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nation will increase or decrease social welfare as measured by consumer plus producer surplus.

1



PRICE DISCRIMINATION AND SOCIAL WELFARE
By HAL R. VARIAN*

The effect on social welfare of third-degree price discrimination was first investigated by Joan
Robinson. Richard Schmalensee has recently re-examined this question and presented several new
results. In particular, he noted that a necessary condition for price discrimination to increase social
welfare - defined as consumer plus producer surplus - is that output increase.

Schmalensee established this 'result only in the case of independent demands and constant
marginal costs. However, it turns out to be true in much more general circumstances. In this
paper I show how simple methods from duality theory can be used to establish this result and
several other new results on the welfare effect of price discrimination.

I. A Reservation Price Model

Before proceeding to an examination of price discrimination in a general context, it is worth
pausing to consider the special case of a reservation price model. I will describe the model in the
context of discrimination by age - as in senior citizen discounts or youth discounts - but several
other interpretations are possible. Assume that we have set of consumers of different ages, and
that one unit will be demanded by the consumers of age a if the price facing these consumers, p(a),
is less than or equal to r(a), the reservation price of these consumers. We suppose that the slope
of r(a) is of one sign, which without loss of generality we take to be negative. For simplicity, we
assume that costs are zero, or equivalently, that constant marginal costs are incorporated into the
definition of r(a).

Suppose first that the monopolist must choose one price po that will apply to all consumers.
Then the maximization problem facing the monopolist is to chose a0 to solve:

maximize r(ao)ao

Now suppose that the monopolist is allowed to price discriminate. That is, he can choose
critical ages a1, a2 and prices p1, p2 such that the consumers younger than ai face price pi and
consumers between ai and as face price p2. The problem facing the monopolist now is to solve:

maximize r(ai)a1 +- r(a2 )(a 2 - ai)

In this model it is easy to see that consumer plus producer surplus is given by the area below
the reservation price function, as depicted in Figure 1. Thus the total welfare rises when price
discrimination is allowed if and only if total output goes up. And, as we show below, output must
always rise in this sort of model.

FACT 1: If r(a) is a decreasing function then output and thus welfare must increase when price
discrimination is allowed.
PROOF:
Assume not so that ao.> a2 and thus:

-r(ao)ai > -r(a 2)ai

By profit maximization:
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r(ao)ao > r(a2)a2

Adding these two equations together, and adding r(ai)ai to each side of the resulting inequality

gives us:

r(ai)ai + r(ao)(ao - a1) > r(ai)a1 + r(a2)(a 2 - al)

which contradicts profit maximization.

This result easily generalizes to the choice of many regimes of price discrimination as well:
allowing more price discrimination always increases output and welfare. As the number of prices
increases to infinity, we converge to perfect price discrimination and thus maximal social welfare.

In this model we have a very simple story about price discrimination: price discrimination
always increases output and an increase in output is always associated with an increase in welfare.
But the reservation price model is a very special sort of demand structure and it is worth inves-
tigating whether these results carry over to more general demand specifications. As Schrnalensee
shows, in general output and welfare may increase or decrease when price discrimination is allowed,
although an increase in output remains a necessary condition for welfare increase. This result pro-
vides an observable criterion for when welfare has gone down under price discrimination, but how
can we recognize those circumstances in which welfare has increased? We provide some answers to
this question and related questions below.

II. Quasilinear Utility and Consumers' Surplus

I want to continue to use the classical measure of consumer plus producer surplus, and the most
general preference structure for which that is possible is that of. quasilinear utility, which is also
known as the case of "constant marginal utility of income." For this class of preferences it is well
known that not only does consumer's surplus serve as a legitimate measure of consumer welfare,
but also that the individual consumers' utility functions can be added up to form a social utility
function, so that aggregate consumers' surplus is also meaningful. For a discussion of consumers'
surplus and indirect utility, see Chapter 7 of my book. These observations imply that we can treat
the aggregate demand function as though it were generated by a representative consumer with an
indirect utility function of the form:

V (p, y) = v(p) + y.

The aggregate consumer's income, y, is composed of some exogenous income which we take
to be zero and the profits of the firm. Thus the appropriate form of the social objective function
becomes:

V(p, y) = v(p) + 7r(p).

By Roy's law the demand for good i is given by the negative of the derivative of v(p) with
respect to pg - since the marginal utility of income is one. Thus the integral of demand is just
v(p). It follows that the above expression is nothing but the classical welfare measure of consurner
plus producer surplus.

As a general principle, it is easier to differentiate to find demands than to integrate to find
surplus; thus starting with the properties of the indirect utility function rather than the demand
functions tends to simplify most problems in applied welfare economics. The most important
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property for our purposes concerns the curvature of the indirect utility function. The indirect
utility function is always a quasiconvex function of prices, but in the case of quasilinear utility it
is not hard to show that it is in fact a convez function of prices. (Proof: the expenditure function
is e(p, u) = u - v(p) and it is necessarily a concave function of prices.)

III. Upper and Lower Bounds on Welfare Change

We turn now to the welfare effects of price discrimination for demand structures generated by
quasilinear utility. We start by describing a general result about such demands which can then be
specialized in a number of ways. Consider an initial set of prices p0 and a final set of prices p1,
and let c(x(p")) and c(x(p 1 )) denote the total costs of production at the two different output levels
associated with the the price vectors p° and p'. Let Ax denote the vector of changes in demand;
i.e., Ax = x(p1) - x(p°), and let Ac denote the change in the total costs of production.

FACT 2: The change in welfare, A W, satisfies the following bounds:

p"Ax-Ac>AW2plAx-Ac

PROOF:
Since the indirect utility function is a convex function of prices, we have:

v(p°) 2 v(p') -- D.v(p1)(p* - p1 )

where Dv(p) stands for the gradient of v(p). Using Roy's law, and rearranging:

x(p1)(Po - p)> v(p') - v(p°) =AV

The change in profits is given by:

x(p1 )p1 - x(p")p° - A c = Air

Adding these expressions together we have:

[x(p') - x(p°)]p° - Ac = p"Ax - Ac 2 Av + Air = A W

The other bound can be derived in a similar manner.

Now think of the n goods as being one good sold in n different markets and produced at constant
marginal cost. We want to compare a uniform pricing policy to a policy of price discrimination.
Making the necessary substitutions in the bounds given in Fact 2 we have the following:

FACT 3: Let p0 = (po,---, po), p1 = (p1,---., p), and let c be the constant level of rnarginal costs.
Then the bounds on welfare change becorme:

(Po - c) ~jAz; > A W > ~(p. - c)Az;
i=1 i=1

Note that the upper bound in Fact 3 irnmediately gives us Schmnalensee's result that an in-
crease in output is a necessary condition for welfare to increase. The lower bound in Fact 3 was
not discussed by Schmalensee. It implies that if the profitability of the new output exceeds the
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profitability of the old output, valued at the new prices, then welfare must have risen at the dis-
criminatory equilibrium. This is basically a revealed preference relationship.

Both of these facts hold in complete generality, for independent and dependent demands, as
long as one is willing to assume quasilinear utility - i.e. that aggregate consumers' surplus serves as
an acceptable welfare measure. The bounds have a simple geometric interpretation in the case of a
single demand curve which is given in Figure 2. However, it is worth emphasizing that these results
are purely statements about demand and utility functions and hold for arbitrary configurations of
prices. The fact that the prices are chosen by a profit maximizing monopolist has not been used
in their derivation.

IV. Bounds on Welfare Change with Optimal Price Discrimination

-We now ask what results we can derive that use the conditions implied by profit maximizing
price discrimination. We specialize the notation above to consider only three prices, the initial
prices po that is charged in both markets, and the final prices pi and P2 that are profit maximizing
prices in their respective markets. We also continue to suppose that the good is produced at
constant marginal cost c.

Fact 3 holds for all prices and all demand structures. If we consider only profit maximiz-
ing prices and restrict ourselves to the textbook case of independent demands, we can apply the
standard marginal revenue equals marginal cost formulas to find:

FACT 4: If demand functions are independent welfare is bounded by:

c[Ax 1 + Afz] cAx cAx2
~> AW > +

eo-1 ~ ~ 1 -1 E2 -1

where eo, c 1 , e2 are the (absolute values of the) respective elasticities of demand, evaluated at po,
pi, and P2-

This result may be of use if one has estimates of the elasticities of demand in the various
submarkets. However the independent demand case is rather restrictive. Profit maximization
alone yields the following sufficient condition for a welfare increase.

FACT 5: A sufficient condition for welfare to increase under profit maximizing price discrimination
is that:

(Po - c)[x 1 (po, po) + x2(po, po)] > (p1 - c)x 1(po, po) + (P2 - c)z2 (po, po)

PROOF:
By profit maximization at (pI, P2) we have:

(Pi - c)zI(pI, p2 ) + (P2 - c)x 2 (p1 , p2 ) > (Po - c)xi(po, po) + (Po - c)x 2 (po, po)

Combining this with the hypothesis and rearranging we have

(pi - c)Axz1 + (p2 - c)Az2 > 0

By Fact 3 this yields a welfare increase.

The interesting thing about Fact 5 is that it only involves a condition on the nondiscriminatory
levels of output. If you can forecast the prices that would be charged under discrimination and
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those prices satisfy the condition given in Fact 5, you can be assured that welfare will rise when
discrimination is allowed.

It might be worthwhile to give an example of how these bounds can be used to verify that

a welfare increase or decrease has occurred. The simplest example is the case of linear demands
described by Schmalensee. If both markets are served in the single price regime then it is easy to
show by direct calculation that total output with discrimination is the same as in the single price
regime. Hence, as noted by Schmalensee, welfare must decline when discrimination is allowed.

However, suppose we are in a situation where market 2 is not served in the single price regime.
Then when discrimination is allowed, pi = Po), Ax = 0, and Az2 > 0. By Fact 3 welfare must
increase. Note also that in this situation the sufficient condition given in Fact 5 is satisfied as an
equality.'

Thus Fact 3 verifies that welfare will increase when price discrimination is allowed in the linear
demand case if a new market is served. However, Fact 3 also shows that for arbitrary independent
demands, welfare goes up if a new market is served when price discrimination is allowed. The
argument is simply that of the above paragraph: Ax = 0 and Az 2 > 0, so welfare must increase.

These examples give some intuition for the case where both markets served in both the dis-
criminatory and nondiscriminatory regimes as in Figures 3 and 4. What is needed for welfare to
increase when price discrimination is allowed is that one of the markets has small demand over the
price range where the other market has large demand.

Another test case for the bounds is the reservation price model described in section 1. Here we
should think of each consumer as being a different market with demand function Za(p). If there are
ao consumers purchasing the good in the single price regime and a2> ao under price discrimination,
then we know that Aza = 0 for a < ao and A.Xa = 1 for a2 > a > a0, which by Fact 3 implies
welfare must increase when discrimination is allowed.

The bounds can also be used to show that marginal cost pricing and perfect price discrimination
are welfare optima in the reservation price model. For if price equals marginal cost, the upper bound
on welfare change is zero. And if each consumer is being charged his reservation price, then Aza is
either 0 or -1 which implies the upper bound is nonpositive. -

The welfare bounds given above take a nice form if we are willing to make curvature assumptions
on the demand functions. Let us restrict ourselves to the case of independent demands and focus
the market for good 1. Then the argument of Fact 2 implies that the welfare effect of a price change
of good 1 is bounded by:

(Po - c)Azi A W1 (pI - c)Az,

Suppose that the demand for good 1 is a concave function of its own price. Then we have:

Az z'1(pi)(pi - Po)

Combining these two inequalities we have:

ATW1 (pi - c)'(pi)[pi - po)

The first order conditions for profit maximization imply that (pi- c)x' (pi )+izi(pi) = 0. Substituting
we have:

A W1 2 zi(pi)(po - pi)

If both markets have concave demand curves we can write:

A W> zi(pi)(po - pi) + z2(p2)(po - P2)
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= po[xi(pi) + z(p 2 )] - [pizi(pi)-+p 2x2 (p2)]

Add and subtract (Po - c)[z1 (po) + z2 (po)] - c[xi(pi) + z2 (p2 )] to get:

A W > (Po -- c)Ax -a

where Ax is the total change in output and An is the total change in profits. Thus the change
in welfare is at least as large as the change in profit valued at the old prices minus the change in
actual profit. Or to put it another way, Ax> A7r/(po - c) is a sufficient condition for welfare to
increase when price discrimination is allowed if all demand curves are independent and concave.
Combining this with Fact 3 we can conclude:

FACT 6: If all demand curves are independent and concave the welfare bounds can be written as:

(po - c)Az A W (Po - c)Ax - Ar.

Note that Facts 5 and 6 use profit maximization at pl and p2 but do not use profit maximization
at po. Thus these results are independent of firm behavior at the nondiscriminatory equilibrium.

If the demand curves are concave and convex - i.e. linear - then the inequality in Fact 6
becomes an equality so that:

A W = -Axr

Thus in the case of linear demands, the change in welfare is exactly the negative of the change in
profits. Of course this can also be verified by direct calculation.

V. More General Cost Structures

The above results were all derived in the case of constant marginal cost but they can be partially
extended to the case of increasing marginal costs - that is, the case of a convex cost function. By
the standard convexity inequality:

Dc(x(pi))Ax Ac > Dc(x(p0 ))Ax

Combining this with the inequality given in Fact 2 we have:

[p0 
- Dc(x(p0 ))]Ax A W > [p1 

- Dc(x(pi))]Ax

Again, these are general bounds which hold for all pairs of price vectors p0 and pl as well as
for arbitrary convex cost functions; in particular the cost function can be a function of the vector of
outputs rather than just the total output. Thus the bounds can be useful in more general contexts.
For example, they give a simple proof of the optimality of marginal cost pricing in the presence of
convex costs: if p0 = Dc(x(p°)) then any movement from p0 must decrease social welfare.

If costs depend only on total output, denoted by xe and zi, and p° is a vector of constant prices
po as above, we can write these bounds as:

- ~[po - c'(zo)]ZAz1  AW >[p; -c'z)]z.
i=1 i=1

Thus in the case of increasing marginal costs, Schmnalensee's proposition still holds: price must
be greater than marginal cost at the nondiscriminatory price, so an increase in output is still a
necessary condition for welfare to increase.

6



FOOTNOTES

1. Of course total output rises as well. The reader might wonder what is wrong with the 'direct
calculation' mentioned above. The problem is that what economists call 'linear' demand curves are
not really linear functions; instead they have the form: Q = max {A - BP, 0}.
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