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Abstract

This paper is concerned primarily with the asymptotic

distribution of the least squares estimator in a linear equation

with stochastic regressors. We prove a central limit theorem

dealing with a sequence of products of random variables. The

theorem is then applied to show asymptotic normality of the least

squares estimator in a wide variety of cases, including: a)

autoregressive regressors, b) moving average regressors, c)

lagged dependent variable regressors. The results are

generalized to handle Aitken estimation with stochastic

regressors, and instrumental variable estimation in simultaneous

equation models.



I. Motivation

This paper is concerned with the asymptotic distribution of

the least squares estimator of S in the regression model

yt= t +et . (t = 1, 2, ... , T)

where {st} is a sequence of independent, identically distributed

(i.i.d.) random variables and xt is a scalar stochastic

regressor.' In particular, the asymptotic distribution of the.

stabilized least squares estimator

/T (T 1 Ext)
T (- )= -1 2

(T Ext)

is derived under alternative assumptions about the stochastic

process governing the generation of the regressor xt. Provided

that T Ext has a finite, non-zero probability limit, it follows

from the convergence theorem of Cramer [1946; p. 2543 that

/T (0 - 0) will be asymptotically normally distributed if

/T (T 1 XxtEt) converges in distribution to normality. In

Sections III and IV of the paper we state and prove a central

limit theorem dealing with a stochastic sequence of the form

{xtE1. Section V of the paper applies the general theorem to

the regression model under: alternative assumptions about the

'In the final section of the paper we extend our basic.

result to the case of a vector of regressors and also relax the

assumption of an i.i.d. error structure. For expositional

purposes, however, the bulk of the paper focuses on the simple

regression model with i.i.d. errors.
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generation of xt. The paper concludes with Section VI which

discusses extensions of the basic results. Before turning to the

theorem itself, we present a brief review of the existing

literature relating to the central qu-estion of the paper.

II. The Existing Literature

Most econometrics textbooks provide an explicit derivation of

the asymptotic distribution of the least squares estimator only

for the "fixed regressor" case. It is generally assumed that the

regressor (or vector of regressors) is nonstochastic or, if

stochastic, fully independent of the disturbance vector c in

which case the asymptotic distribution of A/7 (0 - 0) is obtained

conditional on the observed values of the regressor. For

example, Theil [1971, pp. 380-1] uses the familiar Lindeberg-Levy

central limit theorem to prove the asymptotic normality of the

least squares estimator for the fixed regressor case.. Hannan

[1961] considers what amounts to a system of seemingly unrelated

regressions. Using the Liapunov form of the central limit

theorem, he proves asymptotic normality of the least squares

estimator conditional on regressors which satisfy a form of

strong law convergence.

In connection with models which contain lagged values of the

dependent variable among the regressors, both Theil (1971,

pp. 412-13) and Malinvaud (1966, p. 453], for example, state

without proof theorems which assert that the least squares

estimator is asymptotically normally distributed. They both cite

Mann and Wald [1943] as the original reference for this result.
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Other treatments of this problem include Koopmans, Rubin, and

Leipnik [1950], Grenander and Rosenblatt [1957], Durbin [1960],

and most recently Fuller, Hasza, and Goebel [1981], Hansen

[1982], and Lai and Wei [1982]. Koopmans, Rubin and Leipnik were

primarily concerned with the extension of the Mann and Wald

result to the case where (nonstochastic) exogenous variables are

present among the regressors. Moreover, as Durbin notes, the

results given in Koopmans, Rubin, and Leipnik depend on a theorem

attributed to Rubin [1948] the proof of which was never

published. In their proof of the asymptotic distribution of the

least squares estimator, Grenander and Rosenblatt refer to

Diananda [1953] who in turn uses a result from Mann and Wald. A

careful reading of the Durbin paper reveals that at a critical

point in his proof, a result- fromrrMann and Wald is again used.

The most recent work on this problem relies on martingale

central limit theorems. Fuller, Hasza, and Goebel consider the

limiting distribution of the least squares estimator of the

parameters of a regression model with lagged values of the

dependent variable and nonstochastic exogenous variables as

regressors. The proof relies on a martingale central limit

theorem given by Scott [1973]. The central limit theorem in

Hansen [1982] appears to be based on Theorem 1 in Hannan [1973]

which is concerned with the distribution of the least squares

estimator in a model with stochastic regressors which are

independent of the disturbances. Hannan' s proof of this theorem

again uses a result given in Scott. Finally, the paper by Lai-

and Wei includes a central limit theorem for the least squares
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estimator in the stochastic regressor model and uses a martingale

central limit theorem of Dvoretzky [1972].

Thus, while there appear at first glance to be several

complete discussions of the asymptotic properties of the least

squares estimator in the case of stochastic regressors, the basic

references are Mann and Wald, or the more recent treatments that

rely on martingale central limit theorems. Mann and Wald

maintain a level of generality which renders their notation and

derivations cumbersome and difficult to follow. In addition,

their primary focus on the presence of a lagged dependent

variable in the single-equation model makes it somewhat difficult

to see the generalization of their result to a stochastic

regressor other than a lagged dependent variable. Martingale

central limit theorems have not yet penetrated the traditional

econometrics curriculum sufficiently to appeal to a wide

audience. In view of the importance of the stochastic regressor

case in econometrics, a uniform treatment which is fairly simple

and sufficiently general to include the classic Mann and Wald

result as well as other stochastic regressor cases seems to be

highly desirable.

III. Statement of the Theorem

In the statement and proof of the theorem we use notation

which translates naturally into the linear regression context in

which the theorem is to be applied. Thus we are concerned with

the expression ~/T (T~ XxtE%) which is in turn constructed from

the sequences {xt} and {t. The following four assumptions



5

specify the properties of {xt} and {E}.

A.1) The stochastic sequence {t} is i.i.d with mean zero

and variance o2.

A.2) The stochastic sequence {vt} is i.i.d. with mean zero

and variance S2.

A.3) The random variables et and vt-j are stochastically

independent for j 0 and j < J < 0.

A.4) The stochastic sequence {xt} is defined by xt =

.I a vt-j, where the a (not all zero) are scalar
j=0

constants which are absolutely summable, i.e., SZIog

is finite.

Theorem. Assumptions (A.1) - (A.4) imply that as T + c,
VT (T~ I xtE) converges in distribution to a normal random

t=1

variable with mean zero and variance 02 2A where A = 2
j=0]

Before proving the theorem, we remark that it is easily shown

that the sequence {xtct} is uncorrelated, though not independent.

It may be thought that uncorrelatedness (orthogonality) would be

sufficient to establish the theorem. Unfortunately, this is not

the case; there exists no general central limit theorem for

uncorrelated random variables. 2

A theorem similar to ours was proved by Moran [1947]. Our

2 See Granander and Rosenblatt (1957, pp. 180-1) for several

examples of uncorrelated random variables with stabilized means

that are not asymptotically normal.
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proof, unlike the proofs of Moran and Mann and Wald, does not

rely on a form of the Liapunov central limit theorem for a doubly

subscripted sequence of random variables. Instead, we use results

that involve only a modest extension of the standard Lindeberg-

Levy central limit theorem. We first state a lemma that

indicates the essential features of this extension.

Lemma. [Anderson (1971, p. 425)] Suppose the sequence {YT;

T = 1, 2, ... } of random variables can be expressed as

YT= SkT + RkT

for T = 1, 2, ... and k = 1, 2, ... . If

(A) plim RkT = 0
k -c k

uniformly in T,

(B) DS*Z5kT k

as T co, 3 and

(C) ZkDZ

as k + c, then

D
T *

as T 4 m.

This lemma, which can be proved using elementary methods,

3The notation -9 means that the lefthand quantity has the

same asymptotic distribution as the righthand quantity.
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indicates that a "sequential" argument can be used to establish

the limiting distribution of {YT}. In particular, if condition

(A) is satisfied, YT and SkT have the same distribution as k + C.

Thus it is sufficient to examine the doubly subscripted sequence

SkT first as T + Co and then as k + co to determine the limiting

distribution of YT. Thus, for example, if for each k SkT

converges in distribution to a normal (0, o2) random variable as

T ; c and o2 *}2 as k + c, we conclude that YT converges in

distribution to a normal (0, a2) random variable.

IV. Proof of the Theorem

In order to prove the theorem stated at the beginning of

Section III, let

k

Xkt = -Efavt-j=0

and

xkt = avt-j
j=k+1

so that

t =x kt+xk

for k = 1, 2, ... . The sequence
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T T
YT =,/T (T-- x tEC) ,T x Et

T t=1 tt=1tt

can be written as

= T SkT + RkT

where

T
SkT = (1//T1) IExktE

t=1

and

T
RkT = (1/,/T) E xktE

t=1

The desired result is established by verifying that

(A) plim RkT = 0 uniformly in T,
k-co

(B) SkT Zk ~k) as T

and observing that

(C) limo= a262A .

(A) We note that {xkt~t; t = 1, 2, ... } is a sequence

of uncorrelated random variables with mean zero and variance
22Ck)2

a262(A-Ak) where Ak = . a. It follows that E(RkT) = 0 and

22 j=0
Var (RkT)I = a262(A-Ak). Thus RkT converges in mean square and
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hence in probability to zero as k + c. (The convergence is

uniform in T since Var(RkT) does not depend on T.)

(B)' For any given value of k, let Xk= Xkt and observe

that {Xk); t = 1, 2, ...} is a sequence of uncorrelated (0, a )t k

random variables where = a 2 62Ak. In addition, it follows from
kk

the definition of Xt and the assumptions imposed on Et and vt

(k) ad (k)that Xt and Xt+ are independent for Is > k- J n; i.e.,

(k)
Xt is an n-dependent sequence.

For any integral value of m > n let M = [T/m] be the largest

integer less than or equal to T/m so that T = mM + r with 0 r <

m. For m < T, let 5

UmT =/ ((X1 + .. +Xm-n) + (Xm+ + ... + Xm-n

+ ... + (X(M-1)m+1 + ... + Xm-n)

VmT = 1/ ( (Xm-n+ + ... + Xm) +(Xm-+ + . + X~m)

+ ... + (XMmn + ... + xM) )

WmT = 1/,/T(XMm+1 + ... + XMm+r

for T < m < T+n, let

'The proof of this result is given in Anderson [1971,

pp. 427-428). It is summarized here to provide continuity and to

make our proof of the theorem self contained.

*The explicit dependence of Xt and hence UmT' mT, and WmT
on k is supressed for notational convenience. This is

permissible since the argument is concerned with the limiiting

distribution of S kT for a given value of k.
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UmT= 1//T (X 1 + ... +Xm-n ) ~

VmT = 1//T ( Xm-n+1 + ... + XT )

WmT = 0;

and for T+n m, let

UmT kT

VmT

WmT = 0

Thus, for any given value of k

SkT=UmT + VmT + WmT

for T = 1, 2, ... and m = n+1, n+2, ...

We now use the lemma to obtain the limiting distribution of.

SkT as T + co with k fixed. In particular, we first show that

(i) plim VmT = 0 uniformly in T, so that only UmT +
m.mC

WmT need be considered in determining the limiting

distribution of SkT as T + c.
Then, we show that for any fixed value of m > n,

(ii) UmT + WmT Dm ~N(0, (1-n/m)ak) as T - c.
Thus we conclude from the lemma that

SkT Z N(0, o) as T +o.

The proof proceeds as follows.

2
(i) Since Xtis a sequence of uncorrelated (0 ok) random

variables, it follows that E(VmT) = 0. For n < m < T
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Var(VmT) = (nM/T)ca

- [nM/(mM+r)]oak

: (nM/mnM)ok

lnok/m;

for T < _m < T+n,

Var(VmT) = [(T-rn+n)/T]ok

< nok2/m

since (m-T)(m-n) 0 implies that (T-m+n)/T n/m; and

for m T+n, Var(VmT) = 0. Thus

Var{V 2 -o/

for all T (and m > n) so that VmT converges in mean

square and hence in probability to zero as m 4* c. (The

convergence is uniform in T since Var(VmT) is bounded by

nk/m which is independent of T.)

(ii) Since E(WmT) = 0 and

Var(WmT) = (r/T)ok

2
S(m/T)ak'

it follows that for any fixed value of mn, plirn WmT - 0

and UT + WT has the same limiting distribution as Urn

as T + m. Since for mn > n, /TU is the sum of M4
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jid.(Q,(m-n)cl) random variables, it follows from

the Lindeberg-Levy central limit theorem that

(i/ mT U Z N(0, (mn)a k)

or

Sin ce /T/,/'mm =/mhM r/iiiM = /1+r/(mM + 1 as T and hence

Um .(1//iii)Zm N(O, (1-n/m)ak).

Since the conditions of the lemma are satisfied: namely, 

p i m n f r l n T

U mT + W 1.mT 4D Zm N(0, (1-n/m)ok) as T'- D

and

nkT- Zk, (0, 2.

as T m
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(C) The proof is completed by observing that oa2+ a262A as

k + co so that (1//T)Extct is indeed asymptotically normal

(0, 2 62A).

V. Econometric Applications

The central limit theorem of the preceding section is

directly applicable to a number of specific models that are

commonly encountered in econometrics. This section is devoted to

a discussion of the following special cases: 1) the regressor xt

is generated by an autoregressive process, 2) xt is generated by

a finite moving average process, 3) x t is an i.i.d. sequence, 4)

xt is a lagged dependent variable, 5) xt is an endogenous

-variable in a Wold recursive system, and 6) xt is an exogenous

variable to be used as an instrument in a simultaneous equations

model.

In each of the cases considered below the estimator to be

examined is of the form

,/T ( A - g) = D ,/T (T~
1 ExtE ) .

The asymptotic normality of /T ($ - ) is obtained by applying

the central limit theorem to /T (T~ X xtE ) after observing that

DT converges in probability to a finite non-zero constant. In

the first five cases that acosre, DT is given by
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D-1 - T 1 Ex2=T E t

With xt defined by (A.2) and (A.4) it is not difficult to verify

that

. -1 2 2
plim T XExt= 62A

provided vt has a finite fourth moment. This means that the

sample second moment is a consistent estimator of the variance of

x t -- an assumption commonly made in the econometric literature.

If {xt} is an i.i.d. sequence as in cases 3 and 5, second moment

consistency follows immediately from the weak law of large

numbers. If {xt} is a correlated sequence, second moment

consistency is less obvious. However, it is true that the sample

variance is a consistent estimator of the population variance if

the fourth moment of vt is finite.'

1) Autoregressive xt. In this case the model is written as

yt=- St + E

where

-1 2 2
'It is immediately apparent that E(T Ext) = 6 A. A

sufficient condition for TExt to converge in probability to 6 A

is that limT Var(T Ex 2 ) = 0 or equivalently, for the case at
tT 2 64A2 If (T 2x) is written in

the terms of the generating process xt = jv-j an examination

of the expectation of the resulting expression indicates that the
limiting variance of T 2x is zero if Vtha afite ouh

moment. A proof of this assertion is given by Fuller (1976),

pp. 239-240.



15

i) t = pxt-1 + vt? IPI < 1

ii) A.1, A.2, and A.3 are satisfied.

From i) it follows that the moving average representation of x

is

xt ~Epvt

j=0

so that a = p) in (A.4). Since Ip < 1, the a are absolutely

summable and A = Ea. = 1/(1 p2). Thus the assumptions of the
J

theorem are satisfied and we conclude that

-/T1(T~1 D xtE0, 202A)

and, if vt has a finite fourth moment

plim D1 = 62 2

so that

/T ($ - ) N[O (1- p2 )2/62

We merely -note that a similar result holds if xt is generated by

a stable autoregressive process of any finite order. The moving-

average representation as well as the expression for the variance

of xt (62A) are more complicated but no further difficulties are

involved in the consideration of higher order autoregressive

processes.

2) Finite Moving Average xt. With a finite moving average
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regressor the model is written as

yt xt + et

where

q
i) x = E avt-

ii) A.1, A.2, and A.3 are satisfied.

Since xt is already in moving average form, the central limit

theorem applies directly. Hence

VT(T~Extst) + N(0, a62A)

where A = .Z a . In addition, if vt has a finite fourth moment,
j=0J

plimD =2A

so that

/T( - ) N[0, a/(62A)].

3) I.i.d. xt. This is a special case of moving average xt

where q = 0 and a 0 = 1. Hence we conclude immediately that

/T ($ - g) 9. N(0, a2/62)

4) xt= yt- 1 . In the lagged dependent variable case, the

model is
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yt =~ t + Et 101< l

with

i) xt = t = - t-j = E
j=1 3=0

ii) vt = Et.1 i.i.d. (0, 02).

It is clear from the definition of vt that St and vt-j are

independent for all j 0 and j < -1. Under the restriction that

< 1, it follows that Var x=t 2 2) and if et has a

finite fourth moment,

plim DT = 2(1 - 2

This case is thus similar to case 1 and we conclude that

iT ($ -) + N[0, (1 - )2J

Note that the model yt = xt + E with xt= ~t-k can be handled

in exactly the same fashion.

5) Wold Recursive System. Suppose that xt is an endogenous

variable in the-recursive system

Xt =Yzt +Tlt

yt t +E

where

2
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ii) i.i.d. (0, oa) and independent of zt, for

all t'

iii) Ct ~i.i.d. (0, a2)

iv) et is independent of both t, and zt, for all

t'.

v+ i id 2 2 22z
It follows that vt = yzt+ t is i.i.d. (0, o ) where a =Y26z

2 andcE is independent of vt, for all t'. This case is

therefore equivalent to Case 3 and we conclude that

VT ^ }D N0 202.

We note in passing that if assumption i) is relaxed to allow

the exogenous variable zt to be generated by either an

-- 'autoregressive or a moving average process, xt is no longer of;

the form postulated in (A.4). For example, suppose zt is

generated by

zt = pzt-1 + (t

where i.i.d. (0, o) and et and (t, are independent for all

t'. Then xt becomes

xt t + y j=O

which is not directly of the form Iavtj It would not be

di ff icult , however , to modi fy our theorem to accommoda te such a

case.

6) Simultaneous Equations Model. Consider a single equation
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y= +EYt t +

embedded in a simultaneous system where yt is also an endogenous

variable. If xt is an exogenous variable in some other equation

in the model, an instrumental variable estimator of S is

= + (EZxy*)_1Xxt%

and

/T ($ - S) = DT / -(T~- xtt)

where

-1 -1 *
DT =T tt

If t i.i.d. (0, a2) and xt is a) i.i.d., b) stationary

autoregressive, or c) finite moving average, the conditions of

the central limit theorem will be satisfied. Therefore

/Y (T 1xtEt) N[0, o2 Var(xt)]

Provided that DT converges in probability to a finite nonzero

constant, say Q, we conclude that

/A( - S) 9 N[0, 02 Var(xt ) 2]

VI. Extensions and Conclusions

The central limit theorem of Section III is readily applied
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to establish asymptotic normality of the Aitken estimator

corresponding to a regression equation with an autoregressive

error term. We present the result for the case of first-order

autoregression; the generalization to any finite order stable

autoregressive process is immediately apparent. Suppose that

* *
Yt~ t + t

where

i) ut = put- 1 + Ct 1II < 1

ii) the stochastic sequence {xt is defined by xt =
* *j Ovt where the aj (not all zero) are scalar

constants and absolutely summable, and

iii) A.1, A.2, and A.3 are satisfied'

Let

* *
yt = t - t-1

* *
xt t pxt- 1

so that the original equation may be transformed to yield

yt= t + Ct *

Now observe that

* *

S j=0 J=1c~v~

'Assumptions A.1 and A.3 refer to {et}, not {ut}.
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=0

= E£a.vt

where

*

a0  a0

* *.
a7"= a]- pa _, for j > 1.

Since

00 001, *
jI |a| 1 01 + .E a - pa

j=03=

5a0 + E ( a + IP)Icit)

j=0 + j=01

we see that the a are absolutely summable. It follows that the

transformed equation

Yt = t + Ct

satisfies all of the conditions for the central limit theorem of-

Section III to be applied and

/T6- g)= DT /T(T Xxt) 9 N[0, o2 /( 2A)]

where as before DTi - T~ x is assumed to converge in

probability to 62A. But when expressed in terms of the original
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variables,

-1 * -* 2
T T xtx t1

so that $ is the Aitken estimator of R.$

Up to now we have restricted attention to the case of a

single explanatory variable. Our results, however, can be

extended to the multiple regression model without difficulty. We

first state the multivariate analogue of the central limit

theorem of Section III and then show how the result would be used

in practice.

The assumptions that underlie the multivariate central limit

theorem are as follows.

A'.1) et i.i.d. (0, c 2 )

A'.2) Vt ~i.i.d. (0, A) where Vt is a (p x 1) vector.

A'.3) et is independent of (each element of) Vt- for j > 0

and j < J < 0.

A'.4) The random vector X is defined as

Xt ~ . t-j -3m=0
where D(a.) denotes a diagonal matrix with elements of

the vector a'= (a a2 j, ... , x ) on the diagonal.

The sequences {a;j = 1, 2, ...} are assumed to be

*Obviously, there is no need to be concerned with the so~

called "f irst-observation problem" in this asymptotic context.
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absolutely summable so that the sequence of vectors

{o} satisfies the condition

ODE

= = A
j=o-)

where A is a non-null matrix of finite constants.

It is readily apparent that these assumptions are generalizations

of those in Section III and guarantee that each element of the

vector Xt satisfies the conditions which were previously

postulated for the scalar xt.

Theorem. Assumptions A'.1-A'.4 imply that as T + co,

/ (T~ EXtt) converges in distribution to the p-variate normal

with mean vector 0 and covariance matrix a2(A*A), where A*A

denotes the element by element product of A and A (each of which

is p x p).

A proof of this theorem is obtained by going through the

steps of Section IV for the vector case. Rather than do this

here, we simply show how the covariance matrix of /T (T~1Xtst)

is obtained. Since E(X t%) = 0 it follows that the covariance

matrix (denoted in general by c) of Xt% is

S, = E(E2 xt4) = G2 9
xtE 1:t

From the definition of Xt, the covariance matrix of Xt is
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OI

X O= E {D(o.) Vtj t D(og))

CD

= X D(O ) A D(ag) .
j=0

Further, it can be shown that

Z D(a.) A D(a) = [6 ja i, Z = 1, 2, ... , p

=A*A

where [a 1 J = A as defined in (A'.4). We conclude that

' = .2 (A*A)
XtEt

Further, since successive elements of the sum Et Xtst are

uncorrelated,

S(A T_ ,E = o2 (A*A)
(/ 1 XtEt)

Thus the assumption (A'.4) guarantees that /T T~ Xt has a

finite covariance matrix.

As an illustration of the use of this theorem in practice,

consider the multiple regression model
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yt + (t = 1, 2, ... , T)

where S is now a (p x 1) vector. The stabilized least squares

estimator is given by

/T (t - )= (T~1  xtx (t 

Provided that i) X and £t satisfy (A'.1) - (A'.4), and ii)

T~ XtX converges in probability to M*A, and iii) ©MA is

nonsingular, it follows that

/T (- ) D N(0, o2(A*A) )

Clearly, the elements of X can be any mixture of autoregressive,

moving average, or lagged dependent variables which satisfy the

assumptions (A'.2) - (A'.4).

As a final illustration we re-cast the preceding example in

the matrix notation most used in the econometric literature. The

matrix M*A is, of course, the population covariance matrix

associated with the vector of regressors X . The form At*A
emphasizes the functional dependence of X on the sequence

{Vt}. Ignore this dependence and denote the matrix aMA by Mx.

Write the multiple regression model in matrix form as

Y = XS+ s

where Y is (T x~ 1), X is (T x p), 6 is (p x 1), and e is (T x 1).
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Assume

Plim (Tx'x) = M

and Mx non-singular. Then if the rows of the matrix X satisfy

the assumptions of the central limit theorem, it follows that

/T ( - ) D 21N(0, a M1) .

The extension of the multiple regression result to allow for

Aitken estimation of the vector 0 when et is a stable

autoregressive process is entirely analogous to the extension

already presented for the simple regression case.

In effect, this paper shows that under fairly general

conditions, it is valid to assume asymptotic normality of the

least squares (or Aitken) estimator in a multivariate, stochastic

regressor, linear model -- just as most of us have done all

along.
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