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Abstract: We describe an environment in which the development of the world over

time is an object of uncertainty for the individual. In this environment, a natural

representation of information is in terms of non-partitional structures. However,

not all non-partitional information can be justified in this way. We identify a set

of conditions which are necessary and jointly sufficient for such a representation

-namely, that the individual's information be such that (1) whatever is known is

true, (2) whatever is known is known to be known, and (3) that information be

nested. Moreover, these three conditions are precisely those identified in a paper

by Geanakoplos as precluding speculative trade in games with generalized

information. Thus, our discussion provides an alternative perspective on the issue
of speculation.
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1. Introduction

The standard method of representing the information of an individual in an

uncertain environment is to suppose that the individual has a partition of the states

of the world and that, given a realization of a state of the world, the individual is

informed as to which element of his partition contains the realized state. A series

of recent papers have explored the possibility of relaxing the assumption that

information is partitional (Samet (1987), Shin (1987), Brandenburger et al. (1988),

Geanakoplos (1988), Rubinstein and Wolinsky (1988)). In these papers, an individual's

information is determined by a correspondence p which associates a subset of the

state space with each state. The interpretation is that, at the state W, the

individual believes that the true state is in o(w).

However, a frequent criticism of this approach is that an individual is not making

full use of the informational content of the signals he receives. Consider the

following example. There are two states w1 and w2. When w2 is realized, the

individual is informed of this fact. However, when wi is realized, the individual is

uncertain as to which state is the true state. The problem arises when we try to

close the model by assuming that the individual "knows the model". The difficulty

is this. Given that he knows the model, the individual at w1 ought to infer that W1

is the true state since, if w2 were the true state he would be informed of this fact.

In other words, if the individual understands the model, his own ignorance is an

extra signal to be utilized in making inferences about the world. Thus, Geanakoplos

(1988) is led to concede that these models describe the information of boundedly

rational individuals who ignore the subtle informational content of signals and take

signals only at their face value.

In this paper, we describe a dynamic environment in which the possible
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development of the world over time is an object of uncertainty for the individual.

This environment has the distinctive feature that when the world reaches any state

during its process of transition from state to state, there is a chance that the

transition will halt there. In this environment, a natural representation of the

information of an individual is in terms of non-partitional structures. Here,

information is non-partitional even though the individual fully understands the

model. Thus, the individuals in our framework are not vulnerable to the charge

that they are failing to comprehend their environment.

However, not all non-partitional information can be given a representation in terms

of our dynamic framework. The main result of this paper is that the following

three conditions are each necessary and jointly sufficient for such a representation:

(1) that an individual cannot "know" falsehoods, (2) that if an individual knows

something, he knows that he knows, and (3) that information be nested.

Quite apart from any intrinsic interest in such a characterization, this result

gains added significance due to Geanakoplos's(1988) finding that the three conditions

above are each necessary and jointly sufficient to preclude speculative trade in

games where players have generalized information. Thus, there turns out to be an

intimate connection between the possibility of a dynamic representation and the

possibility of speculative trade. Indeed, by utilizing the conditions of a dynamic

representation, we are able to identify the causes of speculative trade when

information is non-partitional. Essentially, the reasons for speculative trade can be

traced to the violation of a generalized form of the dominance principle.

We order our discussion as follows. In section 2, we describe the dynamic

environment which forms the basis of our analysis. In section 3, we define the

notion of dynamic representation and present our main characterization result. The
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proof of this result is obtained as a consequence of the discussion in sections 4 and

5. In section 4, we set out a systematic procedure for constructing a dynamic

representation of any information structure satisfying the three conditions above.

This yields a constructive proof of the sufficiency half of our theorem. In section

5, we demonstrate the necessity of each of the three conditions.

Finally, in section 6, we analyse the issue of speculation. By drawing on the

results of Geanakoplos (1988) and the criteria for a dynamic representation, we

provide intuitive explanations of the causes of speculative trade.

2. The Environment

Our environment is based on the following objects. 12 is an arbitrary set of

states w, M is a finite set of messages g, and a is a signal, defined to be a

function a: -+ M. We shall assume that M is finite and has m elements. The

i th message is denoted by ,u.

Time is discrete and is indexed by the non-negative integers. At time 0, no state

is realized, and hence, no message is issued by a. At time 1, precisely one state is

realized, and a message is issued according to the signal o-. We shall assume that

the message ut is issued with probability ut. Let u =(u 1,u 2, .. ,A).

From time 1 onwards, the world is in precisely one of the states at any moment in

time, but the world makes transitions from one state to another over time. We

shall suppose that these transitions take the following simple form. When the

message as is issued at time t, the message pg is issued at time t +t1 with

probability pgg. Moreover, we assume that this probability is independent of the

history of past messages issued. We denote by P the matrix of transition

probabilities pig, where pgis the (i, j)-th element of P.
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The most distinctive feature of our environment can now be introduced. When

the world reaches a particular state, there is a probability that it will "settle" at

that state, and stay there forever. A physical analogy is with a particle moving

from one state to another with the feature that, having Leached any of the states,

there is a probability that it will be "absorbed" by that state. We assume that the

settling process takes the following simple form. When the world is at a state

which gives rise to the message ua1, the world settles at this state with probability

gi. We assume that each qi is non-zero, and each qi is independent of history.

Since the world settles on a state if and only if it does not make a transition, the

ith row of P sums to 1-qi. We denote by q the m-tuple (qi,q 2,...,qn).

We shall assume for the moment that there is a single individual. This individual

knows the signal o, and observes the messages issued by it. Moreover, the

individual knows u, P and q, and as soon as the world settles on a state, the

individual is aware of this fact. In other words, this individual knows everything

there is to know about his environment, subject to the imperfect information of his

signal cr.

We shall adopt as a paradigmatic example of our environment the case of an

individual facing the uncertainty generated by the spinning of a roulette wheel. A

full description of the "state" of the system given by the roulette wheel will be

extremely complex. However, the individual is able to observe the position of the

ball as it moves between the slots of the roulette wheel over time. The slots

correspond to the messages received by the individual. The proviso is that our

roulette wheel is the rather special one in which the likely position of the ball at

any moment in time depends only on its position in the previous period. lt also has

the feature that the probability of the ball settling on a slot is constant over time.
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The comparison with a roulette wheel is intended to emphasize the feature of our

environment that the payoffs are determined when, and only when, the world settles

on a state. For example, we can imagine a referee taking bets on a spin of the

roulette wheel and distributing rewards once the ball has come to rest. Thus, for

the individual, it is the long-run settling process which matters. The period to

period transitions are important only to the extent that they provide information

concerning the long-run settling process.

The long-run behaviour of our environment can be described more tractably by

constructing a Markov chain which mimicks the dynamics of our environment. This

Markov chain is constructed as follows. Define;

(2.1) 9 : = (oj (w) =.

of is the set of states which give rise to the i th message. We denote by 0 the

set of all such O. Clearly, 0 partitions f2. The transition matrix P can now be

seen as describing the transition between elements of 0. Thus, pig is the

probability that the true state will be in 8j next period given that the true state is

currently in Oi.

For each 9i, we introduce a copy 9i of O6. We denote by 0 the set of all such

copies. Let S be the union 0 U6, and we index the elements s of S so that 9. =s

and ei =s f. Denote by Q the diagonal matrix whose leading diagonal elements are

the m absorption probabilities , q2 , -. ,q , (in this order). We call this the

absorption matrix. Consider the square matrix T of order 2m given in partitioned

form as follows. 0 is the zero matrix of order m and I is the identity matrix of

order m.

(2.2) T=[
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The j th row of T, when j _ m, is given by

(2.3) [pj PJ P... pjm 0 0... 0 qj 0... 0]

Each element of T is non-negative, and each row of T sums to unity since

p = 1 -q 3 . Thus T can be seen as the transition matrix associated with a

Markov chain on the set S. Moreover, this is a process which mimicks our original

model. When the world starts out at 6 , its transition to the first m elements of S

(the set 9) is governed by the matrix P. But in addition, there is probability q
that the world will pass to the copy Oj of 9j. By construction, once ei has been

reached, the world will never leave it. This mimicks the absorption process of our

original model. In particular, the long run properties of our environment will be

mimicked by the matrix Tn as n becomes large. The following result characterizes

the long run behaviour of our environment.

PROPOSITION 2.1. The inverse (1-P )~' exists, and T a -+fT* as n -+ co, where

T*= 0 (1-P)~'Q
T =

0 1

Let us remark on the interpretation of T*. Since the top left hand corner of T*

is occupied by the zero matrix, this means that, at whichever element of e the

world starts out, it will eventually settle at one of the copies 9 E e. The matrix

(I - P)~ FQ governs the probability of this settling process. We obtain this matrix in

a similar way to which the inverse of the Leontief activity matrix is obtained as a

power series (see, for example, Gale (1960) ch.9).

PROOF.

T ~ P [(Cf+P4-+-P"~)Q1

We show first that Pfl-40 as n-+e. Since E pe=1-q. and o>0for all j,
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each row sum of P is strictly less than 1. Thus, there exists 0 < r < 1 such that

Z pie < r < 1, for all j. Then,

(2.4) E (2 = PP ~k= zP"ek ~s r S3  r .

Ak eke i
That is, each row sum of P2 is bounded by r 2. In general, each row sum of Pn is

bounded by rn. Since r -+ 0 as n--+oo, we have Pfl -+0. Next, let Bn =

(I+P +- +P-'). Then,

(2.5) (1I - P ) Bn- I -- P A

Taking determinants, jl - P, |B =|1I- Pn|. But |I-P|-+I -I =1 as n -+ oo, so

that II - P, #0 and (I - P)~1 exists. Then, pre-multiplying (2.5) by (I -P)~1,

(2.6) Bn = (I-- P) )1 - (I -P)~' P

But B -+ (I - P)~' as n-+oo, since P -+0. Thus, B"Q-(I - P)~'Q. 0

Consider the matrix (I -P)~'Q. This matrix gives the long-run settling

probabilities over the copy set 5, and these probabilities mirror the long-run

settling process in our original model over the set e. Thus, the (i, j)-th element of

this matrix gives the probability that, when the world starts out at a state in 8i, it

will eventually settle on a state in O . For an individual whose payoffs are

determined when the world settles on a state, the matrix (I-P)~'Q provides the

appropriate characterization of uncertainty. More precisely, the ith row of

(J-P)~4 Q represents the individual's interim uncertainty when the true state of

the world is in .

In addition, there is a clear sense in which our dynamic environment has a "prior"

over e - namely, the distribution of settling probabilities viewed from time 0.

This prior, denoted by 't, is obtained as the weighted average of the rows of
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(I-P)~'Q, where the weights are given by the initial realization probabilities

(U1,...,Um).

(2.7) r =u(I-P)~'Q

We therefore have a concise characterization of the uncertainty facing the

individual at all points in time and at all states. At time 0, when no state is

realized, the appropriate characterization of uncertainty is in terms of the prior w.

At time 1, uncertainty at 8i is characterized by the i th row of (I--P)~'Q. At all

subsequent periods, when the world has not yet settled on a state, the i th row of

(I-P)~'Q remains the appropriate characterization of uncertainty at O.

Having prepared this background, we proceed to the main discussion of this paper.

We shall characterize the class of non-partitional information structures on 0
which can be given a reconstruction in terms of the dynamic scenario described in

this section.

3. Dynamic Representation

Let a non-partitional information structure (1Z, (p, i) be given, where 1 is an

arbitrary state space, p is a correspondence p:0-+212, and i is a probability

measure on c such that p(w) is measurable, for all w E 1. We shall, however,

assume that the range of 'p is finite, and denote by 01, 2, ---, On the subsets of 12

in the range of 'p.

The first step in attempting to give the triple (2,'p, i) an interpretation in terms

of our dynamic framework is to introduce a finite message space and a signal. For

this, we define;

(3.1)
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ei consists of those states at which the individual's information is 0i. The set of

all such 8i partitions G, and we denote this partition by 0. As the notation

suggests, the intended interpretation of a is as the partition generated by some

signal ':f2 -+pM, where M is a finite message space. O8 has the interpretation of

the set of states which gives rise to the i th message. (Compare with (2.1)).

We denote by 'i the probability 7r(6i). When no confusion is likely, we shall also

use the symbol 7 to denote the m-tuple (ir 2 , --- ,, ) The context should make

clear whether we intend ir to denote the vector or the measure. Also, for the rest

of this paper, we shall confine our attention to w such that 7r(O.) >0 for all i.

It was shown in the last section how the uncertainty facing the individual at each

state could be characterized by the appropriate row of the matrix (I--P)~'Q. There

is a matrix which plays an analogous role when we are given the non-partitional

structure (0, Sp, "). At a state W E 8i, the individual forms beliefs by conditioning on

<o(w) =0. Thus, the uncertainty at 9i is characterized by the ith row of the

following matrix.

' (81| 41) ?r(82|l 1) .-. ?( =0 1 * )

(3.2) ?x(81| 2) x( 82|(2) 7(6*102)

We denote this matrix by R. Since the i th row of R characterizes the

uncertainty of the individual at Og, the matrix R plays the same role as the matrix

(I -P)~Q of the last section. The interesting question is whether the matrix R

could have arisen from the dynamic scenario described in the previous section.

That is, whether there are appropriate matrices P, Q such that R -(I -P)~Q. Also,

we would need to interpret the vector xr = (w1~, --- ,i.) as having arisen from some
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initial probability distribution u = (u i , u2,..., urn) via the dynamic process determined

by P and Q. That is, whether w =u(!-P)~1Q. Finally, in order to complete the

scenario, we would have to capture the fact that the signal which generates the

partition e is the only signal that the individual has access to. For this, the

correspondence p: 0 -+2 must be at least as coarse as the partition e. That is,

each Sp(w) must be a union of elements of e. Drawing together these considerations,

we state the following definition.

DEFINITION. (S, So, w) has a dynamic representation if;

(D1) Each So(w) is a union of elements of 8.

(D2) There exist transition matrix P and absorption matrix Q such that;

R =U-P)~;Q.

(D3) There exists probability distribution u such that;

' =uR.

We present two examples of non-partitional information structures for which we

can construct a dynamic representation. In section 6, we shall encounter examples

where no dynamic representation exists.

EXAMPLE 3.1. S2={w1,W24, p(w1) = Z, o(w 2) = {w2}, and -r({wi}) = i({w 2 })= 2. Let

91={w1) and 82 =(w 2). Since each Gi is a singleton set, (D1) is satisfied. For (D2),

1 10 and= 0
R = 2 2 . Then for P=[ 01and Q = *0

j 0 00 j

so that R = (I - P)~LQ. Finally, U =[(1,0OJ yields 'x = u R, and so (D3) is satisfied.

Thus, (Gpx has a dynamic representation.
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EXAMPLE 3.2. 2 =={ 1,w2,..., 7 }, -({wi})= for all . p is as given in figure 3.1.

[Figure 3.1 here I

For each w, p(w) is represented as the smallest balloon containing w. Since

.p(w) = p(w') w=w', each element of 0 is a singleton, and (Dl) is satisfied. Define

; = {wj, for all i. For (D2), we note that;

7777 1 17-3 0 0-3 0 0

1 1 1 0 0 0 3-1-1 0 0 03 3 3

1 0 0 0 0 1 0 0 0 0

R= 1 0 0 0 R~1 1 0 0 0
1 1 3--1-13 3 3

0 1 0 0 1 0

1 1

By setting all the absorption probabilities equal to 1, we have QR~1 = R-'. Thus,

3 3 0 0 3 0 0

7 1 1 0 0 0

9 0 0 0 0

P =I--QR~i1 9 0 0 010

7P1  1

0 9 0

9

which is a matrix of probabilities. Thus, (D2) is satisfied. Lastly, for (D3), we let

u = (1,0,...,0). Then, uR =(j,,...,j) ='r, so that (D3) is satisfied. Thus, the

above structure has a dynamic representation.

From the examples above, we can see a pattern emerging. Notice that the matrices

P, R? and R~' are all upper triangular, and that each of them is obtained by

"nesting" the matrices associated with each substructure in a recursive way. The

formal treatment which follows is a generalization of these themes.
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What properties of the correspondence '0 allow us to carry out this construction?

As we show below, this construction turns on three properties of the corres-

pondence S0. They are;

(Cl) W E p(w), VW

(C2) ' E (w) = (w') Q CP(w), V w, w'

(C3) p(w) f p(o') # 0 =[o(w) C p(w') or (w') C j(w)], V w, W'

The first two conditions have been examined in some detail by Samet (1987) and

Shin (1987). (C1) corresponds to the principle that whatever is known is true, while

(C2) corresponds to the principle that whatever is known is known to be known.

(C3) is the condition known as nestedness introduced by Geanakoplos (1988). The

correspondences '0 which satisfy these three conditions encompass the standard case

where information is partitional. In particular, Geanakoplos (1988) has shown that

these three conditions are necessary and jointly sufficient to preclude speculation

in the context of games with generalized information structures.

For our part, the main result of our paper is that the three conditions above are

necessary and jointly sufficient for the existence of a dynamic representation.

This result takes on additional significance in the light of Geanakoplos's result on

speculation, since we have the corollary that the existence of a dynamic

representation is necessary and sufficient for the absence of speculation.

THEOREM 1. (,A,7r) has a dynamic representation if and only if p/ satisfies (C1),

(C2) and (C3).

The proof of this result will be obtained as a consequence of the discussion in

the next two sections. Let us first consider necessity. The necessity of (Cl) and

(C2) are easy to show. (C1) follows from the property of our dynamic environment
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that, when the world starts out from a state, there is a non-zero probability that it

will settle there. (C2) is a consequence of the transitivity of the accessibility

relation. That is, if a transition is possible from ai to 8 aind also from 0 to 8k,

then the transition from 8i to ok is always possible.

The necessity of (C3) is harder to show. We rely on an argument which shows

that, if (C3) does not hold, then either u or P has a negative entry. Since the

entries in u and P must be probabilities, we conclude from this that no dynamic

representation exists when (C3) fails.

For the sufficiency part of the proof, we exhibit an effective procedure for

constructing u, P and Q which satisfy the appropriate properties. This boils down

to checking that u and P have entries which are probabilities. This is the subject

of the following section.

4. Sufficiency

In this section, we shall set out a systematic procedure for constructing a dynamic

representation of a structure (S2, (p, w) where p satisfies (C1), (C2) and (C3). As a

by-product of this discussion we will have proved the sufficiency half of theorem

1. Let us start with some preliminary results.

LEMMA 4.1. If p satisfies (Cl) and (C2), each o(w) is a union of elements of e.

PROOF. Suppose not. Then, there exist 91 and 0t such that f1 4#0 but

9/;Og.Take any w EO fl Oy Then, 'p(o) =0g. By (C1), %;C 4g Thus, @ 4 g.

But since w E 0,g, we have, by (C2), 'p(w) =$ C $ which is a contradiction. 0

Let us denote by 6(w) the element of 0 which contains w. When each 'p(w) is a

union of elements of 0, w' E 'p(w) 4 O(w') Q 'p(w). We shall define the binary

relation -< on 0 so that O8 5Og is taken to mean O7 G @g. Together with the
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assumption that each 98 is non-null, we have;

(4.1) 8i 8j0 8 C0 @ 7(9 |i) > 0

LEMMA 4.2.

(i) If w satisfies (Cl) and (C2), - is a partial ordering.

(ii) Suppose p satisfies (Cl) and (C2). Then p satisfies (C3) if and only if the

structure (0, :) is a union of trees.

PROOF. (i) From (Cl), 8i C 4i for all i. Thus, - is reflexive. Next, (C2) implies

that when Qj Di, we have @ 4Cy>. This implies the transitivity and anti-

symmetry of -<. For transitivity, note that when 9. C 0i and 0k C , we have

ej C * 'jC0, so that s is transitive. Also, when 9 s 9 jand 8 -98, we have

ci = j, so that 8L=9j. Thus, - is anti-symmetric.

(ii) cc satisfies (C3) whenever, for all w, w', w",

(4.2) w E p(w') f p(w") [c(&') Cp(w") or p(w") Q p(w')].

By (Cl) and (C2), woE (w') p(w) Cp(w'). Thus, (4.2) is equivalent to;

(4.3) w E 'p(w') fl((w") = [w'E P(w") or w"E (w')).

We know that w E p(w') p 9(w) 'p(w') 8 0(w') -< 8(w). Thus, (4.3) is equivalent to;

(4.4) [8(w') -c 0(w) and 8(w") -< 8(w)] [8(w') - 8(w") or 8(w") - 8(w')]

That is, for any R E 8, all its predecessors according to 5 are totally ordered by

-<. Thus, each connected component of (9, -. ) is a tree. 0

By this lemma, when po satisfies (C1), (C2) and (C3), the ordered structure (0, <) is

a collection of trees. When (0, s) consists of more than one tree, each tree can be

regarded as a separate information structure and be treated in isolation. Thus, we
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shall confine our attention to the case where (0, -) is a single tree.

0
Thus, suppose (9,1 ) is a tree with root 0. We shall associate a matrix with each

node of the tree by means of the function f defined as follows.

(i) For each terminal node 9, f(9) ={[1]. That is, we associate with each terminal

node the matrix consisting of the single entry 1.

(ii) Suppose 9 is a non-terminal node, and suppose 6_1, 12, --- , 8k are the immediate

successors of 0. Suppose also that f(91) = S1, f(92)= S2 , ... , f(0k0=Sk. Then f(e)

is defined as the matrix;

1 1

0 S1
(4.5) S o

0oSk

This is the matrix obtained from the block diagonal matrix which has

(S1, S2, ... , Sk) along the leading diagonal by adding a column of zeros on the left, and

0
- then adding a row of l's on the top. Define the matrix D to be f(O). That is, D is

the matrix associated with the root of the tree. We then index the set 0 as

follows. If the first row of f(G) appears in the i th row of D, we let 9 =09.

[Figure 4.1 here]

We shall say that a matrix X is nested inside a matrix Y if there is a

partitioning of Y such that X appears as a component in this partitioned matrix.

By construction, Og Og if and only if f(07) is nested inside f(0 g). Since the top

row of f(6g) consists of l's, O; a O; implies that d1 1 =1. Conversely, the i th row of

D consists of zeros except for those entries which form the first row of f(Oj).

Thus, di =1 implies that O; a O7. Together,
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ri if 9 -<69.

(4.6) di=
0 otherwise

We note that each matrix in the range of f is an upper triangular matrix with l's

along the leading diagonal. This ensures the non-singularity of any matrix

associated with a node of our tree. We then note the following feature of the

matrices [f(0)]-1.

LEMMA 4.3 For any 0 E , the first column of [f(0)]-' has precisely one non-zero

entry - namely, 1. For i 2, the i-th column of [f(8)]~1 has precisely two non-zero

entries - namely, 1 and -1.

PROOF. The proof is by induction. We show that the conditions of the lemma

hold for each terminal node, and then show that when the conditions of the lemma

hold for all immediate successors of a node 0, they hold for 0 also.

For a terminal node, f(0) = [f(0)]-i =[11, and so the conditions of the lemma hold

trivially. Next, let 0 be a non-terminal node. Suppose 11, !2, -..- k are the

immediate successors of 6, and that f(i) = S1, f(92)= S 2 , ... , =fk Sk. Then f(G)

is given by (4.5). Consider the following matrix.

0 S-

(4.7) S21

0 Sk1

This is the matrix obtained from the block diagonal matrix which has

(S-', Si, ... , Si) along the leading diagonal by first adding a column of zeros on the

left, and then adding a top row given by x =(zix2... ,xg), where x1 = 1, and for

i 2,
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-- 1 if there is precisely one non-zero element below x4

0 otherwise

By the induction hypothesis, each S' satisfies the conditions of the lemma. By

construction, xi = -1 if and only if the first column of one of the matrices Sj1

appears in the i-th column of (4.7). Thus, in each column of (4.7) except the first,

there are precisely two non-zero elements (1 and -1). Since x1i=1, the first

column of (4.7) has this element as the only non-zero element. Thus, (4.7) satisfies

the conditions of the lemma. Therefore, our proof will be complete when we have

shown that (4.7) is the inverse of (4.5).

Denote by A the matrix obtained by post-multiplying (4.5) by (4.7). We verify

that A is the identity matrix. It is clear from inspection that all rows of A from

the second row to the last coincide with the corresponding row of the identity

matrix. Thus, it remains to check that the top row of A is given by (1,0,...,0). Let

(all, a 12, ... ,ale) be the top row of A. For all i, all is the sum of the elements of

the i-th column of (4.7) since the top row of (4.5) consists of 1's. Thus, an=1 and

alt =0 for i 2. This shows that (4.7) is the inverse of (4.5) and completes the

proof of the lemma. 0

Now, since each f(O) is an upper triangular matrix with l's along the leading

diagonal, so is its inverse [f(O)]~. But the above lemma implies that each column of

[f(0)]~1 has precisely one positive element - namely, 1. Thus, the diagonal entries

are the only positive entries in [f(o)]~ 1. This gives us the following corollary.

COROLLARY. D~' has l's along the leading diagonal and has no positive entries off

the leading diagonal.

With this corollary, we can construct the matrices P, Q and vector u which give

us the dynamic representation. Consider the matrix R. From (4.1), we know that
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the (i, j)-th entry of R is positive if and only if BL % . Denote by ri 2 the (i, j)-th

entry of R. From (4.6), we can express R in terms of D as;

(4.8) r= di

Then, R~' can be expressed in terns of D~ as follows.

(4.9) r =d

To see this, we verify that i r 4,)is given by;

k_ -1) _____ (-l)1( j)fl if i =
di k -)d ckdi-dd i

(k) (t) toif i7-j

Then, by the above corollary, R' has positive leading diagonal entries and has no

positive entries off the leading diagonal. Let F >0 be a number small enough so

that £ R~1 has entries whose absolute value is strictly less than 1. Let Q be the

diagonal matrix E 1. Q then qualifies as an absorption matrix. Define P =I -QR~ 1 .

The matrix QR~' has the following features. The entries along the leading diagonal

are positive, and there are no positive entries off the leading diagonal. Moreover,

all entries have absolute value strictly less than 1. Thus, P is a matrix of

probabilities. So, there are matrix P, Q satisfying the appropriate conditions such

that R =(I - P)~'Q. This satisfies (D2).

For (D3), let u = (1,0,0,... ,0). Since the top row of D consists of 1's, the top row

of R is the vector = ( ,,..., i). Thus, uR = r, and (D3) is satisfied. Lastly,

lemma 4.1 shows that (D1) is satisfied. Thus, when <p satisfies (C1), (C2) and (C3),

the structure (l, (p, ir) has a dynamic representation.

5. Necessity

In this section, we shall show that each of the conditions (C1), (02) and (C3) is
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necessary for the existence of a dynamic representation. We proceed by

considering the necessity of (CI), (C2) and (C3) in turn.

Necessity of (C1). Suppose (2, Sp, 7) has a dynamic representation. Then

R =(I-P)'Q for some P and Q. We know that (I--P)~1Q is the limit of the

sequence of sums Q+PQ + P2Q +---+P"Q, where each term in this sum is a matrix

of non-negative entries. Since Q is a diagonal matrix of positive entries, (I-P)~'Q

has positive leading diagonal entries. That is, ic(8 |g) >0 for all i. But since

(G, ,w) has a dynamic representation, (D1) is satisfied, and each "g is a union of

elements of e. Thus, 9i C O for all i. So, for any w E ig, w E 9 C Og = p(w).

Thus, (Cl) holds.

Necessity of (C2). Suppose (c2, Sp, i) has a dynamic representation. Denote by rig

the (i,j)-th element of R. That is, r i = w(8,|"). Since R =(I-P)~1Q and Q is a

diagonal matrix of positive entries, rid has the same sign as the corresponding

element of (I-P) 1 . Thus, ri) >0 :p J >o prj>0 for some n Z0. Now,
n-o

suppose rij>0 and rj>O. rt 1 >0 p()>0 for some n 0, and r g>0 Pik>0

for some m 0. Then, p pit z ve>ptPip > 0 so that rik >0. Therefore,

when rigj>0 and rfk >0, we have rik >0. By (D1), ri 1 >0 m Oj C @. Thus,

(5.1) [6j CO i& Ok C 4j j] =>k C Oi

Take any three states w, w', w". Let W E Oi, w'E 8j and w" E . Then ho(w) =Og
and p(w') = 'g, and (4.1) implies;

(5.2) [w' E p(w) & w" E p(w')] a w" E Wo(W),

which is the statement of (C2).

Necessity of (C3). Suppose that (12, p', w) has a dynamic representation but that po
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does not satisfy (C3). From this, we derive a contradiction. By the necessity of

(Cl) and (C2) and part (ii) of lemma 4.2, (0, -_) contains at least one connected

component which is not a tree. Thus, there is an element . E E and two immediate

predecessors of 0 (denoted by 8i and 02) such that 0i and 02 are unrelated by <.

We then have the following lemma concerning the indexing of 0.

LEMMA 5.1. There is an indexing of the set a so that;

(5.3) (i) 8i e0 j= i S j, for all i, j E (1, ... , m}

(ii) 81 =0, 82 = i+1' 8 =9i+2, for some i E {1, ... ,rm}.

PROOF. Partition the set 0 into A and ®\A, where

(5.4) A ={0|#10 09or 02<0 or 8-<0}

Suppose a\A has (q-1) elements. Index this set with {1,2,...q-l) as follows. Pick

any _ -minimal element and assign it the index 1. In general, assign the smallest

available index to a state whose predecessors have all been assigned an index. This

indexing of ®\A satisfies 5.3(i) for i,j E{1,...q-1). Next, let 81= 09, A2=8q+1,

0 =0+2 so that 5.3 (ii) is satisfied. Then, index the rest of the states in A with

the set {q+3,...,m} in the same manner as for 9\A. That is, we assign the

smallest available index to a state whose predecessors have all be assigned an index.

As a result, the indexing of A satisfies 5.3(i) for t,j E {q, q +1,...m).

Now, take any 0 E 0. We show that 0 -< 4Q implies i j. There are two cases.

First, suppose 03 E 0\A. Then, all predecessors of 0; are in @\A. (Since, if 97has

a predecessor in A, then 03 must also be in A by the transitivity of -<). In this

case, O, 3 implies i j since the indexing of 0\A satisfies 5.3(i). Next, suppose

%yE A and 0; .<07. If 01 E A, then i ( j since the indexing of A satisfies 5.3(i). If

eg E \A, then i g q -1 and j >_ q so that t < j. Thus, we conclude that the indexing
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of e as a whole satisfies 5.3(i). 0

Consider the matrix R with the indexing of states 5.3 (i) and (ii). R has the

following features. Firstly, R is an upper triangular matrix. To see this, recall

that ri 3 >0 6i c 0j. Hence, by 5.3(i), ri >0 = i S j. This is the definition of

R being upper triangular. Secondly, all the elements along the leading diagonal of R

are positive as we showed in the proof of necessity of (Cl). Together with the

fact that R is upper triangular, this ensures the non-singularity of R.

Let D be the matrix whose (i, j)-th element is defined as follows.

(5.) g =1 if rij > 0
(5.5) di, ={: U

0 otherwise

D inherits the following features from R. D is upper triangular. D has 1's along

the leading diagonal. Clearly, D is non-singular, and we denote by d g~" the (i, j)-th

element of D~ 1. The inverse of a triangular matrix is itself triangular, so that;

(5.6) did ~ =did
k {kligkSj}

Thus, D~1 has l's along the leading diagonal. Consider two elements of DD 1 in

particular' - the (i, i +2)-th element and the (i +1, i +2)-th element. From (5.6), we

have,

(5.7) dig di di 1 di4 0

0 di+,i1 d i 1z d i+, i+2 0

2+2 ,+2

We know that dLig = d ~ ~ 1 since D has l's along the leading diagonal. Also,

d+,+ = 1 for the same reason. Moreover, by 5.3 (ii), 01 -< 01+, O, 2; Gi+2 but

ei 6 Thus, d1 , 2 1, d ~, 1 2 =1 but d1,~ =0, and (5.7) now reads;
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(5.8) 1 0 1 d, += [

0 1 1 dt 0L +, 12 [o
1 i2

which implies that d ,1) 2 = d i 1' 42= -1.

Finally, from the supposition that -r = uR, we have u=' R-1. The j-th

component of u is given by;

(5.9) uj xr x id j- -= T(0 ) didj

i-1 " i"

Consider the (i +2)-th column of D~1. We have shown above that there are at

least two entries in this column which take the value -1. Now, either this column

has a positive entry other than dci2 i+2 or it does not. If it does, then the matrix

P has a negative entry, since P = I -QR~' and an entry of D~1 has the same sign

as the corresponding entry of Q R~'. If it does not, then the sum of entries in this

column is at most -1, so that ui+ s- it(*2) < 0 by (5.9). In either case, we have

a contradiction with our initial supposition that P is a matrix of probabilities and u

is a vector of probabilities.

Our conclusion that either P or u has a negative element is robust to the

renaming of states. Recall that when we exchange two rows of R, we exchange the

corresponding columns of R~1. Thus, when we swap the index between 9, and 9j,

we exchange the i-th and j-th rows and i-th and j-th columns of R and R~ 1. Since

our conclusion rests only on the sign of the elements in D~-1 and the column sums of

D~,we conclude that our result is robust to the renaming of states.

We started with the supposition that (2, tp, r) has a dynamic representation but

that 'p is not nested and have obtained a contradiction. We therefore conclude that

nestedness is a necessary condition for the existence of a dynamic representation.
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6. Speculation

We conclude by exploring the connection between the possibility of speculative

trade and the dynamic representation of individuals' information structures. In

order to keep the exposition simple, we shall assume in this section that 0 is finite,

and that w((w)) >0 for all states W.

We define rational choice as follows. For a given individual, his payoffs are

determined by his payoff function h: A X 1 -+ R, where A is the set of actions.

Thus, h(a,w) is the payoff to this individual at w when he takes action a. Any

function f :2 -+ A such that p(w) = p(w') = f(c) = f(w') is called a strategy. We

say that the strategy f is optimal at w given 'p if ;

7({w'})
(6.1) f(w) maximizes h(a,w')

a E A x(SpC))
w 'E4'(w)

That is, f is optimal at w given p if the action f(w) maximizes the expected payoff

conditional on the information .p(w). We say that f is optimal given Sp if it is

optimal at all states given Sp.

Geanakoplos (1988) has shown that when Sp satisfies (C1), (C2) and (C3), an optimal

strategy f given p satisfies the following important property.

(6.2) h(f(w), w) r({w)) > h(a, w) ({w}), Va E A.

W w

In other words, an optimal strategy f does at least as well as any single action a.

Alternatively, we can read (6.2) as stating that the information conveyed by p

allows the individual to improve upon the situation where he has the trivial

information 12 at all states. Geanakoplos shows that this property is instrumental in

deriving no speculation results, and he generalizes a non-speculation result to a

context in which individuals hold non-partitional information.
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Since we have demonstrated that the existence of a dynamic representation is

equivalent to (C1), (C2) and (C3), Geanakoplos's results on speculation carry over to

our dynamic framework. In particular, it is instructive to see the role played by

the dynamic representation in precluding speculation. It turns out that each of the

clauses defining a dynamic representation has an intuitive interpretation. We shall

illustrate the role of the three clauses (D1), (D2) and (D3) by showing what happens

when any one of these conditions fail. It is most natural to start with (D3).

Role of (D3). Let x be a column vector of m numbers x;, x2, ... ,Xm. Think of x as

the payoffs associated with a lottery ticket which yields the prize xi when 81

obtains. Then (D3) implies that there is a probability distribution u over G such

that;

(6.3) x = u R x.

Let us denote by x the random variable defined on $ whose value at 9i is xi.

Then, the left hand side of (6.3) is simply the expectation of z. For the right hand

side, notice that the product R x is a column vector whose i-th component is the

conditional expectation of X given the event 4i (denoted by E(z j@*i)). Thus, (6.3)

can be expressed as;

(6.4) E(z) = u2 ui E( I0i).

Thus, (D3) ensures that for any random variable z, its expectation is a convex

combination of the conditional expectations. This brings to mind the rule in

probability theory that the expectation of a random variable is given by the

expectation of the conditional expectations of that random variable. (6.4) is a

generalization of this rule in which the weight ug need not correspond to the

probability of .
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An important consequence of (6.4) is that it guarantees a generalized form of the

dominance principle. This principle is defined in the obvious way - that is, for

any random variables x and b,

(6.5) E(z|ID) Z E(9|eg), Vi = E(i) Z E(Q)

That is, if x is preferred to y given any possible information, then x is preferred to

y ex ante. When (D3) fails, we can construct examples where dominance no longer

holds, and this leads to speculative trade. Consider the following example due to

Geanakoplos (1988). Rubinstein and Wolinsky (1988) has similar examples.

Let S1 = {w1,w2,w3} and ir({o,})=I, for all i. Consider two lottery tickets x, y

which yield the following prizes.

W1  W2  (A3

x 0 0 10

y 6 6 0

Suppose there are two individuals, I and 2. 1 has the trivial information pi'(w1) =fl

for all i, while 2 has the information defined by the correspondence j,2, where

2(2)= {w1, W3 ), 2(w)2) = W 21 },, 2(W3) = {W3}

[Figure 6.11

Consider the allocation where 1 has x and 2 has y. This allocation is ex ante

Pareto optimal since both individuals prefer y to z. However, the conditional

valuation of x and y by 2 is as follows.

E(x*o 2 ) 5 5 10

E(yko 2 ) 3 3 0

Thus, at the interim stage, 2 prefers x to y. This opens up the possibility of
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trade between I and 2 in which the lottery tickets are swapped. This trade can be

seen as a bet between the two individuals as to what the true state of the world is.

2 has finer information than 1 but he does worse on average by trading his y for x.

This failure on 2's part is due to the fact that dominance is violated. In turn, we

can trace this to a failure of (D3). By letting O6 ={tw.), we see that the solution to

w =u uR yields u =( 3, 3, -i). The third component is negative, violating (D3).

Role of (D2). The notion of dominance described above is a rather weak requirement

on rational choice, and there are instances of the failure of rationality similar to

the one examined above, which manage to "slip through". The role of (D2) is

complementary to that of (D3), and consists in reinforcing the notion of dominance.

It is best to illustrate this with an example. Consider the following modification of

the example above. Q = w ,( 2 ,W 3 , W4 and l({Wt}) =, for all i. Consider again two

lottery tickets x and y with the following prizes.

W1  W 2  (J3 W4

x 0 0 0 10

y 0 6 6 0

There are two individuals who share the prior r. The first individual has the

trivial information 4o1(w )= 2 for all i. The second individual's correspondence p2

is given as follows. 2 ( 1) = (, cp2(w 2) ={.2,4 , 2 2(2 3 ) = {w3 , w 4 }, V2(W4) = {w4.

[Figure 6.2 here]

This example is a minor modification of the previous example in which we have

added the state w1 at which both lotteries pay zero. Notice that (D3) is now

satisfied for u =(1,O, ... ,0), so that dominance now holds. However, our intuition

would suggest that the same considerations which caused problems for 2 in the

previous example would also play a role here. This is indeed the case. 2's
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conditional evaluations of the lotteries x and y are as follows.

wi W2  (w3 w{

E(xIp) 2 5 5 10

E(y|op) 3 3 3 0

The allocation where 1 has x and 2 has y is ex ante Pareto optimal, since both

individuals prefer y to x ex ante. However, at the interim stage, 2 is willing to

trade y for x at W2, w3 and w4. At w,, individual 2 prefers to keep his y. Indivi-

dual 1 is always willing to trade. The payoffs associated with 2's strategy of

trading at w2, w3 and w4 and not trading at wi are (0, 0, 0, 10), so that the expected

payoff to this strategy is 2). However, this falls short of the expected payoff of

not trading at any state, which is 3.

Again, we have an example where finer information leads to a worse outcome.

Notice that (D3) has no force in this example. What has happened is that the

failure of dominance has been obscured by the introduction of the state wl. The

role of (D2) is precisely to expose this sort of masking of the failure of dominance.

To see this in the example above, note that p2 satisfies (Dl) and (D2) but is not

nested. Thus, from our theorem, we know that (D2) must be violated. Let 0i ={wi).

Then,

11 14-2-2 14 4 41 -2 2
R= 0 0 R'= 0 2 0 -1

0 0 0 0 2 -1

0 0 0 1 0 0 0 1

We know that P = I - QR~'. Since Q is a diagonal matrix of positive elements,

P14 < 0 since r= 1 > 0. Thus, P has a negative entry, so that (D2) fails.

When taken together, (D2) and (D3) can be seen as working in concert to ensure
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dominance within each substructure of (0, So). (D3) requires that dominance be

satisfied for the structure as a whole, while (D2) complements this by applying a

similar criterion to each connected substructure of (0, s). The combination of (D2)

and (D3) is closely related to Geanakoplos's (1988) notion of positive balancedness.

Role of (D1). Finally, we illustrate an instance of the failure of (D1). Let £2 =

(WIw 2 ,w3 and 7t(wi)= 3, for all i. Consider lotteries x, y below.

wl W2 W3

x 0 0 5

y 2 2 2

There are two individuals, 1 and 2, who share the prior -r. 1 has the trivial

information =p(wi) = for all i. 2's correspondence p2 is such that co2(w1) =

2(W3)= £ and 'p2 (w2 ) = {w2,w3}. Consider the allocation in which 1 has x and 2 has

y. This allocation is ex ante Pareto optimal since both individuals prefer y to x.

However, at the interim stage trade will take place. 2's conditional valuations of x

and y are;

E(xI co) 36
2 3

EMyIS2) 2 2 2

At w2, individual 2 is willing to trade, while at w1 and w3, he is not willing to

trade. Since individual 1 is always willing to swap his x for y, trade will take place

at the interim stage at w2 - However, the payoffs associated with 2's strategy are

(2,0,2) and this leaves 2 worse off on average than keep his y.

Let us identify the reasons behind 2's failure. 2's problem is that his information

at w2 makes trade appear attractive even though his behaviour at other states

betrays this appearance. The decision to trade at (A2 is essentially a gamble with
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individual 1 concerning the likelihood of w3 . However, this decision to trade will

only be profitable for 2 when 2 is actually in possession of x at w3. However, at

w3, 2's information is no better than 1's information there, and 1 ends up by

preferring y instead.

Thus, there is a failure of forsight on 2's part. At w,, 2 ought to anticipate what

his information would be at w,, and hence what his action would be there, but fails

to do so. This failure results in 2's wishful thinking at W2 that he can win the bet

with his opponent.

The above example is an instance of the failure of (D1). The partition 0 is given

by {w 1, w3}, {w2}}, while (p2(w2) ={w2, W3 }, so that p2(w2) cannot be expressed as a

union of elements of 0. (D1) stipulates that an individual can only rely upon

information which will actually be received (in the form of the signal a). When

(D1) fails as above, the individual. is relying on information which will not be

delivered. In short, the individual is guilty of wishful thinking. This wishful

thinking can lead to ill-advised trade, as we see above.
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