /16 whereas Var(Ec) = a2

(i = 1,2,...,n), we remove the resulting heteroskedasticity

by re-writing (9) as

a( )( ) i 0 . .6 x ) ... +6 x0+iv. (10)

where v. = (-Iu
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Comparing (10) with (6) we have

a b a

a) = k(12)

which, for b>a, gives

a = -b

b = 2a

Thus ORR can be viewed as a mixed estimator with the prior

restriction that very likely

- < 6 <_+a (13)

for j = 1,2,...,p. Note that if the value of k is very

small relative to a, the restriction is not very binding

and ORR is close to OLS. If, on the other hand, the value

of k is large relative to a, the interval in (13) becomes

rather tight and the difference between ORR and OLS

becomes larger.

2.2 ORR as a Result of Restricted Minimization

Consider the problem of obtaining an estimator of 6 by

minimizing (y-XI)'(y-X6) subject to the restriction that

'S= r where r is positive and given. Setting up the

Lagrange multiplier function

H = (y-X13)'(y-X3)-(3'3-r), (14)

differentiating H with respect to 6 and equating the result

to zero, we obtain

6 = (X'X+XI)~ 1X'y (15)
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where the value of X is to be chosen so that 6'S = r,

i.e., so that

y'X (X 'X +AI)~ 'y = r. (16)

It is clear, of course, that 6 is then an ORR estimator of

6 with X=k. A small value of r results in a large value

of k and vice versa.

2.3 ORR as a Bayesian Estimator

If y/ BN(X6, a2 1n) and the prior distribution of B

is specified as -~N(0,c
2 Ip), then 6 has the following

posterior distribution:

02 ix(X 2x+2 -1

yN(X(X 'X + I)~Z X ' y 2 'X + )I)] . (17)

Thus the ORR estimator with k=o2I2 can be represented as

the mean of the posterior distribution of 6 given that the

mean of the prior distribution of is zero. If t2ois

relatively large, i.e., if the prior distribution of R is

relatively flat, then ORR and OLS are relatively close to

each other. A tight prior distribution of 6, on the other

hand, leads to a more substantial departure of ORR from

OLS.



8
3. Rules for Selecting k

In most cases the value of k is not given a priori but

has to be determined on the basis of available sample

observations. A large number of suggestions for

calculating k by various authors is presented in

Dempster et al. (1977). In this study we consider only those

rules for which a reasonable rationalization can be

provided and which can be implemented without a high

computational cost. Since most of the rules are developed

by reference to a principal component form of (1), we

precede the discussion of the rules for selecting k by a

description of the prefered transformation.

The regression model in (1) can be re-written as

follows:

y = Xj3+c (18)

= XPP'6+E

= X*a+E

where X* = XP, a = P'S, and P is an orthonormal matrix

whose columns are eigenvectors of X'X, that is,

PP' = I (19)

l 0o.,. .o

P'X'XP = . . . = A (20)

and a > 2>>.....> A . The OLS estimator of a then is
- -2p



a = 9

a = (P'X'XP)~P'X'y (21)

= (P'X'XP)~P'X'X.

= (P'X'XP)~ P' X'XPP'A

= P1

It is now possible to define an ORR estimator of a

in two different ways. Firstly, in analogy with a=P'S we

can set

a(k) = P' (k) . (22)

Alternatively, following (2) we can write

a(k) = [I+k(X*'X*)~] a . (23)

= [I+k(P'X'XP)~ ] 1

which, with the use of (2) and (21), becomes

a k = [I+k(P'X'XP)~] P [I+ k(X'X)~] (k). (24)

It is not difficult to show that the right-hand-sides of

(22) and (24) are equal, that is, that the two

definitions of a(k) are equivalent. Further, from (23) and

the diagonality of (P'X'XP) it follows that

a.(k) = ( )a (25)

j = 1,2,...,p.

3.1 Hoerl, Kennard and Baldwin Rule (HKB)

Hoerl, Kennard and Baldwin (1975) have suggested that the

value of k be determined as

^2
kHKB =p(26)

A B
2

B

^2
where a = (y-XB)' (y-XB3)/(n-p). This suggestion is justified
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minimizes the sum of the mean square errors is equal to

pa2 /Q3 '. By replacing the unknown parameters by their

least squares estimates, we obtain (26).

3.2 Thisted's Modification of the HKB Rule (HKBM)

Thisted (1976) finds that in some subsets of the

parameter space, and particularly in the case where there

is a high degree of multicollinearity, the OLS estimator

tends to have a smaller mean square error more frequently

than the HKB estimator because the latter seems to over-

shrink the OLS estimator toward the origin. For this reason

he suggested modifying the HKB estimator by using

2
kH = (p-2)a (27)

H KMB g *

Thisted argues that kHKBM is likely to do better for small p

because it does not shrink so greatly.

3.3 Wermuth Rule

Wermuth (1972) notes that

2
^2 p A 2 p a

tr MSE[a(k)] = a E + k EZ (28)
i=1 (X.+k) i=1 (A.+k)

By setting the first derivate of the above expression

with respect to k equal to zero we get

^2 pia
a E3 = k - 3 . (29)

i=1 (X.+k) i=1 (A1-k)

The value of k that solves the above equation, say kW, is

then to be used in ORR.
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3.4 Dempster Rule

An empirical Bayes estimator proposed by Dempster

(1973) and Dempster et al. (1977) can be developed as

follows. For a prior distribution of given as ~N(0,o2

and consequently that of a given as a~N(0,o2I), the

marginal distribution of a. (j = 1,2,.. .,p) is given as

22 1
~N{0,o2 + )} (30)

from which it follows that

^2
p ai 2

. 2 1 1 xp (31)i=1 a ( + )
1

2 2 2^where k = w/o . Dempster suggests replacing a by a and,

us in gth fact that E(X2)= p setting

^2p a.
. ^2 1 = p .132)N

i=1 a ( +

The suggested value of k, say kD, is then obtained by

solving (32).

3.5. Sclove Rule

Another empirical Bayesian estimator proposed by

Sclove (1973) is based on the idea that since the left-

hand side of (31) and (n-p)a are independent and are

2 2 2
distributed as Xpand a Xn-p respectively, it follows that

the quantity
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^2
p a.

1 /(n-p) (33)

is distributed as F _p. By noting that E(Fpnp) = p/(n-p-2),

Sclove suggests calculating k, say ks, by solving the

following equation:

^2

p i= p2 n- )(34)
i 1 1

+a

3.6. Criteria for Comparing Estimators

In the past all of the simulation studies of the ridge

regression estimators have used square-error loss (either

of estimation or of prediction) as the criterion for

comparing estimators. Clearly, square-error loss cannot

represent all of the loss structures in the decision making

problems. Therefore we use a more general measurement of

loss, the p'-norm, defined as

LP = { (k)-6 } (35)

and

La = {. (k)-a } . (36)

i4

We take p = 1,2, and -o so that the loss functions considered

are

L= ~ (k)-6I (p = 1) (37)

L= {~ MSE[6 (k)] }1/2 (p = 2) (38)

L =max{3 1 (k),...,Ip(k)} (p = °°) (39)

and similarly for a.
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Note that for p=2 we have La=L , otherwise the values

of the loss functions differ.

4. Design of the Monte Carlo Experiment

Unlike in the case of a known k, the small sample

properties of an ORR estimators based on a sample-determined

value of k are not known. In particular, it is not clear to

what extent, if at all, is the mean-square-error dominance

of ORR over OLS preserved under these circumstances. Further,

it is also not clear what the small-sample performance of

the ORR estimators relative to the OLS estimator would be under

a loss criterion other than that of the mean-square-error.

Finally, it would be instructive to compare the performance

of the different ORR estimators discussed in Section 3 above

so that there is a basis for making a choice in practical

applications. The Monte Carlo experiment whose design is

presented below is intended to provide at least tentative

answers to these questions.

The performance of a ridge regression estimator based

on a given value of k depends on (i) the number and the

values of the regression coefficients, (ii) the degree of

multicollinearity, and (iii) the value of the variance of the

disturbances, a2 . It can be expected that the same factors

would also be relevant for the ORR estimation with unknown k.

In the Monte Carlo experiment at hand we take the factors

(i) and (ii) into consideration but, following Thisted (1976),

leave the value of a2 constant (equal to unity) throughout

the experiment in order to keep the computer costs down.
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4.1 Construction of the Data Sets

In constructing the data sets (and in determining the

values of the regression coefficients discussed in the

next subsection) we follow, with some modifications, the

approach of Dempster et al. (1977). Two models, one with

4 explanatory variables and 20 observations and one with

8 explanatory variables and 40 observati ons, were used in

this study.

The values of the explanatory variables have been

generated from a standard normal distribution, modified to

reflect a low, a medium, and a nigh degree of

multicollinearity, and standardized to be used in a

correlation matrix form. 2) The resulting matrices are

denoted by XpX11, XpX21, and XpX31 to represent a low, a

medium, and a high degree of multicollinearity, respectively.

The values of the determinants of these matrices are

presented in Table 1.

To see the degree of multicollinearity among the

explanatory variables more clearly, the multiple correlation

coefficients of each individual explanatoryevariable on all

of the other explanatory variables have been calculated.

For each data set the highest of these multiple correlation

coefficients can serve as a convenient measure of

multicollinearity. 3 ) The results of the calculations are

presented in Table 2.

Given a model, a design matrix X'X, a true coefficient

vector , and a2=1, the values of e should be generated

from N(0,ac 2 I.), and the values of the dependent variable y
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should be obtained through the relation y=X +e. But since

the distribution of S, the OLS estimator of , is- well

known, the values of y need not be actually calculated;

instead, the values of S can be generated directly from

N(r,(X'X)~). The values of $(k) have been calculated using

equation (2).4)

4.2 Determination of the Values of the Regression Coefficients

The sets of the true regression coefficients to be

used in this study are determined by two factors, the shape

and the noncentrality of the coefficients. The first factor

determines the patterns of the coefficient vector while the

second factor determines the size of the vector. Two shapes

of coefficients are used.

Shape 1. The coefficients are in the following pattern:

[1 1 1 1] for the 4-variable model

[1 1 1 1 1 1 1 1] for the 8-variable model.

Shape 2. The coefficients are in the following pattern:

[0 0 1 0] for the 4-variable model

[0 0 0 0 1 0 0 0] for the 8-variable njodel.

The second factor, the noncentrality pattern 6, is

defined as

= tr-(X'X) .(40)

To see the sensitivity of the estimation results to the

variation in 6, we use the values 6=5, 6=20, and- 6=35.
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the

For

The shape and noncentrality parameter jointly determine

following sets of coefficients used in this study.

the 4-variable model

B11

B12

B21

B22

B31

B32

= (2.2361, 2.2361, 2.2361,

= ( 0 , 0 , 4.4721,

= (4.4721, 4.4721, 4.4721,

= ( 0 , 0 , 8.9443,

= (5.9161, 5.9161, 5.9161,

= ( 0 , 0 ,11.8332,

2.2361).

0 )

4.4721)

0)

5.9161)

o ).

For the 8-variable model

B11 = (2.2361,

2. 2361,

B12 = ( 0

0

B21 = (4.4721,

4.4721,

B22 = ( 0

0

B31 = (5.9161,

5.9161,

B32 = ( 0,

0 ,

2.2361,

2.2361)

0

)

4.4721,

4.4721)

0

0 )

5.9161,

5.9161)

0 ,

0 )

2.2361, 2.2361, 2.2361, 2.2361,

0 , 0 , 6.3246, 0,

4.4721, 4.4721, 4.4721, 4.4721,

0 0 ,12.6491,

5.9161, 5.9161, 5.9161,

0

5.9161,

0 ,0 , 0 ,16.7332,

In the last subsection 3 X'X matrices with different

degrees of ill-conditioning were constructed for each of the

two models. In this subsection 6 different sets of coefficients

with different combinations of shapes and values of 6 were

determined for each model. The combination of all the factors
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yield 3x6 = 18 different designs for each model. Each design

is identified by a four-digit number (for example, Design 1221)

in which the right-most digit is always 1. The second digit

from the right identifies the degree of ill-conditioning.

It takes values 1,2, and 3 for XpX11, XpX21, and XpX31,

respectively. The third digit from the right identifies the

shape of the coefficient, 1 for shape 1, and 2 for shape 2.

The fourth digit identifies the values of the noncentrality.

It takes a value 1 when 6=5, 2 when 6=20, and 3 when 6=35.

4.3 Determination of the Number of Replications.

The performance of the estimators considered in this

study is to be judged by the size of the average loss.

Since the properties of the distribution of the losses

of the ORR estimators are not known, the number of

replications is based on the distribution of square error

loss of OLS. Let L1 ,... Ln be the square error losses of the

OLS estimator with n replication. It is known that, if the

error e is normally distributed,

E(L_) = a2 tr(X'X)~ 1- 2 1

and

V(Lg) = 2ci4 tr(X'X)-2 = 2 4 ~ +) 2 (42)
i=1 i

for i=1,...,n. Therefore it follows from the ;basic sampling

theory that
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E(L) = E(L.) = a2
1 i=1 1

V(L) = nV(Li) 2=anpE(2
i=1 i

and the coefficient of variation of L is

CV([) = = )/ ( ) . (43)
E([) n1 1 1.

If X'X =- I, i.e., A1 = ... = Ap = 1, then

CV([) = .p

If X'X is extremely collinear, then

A 121
CV(L) =n since ( )2

i 1

as some A. - 0. Therefore we have

< CV(I) <n.

If the coefficient of variation of I (the average

square loss of the least squares estimator) is to be less

than 5%, that is, if

CV(L) < 0.05

the number of the replications should be as follows.
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For the 4-variable model:

Data Set Used

XpX11

XpX21

XpX31

For the 8-variable model:

Data Set Used

XpX11

XpX21

XpX31

Number of Replication Needed

346

747

783

Number of Replication Needed

189

617

702

From the above calculations it appears that up to 800

replications should be used. Because of cost

considerations, we used 500 replications for each model and

each data set. With this number of replications 6.3% accuracy

is achieved in the 4-variable model when the most ill-

conditioned data set XpX31 is used, and 5.5% in the

8-variable model when XpX31 is used.

5. Evaluation of Results

5.1 Presentation of Results

In each of the different regression problems of each

model the following estimators of the regression coefficients

have been computed:

(i)

(ii)

The least squares estimators E and a.

The various types of ridge estimators in both

original and principal component forms, that is,

p(k,) and a(k~) for Q = HKB, HKBM, D. W. and S.
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The following statistics based on the 500 replications

have been computed for all the estimators, for three

different loss structures, and for both original and

principal component forms:

(i) The average loss.

(ii) The standard deviation of loss.

(iii) The number of times that L (0) < L (k9 )

P' P'
(and L (0) < L (k ))for P' = 0, 1, 2, and A = HKB,

HKBM, D, W, and S.

These statistics are presented in Tables 3 through 20.

5.2 Summary of the Main Results

Regardless of the loss structure used in the experiment

the following results are apparent.

(a) The ORR estimators never perform significantly worse

than OLS, and they perform very much better in many

regressions.

(b) The advantage of the ORR estimators over OLS is the

greater

(i) the higher the degree of multicollinearity;

(ii) the lower the value of the noncentrality parameter;

(iii) to a lesser extent, the higher the number of

explanatory variables. 5 )

(c) The shape of the regression coefficients affects the

performance of the ridge estimators. In both models,

other thinas unchanod. the imnrnvom ont -+ho v-ano ne-+;i~~+-
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can achieve is greater when the shape is [0 0 1 0] or

[0 0 0 0 1 0 0 0] than when the shape is [1 1 1 1] or

[1 1 1 1 1 1 1 1].

(d) With a very few exceptions, the HKBM estimator is

dominated by the HKB estimator. The sums of the simple

ranks for each loss structure over the 36 regressions used

in the experiment are as follows.6)

Mean Square Error Loss:

Mean Absolute Error Loss:

Sclove

Dempster

HKB

Wermuth

HKBM

Sclove

Dempster

HKB

Nerm uth

H K B M

Dempster

Scl ove

HKB

H KB 1

Wermuth

74

78

108

138

142

75

84

109

132

140

76

77

101

135

151

Maximum Absolute Error Loss:

Although approximately the same results were used

regardless of the loss structure used, the magnitude of the

improvement of ORR over OLS is notably smaller when the

absolute error (average or maximum) rather than the mean

square error criterion is used. This is, of course, to be
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expected since the ORR estimators are especially designed

to reduce the mean square error relative to OLS.

6. Concluding Remarks

The ORR estimator with a given k is a linear estimator

which is biased but which, for values of k in a certain

interval, has a smaller mean square error than the OLS

estimator. Since the interval of dominance of ORR over OLS

depends on the true values of the regression parameters,

the advantage of ORR (of this type) over OLS is for practical

purposes illusory. The various interpretations of the ORR

estimator offered in Section 2 above, however, indicate that

if we do have some prior knowledge about the parameter space

of Q, and if this knowledge is sufficiently sharp, the ORR

estimation provides a convenient and simple way of

incorporating such knowledge in estimation and of reducing

the size of the mean square error.

When the value of k is not given a priori and has to be

determined from sample observations, the resulting ORR

estimators are no longer linear and can compete with OLS on

equal grounds of the same prior information. The results of

our Monte Carlo experiment indicate that, in general, the

ORR estimators do outperform the OLS estimator very substan-

tially when the degree of multicollinearity is medium or

high, even when a loss criterion other than that of

mean square error is used.
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In examining the performance of the various ORR

estimators considered in this study, it is apparent that

the empirical Bayes estimators (i.e., those proposed

by Dempster and by Sclove) lead the pack. The disadvantage

of these estimators, though, is the difficulty and the

messiness of computation. It may thus be reasonable in

practical applications to use the estimator proposed by

Hoerl, Kennard, and Baldwin (1975) which is simple to

calculate and which performs also very well relative to

OLS. The modification of this estimator proposed by

Thisted (1976) has not worked out too well, and neither

has the estimator of Wermuth (1972) which, in addition,

is hard to compute. On the basis of our experiment neither

of the two last-mentioned estimators can be recommended.

In drawing our conclusions we should be reminded of the

fact that the assessment of the ORR and OLS estimators is

based entirely on the loss in estimation. Since the small

sample properties of the (nonlinear) ORR estimators are

not known, the ORR procedure is not suited for testing

hypotheses. This makes ORR uninteresting for many

econometric problems. It would seem, though, that ORR may

well become a powerful tool in forecasting, particularly in

situations where a high degree of multicollinearity makes

the OLS forecasts unstable.
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TABLE j

Determinant Values of the XpX Matrices

4-Variable Model

det (XpX11) = 0.39454

det (XpX21) = 0.01594

det (XpX31) = 0.004954

8-Variable

det(XpX11) =

det(XpX21) =

det(XpX31) =

Model

0.11827

0.00119

.0.00003
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TABLE 2.

Calculations of Multiple Correlation

Coefficients of Independent Variables

Data Regression Regression Coefficients R2

4-Variable Model

XpXll

XpX2l

XpX31

X11/X2 'X3 ' x 4

X2 /xl ,x 3,x 4

x3 /xl ,x 2 ,x 4

xl/x1' 2 ,x 3

X2 /xl ,x3 ,x 4

x3 /x 1 ,x 2 x4

x4 /xl'x 2,x 3

x2 /xl ,X3 ' X4

X3/1' 2' X3

-0.698, 0.232,

-0. 396 , 0.4 78 ,

0.206, 0.748,

-0.294, -0.716,

-2.199,

-0.397)

0.680,

-0. 719,

-2.436,

-0. 393,
0.761,

1.085,

0.515,

1.787,

-1.823,

1. 198,

0.497,

1. 956;

-0.294

-0.407

0.306

0.345

-1.111

-0.109

0.900

0.928

-1.234

-0.509

0.989

0.948

0.291

0. 597

0. 370

0.291

0 .893

0.980

0.933

0.931

0.963

0.994

0.976

0. 9772-0.751, -1.918,

8-Variable Model

XpXll X1 /others

X2 /others

X3others

X4 /others

Omitted 0.592

0.547

0.561

0. 306
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Table 2 (Continued)

Data Regression Regression Coefficients R2

8-Variable Model

XpXl1 X 5 /others Omitted 0.248

X 6/ others 0.446

X 7 /others 0.371

X 8 / others 0 .542

XpX2l X /others 0.977

X2 /others 0.969

X 3 /others 0.954

X4 /others 0.670

X5 /others 0.655

X 6 /others 0.953

X7 /others 0.902

X 8 /others 0.960

XpX3l X 1 /others 0.991

X2 /others 0.988

X3 /others 0.983

X4 /others 0.767

X5/others 0.779
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TABLE 3

4 Variables, 20 Observations, Design 1111

Ratio of
Average Frequency

Model Structure Average S.D. of Loss to L(K)>L()
Estimator Form Loss Loss Loss OLS Out of 500

A P - =0 1.97696 1.00720

OLS

HKB

HKBM

Dempster

A P' = 1 3.83375 1.51744
A,B P' = 2 6.73029 6.02392

B =0= 1.81186 0.75321

B P' =_1 4.10552 1.94685

A P- = 1.73360 0.73095 0.87690 196
A P' = 1 3.62562 1.31289 0.94571 203
A,B P' = 2 5.38974 3.87112 0.80082 210

B p' =0 1.64997 0.58333 0.91065 206
B P'_=_1_ 3.77358 1.52757 0.91915 208

A P'' = 1.79035 0.81969 0.90561 187
A P' = 1 3.62690 1.35215 0.94604 172

B P'T= 5.62652 4.50050 0.83600 188
B P' =c 1.68300 0.64146 0.92888 180
B P' = 1 3.79841 1.64395 0.92519 178

A P' = 1.76725 0.69821 0.89392 213
A P = 1 3.79550 1.37892 0.99002 235
A,B P' = 2 5.74768 3.86075 0.85400 228

B P' = 0 1.67003 0.56288 0.92173 228
B P' = 1 3.96813 1.58639 0.96654 225

A P' =0 1.81929 0.78928 0.92025 198
A P' = 1 3.72688 1.34143 0.97212 203A,B P' = 2 5.83925 4.37954 0.86761 210

B P' = 00_ 1.71213 0.61287 0.94496 202

3.1538_6.61033 0.95369 197

A P-_ _ = 1.77619 0.67680 0.89844 222
A P = 1 3.86099 11.40389 1.00711 1 254
A,B P' = 2 5.88509 3.82794 0.87442 241

B P'=-0 1.67510 0.55517 0.92452 237

Wermuth

Sclove

B P' = 1 |4.04781 11.60230 0.98594 240
- I 

I

Factors used:

Input data:

1) Coordinate system #1.
3) 6 - '/tr(X'X)= 5

1) Design matrix XpX1!

2) Eli = [10 8 5 1]
4) Coefficient shape [1 1 1 1]

2) Parameter vector Bll

A: principal component form B : original form
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TABLE A~'

4 Variables, 20 Observation, Design 1121

I f Ratio of

Model Structure Average S.D. of Loss to L(K)>L(O)
Estimator Form Loss Loss Loss OLS Out of 500

A P=.00 7.50875 5.45809

oLs

HKB

HKBM

*~ 'TP 9.73959 5. 64434 _____ _____

,B~ P' = 2 88.9236 0117.381 _____ _____

B ='co 5.87520 {4.12414 -__P'__1.168_0_63
A P' = 0 3.34691 2.68892 0.44574 87
A P' = 1 5.52808T 2.91111 0.56759 * 5-
AB P" = 2 21.0191 39.5339 0.23637 90

B P' = c 2.82988 1.99122 0.48167 87
B P = 1 6.68027 4.88294 0.47055 89

A P' = C 4.12447 3. 62961 0.54929 78
AP =1 6.29570 3.82753 0.64640 85

B P 32.7538 61.8084 0.36834
B P co 3.40078 2.70307 0.57884 0

B P = 8..04792 6:62166 0.56688 80

A P _ ° 2.59282 1.36283 0.34531 93
A P~ = 1 5.09211 1.70442 0.52283 122
A,B P" = 2 11.9878 18.3533 0.13481 102

B P"= 2.28045 1.01916 0.38815 96
B '=1 5.74137 2.62389 0.40441 112

A P' = 0 2.45183 0.40858 0.32653j 84
A P' 5.26325 1.02268 0.54040 1_______AB P'=j 10.4172 3.72918 0.11715 96

BI P"=C 2.19769 0.36034 0.37406 1
B PI- = 1 5.84381 1.20561j 0.41163 102A 1. r r r r w w .m w wa 

., w s 2.53540 1.12367 0.33766 93
P"__ = 1 5.10914 1.53612 0.52458 130

A,8Bt '=2 11:319 14.4443 0.12729 103
B P'_ = °° 224202 0.84230 0.38161 87

Dempster

Wermuth

Sciove

Ui s. 5.712476 2.26039 0.40 3241 119
"_.___ "A-_r_0__4.._"- . V J%.-# I 11 QJL T I J60 IMAMW

Factors used:

Input data:

3) d = r'W/tr (XX) = 5

1) Design matrix XpX2I

2) E12 = [30 15 60.1]

4) Coefficient shape [1 1 1 1]

2) Parameter vector Eli

A: principal component form B rgnlfrB: original form
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TAB LE$

4 Variables, 20 Observation, Design 1131

Ratio of
Average Frequency

Model Structure Average SOD. of Loss to L(K)>L(0)Estimator Form Loss Loss Loss OLS Out of 500
A P'= 13.2312 9.84503

OLS

HK

HKBM

P= 15.5176 9.94256t
AB P' = 2 274.879 371.344 _____ _____

B =' 10.3129 7.58909 __________

B P'=1 2 4.7517 18.2217
No - - m10m o I g m - 4

A P' 4.80502 5.058331 0.363 16 51
A P 1 6.99956 5.187121 0.45107 53
A,B PA 2 51.2816 123.819 0.18656 55

B P' _ = 3.93423 3.84347 0.38149 57
B ' P=1 9.2825 7 9.26437 0.37503 57

A P' = 0 6.30677 6.77884 0. 47666 51
A P' = 1 8.51672j 6.89508 0.54884 53
A,B ~PWT 88.3901 194.303 0.32156 54

B P " = 5.07679 5.16986 0.49228 55
B = 1 12..033 2 12.4568 0.48616 -- 57

AP _00 2.84 529 2.33016 0.21505 52_____

A P = 1 5.30203 2.45236 0.34168 66
$ P" = 2 16.9249 63.3557 0.06157 59
B P" = 0 2.46812 1.76895 0. 23932 58

B P =1 6.15169 4.33448 0.24854 64 --

A P 0 2.52789 0.51794 0. 19106 52
A P = 1 5.35044 0.94069 0.34480 64
A, B = 2 11.1427 6.70392 0.04054 61

B P'= 2.24069 0.40819 0.217 27 56
8 P' = 1 6.09543 1.28564 0,24626 66

A P' =0 2.7186] 1.72171 0.20547 55
P' = 1 5.23653J 1.91565 0.33746 67

AB P = 2 13.9587J 36.8649 0.05078 61
B P.O*= 0 2.37539 1.30561 023033 58

n . - - - - --

Dempster

Werrnuth

Sci ove

b F ' = I I f nn,)n,) I I 1 ')7 ' ccz
£ .VVU'J.U 3..,J4O/ .L'~44 ± 0.

Factors used:

Input data:

1.)
3)

Coordinate system (#16= F'a/ftr (X'X) = 5
2) E13 = [50 20 10 O.051
4) Coefficient shape (1 1 1 1]

2) Parameter vector Bli1) Design matrix XpX31

A: principal component form B rgnlfrB: original form
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1A3LE 17.6
4 Variables, 20 Observation, Design 1211

- _____ -Rati~o 01

Model Structure Average S. D. o Averas to reK)eri{0
Est orator Form Loss Loss Loss ! OLS 1 Out of 500

A P.- 1.7696qCo 1_nn72

OLS

HKB

H KB M

A P~= 3.83375 1.144_________
AB! 2 6.730290 6.02 392______________

P" Co 1.81±86 0.75321______I______
B P ' = 1 4 . 1 0 5 5 2 - 1 . 04 6 85AP 

' _ C
AP Co 1.66727 0.70714 0.84335 170

A jP" = 1 3. 54674 1.30482 0.9 2514 I 193
A, B 1 TP = 2 5.080391 3.731441 0 7 5485 174
_B Pr______ 11.65646 0.64741 10.91423 1 165

B3.577041 1.40375 j0..87128 -I-183

A P' C 1.75506 0.81754 0.88776 153
A IP" = 1 3.57978 1.37111 0.93376 153
A,B P' = 2 5. 46381 448126 0.81183 ! 131

B 00P 1.67031 0.67695 0.9 3 218 8 132
B P3 1o 364106 6 12 6 -i0.90382 154

L6-55A . 1.66941 .655 0. 8447n - 185
A P = 1 1.3. 66291 1f1.34501 I 0, iU44 1 21ABP 

25.3 10
A, .31 .62608 10.77711 1 200

B P a P!=Co 1.72204 10.68537 10.95043 1 19,5
B P"=1 3,57923 1.31867 0.871821

A jp.-0= 1.7484 0.7669 6 0.88439 - 175
A JP" - 1 3.67322 1.33332 0.95813 188
A, B P' 2 5. 52122t 4. 24091 0.82035 180

B JP' 1.712 0.67430[ 0.94489 168
B fP' =1 3.73471 1.4 9982 0.90968 189

A IP'=C 1.66686 0.63684 0.84314] 195
N7 P 1 3.71974 1.35687 0.97026 221

=, 2 1 5.28638 3.52 731 1 0.78546 216
B j P"= C 1.75303 0.70071-1 0.9 6 753 I 209

Dempster

Werrnuth

Sc ave

B ''= 1 'I - S79cv) I 1 );a-nc n P,7nnc I -

. v 1 . U7 Ir.O Q U I L1

Factors used: 1) Coordinate system #=1
3) 6 =_ 3"i3/tr(X X) = 5

input data: 1) Design matrix XpXII

2) EIL = [108 51 ]

4) Coefficient shape [0 0 1 0]

2) Parameter vector B12

B: original formA: principal component form
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TABLE 7

4 Variables, 20 Observations, Design 1221

- Ratio ofj
Average Frequ~ency

Model Structure Average S.D. of Loss to L (K)> L(0)
fEst Thnator Form Loss- Loss Loss OLS Out of 500

A 00- 7. 5 75 549Rfl,

OLS

HKB

H KBMI

A IP = 1 9.7395jj 5.64434_________I
A,B P' = 2 1 88.9236 X17.381 _ _ ____ _____

_____00 =5.87 520 4. 12414A ______I_____

A P' _ = 3.13077 2.76830 0.41695 61
A P' 1 5.25333 3.01297 0.53938 1 70
A, B {P' = 2 119.8525 140.08851 0.22325 69

B TP~'= 2.70245{ 2.04486 0.45998 72
A P'-1 6.26951! .23 .28 5.01894 - 0.441471 74 -

A P' = 1 6.08359E 3.95064 0.62514 70 {
A, B P~ 2 r131.9849 162.35751 0.35969 67

B {p '= x {3.29381 L2.76611_ {0.56063 60
B P 1 7.75833 6.7842 0.54649 -67

A P _ 2.18604 1.44862 10.29 113 1 64
A P = 1 4.488751 1.788971I 0.46088 1 77
A ,B I P = 2 1 9.56378 1.20.3 617 0.10755 1 76

B j_________ 2.15363 1.14979 1 0.3 6656 1 83
B P = 1 - 4.64847 2.661541 0.32743 72

A P=co 20 12 0.44315 0.26894 60
A P' = 1 T 4.78311 1.089161 0.49110 80
A,B P~ = 2 1. 795191 3.13401 0.08766 1 69

B P _ °° 2.35667 0.61844 0.40112 82

B P..= 1 4.3145 0.84083. 0.30391 - 69 -

A P'=C 2.09389 1.18701 0.27886 64
Aj P = 1 4 .45463J 1.59956 0.45737 87

SA,B P' = 2 1 8.57504 115.5224 0.09643 75
B fP _= 2.12574 0.99580 0.36182 88

B P = 1 j 4.47557 2.20046 0.31525 j 70

Dempster

Werrnuth

Sciove

Factors used : 1) Coordinate system #~1
3) 6 = W'R1tr(XX)"=x)

2) E12 = [30 15 6 0.1]
4) Coefficient shape [0 0 1 0]

2) Parameter vector B12

B: original form

Input data: 1) Design matrix XpX21

A: principal component form



32

-nABL3 E

4 Variables, 20 Observations, Design 1231

Ratio of
A verag e Frequency-

______ orm _Stru ture_ AvrageS._D._of__ssto_________

tod tricue verae S..of osLoo(s>LOLstimtor _____ Loss Lss Loss OLS Out of 50

IA = i'~ '~i~ o RASCW~

OLS

H KB

H KBM

AAB K' = 2 r)Q QLs79I 75. 17 A, BP___2_P)74____________I
B P l2 4 7 5 p C',o8 2 Z1 7 1- w .r w w- - I F r

A P C= 4.55621 5.17 622 0.34435 39
A P'= 1 6.71843 5.33061 0.43296 { 40

_____________ _ P_____________2______ 50____________478___ ________124 .63 _____ _____________0. _______13207______________40___

B P' 00 3.779211 3.91657 0.36646 41
B P' =1 1 8.88687 9.44767f 0.35904 -1 39

A P ' 6.11257 6.90027 .0,46198 1 3-

A P 1 j 8.287 36 7 .04901 0.53406 1 39

A,B P" = 2 (87. 5499 195.05 0.31850 43
B P" = 1o 4.93789 5.25758 0.47881 35 J
B P" = 1 11.7263 12.6517 0.47376 $ 41

A P' 0= 2.31643 2.38596 0.15742
A [P= 1' 4. 6115 . 2.54452?1 '0.2718 45
A , B P' = 2 13.7259 [.59.1812 004993 1 40--B P' = 0 2.25938 1.83653 0198 49

B P' = 1 J4.911271j 4.37501 0.19842 ~ 41--

A P' =0 2.044 23 0.37133 0.154 501 38
A P ' =1 1 4.84041j 0.92322 0.31193 4L
A, B P ' = 2 7.913141 2.48927 0.02879 39

B K ' _=C 2.44731 0.55461 0.23731 42
P = 1 4.28263 0.6515L. 0.17302 40

A _ ' _9O 213103 2.05906 0.16484 42
AJ P' =1 1 4.51623I 2.243321 0.29104 48

A, B jP' = 2 !111.727 155. 6343 0.04266 { 40
B P ' = _2.1912 1.61356 0.21247 i 49

Dempster

Wermuth

Scl ove

B jK' = 1 I 4.6473 1 3.78633I 0 .18776 f 40
" v v v y

Factors used: 1) Coordinate system 11

3) 6 = 3 /tr(X X) = 5

Input data: 1) Design matrix XpX31

2) E13= [50 20 10 0.05]

4) Coefficient shape [0 0 1 0]

2) Parameter vector 312

A: principal component form B rgnlfrB : original form
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TABLE .
4 Variables, 20 Observations, Design 2111

Mod el
EstimaorFo'

i

SSucm S. D. of
LOSS

Ratio of

Average
Loss toAverage

Loss

Frequency
L(K) >L(O)

j

R

OLS Out of 500
P= 1.97696~ i. on72 I

OLS

H KB

HKBM

A iP~ 3.83375 1.51774__________
AB P~ 2 6.73029 6.02392 _______1.81186__.75321

B ' P= 1 4.10552 1.946851

A P' A= c 1.93723 -0.94044 0.97990 276
A IP' = 1 3.83387 1.4 7664 1.00003 251
AB P~ = 2 6.51543 5.48678 0.96808 { 268

B P = 1.79896{ 0.71843 0.99288 252
B P = 1 4.05982 1.83243 0.988871 269 -

A CO' 1.93374, 0.954691 0.97814 266
A -- = 1 3.7879 1 1.47421 0.98804 j 22T

A,B { P = 2 f6.44532 j5.8949 j .95 66 2 M7
B P [ 1.78712 10.72228 00 .8635 ___231 _

B P =1 4.02312 . .9763 231

A P = 1.94595 0.939441 0. 98431 276
A { P =1 1 3.86146 1.48981 1.00723 255
A,B P = 2 6.59174 1 5.52311j 0.97942 272B P'' = [O 1.81028 0.71731 0.99913 256

' = P1 4 .09022j -1,83734 0"0967y7

fA P' _ C 12.03829 10.999941 1.03102 . 276
A P' = 1 [ 3.96299i 1.54681 1.03371 1 251AIB P' = 2 7. 106651 5.97493I 1.05592 I 260

B P' = 1.86553 0.75377 1.02962j 247
-B P-'=1 _ -4.23171 1.93399. 1.03074 269

A- p' _ ___1.9583 0.94224.1 0.99056 281
~j P' = 1 ! 3.89177 1.50273 1.01513 265

A, B = 2 { 6. 68726 5.53819 0.99361 279
B TP' = ( 1.820721 0.720031 1.00489 265

n 1 J - , / 1 , A ri . _.- - -- _

Dernpster

Werrnuth I

S::;v

b V" _ 1 1 4.126~8 1.84 07 7 1 1 .05 1 8 29" .+ .v E s. fv ' 7V!r t 1" (V J1 v 1 L .

Factors used: 1) Coordinate system #1
' 3/ tr (XX) = 20

2)
4)

Elil= [10 3 5 1)
Coefficient shape [1 1 1 1]

Data inut: 1) Design matrix XpX11 2) Parameter vector 321

A: principal component form B rgnlfr: original form
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TABLE /Q

4 Variables, 20 Observation, Design 2121

Ratio of
Average- Frequency

Model ' Structure Average S.D. of Loss to L(K)>L(0)
Estimator Form Loss Loss Loss OLS Out of 500

A 7.5n87 5 S 5. rn

OLS

H KB

HKBM

A T = I______.7_____5______64_4_____
A.B8 P' = 2 1 88.9Q236 U-17.381 L____________

B P' -=o 5.87 52 L.12414 _____________

B P'= 14.1968 10-0631 ~-I - --

A '= C 4.57091 2.76715 0.608751 170
A T = 1 l 6.84102 If 3.0185 0.70239 171
A, B T = 2 1 31.423 1 42 .05761 0.35337 169

B P = 1O 3.67 535 j2 .06741 0. 62557 j 169 j
B' = 1 8.78642 5.05215)J ... w rr.wr. 0.61890 1 170

A ______5,153 3 63381 n768,627 152
A T ' =1 T 7.38174 13 .83796 0. 757 91 153
A, B P 2 42. 5101 164.0309 0.47805 153

B P________ .11319 2.72771 0. 70009 155
B P = 1 9.35388T 6.65282 0.69409~ 151

A P"= 4.25731 1.99359 0.56698 179
A T = 1T 6.64 912 2.34312j 0.68269-0T 181
A, B P = 2 125.3484 {126.2781 0.28506 179

{ B P'= 3.43954 1 1.48956 0.58543 180

A IP c 4.67897 I 0.87838 0. 62314 192
A TP" = 1 { 9.20477 2.32666j 0.94509 247
A,B P' 2 j35.8725 13.2017 0.40341 214

B j "= C 3.87957 0.1377L 0.66033 199 1
B ' = 1 I0.9817 2.55127 0. 754 I 1

A P'=0 .239 1 7493 0.76384181
IA T ' 1 1 6.67845 2.14654 { 0.68570 183
A B P' = 2 24.405414 I20.777 f 0.97445 182

B P CO = T3.42492 1.3033 I0.58295 I 18 2

Dernpster

Wermuth

561 ove

B 1 P' =1 18.23?177 13.23037 1 0.57983 i 1S3

"'. -0 I i0 -- ~ .F I , V -! ,7 - I 1

Factors used: 1 ) Coordinate system #1l
3) 6 = $3/ tr (X'X) = 20

Input data: 1) Des ign matrix XpX21

2) E12 = [30 15 6 0. 1]
4) Coefficient shape [1I 1 1]

2) Parameter vector B21

A: principal component form B rgnlfrB : original form
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TABLE /1

4 Variables, 20 Observation, Design 2131

Ratio of

Average Frequency

Model Structure Average S.D. of Loss to L(K) >L (0)
Est imator Form Loss Loss Loss OLS Outof_500_

A n _ '] 110 1 1) e*i l ^ ,

OLS

H KB

HKBM

AP = 1 i .5176 9.942561_ ____
A,B8 P = 2 274.819 X371.344 If_______

B ________ 10. 3129 7.58909______

A 00 6.09794 4.83074 0.46083 1 
=1 8.{-0 -49D Of506 ( 106

A,B P' 2 j63.4131 124.96 0.23070 105

B P'=C 4.84131 3.70275j 0. 46 9 44 108
B P = 1 11.526 8.89425~ 0.46567 103

A P'' -O 7. 4165 6.506861 0.56053 t 100

A { p = 1 1- 9.685791 6.60208 0.62413 99
A,B j P = 2 U00 .183 1195.305 1 0. 36446 98

B (IP' _859,_ 1 _4.99352 10.56817 101
B P"=1 1.9739 12.0024 0.56456 1 97

AP=C 4. 904 2.38995 0.__37064 112
A___ P ' = 1 7. 33294 2.58684 0. 4 7256 115
A, B TP= 2 33.0985150.8505 0.12041 111

B P = T 3.92621 1 .82379 0.38071 115BP " 19.33 1 4 42 4 0.37 071 9
A P' co 14.858 0.415731 0.36 716 112
A P 1 [9.55'912 1.79953 0.61602 1 142 I
A, B = 2 138. 8612j 9.90598 , 0.14138 125

B P' _ CO 4.01987 0.42438 0. 389 79 116

AP___ CO K80871  2.07469 0.36344 114
P'____1 f 7.28546 2.31217 0.46950 116

A_,_B_ 2 130.9 34 7! 44. 89171 0.11254 115
B P ='c_ L3.352 76 1.5915 9 I 0.37359 I 116

Oempster

Wermuth

Sd ove

I B P- 1 9.183055 1 3.84-089 10.37091 1 110
--- - t_ - ---

Factors used:

Input data:

3) 60=2tr (X "X) = 20

1)' Design matrix KzpX31

2)
4)

E13 = [50 20 10 0.05]
Coe ffi cients s "ape [1- 1 1 1]

2) Parameter vector' Bel

A: principal component form B rgnlfrB: origina3 Pori

71*
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TABLE /2

4 Variables, 20 Observation, Design 2211

Ratio ofF
Average Frequency

Model Structure Average S. D. of Loss to L(K)>L(0)
Estimator Form Loss Loss Loss OLS Out of 500

A CI 1.97696 1.00721

oLs

H KB

HKBMI

AP = 1 1 3.83375j 1.51744 ______
A, B P 2 16.73029 16.02392 ______

B 21 = 11.81186 f0. 7532______

-B - P' = 1 -'.10552 1.9L685

A P= c 1.8961 0.91364 0.95910 1 265
A T = 1 1 3. 78838T 1.47938 0.98817 1 234
A,B T ' 2 1 6.294141 5.23561 0.93520 250

B P'_r. 66=0.2 7D-i . /5 6223
B P = 1 3.95 1.774681 0.973211 247

A P' 1.91253~ 0.94916 0.96741 248 -

A P"=1 1 3.7731 1.48012 0.98418 } 219
AB P = 2 6.3602 5.49406J 0.94501 233

B Pj _ I1.76805 J0. 73178 I0.97615 { 207
B P = 1 4.00314 1.842% 0.97506 $ 227

A j ' _ 1.89786 0.90994~ 0.95999 267
AP = 1 { 3.80248 1 1-A797S 0.99185 237

A, B P = 2 6. 31633 5.22 718 0. 93849 1 255 1
B jP' = a _1._77376 0.72883 0. 9739 7 1 227

B ' = 1 4.00589 1.76269 0.97573 251

AB ___._w+_____a.. w -w .u r r r r + ". 1
A.0_C 2.00756 0.95997 1.01548 276

A___________ '________________ 3.97794_________________ __1.57056________ __________1.03761 ____ _______________233 _____

A, g p =2 76.9876T5.9540 1.03781 259
B 0 CO 1F.85454 0. 77791 1.02355 227

B P'=1 4.21108 1.84813 1.02571 256

AP _ _0_1.89952 0.90353 0.9608327

p'___ =________3.82123 11.49126 {0.99673 2t,2A '=2 6.35136 5.18492 0.94370 1 265
8 P=x ( 1. 782381 0. 73300 0.98373 4 232 {

Dempster

Werrnuth

Sciove

B j =p1_4.01442 ;1. 749 32 0.97781 T -255
Factors used: 1) Coordinate system I 1

3) " 32/ tr (X X) = 5

2)
4)

Elil= [10 8 51]
Coefficient shape [0 0 1 0]

Input data: 1) Design matrix XpXll 2) Parameter vectorB 22

A: principal component form B rgnlfr: original form
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TABLE:/

4 Variables, 20 Observations, Design 2921

- Rat ioof

Average Frequenc y
M4odel Structure Average S.D. of Loss to L(K)> L(O)

Estimator Toll Loss Loss Loss OLS Out of 500

A P =C 7.50875 5 .458091

OLS

H KB

H K3M

A 9 7 9 9 5 .6 4 3 A = 2 ! 8 8 . 9 2 3 6 41 1 7 .3 8 1_ _ _ _ _ _ _ _ _

B __________5.3752 4.124 14I
B8 P'= 1 j14.1968 10.0631I-

A P = 0 4 .10834 2.820581 0.54714 i 115
A P' = 1 6.345451 3.07799 0.65151 116
A, B TP' = 2 27.56331 42.949 0.30997 118

B P' _ jO 3.3291 12.10604 I 0.56664 ( 112
B P' = 1 7.95861 5.14542~ 0.56059 117w

A CO 4.83256 3.75143 0.64359 103
A P = 1 ].7-03397 3-98244 07222 __0___

A,B P 2 40.0807] 65.2216{ 0.45073 I 107

B (P" 3.874351 2.80919j 0.65944 106
A P '_ _ _ _ _1 _ 9_ _ _ _ _ _ _ 6 .8 7 1 2 2 1 0 .6 5 3 4 1 7 11 0

A_____ _______3.57022___ 2.03753___ 0.47547 122 -

A P = ~1 T5.89682 [2.3493 10.60545 F 128
AB _P"___2__ 19.8371 128.8658( 0.22308 125

AB -FP 2 0.95146 11.52034 10. 50236"'118
B P =1 70359 3.6927310.495651 121

A P' = 3.76584 0.88234 0.5015 3 143
A [ P = 1 8.206241 2.5385 0.84257 207
A,B P' = 2 1 25.0808( 11.35691 0.28205 165

B IP' _=C 1 4.1525 1.40389 10. 706 79 179
B.. P' = 1 7.52448 1.64142 0.53001 149

A " P' -°° 3.46 7i17041 0.46114 I 124
P= 2 5.81649 1 2 13!:2 0.59720 134

AB P'= 2 18.1304f 22.2712 0.20389 130
B _ _____0 2.87441 1.32599J1 0.48925 1 121

B 1 P' = 1 J 6.8353921 3.196531 0.48278 j 123

Dempster

Wermuth

Sd ove

Factors used: 1) Coordinate system !#i
2) 6 = 8,/ tr (X'X) = 20 4) Coefficient shape [0 0 1 0]

2) Coefficient vector B22Input data: 1)' Design matrix XpX21

A: principal component form B rgnlfrB : original form
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TABLE ,/,

4 Variables, 20 Observa ion T)Design 2231

i 1

Mo del
Form

Average
Loss

S.D. of
Loss

Ratio of
Average
Loss toEstimator

OLS

Structure
Loss

F requency
L(K)>L(O)
Our of 5001:r..__ iEOL1

A 2'= CO 13.2312 9 .84503

H KB

HKBM

A P 2 = 1 15.517 6 9.941561r_______
A, B 2' = 2 274.8790 '371 .344 ______ ______

B I 2"= 10.3129 7.589091 ____________

B P1 24.7517 18.2217

A P' _co= 1 5.502881 5.022171 0.41590 77
A P'2"=1 1 7:7 673L 5.152781 0.50055 81
A, B P'2 = 2 I 58 .30731 127.137 0.21212 78

B J P' _=0 I4.40015] 3.839331 0.42667 74
B P' 10.5018 9.222351 0.42429 78

A ______ 6.96587 6.7372: 0.52647 74
A 2 9.2223 6.852851 0.59431 78
A, B 2P= 2 196.7182 1197.6 1 0.35186 f 75

B P' _ 5.527041 5.161571 0 .53594f 71
B 2' = 1 13..2028, 12.4051 0.53341 76

A 2P = c0 3.8.51861 2.656021 0.29112 78
A " P2 = 1 6.212631 2.8361 0.40036 83
A,B 2P = 2 1 24.93061 61.4718 0.0907() 78

B P" = CO 3.158691 2.03111 0.30629 7 6
B P' = 1 7.53338' 4.855441-0.30436j 79

A P' _ 3.89365 0.61691 0.29428 84
A P" = 1 8.589251 2.153031 0.553521 129
A,B 2"= 2 26.6273 9.066621 0.096871 97

B 2P = 4.473451 1.237821 0.43377 j 1.12
B P' 5921 .47 -2-2-0.0543 j 83
A* ________ 3.68158 2284281 0.27825 78A P= 1 ( 6.063671 2.496391 0.390761 84

AB !2a'2= 1 21.8739 55. 643 51 0.07958 79
B 1 P' =CO 3.031451 1.754941 0.29395 75.

Dernpster

W!ermu th

Sclove

0 = I 7.229971 4.1730C ' _ 2 9 i 1 7 9

- . I- --,± .- -- ''' .. '-7 I

Factors used:

Input Data:

1) Coordinate system r.1
3) d = 3 /tLr(X 'X) = 20

1) Design matrix XDX31

2) E13 = [ 50 20 1 0 0.051

4) coefficient sha'e [0 0 1

2) Coefficient vector 322

I-'-?

A:principal comrponent form B rgnlfrB : original form
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TABLE /S&

4 Variables, 20 Observations, Design 3111

Ratio of
Modl trutue Aerge .D ~ Average iFrequencyModl Srutur Aerae .D.of Loss to L(K)>L(O)

Est imator For-n ________ Loss Loss OLS Out of 500
A p =0 1.976961 1.0072

OLS

H KB

H KBM

A = 1 1 3.8337 1I 1.51744_____
A,B 3 P = 2 6.73O291 6.02392,1 _____ ______

B 4 =P _l. 8 1 1 8 61 0.75321h____________
B P 1= 1 4.10552 1i.9468_

I .68~-0.9719 0.9937 T 279
A 1P' = 1 3.846413 1.4932 1.0033 259
A,B P = 2 ) 6.655181 5 .8123~ 0. 98884 266

B P = CO 1.812561 0.74041 1.00039 250
B P = 1 4.08568 1.8935 0C. 99517 264

A P' =o 1.95519 0.97889 0.938991 267
A P"1=j1 3.807691 1.49396 0. 99320 242
A, B = 2 1 6.573411 5.803211 0.97 669 1 255 I

B P =0 1.800651 0.736311 0. 99382 233
B = 1= 1 4.057 481 1.8967'4 0.98830~ 249

A P"_c 1.9702 0986 0.99658 280
A 1P = 1 j 3.864721 1.4981 1 1.008081 266
A,B 1 " = 2 I 6.709971 5.82870 0.90698T 269

B P'=0 1.8 20181 0.740611 1.0046 250
B P 1 4.1067 1.8958 1.00029 2 7 -1

A P'= 2.0521 1.0509~ 1.03801 278
A jP' = 1 3.94 281 1.5720q 1.02961 249
A,B t 2 72 23 6.4135 1.07013 260

B P=1.872991 0.78102' 1.03374 245
B "=14.238 - 2.0102 1.03227 265

A- P= 0 1.97377 0.99027!i_0.99838_282

A" = 1 F 3.884151 1.51603 0.99385 282
A3 P'=26.775561 5. 9052 4 1 .00673 27 2

B " = J 1.826121 0.75008 1.00787_ 253

Dempster

Wermu ILh

3dl ove

' =- i 4.1 241 i 1 .c QR _ 1 C(n/7i 770
-_________"____ -. *-- - - ,'v. 1~ .. 41 . J I L. 1r

Factors used: 1) Coordinate system 11
3) o = 3 / tr (X X) = 35

2) Eli = (10 8
4) Coe fficient

5 1]
sh~aoe [1 1 11;

Input data: 1)' Design matrix XpX1 2) Coefficient vect-or 331

A: principal comnponen~t corma B rgnlfrB : original form

TIP
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TABLE */4

4 Variables, 20 Observations, Design 3121

Ratio of
Average rFrecu enc y

Model Structure Average S. D. of Loss to L(K)>L(0)
Estimator Foym Loss LossI LossOL S Out. of 500

A p= CO 7.508751 5.4580;

OLS

H KB

H KBM

A p =1 (1 9.73959 {5.6443_____________

A, Bj P = 2 ( 88.9236! 117.381 1I B j P =cc 5.8752! 4.12414 _____ ______

BP = 11 4 1 61 0 03-- - - - - - - - - - - - - - - - - - - - - --- -

A P' _co 5.25195 3.0249- 0.69945 193
A P' = 1 ( 7.518851 3.27289 0.77199 196

A, B TP' = 2 39.5842 46.0541 0.44515 193
B jP _= CO J4.170171 2.26434 0.70979 194
B P' =1 10.0146 5.5188 0.105411 194

A P'= CO 5.6952 3 .818d 0.75848 173
A -T P~ = 1 7.929241 4.02002 0.81413 173

A, B P' = 2 49.7714 67044551 0.55971 173
B P = c 4.512921 2.86781 0.76813 174
B P' 10.8451 6.9861~ 0.76391 171

IA 00 5.0601 2.53C8, 0.67391 1 202
A [ P = 1 T 7.388581 2.84013 0.75861 204
A ,B [ P' = 2 T 35.055 33-1512! 0.39421 1 203

B P'= 4.031131 1.88029 0.68614j 203
B P"=-1 9.6634' 4.6181~ 0.68068 203--

A P'-=cc6 1 0.99494 0.8 1269 246
A P'=1 11.7742 [3.2838 1.20891t .3 3 2 1
AIB P P =2 0.35071 21 .14681 0.67868 1 278 1

B P' COc.851 088 .48 5

B =11 j 4 .3 4 1j 3.34052 1.01016 286

A00 508 2.3546~ 0.67628 205
_____ P 1 j 7.43871[ 2.6378: 0.7 6376 211

A,B P' 2 j 34 .4793~ 29.7947 0.387'6 206
B IP - 4.0361i 1.75765 0.686098 210 1

Dernpster

We rrnut h

Sciove

= I 0 . i o1l q ,in, r)97 AR " f
U: 7 10.7 -t .. ;-,V. j - .- U.-uj'-.-'G UJv

i

Factors used:

Input data:

3) ~ 3t(')=35

1) Design matrix XpX21

2) E12 = [3 0 15 6 0.11
4) Coefficient snare [1 1

2) Coefficient vector b31

1 1]

A: principal component form B rgnlfrB: original form
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T3LB 1/7
4 Variables, 20 Observations, Design 3131

Ratio of
Average Frequency

Model Structure Average S.D. of Loss to L(K)'>L (0)Es tim ator ___rs. Loss Loss Loss OLS Out of 500

ii r 00
13.2312 9.853

OLS

H KB

HKBM

A~ P 77 15 .517 6 9 .942561 ____________

A, B P = 2 1274.879 371.344 ____________

B P'= C 10.3129 !7.589091 _____ _____

B P = 1 24.7 517 18.2217j/r w r w w n" w w r -rr . w . . ""

A P'_0 6.94577, 4.83452 0.52496 136____

A IP' =1 1 9.244291 4.95593{ 0.595731 135
A, B IP = 2 1 24.5318{ 126.942! 0.27114 136

B P " = 5.474911 3.708991 0.53088 137 {c)BP 
3 0 1 .0 3 .2 6 3

A P'_0 8.13493 6.46275 0.61483 125A P= 1 10.41141 6.558871 0.67094 124
AB P = 2 1110.801 1197.066 0.40309 124

B ' _ 1 661396011 4.964241 0.62020 [ 126
B P . 15.27 9 11.92 62 .62 - +~:/ 124

A P'K=C 6.083171 2.89662~ 0.47976 145
A P = 1 8.470081 3.06204E 0.54584 148
A, B P =2 _4.558_ 6.895__0.166414

B 2 1 4.55810264.896521{0.17664 1 146

B '=1 1 1.4446 5.32566 0.46238I 144

A P" 6.392 0.4507 6J 0.48310 152
A P' 1 12.2729 2.598 961 0.79091I 209
A,B P~ = 2 66.3237( 17.1107 0.24128 176

B IP = 5.219011 0.48253j 0.50607 1 158
B P' =1 15.2809 2.59162J 0.61737J 176

A P" = C 6.02981 2.445171 0.45573 147
~1 P'=1 1 8.448271 2.6423 61 0.5444.3 151

A, B P' 2 45.6066 49.78683 0.1?6592 147
B P=::) 4.76437! 1.86716,' 0.-46198 1417

Dempster

Werrnuth

Sc ogre

0 =NIIf 1 ''. rl1 I 1 an;-tl n jf SSi r i I %S

I I L -L9 "rU ILI ' " 0 10 11L--F,

Factors used: 1)

3)

Input data: 1)

C o d n t s stmS = ' / tr(XX "_) = 35

Design matrix XpX3l

2)
4)

E13 = [50 20 10 0.05]
Coefficient shape [1 1 1 1 ,

2) Coefficient vector 331

A: principal componentfotB: ri na formB : original form
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TABLE <

4 Variables , 20 Observations, Design 3211

Ratio of
Average Frequency

Model Structure Averag e S.D. of Loss to L(K)>L(O)
Estimator Form Loss Loss- Loss OLS Out of 500

A P'=0 1. 97696! 1 0072 _ _ _ _ _ _ _ _ _ _
I'

OLS

H KB

H KBM

A K = 1 f 3.833751 1.51744; _____ _____

A,B P = 2 j 6. 730 291 6  . 239'i L '_____181 36 0.___li

B P'= 1 K4:. 552 l.946851

A' =c [1. 93507, 0.95905 0. 97881 2 76 1
A P'= 1 I3.817951 1.504971 0.99588 1 253
A,B P = 2 { 6.513451 5.603311 0.9677,8 257BP ' _ C { 1.7 5 1 0 .7 =53 .9 5 824

B P' 1 { 4.05 7441i. 85787I 0. 9882 9 256 r ^r . .r

A P'= 0 1.94013 0.97607f 0.9813; 260
A T " = 1 3.8033] 1.498041 0.992061 239 {
A,B P 2 = 1 6.525621 5.723651 0.96959 246

B _________ 11. 787251 0.14221( 0.986421 239

B P"= 1 4.581.89171' 0 93657 -238

A P"_0 1.360964 0.98064 279____

A 1P'Fi1 3.82 3791 1 .510691 0 .991401 255
AP = 2 6.53882! 5.614311 0.97155 262

B P' = 11.78722! 0.746191 0.98640 1 249
'= 1 4.0661 1.86436i 0.99040 - 263 j

A___ P'_2__0466___ ,_1.02711 1.03524 286

A _______1_3.98_ 371_1.604491 1.03929 t 252

__________ 2 _7.214781 6.21929{ 1.07199 t 266
B___ P_____1.863861 0.7909&1 1.0287 I 252

B '=1 4.26889 1.986'2.1.03979I 267 1

1. 937670. 961081 0.98012 282

A P"_=__!_3_89571 _1 51775{ 1.0015=' 256
______ 2 6.564761 5.614511 0.97 541 { 269

B { ' =' !1 .7 94481 0). 74632! 0.9.90 41 256

Demnpster

'e rmuth

561 ove

I B p= _1 or-)7 5-)i - R,- n A (9 00r7R 7 ;7.
- - _ _-__ _ __ _ _ __L 7 U.I -'L .-." -''ii..Li ___________

Factors used:

Input data:

1) Coordinate s .s tern 1 2) E = [10 8 5 1]
3) _ '2/t r (X'.) = 35 4) Coelff icien t shape [ 0 0 1 01]

1) Design tmatrix~ XpKT1 2) Coefficient vector B32

A: principal component form B rgnlfr: original form
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TABLE

4 Variables, 20 Observations, Design 3221

Estimator

OLS

H KB

S

Model
Formi

S tructure
Loss

Average
Loss

Ratio ofi
Average
LOSS toS. D. ofj

Loss

Frequency
L(K) >L(0)

IOL Out f 50
i i

At P' =0 7.508751 5.45809

HKBM

A -fP= 1 9.73959j 5.6 44341 _____ ______

A,B P = 2 88.9236 T1 1 7 . 3 8 1  ______1______

B - ( . 7 2 L- -2 1 1 ' = 1 14.1968 10.0631 - -

Ap c 4.69114 3.10437 0.62 476 145
A =P 6.940861 3.277431 0.712'64 1 139
A, B P 2 1 33. 8554 46.4166_ 0. 38072 142B P co 3. 732911 2.244091 0. 63537 143

B P = 1 8.99235 5.50618~ 0.63 341 f 145

A C 5.33431 3.90105~ 0. 71041 128
A P' = 1 7.540961 4.145231 0.77426 127
A,B j P" = 2 1 46.35271 68.5224 0.52126 129 I

B IP _ c 4. 228991 2.924451 0.171980 131
B P = 1 - 10.1778 7.15837j 0. 7169T1- 134

A K _co 4.315271 2.48446 0.57470 150
A { P = 1 , 6.626471 2.7 71881 9. 68036 153
A,B P' = 2 1 27.6969j 34.1758 0.31147 150

B P'= C 3.456751 1.834311 0.58836 151
B =P 1 8.34296 4 .50 8 77 0.5 87 67

- 152

A P- CO 4.82861 1.0633 0.64306 186A jP~ = 1 10.2237 3.632 64] 1.04971 j 274
A,B 1 P = 2 40.4334.[ 18.6292J 0.45470 213

B P' -= 5.243811 1.926141 0.89253 235
B PO 1 9.48193 2.039861 0.66789 j 193

A P'=_ c 4.23228 2.285821 0.56365 155
i P' = 1 6.57599] 2.567961 0.67518 { 159

A,. 1 .P' = 2 1 26.11221 31.0835 0.29365 156
B IP - =x 3.392891 1. 680541 0.57 749 158

Dempster

W ermuth

Sd ove

b I F'=^ *.519961 4.13536t cJ.57753 i 1

4.I3~3dt U.h11'3 I

Factors used: 1) Coordinate system i/i
3) 0 = '/t(X) = 35

2) E12 = j30 15 6 0.1]
4) Coefficient shape [0 0 1 01

2) Coefficient vector B32
Input data: 1) Design matrix XpX2I

A: principal component form B rgnlfrB: original form
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TABLE 2o

4 Variables, 20 Observations, Design 3231

Ratio of
Average Frequency

Model Structure Average S. D. of Loss to L (K)>L(0)
'sti-*ator -Form L Loss Loos s sOLOu of50

A P- = CO 13.2313 I9.84503

OLS

-H KB

H KB

A IP =1 1 15.5176 9 .942501____________
A,B P~ = 2 !274+.879 371.344 ____________

B IP - 10.3129 7.58909 ______ ______

B P~ 24.7517 18.29217 -w--- --- _-

A co = 6.16576 5.013481 0.46600 1 95

A P' = 1 I 8.44044 5. 15407 0.543931 94
A, B ! P' = 2 65.9921 129. 869 0.24008 94

B P' 4.86331~ 3.845131 0.47158 96
B P' 1 - 11.6629 - 9.23114 0.47120 93

A P = 7.56178 6.717771 0.57151 91
A IP =1 (-9.82786 6.837241 0.63334 T 90
AB I P 2 j105. 138 2200.386 0.38249 9 1

B P' 5.95569 5. 15544k 0.57 75 87
B P = 1 14..2589 12.3893 T 0.57608 91 -

A P CO= 4.82236 3.09178 0.36451 99
A FP 1- = 1 7.16243 3.2724 0.4615 7 100

A,3 P' = 2 35.8296 170.6102 0.13035 98
B jP' 3.83249 2 .35601 0. 37162 1 100

B P'=1 9227 71 5.65327 0.37281 99

A _________ 5107498 0.3.031 0.38602 176
AP =1 10 9 8 3.7 1 0.7 8 716A P' 2 44.8498 1 16.0987 0.16316 135

B I P'=_5.78921 1.69102 t 0.56136 1 155
B 'K= 1 -9.731341_1.343962 ] 0.39316 1 112

A P _ c= 4.65638 2.616611 0.35193 100
P'H =1 1 7.006931 2 .844381 0.45155 101

IAB P' = 2 31. 5676 58.0213 f 0.11484 100o0

B=P _3.8:9169 2.00191 0.35772 100

Dempster

W ermuth

S c 1o0'f e

Factors used:

Input data:

1)
3)

Coordinate system tm1

~j) ^~/rXA)=3

2)
4)

ET3 =[30 20 10 0.05]

C oe f rcient shape [0 0 1 ')]

1) Design matri:c XpX31 2) Coe fficient vector 332

A: principal component form B rgnlfr: of j1P..Ca1 form

r
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FOOTNOTES

*
The Monte Carlo results presented in this study have been

obtained as a part of Karl Lin's dissertation at the

University of Michigan. The work of Jan Knenta at the

University of Bonn has been supported by the Alexander von

Humboldt Foundation.

1 )For a recent survey of the literature see Vinod (1978).

2)The details of the construction of the data sets and the

values of the variables are available on request.

3)For a discussion of this measure see Kmenta (1971).

4 )A detailed description is available on request. For the

500 replications used the Monte Carlo experiment the

means and the standard deviations of the V's were very

close to their theoretical values. The distributions of the

Q's were also found to be very close to normal.

5)Since the results for the 8-variable model have

been essentially similar to those for the 4-variable

model, their presentation has been omitted to save space.

Interested readers may obtain the appropriate tables

on request.

6 )The ranks refer to the results for the original form (B)

of the model.
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