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Cooperation Among Egoists in
Prisoner's Dilemma and Chicken Games'

I. Introduction.

In "The Emergence of Cooperation among Egoists,"

Axelrod develops a new approach to answer the question:

"under what conditions will cooperation emerge in a world of

egoists without central authority?" (Axelrod, 1981.) He

uses an evolutionary approach to study the conditions under

which cooperation can be part of a "stable" strategy in the

iterated Prisoner's Dilemma.

The Prisoner's Dilemma is an interesting game to

consider for such a study as it is one in which self-

interested behavior seems to lead inexorably to a Pareto

inferior outcome. The game is defined by the payoff matrix

given in Figure 1. As is well-known (and easily verified),

defecting is a dominant strategy in a one-time play of the

game and thus mutual defection is a dominant strategy

equilibrium. At the same time, though, mutual defection is

worse for both players than mutual cooperation.

(INSERT FIGURE 1 ABOUT HERE.)

The core of Axelrod's results is to show that this

'I wish to thank Theodore Bergstrom, the students in
his game theory course, the participants in the Industrial

SOrganization seminar at the University of Michigan, and John
Ferejohn and others at the panel on evolutionary models at
the 1983 meetings of the American Political Science

-Association for their comments and suggestions. I also wish
to thank Kelly McCauley for helping me clarify my writing
and thinking. Finally, I want to especially thank Robert
Axelrod for his encouragement and advice on this paper. Of
course, any remaining erro'rs are my responsibility.
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paradox can be eliminated if players interact for many moves

and care about what happens to them in the future. This

enables cooperators to punish defection severely enough to

deter it. If players care "enough" about the future,

surprisingly strong forces push them toward cooperation,

especially cooperation through reciprocity. (See Kreps, et

al., 1982, for a different but related resolution.) 2

The results are intuitively plausible. But do they

carry over to other sorts of situations where the players'

incentives lead to results that are socially suboptimal?

For an example of such a situation, consider the game of

Chicken. If we use the same letters for the payoffs and

names for the strategies, then Chicken is the same as the

Prisoner's Dilemma except that S > P and we no longer

necessarily assume that 2R > T + S. This seemingly small

change in the payoffs leads to a large:change in the play of

the game.

Snyder (1971), for example, explains the difference

between the two games saying "The spirit or leading theme of

the prisoner's dilemma is that of frustration of a mutual

desire to cooperate. The spirit of a chicken game is that

of a contest in which each party is trying to prevail over

the other. . . . (I)n the prisoner's dilemma, establishing

2 It is important to note that the possibility of
cooperation in an infinitely repeated game or a game with an
indefinite number of moves has long been known. Axelrod
has, however, proposed (and we modify) what one may view as
a stability criteria for judging these equilibria which is
interestingly motivated and has some surprising
ramifications. See Section IV. B. below.
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credibility means instilling trust, whereas in chicken, it

involves creating fear.'. . ." (Emphasis in original.) Why

do such major differences come about?

First, there is no longer a dominant strategy. There

are, however, two Nash equilibria in pure strategies--column

defecting and row cooperating and vice versa. Each player

prefers the equilibrium'where he defects and the other

cooperates, but has no way of forcing the other player to

his preferred outcome. The attempt to achieve one's

preferred Nash equilibrium is the "contest. . . to prevail"

Snyder refers to. There is a Nash equilibrium in mixed

strategy, of course, as one must always exist in a game of

this sort. (See Luce and Raiffa, 1957.) In this

equilibrium, each player cooperates with probability

(S - P)/(T + S - R - P).

Though it is difficult to say what outcome we can

"expect" to occur in Chicken in the one-play case, it does

still appear to be true that self-interested behavior leads

to a suboptimal outcome. Mutual cooperation is Pareto

superior to the Nash equilibrium in mixed strategies.

Admittedly, for each of the Nash equilibria in pure

strategies, one player is better off than with mutual

cooperation and one is worse off, so that these outcomes are

Pareto noncomparable. However, if we consider the two

equilibria to be equally likely or go on the basis of total

payoffs to the two players, then mutual cooperation is

preferred as long as T + S < 2R. Thus, at least as long as
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the inequality holds, it makes sense to say that self-

interested behavior may lead.to suboptimal outcomes in

Chicken as the various Nash equilibria are~ inferior to

mutual cooperation. Can mutual cooperation emerge in -

Chicken if players, care "enough" about the future? Do

Axelrod's results generalize to this game?

The question is one of interest in a variety of fields,

as numerous situations in the real world appear to be

reasonably modelled as games of Chicken. Snyder (1971), for

example, gives several historical examples of situations

like Chicken in the realm of international politics.

Schelling (1960) often seems to see Chicken as the game of

superpower confrontation. The evolutionary biologist John

Maynard Smith in numerous papers (see Maynard Smith, 1982,

for example) has modelled confrontations between animals for

a resource--his Hawk-Dove game--as Chicken. Cornell and

Roll (1981) analyze equilibrium in information acquisition

in financial markets and determine that a necessary

condition for "a sensible asset market equilibrium" is that

the game be Chicken.' Spence (1979) studies entry of firms

into newly created markets and analyzes one indeterminate

case which is very reminiscent of Chicken. Kreps and Wilson

3The qualification is important. Without it, the game
is more a game of coordination ("whose turn is it to get
T?") than a game of trying to achieve mutual cooperation.
This importance will be especially seen in Section IV.

'They derive payoffs corresponding to Chicken, but do
not note that the game is Chicken. Maynard Smith (1982)
also does not call the game Chicken.



5

(1982) consider an entry game which they note is quite

similar to Chicken. Ma'ny bargaining situations where each

of the two parties prefer a poor agreement to no agreement

can be modelled as Chicken.

The way we shall proceed is to study the game described

by the payoff matrix given in Figure 1 with the only

restrictions being T > R > S and R > P. When S > P, we have

a game of Chicken. On the other hand, when

S < min(P, 2R - T), we have a Prisoner's Dilemma game.5

In the next section, we discuss the evolutionary

approach developed by Axelrod which we will use to analyze

this game. In Sections III and IV, we analyze the evolution

of cooperation in the general game and compare the problems

of achieving mutual cooperation in the Prisoner's Dilemma

and Chicken. We consider populations where all individuals

play the same strategy in Section III and the more complex

case of "mixed populations" in Section IV. In Section V, we

offer some concluding remarks on our view of the

significance of Axelrod's approach and his results.

II. Assumptions and the Approach.

A number of simplifying assumptions governing the

interaction between the players will be made. These

assumptions are the same as those made in Axelrod (1980,

"The second term creates a few problems. It is
entirely possible to have 2R - T < S < P, in which case the
game is neither Chicken nor the Prisoner's Dilemma. Our
results do apply to this intermediate game, which we might
call the Chicken's Dilemma, but we will not discuss it
e xpl1i ci tly.
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1981, 1984) so readers familiar with any of these works may

wish to skim this section.

First, we will analyze pairwise interactions only--

i.e., a player interacts with only one other player at a

time. He does not, know anything about that player prior to

their first interaction. Thus he can be thought of as

playing an opponent randomly selected from the population.

For models which are similar in this regard, see Cornell and

Roll (1981) and Rosenthal (1979). One can view the

situation as one in which players "wander" through the

population encountering other individuals at random. When

another individual is encountered, nothing is known about

him except one's own past history of play against this

individual. The two then play the game some number of

times.'

The uncertainty regarding the possibility that the

current opponent will be faced again on the next play is

formulated by using a discount parameter, w. One could view

this parameter as discounting future returns in an infinite

game. An alternative interpretation, which will be stressed

here, is that w represents the probability of the

'Numerous formulations yield equivalent payoff
calculations (at least up to a scaling constant). We will
perform all payoff calculations as though an opponent were
selected at random, played against for an uncertain number
of moves, and then the game ended. Alternatively, players
could meet many other players randomly for some indefinite
number of periods. Two equivalent formulations of this
approach are possible. A player could meet an opponent at
random, play for an uncertain number of moves, and then meet
another chosen at random. Or he could change. opponents
randomly after each play of the game.
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interaction continuing for another move. To be consistent

with either of these interpretations, we assume that

0 w < 1.

We will let V(AIB) be the payoff to a player using the

strategy A against a player using the strategy B. A

strategy is defined as a mapping from the past history of

the interaction with this opponent into a (possibly random)

choice for a move. The total payoff will be taken to be the

discounted/expected sum of the payoffs at each move.

We now define a few characteristics~ a strategy may

have, some of which follow Axelrod. A "nice" strategy will

be defined as one which is never the first to defect. By

contrast, a "mean" strategy is one which is never the first

to cooperate. Nice and mean strategies may be either pure

or stochastic. A pure strategy, as in the standard use of

the term, always specifies its moves with certainty. A

stochastic strategy is one which specifies a probability for

actions on at least one move rather than specifying the

choice with certainty, where the probability may depend on

the history of the game to that point. A stochastic

strategy may be thought of as making an initial

probabilistic choice from among a set (possibly infinite) of

pure strategies. That is, it plays pure strategy A the

entire game with probability pa, pure strategy B with

probability pb, and so on.' A nice (or mean) strategy

'Stochastic strategies are more commonly referred to
as behavior strategies. Thus the equivalence being asserted
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always cooperates (defects) till the opponent does the

opposite, but may follow a stochastic strategy after that

point.

We wish to analyze how cooperation may emerge from a.

Hobbesian "state of nature" where mean strategies hold sway.

Following Axelrod, we can divide the evolution of

cooperation into three stages. First, we need to end the

dominance of mean strategies in the population. Hence, the

first question is: given that everyone is playing a mean

strategy (and thus no one ever cooperates), can cooperation

enter as part of a viable strategy?

In the second stage, cooperation enters and we get some

mix of nice, mean, and other strategies. The second

question then is: can nice strategies come to dominate the

population? A similar--and far more tractable--question is:

given that mean strategies cannot monopolize a population,

can the population "get stuck" with some mix of strategies,

some of which are not nice, rather than have nice strategies

take over completely?

In the final stage, everyone plays a nice strategy so

that no one ever defects. The third question, then, is: can

this situation last?

The first and third questions are the easiest to

answer. To consider them, we will focus on the concept of

collective stability, due to Axelrod (2981) and strongly

is just the equivalence between behavior and mixed
strategies in games with perfect recall first shown by Kuhn
(1953) .
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related to Maynard Smith's evolutionary stability (1973). A

strategy B is said to -invade -a strategy A if and only if

V(BIA) > V(A|A). If there exists no strategy that can

invade A, then A is said to be collectively stable.' The-

idea is that if a population is composed solely of -

individuals playing the strategy A, then the average person

in that population receives V(AIA). If someone could do

better than this by switching to another strategy, then

eventually someone would. Thus we would not expect to see

the entire population continuing with the strategy A. In

this sense, the alternative strategy invades the population,

so that the initial situation was not stable.

We will use the concept of collective stability to

rewrite the first and third questions to ask when mean and

nice strategies are collectively stable. If no mean

strategy is collectively stable, then the state of nature

will not persist indefinitely. If some nice strategies are

collectively stable, then, if one (or more') of these

strategies come to dominate the population, this dominance

will endure.

As to the second question, we will work with the

concept of a collectively stable mix of strategies. We will

*This is, of course, the same as a symmetric Nash
equilibrium. We use Axelrod's terminology to emphasize the
interpretation he gives the concept and the way it fits into
his view of the evolution -of cooperation.

'The concept of a collectively stable distribution of
strategies will not be defined until Section IV. A., but it
is easily shown and should be clear that a mix of
collectively stable strategies is collectively stable.
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define the concept when it is to be used, but the intuition

is the same as that for a collectively stable strategy.

The essence of the evolutionary approach is to view the

process by which the distribution of strategies

("genotypes") in the. population is determined as a dynamic

process of "natural selection." Here the dynamic process is

left unspecified and conditions characterizing a

"reasonable" notion of a stable steady state are employed.

Since the underlying process determining how the population

moves to such a state is not explicitly -considered, the

analysis here cannot be seen as the sole indication of the

kind of strategies that develop and survive in any

particular environment. In effect, only possible "end

points" for the population are considered.

III. The Evolution of Cooperation:

Sinole Strategy Populations.

A. Breaking the Dominance of Mean Strategies.

Can some mean strategy be collectively stable? Or can

a single individual in a state of nature try cooperation and

find his efforts sufficiently rewarded? As Snyder (1971)

notes, Chicken is generally thought to be a game where

toughness and thus, poss ibly, meanness is a valuable trait.

One might suppose, therefore, that it is more difficult to

break the monopoly of meanness in Chicken than in the

Prisoner's Dilemma. In f act, the opposite is true. If we

think of the example that gave Chicken its name--teenage
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gangs riding their cars at one another to see if either will

"chicken out" and swerve (cooperate)--, then the result is

not surprising. If one falls in with a gang that never

swerves, hopefully, one would eventually intuit that

swerving might be a more sensible strategy. In fact,

PROPOSITION 1: A necessary and sufficient condition for the

existence of a mean strategy which is collectively stable is

S P. That is, we can find a mean strategy that is

collectively stable iff the game is not Chicken.

It is easy to see why this must be true. if players

are always defecting, then everyone scores P on every move.

But in Chicken, this is the lowest possible payoff on a

move. Hence any nonzero probability of cooperating on some

move will yield a higher expected payoff on that move.

Since a player can always be assured of receiving at least P

on every move and, by being "less mean," can receive

strictly more than P on some move, he can do better than the

population average. In other words, any strategy which is

not mean can invade a mean population in Chicken. 1 * On the

other hand, if P S, the best a player can do against

someone who always defects is to always defect. Hence -if
P S, then ALL D, the strategy of always defecting, is

collectively stable.

We see, then, that the answer to our first question is

*0 Actually, a strategy that defects on the first move
but is still "less mean" than a mean strategy will need
moves after the first to matter. That is, such a strategy
will invade iff w > 0, though w can be made arbitrarily
close to zero.
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that the state of nature can be overturned in Chicken--and,

in fact, rnuch more easily than in the Prisoner's Dilemma.

B. Maintaining the Dominance of Nice Strategies.

Suppose that nice strategies come to dominate the

population. Under what conditions can the domination of

nice strategies remain. unchallengeable? In other words,

when can we find a nice strategy which is collectively

stable?

PROPOSITION 2: A necessary and sufficient condition for the

existence of a nice strategy which is collectively stable is

T - R

(1) w >

T - Z

where

(2) Z = max(S, P)

Proof: Let A be any nice strategy. Let B be the

strategy which defects on the first move and cooperates

thereafter if S > P and plays ALL D otherwise. Then

R
(3). V(AIA) =

1 - w

wZ
(4) V(B|A) T +

1 - w

Hence, a necessary condition for B not to be able to

invade A is

R wZ
(5) T+

1-v w1- w

or
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T - R
(6) w >

T - Z

so that (1) is a necessary condition. We now show that (1)

is also sufficient by showing that if it holds, there exists

a particular nice strategy which is collectively stable.

This strategy is PR, the "permanent retaliation" strategy,

which cooperates until its opponent defects and then always

defects thereafter.

To show that PR is collectively stable, we need to show

that no other strategy can invade it. We can simplify

matters a bit by restricting attention to potential invaders

which are pure strategies. It can be shown that if no pure

strategy can invade a strategy, then no stochastic strategy

can either. Furthermore, for obvious reasons, we can

concentrate on the best strategy to play against PR.

Consider first the case where S >P. If the strategy

of defecting on the first move and cooperating thereafter

cannot invade, then no pure strategy can. This can be seen

by noting that no nice strategy can invade, so we must

consider a strategy which will be the first to defect.

Since S > P, the best strategy against PR should not defect

more than once. Hence the only question remaining is on

what move the best strategy to play against PR defects. It

is easy to show that a strategy which defects on the nth

move and cooperates on all others invades if f a strategy

which defects on the first move and cooperates thereafter

does.
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Similarly, suppose that S P. Here the best pure

strategy against PR would always defect after its first

defection. Again, it is easy to show that a strategy that

begins its defections on the nth move invades PR iff ALL D

invades.

Clearly, if B as defined above cannot invade PR, then

PR is collectively stable. But if A is PR,' then'equation

(4) holds with equality. Hence if (1) holds, PR will be

collectively stable. Q.E.D.

A direct implication of the above proof is that if any

nice strategy is collectively stable, PR is. This should

not be surprising. A collectively stable nice strategy must

punish opponents who defect and is more likely to be

collectively stable the more severe is that punishment. The

punishment imposed by PR is more severe than any other nice

strategy can impose. Collective stabi:lity does not imply

that a strategy is always a good one to play, however, a

point we will return to.

T - R
Note also that Z < R, so that < 1. Hence another

T - Z
implication of the proposition is that there always exists

some w < 1 for which some nice strategy is collectively

stable.

A strategy figuring prominently in Axelrod (1980, 1981,

1984) is TIT FOR TAT, which we will abbreviate TFT. This is

the strategy of cooperating on the first move and, from then

on, doing exactly what one's opponent did on the previous

move. TFT is, in short, the strategy of reciprocity.
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In Proposition 3, originally proved by Axelrod (1981),

we show when TFT is collectively stable. The proof for the

more general game considered here exactly parallels

Axelrod's original proof and so will not be given.

PROPOSITION 3: TFT is collectively stable if and only if

T - R T - R
(7) w > max{ , '

T - P R -' S

COROLLARY: In the Prisoner's Dilemma, there always exists

some w < 1 such that TFT is collectively stable. In

Chicken, the same can only hold if 2R - T > P.

Proof: Since P < R, the first term on the right-hand

side of (7) must be strictly less than 1 in either game.

Hence, there exists some value of w < 1 such that TFT is

collectively stable iff the second term is also strictly

less than 1--i.e., iff T + S < 2R. This must hold in the

Prisoner's Dilemma. But since S > P in Chicken, a necessary

condition for it to be able to hold there is 2R - T > P.

Q.E.D.

Note that TFT's possible problems in Chicken arise

because TFT requires 2R > T + S, not because of the relative

sizes of S and P. Interestingly, 2R > T + S is precisely

the equation which we suggested earlier needed to hold for

mutual cooperation to be thought of as the social optimum in

Chicken.

Another interesting point is that the reversal of the

inequality S < P has very different consequences for the

collective stability of nice and mean strategies. If the
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inequality is reversed, then, by Proposition 1, no mean

strategy can be collectively-stable. But from Proposition

2, we see that the relevant consideration ~for nice

strategies is the magnitude of the larger of the two terms,

not which is larger.. That is, if we took a Prisoner's

Dilemma game for which some nice strategy is collectively

stable and create a game of Chicken by switching 'the values

of S and P, then it must still be true that there exists

some nice collectively stable strategy. In this sense,

there is no difference in these two games in terms of the

collective stability of nice strategies.

Note, though, that the magnitude of w is completely

irrelevant to mean strategies, while,' obviously, it is quite

relevant to the collective stability of nice strategies.

This should not be surprising. Axelrod refers to w as the

"shadow of the future"--that is, the r:elative value of

future payoffs to the players. In both games, if the

opponent is expected to cooperate, one wants to defect in

order to earn T. But if v is large enough, then a player

expecting his opponent to retaliate against defection

becomes willing to take R now instead of T in order to.get R

in the future instead of S or P. The logic is the same

regardless of which of S and P is larger.

Z is important for precisely the same reason. Since Z

is the larger of S and P, it is the payoff per move that a

player seeking to minimize the consequences of retaliation

will obtain. If Z is close to R, then a player loses very
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little per move by incurring retaliation for a defection.

Note though that as w approaches 1, the effect of

retaliation must outweigh the gain from defection. That is,

if payoffs in the future matter enough, then even if Z is

very close to R, it is enough less to be an adequate

punishment.

IV. The Evolution of Cooperation: Mixed Populations.

A. Collective Stability.

Some of the considerations outlined above suggest that

the aspect of the problem left out so far--how strategies

fare in a variegated environment--is crucial. For example,

though PR is collectively stable for a wider range of

parameter values than any other nice strategy, it may be a

lousy straegy to play in a variegated environment as it can

easily get into debilitating rounds of-'mutual defection.

(See the comments made by Axelrod, 1984, on how poorly PR

did in the computer tournament.) Similarly, mean strategies

do terribly against each other (and thus are not

collectively stable in Chicken), but may thrive in an

environment with nice strategies to exploit. This

consideration is particularly relevant in Chicken where a

player would prefer to be exploited than to engage in mutual

defection.

Intuitively, we could envision a scenario like the

following. We have a population all following some

particular mean strategy. They do very poorly against one
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another and then some smart person thinks to try a nicer

strategy. He does quite well for himself and inspires

imitation by others. At the same time, though, he and his

imitators enable the people using the mean strategy to do-

better on average than they did when everyone used the mean

strategy. As more people switch to the nice strategy, the

expected value of playing the mean strategy rises and, at

some point, it no longer pays to switch to the nice

strategy. In other words, a "stable" mix of these two

strategies is established. Because the mean strategy does

well against nice people willing to be exploited, we never

move into the third stage where nice strategies dominate the

population.

Such a story sounds reasonable but leaves out another

possibility. A third strategy might be able to invade this

mix. If so, the stable arrangement collapses and we are

back to a transition period.

As one might expect, this issue is close to being

completely intractable from a theoretical perspective.

Axelrod's (1984) computer tournament and his simulation of

evolution over time based on it provide some insight into

the process. Axelrod (1980) also derives some theoretical

results on this issue.

We take a slightly different approach as a primitive

further step. We wish to.ask: can a population "get stuck"

with some mix of strategies? To answer this question, we

will take advantage of the analytical equivalence between
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mixed populations and stochastic strategies.

To see this connection, -suppose we have a population

where the strategies 1, . . ., n are being played and that

the fraction of the population playing each is

p1 , . . ., p , whereI p = 1. Then the expected payoff of

someone playing the ith strategy in this population, which

we will call V(i), is

(8) V(i) = p1 V(ijl) + p 2V(i12) + . . . + pnV(iln)

Now suppose we create a stochastic strategy, S, which

plays the same strategies 1, . ., n as are played in the

population and plays each with the same probability as the

proportion of that strategy in the population. Such a

stochastic strategy behaves, in many ways, just like the

population. In particular, the expected payoff to an

individual playing any strategy in the original population

would be the same as the expected payoff to an individual

playing that strategy in a population where everyone plays

S. This is because he faces the same probability

distribution over the strategy of the individual he will

play against either way. We will write the payoff to

playing strategy I when in a population where individuals

use this mix of strategies as V(IIM), where M represents

this particular mix of strategies with these particular.

proport ions.

The implication is that if S is collectively stable,

then M is collectively stable as well. We require of the

mix what we require of a collectively stable strategy. That
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is, a mix M is collectively stable iff there does not exist

any strategy I such that V(ItM) > V(M), where

(9) V(M) = p 1 V(1) + . . . + pnV(n)-

Note that V(M) = V(S|S). Thus if there exists no strategy I

such that V(IIS) > V(SIS), then there exists no strategy I

that can invade M since V(I|M) = V(I|S) and V(M) = V(SjS).

Hence M is collectively'stable iff S is.

In short, though the concepts of a stochastic strategy

and a population with some mix of strategies are quite

different, for our purposes, they are analytically

indistinguishable. Since we have already considered mean

and nice strategies, stochastic or otherwise, there is no

point in discussing mixes of all nice or all mean

strategies. Hence in what follows when we refer to a mix,

we will always mean a mix which does not contain all nice or

all mean strategies.

There are two immediate implications of this

similarity. First, Bishop and Cannings (1978) have shown

that a necessary condition for S to be collectively stable

is that V(iIS) = V(SIS) for all strategies i that S might

play.'' This implies that a necessary condition for the mix

M to be collectively stable is V(i) = V(M) for all i in the

mix. We will call a mix that satisfies this condition a

stable mix.

Second, it is easy to show that there will always exist

'This condition should be familiar from standard
calculations for mixed Nash equilibria.
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a collectively* stable-stochastic strategy or else ALL C or

ALL D is collectively stable,. where ALL C is the strategy of

always cooperating. To see why this is true, suppose we

have a strategy that behaves the same way on each move -

regardless of what happens. To find a strategy that might

invade this one, note that we may as well only consider

strategies that behave the same way on every turn also. The

reason for this is that the best strategy to play against

this strategy would be to repeat the best move against its

one move every single time. But this just makes the game

into the one-play case. Hence if this strategy is

collectively stable in the one-play case, it is always

collectively stable.

In the one-play case, in a game of this sort, 2 there

will always exist a Nash equilibrium in mixed strategies.

Since the payoffs are symmetric, this equilibrium will have

the two players choosing the same probabilities. Thus the

Nash equilibrium will be symmetric, so that this strategy

will be collectively stable by definition.

In the Prisoner's Dilemma, the one-play Nash

equilibrium in mixed strategies has both players cooperating

with probability zero. Hence, as noted, ALL D is

collectively stable in the Prisoner's Dilemma. In Chicken,

the one-play Nash equilibrium in mixed strategies has both

players cooperating with probability

1
2We do not specify what "sort'' is meant because the

class of games for which this is true is very.broad.
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(S - P)/(T + S - R - P). Thus, in Chicken, the stochastic

strategy of cooperating with.this probability and defecting

otherwise on each move is collectively stable regardless of

the value of w. Therefore, there must exist a mix which is

collectively stable all v in Chicken.' 3 Thus we have shown

PROPOSITION 4: A sufficient condition for the existence of

a collectively stable mix is that the game be Chicken.

More general necessary and sufficient conditions for

the existence of a collectively stable stochastic strategy

and thus a collectively stable rn'ix are quite difficult.

Instead of following that path, we will narrow our focus

somewhat and consider a type of invasion which is "easier"

than the kind we have considered up to now. This will

enable us to develop a partial answer to our question and to

derive some results which are not limited to Chicken or the

Prisoner's Dilemma or even to bimatrix: games.

B. Invasion in a Minimal p-Cluster.

In the type of invasion considered so far, the invader

has been, in effect, a single individual in- a large

population of individuals playing some other strategy or

"3 One may be tempted--as was the author--to infer from
this that a mix which is collectively stable in Chicken has
the fraction x = (S -P)I(T + S - R -P) of the population
play ALL C and the rest play ALL D. Note, though, that PR
invades this mix. The reason is that the mixed strategy of
choosing ALL C with probability x and ALL D otherwise is not
equivalent to the behaviorial strategy of cooperating each
move with probability x and defecting otherwise. In
particular, the former strategy cooperates on the first n
moves with probability x while the latter does so with

probability xn.
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strategies. Thus the only relevant consideration has been

how well that individual's strategy does against the

strategy played by the rest of the individuals in the

population. If the player could, in effect, bring some

friends along, he might be more able to invade as he could

interact with them. If they play the same strategy and that

strategy is one that does well with itself, then the

strategy may now be able to invade. In other words, if

there is some correlation between playing the new strategy

and encountering others playing it, then this "clustering"

effect may be sufficient to enable the new strategy to

invade. This is the idea behind Axelrod's notion of

invasion in a p-cluster. The invading strategy, say B, is

said to invade A in a p-cluster iff

(10) pV(BIB) + (1 - p)V(BIA) > V(AIA)

for some p strictly between 0 and 1. ''he number p

represents the proportion of its interactions the

individuals playing B are able to have with others playing

B.

Note that p does not represent the proportion of the

people in the population who play B. If it did, then the

relevant comparison would be to pV(AIB) + (1 - p)V(AIA).

Instead, the proportion of B's in the population is assumed

to be trivial, but the B's are "near" one another so that

they are not a trivial part of each other's environment.

Equivalently, we can view p as the probability of

encountering someone playing the strategy B conditional on
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playing the strategy B oneself. The conditional probability

of encountering a B given that one plays a different

strategy is approximately zero. So the events "meet a B"

and "play B" are not independent.

Collective stability is a necessary but not sufficient

condition for a strategy to be able to avoid invasion in a

p-cluster. If A is not- collectively stable but dan be

invaded by B, then B can certainly invade A in a p-cluster

if p is very close to zero. It is possible, though, that B

could invade A in a p-cluster with p arbitrarily close to

zero, but B cannot invade A without the p-cluster.

LEMMA: Suppose V(BIA) = V(AIA) and V(BjB) > V(AIA). Then B

invades A in a p-cluster for any p > 0.

Proof: If V(BIA) = V(AIA), then B invades A in a p-

cluster iff

(11) pv(BIB) + (1 - p)V(AIA) > V(AjA):

(12) pV(BIB) - pV(AIA) > 0

or

(13) V(BIB) > V(AIA)

Note that this does not depend on p. Thus as long as p > 0,

if (13) holds and V(B|A) = V(AIA), B invades A in a

p-cluster. Q.E.D.

When the conditions of the Lemma hold, we will say that

B invades A in a minimal p-cluster to convey the idea that p

can be chosen as close to zero as we like and the cluster

will still invade. This is as close as we can come to
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regular invasion and still have the invasion be easier.1*

Note that the Lemma implies that the collectively

stable mix referred to in Proposition 4 can be invaded in a

minimal p-cluster of ALL C. This is true because in this-

case, we must have V(M) = V(ALL C|M), which we can write as

a convex combination of V(ALL C|ALL C) and V(ALL CIALL D).

Since ALL C does better- against itself than it does against

ALL D, we see that V(M) < V(ALL CIALL C). Thus the

conditions of the Lemma are met and so the mix is not stable

in this slightly stronger sense.

In fact, mixes have a surprising weakness. To show

this, let us first offer a definition.

DEFINITION: A mix will be said to be'optimal if and only if

there is no way to alter the proportions of each strategy in

the population to create a population with a higher average

payoff for its members.-

PROPOSITION 5: A stable mix can always be invaded in a

minimal p-cluster unless it is optimal.

Proof: Let M be a stable mix containing strategies

'The possibility of ties--i.e., when V(BIA) = V(AIA)--
is troubling generally. If this holds, some people playing
B could "wander in" to the population without penalty and
change the population from one which is collectively stable
to one susceptible to invasion. Invasion in a minimal p-
cluster considers one aspect of this problem brought about
by the possibility of clustering. Maynard Smith (1982) in
his definition of evolutionary stability requires
v(AIB) > v(BIB) when ties occur. This condition implies
that an inflow of individuals playing B actually helps those
playing A more than those playing B. Other stability
requirements could also be imposed (see, for example, the
"roundabout " s tabil it y cons ide rat ions o f Hirshle i fer and
Riley, 1978).
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1, . . ., n. Let I be some stochastic strategy made up

solely of strategies from the population where the

strategies are played with probabilities p , . . ., pn, some

of which may be zero. Then

(14) V(IiM) = p1V(lIM) + p2 V(21M) + . . . + pnV(n|f M) = V(M)

as V(ijM) = V(i) = V(M) for i = 1, . . ., n. Thus I invades

the mixed population M in a minimal p-cluster if f

V(III) > V(M).

Suppose that the mix M is not optimal as defined above.

Then there must exist another mix, say M , such that

V(M*) > V(M) where M* and M are made up of the same

strategies but in different proportions in the population.

Then let I be the stochastic strategy using each strategy in

the mix M with the probability associated with the

frequency of that strategy in the population. Then

V(I|I) = V(M ) > V(M). Hence I will invade M in a minimal

p-cluster. Q.E.D.

Note that the mix M does not have to be collectively

stable itself. To see why this has some strong

implications, suppose for a moment that we are social

planners trying to pick the right proportion of each

strategy in our population, the n strategies having already

been determined for us. Suppose we choose these proportions

to try to guarantee that our population will be collectively

stable. A necessary condition for this is that the mix be

stable--i.e., V(l) = V(2), V(2) = (3,. . .

V(n-1) = V(n). But this gives us (n - 1) equations and,
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since the proportions must sum to 1, (n - 1) unknowns. Thus

we have no freedom left to seek other goals, at least if the

equations are linearly independent.

Suppose, on the other hand, that we decide we don't

care if the population could be invaded, but choose the

proportions to make the expected payoff of a typical member

of the population, V(M)', as large as possible. In general,

we would be quite surprised if we came to the same answer

for both problems. 1 5 The implication of Proposition 5,

however, is that if the answers are not the same, then those

n strategies cannot exist together in a mix as an end point

for the population. If the answers are different, then the

second population will not be collectively stable. The

first population may be collectively stable, but even if it

is, it can be invaded in a minimal p-cluster.' Thus it is

"'We have ignored the fact that w and the four payoffs
can affect the problem. If we can choose these parameters
as well, we may be able to find proportions that make the
mix stable and-optimal. To see how difficult this is in
Chicken, though, suppose we solve the two problems for the
optimal frequency and the stable frequency of each strategy.
We then have five variables to manipulate subject to five
inequalities (ordering of the payoffs and 0 s w < 1) to
solve (n - l) equations. The equations are highly nonlinear
in w and the payoffs and so may have numerous roots.
However, as n gets large, the existence of a w and set of
payoffs which can solve the problem becomes doubtful. The
theorem in the Appendix is essentially a simple statement of
this problem to derive some very basic implications.

''One might wonder if a collectively stable mix of I
and 1, . . ., n could evolve after I invades. But the
payoff relevant consideration is not the proportion of each
strategy as played in the population, but the proportion of
each pure strategy played by some part of the population or
played with positive probability by some stochastic strategy
in the population. That is, the only informtation required
to calculate payoffs is the probability distribution over'
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a rather exceptional group of strategies that can exist

together in' a mix that is collectively stable and cannot be

invaded in a minimal p-cluster.

There are two further implications that can be drawn

from Proposition 5. First, TFT can never be part of a mix

that is both collectively stable and safe from invasion by a

minimal p-cluster. Thus any population containing TFT and

some strategies which are not nice cannot reach a "stable"

point until either TFT or the strategies which are not nice

die out. This implication is a corollary to a theorem in

the Appendix.

Second, as long as 2R > T + S, any stable mix which

contains a nice strategy can be invaded in a minimal

p-cluster of that nice strategy. To see this, suppose i is

some nice strategy in a mix and that pi is the proportion of

the population using that strategy. Let X. be the

stochastic strategy which uses each of the strategies in the

mix except i with probability proportional to the frequency

of the strategy in the population. Since 2R > T + S, the

highest total payoff to the two players in any move is 2R.
2R

Hence, V(iIX) + V(X.ji) < . The strict inequality is
1 1 l - w

due to the fact that X. is not a nice strategy because we

are not considering any mixes of all nice strategies.

This implies that at least one of the terms on the

pure strategies induced by stochastic strategies in the
population and the distribution of strategies across the
population. The introduction of I to the population brings
in no new pure strategies but merely alters the proportion
of each strategy from those necessary for stability.
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left-hand side must be strictly less than R/(1 - w).

Suppose that V(ilX.) 'R/(1 w). Since V(ili) = R/(1 - w),

this implies V(i) > R/(1 - w), as V(i) is ~a convex

combination of V(iji) and V(iJX.). But since V(X.Ii) and-

V(X IXi) are both less than R/(1 - w), this implies

V(i) > V(X.), contradicting the assumption that the mix is

stable. Hence we must have V(iIX.) < R/(1 - w). But then
1

(15) V(ili) = R/(1 - w) > V(i) = V(M)

so that i invades the mix in a minimal p-cluster.'' Note

that 2R > T + S is always true in the Prisoner's Dilemma,

but not necessarily in Chicken. Again, if this equation

does not hold, our assertion that mutual cooperation should

be thought of as socially preferrable to the Nash equilibria

in Chicken is no longer necessarily valid. Thus mixes may

be socially preferrable to a population of all nice

'This proof makes use of a proof in Axelrod (1980).
In this paper, he focuses on what he calls strictly stable
mixes of two strategies. His main result is that any such
mix can be invaded by a p-cluster or any nice strategy for
some p < 1. The proof is stated for the Prisoner's Dilemma,
but relies only on the inequality 2R > T + S. What we have
shown here is that the assumption of two strategies is not
necessary for the result and that strict stability, as he
defines it, is a necessary condition for a mix to be
uninvadable by a minimal p-cluster. Hence, as long as
2R > T + S, any stable mix containing a nice strategy can be
invaded by a minimal p-cluster of that nice strategy.
Furthermore, any stable mix not containing a nice strategy
can be invaded in a p-cluster of any nice strategy for some
p < 1. In a way, though, the latter result suggests that
invasion in a p-cluster is "too easy" as p approaches 1. It
is easy to show that any strategy or mix A such that
v(B|B) > V(A|A) for some strategy B can be invaded in a
p-cluster of B for some p < 1. Requiring a strategy to be
safe from invasion by a p-cluster for any p e (0, 1) may be
too strong a requirement. For this reason, we focus on
invasion in a minimal p-cluster.
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strategies when 2R T + S. (For an interesting and more

general discussion of when mixes are-socially preferrable to

single-strategy equilibria, see Hallagan and Joerding,

1983.)

In short, Axelrod's results do not carry over

completely and directly to mixes in Chicken, but the more

general result that rational agents move toward "socially

optimal" behavior without central authority still seems to

hold.

V. Conclusion.

We see that, broadly speaking, Axelrod's results with

the Prisoner's Dilemma carry over to Chicken. There are

some differences in the evolution of cooperation in the two

games. However, in general, there are still strong forces

pushing the players toward mutual cooperation, even though

both are self-interested and there is no central authority.

Interestingly, the progress toward cooperation appears to be

most likely detoured if the detour itself is socially

preferrable to mutual cooperation.2'

"'The three "stages" do not constitute a complete
cataloging of all possible kinds of populations. Thus even
if we knew that no mean and no stochastic strategy were
collectively stable and that nice strategies were
collectively stable, we would be unable to assert that the
population must end up with all nice strategies. An
exhaustive classification would be stochastic strategies,
pure strategies which cooperate on the first mover and pure
strategies which defect on the first move. We have
considered the first group. One can show that there exists
a strategy in the second group which is collectively stable
iff there exists some nice collectively stable strategy.
Finally, one can show that there exists a strategy in the
third group which is collectively stable iff
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We find Axelrod's approach and results interesting for

the following reasons. His approach makes explicit use of

an evolutionary view of change, a view often used

heuristically to justify standard economic models. As

Nelson and Winter (1982) have argued, it seems more

appropriate to use evolutionary models if we believe that

the economic processes being studied do indeed work through

a "natural selection" type mechanism. We do not claim that

Axelrod's methods are the only way to extend the

evolutionary approach to strategic behavior. However,

Axelrod and Maynard Smith have given us a starting point. 1 '

Axelrod's results and their apparent robustness at

least to the small variation considered here have

interesting consequences for standard economic arguments on

decentralization. Economists have long known that

competitive equilibria are Pareto optimal under certain

conditions, while game-theoretic equilibria very often are

not. The introduction of strategic considerations can

easily lead to a Pareto inefficient outcome, as in the two

S - P T -'R
w max{ , } and S > P or S < P. The fact that

R - P T - S
this can hold even when no mean strategy is collectively
stable emphasizes the point made above. To be able to
determine more precisely the circumstances under which we
can reasonably expect the population to end up with all nice
strategies, we need to analyze this second group of
strategies in more detail. Unfortunately, this task is not
straightforward.

1 'Axelrod's use of computer simulations, a technique
also used by Nelson and Winter, is especially intriguing.
An interesting recent paper following this approach is
Bergstrom (1984).
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games considered here. Axelrod' s results and the results

derived in this paper suggest that repeated play can act to

dampen the negative effect of strategic considerations and

lead to Pareto optimal outcomes.
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APPENDIX

Let X. be the stochastic strategy. which plays each
1

strategy of a particular mix except for strategy i with

probability proportional to the frequency of each strategy

in the population.

THEOREM: Consider a stable mix of strategies 1,. . ., n.

If V(iIX1) # V(X1I i) for any i e {l, . . ., n - 1}, then the

mix can always be invaded by a minimal p-cluster. 20

Proof: The proof consists of showing that, under the

circumstances stated, the mix cannot be optimal as defined

in the text. We can write the expected payoff of a strategy

I which plays i with probability z and X. otherwise as

(Al) V7(I I I) = z'V(i1i) + z(l- z)[V(iIX.) + V(X."Ii))

+(1- z)2V(xX1)

Suppose that the derivative of this expression with respect

to z evaluated at z = p is not zero. This would imply that

there must be some z either smaller or bigger than p1 such

that V(IIi) > V(M) as V(III) = V(M) if z = p". The

derivative is

dV(CI|II)-
(A2) = 2zv(ili) + (1 - 2z)[V(iIx.) + + V(X.|i))

dz1

2 *0ne can show that if V(ijX.) = V(X.Ii) for
1 1

i = 1, . . ., n - 1, it holds for i = n as well.
Furthermore, if this condition holds for all pure strategies
i in the population, then it holds when we let i be any
stochastic strategy using two or more pure strategies in the
populat ion.
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+ 2(1 - z)V(X.iX.)

or

(A3) = 2[zV(ili) + (1 z)V(i|X.)]

2[zV(X.Ii) + (1 - z)V(X.IX.)]
'l11

+ V(X.li) - V(iIX)

Evaluating the derivative at z = p

(A4) = 2V(i) - 2V(X.) + V(X.1i) - V(i|X.)
11 2

= v(x.Ii) - V(i|x.)

which is nonzero by assumption. Hence the mix can be

invaded by a minimal p-cluster. Q.E.D.

One can show that TFT does worse.against any strategy

which is not nice than that strategy does against it.

Hence, TFT can never be part of any stable mix which is not

invadable by a minimal p-cluster, ignoring, of course,-mixes

of all nice strategies. This implies that any population

including TFT and some strategies which are not nice cannot

reach an "equilibrium" until either TFT or the strategies

which are not nice die out..

To see why it may be more plausible to expect the

latter to die out, notice from (A4) that since TFT does

worse against its opponent than its opponent does against

it, V(I|I) is increasing in the probability that it plays

TFT. That is, if we have a stable mix, then regardless of

the proportion of the population playing TFT, a stochastic

strategy which plays it with a higher probability than that
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proportion will invade in a minimal p-cluster.
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