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The main purpose of this paper is to present a thorough and .

systematic study of the necessary and the sufficient conditions

X . . n a ’
for a smooth non-linear mapping u: R —>1R to have a vector .

maximum (or Pareto ooptimum) on some (constraint) subset of w2 and -..

-

to apply this study to some of the basic problems in microeconomics.

The principal technique in this study will be to equate any given

constrained vector maximization problem with a system of constfained
scalar maximization problems, that is, problems of mathematical
programming. This approach seems much simpler and more rewarding ﬁhan
the usual ad-hoc methods used in vector maximization probiems.

(See Theorem 7.1 and the remarks in secton 7.A.)

Conseguently, we:ralso need to present a thorough inﬁroduc;ion to
the theory oi mathematical programming. We begin this presentation in
chapter two by recalling the first and second order conditians
involved in unconstrained maximization problems. 'In chapter three,
we use these results to study constrained maximization problems
where the constraint set is a smooth manifold, i.e., the derivative
of the mapping which defines the constraints has maximal rank
near the proposed solution. We also derive very generzl second order
sufficient conditicns for a constrained maximum in this chapter.

In chapter four, the strong non-degeneracy assumptions on the
constraint set are replaced by the more general " constraint

gualifications” of Xuhn-Tucker, Arrow-Hurwicz-Uzawa, and Slater.
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tempt 1s made to keep the presentation of these different

cases as unified, yet as simple as possible. The first order necessary

.



conditions of chapter four are the basic ingredients of the generala
theorems cn vector maximization presented in chapter seven.

In chagter five, we examine the situation where the first
order.necessary conditions are also sufficient - the economically
important case of concave and almost concave objective and constraint
functions. This chapter also includes a brief introduction to saddle
point theorems and to duality.

Chapter six brings together the theory of the previous four
chapters by using programming theorems to introduce the basic
concepts and norms of the eonomic theoriés of the consumer and of the .
firm. We first derive the classical necesary (and often sufficient)
conditions that describe a consumer's choice of a most preferred
commocdity vector £from a set of feasible and affo;dable commodity vecto. s
We then turn to a similar study of a firm trying to choose the level
of production that will maximize profits or revenues. This
study includes an introduction to the activity analysis of production.

In chapter seven, all the theory developed for scalar maximizatior
probelms is applied to vector maximization problems. This includes
both necessary conditions and sufficient conditions, first order
and rather strong second order conditions. We discuss both the
"sroper” soluticns of Kuhn-Tucker andé Geoffrion and the saddle point
approach to vector maximization problems. We end this chapter
by reviewing some of the insights into vector maxima that Smale
and others have achieved by using techniques of differential topolégy..

Finally, the eighth chapter extends the applications of chapte-
six to the case where a number of consumers interact in an economy.

Special proverties of the utility meppings that arise in these



situations are related to the hypotheses of theorems in chapter seven.

Then, results of chapters five and seven are used to prove the e

Fundamental Theorems of Welfare Economics, which relate the concepts -

of Pareto optimum and competitive equilibrium. The chapter closes

with an application of vector maximization to the choice of an

efficient pcrtfolio of securities.

The author hopes that after reading this paper the general
reader will develop an understanding of and an intuition for some of
the more basic concepts and techniques of mathematical economics
and, as a result, will be adegquately prepared to examine the more
advanced topics in mathematical economics that are presented in
this book.

With the exception of a few references to elemen:.ry facts about
matrices, the only mathematical tools used are the basic theorems
of multi-dimensional calculus, e.g., the Chain Rule, Taylor's Theorem,
the Mean Value Theorem, and the Implicit Function Theorem. Conse-—
guenitly, this paper should be accessible to any reader who has taken
the basic two-year seguence of differential calculus. To refresh the
reader's familiarity with these theorems and to introduce the
convenient coordinate-freenotation which will be used throughout
this waper, the author presents a mini-course in advanced calculus -
without proofs - in the first section of chapter one. This
chapter also contains an introduction - with proofs - to the
properties of concave functions and their geﬁeralizaticns which are

important in programming problems.



This paper contains no really new results in scalar and vectos
maximizaticn, alﬁhough a number: of theorems in the last three
chapters are presented with weaker hypotheses or étrcnger
conclusions than the author has found in the literature. The emphas
has been on presenting a very thorough description of the theory
of non-linear vector maximization and as unified and as simple an

approach as possible to the problems of scalar and vector

maximization.

I am grateful for comments and suggestions by L. Blume, J. Tolle,

and H. Varian on an earlier draft of this paper.



§1. MATHEMATICAL BACKGROUND

1.A Derivatives

In_this' section, we will summarize some of the importantfre'su]‘.ts
from differential calculus which will be needed in later chapters;'
No proofs will be given. To facilitate later expositions, we wili
try to stay with a coordinate-free notation. See Courant (1%47), -
Fleming (1963), and Edwards (1973), for example, for complete proc;ﬁs

and further discussions.

Let R" denote the usual linear space Oof n-vectors
{x = (x;,...,x ) |x; is a real number}. Let'mg' 4 déhote_ the positive
orthant of IRn, i.e., {x € ]Rnlxi >0 for i=1,...,n}. If x
and y are in RY, we will write x <y 1if x:'.L 2y for

i=1,...,n, and x <y if X <yi for all i . We will denote

—~

the standard inner product between x and y as

n
Xy = 1l X.Y

i=1 Y7
and the norm or length of X as
|x| = vx-x
on Rm! , write f[a,b] for {t € R|a < t <b} and (a,b)

for {t € Rla < t < b}, where a and bEIRl.

lLet f: R = R™ be a continuous mapping. Then, £ has a deri-
vative at x° € R" (or f is differentiable at x°) if there 1is
a linear mapping L : R+ R™ such that

lim f(x°+h) - £(x°) - L(h) _ icic ang is 0
b0 By -




In this case, L is called the first derivative of £ at x° and

. . n
written as Df(x°). Since Df(x°) 1is a linear map from IR~ to
Fﬂ‘, it has an (mxn) matrix representation in the standard basis
of R" - the usual Jacobian matrix
' 1
of of
1 1
— (X°)e....x— (X°)
axl = axn
of of
m m
— (X°) . eeeom— (x°)
| 9%, 39X,

where f ., £ are the components of f. More precisely, if the

1" m

linear map Df(i°) exists, then all the first order partial
derivatives afi/axj of f exist at x° and the above Jacobian
matrix represents Df(x°) . Conversely, if all the partial
derivatives Bfi/axj exist and are continuous on a neighborhocd
U of x° , then £f 1is differentiable with derivative as above.
In this case, we say £ 1is continuously differentiable or Cl

on U since its derivative changes continously as x varies in

U, i.e., the mapping
n m
pf: U - L(R ,IR)
. s n m C s - e 4
is continuous where L(IR" ,IR ) 1s the vector space of linear
& n m 9 - 5 4 S q N
maps from IR to IR (or eguivalently, the m-n-édimensional

vector space of m X n matrices).



One can now go on to define the higher order derivatives of £ .

If f is cl , one can ask whether the continuous map Df: U + L(R",R™)

has a derivative at x° . If it does, one writes D(Df) (x°) or

n

sz (x°) for its derivative, a linear maprfrom R to .L(IRn,JRm)., or

equivalently a bilinear map from R” x R to R™. One usually
takes the latter point of view and writes p%s (x°) (v,w) instead of
(D(DE) (x°) (v)) (w). i - .

What is the bilinear map D2

£f: W - ]Rl is Cl , then Df: r"

f(x°) in coordinates? If

> L(RY,®Y) is the map

of

(1) X (5 (X)) o) () .
n

Then, the matrix representation of D2f (x°), the derivative of Df ,

5
is the Jacobian matrix of (1), i.e., the matrix [ [gi—{? (}’_")JJ .
1 i.

o j 13

2
This matrix is usually called the Hessian matrix of f ' at x°

. If v and w are in R", one checks easily that

: 2
D £(x°) (v,w) = 3§ 2% (x°) v, w,
. . N - 1
1] axiaxj
| )
2 2
9°f
= (vi-..v) 5 (x°) ..., 33; (x°) | [ w, )
axl Xy X 1
. Jd1 V2
2%¢ (xo) 2°f ) g
o (X°)..... ; x° .
Dxnaxl - ox_2 | Yn )
\ ,




2
Some authors write zt szx" w for D7Ef(x°)(v,w). If

n

m
f = (fl""’fn)' R" - R , then

4

sz(X) (v,w) = (szl(x) (Vew),-. .',sz (%) (v,w)\,.
= ==t === m ===

Again, if the bilinear map sz(§°) , or equivalently all the
second order partial derivatives (52f/axiaxj)(§9, depend continuously
on x° in U , then £ 1is called C2 on U

One can continue this process and define the third derivative

of £ at x° as the derivative of the map x +— sz(i) from R"

to the space of bilinear maps on R" . The third derivative is a
Cy . n n n m . .

tri-linecar mapping from R "X IR X IR to IR and is written

D3£(x°) (u,v,w). If it is continuous in x° , i.e., if all the

partial derivatives of £ of order 3 exist and are continuous,
. 3. . k

we say £ 1s CT ; and so on to define C7 . A central fact about
these derivatives is that they are all symmetric multilinear maps.
In particular for the second derivative, this symmetry means that
2 2 .
D"f(x°) (v,w) = D£(x°) (w,V) for all v and w . In coordinates,
this symmetry means that the Hessian is a symmetric matrix and
the the appropriate mixed partial derivatives are egual

"2z ~2 -

(s"f£/2%.09x. = 8 £/ex.8xX.)

1 B J 1
In our coordinate-free notation, the Chain Rule and Taylor's

Theorem have particularly elegant formulations. The reader is

encouraged to write these formulae in coordinates. Theocrem 1.2.b

is a2 form of the Mean Value Theorem.



Theorem 1.1 (Chain Rule for First and Second Derivatives.)

rIf £: R+ R - and g:IRm->:IRp are c* maps, then gof:i!Rn—>:1Rp is-
ct. 1f =« > 1,

D(gef) (x°)h = Dg(£(x°))e°DEf(x°)h .

a3

So, the Jacobian matrix of the composition gef 1is the matrix pro- -
duct of the Jacobian matrix of g at £(x°) and the Jacobian matrix

of £ at x°. If r >2 and y° = £(x°) in ="

’

D% (gef) (x°) (h, k)

p%g(y®) (DE(x°)h,DE (x°) %)

Dg(y®) (D2£(x°) (h,k)).

+

Theorem 1.2 (Taylor's Theorem of order two). Suppose that f: R+ ®R™

is a C2 mappihg on a convex neighborhood U of x° € mn .

a) Then, there is a C2 map S: R - o (depending continuously on x°)

such that for all h € R" with x° + h€ U .
£(x°+h) = £(x°) + DE(x°)h + 37 D°£(x°) (h,h) + S(h)
S (h)
where s=>0 as Ih] - 0
|h|
b) Let m=1 and let £,x° , and h be as in a). There are Xx'
x" on the line segment between x° and x° + h such that

£ (x°+h)

1

f(x°) + Df(x')h and

£ (_>£°+_13)

£(x°) + DE(x°)h + = D2£(x") (h,h)

-
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As an illustration of the chain rule, let fﬁmn+1Rl and

1

o R > RD

One says that o 1is a C2 curve at xX° with tangent (or velocity)

vector V.
a )

az(foa)(O)
tive of £

be C2 maps with a(0) = x° and o' (0)= Da(0)1l=yv € r". N

The rate of change of f at x° along o is
= D(fea) (0) (1)
= Df(a (0))*Da(0)1
= Df(x°)v , which is called the directional deriva-

at x° in the direction V. Similarly, one computes that
a? 2

—= (fea) (0) = D7£(x°) (v,¥) + DE(x°) (a” (0)),
dt :
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where a"(0) = Dza(O)(l,l).

, Putting together the definition of Df(x°) and the above para-

graph, one notes that

lim f(x°+tv) - £(x°)

DE(x°®)y = .
t’_;_O t

Let U be a subset of R"

with x° € U. The set of all tan-

gent vectors at Xx° to c! curves which remain in U is called

the tangent space to U at x° and denoted by TXOU. In other

words,
T§fU = {v=a'(0) € R"|a:[0,e) » R" 1s a ct curve
with o(0) = x° and «f(t) € U for all
Thus, if U 1is an open subset of x° in r" , TXOU is “TXOJRH ’

which is Jjust R with the origin pictured at x°.

There is one more interpretation of the derivative of a

Cl f:]RnAGRl . Instead of working with the l1x n matrix
Sf .0 af ,0 3 - -0 3
g (x°)..... X (x°) which represents Df(x°) as a linear map,
axy = o

one often thinks of the column vector

4 F 1
— (x°)

*1

(<5

(34

vE(x®) = . € R

df ) )
ax. (X7 :
n

\ J

e

. n . . . .
as a vector 1in Txoﬂi , 1.e., a geometric vector with its tail at

Xg - One notices easily that



~
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DE(x°)V = VE(x°)-V

and that V£f(x°), if non-zero, points into the direction in which
f increases most rapidly at x° and is perpendicular to the level
set of £ at x°, {x|f( = £(x°)) = £ TI£(x°)) .

As the linear approximation to a c!  function £:R"SER™ at x°,
the derivative not only tells us much about £ at x° but can also
yield important information about the behavior of f in a whole
neighborhood of x°. The outstanding example of this phenomenon is
the implicit function theorenm - a result which will play an important

role in later chapters of this paper.

Xecall that an m x n matrix has maximal rank if either

all its rows or all its columns are linearly independent or eguiva-
lently it contains a p X p non-singular square matrix where

p = minim,n}

Theorem 1.3 (Implicit Function Theorem). Suppose that

£: RY - ®RT is a CF mapping with r > 1 and that x° € R .

Suppose that Df(x°) has maximal rank p = min{m,n} .
a) If n<m, p=n and DEf(x°) 1is a l-1 linear map. Then,
= k £ P
£ itself is 1-1 on a neighborhood of x° , i.e., there is an

open neighborhood U of x° such that for each y in £(U)

’

the eguation £ (x)

y has at most one solution x in U . )

(x°) 1is surjective. Then, there -

+h

b) If m<n, p=m and D

-~ N . n . . m
are neighborhoods U of x° in R .and V of £f(x°) 1in R
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such that £ maps U onto V , i.e., for each y in Vv ,

there is at least one x in U such that f£f(x) =y . In addition,

the (local) level set of £ through x°
FHExe) AU = {x € Ulf(x) = £(x°))

is a c¥ (n-m)-dimensional submanifold of =" . This means that it
sits in U 1like a smooth (non-linear) (n-m)-dimensional slice
or graph; one can find coordinates y,,-..,y_ on U in which x°

corresponds to the origin and the level set through x°® is the

Yme17c- ' ¥n coordinate plane (yl=...=ym=0) in the new coordipate

system. Furthermore, the set of tangent vectors to the level set

at §° , Txo[f—l(f(§°» n U] , 1is the nullspace of DEf(x°),

{vlpf£(x°)v = 0}

-

c) In particular, if m'= 1 in b) and if Df(x°) (orm.Vf(xP))
is non-zero, say ggi (x°) # 0 , then the level set of £ through
1
x° 1is the graph of a smooth function X, = g(xz,..I,xn) around Xx°

and the set of tangent vectors to the level set is precisely

{v|VE(x°)-v = 0} .

d) PFPurthermore, if m < n, if we write rY  as r™ x R =
m n-m . o _o X et
{(xl,xz)}xl eR , x, € R }, if £(x),x;) = 0 and the square matrix
D f(x:,x%) has maximal rank m , then there is a neighborhood U
Xy 1772
of xg in ®™™™  and a unique ct map g: U - R"™ such that

g(x;) = x; and f(g(x,),x,) =0 for all x, in U . (For each

. - © = . .. ~ =
fixed xz near X2' Xy g(xz) is the solution of f(“l,x C.

2)
In other words, f(xl,xz) = 0 defines Xy as an (implicit) function

of xz.)



1.B Definite Symmetric Bilinear Maps

If f:IRn -+ JRl is a C2 function, the second derivative of £

at  x°, sz(§°), is a symmetric bilinear map RYx R > JRl, as

ne
e

indicated above, and can be represented by the n x n

2
. o .
(symmetric) Hessian matrix - mf? (x°}{| - In studying second
1773 ' '
order tests for optimality, we will need to work with
symmetric maps which are definite.

Let L:R" x _]Rn-> IR be a symmetric bilinear map. Then, L 1is

negative definite if L(v,v) < 0 for all v # 0; L 1is negative

~

. e s . - n . -
semi-definite if L(v,v) < 0 for 2ll vE€ R ; L 1is positive

definite if L{v,v) > 0 for all v #0; L 1is positive semi-defi-

: : . n
nite if L(v,v) > 0 <for all v € R .
If L is symmetric and bilinear and if g_l,...,g_ is a basis
. . . o . . N
of IR°, then the matrix of L with respect to this basis is

((Liet,ed))

. . silnce
1,3
L(Zaig_lf,z.b.gj) = T L(_e_l,e_J)aib. .
i 33 i35 ]
Conversely, if A is a symmetric matrix, then L(v,w) = vt aw is

itscorresponding symmetric bilinear map. The most straightforward
test for the positive or negative definitness of 1 uses the lead-
ing principal minors of A .

The Xk * k square submatrix of A obtained by deleting (n-k)
rows and the same (n-k) columns from A is called a kth order

principal submatrix of A . If this k X X submatrix is formed

by deleting the last (n-k) rows and columns from A , it is called

the kth leading principal submatrix of 2 . The determinant of a




15

(leading) principal submatrix is called a (leading) princiéal minor,

The following important result relates the definiteness of L to

the eigenvalues and principal minors of A .

Theorem 1.4. Let L: R x R” - R be a bilinear, symmetric

map with matrix A = ((L(el,ej)))i 3 Then, all the eigenvalues
r
of A are real and A has a complete set of eigenvectors, i.e.,

A 1is diagonalizable. Furthermore, the following three statements

are equivalent:

a) L 1is positive definite;
b) all the eigenvalues of A arc positive;
c) the n leading principal minors of A are positive.

If one is testing for negative-definiteness, then the corresponding

three equivalent statements .are: - -

a') L 1is negative definite;

b') all the eigenvalues of A are negative; -

c') the kth leading principal minor of A has the same
k

sign as (-1) for k=1,2,...,n.

There are correspondinc results for semi-definiteness. For

example, L 1s negative semi-definite if and only if all the

eigenvalues of A are non-positive if and only if each of the

rnon-zero kth order principal minors of A has the same sign as

(-l)k for kx =1,...,n. Note that to check for definiteness, one
only checks the sign of n leading principal minors; but to check

for semi-definiteness, one must check the sign of all 21
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Principal minors. The proofs of these results can be found in
most linear algebra books and in Bellman (1960) and Debreu (1952).

In our neccssary and sufficient conditions for constrained

optimization problems, we will need to check whether the restriction
of a symmetric bilinear map to some linear subspace of Rr?  is
definite or not. The following theorem provides a sufficient

condition for this phenomenon.

Theorem 1.5. Let L{v,w) = vt a w be a symmetric bilinear
map on R?. Let B be an m x n submatrix with m linearly
independent rows, m< n . Let S be the (n-m)-dimensional
nullspace of B , {x € IfilBg = 0} . Form the bordered (n+m) x (n+m)

0 B |

matrix C = ot A . If each of the last (n-m) leading principal
minors of C (i.e., the ones of order 2m+l,...,m+n) has the same
sign as (-1)™, then L(x,x) > 0 for all non-zero x .such that
Bx = 0 . On the other hand, if the last (n-m) leading principal

minors of C alternate in sign with determinant of C having the
same sign as (-1)" , then L(x,x) < 0 for all non-zero x such
that Bx = 0

The prooi of this theorem is fairly intricate. See Debreu (1952)

1.C Concave and Convex Funcitions

As wc will sce in chapters six and eight, concave functions
arise naturally in problems cf economics and concavity is a common
and useful hypothesis in many theorems of maximization. In this
section, we will survey some oI the important properties of concave
anc¢ almost concave Zfunctions. For further reading and more complete

proofs, see Fenchel (1953), Karlin (1©38), Gale (1960), and
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Mangasarian (1969). Many of the ideas and proofs of this section

are adopted from the excellent presentation of Mangasarian (1969).

Definitions. Let x and y 1lie in’ ®R™. We will denote the

line segment from x to y by £(x,y)., i.e.,
L(x,y) = {ty+(1-t)x|0 < t < 1}.

A subset U of If] is convex if whenever x,Y € U, then

.(x,y) C U. Let f£:U - Ig' oe a function on the convex subset

U of R". Then, £ 1is concave (convex) on U if for all

x,y €U and t € [0,1],
f(ty+(1-t)x) > tf(y) + (1-t)f(x)
(£ey+(1-)x) < ££(y) + -1 £(0) . -

If, for all x,y € U and for all t € (0,1), the above inequalities
can be written as strict inequalities, then we say .that £ 1is

strictly concave (or strictly convex) on U. Note that linear maps

are concave and convex. Fleming (1965) gives a proof that any
. . . : n .
function which 1s convex Or concave on an open subset of 1R 1s

continuous.

IMPORTANT REMARK. Note that £ 1is convex if and only if -f
is concave. Since minimizing £ 1is eguivalent to maximizing -£,
all the results of this paper on maximization can be written as
results on minimization. In this case, one naturally changes hypo-
theses about concave functions to hypotheses.about convex functions.
1 2

If £ 1is C or C”, there are some powerful criteria from

calculus for concavity, as summarized in the following theorem.
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Theorem 1.6. Let £:U = EH' be a Cl function on a convex

open subset U of R . Then, the following are eguivalent:
a) f is concave on U,
b) £(y) - £(x) < pf(x)(y-x) for all x,y, € U,
c) [Df(y) - DE(x))(y-x) < 0 for all x,y € U.

If £ 1is C2, a), b) and ¢) are eguivalent to

d) D%f(x)(v,v) < 0 for all x € U and all non-zero v € R°

(i.e., sz(i) is negative semi-definite on U).

Remark: Theorem 1.6 is true if one changes "concave" to "convex"
in a) and reverses the inegualities in b), ¢) and d). If one changes

"concave" to "strictly concave" in a) and make the inequalities strict

in L), ¢) and &), then

d) 3 a) £z b) == ¢},
with £(x) = - x4 a counterexample to a) #>d) 1in the strict case.

Proof: Throughout this proof, x and y will denote arbitrary
elements in U with &t € [0,1].

a) = b): Since £ is concave,

Taking the 1limit as t - 0 and using the remarks under Theorem 1.2,
we see that £(y) - £(x) < DE(x) (y-x) .
b) 3 c): Add the two inegualities:
£(y) - £(x) - Df(x)(y-x) < 0 and
( .

Hh
1<

£(x) - ) = DE(y) (x-y) < C.
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¢) 3 b): By Theorem l.2b (Mean Value Theorem),

fy) - £(x) = Df(y+t,(x-y)(y-x) for some +t, € (0,1) .

By c), [Df(y+to(x-y)) - DE(x)](l-toly-x)'< 0, or

Df (y+to (x-y)) (y-x) < DE(x) (y-x) .

Thus, - T -f(y) - £(x) < Df(x) (y-x) -

b) 3 a): By b),
£(x) - £((l-t)x+ty) <-t DE((l-t)x+ty) (y-x)

and £(y) - E((l-t)x+ty) < <l-t)Df((l—t)§+tz)(x-§>-

Now, a) follows immediately after one multiplies the first inequality
by (1-t) and the second by t and then adds the two inequalities .

d) = b): By Theorem 1l.2b,

f(y) - £(x) = DE(x) (z’-§)+%D2f(3) (y-%,y-X)

for some  z € 2(5,2). Since the last term is non—positiﬁe,“ .
b) follows.

b) 3 d): Suppose there are x° € U and Vv € r" such that
szggw(v,v) > 0. Since f 1is C2, there is a con;cx ncighborhood

W of x° in U such that sz(§)<z'z> >0 for all x € W. Also,
sz(i)(tz,tx) = t2D2f(§)(g,g) >0 for all x € W and for all t.
Choose t, > 0 and small enough so that x°+ t,v € W.

By Theorem 1l.2b,

f(x°+t,v) - £(x°) = DE(x°) (t,¥) +%D2f(§_°+tl\_7) (tov,t,v)

> DE(x°) (t,V) -

for some tle [0,t,] - a contradiction to b).  Note that the last

two paragraphs, show that d) = b) 1in the strict convexity case. [
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In some problems that arise in economics, concavity is a little
too strong as an hypothesis. Since many important maximization
theorems hold with weaker forms of concavipy, we will discuss some
of these modifications now. One important property of a concave
function is that its level sets bound a convex set, i.e., if £ 1is

concave, {x|f(x) > a} 1is convex. Since any monotone function from
Izl to Hil (e.g., £(x) = §3) also has this property, it does not

characterize concave functions. So, if f:U - R 1is a function on

n . . .
a convex U of IR°, it is natural to call £ guasi-concave on

U if {x € U|f(x) > a} is convex for all a € R. Similarly, £

is guasi-convex on U if {x € U|f(x) < a} "is convex for all

a € R. Fortunately, there is a useful calculus criterion for

guasi-concavity.

Theorem 1.7. Suppose that £:U > IR is a Cl function on an

n . .
open convex subset U of R . Then, f 1is guasi-concave on U

if and only if £(y) > £(x) implies that DIf(x) (y-x) > 0.

Proof: Suppose f is guasi-concave on U and that
f(y) > £(x) <£for some Xx,y, € U. Then, for all v € [0,1],
fx+u(y-x)) > £(x) .

f(x+rp(yv-x)) = £(K)
u

Since

>0 for all w e (0,1),

Df (x) (y-x) > 0, letting p = 0.
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To prove the converse, choose '5 and §} € U with 59 # xt
and f(g}) > f(§9) . Let §P = 59 + p(§;-§9). We will prove
that f£(x") > £(x”) for all u € [0,1].
To reach a contradiction, suppose there is a u* € (0,1) with
f(ﬁy*) < f(§p) < f(il). Let J = [pl,uzl be a (connected) interval
1.
in (0,1) with wu* € J, f(ﬁu) if(_}go) for all p € J, and f(;_;“ ) =
H2y 20 - . Wy 1_.0y
f(x" ) =£(x") . We first claim that Df(x")(x -x") = 0 for all

wed. If uwed, £(x") < £(x% < £(x). By hypothesis,
Df(iu)(§p—§y) > 0 and Df(zy)(z;—gy) > 0.

Since x - X" = - u(z}—§p) and §;~§u = (l—u)(§}-§9), we have

~wpf M) (x2-x0) > 0 ana  (1-wpE(x") (xH-x0) > 0.

Since u and 1l-p are positive, Df(gP)(g}-EP) = Q.

On the other hand,

1

* *
0 < £(x% - £x") = £(x") - £6H)
T R T 1 3
= Df(x” ) (x" -x" ), by Thecorem 1l.2b, p~ € J.
* 3
= —phpe") (xF-x%
whoou* 1_0
since x -x ={(¥*- &)(x -x ) - a contradiction to the last para-
graph. [

Remark. Of course, there is an analogous result for gquasi--:
convexity. One can also define and work with strict quasi-concave ~

functions and strict quasi-convex functions. -
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Quasi-concave functions share with concave functions the property
that local maxima are global maxima. However, there is an important
difference. Because a) +»Db) in Theorem 1.6, a critical point of a
concave function is a local (and therefore) global maximum. But
f(x) = x3 shows that quasi-concave functions do not have this pro-
perty. To £fill this gap, Mangasarian (1965) introduced the concept
of a pseudo-concave function.

s 1 . n .
Definition. A C function f:IR7 5+ R 1is psecudoconcave at

x° € R" if whenever DE(x°) (y-x°) <0, £(y) < £(x°) . One defines

a pseudoconvex function similarly.

Theorem 1.8. Let £:U - R be a Cl pseudoconcave function at

all x in the convex subset U of RrY © Then,
a) x° maximizes £ on U 1if and only if Df(x°) (x-x°) < 0
for all x € U;

b) if U 4is open, x° maximizes f on U if and only if

The, "only if" parts of a) and b) hold for all Cl functions £ .

Procf: a) If x° maximizes £ on U, £(x°+t(x-x°)) - £(x°) < O
for all x € U and 2ll t € [0,1]. Dividing by t and letting t
tend to 0 yields D£(x°)(x-x°) < 0. The converse is immediate

from the definition of a pseudoconcave function.
b): That a maximizer on an open set is a critical point is a :
classical result (see Theorem 2.1) and also fopllows from a), since

.

the openness of U implies that Df(x°)v < 0 for all v € Txorfl

The converse also follows f£rom a)
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Pseudoconcavity 1s a less geometric concept than gquasi-
concavity, although it is an important analytical one. But notice
that the definition of pseudoconcavity is a slight strengthehing
of the contrapositive of the analytical characterization of
quasi-concavity in Theorem 1.7. Part b) of Theorem 1.9 describes
the mild conditions under which the two concepts are equivalent,
namely £ is C2 and £ 1is non-zero on a "solid convex" set.
Part a) of Theorem 1.9 summarizes the hierarchy of concavity for

,Cl functions, while part c¢) summarizes the principal-minor conditions

which one can easily use to test a C2 function for concavity or

guasi-concavity.

Theorem 1.9. Let U be a convex of Rp . Let £ : U -+R

be a Cl function. Then, -

e

a) f is strictly concave on U ¥ f 1is concave on U
* f 1is pseudoconcave on U
% £ is strictly quasi-concave on

% f is guasi-concave on U .

Furthermore, none of the implications can be reversed. (The Cl

hypothesis is made only to include pseudoconcave functions.)

b) If U has a non-empty interior, if £ 1is C2 on U

’
and if Vf is never 0 on U, then £f 1is pseudoconcave if
and only if it is strictly gquasi-concave if and only if it is

guasi-concave.
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c) Let H(x) be the n X n Hessian matrix for sz(i) .
Let B(x) be the (n+l) x (n+l) bordered matrix
0 vi(x)© :

B(x) = .
VE(x) H(x)

If the kth leading principal minor of H(x) has the same sign
k

as (-1) for k=1,...,n and for all x in U , then £ is

strictly concave on U . If every non-zero kx X princpal minor

of H(x) has the same sign as -1)¥ for k = l1,...,n and for

all x in U , then £f 1is concave on U . If the kth leading

principal minor of B(x) has the same sign as (—]_)k-1 for

X =23,4,...,ntl, then £f 1is pseudoconcave (and hence guasiconcave) on U.
Proof: a) Most of these implications follow from the definition

or from Theorem 1.6. See Mangasarian (1969) for completé details.

We will sketch a proof of the third implication here.

Suppose £ is pseudoconcave but not strictly quasi-concave.

Then, there are io,il € U such that f(§0) > f(ﬁl) but for some
1 -

pe (0,1), £(x) < £(x%), where x" = x°+ WxT-x) . Choose 1

so that £(x") < £(x*) for all u € [0,1) . since " nmininmizes

f on the line segment 2(50,51), Df(gu)(§u~x“) > 0 for all

v € [0,1] by Theorem 1l.8a. By the method of proof of the claim in

u -, 1 0
Theorem 1.7, Df(§u)(§l—§o) = 0, since X -ﬁu = - pu(x -x ) and
= - u )
El-ﬁu = (l-p)(il—io) . Similarly, Df(iu)(ﬁ’—gu) = 0. But now,
since £ 1is pseudoconcave, f(il) < f(g“). Since f(xo) < f(xl), )

we have a contradiction to the minimizing property of x¥
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b): See Ferland (1972).

c): The first two sentences follow from Theorem 1.4, 1.5, and
1.6. Under the hypotheses of the ‘last statement, Theorem 1.5 tells
us that sz(i) is negative definite on the nullspace of Df(x) ;
By Theorem 3.4 below, each X in U maximizes £ on the constraint
set {y|Df(x)y - DE(x)x > 0} = {y|Df(x) (x-y) < 0} . In other wo?ds,i
if x,y G.ﬁ“ énd Df (x) (x-y) < 0, then £(x) > £(y) . But this-is

the definition of pseudoconcavity on U . []

There is one important result, as described in the following
theorem, which holds for concave functions but not for pseudocon-
cave or quasi-concave functions. This theorem is one reason why one

cannot weaken the concavity hypotheses in some of the theorems of

chapier seven.

Theorem 1.10. Let fl,...,fa : U~>R Dbe concave functions on a
convex subset U of Rn . Let xl,...,za be non-negative numbers.
a
Then, I Aifi : U+ R 1is a concave function. This result is not true
1

for pseudoconcave or gquasi-concave functions.

Proof: Since each Ai > 0 and each fi is concave.

Xifi(X°+u(x'-x°)) > Aifi(§°) + u[kif(g') - Xif(x°)] .

The theorem follows by adding these inequalities. To see the last

sentence, note that fl(x) = - 2x and fz(x) ='x3 + X are both

pseudoconcave, but (£, + £,)(x) = x> - x is not even guasi-con-

cave. []
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2. UNCONSTRAINED MAXIMA

2.A. Necessary Conditions

Let C be some subset of R" . TFor example, C may

be {x eR g (x) > 0,...,g(x) 20,hy(x) = 0,...,h(x) =0},

where gl""'gM'hl"‘°'hN are functions from R® to IRl

Then, if £: R® >R and if x* € C , £ has a local maximum on

at x° (or x° locally maximizes £ on C) provided x° has

a neighborhood U in R® with £(x) < £(x°) for all x e Un C.

If one can take U to be ®' , then £ has a global
maximum on C at x° . 1In this paper, "maximum" will always
mean "local maximum” unless stated other&ise.

If one uses calculus techniques, then there are usually
two steps 1n a maximization problem. First, lookx at effective
necessary conditions for a point to be a maximum. This step
should quickly narrow down the number of candidates for a maxi-
num point - possibly to a finite set of points. Secondly,
apply some effective method for checking out each of these
points. Such methods will usually involve the local convexity

of £ or the negative-definiteness of some second derivative.

Let us first examine the simplest such problem, i.e., find
. - 1 n 1 . . .
the maxima of a C7 f: IR -+ 1R with no other constraints.
. . n . .
(Equivalently, C 1is some open subset of IR'.) We first list

the classical necessary conditions.

c
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Theorem 2.1. If f: R+ R is c2

and if x°

is a (local) maximum point of £, then a) DE(x°) = 0,

and

b) D*f(x,) (v,v) < 0 for all v .

Proof: We will assume that the reader is familiar with

this theorem for the case n = 1. Let g(t) = f(x° + tv) for

some arbitrary Vv e Txonfy. By hypothesis, t = 0 is a local

maximum point of g . Therefore, by theorems of Calculus I,

g'(0) = 0 and g"(0) < 0 . By the Chain Rule,

g'(0) = & £(x° + tx)l = DE(x°)v and
£=0
a? 2 :
g"(0) = —5 f(x%+ ty) = D7 (x°) (v,v) -8
at £=0

2.B. Sufficient Conditions

By Theorem 2.1, in searching for maxima onc need only check out the
critical points of f , i.e., {x|Df(x) = 0} . For most
smooth functions, the critical points are isolated in JR" .
(See Section II.6 of Golubitsky-Guillemin (1973).) The next

theorem gives the classical sufficient condition for a critical

point to be a local maximum. Its proof uses the basic fact that any
seguence on a compact set has a convergent subscguence.

Theorem 2.2. Suppose that x° is a critical point of

a C2 f: P +:ml . If sz(5°) is negative definite, then

»° 1s a strict local maximum point of £ .
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°

Proof: Suppose Xx is not a strict local maximum point

of f . Then there is a sequence of distinct z? approaching -
x° with f(§n) > £(x°) . By the compactness of (v |v] = 1}
x" - x°
in ®R" , we can choose {in} so that XP E|=E————7 converges
X - x°
to some v° with |v¥°| = 1 . Using Taylor's Theorem,
(B) 0 < £(x™) - £(x°) = DE(x®) (x"-x°) +3D7£(x°) (x"-x°, x"-x")+R(x"),
° n ° R (X) °
where Df(x°)(x'-x°) = 0 for all n and — ~ 0 as y - x°.
| 2-X" |
Divide (A) by lgn—§°lz :
£(x7) - £(x°) 2 n _n R(x")
(B) < = —= = D f(x°) (v’ ,v’) + = , for all n .
|z -x°| Ixn-x"l2
Now, if n - = in (B) , one finds 0 < sz(x°)(v°,v°) , contradicting

the negative definiteness of sz(x°)

For another proof, note that by Theorem 1l.4.C, negative definite-

ness is an "open" property in R" . In other words, if sz(§°) is
negative definite and £ is C2 , sz(§) will zlso be negative
definite for all x in an open ball V around x°. If y € V and
y # x°,
() £(y)-£(x°) = DE(x°) (y-x°) + & D?E(y") (y-x°,y-x°)
X L A3 3 I I\ Y=X
for some y' in V . Since Df(x°) = 0 and y-x° # 0 and
sz(z') is negative definite, the right hand side of (C) is negative.

* So, f(y) < £(x°) for all y in V.
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This proof even works in infinite-dimensional spaces provided
one replaces’ "sz(§°) neéative-definite" by "sz(§°) strictly’ :
"negative definite" to make sure the condition is valid for an open .-
set around x°. (One says that sz(§°) is strictly negative
definite if there is a positive number ¢ that sz(§°)(z,2) < -cly_l2
for all v , or equivalently such that the eigenvalues of -sz(§°) ;
are strictly less than -c . This concept i§ the same as‘negative-
definiteness in the finite dimensional case. ) |

For concave functions, thé first ordér necessary conditigns are
also sufficient and yield global maxima. Theorem 2.3 is a restatement

of Theorem 1.8 and is included here for completeness.

Theorem 2.3. Suppose £ : ®" -+ IR1 is Cl and concave (or

even pseudoconcave). Then £ has a global maximum at x° .if and
q
only if Df(x°) = 0
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3. PROBLEMS WITH NON-DEGENERATE CONSTRAINTS

3.A. The Non-Linear Programming Problem

In most maximization problems arising in economics and
engineering, there are constraints on the set of feasible states,
i.e., the set C of Section 2.A 1is not an open subset of r" .
In the next sections, we will discuss the following problem, often
called "the classical problem of non-linear programming”:

Maximize £ : IR - IR on the set C , Where

(D) c={xe R |g(x) 20, i=1,...,8 hilx) =0, j=1,...,N

and g.'s and h.'s are smooth functions R ~ R .
1 J

If f(x) =c¢c - x, 9;(&x) =Aa, " x+a , and hj(g) = Byx <+ bj for
some vectors él”"'éM’El""’gN , and ¢ in =" , and scalars
ak""'aM'bl""’bN , the problem (D) is the usual linear programming

problem. Since the constraint set C for the linear problem is a
polyhedral set and £ 1is linear, the sclution of this problem, if it
exists, lies at a vertex of C (or sometimes at a complete bounding
face of C). There are simple, but beautiful algorithms for solving
the linear problem, which we will not d&iscuss here. See (for example)
Karlin (1959), BHadley (1962), Dantzig (1963), Intrilligator (1871), or
Varaiva (1972) for further details and examples.

Returning to the non-linear problem, in this section we will
f£irst discuss conditions for maximization where the constraint set

C 1is a "manifold" or the smooth boundary of a manifeld. Analytically,
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this means that the Jacobian matrix of the éénstraint functions
‘has maximal rank at the proposed solution. We'll call such
constraints "non-degenerate". In this situation, it is convenient

.. to consider first the case of equality constraints, i.e., M= 0

in (D) .

3.B. Non-degenerate Equality Constraints

The following theorem gives the classical necessary con-
ditions of Lagrange for x° to maximize a function on a sub-

. n . _ _ = =:
nanifold of IR'. We write hl = 0,...,hN 0 as h = (hl,...,hN) 0.

Theorem 3.1. Suppose that x° maximizes £: R" >~ R

on the set Mh = {E.eimnlh(E) = 0 where h: R° - I§J}~N < n} .

Sup; ose further that £ *and h are Cl and that Dh(x°) has

maximal rank. a) Then, there exists a unique non-zero
N

o © N ° (=] —
(U3, ...,u3) € R such that Df(x°) + ] u$ Dh;(x°) =0

b) If £ and h are C? , then
3

5 N
D{f + ] mth;1(x°) (v,v) <0, for all v
1

for which Dh(x°)y =0, i.e., all Vv ¢ TXOM

h

Proof: We will work with the function (£,h): =" - ]Rl X qu =
-
K@+i . We first claim that D(£f,h) (x°): ﬂflﬁ-]RN+l does not
have maximal rank. For, if it does, then by the implicit

function theorem (Theorem 1.3.b) (f,h) is locally onto, i.e.,

-
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there is a neighborhood U of x° 1in R"

v of (£(x°),h(x®)) in R T so that f maps U onto V .

and a neighborhood

. 1
So, we can ‘choose 51 € U with (f(ﬁl),h(ﬁ‘)) = (f(zf)+glh(50)) ‘
in V for some € > 0. Then f(gl) > £(x°) and h(g}) =
h(x°) =0, contradicting the fact that x° maximizes £ on
Since D(£f,h) (x°) 4is not of maximal rank, its rows are

linearly dependent, i.e., there exists non-zero (ko,.._,lx) e }@Hﬂ

N
such that A Df(x°) + )} A.Dh.(x°) =0 . If X, =0 , then
0 = T - 0
N
Y A.Dh. (x°) = 0 for some non-zero (A,,...,A ) , contradicting
R T 1 N
_fﬁhe maximal rank of Dh(x°) . So, let uz = li/ko . If there

2 N
is another non-zero (ui,...,ué)' with DE(x°) + Eu; Dh. (x°®) = 0 ,
— l l ) l —

N
we can subtract one egquation from the other to cbtain Z(ui-ug)Dhi(x

-0 . Again, the non-degeneracy of Dh(x°) implies that

1 ° = 0 for all i .
d 1

To see part b), let v € ker Dh(x°) =T_.M . Again, by the
implicit function Theorem (l.3.b), there is a C2 curve a: [0,e) = ="
with a(0) = x°, a'(0) = v, and h(a(t)) = Q0 for all t .

] .
By hypothesis, £ o a:[0,e) *IR" has a maximum at 0 . By

results of Calculus I,
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o
v
J

-~
Hh
]
)

N
]

d .
[fea + § pS(h, ° a)]l (h;°a = 0).
at -0 at? :z. i t=0

n

E%;[Df(a(t)]a'(t) + :ZL Mg Dhy (a(t)]a"(t)jlt;o (chain n_;lé)"

n

p?s [a(O?) (a'(0) ,a'(0)) + Df (aV(O>)) (a"(O'))
+ E by D% (2(0) (27 (00,27 @) + Tig bh, [a(‘.O)]:ai".(O)
= D2 (x°) (v,v) + Tug p%h, (x°) (v

since DE(x°) + lug Dh(x°) = 0. §

1

The geometric interpretation of Theorem 3.1 is simple

since the maximal rank of Dh(x°) implies that My = h‘l(g)
is a submanifold around x° . Recall that Dg(x°)v = v * yg(x°)

where Vg(x°) 1is the gradient (column) vector of "g at x°

Then, 3.l.a2 says that VE(x°) 1is a linear combination of
Vhl(§°),...,VhN(§°) . Since each Vhi(£°) is perpendicular to

T oM, , soO is VE£(x°) . This means that the projection of

VE(x°) on T, oMy is zero, i.e., that fth has a critical

point. If one now uses coordinates that give Hh as a hyperplanc

of R" around X° , then Theorem 2.1.b becomes Theorem 3.1.b

in these coordinates.
However, one does not need non-degenerate constraint
equations to derive second-order sufficient conditions, i.e.,

the analogue of Theorem 2.2. We will even use the more general

first order condition of Section 4.



34

Theorem 3.2. (Second Order Sufficient Condition) Suppose

--,hy are c® functions on R" . Suppose h(x°) =

that f'hl"
(hl(§°),...}hN(§°)) = 0 . Suppose there is a non-zero (uo,...,uu)f
such that Mg > o, D(uof + Zuihi)(gf) =0 , and _ .
D% (ugf + Zu;h,) (x°) (v,¥) < 0 for all v with Dh(x°)y =0 , V¥

Then, x° is a strict local maximum point of £ on h—l(g) .

-1

Proof: Let M, = h ~(0) and let F 1

e n
uof + Zuihi. R > R .

Now, just imitate the proof of Theorem 2.2, using F . That

s , suppose there is x® + x° such that x" # x° for all n ,
- . X o-x°
h(x™) =0, £(x*) > £(x°), and V' & ——— =+ v° . Since
—_ —_ —_ = — n o
|5 - x|
Mg 2 0, 0< F(En) - F(x°) for all n . As in the proof of

Theorem 2.2., one finds that DZF(§°)(X°,X°) > 0 wusing Taylor's

S

series. Since |v°| =1 0 , we need only show that

Dh(x®)v® = 0 ' to find a contradiction. But, for each i = 1,...,N

and for each n ,

by (%) - by (x°) .

n,i, _n

0 = 5 = Dhi(x Tyv

=" - x°|
- n,i : ; .n o
for some x on the line between x  and X° . As n » o ,
i ' n L . 1

¥+ xe , ¥ > x° , and v > ¥° Since each h, is C™ ,
Dh. (x°)ve =0 . §
3.C. Non-Degenerate Inegualitv Constraints

The next step is to generalize the problem by allowing

inequality constraints , gi(g) > 0, i=1,...,M, as in



35

'

- statement (D) . We will still focus on the situation where

the "effective" constraints are non-degenerate

Let x° ¢ R® with h(x°) =0 and g(x°) = (gl,.;;,gm)(x°).z 0.

Let E E.{i[gi(gf) =0} and 1I

{j[gj(§°) > 0}. Reparameterize

so that E = {1,...,k} and I = {k+1,...,M} for some ¥ and

g = (gE,gI): RrE - EF XZRI = ®Y. The mapping (gE,h):

]Rn > Ig: N

x R represents the effective constraints at x° .

The next theorem states the necessary first and second order
conditions for a maximum under non-degenerate constraints. The

first such theorems were proved by Karush (19239) and Pennisi (1953).

Theorem 3.3. Suppose that x° 1is a local maximum of £
on Cg h = {x e ﬂfllg(x) >0, hix) = g} . Suppose that £,g, and
r

h are C° and that D(gg-h) (2°) has maximal rank. Then, there

)

is a unigue non-zero (A ‘M'“l""'“N) such' that

l,-v.,

M N
i) Dx[f + ; Aigi + gujhj](g )

"

DL(x°) =0

1 4

ii) 1., >0 for j=1,...,M, and

1ii) 24g.(x°) =0 for J = 1,...,H , (i.e., X o g(x°) = 0) .

Furthermore, iv) DZL(§°)(X,X) < 0 for all v such that~

-

Dgg(x®)y = 0 and Dh(x®)v =0 .
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Proof: If I is non-empty, let U denote the open set
{x € ﬂin[gl(i) >0} . If I 1is empty, let U denote rY . Then,
i),iii), and iv) follow immediately if one notices that x° maximizes
f on the set {x € U!gE(g) = 0,h(x) = 0} and then app;ies Theorem 3.2
setting Aj =0 for ¢ E, i.e., when gj(§f) # 0 . To prove the
important statement ii) , let Jj € E . Without loss of éenerality,
we will take Jj to be 1 . Since (DgE(§°),Dh(§°)) has maximal

rank, there is a vector v with
(E) Dg, (x°)¥ > 0, Dg,(x°)y = ... = Dg (x°)v = 0, and Dh(x*)y = 0 .

By the implicit function theorem (Theorem l.3b) applied to (gz,...,gK,I

0 , there is & smooth curve c:[0,€g) - R"” such that c(0) = x° ,
c'(0) = v, gz(C(t)) = ... =g (c(t)) = 0 and h(c(t)) =0 for all
t . Since Dgl(§°)x >0 , gylc(t)) >0 for t € (0,e,) for some
€4 >0 , i.e., c(t) € Cc,h for t € [O,El). Since c¢(0) = x°

raximizes £ on C  E(c(t)) < £(x°) for t small and

g,h

DE(x°)v = (£oc)'(0) < 0

By i) and (E) , DE(x°)v + X,Dg,(x°)v = 0 . Since DEf(x°) < 0 and
Dy, (x°)¥ > 0 , Ay > 0 . One argues similarly for kz,..;,AK 3
Finally, we consider second order sufficient conditions for a

constrained maximum. Hestenes (1966), McCormick (1967) , and

Fiacco-McCormick (1968) seem to be the first ones to prove a strong
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second order sufficiency result for inequality-equality constraints
without any non-degeneracy assumptions on the constraint set. Their

proofs are basically similar to the one described below.

- Theorem 3.4. Suppose f,gl,...,g“,hl,...,hN are C2 functions

on R® . Suppose g(x°) >0 and h(x°) = 0 . Suppose there exist

0 l""'AM’ul""’uN so that

i) Ai >0 for 4i=20,...,M,
ii) Aigi(§°) =0 for i=1,...,M,
M N
iii) D[Aof + T Aigi + I ujhj](§ ) =0, and
1 1l
. 5 M N-- ‘ PO :
iv) D [)\Of + § )\igi + i ujhj] (x°) (v,v) <0

for all non-zero v satisfying AODf(§°)X =

|
o
~

[-] —
liDgi(§ v = 0
i=1,...,M, and Dh(x°)v = 0 .

Then, there isa neighborhood U of x©

X~ such that £(x) < £(x°) for

all x xo i
x#x in unN Con -

Remark. One can further restrict v in iv) to those for which

o .
Pg; (x)v > 0 for i such that A, > 0 and DE(x)v > 0
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Proof: First, choose a neighborhood V of x° so that

gi(x) >0 for i1 €I and x € V. Working within V , our constraints

are now gp > 0 and h = 0 and our Lagrangian is

N M N
L' = A f+ I A.g, + L pih, = A£+ I A.g., + L p.h. =L .
07 jeg TR 733 0T g ATL T3

Arguing by contradiction as in Theorem 3.2, suppose there exist x = x°

n

such that x° € C ’ f{ip) > £(x°) , and §n # x° for each n .

g.h
n
As before, choose X  so that v'=

converges to some
unit vector v° .

Next, we show that v° satisfies the conditions of hypothesis
iv) . Arguing as in Theorem 3.2, one proves easily wvia the Mean

Value Theorem that

(r) DE(x°)v® > 0 , Dh(x°)v® = 0 , and Dgi(§°)z° > 0 for each 1 € E

Furthermore, i,Dg,;(x°)v® = 0 for each 1 . Otherwise, there exists
a 3 such that ijgj(§°)g° > 0 and then by (F) and i)
DL(x°)v® = kon(x°)v° + I \.Dg.(x°)v® > 0 ,
—— — — — . 1 1 - —
i€C
which contradicts hypothesis iii). Similarly, AO DE(x°)v® = ¢ . -

Finally, by Taylor's Theorem (Theorem l.2a), there exist C2

functions R,S, and T such that for each n
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0 < £(x") - £(x°) =

DE (x°) (x"-x°) + 2D E(x°) (x"-x°,x"-x°) + R(x") ;

(F*) 0 <g;(x" - g;(x°) =

Dg, (x°) (x"-x°) + 5;D%g; (x°) (P-x x-x®) + 5, (™M, i € E

,‘.

= . n - . 4
0 hj(gc_) hj(g:_)

Dh (x°) (c"-x%) + %.Dzhj (x°) (-x xmx0) o+ T ()
n s. (x™ T, (x") -
where nR(& ) 5 ' nl 5 and a J 5 all tend to zero
. _ ol lx - Ol lx — xo

—

as x™ > x° . Divide each expression in (F') by [x® - 5°12 , multiply

through by the corresponding Lagrange multiplier, and add the expressions

to obtain _— . . -

DL (x°) (x™ - x°)

N
0 < + j;DzL(x°)(vn,vn) + 0(x ) ,
- n 012 2! = - "= n o2
" - x° %% - x°|
where the last term tends to zero as x" =+ x° . Using DL(x°) = 0
2

and then letting x™ - x , one finds that 0 < D"L(x°)(v°®,v°) .

Since V° satisfies the conditions of iv) , we have a contradiction

to iv) anéd x° must be a strict local maximum of £ on Cg n o > |
’

Remark. Condition iv) , the second order condition,
in Theorem 3.4 is difficult to check as it is written. However,
by Thecrem 1.5, one can replace iv) by the following much more

easily checked condition: -
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iv)': Let H be the bordered matrix
0 0 A
0 0 B ;
At Bt C .
og. (x°)
where A = ((X. 1 )) for k=1,...,n and for 1 such that A. #O0,
i Bxk i
oh.(x°)
B = (( T y) for kx=1,...,n and j=1,...,N ,
k
2
- 3L /..o Cos
C = ((-a—;cia—xj'(f_»_))) for i,j=1l,...,n .

We regquire H to satisfy the conditions of -Theorem 1.5, namely
determinant H has the same sign as (-l)n and the last (n-m)
leading principal minors of H alternate in sign, where

m = number of rows of A + number of rows of B =

${ilr, >0, 1 =1,...,M) + N .

Some authors, e.g., McShane (1942), Weinberger (1974) and
Ben-tal (1980), have noticed that one can find an even stronger
sufficiency test than that of Theorems 3.2 and 3.4. For, in the
proofs of these results, one can easily allow the Lagrange

multipliers to depenéd on the vector v being tested and thus prove

the following result.
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~

. : . SR .
Theorem 3.5. Suppose that £,9y¢-ns9yshys--.0hy care CO

functions on RT . Suppose that g(x®) >0 and h(x°) =0 .
Suppose that for each non-zero Vv such that Df(x°)v > 0 ,
DgE(§°)X.2 0 , and Dh(x°)v = 0 , there exists Ao,ll,...,km,pl,,,.,uu-

so that i),ii), and iii) of Theorem 3.4 are satisfied and

2 - M N
- . .g. h. ° . <0 .
DT [ E + i A9 )::L Hyhyl (x )'(z v)

Then, there exists a neighborhood U of x° such that

£(x) < £(x°) for all x # x° in U satisfying g(x) > 0‘

1

hix) =¢ .

As we will see later, an important variant of problem (D)

is the following:

(G)' Maximize £: 1R -+ IR- on the set {x[Gi(x) >0, i=1,...,M ;

I

X3 >0, 3j=1,...,n} .

We state without proof the application of Theorems 3.3 and 3.4 to

this special problem.

Corollary 3.6. Suppose f’Gl"’°'GM are C2 functions

on BJI .
aGE
a) If x° 1is a solution of (G) and if 53 (x°) has
) T )
maximal rank where E = {ilGi(§°) = 0} and B = {j[xg > 0} , then
there egists unique non-zero A° = (Ai,...,kﬁ) such that
(1) A >0 for all i, i

7
4

f(x) + g %56, (1) , then

(13)  if L(x,2)
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%% (x°,2°) < 0 and x° : == (x°,)°) =0,

° ° - ° o.a_L ° ° —
3% (E7,2%) = G(x®) 2 0 and 2° -« g% (x7,A%) = 0.

(iii) DiL(i°'E°)(X'K) < 0 for all non-zero VvV with DGE(§°)X = 0

and v, =0 for i ¢ B
b) Conversely, suppose that G(x°) > 0 and x° > 0 . Suppose
further that there is 1° = ( i,...,k&) > 0 such that L satisfies
(ii) and (iii) at (x°,A°) with "<" replacing "<" in (iii), then

x° 1is a strict local maximum of £ on {x|G(x) > 0, x > 0}

Conditions i), ii), and iii) of Theorem 3.3 are usually called the
Kuhn-Tucker conditions for problem (D). Conditions (i) and (ii) of
Corcllary 3.6 are called the Ruhn-Tucker conditions for problem (G).

El-Hodiri (1971) and Milleron (1972) both have complete, yet
concise, discussions of the non-linear programming problem with
non-degenerate constraints. El-Hodiri also adds some interesting

historical comments.

3.D Lagrange Multipliers as Sensitivitv Indicators

. - \ - e - n .
Consider the problem of meximizing £ : IR™ + IR subject to

the eguality constraint h(x) = b , where h : r® » 8" ana b

is viewed as & parameter. A natural and important guestion is:

how does the optimal value of £ change as b is allowed
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to vary. The following theorem shows that the Lagrange multipliers
themselves measure the sensitivity of the optimal value of £ to
changes in the constraint b . We will see a number of economic

applications of this fact in Chapter six.

Theorem 3.7 Let f,hl;...,hN: R - R be C2

functions
with x° € R®" and h(x°) = b°® . Suppose that the following

sufficient conditions for a maximum of £ on h—l(g°) are satisfied

at x° :

i) There exist ki,...,k° such that DL(x°) =0

N , Wwhere

N

L(x) = f£(x) + % A$ (b - hy(x)) .

i

.

ii) DZL(§°)(21X) < 0 for all non-zero Vv in the kernel

t
of Dh(x°) ;

iii) Dbh(x°) has maximal rank.

Then, there is a neighborhocod W of b°® in R  ana ¢! functions

E: oW R®RY Aro oW RN
such that £(k°) = x° , A(b®) = »° , and for all b c W £(b)
maximizes f on h-l(g) with Lagrange multipliers Al(b),...,kN(b).

Furthermore, Ai(g) = 5%— (£ o O(b)
i
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Proof: Define M = (M],M): R xR x® ~» R x R by
M(x,A,b) = (VE(x) = A * ¥h(x), b - h(x)) . Then M(x°,A°,b°) = (0,0)
and

D2L (x°) -bh (x°) T
° ° o =
D(x,X)M(i 'A% ,Db°%)
-Dh (x°) 0
Here, DZL(§°) denotes the Hessian matrix of L at x° . To

solve M =0 for x and A as functions of b , we will use
the implicit function theorem, of course. We need only show
that the above (n+N) x (n + N) matrix is one-to-one and

therefore non-singular by Theorem 1l.3.d.

Suppose D ., M(x°,A%,b°) (v,w) = (0,0) . Then ,
(+) DZL(§°)X - Dh(§°)Tg = 0 and
(++) -Dh(x°)v = 0 .

Take the inner product of equation (+) with v

by (++), (+) becomes v - DZL(§°)X = DZL(§°)(X,X) =0 . By
hypothesis ii), v must be zeroc and (+) becomes -Dh(§°)TE =0
By hypotnesis 1iii), Dh(£°)T is injective and w 1s zero also.

Since our partial derivative 1is non-singular, the Implicit

Function Theorem (Theorem 1l.3.d) tells us that there is a neighborhood

W of b° in ®Y  an@ ¢! functions £: W > R At W R

’

. Since v - Dh(§°)T =

0
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= x°

such that M(&(b),A(b),b) = (0,0) for all b e W with £(b°)
and A(g°)'= A® . Choose W small enough so that hypotheses.
ii) and iii) hold for all be W and x € E(W) . (Conditions
'ii) and iii) define open sets since they can be expressed by the

non-vanishing of certain determinants.) By Theorem 3.4, each

£(b) maximizes £ on h T(b) T Sy

To see that Ai(g) = 5%7 (£°€) (b) , note that
) i

I

. N
£(E(b)) = £(&(b)) + gxi(g) (b; - h;(E(b)) since h(£(b)) =b

m

L(£(b),A(b),b) .

Thus, Dy (£e£).(b)v = D £(E(b)T"° DE(B)Y + E(Dﬁ (b)v)(b; ~h; (£(b))

+ A(b) + (I - Dh({(b))-D&(b))v, by Theorem 1.1,

= A(0) + [D£(£(0))=A(R) - Dh(E(6))IDE() - v, since b, - h (€(b)) = 0 ,

= X(b) , since M;(&(b),A(b),b) =0 . B

Remark 1. Note that hypotheses ii) and iii) hold for most
functions £ and for most constraint values b ¢ Iy . The
latter part follows from Sard's Lemma and the former from the
fact that most functions on a manifold are "Morse functions",
functions with only non-degenerate critical points. See Golubitsky-

Guillemin (1974) for proofs of these results and Dierker (1974)
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for further applications of these results to economics. The word "most"
is used in the sense of an open-dense subset or second-category subset .
of the set of all constraint-values and of the set of all objective

functions.

Remark 2. Lagrange multipliers yield the same sensitivity

analysis when the constraints involve inegualities such as

g(x) > a, hix) =b . Let I = {i|g,(x°) »aj} . For ie1I,
the Lagrange multiplier A; must be zero. On the other hand,
since these 95 give ineffective constraints, the optimal value
of £ does not change as one varies a; for 1 € I . Thus,

for i eI,

_ yo _ 0o(feg)
0 = Ki = _SE;_- (a,b)

One is then led to the problem of maximizing £ subject to

sp(x) = 2y , h(x) = b ; and one can argue as in Theorem 3.7.

E
Remark 3. Condition (iii) can be relaxed, though at some cost.

See Gauvin and TolIle (1977) for results in this direction.

Remark 4. Theorem 3.7 is & special case of the "envelope theorem",
a theorem which has begun to play a large role in comparative statics.
In Theorem 3.8, we state the unconstrained and constrained versions
of the envelope theorem. Their proofs are essentially the same as that.
of Theorem 3.7. Note that 3.8.a. states that the change in the
objective function adjusting x optimally is egual to the change in

the objective functiorn when one does not adjust x



47

Theorem 3.8. a) Let £ : R® xR' + R be a Ql function

f(xl,...,xn;a) with parameter a . Let x = £(a) be the maximizing -

value of x and let M(a) = £(&(a)). (M is called the indirect
objective function.) If E(a) is a C1 function, e.g., if

Dif(g(a),a) is non-degenerate, then

dM _ of
EE(a) = gg(i(a),a)

b) Let f,hl,...,hN be Cl functions on R" x R; where the
last variable is a parameter b . Let x = £(b) be the maximizer

of f(x;b) on the constraint set

¢, = {x|h;(x;b) = 0, i=1,...,N} . '

Let M(b) = £(&b),b). Suppose ¢(b) 1is a cl  function of b,
e.g., (f,h) satisfies hypotheses similar to those of Theorem 3.7.
Then

aM _ o -

EB(b) = 35 L(g(b),b) ,

N

where L(x,b) = £(x;b) + I Aihi(x;b) .

i=1
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4. CONSTRAINT QUALIFICATIONS

4.A. Fritz John's First Order Necessary Conditions

In the last section, we discussed necessary and sufficient .
conditicns for constrained maxima under the condition that the
Jacobian matrix of the effective constraint functions be of maximal
rank. Eowever, such a condition is too stringent for some appli-
cations ané too difficult to check for others. 1In this section,
we will examine much weaker and more geometric hypotheses on the
constraint set. Since we will impose conditions only on the con-
straint set and not on the function to be maximized, such condi-
tions are called "constraint qualifications". The most famous
early paper on constraint gualifications is that of Kuhn and
Tucker (1951). One can also find excellent surveys in
rrow-Hurwicz-Uzawa (1961) and Mangasarian (1969).

In contrast to the approach for nondegenerate constraints,

one usuallyv proves theorams about ineguality constraints £irst,

when working with constraint qualifications. Then, one can often
handle equality constraints,
like h(x) = 0, by writing them as the set of inequality con-
straints: h(x) > 0, =-h(x) > 0 .

2he following result of Fritz John (1948), is the broadest

Zirst crder necessary conditions. Condition (H) is usually

calleé the FTritz John Condition.

: . 1 . -
Thecrem 4.1. Let £,gyr--+1Gyrbyreee, by be C” functions
1 M1
n : .
on R and let x° Dbe & local maximum of £ on the set Cg h =
14

n . .

Ix e®"| g(x) > 0, h(x) = 0}. Then, there exists non-zero
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(AgrAyr--mrXyrlyseaesiy) such that X5 > 0, A9, (x°) =0

for all i <M, and

M N -
(] —
(H) AgDE (x°) + ;“: A; Dg, (x°) + i My Dhj(;g“). = 0.

Proof: We will first assume there are no equality con-

straints, i.e., that N = 0. We'll need the following_importanﬁ

lermma, usuzlly attributed to Gordan(l873).

Lerma. The f£ollowing statements are equivalent for

1 m . n . . :
vectors a ,...,a in IR": a) There exists no Vv e]Rn such
i

that a - v > 0 for all i; b) There exists non-zero
m .
(A, ,«..,A_) > 0 in =™ such that I X. at = 0.
1 m’ - = 1 1~ -

Proof of Lemma: b) => a): Suppose b) with mlk >0
o . 1
and suppose there exists v > 0 with gl - v>0 for all i.

Then,

-
EF - Vv = —Ak‘( L A, a. = v) <0, a contradiction.

a) =» b): Let X ERm be the linear subspace {(g_l -_b_,...,g_m - b)

e]Rmip_a Rr" }. By a), XN P = ¢, where PE{_:_c_e]Rm|xi>0

for 2l1 i}. So, there is a non-zero (kl,...,km) e P so that

m .
(Al,...,km) is perpendicular to X. But then, I li é} - b =20
m . 1
for all b e R™, which implies that I A g} = 0.
. 1l

Returning to the proocf of Theorem 4.1, we claim that there

is no Vv € =" so that Df(x°)v > 0 and 'Dgi(gf)z_> 0 for all

m

i £ E = {j[gj(§°) = 0}. For, if there were such a v, £ and

each 95 for i € E would be increasing on the curve t - x° +tv

for small enough t. Since gi(§° + tv) would still be positive

1
0
H

.

A - ..
i. E and t small, x° would not maximize £ on g > O.
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We can now apply Gordan's Lemma with a® = VE£(x°) and
at = g; (x°) for i ¢ E. So, there is a nmom-zero (A ,...,}y)
with A, =0 for i ¢ E, xj >0 for all j, and A, VE(x°) +
M

° =
JX. Al gl(i ) 9_-

r

'If one now includes the equality constraints: hl=...=hN =0 Qﬁ,
proof becomes a bit more complicated. We will outline the basic ide
and leave the details to the reader. If Vhi(§°),;..,VhN(§°) are

linearly cdependent, there is a non-zero (ul,...,uN) such that

N

n.{x° = \ . = = = =
% ujan\§ ) 0 . In this case, take ko Al e AM 0 .

On the other hand, if Dh(x°) has maximal rank N , h-l(g)
is an (n-N)-dimensional submanifold around X° . In particular, by

~he implicit function theorem, there are coordinates

Yyr-eer¥ygrZyreees2 OB 2 neighborhood U of x° such that in U:

i) h =0 1if and ornly if y =0,

.. . . =1
ii) Zy,.-+,2,_y Coordinatize UN h “(Q) ,
Bhi
iii) T (x°) = 0 for all i and j , and
J
ah.
iv) BV* (x°) is 1 1if i =3 and 0 1if i # 3 .
=3

Work f£ixrst on h"l(g)rw U and apply the above arguments to £f£ind

2 non-zero (lo,...,AM) such that Ai >0 and kigi(§°) = 0 for

cach 1 and

e~
>
’—l.
%
]
i
o

(x°) + , for k = 1,...,n-N .
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M
d X o
Let g, = - v, [Agf + ; A;9;1(x°) for k =1,...,8 . By iii)
iv) ,
3 M N -
5o [Mof + 1 29 + 1 wyhl(x®) =0, k=1,...,n-N
k 1 1
3 M N
P\ ] — -
SYh [Of + ]z- )\lgl + ]Z_ u]hJ] (_35 ) =0 , h = l1,...,N .

Therefore, the gradient of this Lagrangean is zero at x° in any

smooth coordinate system (Theorem 1.3). B

John's statement of this result dealt only with inequality
constraints. See Mangasarian and Fromowitz (1967) for the first
proof involving both inequality and equality constraints.

4.B. Constraint Qualifications

The following simple example illustrates the difference

between Theorenr 3.l.a and Theorem 4.1. Let f(x,y) = x and let

g(x,y) = yz + x3. Then, g-l(O) is the standard "cusp" in the

left half-plane of IRZ; and (0,0) is a glcbal maximum of £

on g=20 and on (-g) > 0. Since Df(0,0) = (1,0) and Dg(0,0)

and
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(0,0), A4,DZ(Q) + »y Dg(0) = 0 implies that Ag = 0 and Ay
is arbitrary.
In situations like this where XA, = 0, the Fritz John

0.
Necessary Condition (¥) says nothing about the maximization problem

since it does not involve the function £ at all. Thus, it is
very imporzanti to introduce some conditions on g and h +that
will guarzatee the existence of a non-zero XO in (H). These

are the above-mentioned "constraint qualifications™. Roughly

speaking, we need to eliminate the case where the constraint set

C has a cusp at the point in question, i.e., we want C to

satisfy some weak convexity assumption.

Let us write Cc for our constraint set {x ¢ nfllgi(x) > 0,

-

I

i=1,...,M}. As before, if x° ¢ Cg, E(x°)= E {i[gi(§°) =0}

and I = {j!gj(§°) > 0}. A ronstrained path from x° in direction
v is a smcoth arc a:[0,¢) > R" so that a(0) = x°, a'(0) = v,
and a(t) £ ¢, for all t. For such v , it follows immediately
thet D (io)z > 0.

Definition. The mapping g satisfies the Karush-Kuhn-Tucxe
constraint cualification ( KKT ) at x° € Cg, if for each v
with Dg-(x°)x > 0 ("comstrained Girection") there is a2 con-
strainc? path from x° in direction v. See Karush (1939), Kuhn and
Tucker (1231}, and Kum (1376). -

It is easy to see that the above example does not satisfy
(XXT} at (0,0) and that (XKT) rules ocut such cusp-like con- -
strazint sets. A sligntly weaker constraint qualification is due

F
14

O Arrow, Eurwicz and Uzawa (1961).
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Definition. The mapping g satisfies the Xuhn-Tucker

weak constraint qualification (w - K- T) at x° € C_  if every

constrained direction at X9 lies in the smallest closed convex
cone containing {a'(0)| a is a constrained path frdm x°}, i.e.

if Dg-(x°)v 2 O implies that there are non-negative Ayreeerhy

and smooth a;: {0,e) ~ Cg for i =1,...,k with ai(Of = Eﬁ;
and Vv = i Xi ai(O).
t is easy to see that g = X;,9,= X5,93= —X;X, satisfies
(w=K-T) at (0,0) but not (KKT). See Arrow-Hurwicz-Uzawa (1961).
The following algebraic lemma is the key step in many

optimization theorems where the constraints may be degenerate.

Farkas' Lemma: Let A be an (n x m) matrix and let

b be a fixed vector in ~RY . If b+v 2> 0 for all™ v in
R"™ such that Av > 0, then there exist Al,...,ln all > 0
such that

>\l

. n
A . =Db, i.e., I X, a.=b
' i=1 Y 7TH
n

where the éi are the columns of A.

roof : We first recall some simple properties of convex
cones from Fenchel (1953) or Gale (1960). If B is a set of
vectors, let B' = {u|lu - x>0 for x € B}. Then, B' is a

closed, convex cone, called the polar cone of B. If Bl C B2'

then é CB

i ; and if B 1is a closed convex cone, B==(B')'
Let L = {v|av > 0}. Let B ={in éil x> 0}, a closed

convex cone. To see that B'C L, let v &B', i.e.,

IX. a.v > 0 for all Ao> g,
i 2= = -
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Thus, Av > 0 (texing lj = (0,...,0,1,0,...)); and v € L.
Tinally, B'C L implies that L'C B" = B. [

3 .

The Ffundamental result on constraint qualifications is the

following theoren.

M

Theorem 4.2. Suppose that g: R® + R satisfies

(KRT) or (w-R-T) at x° and that x° maximizes £ on Cé'

Thnen, there exist non-negative Al,...,AN such that

N
F(x?) z °)y = .g. (x°) = { .
DI (x°) + : A; Dg; (x°) 0 and A;g,(x°) 0 for all i
ProoZ [Arrow-Hurwicz-Uzawa (L961)]: Since (ERT) implies

(w=X-T), we will assume (w-K-T) at x° and apply Farkas' Lemma

with A = Dg.(x°) and@ b = - Vf(x°). To see that -VE£(x°) e L',

choose v £ L, i.e., Dg.(x°)v > 0. By (w-K-T), there are con-
strainad paths ByreeerBy from x° and non-negative Myreeerly
wiih

Taen,
v o+ {(=7Z(x°)) = =-DI(x°)v
= =DI(x° Iu., ai(o0
I(x®)( My 1.( ) )
= Iy, ad—‘_f(ai(t))
- 0T t=0
Z o
since £ 1is non-increasing along each a, .
ADplyinc FTarkas' Lemma, there exist non-negative
; > wizh A, = 0 Zor i €& E, such that

re s’ G ; !
1 N i
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We are now in a position to describe some other successful
constraint qualifications--all of which guarantee some sort of
convexity or concavity for the constraint set. Condition d)} below
is the non-degeneracy condition of Section 3. Here, we see how

it implies the weaker constraint qualifications of this section.

Theoren 4.3. Let £, Gyr---r9y be C1 functions on IR™.

Suppose that x° maximizes f on C_. Suppose g satisfies

one of the following constraint qualifications at x°:

a) [Arrow-Burwicz-Uzawa (1961)] There is a vector v with

@

931(3’;")& >0 and D932(§°)z >0, with E; = {i e E|g; is

pseudo-convex around x°} and E, =E-E

1}
b) [Slater(1950)] There is a convex neighborhood U of x°

such that g 1is concaveon U and g(x') > 0 for some x' e U;
c) g is convex (e.g., linear);
d) Dgp{x°) has maximal rank. -

Then, there exist Xl,...,XN > 0 with ligi(§°) = 0 for all i1 and

DIf +I);g,](x°) = Q.

Proof: Following Arrow-Hurwicz-Uzawa (1961) , one shows that
a) implies condition (w-K-T) and that b), ¢), and d) each imply
a). To see that a) implies (w-K-T), let w be a constrained
direction. For € > 0, let o¢°(t) = x° + t(w + €v), where Vv
is as in qualification a). B

We first show that ¢ (t) is a constrained path. For

a €
: ° * = . (x° + > + L (xXP)v -
1eB g o9t B o Dg; (x°) (w + ev) 2 0 + eDg; (x*)¥ 2 0
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If 1 e =

d ° - °y = €
£ (3;°¢900) >0 and so 0 =g;(x°) =g, (65(0) ) <

2'
gi(?e(t)) for t small. If i€ Ej, gjo $ is pseudo-convex; .
d . E . . _ L E €
and so =5 (gi° 57 ) (0) > 0 implies that 0 = gi(cb (0) ) < gi(¢ (t))
for t small. If i ¢ E, then gi(¢€(t)) will be positive for

t smail. So ¢ is a constrained path. Thus,
w o= (6°)'(0) = Lim(¢%) ' (0)
e~+0
lies in the closure of {a'(0) |a(t) is a constrained path from x°};

and constraint gualification (w-X-T) is satisfied.

b) = a): Since gj is concave, ng (x°) (x'-x°) > gj (§')—gj (x°)

= g.(x') >0 for any J £ E. (See Theorem 1.6). Take

1<
I

1%
|

1%
o

c) = a): Here 22 is empty. So, tzke v = 0.

d) =» a): Let Db be a positive vector in ]RE . Since

E . . .
Do (x°): T, BT - R” has maximal rank, it is onto andéd there
isa veTe, =" with D (x°)v = b > 0. @
Cnce can now add eguality constraints hl (x) = ... = h.N(E) =0

to the inecuality constraints g(x) > 0. In this case, the

standard device to replace the eguality hj (x) = 0 by the two
inegualities hj (x) > 0, -hj (x) > 0. Parts 1i), ii), and 1ii)

of the following proposition then follow immediately from Thecrems

2.2 ang 4.3. See Mangasarian-Fromowitz(1967) or Mangasarian(196%) -

rh
0
H
v
'

roof of part iv), or use the technigues described in the las+
barzgraph oI our proof of Theorem 4.1.

Theorem 4.4. Suppose that £, Gy rGy hl,...,b.N are
LI o n s
C™ Zunctions on R . Suppose x° maximizes £ on {§!gi (x)>_ 0,
1=1,...% 5.(x) =0, j=1,...,N}. Suppose any one of the following
j c— J - - -
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0 and Dh{x°)v = 0. then there is a

c* ozth a: [0,¢] » R’ with a(0) = x°, a'(0) =v, g(a(t})>0,

.- ii) n is pseudo-concave and pseudo-convex (e.g., linegr)

n

and there is a V € TEQIR such that Dgzl(§°)212.°r DgEz(io)! >0,
and Dh{x®)v = 0, with El and E2 as in Theorem 4.3a;
iii) g5 is convex and h is linear;
ivy ©n{z®) has maximal rank and DgE(EF)X-> 0, Dh(x°) =0

n
for sczme Vv £ Txo:m .

Tor a more complete discussion of constraint gualifications
and their intrinsic geometry, see Mangasarian(l1969) and Gould-

Tolle (13972).

4.C. Second Order Conditions

Since Theorems 3.2 and 3.5 do not make non-degeneracy

assumptions on {x | g(x) > 0, h(x) = 0}, they are just about

the most effective second order sufficient conditions around.

(However, stronger sufficient conditions using constraint quali-

fications are reguired for theoretical convergence of many

algorithms for solving non-linear problems.) We now stop for a

second to consider second order necessary conditions. Since one

would think that some second derivative would have to be negative
semi-definite at a maximum, it is surprising that the non-degeneracy
of the constraint set is not an easy hypothesis to remove in looking

for second order necessary conditions. Consider the following

example of McCormick (1967):
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- 3
Maximize £(x,y) = -y, subject to g;(x,y) = -x° + y

2
gz(x,y) = x9 + y3 > 0, and g3(x,y) = x2 + (y+1)° -1

|v
o

| v
o

It is easy to see that (0,0) is such a maximum and that constraint

gualificaticn (KKT) is satisfied at (0,0). The Lagrangian is
L=1f+ Ag, + A,g -l;£g
1°1 2°2 2°3'

where Kl and XZ are arbitrary. But DZL(O,O) is

a positive definite matrix.

McCormick (1967) also proves the following second order

necessary condition.

2

Theorem 4.5. Suppose f,gl,.--,ng hl""’hN are C

functions on R" and x° maximizes f subject to g(x) > 0
and h(x) = 0. Suppose further that (g,h) satisfies (KKT) and
the Zollowing constraint gualification: for any v ¢ TXOIRn
such that Dg_(x°)v = 0 and Dh(x°)v = 0 there is a 22 arc
2: [0,1] = R" such that a(0) = x°, 2'(0) =v, g(a(t))z 0
and h{(a(t)) = 0. Then, there exist A{re-.rhy, mnon-negative
andé Uyreees My such that
M N

D[f + i A 6 * i Mibhilx®) =0,

(o) # 0, A20, 2o, (x) =0, and

D?[f +T g, +Iphil(x°) (v,v) €0 for all v

with Dg.(x°)v = ¢ angd Dh(x°)v = 0.



59

The proof of this theorem is very similar to that of
Theorem 3.1.b and will be omitted. McCormick (1967) also shows
that the above second order cons:raint qualification holds if
(Dgp(x°), Dh(x®)) has maximal rank.

See Kuhn (1976) for an interesting historical survey of the
theorems of this chapter. He describes the various applied problems‘

which motivated the papers of Karush (1939), John (19%48) and Kuhn-
Tucker (1951).
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£E5. CONCxvVE PROGPAMING

irs+ Order llecessary Conditions

ul
Js
h"

In many optimization problems, one finds conditions that lead
naturally +o concave constraint and objective functions. Fortunately,
for thess situations one never has to use second order tests since,
as in Thecrenm 2.3, the first order necessary conditions are also

nt. While discussing these results, we will first assume that

-
(0

th
Hh
.

su c

there are onlv inecuz2lity constraints.

Theorem 5.1. Suppose that f,gl,...,gm are differentiable

concave functions on R©Y and that x° € Cg = {x € I{nig(i) >0} .

If there exist non-negative xl,...,xm such that
DE(x°) + Z X;Dgi(gf) = 0 and kigi(§°) =0 for all i ,
then x° maxinizes £ (globally) on Cg . Furthermore, the set of
2ll such maximizers is convex.
ProoZ: Note that L(x) = £(x) + I);g9;(x) is a non-negative

.~ 8 .

linear combination of concave functicns and thus is concave. Since

the ¢, 2ars concave, Cg is convex. By Theorem 2.3, Xx° is a glcbal
maximizer of L since DL(x°) = 0 . If x' € Cg and f£(x') > £(x°) ,
then ’
L(x') = Z(x") + I rg.(x") > £(x")
> £(x%) = £(x®) + I Ag(x°) = L(x°) .
a contradictica. So, x° maximizes v on C_ .
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-

£ x' and 52 maximize f in Cg r then tx' + (l—t)g? e Cg

w
W

fh
Fh

(ex' + (l-t)iz) > tf(x') + (l—t)f(z?) = £(x') (oxr f(z?) .
Sc, tx' + (l-t)gg2 is also a maximizer. .
The converse of Theorem 5.1 is true provided there is an x'
with ¢(x'} > 0 by Theorem 4.3.b. One can add equality constraints
th, = ... = h, = 0} to the hypothesis of Theorem 5.1 proviéed the h;
ere affine functions, i.e., hi(ﬁ) = Ai§ + Ei . For then, -h and
n are ccncave and, as in section 4, one replaces the N egquality
constraints h = 0 by the 2N inequality constraints h > 0 ,
Theorem 5.1 appears in Kuhn-Tucker (1951). Arrow-Enthoven (1961)

an< Mangasarian (1969) prove the following generalizations of
]

Thzorem 5.1, relaxing the concavity hypothses.

Theorem 5.2. Suppose that f,gl,..,,gM are Cl functions

on R , that £ 1is pseudoconcave, and that the g are guasi-

i

comcave. Suppose that g(x®) > 0 and that there are non-negative

kl,...,lM with Aigi(§°) = 0 for all i

T I+ .G, ° - x°%) < r -

(o) and D] z llgl](§ ) {x - x°) <0 for all x € Cg

(For exampie, DI[f + I A.,g.](x°) = 0.) Then, x° maximizes £

(globally) on Cg'.
Remark: One can now include more general equality constraints,

i.e., hi that are both pseudoconcave and pseudoconvex.
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Proof: Let X € Cg . Then, gE(x) >0 = gE(§°) . Since
gg 1s quasiconcave, Dgp(x°)(x - x°) > 0 . Since Ay = 0 and
Ag >0, L A;Dg,(x°)(x - x°) >0 . By (I) , DE(x°)(x - x°) <O .

Since £f is pseudoconcave, £(x) < f(g?)
Note that we really only needed gg to be quasiconcave.
Finally, we note that for concave problems, not only is the
solution set convex but the optimal value function is a convex
function of the parametérs.

Theorem 5.3 a) Suppose that f,gl,...,gm are concave functions

on R" x BP , where the last p variables are treated as parameters.
Let Cy = {x e Rn[g(§,2) > 0} and let £(b) be the set of maximizers
of £(-,b) on Cy - Finally, let v(b) = £(g&(b),b) . Then, v(b)
is a concave function of b .

b) Now drop the dependence of g on the parameter b and

the concavity assumption on g . Suppose only that £(x,b) is

convex as a function of b . Then, v(b) , the maximum value of
f(x,b) subject to the constraint g(x) > 0 , is also a convex
function.

Proocf: a) Let b, and b be two parameter values. Let

=2
X, = E(gi) , L =1, 2; so g(§i,gi) > 0 for i=1,2. Consider the

convex combination by = Ab; + (l—k)bz for some x in [0,1). Since

g is concave in (x,b) ,
g(Ax;+(1-A) 85, 2B, +(1=-A)bs) > Ag(X;,b1)+ (1= g(x,,by) > O .

Therefore, Axl + (l-k)x2 is in C; . Now by the definition of

Da
S

v anc the concavity oI £
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v(Aby+(1-2)by) > £(Ax;+(1-2)%,, Ab;+(1-1)b,)

|v

A£(%1,b)) + (1-M)£(x,,b,)
= Av(b;) + (1-D)v(b,) .

b): ©Using the same notation as in a), let X3 denote 5(93) ’
where Dby = Ab;+(1-A)b, . Note that g(x;) >0 for 1i=1,2,3; in
particular x5 1is in the constraint set when X, and X, were

chosen. This implies

£(x3,by) < £(x;,b;) = v(b;) and

Zewe

£(x5,b,) < £(xy,b,) = v(b,) .

Therefore, v(xgl+(1-x)gz) = f(§3,lgl+(l—l)§2)

I

Xf(§3,§l) + (l-k)f(§3,§2) by the convexity

of £ in Db

I A

Av(Dy) + (1-2)v(b,) ,

and v 1is convex in b . []

Let v(b) denote the maximum value function for the problem
. of maximizing £(x) subject to the constraints g(x) > b , where
£,9yr.--+9, are concave functions. Let k(g)' denote the

corresponding multiplier. Theorem 3.7 showed that in the smooth,
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non-degenerate case Xi(g) = K%Z(b) . One can use Theorem 5.3

and some basic theory about concave functions to show that when
one replaces "smooth, non-degenerate" by "concave":
v(bt+he ) -v(b) v(b+he;) -v(b)

Lim < A.(b) < lim 5
h~0+ h -1 ~ h+0-

See Dixit (1976) for further discussion.

5.B. Saddle Point Conditions

In order to compute maxima of f under constraints, one often
considers the corresponding "saddle point problem", especially when

the functions involved are concave.

Definition. Let f,gl,...,gM be continuous functions on R" .

Consider the Lagrangian L(§,Al,...,kM) = f(x) + L Aigi(g) as a
function of x and XA . Then, (x ,2 ) 1is a (non-negative) saddle

point of L if

(J) L(x,2°) < L(x,A°) < L(x°,A)

for all i > 0 in E' and all x € R® (and all x > 0 in R

’

Theorem 5.4. If (x°,2A°) is a (non-negative) saddle point

for L as above, then x° maximizes £ subject to g > 0 (and

Proof: First, show g(x°) > 0 . The right side of (J) means

that I (A - A g;(x°) > 0 for all X, > C . For any fixed K

i ’
i 1
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Plag in Xy = 23 + 120 and Ay = A3 for j £ K. ‘Then,

Setting A =0 in (J) yields, I lggi(gf)'i'c . :So ,

[
y)

;{x°) = 0 and thus each Ajg,(x°) =0 . If -g(x) >0 (and

£z

£(x) + L )‘ggi(g) r Since each };?_gi'(gc_),g ¢ ,

1N

| v
[=]

N
-~
[}
-~
l .
~—
| A

I A

£(x?) + T A3g9,(x°), by (J) ,
= £(x°) .0
In concave programming, solutions to the saddle point  problem

are more or less equivalent to solutions of the programming problem,

as Ruhn and Tucker (1951) pointed out:

Theorem 5.5. Suppose that f,gl,-..;gM are Cl concave functions

T

)
s

. .. ' - 2
nd that X° maximizes £ subject to g > 0 (and x > 0) .

fa 25N

Suppose further that g(x') > 0 for some x’

'

(constraint qualification
4.3.b) or that g 1is linear. Then, there exists A° > 0 such that

(x°,1°) is a (non-negative) saddle point of
L(x,A) = £(x) + X » g(x) .

ProoZ: By Theorem-4.3, the Kuhn-Tucker conditions are satis-

fied, i.e., there exists A° : 0 with A° » g(x°®°) =0 an§

(x) DI(x°) + T XEDgi(gf) =0 .

Since L(x,x°) 1s a concave function ©of x , for any x € Cg
L{x,2°) - L(x°,1°%) < g—;’_ x°,1°) (x - x°) = 0 by (K) aﬁd
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On the other hand, for any A > 0 in r",

£(x°) + A° o g(x°) (since 1° « g(x°) = 0)

L(x°,3°)
= £(x°) < £(x°) + A - g(x°)

L(x°,A) .

We will see in chapter six that the saddle point approach has
certain advantages in economic problems. Furthermore, as we mentioned
earlier, one can use this approach to compute solutions of concave

programming problems and their corresponding multipliers.

8.C Duality in Linear Programming

An important special case of concave programming is linear
programming; and one of the most powerful tools in the theory of
linear programming is the existence of a dual problem to every linear
problem. If the original (or primal) problem arises from an economics
guestion, the dual problem usually is £filled with economic significance.
An illustration of this fact will be discussed in section 6.C.
Consider the linear problem of maximizing

f(x) = ¢ + x , subject to the constraints
(L)
2x ¢b in R and x >0 in R" .

Then, the dual problem is that of minimizing
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(1)
YA

F(y) =y * b, subject to the constraints
>

c in R® and y>0 in mY¥ .

-

4
If the j'h inequality in the constraint Ax < b in (L) becomes

an equality constraint, then the constraint ij 0 is dropped
in (M) .
We will use the above saddle point theorems to give simple

proofs oi the basic facts on duality.

Theorem 5.6. Let ¢ € R™ ,be RM, and let a: ™ » rY

be a linear map. Let (L) denote the above primal problem and let

(M) denote its dual. Then,

i) x € R™ solves (L) if and only if there is a y € ﬂig

such that (x,y) is a saddle point of L(x,y) = f(x) + v * (b - Ax):;

ii) if n

g R

|4

solves (L) , then there exists a y € K{M

which solves (M) , and conversely. Furthermore, ¢ * x=y * b .

iii) if the constraint sets of (L) and of (M) are non—empty,
then both problems have solutions.
iv) if x' 1is in the constraint set of (L) and y' is in the
constraint set of (M) such that ¢ - x' =D - y' , then x'

solves (L) and y' solves (M) .

Proof: Part i) follows directly from Theorems 5.4 and 5.5.
The Lagrangian for (M) 1is M(y,x) =-b - y + {yA - c) - x . Note
that M(y,x) = -L(x,y) . By i), i1f x solves (L) , there is a
y such that (x,y) 1is a saddle point of L , i.e., (y,x) is a saddle

point for - . By i) again, y solves (M) . Since y - (b - Ax) = 0
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and (yA - ¢c) - x = 0 for the optimal x and y by Theorem 4.3,
Yy *b=y{ax) = (yA) - x=¢ * x, and ii) follows.
To prove iii), let y° 1lie in the constraint set of (M) and

X° in the constraint set of (L) . Then ,

(N) c * x> <y°A- x°=y® A’ <y b .
Thus, the linear function £ 1is bounded on the closed@ constraint
set of Problem (L). Coaseguently, f achieves its maximum on this
set. One argues similarly for (M) .

To prove iv), let x' and y' be asin the hypothesis and

let x° be any vector in the constraint set of (L). By (N) ,

i.e., X' maximizes € * x on the constraint set for (L) . [ |
Note that by Theorem 5.3, the maximum value function v(c,b) of
problem (L) is a concave function of (c,b)
Karlin (1959), Mangasarian (1969), and Intriligator (1971)
have excellent discussions of duality theory. Mangasarian (1969)
also gives an introduction to the study of non-linear duality.
Kuhn (1976) discusses the origins of duality in mathematical

programming.
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§6. APPLICATIONS OF MATHEMATICAL PROGRAMMING TO ECONOMICS

Since one of the basic problems of economics is the allocation
of scarce resources among competing groups, it is natural that much.-
of mathematical economics deals with constrained maximization prob-
lems. In this chapter, we will examine some of the important pro-
gramming problems that arise in economics, and we will try to use
the theory of the last four chapters to gain some insights into these
problems. Most theoretical books on mathematical economics study
these and related problems. The reader should refer to Debreu (1959),
Karlin (1959), Baumol (1961), Kuhn (1968), Intrilligator (1971),
Malinvaud (1972), Silberberg (1978), and Varian (1978), for further
discussion of such problems. Kuhn (1968) and Intrilligator (1971)

-~

base their entire presentations on programming methods. 7

6A Theory of the Consumer of Household

We first examine an individual consumer's (or family's)
consumption decision. We suppose that there are n commodities
with 1 < n < «» and with x; €R denoting the amount of the ith

commodity. A consumption vector or commodity vector is an

X = (xl,...,xn) in =®r" , listing the amount of each commodity to
be consumed. To develop our theory, we make the following assump-
tions about our consumer and the set of available commodity vectors.

We assume that each commodity is perfectly divisible so that

any non-negative guantity can be purchased. Thus, the commodity space,

or space of all feasible commodity vectors, is

c=1{xemr"| x; > 0} .
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We need not assume a bound on the availability of any commodity
since budget restrictions will give us natural bounds.

We further assume that the tastes or preferences of the
consumer are summarized by a complete pre-orderimg‘{ on C . The
consumer prefers commodity vector y to commodity vector x (or
finds them egqually preferable) if and only if §'< Yy . We assume
that this pre-ordering is continuous in that, for each x € C ,

{y € c | §-< y} and {y e c | y< x} are both closed sets. By a
theorem of Debreu (1959), there is a continuous function u : C - R
such that §-< Yy if and only if wu(x) < u(y) . The function u is
called a utility function. (Note that infinitely many utility
functions can represent the same preference ordering,)

We assume a fixed price vector p = (pl,...,pn) € B® with each
p; a positive number giving the unit price of the ith commodity.
The consumer has an initial wealth w in R_ . In some problems,

he has an initial commodity vector 50 € C , in which case his initial

wealth is w = p - x° .

S —

Finally, the consumer's goal is to select the commodity vector

x € C which is affordable yet maximizes his preference ordering among

all affordable vectors in C . Mathematically, his problem is tc find
n L o ; .

X € R such that x maximizes u subject to the constralnts

(@) 0 < X5 for i=1,...,n ;p* X< WwW.

Note that since the constraint set is closed ané bounded and u 1is
continuous, problem (@) has a solution for each p anéd w

OQur Zfirst application of programming theorv to this problem 1is

to derive the norm that an interior optimal allocation the marginal
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rate of substitution of good i with respect to good Jj eguals

pi/pj . At cpmmodity vector §9 € C , the marginal rate of substi-

tution (MRS) of good j with respect to good i is

azﬁ (§?%///;%% (§°) . It measures (at the infinitestimal level) the
1 J

additional quantity of good Jj which would compensate the consumer

for a one-unit loss of good i while keeping the consumer's utility.

constant. To see this, fix xi for k # i,j and write

u(xg,...,xi,x§+l,...,xj(xi),...,xg)_= u(g?)

to indicate how a change in X, brings about a change in xj at

the same utility level. Taking the derivatives with respect to X5

and evaluating 50 yields

su o o2u o o
— (X)) +— (x) = (x) =0 or
axi axj dxl =
dx.
j _ _ _sdu o su o}
= = (x7) T (x7) .
i i J

The MRS is the slope cof the consumer's indifference set,

{yviuly) = u(io)}, at x° in the i-j direction and measures the

consumer's relative internal valuation of goods i and Jj . The
optimality condition states that this internal valuation should equal

the market's valuation, pi/pj



Theorem 6.1 Suppose that u : C - R 1is a C

function with the property that for each

su

3xi‘

such that (5) >0 .

o

vector ana that X € C

there isa nn >0 in R

o

~

j_) _l < 7N
pi -

for those i with xg # 0,

o

ii) thus, if X

-for all i and Vu(x®)

e . o) o
iii) if X and Xj

au

Sxi

o] 1l 3u
(™) = 5= %, (&
J J

1
Py

o
X

*

iv) w

o

1

Conversely, if u is C

and some

a\

oX.

1

iv) for some n > 0 then

r

are

o]

= np .,

)

is positive at each

e
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such that

4

'_l

x)

Suppose that p

is a solution to problem (O)

lies in the interior of C ,

non-zero,

. su
and =— (x

and pseudoconcave

and if

1s & global sclution of problem

1 stility

x € C there is an 1

is a positive price

above. Then,

for i =1,...,n with equality

au
then 'é—x—-

J

O) __U_

3
5
*5

(all income is spent}.

. 2 . .
(e.g.,u is C” and guasi-concav

o . , . -
X satisfies i) and

(0) .

Figure 1 below illustrates Theorem 6.1 for an interior solution

of problem (0O) when

)
Py

n

(0,

to the (dotted) price vector

level sets 0of u with u

Note that at the maximizer

is the price line

@]

X

2

Py¥Xy +

(pl, pz)

increasing as

, Vu(go)

The straight line through

P

w

(— 0) .

’

1
2¥Xo, = W , which is perpendicular

¥

The curved lines are the

and go to +=

)

is perpendicular to the price
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line and therefore parallel to (pl, pz) as ii) indicates.

vu(x°)

,\'Pls:/

(@)
X
/ —
, —
s B \\
X
0 — W 1 -
Pl prx=v

Figure 1

Proof: One merely applies the Kuhn-Tucker conditions of Theorem
4.3 to problem (O). Since the constraints are defined by linear func-
tions, constraint gqualifications KKT and (4.3.c) hold automat-
ically. By Theorem 4.3, there are non-negative Lagrange multipliers

Al’ e et An , N such that for each 1

3u o
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A
o _ - b . 0 = ; L 8w Oy | p=a_1
where A.x/ = n(w - p * x°) 0 . Since 5. 3%, (x7) n - <
i i i
o) . . e s . Ju o)
and Aixi =0, i), ii) and iii) follow. Since %o (x7) > 0 for
i

some i and P; > 0, n>0 by i). Since n(w -p - 59) =0
W =7p io as in iv).

The converse follows from Theorem 5.2. a

The correspondence which sends each price vector p and each
initial wealth w to the corresponding optimal commodity vector or

vectors (i.e., solutions of problem (0)) is called the demand cor-

respondence and will be written as

(p, w) — &(p, W) EC .

If u 1is strictly concave, then £ 1is a single valued function.

Furthermore, if one makes the slightly stronger assumptions that u

is C2 and that Dzu(i) is negative definite on C , then £ 1is

a cl function when it takes on values in the interior of C . One

can use the Kuhn-Tucker equations (i) in Theorem 6.1 to compute the

derivatives of ¢

Theorem 6.2 Suppose that u is a C2 utility function on

C with £ the corresponding demand correspondence. Suppose that

o . . . . o -
for some x in the interior of C , some price vector p and
() e} o -, 0 _0© gu o}
some wealth w = pO X, X = g(g LW ) Suppose that = (x7) >0
i
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2

for some i and D u(§?)(z,g) < 0 for all non-zero v such that

E? - v=0. (For example, Dzu(xo) may be negative definite).

Then, there are neighborhoods U of §9 » V of g? , and

W of y? such that § : VX W-~> U is a Cl mapping. Furthermore,
the multiplier n in Theorem 6.1 also eguals Bu(gép,w)) and therefore

measures the sensitivity of the optimal value of u to change in

the initial wealth w . (It is often called the marginal utility of

money) .
Proof: Choose a neighborhood Ul of 50 such that for all
Xx€7Uy , x5 0 for all i and 5%2 (x) > 0 for some j . Now
3

apply Theorem 3.7 to theproblem of maximizing wu under the constraints

X € Ul and x - p=wv. §&
One can use some further'bptimization theory to derive more ¥
properties of £ and its derivatives. Consider first the related

problem of choosing the commodity bundle which achieves a fixed level

of utility at minimum expenditure, i.e.,

(0') Minimize p-x subject to u(x) > u and x > 0 .

Let z(p,u) be the minimizer of (@') ; 2z is called the compensated (or

Hicksion) demand function since in its construction, income changes

compensate for price changes to keep the consumer at a fixed level of
utility.

In addition, consider the optimal wvalue functions for problems
(@) and (@'). The function v(p,w) = u(E(E'V)) is called the

consumer's indirect utility function and M(p,u) = p-z(p,u) 1is

called the consumer's expenditure function. Note that M is a
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concave function of p by Theorem 5.3.b. These functions play a
central role in modern consumer theory. We first list some elementary -
facts about them.- The nonlinear programming problems (@) and

(') are dual to each other in a natural way. Statements 4) and

5) in Theorem 6.3 are non-linear analogues of Theorem 5.5.

Theorem 6.3. Let £,z,v, and M be as in the above paragraph.

Then

1) &(xp,Aw) = &(p,w) for all A > 0 (homogeneity)

2) z(p,u) = &(p,M(p,u))

3) &(p,w) z(p,v(p,w))
4) u = v(p,M(p,u))

5) w

M(p,v(p,wW))

Proof. 1) follows from the fact that p-x = w and
(AE)'E = (Az) are equivalent constraints. To prove 3), we show that
if x* solves (@), then it solves (@') with u = u(x*). By the

Saddle Point Theorem 5.5,

for a2all x > 0 where )* 1s the multiplier in (@) corresponding

to x* . Let Xx' be an arbitrary bundle in the constraint set of

(@'), i.e.,
(**) u(x') > u(x*; and x' >0
Then, a(x*) +A*(w-pex') < u(x')+x*(w-p-x')

| A
o
]

*
.'.
>
*
<
[}
o
[}
"
K
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by (**) and (*) . These imply that p-x' > p*x* , and so x* |is

a solution of (@') .

The proof of 2) is similar; 4) and 5) follow directly from 2)

‘and 3) by evaluation. []

We can now compute some properties of & and its derivatives.

Theorem 6.4. Assume that &,z,v, and M are Cl functions.

(See, for example, the hypotheses of Theorem 6.2.) Then,

_ _av(p,w) av(p,w) ' :
1) g (p,w) = - 5D, i (Roy's Identity)
2) _‘aii (o) = azj(p,V(p,W)) ) Bij(p,W) .
Bpi £’ api ow i

- . -

(Slutsky Equation)

0z, (p,u)
3) The matrix of "substitution terms"” ((——135———))
i
3E. 3E.
= ((——l (p,w) + &, — (p,w))) 1s a symmetric, negative semi-

api i 9w

definite matrix.
. 9z . %% 9L

4) 1In particular, ggz (p,u) < 0 and 55; + gi - < 0o .

Proof: 1) follows from differentiating 4) in the statement

of Theorem 6.3 with respect to p,
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But ggi (p,u) = gi , Since by the Envelope Theorem 3.8.b,
i
oM(p,u) _ 9 - = =
(***) 5p; 9B [x-p + u(u(x)-u(x*))] = x¥ = z,(p,u) = &, (p,M(p,wI.

Conclusion 2) follows from differentiating equation 2) in Theorem

6.3 with respect to Py

m

9¢& . 3
J (p,w) +

Pj

9Z.

i IM
ap

= (B/W) 352 (p,u).

[

Then, apply (***) and rearrange terms. To prove the symmetry in 3),

recall from (***) that Egg (p,u) = zi(g,u) . So,
i
8z, SZM BZM azj
apj = apjapi = apiapj = api Since M 1is concave by Theorem 5.3.b,

its Hessian is negative-semi-definite. Finally 4) follows from
the fact that the 1x1 principal minors of a negative semi-definite
matrix must be non-postive. []

The Slutsky eguation in 2) of Theorem 6.4 is an important
relaticnship between the two demand function & and 2z . If we

write this eguation as

I3 bz, I3
bxg = gp7 fpy T gy (Pt bpy -5t Xyt ARy

[

we see that the change in demand ij due to a change in price Api

decomposes into two separate effects: the substitution effect
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8z,
35% (p,u) - Api ~ during which utility is held constant, and the
i
9k,
income effect J .

-~ X ° Api ;, in which xiApi represents the

change in income.
It turns out that conclusion 3) in Theorem 6.4 provides a
necessary and sufficient condition for an observed demand function

g(g,w) to arise from utility maximization. See Samelson (1950) and

Hurwicz and Uzawa (1971).

6B. Theory of the Firm or Producer.

We turn now to an analysis of the economic behavior of a firm.
A firm uses inputs such as materials, labor, and'land to produce out-
puts which it sells to households or other firms. Given the price
and supply of each input, the price and demand of each outpﬁ%, ani
the technological relations between input and output, the firm must
decide how much to produce and how much input to use in this production
in order to meet its economic objectives.

Suppose that the'firm in guestion produces a single commodity
from n inputs. Let x, denote the quantity of ith input,

X = (xl,...,xn) the resulting input vector, and y € R the amount

of output produced. We assume that there is a production function

£ : R » R , where £(x) denotes the maximum output for each input

vector X .

In order to examine the most general situations, let pl(y)
and p,(x) denote the inverse demand functions for output and input,
respectively, i.e., pl(y) is the unit price & firm can charge if
its level of output is y and p2(§) € RE is the input price vector

which the firm will pay if it needs input vector x . For a firm in
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perfect competition, Py and P, are constant; for a monopolist

firm, P, is constant but Py is not and the firm can control the
price of its product by varying production amounts; for a monopson-
istic firm, Py is constant but P,y is not and the firm can influence
the price of an input by varying its purchases of the input.

Let us assume first that our firm wants to maximize its profit,
I = pl(y)y - p2(§) - x , where y = £(X) . We can use the results
of chapter two to find a necessary condition for such a maximum,
namely that the marginal revenue product equals the marginal cost

of each input. The marginal cost of input k is, of course,

3%— p2(§)°5 . The marginal revenue product of input -k 1is the
k
_ dpy (y)y
marginal revenue, —&y , times the marginal product
y = £(x)
of input k , ggi (x) . To derive this norm, one merely sets

the first derivative of 1 with respect to X3 egqual to zero.

If one considers the case of a firm in perfect competition

where P, =P and p, = w are constant, the above norm becomes

(P) p AE(x7) = w .

If one assuames further that the production function is concave, then

one learns from Theorem 2.3 that (P) is also a sufficient condition

for x° to be an input which maximizes profit. In this case, the

firm is operating at the optimal input level if an additional unit

of output will bring in as much revenue as it costs to produce.
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Furthermore, as in section 6.A, one can define x(p,w) = §9 to

be the solution of (P) for a fixed p and w . This correspondence

is called the input demand correspondence. If £ is strictly

. i

‘concave, ¥ is a single-valued function, which is homogeneous of

degree zero. If £ is C2 and sz(x) is negative definite for

all x , then x 1is Cl . The function F(p,w) = f(x(p,g))‘ is

called the output supply function, a component in the usual demand/supply
analysis.

One can derive conditions on the derivatives of these functions
by using technigues similar to those in Theorems 6.3 and 6.4 of the
previous section. Let w*(p,w) = 7(x(p,w)) be the optimal profit
function. By the Envelope Theorem 3.8.a,
am* (p,w) - am* (p, W) _ _

(s)

The latter leads to the reciprocity condition:

_ _ d"mx 37 m* _ 3Xi :
(p,w) = oOW. OW. OW.ow.  ow. (p,w) , i.e.,
i i SR 3

the effect of a change in the wage of the ith input on the demand

for the jth input is the same as the effect of a change in the wage
of the jth input on the demand for the ith input. The first
equation in (§) leads to:
oX. 2 2
= - - 8w _dwr _ _ 2F .
. 5 (Pr¥) = goEwn 3w .30~ 3w, (Br¥) o

sc an increase in the output price raises the demand for input 1 1if

and only if an increase in the wage of input 1 reduces the optimal
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output. Finally, by Theorem 5.3.b, w*(p,w) is a convex function,

and so its Hessian is positive semi-definite. 1In particular,

*
this means that Swo 5 must be negative for all i ; an

increase in the wage of an input always leads to a reduction in its
demand. See Varian (1978) and Silberberg (1978) for further
discussion.

Let us now change the problem a little. Suppose that the firm
in guestion has its policy determined by a manager whose objective is
to maximize sales, i.e., revenue, without letting the profit drop
below some fixed level. (See Baumol (196l) for a complete discussion
of such firms and Kuhn (1968) for the following mathematical analysis).
To make things even more interesting, let us add an advertising cost
a € IR, to this problem. Let R(y,a) denote the firm's revenue
when the level of production is y € R, and the advertising cost is
a € R, . Let C(y) denote the cost of manufacturing y units of

1

output. We will assume not only that C and R are C functions

but also that <C'(y) > 0 (increased production implies increased

~
costs) and %g > 0 (increased advertising brings in increased reve-
nues). Our programming problem is to maximize R(y,a) subject to

the constraints vy >0, a>0, and

I = R(y,a) -C(y) —-a>m.
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Assume that (yo, a® is an optimal solution with yo >0 . In

addition, assume that some constraint qualification is valid at
(yo, ao) , €.9., R may be concave and C convex. Then, there are

non-negative multipliers uo and v such that the Lagrangian

L(y, a) = R(y, a) + ﬁoa + V‘°[R(y. a) - C(y) - a-m}

has a critical point at (yo, ao) . In other words,

oL o} o o o o, _ o, oR 0. .,. 0 _
(Q) 3y (y, a, A, u, v) = (1 + v-)§§ C’(y ) =0 and
oL o o) o o o) o, °oR o 0
(R) T (v, a, A, u, v) = (1 + v) 3a + y =-v =0 .
. R (o) o o) . .~ o
Since a >0 and v >0, y -v <0 in (R). Since n > 0,
v9 must be strictly positive. Therefore, H(yo, ao) = m ; the

profit realized is the minimal profit allowed. Since v° > 0 and

9R
oy
at the optimum level. On the other hand, the marginal profit,

c’(y®) > 0 in (Q), (v°, a®) > 0 and marginal revenue is positive

%% , 1s negative at (yo, ao) since

(1 + v®) %g— (y°, a

oL

%) =5 0% 2% - c” (¥

)

0 -c(y°) <0 .

L]

Consequently, output yO is greater than the output in the profit-

maximizing situation.



Finally, by Theorem 3.7, the multiplier v’ can be interpreted
as the marginal loss in maximal revenue with respect to the limit

on profit.

Just as we added advertising cost to our study of a sales maxi-
mizing firm, so the economist can use programming principles to de-
termine the effect of such items as sales taxes and regulatory con-
straints on the optimal behavior of a firm. For example, see Averch
and Johnson (1962) for an analysis of how a "fair rate of return"

rcgulatory- - constraint could alter the behavior of a monopolist firm.

§6.C Activity Analysis

In this section, we will apply the linear duality theory, dis-
cussed at the end of chapter five, to the important problem of the
activity analysis of production. In this model, a firm in a compet-
itive economy produces k different outputs from m different re-
sources or inputs. FPurthermore, different combinations of inputs
can be used to produce the same combination of outputs,. but these

transformations are organized into n processes or activities, where

l <n < = ., The jth activity, for example, combines the k inputs
in fixed proportions into the m outputs in fixed proportions at
scme non-negative level or intensity, z. > 0 .

The firm's technology is then described by an m X n matrix
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= ({a

:1;

ij)) and a kX x n matrix B =~(§bij)) , Where ai. >0

is the amount of the jth~input used in operating the jth activity
at unit intensity and bij > 0 is the amount of the ith output
corocduced when process j runs at unit intensity. If the firm con-
ducts all its activities at the same time with the jth activity at

level z. >0 for j=1, ..., n, then it transforms the input

E
|

vector = Az € IRI: into the output wvector Y = Bz £ IRE -

Let D, > 0 denote the fixed market price for the ith output,
i=12, ..., k : and let q; > 0 denote the fixed market price for
the ith input, i =1, ..., m . Thus, p = (pl, ceey pk) and
g = (ql, oo qm) are the corresponding price vectors in an economy
oI perfect competition. Let bi denote the available stock of the
ith resource or input, with b = (bl, cees bk) .

If the firm's director wants to maximize profits, he must solve
the Zollowing linear programming problem:

FPind an activity vector =z in R" such that 2z maximizes

P - Y -g +« X subject to

e

1%
I
o]
N
<
1
t
N
[
| A
o'
N
Y
o
v

I we substitute the equality constraints into the profit function,
the prcblem becomes:

Find __z_eIRn such that 2z maximizes
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subject to Az < b.and z > O .

Finally, if we let r = BtE - Atg in R" , rj denctes the

value or profit of the output achieved by operating the jth activity -
at unit level. We then want to choose z to

— -

(s) maximize I - z subject to Az < b and z >0 .
One can, of course, use the simplex algorithm to solve this
linear programming problem; but let us see what we can learn about

the problem and its solution from our programming theory. The La-
grangian is

Lz, ) =z - z+1- (b-22) .

The Xuhn-Tucker necessary and sufficient conditions for a solution

o : . m ; . n
are that we find a X >0 in R and a2 z > 0 in R~ such that

H

f we have such a ) , then by Theorem 3.9, Xi can be regarded as
th

cr

he irnfinitesimal change in maximal profit as the amount of the i

resouxce that is available increases. 1t can therefore be interpreted
; . . . . th .

as the firm's .internal valuation of the i resource and is usually

called the f£irm's imputed or shadow price of this input. .

This naturally leads us to consider the dual problem, as dis-

cussed in section 5. The dual problem tc (S) is to
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(s°) find A > 0 in R" such that )2 minimizes A ¢ b subject

to the constraints AA >r .

If A is the shadow price vector described above, A ¢« b is the
total value which the firm sets on its resources in stock (in its
internal price system). Examining the constraint in (S°) , one no-
tices that the jth component of 1A = Atl is the total value of the
output as a result of operating activity Jj at unit intensity in
the internal price system ) and that rj is the actual value of
this output (in the external price system). Therefore, in solving
(S°) , the firm tries to determine a valuation or internal price
system on its resources so that the value of its resources will be
minimized under the constraint that when the firm operates any ac-
tivity at unit level the total value of the resulting outp&é in *the
internal valuation must be at least as large as its total value in
the market's price system. Karlin (1959) summarizes this constraint
by stating that "internal prices cannot be set to get more value
from a product than you put into it".

Let z*g IR? be the activity vector which solves (S) and
let A* be the shadow price vector which solves (sS”). By Theorem
5.5, z¥ + r =2* « b, i.e., the optimal total profit in the acfivity
analysis problem eguals the minimal total (internal) value of the
resources in stock. This egquation is closely related to the macro-
economic norm that at an egquilibrium the value of the final goods

produced (national product) must egual the cost of the primary factors

of production (national income).
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An alternative but related intefpretation of the dual problem
is the viewpoint of a competitor who wants to buy the resources
of the producer (possibly believing that he can use them more
efficiently). He offers to pay the producer the amount Ai for
each unit of resource i . The constraint AA > r assures the
original producer that "the amount offered is at least as much as
he could obtain from any production schedule". (Gale (1960).) The
competitor tries to minimize the total cost of his purchase subject
to the above assurance to the producer. By (N) , the producer has
nothing to lose and may even gain if his competitor misses the
optimal buy-out price.

Finally, in programming problems where the primal problem describes
1the search for the best joint strategy in a decentralized economic
system, the dual problem often can be interpreted as a central

planner's viewpoint of the same system.
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Finally, we can use the activity analysis model to gain further
insight into the economists' enthusiasm for the saddle point approach
to concave programming. Generalizing (S), consider the problem of

maximizing £(x) subject to x > 0 and g(x) < b . Assume that

1%

> 0 represents the activity level of a firm's operations, £ 1is
a C1 concave function representing the value of the firm's output
for any given activity level, b is a constant vector which measures
the amount of primary resourcas that are available, and g{x) is a
measure of the amount of these resources used when the activity
vector is Xx .

The Lagrangian function for this problem is
L(x, A) = £(x) + Alb - g(x)] , and, as mentioned above, A can be
viewed as the wector of shadow prices for the primary resources.
Thus, L. is the combined vafﬁe of the firm's outputsﬂand £ﬁe unused

balance of primary resources. Suppose there is an x~ > 0 with

g(ﬁ’) < b , and that §9 maximizes £ subject to g(z) <b and

o

x > 0 . Then, by Theorem 5.5, there is a A

> 0 such that L1 has a
saddle point at (50, A?) , 1.e.,

(o}

L(x, A7) < L(x, A7) < L(x, A) for all x>0, » >0.

(By Theorem 5.4, 50 solves problem (S) if (§9, AO) is a saddle point

of L .) The existence of (§O

' AP) expresses an equilibrium
between the value of the output and the prices of the available re-
sources and is a basic step in the theory of equilibria for produc-

tion economics.

For further discussion on the activity analysis problem the

reader is referred to Koopmans (1951), Karlin (195%), Charnes-Cooper

(1961), Varaiya (1972), and Silverberg, (1978).
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§7. VECTOR MAXTIMIZATION

7.A Preliminaries

In the applications of chapter six, we studied an individual
consumer trying to maximize his utility function under budgetary
constraints and a single firm striving to maximize its profits or
sales while producing a single output from a stock of available
resources. The next step is to examine economies where a number of
consumers compete among themselves for goods and services and where
firms producing a number of products decide on optimal output vectors.
' To treat such problems as a large number of independent maximization
problems would be to ignore not only the boundedness of the stock of
available goods and resources but also the interactions between the
various components of the economy. More importantly, such a treatment
will usually lead to a mathematical problem with an empty solution set.
We therefore introduce the more natural notion of a vector maximum
or Pareto optimum for situations where a number of different parti-

cipants are trying to meet their independent objectives.

Definition. Let C be a subset of Bin . Let ul,...,ua
be real-valued functions on C . Then, u = (ul,...,ua) has a

vector maximum or Pareto optimum at x° € C 1f there is no -

X € C such that u,(x°) Su;(x) for all i and uj(§°) < uj(g)

for some j, i.e., such that u(x®) £ u(x) but u(x®) # u(x) in

the usual partial ordering on rZ . *

A number of recent papers have proven necessary conditions and

sufficient conditions for vector maximization on constrained sets
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withoutrusing any of the non-linear programming results gﬁrveyed
in chapters 3,4,‘and 5. 1In this chapter;rwe will show how many
of these vector maximizaﬁibn'theorems do indeed follow easily
from tﬁe scalar maximization theorems we have studied. The

following theorem is the key step in this process.

Theorem 7.1. Let C be a subset of R"™ . A necessary and

sufficient condition that u: R™ + R® have a Pareto optimum at

1
c; = {xeclux - ugx*) > 053 = 1,...,a53 # i)

x° on C is that §° maximizes each u. on the constraint set

Proof: Suppose that u has a Pareto optimum on C_at x° .
If x does 'not maximize u, on C, , then there is an X E‘C suct.
that uj(g) > uj(§°) for all Jj # k and wu (x) > u (x°) , contradictir
the Pareto optimality of x° .

Conversely, suppose that Xx° maximizes each u, on Cp .

If x° 1is not a Pareto optimum on C , there is an x € C and a k

such that ui(g) z_ui(§°) for all i and uk(z) > uk(§°) , contra-

dicting the maximality of x° for u, on ¢, . 1H

Although this result is probably well known to many who work in
this area, I have not found an explicit statement of it in the literatu:
Some authors, such as El-Hodiri (1971) and Wan (1975), have noted

and used parts of this theorem in their work.
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7.B Necessary Conditions for Optimality

In this section, we'll use the results of chapters 3 and 4 to
derive necessary conditions for x° € R" to be a Pareto optimum.
Throughout this section, Cg h will denote the constraint set

’

{x e R%gy(x) 20, i=1,...,Mhy(x) = 0, = 1,...,N} .

Theorem 7.2. Suppose that ul,...,ua,gl,...,gM,hl,...,hN are

c! functions on R . Suppose that x° € Cg p 1s a Pareto
- ’

optimum for u = (ul,...,u ) on C . Then, there exist scalars

a g.h

Qyree.sa Xl,...,AM,Pl,...,PN such that

a'

('-
(e,2,B) #0
Q. > 0 i = l,o-‘,a; )\. > 0’ j = l e e M ;
() iz ’ 5= J r ’ r
ﬁ kjgj(x°) =0, j=1,...,M,
a M N -
(<] (] o -
i a,Du, (x°) + i Angj(§ ) + i HDhy (x°) =0 .
~—
Proof. Since x° 1is a Pareto optimum of u on Cg n o, X°
14
maximizes u; on the set (x° € Cg,h‘uj(x) - uj(§°) Z,O v 3

By F.John's result (Theorem 4.1), there exist a; > 0; a,,...,a

A yre-+rky non-negative; and wy,...,uy such that (a,A,u) #0

in RN 39 (x*) =0, ana

]
N
~
L]
L]
L]
-
»
(-
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a

o - [} o
@,Du, (x°) + g a;Dfuy = u (x°)] (x°)
M N
+ I A.Dg.(x°) + L Dh, (x°) = 0 .
z Jgj(g) luk (x°) =0

But D[ui - ui(§°)](§°) = Dui(§°) . - |

Another proof of Theorem 7.2 may be found in DaCunha and Polak
(1967). As before, Theorem 7.2 says very little unless one can
guarantee that all of the a; are non-zero. Thus, we need to make
some assumptions on u,g, and h so that we can apply our theorems

on constraint qualifications.

Theorem 7.3. Suppose that ul"”’ua’gl""'gM'hl""’hN

are Cl functions on R . Suppose that x°® € C and that u

g.h

has a Pareto optimum on Cg H at x° . Suppose that u,g, and h
’ -

satisfy one of the following hypotheses, where u(l) = (ul,...,ui_l,
. n a-1,
ui+l,oo-'ua)t IR .
(1)

a) D(u

-+ IR
,gE,h)(§°) has maximal rank for each i =1,...,a .
b) Let A, = {ilui is pseudo-convex in some neighborhood of x°}

A, = {1,...,a} - A+ By = {3 € Elgj is pseudo-convex in some neighbor-

hood of x°} , and E, = E - E, . Suppose that h 1is linear and
there is a v € T OIln such that Du, (x°)v > 0 , Du, (x°)v > 0 ,
Dg_. (x°)v > 0 , Dg, (x°)v > 0 , and Dh(x°)v = 0 .

E, = T = E, = 'T 7 = 207

c) u and g are pseudo-convex and h is linear,
d) h isaffine; u and g are concave on some convex neigh-

borhood U of x°; and for each i € {l,...,a} there is an
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xt € B® such that u™® (x}) > u) (xe) ana gixh) >0, nxh =0

e) Suppose whenever Du(i)(§°)z 20, Dggi{x°)y 20, and
Dh(x°)v = 0 for some i and some V € Txonln , there is a ct
path a:[0,e) - R" with a(0) = x° , a'TO) =v, u(i)(a(t)) z_u(i)(§°)
g(a(t)) >0 , and h(a(t)) =0 .

f) (Kuhn-Tucker(1951)): For each i =1,2,...,a, there is no

vector v such that

Dui(5°)z >0

v

Duj(§°)z 0, for all 3§ # i
Dgp(x°)v 2 0 ,

Phix®)v = 0 .

g) (Geoffrion (1968)): There exists a scalar M such that,

for each i , we have

for some j such that u.(x) < u.(x°) whenever x € C
J - J = = g.h

u, (x) > u,(x°)
Then, there are scalars ajse..ragrdqrecerdyrMyre. fy Such

that (T) of Theorem 7.2 holds, where the a; are all strictly

positive.
Proof: For hypotheses a) through e) , fix i € {1,...,a} .
Bv Theorems 3.3, 4.3, and 4.4, there are Bi,...,si,)i,...,l;

pi,...,;é such that
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B > 0 for all 3 = 1,...,a:87 =1 ;

3 i
i i .
Aj >0 and l§gj(§°) =0 for all j = l,...,Mj and
& i Moi ik
I B Du.(x°) + L A Dg (x°) + L Dh™(x°) = 0 .
=13 37 m= BT k=1 PR S
a . a a .
Let @, = I B >1,r = I A*>0, and = L pnr .
3 4oy 3 o j=1 W Px =1 Px

For hypothesis f) , apply Farkas' Lemma (see section 4.B)
for each i with A = (Du'*) (x°),Dg (x°), Dh(x°), - Dh(x°)) .
By hypothesis f), whenever Av > 0 , -Dui(gf)2.3 0 . So, there exist
i i i i . .
Bi,...,li,...,pl,...,pN as in the preceding paragraph.

' For hypothesis g), see Geoffrion (1968). B

Kuhn and Tucker call a vector maximum which satisfies hypothesis
f) in Theorem 7.3 a proper solution of the vector maximum problem.
Geoffrion (1968) calls a vector maximum which satisfies hypothesis

g) a properly efficient solution of the vector maximum problem. Both

of these papers indicate that at a Pareto optimum which is not proper
one can find paths which allow first-order gains for some oI the

ui's and only second-order losses for the other ui's. See also
Klinger (13967) . )

We will use some of the hypotheses of Theorem 7.3 when we study

some more economics applications in Chapter 8.
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7.C Second Order Sufficient Conditions

L]

One can now easily combine Theorem 7.1 and the results of section
3 to prove the following strong second order sufficiency condition
for Pareto optimization. Weinberger (1974), Smale (1975b), Wan (1975b),

and deMelo (1975) have proven similar results using other methods.

1

: . n
Theorem 7.4. ' Let ul""’ua'gl”"'gM'hl""'.hN' R -+ IR

c? functions. Suppose that x° € Cg h = {xe ]Rn[g(gg) > 0,h(x) = 0} .
Suppose there exist multipliers o > 0 1in Rr?, A >0 in rY ,
and p € R" such that A,g;(x°) = 0 for all i
a M N
and if L =232 @ u, + I Ajgj + Z ukhk
1 1 1
then DL(x°) = 0 and

D?L(x°) (v,¥) < 0 for all non-zero VvV such that

o o] . i
aiDui(§ )v = 0 and Dui(_§ )v >0 for i=1,...,M; Angi(g_go)z =0

and Dgi(zo)v > 0 for each i & E ; and Dh(_}_{_o)v =0

Then, X° 1is & strict local Pareto optimum for u in Cg h
-— - r

Proof: By Theorem 7.1, we need only show that x° maximizes
each u, on u(l) - u(l)§<_°)_>2,g>_0,h=9_ . We will work with i =1 for

simplicity of notation and use Theorem 3.4. Of course, we choose the

Hh

Cq (az,...,a )+ A:u of our hypothesis for the multipliers in our scalar

a

maximization problem.
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a M N
: I - °
Letting L ajuy + I ai(ui ui(§ )) + L Ajgj + ukhk '
2 1 1
we see that DL'(x°) = DL(x°) = 0 . Now, choose non-zero Vv so

that Dul(xo)z > 0 , so that aiD(ui-ui(EP))(gé)x = 0 and

D(ui-ui(§°))(§9)z'3 0 for i=2,...,a , so that XiDgi(gé)X 0

and’ Dgi(gé)z > 0 for each i €E , and so that Dh(g?)z = 0 . Since

DL(x°) = 0 ,
M

a
—a.Du, (x°)v = I a.Du.(x°)v + £ X.Dg. (x°
1771'= "= 5 1 71'= )Y 1 3 gj(—}E )Y
N
(<] -—
+ i mDh (x*)v =0 .

By hypothesis, DZL'(§°)(3,X) = DZL(§°)(X,X) < 0 . By Theorem 3.4,

u restricted to {u(l) > u(l)(§°),g > 0,h = 0} has a strict local

- -

. s 5 !
.maximum at Xx° . Since this is clearly true for all i > 1 also,

u restricted to g > 0,h = 0 has a strict local Pareto optimum at

x° by Theorem 7.1.8

As before, one can strengthen the sufficiency test of Theorem
7.4 by allowing the multipliers to depend on the vector v to be
tested. See Ben-tal (1980) and Weinberger (1974).

See example 1 after Theorem 7.6 below for a calculation of a

Pareto optimum based on Theorem 7.4.

7.0 First Order Sufficient Conditions

In many applications in economics, the u.'s,gj's, and hk's

which arise naturally are concave or convex. For example, let

u(xl,xz) denote a consumer's utility £function in an economy with
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two commodities. If commodities one and two are desirable ones and
about equally so, then the natural assumption that the consumer would
prefer to have some of each commodity rather than lots of one commodity
and little or none of the other leads to the usual hypothesis that
the uj's are concave or at least quasi-concave functions. In
fact, the desire of consumers to achieve balanced distributions of the
goods in gquestion - hopefully, by trading with other consumers -
is a concept at the core of the theory of microeconomics.

In this section, we use Theorem 7.1 and the results of section

5 to describe sufficient conditions for optimality when the functions

involved are concave or almost concave.

Theorem 7.5. Suppo;e ul,...,ua,gl,...,gM,hl,...,hN: r? ~ Itl

are C' functions with g(x°) > 0, h(x°®)=0 . Suppese that

. o
i) the ui's are pseudoconcave at x° , e.g., Vu;(x") # 0 and u,

i i
... Quasiconcave at Xo .
ii) the gj's are gquasi-concave at x° , and

iii) the hk's are guasi-concave and quasi-convex at Xx°
(e.g., linear).
If there exist multipliers ¢ > 0 in R ,2 >0 in R M € R

such that @y >0 for 1i=1,...,a,

Ajgj(§°) =0 for j=1,...,M, and
2 M N
© -
D[E o ul + Ajgj + ukhk](§ )y =0,
1 1 1
then u restricted to C has a global Pareto optimum at x° .
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Proof: The proof of Theorem 7.5 is similar to that of Theorem
7.4. By Theorem 7.1, we'need only show that each uy attains its
maximum at x° when the constraint set is u(i) - u(i)(§°) >0,
g > 0,h =0 . To demonstrate this, one applies Theorem 5.2.%

In using Theorem 7.5, one should keep in mind the hierarchies
of concavity as described in Theorem 1.9. One is tempted to tr§ to

generalize Theorem 7.5 to the case where the ui's are guasi-concave.

. S 3 3
However, if ul(xl,xz) = Xq and uz(xl,xz) = X570 o, ouy and u, are

guasi-concave and

1+ Du,(0,0) +1 - Du,(0,0) =0 .

But (0,0) is not a Pareto optimum for (ul,uz)
Nor can one generalize Theorem 7.5 to the case where some of the
1] = = -
a.'s are zero. For, let ul(xl’XZ) = xl,uz(xl,xz) = =Xy . and

u3(xl,x2) =X, . The ui's are all linear and therefore concave.

If one chooses multipliers @, =a, = 1 and oy = 0 , then the origin
(in fact, any point) is a critical point of the corresponding
Lagrangian. However, if x£ > Xy then (Xi’xé ) 1is superior
to (xi,xz) for all 5.

Thus, Theorem 7.5 is just about the strongest first order
sufficient condition possible. It is a bit stronger than some

similar results in the literature, e.g., Kuhn and Tucker (1951), )

Karlin (1859), Geoffrion (1968), and Smale (1976)

.

There are two other aspects of concave Pareto optimization
that should be mentioned because of their important place in

the past and present theory of microeconomics. The first involves
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the classical treatment of Pareto optimization problems (e.g., see
section 8.C and Samuelson (1947)) whereby one tried to reduce such
2 problem to a single maximization problem by working with a

weighted sum of the ui's .

Theorem 7.6. Suppose that ul,...,ua,gl,...,gM,hl,...,hN:

Ein -+ E{l are C1 functions and that x° ecC H i.e.,
4

c(x®) >0 , h(x®°) = 0 . Suppose that the ui‘s are concave, the

g.'s are guasi-concave, and the hk‘s are linear. If u restricted

to Cg h has a local Pareto optimum at X° , then there exist
14

nultipliers Qyreeerl

a

-

T a.u, (globally) on C . If, in addition, u,g, and h satisfy
] 1i g-h

one of hypothese 2) to g) of Theorem 7.3 at x°, then one can choose

a >0, pnot all zero, such that x° maximizes

all the ui's to be strictly positive.

Proof: Since u restricted to C has a local Pareto

g-h
optimum at x° , there exists non-zero (a,A,u) € R x IRM x IRN

such that ¢, > 0 for all i ,Ax. >0 for all 3j , &nd

2 J

a M N
(U) D[ a,u;, + I A.g. + T p h l(x°) =0 .

1 1% 1 373 1 k'k
But I e u. is concave. Applying Theorem 5.2, one sees that
a
I a,u must have a global maximum in Cg p at x°® .
l - r

If one of the hypotheses of Theorem 7.3 holds,then we can
choose all the ai's to be positive in (U) and therefore in the
theorem. However, we still need to find a non-zero ¢ in the general

case in order to give this theorem some content.
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To do this, we must use the fact that disjoint convex sets can be

separated by a hyperplane. See Chapter 3 in Mangasarian (1969)

or Appendix B in Karlin (1959).
Suppose that for all non-zero choices of (e,A,u) as above,

ca =0 . It follows that 1) D(Z Ajgj + I ukhk) (_;Ef’) =0 for all such

(¢:A,1) , 2) there is no non-zero ¢ > 0 with I a.Du,(x°) =0,
and 3) Duj:(_}f) #0 forall i . Let U= {x¢€ .an[ui(_}_c_) > ui(_>5°)

for 211 i} and let Cg h denote the constraint set as usual. By
’

Gordan's Lemma (see section 4.A), 2) implies that there is a

non-zero vector Vv € T R™ with Du,(x*)v > 0 for all i .
0
Thus, U 1is non-empty and Xx° 1is in its closure. Also, since

x° 1is a Pareto optimum, x° + tv g Cg p for all t >0 and Cg_ h

deces not contain an open neighborhood of x° . 1

Since u restricted to Cg h has a Pareto optimum at x° ,
, X

U and Cg p are disjoint convex sets. By the above mentioned
7 .
separation theorems, there exists a hyperplane H that separates

U and cg,h’

Suppose that £r™ S ]Rl is a C1 pseudoconcave function
with VE(x°) perpendicular to H and lying in the half-space of

U . We claim that £ restricted to Cg b has a global maximum
14

at x°® . TFor, let x' € Cg,h . Since Df(x°)(x' - x°) =
VE(x®) « (x' - x°) £ 0, and since £ is pseudoconcave, f£(x') < £(x°)
and our claim is verified.

If Vui(5°) were normal to H for séme i , then us restricted
to Cg,h would have a maximum at x° and we would be done. Thus,

we can assume that each Vui(_>5°) is non-zero and is not perpendicular

to E . Let P: Tx '™+ H be the standard projection along the perpen-
0
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dicular to H . We know that P(Vu,(x°)) is not zero for all i .
If there were a non-zero vector w € Txonlntﬁ H such that

P(Vu,(x°)) = w>0 for all i, them Vu,(x°) - w >0, for all i

a contradiction to the fact that U lies on one side of H . Gordan's

Lemma now implies that there exists a non-zero (ul,...,aa) with
a
a, >0 for all i and I a,P(Vu,(x°)) =0 .
i- 1 i i'= -
a a
The linearity of P gives P(I «,Vu,(x°)) =0, i.e., Z a.Vu, (x°)
1 1 1= - L 1 -i=
is perpendicular to H . By the claim of the proceeding paragraph,
a
I a, u, restricted to C has a maximum at x° . N

Example 1. Smale (1975a) gives an example to show that Theorem

7.6 is not true if the u, are not concave. Let

2 3 -y
u, (x,y) =y =-x" + vy, u,(x,y) = ———— .
1 2 xz + 1

Since Dul(0,0) (0,1) and Duz(0,0) = (0,-1) , D[A,u, + A.u,](0,0) =

19 * AU
0 if and only if A, = A. = A . Since Dz[kul + 2u,1(0,0) =

= 1 2
-2A 0

0 0 '

which is negative definite on the kernel of D(ul,uz)(0,0) , Theorem

7.4 tells us that (0,0) 1is a local Pareto optimum of (ul,uz)

\

(Keep in mind that 1} must be positive.) However,
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AMuy + 1) (x,y) = Ax2(——L—) + y]
1 2 2
x" + 1
is a strictly increasing function on the line x = 0

, and

certainly does not have a maximum at (0,0)

3

Example2. The following simple example shows that one cannoc.

always expect to find all positive ai‘s in Theorem 7.6. Let
= 2 _ .
ul(xl’XZ) = -x X, and uz(xlrxz) = x; . Since uy has a

global maximum at (0,0), (ul,uz) has a Pareto optimum at (0,0)

-

But,

ulDul(0,0) + azDuz(0,0) = (a2,0)

equals zero if and only if a, = o .

The converse to Theorem 7.6 is a classical result, whose simple
proof we will leave to the reader. Note that no continuity or

convexity assumptions are needed.

n

Theorem 7.7. Let ul,...,ua: R - IR Dbe functions and let

X be a subset of R" . If x°® € ¥ and if there exist Qpre-e10g

all strictly positive such that I o u, restricted to X has a
local (glebal) maximum at x° , then (uy,...,u ) restricted to

X has a local (global) Pareto optimum at x° . If x° € X and

if there exist a non-zero (al,---,aa), with oy > 0 for all i ,

a

such that o u. restricted to X has a strict (local) maximum
1

at x° , then (ul,...,ua) has a strict (local) Pareto optimum at

XO
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7.E Saddle Point Formulations

The other important approach to concave Pareto optimization is

the saddle point formulation. 1In trying to optimize (ul,..-,ua) :

n

R® >+ 2 over the constraint set Cg = {§ € Rn[gi(g) >0,i=1,...,

economists often go right to the Lagrangian L: R x 2 x IRM + R ;

where

A saddle point for L is an (x°,2%,2A°) such that a® >0,
a® #0, A°® >0, and for all x and all X >0

L(}_{.’Eo'AO) -<- L(EO’EO'LO) _<- L(ﬁolgo,)\) .

If (x°,2°,A°) 1is a saddle point with ai" >0 for i=1,...,a,

then it is called a strong saddle point.

The following thecrem summarizes the relationship between

stronc saddle points and Pareto optima.

n
Theorem 7.8. Let UyreerU G ress Gyt R -~ IRl be Cl
functions. Let L: R" x RZ x JRM be
a _ M
L{x,c,2) =Z a.u.(x) +T A.g.(x .
2izd) =T agoi(x) +Ioss
A) If (x°® ¢® A°) 1is a strong saddle point for L , then u restricts

YT
to C_ has a Pareto optimum at x° .

—
-

B) If the ui's ancé gj‘s are concave, i1f x° € CZq , and if any ol
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hypotheses a) to g). of Theorem 7.3 hold, then u restricted to

Cg has & Pareto optimum at .x° if and only if there is an
M

(¢®,1°) € R® x. R -such that (x°,¢°,A°) is a Strong saddle point

for L .

~Proof: By Theorem 5.4, hypothesis A) implies that x° e C
a .

and that x° maximizes [ ai"ui on Cg - By Theorem 7.7, u
1l

g

restricted to Cg has. & Pareto optimum at x° . To prove B) ,

one combimes Theorem 7.6 and Theorem 5.5.8

Of course,. one -woirld like to replace the phrase "strong saddle
point”®™ by: the. phrase "saddle point" in Theorem 7.8. . It is easy to
see that this is ‘impossible for part A) . However, f'c:?!.ZI.”O\ov.i.l'xc;,z Bergstrom
(notes), one can make the following modification to part B).

n

Theorem 7.9. Let ul,...,u ,gl,...,gM: R - IRl be Cl

a
concave functions. . Let L(x,x,3) =2 *u + A - g be the corres-

ponding Lagrangian. ‘Suppose that x° € Cg . that there is.an

xX* with ~g(x*) >0 and that there is a conflict of goals at
x° , i.e., .for each proper subset X of {1,..-.,a} , there is an
X

€ cg snch that u,(x) > u;(x°) for all 1 € K and Uy (x) > uy (x°)
for some - - € K . .Then, u restricted to Cg has & Pareto optimum
at x° if and only if there .is an (x%,2°) € ®% x R® such that

(x°,z°,2°) 1is a saddle point for L . .
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Proof: . One shows that when there is a conflict of goals, a
saddle point is a strong saddle point. Suppose (x°,c°,1°) is a
saddle poin%t, but not a strong one. Let K = {i[ai; >0} , a
proper subset of {1,...,a} . But there is an x' € Cg such that
ui(g;) > u;(x°) for all i €K and uj(§') > uj(gf) for some
j € K. Then, L(§;,g°,l°) > L(x°,a2°,1°) , a contradiction which
implies that (x°,a°,A°) 1is a strong saddle point.

Part A) of Theorem 7.8 now yields half of Theorem 7.9. To
prove the other half, suppose that u restricted to Cg has a
Pareto optimum at x° . By Theorem 7.6, there is a non-zero c® > 0.
such that x° maximizes % a,°u, on Cg - By Theorem 5.5, there

is a A° > 0 such that (x°,0°,A°%) is a saddle point, and therefore

a strong saddle point, for L .
The basic references for saddle points in concave vector maxi-
mization problems are Kuhn-Tucker (1951) in the finite-dimensional

case and EBurwicz (1958) in the infinite-dimensionzal case.

7.F Pareto Optima Via Differential Topology

The £ield of differential topology has made impartant contribution:
to the cualitative, global study of critical points and
maxime of scalar-valued functions under non-degenerate constraints,
i.e., on manifolds. For example, see Milnor (1963). Smale (1973)
in a series of papers entitled Global Analysis anéd Economics
applied the techniques of differential topology ané of singularity

theory (e.g., Gelubitsky and Guillemin (1973)) to the study of
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vector maxima. Corresponding to the usual critical set of a real valued

function, Smale (1973, 1974b) defined the critical Pareto set ©

to be the set of feasible points which satisfy the first order

necessary conditions for optimality, i.e.,

e={xec h{there exists non-zero (2,A,p) € r2 x ”r® x rF
14

o \n

such that ¢ >0, A > 0,2 » g(x) = 0 and

a M N
i a;Du, (x) + ‘zi A;Dgy (x) + i W DDh (k) = 0} .

Working with constraint sets which are compact manifolds, i.e.,

bcanded sets described by non-degenerate egquality constraints in the

|
sense of chapter 3, Smale (1973) argued that, for an open dense subseac

of the set C(M,E(a) of all smooth mappings from an m-dimensional

a
marifold M into IR , © - 80 is an (a-l)-dimensional manifold

and 80 , the boundary of 0 , 1is a finite union of lower dimensional

manifolds. (There are some dimensional reguirements on the magnitude

of m relative to a — reguirements that are always met in the

economic applications.) The proof of this result was completed and

extended by deMelo (1975). Wan (1976) has shown that for most
mappings the set of local Pareto optima sit in M 1in a similar way.

Let us see why it is natural for the set of Pareto optima of a

n

mapping u : R = R® to be an (2-1) -dimensional subset. We are

. . n s
assuming that our usual constraint space

Cg,h is (locally) R .

Suppose x° is a non-degenerate Pareto optimum for u , i.e.,

o D2ui(§o) is

a
z a? Du.(go) = 0 for some positive © © 1
1

o.l,...,aa r

=t W
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negative definite on the nullspace of Du(g?) ' Dui(gé) #0

for all i , and the rank of Du(§°) is (a-=l) . Choose a neigh-

borhood U of §° in R® and a neighborhood V of a® in

Ri such that for all (x,¢) € T » V : 1) rank Du(x) > a-1 ,
2 2

ii) each Dui(g) #0 , and I a,D ui(x) is negative definite
1

on the nullspace of Du(x) . By Theorem 7.4, x' € U will be a
local Pareto optimum for wu if and only if rank Du(x') = a-1 ,
i.e., if all the axa minors of Du(x') have zero determinant.

(It follows from i) and ii) that if 5'6 U and rank Du(x') = a-1,

o

a so that

there exists positive ai,...,aé near ai;...,a
z aiDui(g') = 0) . Since there are (r - a + 1) independent (a x a)
minors in Du(x) , x' € V must be a zero of a system of (r - a + 1)
equations to be a local Pareto optimum. If these eguations are

independent at x°  (as they usually are), then the local Pareto set

in V will have dimension r - (r - a + 1) = a -1

Under the classical monotonicity and strict concavity
assumptions of welfare economics, the set of Pareto optima is homeo-
morphic to the standard (a-l)-dimensional simplex. See Arrow-Hahn
(1971) or Smale (l976a). However, even with all these concavity
assumptions, the set of optime need not be conves if a>1 ,
as the example at the end of the next chapter shows. (See Figure 2).
Of course, this set is affine in the linear vector maximization
problem. See Koopmans (1951) and Charnes-Cooper (1961).

Simon and Titus (1975), also using tools of differential topology
and working with non-degeneracy hypotheses that occur in economics

problems, showed how to reduce a vector maximization problem to a

single scalar maximization problem (in contrast to Theorem 7.1) where



109

the functions involved are non-linear but are not concave so that

Theorem 7.5 cannot be applied. The following theorem summarizes

their results in this direction.

Theorem 7.10. Let ul,...,ua,hl,...,hN: mzn +~nzl be Cl

functions with h(x°) = 0 . Suppose that i) Dh(x°) has maximal

rank N < a , ii) for each i, D(u;,h) {(X°) has maximal rank,

and 1iii) rank D(u,h)(x°) > N+ a - 1 . Then the following are

equivalent:

a) u restricted to h-l

o}

(0) has a local Pareto optimum at

I

;
b) x° € © , the critical Pareto set; and for some i1 € {1,...,al

x° maximizes u; on the constraint set

b0 = {x e mnluj(y = uy(x°),j #i, and h(x) = 0} ,

(o
m

an (n+l-a~N)-dimensional submanifold of h—l(g)

We omit the proof of Theorem 7.10 since it involves techniguec

oZ differential topology. In the hypotheses, condition i) implies

-1 . - -
that h " (0) 1is a manifold around x°

uy hnl(g) has a critical point at x°

, condition ii) means that no

» and condition iil) asserts

that the corank of Du(x®) on h_l(O)

must be at most ane. If

a =2 , condition iii) holds for all x° € h-l(g) for an open dense

set o mappings f£rom rY to Elz . (See Golubitsky-Guillemin
(1973)). Saari and Simon (1977) have shown that, if one searches for -

Pareto optima using Theorem 7.10, one finds large open subsets of

mappings u for which degenerate maxima of

i .
ui\U arise naturally.

More specifically, when a 2 3

, there are open sets of mappings u:
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R® + R?® which have Pareto optima that do not pass the second order

sufficiency test of Theorem 7.4. This contrasts with the situation

for scalar maximization where most mappings from R? to Rl nhave
only non-degenerate Critical points (see Golubitsky-Guillemin (1573))
and with 'the situation for a = 2 where, for most mappings from

1 to 'IRZ , all the Pareto optima fulfill the second order conditioﬁ

R
of Theorem 7.4 (see Wan (1975a) and Saari-Simon (1977)).

O.Lange (1942) carried out one of the earliest systematic
studies of Pareto optima in economics using tec:: . ues of calculus.
He defined a "maximum of total welfare® of a utility mapping
u: R" + R® as an x°® € R" that maximizes each u; subject to the
(a-1) equality constraint uj = uj(§°) for j # i . By taking
all the gj‘s to be equal, it is apparer: that, in general, Lange'
notion is different from that of the vector maxime: in this chapter.
However, in the next section, we will use Theorem 7.10 to show that

Lange's notion is equivalent to the usual one in an economic setting

with the classical monotonicity and concavity assumptions.
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§8. VECTOR MAXIMIZATION IN ECONOMICS

8.A Pareto Optima in Welfare Economics

In section 6.A, we formalized the theory behind a consumer's
desire to select a most preferred commodity vector from the set of
all feasible and affordable commodity vectors. We now examine the
situation where there are A consumers in an economy with n goods,
1 <A, n<= . Assume that the x* consumer has a smooth utility
function u® : C >R and an initial commodity vector g_ke. C =
{x eRr" | x > 0} . There is still a fixed positive price vector

P EIRE ; and the initial wealth of the kth consumer is

wk =p * g# . (Note that superscripts are being used to index con-

£

sumers, while subscripts are used to label commodities.)
Let Ek(g, 3#) denote the kth consumer's demand correspond;nce,
i.e., the solution set for the problem of maximizing uk(g) sub-
ject to O < x in R"  and P*°"x<p- Ek . For simplicity of no-
tation, we will assume that each Ek is a single-valued function.
However, much of the theory of this section holds for demand corres-
pondences as well as for demand functions, provided the reader sub-
stitutes set inclusion for equality in the relevant equations below.

Assume now that we are dealing with a closed economy in that the

total amount of each commodity remains fixed during the consumer's

A
interactions. Thus, if b = Z Ek , our state space is
1 .
A n,Aa k A k
Q= {x=(xd, ..., x) € (R | > 0 for each k and ) x = b}

1
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an (nA - n)-dimensional affine subspace of GRn)A ; We will call

an element of Q a commodity bundle. The A wutility functions can

be considered as functions on § by writing
Uk(gl, coey EA) = uk(gk) , for k=1, ..., 2.

Finally, these A utility functions can be combined to form the

utility mapping

U= (ut, ..., :q0-8".

In this simple setting, an economy is an ihitial commodity bundle
(El, ceor EA) , @ utility mapping U , and a price system p .

There are a couple of natural ways of expressing an optimum or
eguilibrium in such an economy. There is, of course, the notion of
a Pareto optimum (PO) or Pareto-optimal bundle X in Q for the
utility mapping U , i.e., X 1is a PO for U 1if there is no
Y € Q such that U(Y) > U(X) and U(Y) # U(X) in R . There is
the similar concept of a local Pareto optimum (LPO).

Our £irst goal is to use the theorems of chapter 7 tc write
necessary concditions and sufficient conditions for a commodity bundle
to be an LPO. We would also like to know whether or not we can find
strictly posiéive Lagrange multipliers and whether we can use Theorem
7.10 to find LPO's. Theorem 8.1 below collects the necessary con-

ditions for an LPO, while Theorem 8.2 deals with the sufficient con-

ditions.
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Theorem 8.1 Let b be a positive vector in R" and let

Q= {X= (xl, ceey EA) e ®m™ A | each g_kzg and k

=) .

D
|34

Let ul, ceot uA : IR? + R be C:L utility functions. Suppose that

for each k € {1, ..., A} and for each x with 0 <x<b,
su . 2 k
% (x) >0 for some i , and that whenever - xj = 0,

% (5) > 0

J

'.J-

a) Suppose that Y = (zl, ...,'XA)éE 0 is an LPO for

c

Q +ZRA . Then, there exist non-negative multipliers al .,aA

5 s !

not all zero, and a non-zero vector I,e:Rn such that

akVuk(zF) <y, for k=1, ..., A
(V)
k 3u® |, X x
with «a T (y") = Y. , whenever y. # 0 .
XJ J . J -
b) Let Y be as in a) with the added hypothesis that no
3
(vector) component zk of Y is zero. Suppose %E— (x) > 0 for
J
all k and Jj and for all x with 0 < x < b . Then, there exist
1 A

e, c.., o, Yl’ seer Yo all positive, such that (V) holds.

c) If Y 1is an LPO in the interior of &, then there are posi-
tive multipliers al, .oy aA and a non-zero vector y in R such

that



i1) ) Fov(mv =0, for all v = (v}, ..., v € ®HP

iii) at Y , the marginal rate of substitution of good i for

good 3j 1is the same for all consumers, i.e., if

1 k
du 1 Ju _ m
X . (x7) # 0, 0xX. - Bu//ax.(zw)
j i i 2a®  m
k TN A
(y™) ]
for all kx, me {1, ..., a}l and all i, 3 e{1, ..., n} ;

- iv) 1if al is set egqual to 1 , the other ak 's are uniquely

determined.

Proof: This theorem is a reasonably straightforward application
of the results of chapter seven to our economic model. One simple

method of handling U : & *ﬁRA is to remove the egquality constraint

that defines Q by letting (El, ceey Eé‘l) be independent coordi-
A ATl ¢
nates for § with x" =Db - Z X" . This is the approach taken
1
by Simon-Titus (1975). -We will use an approach more in line with the

techniques of earlier chapters of this paper. See Smale (1974b,

1976) for a similar approach.

The Lagrangian for this optimization problem 1is



L(_"_{_ll ey _}EAI o'lr s oy aA: Elu s ooy P_AI _Y_) =
A A A
R T AR D IS B
1 1 1

Setting the derivatives of L with respect to 5# equal to zero

and evaluating at Y yields

(W) FnF(y*) + ¥ -y =0 in R

If Y is an LPO, Theorem 7.2 states that there exists a non-zero

(al, ceey aA, El, .eey EA' Y) that solves (W) for k = 1,

where each ak and u? is non-negative and each u?yg is 0 . Now,

171

oo-,A,

(V) follows from (W) since each H# > 0.

Suppose every ak is zero. For any i e {1, ..., n} , there

isa je{l, ..., A} such that yg # 0 and, consequently, 1

3u-

= o) 2u 3y =
i
1 A . . _ . .
So, a” = ... =0a =0 implies Y] T oeee =Y, < 0 , which in turn
implies that each Ek is 0 in (W). This contradiction to the
fact that (g, Hl, .oy EA' Y) # 0 shows that some ak is positive.

To prove Db), let Y be an LPO with each Xk # 0 . By part

. 1 .
a), some ol is non-zero, say « . Since

1 sut |, 1 aut

e (y7) < Yj and T (zl) >0 for ali 3 ,
J

Yj >0 for j=1, ..., n. Let k &{l, ..., A} . By hypothesis,
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X k 3t |k ‘
some y; # 0 ; and therefore o 7= (y7) =y, . Since
i
k
ou k o .
3;; (X ) are positive, so i1s o .

To prove c¢), note that i) follows from (W) since
is 0 for an interior LPO. If any ak were 0 , then
be 0 . Since no Vuk(xk) is 0, y =0 implies that
ak = 0 — a contradiction.

1 . s 1

Suppose % (y7) is positive. If one sets «a

J
Y = Vul(xl) and o 32— (zk) for any j ,
Bul
Bx
Bul 1
a is uniguely determined. If "X (y7) # 0 also,
i
2wk Buk(k)
K 3%, L %, ‘L
j i
= u™ m = au m ; and part
o™ X. (¥ 0X. (X.)
J i
follows.

To prove ii), let V = (Xl, cees z}) e ®" with
Then,

2 x Kpuk (oK) vk

b DUk(Y)Y = ZQ DU (y

1

A A
k k
= Jly-y¥y =y lv¥
1 1
=2_-

and

each
Yy would

each

1 then

14

i.e., each

iii) in ¢)
A
I v =0
1
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REMARK: The hypotheses that for each feasible x some

~..K k
;i (x) > 0 and that %%— (x) > 0 whenever xg = 0 are basic econ-

J 3

omics assumptions. They state that each consumer would always like
to consume more of some commodity and that he would like to have at
least a little of each commodity. Without some such mild desirabil- .
ity assumptions on the commodities in our economy, interaction\among

the consumers might not take place.

Theorem 8.2 (Sufficient Conditions). Let b , Q@ , and

U : Q +JRA be as in Theorem 8.1. Assume again for each X €@ and

k
for each kx &€ {1, ..., A} that some %%T (58) #0 .

J

a) If Y is in the interior of 9 , then ¥ is an LPO if and

2 . -
P and non-zero Y

. . . .. 1
only if i) there exists positive a

such that akVuk(Zk) =y for k=1, ..., &, and

ii) Y maximizes some UL on the submanifold

xea | U =0vI® ,3=1, «... A, 3 FK} .

b) Let Y € @ , and suppose ul, .oy uA are

quasi-concave. If there exist positive al,...,aA such that (V)
nolds (or if Y is in the interior of & , such that i), ii), or

iii) of Theorem 8.l1.c holds), then Y 1is a PO for U

c) Let Y eEQ . If there exist non-negative 01, ey aA such
that (V) holds and such that

A A

2 r .
Pt v, voo= PR, v <o
1 1 ’
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1 A
Zor ail non-zero V = (Vv7, ..., XA) e ®M such that J y_k =0
' 1
. X, k.  k : X i
azd Du(yijv =0, k=1, ..., A, then Y is a strict LPO for

ProcZ: Part a) follows directly from Theorem 7.10, part b)
from Theorem 7.5, and part c) from Theorem 7.4. One computes easily

that the hypotheses of Theorem 7.10 are satisfied with h(X) =

A
- ) gk and

1

put (x5 0 . ....0

0 Du2(§?) - . .. 0

D(U, h) (X) = : : . .8
0 0 pu (™)
-1 -1 -1

8.3 2ARZTO OPTIMA AND PRICE EQUILIBRIA

The notion of a Pareto optimum, while natural in our econamic
mcdel, ignores the economy's price system and the consumer's demand
funcrions. A natural notion of eguilibrium which includes these is

the competitive eguilibrium. Let Y be an initial commodity bundle

in 2 , anéd let p be the prevailing price system. With these
e C ,. th : .
initial conditions, the k consumer will demand commodity vector

of the A consumers is the vector

0,

(2, ¥7) . The total deman
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Il e~

0, v er?,
X

1
and the commodity bundle demanded is

— A
(o, Y) = (EX(p, yhi. ..., g, ¥ € ®BHP .

If = (p, ¥) dis in 22 , i.e., if the total demand vector eguals the
- =7

total supply vector,

then we say that p is an equilibrium price for Y and that

(p, :E (2, Y)) is a competitive equilibrium (with respect to Y).

Often, one defines the excess demand vector

A A
Z(p, ¥) =) e5p, ¥ - T ¥©
1 L

and notes that p is an eguilibrium price for Y if and only if

Z(p, ¥) = 0 in R" . By Theorem 6.1. iv,

P Z(E' Yy =0 for all Yea

if U satisfies the usual monotonicity assumption. The egquation

is usuzlly known as Walras' Law.
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If (p, T) is a competitive equilibrium, then X, represents
a solution to A independent maximization problems - but a solution
with economic relevance since [ €Q . A natural question is :
how does K relate to the vector maximization problems we discussed

in the previous section? Theorcns 8.3 and 8.4 below, often called

the Fundamental Theorems of Weliz:e Economics, answer this question

by stating that a competitive equilibrium is always a Pareto opti-
mum and that a Pareto optimum can always be realized as a competi-
tive equilibrium for some price vector p .

The latter statement solves a major dilemma. If X_E,Q .
there is usually a multi-dimensional set of LPO's which are Pareto-
superior to ¥ . The economist, who would like to have some natural
way of choosing a meaningful LPO from this set, can proceed as fol-
lows. He first finds a price system p* which is an equilibrium
vrice for Y . To prove the existence of such a p* and also to
compute 1t, economists use Walras' Law and the Brouwer or Kakutani
fixed point theorem to find a zero of p g Z(p, ¥) . (See Debreu
(1959), Dierker (1974), and Malinvaud (1872), for example, for
prooZs of the existence of p* . See Scarf (1973) and Smale (1¢76b)
for methods of computing p*.) Theorem 8.3 then assures the écon—
omist that the corresponding competitive equilibrium (p¥*, B

with respect to Y 1lies in the set of PO's.

Theorem 8.3 Let b be a positive vector in R" and let

nA k &
,4={x=(§,,,.,§)em Ieach*ﬁf_g and Z§=p_}. Let
1
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u’, ..., U :ZRE + R be C1 utility mappings such that
I (x}) >0 for all %, j &nd all x .

; . . ; n -
Let p De a positive price vector in R and let

- 1 1 A

Y= (E(p, ¥), ooy EA(E,y_)) .
If i e, i.e. (p, ¥Y) 1is a competitive equilibrium for Y ,
then Y

is a PO for U , that is Pareto-superior to Y .

Prooi: Suppose that Y 1is not a PO for U , i.e., that there
exists Z € 2 and a non-empty subset S1 of {1, ..., A} such

P,

+hat

Fzy > Q) for x es,

Fz) = vF(y)  for kes, =11, ..., A} - 5 .

Since each ;k maximizes u® on {x E]Rﬁ |l p-x<p - XF} , it
Zollows that uk(§k) > uk(yk) for each kX and p - gx >p - XF

icr X &£ Sl .

%s claim that p - z° > p - y° for all k €S, . For, if
P E? < p - 2@ for some m €5, , then Em also maximizes u"
on % E}RS l p x<p- 1?} . This contradicts Theorem 6.2.iv
' m m m

which states that p * z = p - ¥y for all 2z in Em(g, XF) -



53 x k
Consequently, } p - z > Jp *y or
1
A A
k k
R-lz>p-ly .
1 1l
T ox_% x
which contradicts ] y =]z =b . &
1 1

The above proof of Theorem 8.3 is adapted from Malinvaud (1972).
Smale (1974b) proves this result by using Theorems 6.1 and 7.3 to
show that when (p, ¥) 1is a competitive eguilibrium, Y is a criti-
cal Pareto point (as in section 7.F). Then, concavity assumptions
are needed to show that Y is a PO. Theérem 8.4 states the con-

verse of Theorem 8.3.

Theorem 8.4 Let b, R, p, and ul, ..., ¢® be as in the

hypothesis of Theorem §.3. Suppose further that each uk is guasi-
concave and that Y is a PO for U . Then, there is a positive
price vecter p in R"® such that (p, ¥) is a competitive equil-

ibrium on Q .

Proof: By Thearem 8.l.2, b, there is a positive vector

n < - 1 A .
¥ R and non-negative o, ..., ¢ with
k k
¢ >0, if y  #0 , and

akVuk(zF) <y, for k=1, ..., A .
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Let p be the positive vector Y . For each k such that

Vuk(lk) < ik P and
o

1 . k
= (y = = p. if . 0 .
(v ak Pj ’ Y:‘ #

k o . k
For such k , y maximlizes the pseudoconcave function u on

{x eJRE |l p-x<p- z#} by Theorem 6.1. But this statement holds

trivially for those k for with 2# = 0 since in this case, the
constraint set {x elRi l p-x<p - zk} contains only the zero

vector. Therefore, (p, ¥) is a competitive equilibrium. B3

The model we have been describing in chapter eight is a simple
) %

one since it does not include firms, production, shares, etc.
However, it is a straightforward matter to bring all these concepts
into our model and to define Pareto optimum and competitive equili-

brium in this more general framework. One then proves the same

H

undamental theorems relating these two types of optima, using the
same techniques but keeping track of a few more constraints and
multipliers. See the excellent presentations in Debreu (1939),

Karlin (2939), Intriligetor (1971), Malinvaud (1272), and Smale

There is another sstting where theorems comparing Pareto opti-
mal situations with price eguilibria are important - the activity

analysis model introduced in section 6.C. In this case, an output

-
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vector VvV = (yl, ooy ym) is called efficient (instead of Pareto-
optizal) if there is no feasible output vector 2z such that
z>v and z F#y . The feasible output vectors are those which
czn e produced by some activity vector, i.e., {y élim | Yy = Bx

Zor some X EIR_I:} . Using linear analysis similar to the marginal
analysis of Theorems 8.3 and 8.4, one shows that the eguilibrium
otutouts for the activity analysis problem of section 6.C are effi-
cient and that every efficient, feasible output vector is an equil-
izzivm solution for some price vector p . For further readings

in <his area, see Koopmans (1951), Rarlin (1959), and Charnes-

83.C SOCIAL WELFARE FUNCTIONS

As we discussed eariier, Theorem 8.3‘provides an effective
metncd for selecting an economically important element from the set
cZ 20's that are Pareto superior to a given Y £Q . Another
—ethod that has classically been used for this selection process

involves a social welfare or social utility function, i.e., a rezl

- . A . . .
2ed function S on R (in an economyv with 2 consumers) with

2 :
—he croperty that S(El) > 8(52) whenever at > a . The function

Z: 2 >R defined by I(X) = S(Ul(g), ceot UA(g)) gives a complete

crcdering to the states in & 1in contrast to the partial ordering
. A . . s e s
zhazz U @ @ - R bestows on & . In principle, by maximizing I

cne can now make a choice among the Pareto optimal bundles.
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. th .
ror example, one can give the k consumer a welght (or measure

of importance) Sy > 0 and let

A
S(a,, «o., aA) = { c.a. . -

By Theorem 7.7, a maximizer of $ 1is a Pareto optimal element of
2 . By Theorem 7.6, one can find all the PO's this way by proper
choice of Cyr sver Cp if the uk's are concave - but not if the
4 's are not concave, as Example 2 after Theorem 7.6 shows.

Tnus, social welfare functions were often used to reduce con-
cave vector maximization problems to more comfortable scalar maxi-
mization problems. Because they attach importance to the actual val—~
utes of the utility functions and judge among the various consumer's
gains in utility, social welfare functions are used less enthusias-
tically than they were thirty years ago. For further readings on

social welfare functions, see Samuelson (1%47) Arrow (1951), and

Malinvaud (1972).

8.D EFFICIENT PORTFOLIOS

We close with a different but very interesting application of
the theory of vector maximization in economics - an investor's sel-
ection of an optimal portfolio of securities. This problem is dis-
cussea in detail in Markowitz (1952; 1959) and summarized in Karlin
(1e53).

Assume that an investor desires to select a portfolio of sec-

urities. If there are n different securities involved, let xl >0
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denote the percentage of the investor's assets that will be invested

[}

. . . ' n
in security i . The state space is S = {g:_ (xl, ceey xn) e R l

n
x. >0 for all i and | x. = 1} . :
i = i

The investor's first task is to ' praise the ¥uture performances
of the n securities. If he computes zhat Tt is the anticipated
return at time t <£for each dollar inv:sted in security i and dit

is the rate of return on security 1 &t time t discounted back

to the present, then he computes the discounted return of one unit of

security i as

x €5 is R(x) = ] R

If the investor decided to meaximize R on § , he would clear-~
ly select only the security (or securities) for which Ri is max-

imal. However, such a choice goes against the axiom that a wise in-
vestor should diversify his heoldings to take into consideration the

inaccuracies in his expectations and the fluctuations in the various
sectors of the market.

To get around this dilemma, let us :=2gard the Ri's as normal

random variables and suppose that the i1nvestor computes some fixed
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probability beliefs {ul, seer Mor 0990 Oypr eenr Unn} concerning

. .th
the expected returns. Here, b, is the mean return on the 1

security and .oij is the covariance between R, and R. , i.e.,
the expected value of (Ri - ui)(Rj - uj) . Now, the mean return

E(x) for x €8s 1is

and its variance is V(x) = ] cijxixj . Since E(x) is a measure
i,]

of the "return" of security vector x and V(X) is a measure of

the "risk" involved in choosing x , The investor will want to max-

imize both E and -V on S . It makes sense to define an effi-

-

cient portfolio vector x as a PO of (E, -V) : S-+I!R2

*

1
If one assumes that V 1s positive definite, then there are

a number of ways to compute efficient portfolios. Since E and
-V are both concave, the investor can give a positive weight a

to E and another positive weight b to -V and then maximize

at - bV : S + IR . By Theorem 7.7, such maximizers in S will be
efficient, and by Theorem 7.6 all efficient portfeolios can be found
this way. Alternatively, the investor can use Theorem 7.10 and
maximize E on any level set of V or minimize V on the constant
hypoerplanes cf E , provided that the gradient of E and the grad-
ient of V point in the same direction at such sclutions. By using

this type of analysis, one can easily check that the set of efficient

porticlio vectors is a (possibly broken) line segment on S which
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runs from the minimizer of V|S to the boundary of S and which

can be carameterized by values of E .-

(L, 0, 0) (¢, 0, 1)

Figure 2

In figure 2, we have diagrammed an exawple for n = 3 . The

concentric ellipses are the level sets of V|S and the dotted lines

are the level sets of E|S . The vector x_ is a minimizer of V|S
and (0, 0, 1) 4is a maximizer of E|S . The heavy soclid line from
)

X to (0, C, 1) 4is the set of efficient portfolics. For more

details, we refer the reader to Markowitz (1852, 19259).



129

REFERENCES

Arrow, K. 1951. Social Choice and Individual Values.
New Haven; Yale University Press (1963 addition).

Arrow, K., and Enthoven, A. 1961. OQuasiconcave Programming..
Econometrica 29, 779-800.

Arrow, K., and F. Hahn. 1971. General Competitive Analysis.
(Holden-Day: San Francisco). ‘

Arrow, K., L. Hurwicz, and H. Uzawa. 1961. Constraint Quali-
fication in Maximization Problems, Naval Research Logistics
Ouarterly 8, 175-191.

Averch, H., and L.L. Johnson. 1962. Behavior of the Firm
under Regulatory Constraint, American Economic Review 52, 1052-1069.

Baumol, W. J. 1961. Economic Theory and Operations Analysis.
(Prentice-Hall; Englewood:Cliffs, N.J.). ; -

Bergstrom, T. Notes on Concave Programming. Washington
University Mimeographed Notes, St. Louis.

Bellman, R. 1960. Introduction to Matrix Analysis. New
York: McGraw-Hill.

Ben-Tal, A. 1980. Second Order and Related Extremality
Conditions in Non-linear Programming. Journal of Optimization
Th. & Appl. 31, 143-165.

Charnes, A., and W. Cooper. 1961. Management Models and
Industrial Applications of Linear Programming, vol. I (John Wiley;
N.Y.).

Courant, R. 1947. Differential and Integral Calculus, vol.

IT. (Interscience; N.Y.).



130

DaCunha, N., and E. Polak. 1967. Constrained Minimization
under Vector-Valued Criteria in Finite Dimensional Spaces, Journal
of Math. Analysis and Applications 19, 103-124.

Dantzig, G. 1963. Linear Programming and Extensions.
Princeton, N.J.: Princeton University Press.

Debreu, G. 1959. Theory of Value. (Wiley; N.Y.).

Debreu, G. 1952. Definite and semidefinite quadratic forms.
Econometrica 20, 295-300.

de Melo, W. 1975. On the Structure of the Pareto Set, I.M.P.A.
(Rio de Janeiro) reprint.

Dierker, E. 1974. Topological Methods in Walrasian Economics
(Springer, N.Y.).

Dixit, A. 1976. Optimization in Economic Theory. ©Oxford
University Press.

Edwards, C.H. 1873. Advanced Calculus of Several Variables,
(Academic Press, N.Y.).

El-Hodiri, M. 1971. Constrained Extrema: Introduction to
the Differentiable Case with Economic Applications (Springer: N.Y.).

Fenchel, W. 1953. Convex Cones, Sets, and Functions, mimeo-
graphed lecture notes, Princeton University.

Ferland, J. 1972. Mathemetica. Programming Problems with
Quasi-convex Objective Functions. Mathematical Programming 3,
296-301.

FPiacco, A. and G. McCormick. 1968. Non-linear Programming:
Seguentizl Unconstrained Minimization Technigues (John Wiley:

New York).
Fleming, W. 19653. Functions o Several Variables (McGraw-

Hill, N.Y.).



131

Gale, D. 1960. Theory of Linear Economic Models (McGraw-
Hill; N.Y.).

Gauvin, J. and J. Tolle. 1977. Differential Stability in .
Non-linear Programming. S.I.A.M. Journal of Control and Optimiza-
tion 15, 294-311.

Geoffrion, A. 1968. Proper Efficiency and the Theory of
Vector Maximization, Journal of Mathematical Analysis and Applicé-
tion 22, 618-630.

Golubitsky, M. and V. Guillemin. 1973. Stable Mappings and
their Singularities (Springer; N.Y.).

Gordan, P. 1873. Sber die Auflgsungen linearer Gleichungen
mit reelen coefficienten, Mathematische Annalen 6, 23-28.

Gould, F.J. and J. Tolle. 1972. Geometry of Optimality

Conditions and Constraint Qualifications, Mathematical Programming

2, 1-18.

Hadley, G. 1962. Linear Programming. Reading, Mass.:
Addison Wesley.

Hestenes, M. 1966. Calculus of Variations and Optimal Control
Theory. (John Wiley; N.Y.).

Hurwicz, L. 1958. Programming in Linear Spaces, in Arrow,
Hurwicz and Uzawa (eds), Studies in Linear and Non-Linear Programming.
(Stanford University Press; Stanford, Ca).

Hurwicz, L. and H. Uzawa. 1971. On the Integrability of
Demand Functions, in (Chipman, Hurwitz, Richter, and Sonnenschein,
eds.) Preferences, Utility, and Demand. New York: Harcourt Brace
Jovanovich.

Intriligator, M. 1871. Mathematical Optimization and

Economic Theory (Prentice-Hall; Englewood Cliffs, N.J.).



132

John, F. 1948. Extremum Problems with Inequalities as
SubsidiaryConditions, in Friedrichs, Neugebauer, and Stoker;

(eds), Studies and Essays: Courant Anniversary Volume, (Inter-
science; N.Y.), 187-204.

Rarlin, S. 1959. Mathematical Methods and Theory in Games,
Programming and Economics, vol. I (Addison-Wesley; Reading, Mass.).

Rarush, W. 1939. Minima of Functions of Several Variables
with Inequalities as Side Conditions, University of Chicago Master's
Thesis.

Klinger, A. 1967. Improper Solutions of the Vector Maximum
Problem, Operations Research 15, 570-572.

RKoopmans, T. 1951. Analysis of Production as an Efficient
Combination of Activities; in, RKoopmans, (ed.), Activity Analysis
of Production and Allocation (John Wiley; N.Y.). -

Kuhn, H. 1968. Lectures on Mathematical Economics in:

G. Dantzig and A. Veinott (eds.), Mathematics of the Decision
Sciences, Part 2, American Math. Soc. Lectures in Applied Math.,
vol. 12 (Providence, R.I.) 49-84.

Kuhn, H. 1976. ©Non-linear Programming; A Historical View,
in: R. Cottle and C. Lemke (eds), Nonlinear Programming, SIAM-AMS
Proceedings, volume IX (Providence, R.I.).

Kuhn, H. and A. Tucker. 1951. Nonlinear Programming, in:

J. Neuman (ed.), Proc. Second Berkeley Symposium on Math. Statistics
and Probability (Univ. of California Press, Berkeley, CA).

Lange, 0. 1942. The Foundations of Welfare Economics,
Econometrica 10, 215-228.

Malinvaud, E. 1972. Lectures on Microeconomic Theorv (North

Holland/American Elsevier: N.Y.).



133

Mangasarian, O. 1965. Pseudo-convex Functions, Society for
Industrial and Applied Mathematics Journal on Control 3, 281-290.

Mangésarian, 0., and S. Fromowitz. 1967. The Fritz John
Necessary Optimality Conditions in the Presence of Equality and
Inequality Constraints, J. Math. Analysis and Applications 17,
37-47.

Mangasarian, O. 1969. Nonlinear Programming, (McGraw-Hill,
N.Y.).

Markowitz, H. 1952. Portfolio Selection. Journal of
Finance 7, 77-91.

Markowitz, H. 1959. Portfolio Selection (John Wiley; N.Y.).

McCormick, G. 1967. Second Order Conditions for Constrained

Minima, Society for Industrial and Applied Math. Journal on Applied

Mathematics 15, 641-652.

McShane, E.J. 1942. Sufficient Conditions for a Weak
Relative Minima in the Problem of Bolza, Transactions of Amer.
Math. Soc. 52, pp. 344-379.

Milleron, J.C. 1972. The Extrema of Functions of Several
Variables with or without Constraints on the Variables, Appendix
tc Malinvaud (1972).

Milnor, J. 1963. Morse Theory (Princeton Univ. Press; Prince-
ton) .

Pennisi, L. 1953. An Indirect Sufficiency Proof for the
Problem of Lagrange with Differential Inequalities as Added Side
Conditions, Transactions of the American Math. Society 74, 177-198.

Saari, D. and C. Simon. 1877. Singuiarity Theory of Utility
Mappings I: Degenerate Maxima and Pareto Optima. Journal of Math.

Eccenomics 4, 217-251.

-



134

Samuelson, P. 1947. Foundations of Economic Analysis
(Atheneum; N.Y., 1974 edition).

Samuelson, P. 1950. Thé Problem of Integrability in Utility
Theory. Econometrica 17, 355-385.

Scarf,-H. with T. Hansen. 1973. The Computation of Economic
Equilibria (Yale University Press, New Haven).

Silberberg, E. 1973. The Structure of Economics. New
York: McGraw Hill.

Simon, C. and C. Titus. 1975. Characterization of Optima in
Smooth Pareto Economic Systems, Journal of Math. Economics 2, 297-330.

Slater, M. 1950. Lagrange Multipliers Revisited: A Contribu-
tion to Nonlinear Programming, Cowles Commission Discussion Paper,
Mathematics 403.

Smale, S. 1973. Global Analysis and Economics I, Pareto
Optimum and a Generalization of Morse Theory, in M. Peixoto, ed.,
Dynamical Systems (Academic Press; N.Y.).

Smale, S. 1974a. Global Analysis and Economics III, Pareto
Optima and Price Equilibria, Journal of Math. Economics 1, 107-117.

Smale, S. 1974b. Global Analysis and Economics V, Pareto

Theory with Constraints, Journal of Math. Economics 1, 213-222.

=

Smale, S. 875a. Optimizing Several Functions, in A. Hattuil
(ed.), Manifolds-Tokyo 1973 (University of Tokyo Press; Tokyo).
Smale, S. 1875b. Sufficient Conditions for an Optimum, in:
2. Manning (ed.), Dynamical Systems-Warwick 1974 (Springer, N.Y.)
287-292.
Smale, S. 1976. Global Analysis and Economics VI: Geometric

Analysis of Pareto Optima and Price Equilibria under Classical

Eypotheses, Journal of Math. Economics 3, 1-14.



135

Smale, S. 1976b. Convergent Process of Price Adjustment
and Global Newton Methods, Journal of Math. Economics 3, 107-120.

Valeﬁtine, F. 1937. The Problem of Lagrange with Differen-
tial Inequalities as Added Side Conditions, in, Contributions to
the Calculus of Variations 1933-37, (University of Chicago Press,
Chicago).

Varaiya, P.P. 1972. Notes on Optimization, (Van Nostrand
Reinhold; N.Y.).

Varian, H. 1978. Microeconomic Analysis. New York: Norton.

Wan, Y.H. 1975a. Morse Theory for Two Functions, Topology
14, 217-228.

Wan, Y.H. 1975b. On Local Pareto Optima, Journal of Math.
Economics 2, 35-42.

Wan, Y.H. 1977. On the Algebraic Criteria for Local Pzreto
Optima I, in (R. Bednarek, ed.) Dynamical Systems: Proceedings
of a University of Florida International Symposium. New York,
Academic Press. h

Weinberger, H. 1974. Conditions for a Local Pareto Optimum,

University of Minnesota preprint.









