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1 Does Hamilton's Rule Govern Kin-Selection?

Hamilton's Rule

William Hamilton [8] proposed that evolutionary selection would result in a
population of individuals in which each acts to maximize its inclusive fitness.
Hamilton defined an individual's inclusive fitness to be a weighted average of
its own survival probability and the survival probabilities of its kin, with the
weights applied to relatives being proportional to their degree of relationship.'
He stated the following proposition, which has come to be known as Hamilton's
Rule:

"The social behavior of a species evolves in such a way that in
each distinct behavior-evoking situation the individual will seem to
value his neighbors' fitness against his own according to the coeffi-
cients of relationship appropriate to that situation." [8], p 19.

Hamilton takes individual fitness as an undefined primitive of his theory,
without dwelling in detail on how it is determined. For the purposes of this
paper, we will interpret individual fitness of an organism as the probability
that it survives to maturity. In so doing, we are implicitly assuming that all
individuals who survive to adulthood have the same expected fertility.

2

Hamilton's papers were written almost 10 years before G. R. Price and John
Maynard Smith [11] introduced game theory to biologists. It is therefore not
surprising that he did not model familial interactions as a game. Hamilton stud-
ied interactions where players can benefit each other at a cost to themselves,

'The degree of relationship between two individuals is defined as the probability that they
share the gene at any particular locus by inheritance through a common ancestor. In families
where there is no inbreeding, the degree of relationship between full siblings is 1/2, between
half siblings it is 1/4, between (full) cousins it is 1/8, between parent and offspring it is 1/2
and between grandparent and grandchild it is 1/4.

21n caste systems or hierarchical societies in which adults in different social roles have
different fertilities, a more elaborate measure of fitness is required. Bergstrom [1] discusses
some of these issues.

and where a player's payoff is the sum of benefits received from others, minus
costs incurred in helping others. When Hamilton's analysis is restated in game-
theoretic language, it is apparent that the kind of interactions he studied belong
to a special class of games, which we will call additive games between relatives.
Informally, stated, an additive game between relatives is a game in which in-
dividuals can at some "cost" to themselves confer "benefits" on their relatives
and where the survival probability of an individual is equal to a constant plus
the sum of benefits received from relatives, minus the sum of costs incurred in
helping relatives.

3

Hamilton Dethroned?

Many interesting economic and social interactions lack the additive structure
assumed by Hamilton. In an additive game, the benefit one gets from actions of
a relative can not depend on one's own action, nor can the effect of one relative's
actions on an individual's well-being depend on the actions of other relatives.

John Maynard Smith [10] proposed that the concept of inclusive fitness
could be extended to games with general payoff functions. He conjectured that,
whether or not the game is additive, equilibrium populations would consist of of
players who use strategies that are ESS (evolutionary stable strategies) in the
game with inclusive fitness payoff functions.

Alan Grafen [6] showed with a simple example that, for games between
relatives, the ESS of a game with inclusive fitness payoffs is not in general the
rest point of a reasonable evolutionary dynamic model. Grafen's example is a
symmetric, two-player game (the hawk-dove game) in which the players must
choose one of two discrete pure strategies. He argues that the reason that ESS
under inclusive fitness does not accurately predict evolutionary equilibrium is
that "an individual is more likely to play against his own strategy than he would
if he played the population at random."

Grafen does not offer a genetic analysis of a sexual diploid species. In-
stead, his dynamic model can be interpreted as a model of asexually reproduc-
ing clones, who produce more copies, the higher the payoff they receive. Mar-
cus Feldman and Luigi Cavalli-Sforza [4), [5] develop explicit genetic models of
the evolutionary dynamics of games between sexual diploid relatives. In these
models, players can play one of two discrete strategies. Feldman and Cavalli-
Sforza show that ESS with inclusive fitness payoffs does not coincide with stable
monomorphic equilibrium of games with multiplicative payoffs, although these
solutions do coincide in the case of additive games.

4

3
A more formal description of additive games is found in the Appendix.

4
They also show that, even with additive payoffs, inclusive fitness analysis does not cor-

rectly identify polymorphic equilibria.
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Individual Fitness, Inclusive Fitness, and Personal Fitness

W. G. S. Hines and Maynard Smith [9] accepted Grafen's argument and agreed
that, for non-additive games between relatives, Hamilton's inclusive fitness should
be replaced by the measure of fitness introduced by Grafen. Hines and Maynard
Smith formalize this measure, which they call "personal fitness," for the case of
symmetric two-player games between asexually-reproducing relatives

In a symmetric two person game, individual fitness (survival probabilities)
is defined as follows. If one player plays x and the other plays y, the individual
fitness of the x-player is II(x, y) and the individual fitness of the y-player is
'1(y, x). When this game is played between two relatives with coefficient of
relatedness r, the inclusive fitness payoff of a player who plays x while its
relative plays y is defined to be

H(x, y) = II(x, y) + rfl(y, x).

Hines and Maynard Smith define the personal fitness payoff as follows:

V(x, y) = rfl(x,x) + (1 - r)fl(x, y).

(1)

(2)

They describe the distinction between personal fitness and inclusive fitness
as follows.

"Personal fitness modifies classical fitness by allowing for the
effects that an individual's relatives will have on the number of his
own offspring to survive, whereas inclusive fitness modifies classical
fitness by allowing for the effects that an individual will have on the
number of his relative's offspring that survive." [9], p 20.

Stated another way, one's inclusive fitness counts the help that one gives
to relatives, one's personal fitness counts the help that one receives from rel-

atives. To decide which, if either of these measures is appropriate for finding

evolutionary equilibrium, it seems necessary to specify a dynamic model with

explicit assumptions about the genetics of transmission of behavior.
In a study of the evolution of altruistic ethics for siblings, Bergstrom [3]

describes the payoff function in Equation 2 as the semi-Kantian payoff function.

Expressed as a verbal maxim, the semi-Kantian utility function asks relatives
with coefficient of relationship r to:

" Act as you would act to maximize your individual fitness, if

you believed that with probability r, your relative's actions would

mimic your own."
5

In contrast, the inclusive fitness payoff function can be expressed as the maxim:

'While not all Kantian philosophers would agree, it seems to me that the most people

interpret Kant's categorical imperative to be this rule with r = 1.

"Act as if you valued your relative's individual fitness r times as
much as you value your own."

Monomorphic Populations of Sexual Diploids

In this paper, we explore the relation between stable monomorphic populations
of sexual diploids and Nash equilibrium (or ESS) for games in which the payoff
functions are respectively, inclusive fitness and personal fitness. Like Cavalli-
Sforza and Feldman, we use explicit genetic models of a diploid species.

Sexual diploids have two genes in each genetic locus, one inherited from each
parent. We assume that in the game it plays with siblings, each player's strategy
is determined by the pair of genes found at a single locus. For the purpose of
our discussion, the genotype of an individual is specified by the gene pair in
the locus that determines that individual's strategy. We further assume that
mating among surviving adults is random with respect to genotype.

A genotype is said to be homozygous if the two genes in that locus are iden-
tical and heterozygous if they are different. A diploid population is said to be
monomorphic if almost all members of the population are of the same, homozy-
gous genotype. Let A and a be two different genes such that ao genotypes take

action x and AA genotypes take action y. The gene A is said to be dominant

(over gene a) if Aa genotypes take the same action y as AA genotypes. The
gene A is said to be recessive (to gene a) if Aa genotypes take the same action
x as an genotypes.

A mutant gene A is able to invade the original population, if while it is
rare, the A gene reproduces more rapidly than normal a genes.

6 In this paper,
we explore necessary conditions and sufficient conditions for a monomorphic

population to be resistant against invasion by dominant mutant genes.

2 Two-Sibling Symmetric Games

A two-player symmetric game is defined by a single payoff function H(., -). If one

player takes action x and the other takes action y, the payoff to the x-player

is Hr(x, y) and the payoff to the y-player is H(y, x). For the purposes of this
discussion, "siblings" are individuals who have the same mother and who, with

a given probability s also have the same father. 7
Of course a sexual species in which each pair of parents produced only two

offspring would be doomed to extinction unless the offspring were all sure to

survive. But a species in which mothers have a litter of two offspring each season

and where siblings born in different seasons do not interact would have siblings
6
The fact that a mutant gene can enter the population while rare does not imply that it

will eventually become fixed in a monomorphic equilbrium. It may be that the advantage

enjoyed by a rare mutant disappears as the gene becomes more common.
7

Many of the results of this section and other related results can be found in Bergstrom 131.

4
3



engaged in two-player games with each other. The model of two-sibling games
also applies to a species in which some parents have more than two offspring,
but the only interactions between offspring take the form of two-player games
between each pair of individuals.

Invasion by Dominant Mutants

Consider a monomorphic population of aa genotypes, who all play strategy
a;. Let A be a dominant mutant gene such that Aa heterozygotes play the
strategy x. If mating is random and A genes are rare, almost all of the A

genes in the population will be carried by Aa heterozygotes (rather than by
AA homozygotes). Moreover, almost all Aa genotypes will mate with normal
a genotypes and each of their offspring will either be an Aa genotype or aa
genotype.

A mutant gene A can invade a monomorphic population of aa genotypes if
the reproduction rate of A genes exceeds that of normal a genes. The repro-
duction rate of A genes will be greater than (less than) that of a genes if the
probability that an Aa heterozygote child survives to adulthood is greater than
(less than) the probability that than a randomly selected child of genotype aa
survives to adulthood.

If mating is monogamous, an Aa genotype born to one Aa and one as parent
will be matched with an Aa sibling with probability 1/2 and with an aa sibling
with probability 1/2. Since Aa genotypes use strategy x and aa genotypes use
strategy :, the survival probability of an Aa is H(x, x) if its sibling is an Aa
genotype and f(x, x) if its sibling is an as genotype. Therefore the survival
probability of an offspring of genotype Aa is V(z, :) = (H(x, x) + }Hl(x, ±).

If mating is not monogamous, then two children who share the same mother

might not have the same father. If the mutant gene is not sex-linked, then 1/2
of the children of genotype Aa are born to an Aa mother and an as father
and 1/2 are born to an aa mother and an Aa father. If the mother is of type
Aa, then the probability that a child of Aa has an Aa sibling is 1/2. But if

the father is of type Aa, then the probability that the child is paired with a

sibling of type Aa is only sf2 where a is the probability that the two siblings
share the same father. The probability, therefore, that a child of genotype Aa
is paired with a sibling of genotype Aa is therefore 1/4 + s/4. The probability
that a child of the rare mutant genotype Ae survives to adulthood is therefore

= rfl(x,.r) + (1 - r)HI(x, t), where r = 1/4 + sf4 is the "coefficient of

relationship between siblings". (In the special case of monogamy, s = 1 and
= 1/2.)

The function V(-, .) is seen to be the same as Grafen's personal fitness func-
tion. Let S he the set of possible strategies for a sibling. If for some strategy

. E S, V(x,:') > V(, a) then a monomorphic population of aa genotypes who
take action t could be invaded by a dominant mutant gene'A such that An
genotypes take action a. It follows that a necessary condition for a monomor-

phic population of 2-strategists to resist invasion by dominant mutants is that
V(x, 2) < V(2, a) for all x E S. Similar reasoning shows that a sufficient
condition for a monomorphic population of 2-strategists to resist invasion by
dominant mutants is that for all x E S, if z a then V(x, a) <V(a, a).

We are now able to identify those monomorphic equilibria that resist invasion
by dominant mutant genes with symmetric Nash equilibria for the game with
personal fitness function V(., -).

Proposition 1. For siblings playing a symmetric two-player game, a necessary
condition for a monomorphic population of x-strategists to resist invasion by

dominant mutants is that a is a symmetric Nash equilibrium for the two-player

game with the personal fitness payoff function V(-, -). A sufficient condition is
that a is a strict symmetric Nash equilibrium' for the game with payoff function
V.

Maynard Smith's notion of ESS refines the notion of symmetric Nash equilib-
rium by adding an additional restriction that applies "in case of ties". According

to Maynard Smith, an ESS for the payoff function V is a symmetric Nash equilib-
rium z for V such that if V(x,a2) = V(a, 2) for x $ 2, then V(x, x) < V(a, x).
This condition for tie-breaking is appropriate for two-player games played in
asexually reproducing populations with random encounters, but Bergstrom [3]
argues that for games between sexual diploid siblings, the ESS refinement is
not appropriate. Bergstrom shows that for the case of diploid siblings playing
symmetric games, the correct tie-breaking condition is: if V(x, z) = V(t, a) for
x $ a, then V(x, x) <V(2, 2).

3 N-Sibling Symmetric Games

An n-player game is defined to be symmetric if (i) the payoff to any player is
invariant to permutations in the actions of other players. (ii) players all-have
identical payoff functions defined on their own actions and the actions of other
players.

In a symmetric game in which only two strategies x and i are being used,

the payoff to any player is determined by the player's own strategy and the
number of other players who use each of the two strategies x and i. We define
the function +(x, x, k) to be the payoff to an individual who takes action x while
k of its siblings take action x and the remaining N - k of its siblings take action
z. Thus

.I(x,2,k) = fl(xx,...,, . (3)

Two useful examples of N-sibling symmetric games are the following.:

8A symmetric Nash equilibrium for a two-player symmetric game with payoff function F
is defined to be a strategy 2 such that for all x E S, F(x,2) < F(2,2). A strict symmetric

Nash equilibrium for this game is a strategy 2 such that for all x E S, F(x, 2) < F(2, 2).
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Example: Joint labor with shared output

A group of human siblings work together, either as hunter-gatherers, or as

peasant farmers and divide their joint output equally among themselves. Let the
total amount of output depend on the work effort of each sibling, and assume
that work-effort is costly to perform.

This sibling interaction can be modelled as an N-player symmetric game.
Where xi if the amount of work done by player i, total output is given by a

"production function" f(E'.L x1 ) and the cost to player i of xi units of work
effort is c(xi). Since output is shared equally among the players, the payoff to
the ith player is

flixi,..,z 1 = ( x)- c(zi).nltx .. , ) = f(E i)-(X)

i=1

For this game,

(P(x, 2, k) = -f((k + 1)x + (n - k - 1)x) - c(x).

between siblings involves more than two players, a stable monorphic equilib-
rium must be a Nash equilibrium for a symmetric two-player game. The two
"players" in this game are best thought of as genes-the normal gene a and a
rival mutant gene A.9

Consider a monomorphic population of aa genotypes, all of whom use strat-
egy t. Let A be a dominant mutant gene such that Aa heterozygotes play the
strategy x. As in the case of two-player games, if mating is random and A
genes are rare, almost all of the A genet in the population will be carried by
Aa heterozygotes rather than by AA homozygotes, and most all Aa genotypes
will mate with normal aa genotypes. The offspring of an aa and an Aa will
either be of genotype Aa and use strategy x or of genotype aa siblings and use
strategy t. The survival probability of an Aa genotype depends on the number
of its siblings who are of each of these two genotypes.

Let us define p(k) to be the probability that an Aa genotype offspring has
exactly k siblings of genotype Aa. The probability distribution p(k) is a binomial
random variable such that p(k) is the probability of k successes in n binomial
trials where r (the degree of relationship between siblings) is the probability of
success on a single trial.

Recall that 4(x,2x, k) is the payoff to an individual who takes action x while
k of its siblings also take action x and the remaining siblings take action z.

The survival probability of a randomly selected offspring of genotype Aa is then
given by:

(4)

(5)

Example: Depleting a common resource

A litter of baby mammals compete for their mother's milk, or a batch of cater-

pillar siblings all chew on the same plant. In these examples, there is a fixed
amount of resource to be divided. Exercising claims on this food requires costly

effort. The fraction of the total resource that is obtained by any one of the

siblings depends on its own effort relative to the amount of effort expended by
its siblings.

Let .r be the cost of exerting x; units of effort in food-claiming, and let the
share of the available resources received by player i be given by f (xi)/ E"= f (xy),

where f(-) is a monotone increasing function. When the strategies of the n sib-
lings are given by (rI,...x, z), the payoff to sibling i is

k=N-1

V(x, ) = p(k)4(x, 2, k).

k=1

(8)

For this game,

f (xi) 
xxn) =n xi.

+(x, x, k) = - x
kf(x)+ (n-k-1)f(z)

(6)

(7)

The function V(., .), extends Hines and Maynard Smith's definition of per-
sonal fitness from symmetric two-sibling games to symmetric n-sibling games.
By the same argument used to prove Proposition 1, we establish the following
result:

Proposition 1'. For siblings playing a symmetric n-player game, a necessary
condition for a monomorphic population of t-strategists to resist invasion by

dominant mutants is that t is a symmetric Nash equilibrium for the two-player

game with the personal fitness payoff function V(-,-) defined in Equation 8.
A sufficient condition is that i is a strict symmetric Nash equilibrium for this

game.

4 Hamilton's Rule Partially Restored

Cavalli-Sforza and Feldman [4], Grafen [6], and Bergstrom and Oded Stark [2]
have shown examples of games with a finite number of discrete strategies for

9Shades of Dawkins.

Invasion by Dominant Mutant Genes

We have seen that in two-player symmetric games, individuals in a stable

ionomorphic population must be playing Nash-equilibrium strategies for the
game with personal fitness payoffs. Perhaps surprisingly, even where the game

8



which Nash equilibria with personal fitness payoffs do not coincide with Nash
equilibria for the corresponding inclusive fitness payoffs. These authors find
other examples in which the Nash equilibria for the two different payoff func-
tions are the same. Grafen examined a hawk-dove game in which individuals
are genetically instructed to use specific mixed strategies. In this case, the
strategy space becomes a simplex, and payoff functions are differentiable (in
fact, bilinear) functions of individual strategies. Grafen found that in this case,
the inclusive fitness approach "amazingly happens to give the correct answer."
Hines and Maynard Smith extended Grafen's treatment to the general class of
symmetric two-relative games, in which there is a finite set of possible pure
strategies and where individual strategy sets are the simplex of all possible
mixed strategies.1

0 
They discovered that for such games, a Nash equilibrium

with inclusive fitness payoffs must also be a Nash equilibrium with personal
fitness payoffs, but the converse is not true.

Given these tantalizing hints, it seems useful to explore the general relation
between Nash equilibrium for games with inclusive fitness functions and Nash
equilibrium for games with personal fitness payoff functions.

The inclusive fitness function for symmetric two-player games is usefully
generalized to symmetric n-player games by defining H(x, y) which measures the
inclusive fitness of an individual that plays strategy x, while all of its siblings
play strategy y. Because the game played between siblings is assumed to be
symmetric, no generality is lost if we let player 1 play x and the other players
play y. Thus we have:

function V are precisely the same as the corresponding condition for a game
with payoff function H. However, as we will show, the second-order conditions

are not identical, and it is in general possible to have an 2 that is a symmetric

Nash equilibrium for V but not for H and vice versa.

For any function F(xz,...,zx), let F,(x,..., x) denote the gradient of F

with respect to its ith argument and let F(Xi,...x,z) denote the "Hessian"

matrix of second-order partials. A proof of the following lemma is found in the

Appendix.

Lemma 1. For a symmetric n-sibling game, if the individual payoff functions

II' are differentiable, then V(2,t) = 0 if and only if H(2, z) = 0.

A function F(-) is said to be a concave function if for all x and r' in the

domain of F, and for all A E [0,1], F(Ax + (1 - A)x') ; AF(x) + (1 - A)F(x').

Using a well-known result from game theory on the existence of Nash equilibrium

and a standard result from calculus on maxima of concave functions, we can

claim the following.

Lemma 2. If the personal fitness function V(x, y) is a concave function of x,

then there exists a symmetric Nash equilibrium strategy ± for the game with

payoff function V(x, y). A point 2 in the interior of the strategy space is a

symmetric Nash equilibrium if and only if V(2, 2) = 0. A parallel statement

applies to the inclusive fitness function H(x, y).

Lemma 3. For a symmetric n-sibling game, if the individual payoff functions

II'(x1,... , xn) are concave functions for each i, then the personal fitness function

V(x, y) and the inclusive fitness function H(x, y) are both concave functions.

The following are straightforward consequences of Lemmas 1-3.

Proposition 2. For a symmetric n-sibling game with differentiable payoff func-

tions, (i) if the inclusive fitness payoff function H(x, y) is a concave functions

of x, then a Nash equilibrium for the game with inclusive fitness payoffs is also

a Nash equilibrium for a game with personal fitness payoffs. (ii) if the personal

fitness payoff function V (x, y) is a concave function of x, then a Nash equilib-

rium for the game with inclusive fitness payoffs is also a Nash equilibrium for a

game with personal fitness payoffs.

Proposition 2 extends the results found by Grafen and by Hines and Maynard

Smith for the case of the simplex of mixed strategies over a finite set of possible

pure strategies. In this case, the payoff function for a two player game is a

bilinear function II(p, q) = p'Aq for some matrix A. Inclusive fitness is given by

H(p, q) = p'Aq + rq'Ap, which is a linear function of p and hence also a concave

function of p. It follows from Proposition 2(i) that a Nash equilibrium for the

game with inclusive fitness payoffs is also a Nash equilibrium for the game with

personal fitness payoffs. The function V(p, q) = rp'Ap + (1 - r)q'Ap, however,

10

H(xr,y) = fl'(x,y,.)+r~lV(x,p,.y)

-=fl'(x,yp..py) r(n -1)H'(p x,y...,y)

(9)

(10)

where the step from Equation 9 to Equation 10 follows from the symmetry of

the game.

The Case of Differentiable Payoff Functions

If the individual payoff functions fli(x,...x, z) are differentiable, then the per-
sonal fitness function V(x, y) and the inclusive fitness function H(x, y) are also

differentiable. For a game with payoff function F(x, y) a necessary condition
for x to be an interior symmetric Nash equilibrium is that Fl (I, i) = 0, where
F, (.r, y) is defined the gradient of F with respect to x.

For the differentiable case, the association between Nash equilibria of games

with payoff functions V and H is revealed by the fact that the first-order calculus
condition for an interior symmetric Nash equilibrium for a game with payoff

1oThey also study the case where individuals can choose only pure strategies. They refer to
this as the case where "only pure strategies breed true."

9



is not linear in p and is a concave function only if the matrix A is negative semi-

definite. Thus examples can be found of Nash equilibria for personal fitness
payoffs that are not Nash equilibria for inclusive fitness payoffs.

Proposition 3. For a symmetric n-sibling game, if the individual payoff func-
tions Hl(xi, ... ,) are concave functions for each i, then the Nash equilibria
for the game with personal fitness payoffs are the same as Nash equilibria for

the game with personal fitness payoffs.

A differentiable function is concave if and only if its Hessian matrix of second-

order partial derivatives is negative semi-definite. Examining these second-order

partials enables us to see how it can happen that the Nash equilibria for personal
fitness and inclusive fitness payoffs are different.

Direct calculation gives us the following expressions for the second-order

cross partials of V and H :

Lemma 4. For a symmetric n-sibling game, with twice-differentiable individual

paiyoff functions,

H, (2,2) = U1(z ... ,z)+rf2(z...,z) (11)

n-i

Vn(x, ) = Zp(k)(h( ,.)+2kH 2 (z,... , z)

+k2
H22 (,.

5 Two-Sibling Asymmetric Games

Games between relatives of different ages or different sexes often have a strongly
asymmetric payoff function. For example, older siblings may be able to bully
their younger siblings and deprive them of resources, or they may help their
parents with the upbringing of their juniors. In species where siblings are born in
different years and never interact directly, the amount of resources that an older
child takes from its mother may affect her health and the survival probability
of later-born children, while the actions taken by later-born siblings have no
effects on their older siblings.

An individual's strategy in an asymmetric game will typically be a function
that maps each possible familial role into the action that an individual will take
if cast in this role. For example, an individual may be genetically instructed
to take one action if finds itself to be the older sibling and a different action
if it finds itself to be the younger sibling. This leads to an interesting mod-
eling decision about the appropriate way to model the genetic transmission of
strategies.

One possible model assumes that the function that determines ones action,
given one's familial role, is controlled by the genes in a single genetic locus.
At the opposite extreme is a model in which it is assumed that the action one
takes if one is a younger sibling and the action one takes if one is an older
sibling are controlled by genes in two distinct genetic loci and that these loci
are "unlinked" in the sense that the assortment of genes at these two loci are
statistically independent. Intermediate between these two polar models are
genetic models of linkage disequilibrium, such that "behavior if younger" and
"behavior if older" are controlled by two distinct genetic loci, but the contents
of these loci are correlated, rather than statistically independent.

Quite remarkably, we find that if behavior in different familial roles is deter-
mined by separate, unlinked genetic loci, then the Nash equilibrium for games
with inclusive fitness payoffs coincide with stable monomorphic equilibria. How-
ever, if the function that maps familial roles into actions is determined by a
single genetic locus, then stable monomorphic equilibrium, in general, coincides
with Nash equilibrium for a generalization of personal fitness payoffs rather than
inclusive fitness payoffs.

Payoff Functions for Asymmetric Games

For a two-player asymmetric game, let x1 be the action taken by the relative
cast in role 1 and x2 be the strategy taken by the relative cast in role 2. Let
1 (xi, x2) denote the individual fitness of relative 1 and H

2
(II, X2) denote the

individual fitness of relative 2. A strategy for an asymmetric game is a vector
x = (x1,x2 ) specifying the action x1 that will be taken if the individual is cast
in role 1 and the action x2 that will be taken if an individual is cast in role 2.

(12)

For two-player games, these expressions take a particularly simple form:

Lemma 5. For a symmetric 2-sibling game, with twice-differentiable individual

payoff functions,

Hui(zz) = Hir(2,f)+rh22(t, ±)

V11(i, t) = lu(2,?) + 2rfII 2(x, ) + rfn22 (x, s)

= H 1 (2,z) + 2rI(x, -)
From Lemma 5, we see that the following is true:

(13)
(14)

(15)

Proposition 4. For a symmetric 2-sibling game, if for all x, 1112(x, x) is neg-
ative semi-definite, then every inclusive-fitness Nash equilibrium is a personal-

fitness Nash equilibrium and if for all x, Hin(x, x) is positive semi-definite, then

every personal-fitness Nash equilibrium is an inclusive fitness Nash equilibrium.

11 12



Inclusive fitness of relative 1 is defined to be

H'(xi,x 2) =HI
1

(zi ,x 2) + r1 2
(xi,x 2)

and inclusive fitness of relative 2 is

H
2
(zi,x2) = rll'(zrI,x 2) + 2

(Xi,x2).

(16)

(17)

It is useful to define a symmetric inclusive fitness function that can be viewed
as the payoff function for a symmetric game between genes, whose strategies
specify what an individual will do if cast in each of the two familial roles. For
any two strategies, x = (1, x2) and y = (y1, y2), define

older sibling of genotype Aa is rI
1 (XI, z2) + (1 - r) (x i2). An Aa genotype

cast as the younger sibling will take action x2 . With probability r, its older
sibling will also be an Aa genotype and take action xi. With probability 1 - r,
its older sibling will be an aa genotype and take action 2t. Therefore the survival
probability of a younger sibling of genotype Aa is rfl

2
(xi , x2) + (1-r)H

2 (i,2).
Since Aa genotypes are equally likely to be cast as older or younger siblings,
the survival probability of a randomly selected Aa genotype is

2 (rH I(xi,x2 ) + (1 - r)I'(xi,22)) +2(rH2(zi, 2) + (1 - r)H2(ziz2))

= 2 [r (II(zix2) + H
2

(xi,x 2)) + (1 -r) (l(xi, 22)±+ H
2

(zi,x 2))]

= 2V(xi) (20)

The survival probability of a randomly selected aa genotype is simply

i?(x,y) = H'(xi, y2) + H
2

(yi,x 2 ). (18)

Hines and Maynard Smith defined personal fitness only for two-player sym-
metric games. We propose an extension of this definition to the case of two-
player asymmetric games. Let x = (x1 , x2) and y = (y1, y2) denote strategies
for an asymmetric game. Define the function V(x, y) as follows:

V(x,y) = r (HI(xi, X) + H
2
(rs,x2)) + (1 -r) (I'(xi, y2) +fH2

(yi, x2))) (19)

"Personal fitness" seems an awkward term for this payoff function, since V(x, y)
is better thought of as a payoff to a gene, rather than to a person. Therefore I
have chosen to call V(-, -) function, the semi-Kantian payoff function.

Strategy Controlled by a Single Genetic Locus

Suppose that the genes in a single genetic locus determine an individual's actions
in each of two familial roles. Consider a monomorphic population of genotype
ao. An a genotype will take the action 21 if it happens to be an older sibling
and the action 12 if it happens to be a younger sibling. Suppose that there is a
dominant mutant gene A, such that an Aa heterozygote takes the action z1 if it

happens to be an older sibling and the action z2 if it happens to be a younger
sibling. If the mutant gene is rare, almost all Aa genotypes will have one parent
of genotype Aa and one parent of genotype aa. The A gene will be able to
invade the population if the survival probability of an Aa genotype born to one
normal and one heterozygote parent is greater than the survival probability of

a normal a genotype.
On average, half of the Aa genotypes are born as older members of a sibling

pair and half are born as younger members. An Aa genotype cast as the older
sibling will take action x1. With probability r, its younger sibling will also be an
An genotype and take action x2. With probability 1 -r, its younger sibling will
be an a genotype and take action 22. Therefore the survival probability of an

Vx = ! (n (±± x) + fI 2(±, x 2 )) . (21)

Therefore a dominant mutant gene can invade a population of t strategists if
carriers of the mutant gene use a strategy x such that V(x, 2) > V(2, 2) and they
cannot invade if V(z, 2) < V(2, 2). These facts allow us to state the following
proposition, which generalizes Proposition 1 to the case of asymmetric 2-sibling
games.

Proposition 3. In an asymmetric 2-sibling game, if a single genetic locus deter-
mines an individual's actions in each of the two possible roles, then a necessary
condition for a monomorphic population of 2-strategists to resist invasion by
dominant mutants is that : is a symmetric Nash equilibrium for the two-player
game with the semi-Kantian fitness function V(-,.-) defined in Equation 19. A
sufficient condition is that a is a strict symmetric Nash equilibrium for this
game.

Separate, Unlinked Genes

Suppose that the genes that determine a child's behavior if it is born as an older
sibling and the genes that control its behavior if it is born as a younger sibling
are found in two distinct genetic loci. Assume further that these loci are not
"linked," so that mutations at one locus are uncorrelated with mutations at the
other. Consider a monomorphic population in which normal individuals are of
genotype a in the locus that controls behavior if they are the older sibling and
of genotype bb in the locus that controls behavior if they are the younger sibling.
These individuals are said to be of genotype aabb. They take action 21 if born
as the older sibling and 22 if as the younger sibling.
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Consider a mutant gene A such that individuals who are of genotype Aa
at the locus controlling behavior-if-older take action x. Since mutations at
either locus are rare and mutations at the two loci are uncorrelated, almost all
individuals carrying the mutant A gene will be of genotype Aabb. Moreover,
almost all carriers of the A gene will be born to one parent of genotype aabb and
one parent who is of genotype Aabb. Individuals of genotype Aabb the mutant
action r1 if they are born as older siblings and the normal action t2 if born as
younger siblings.

On average, half of the offspring of genotype Aabb will be older siblings and
half will be younger siblings. An older sibling of genotype Aabb will take action

and its younger sibling, whether of genotype Aabb or of genotype aabb, will
take action T2. Therefore the survival probability of an older sibling of genotype
Aabb is I(x, , 22). A younger sibling of genotype Aabb will take action 22. With
probability 1/2, its older sibling will be of genotype Aabb and take action x1 and
with probability 1/2, its older sibling will be of genotype aabb and take action
.2. Therefore the survival probability of a younger sibling of genotype Aabb is

(r I,22) + jIH(z1, 22). Since Aabb genotypes are equally likely to be born as
older siblings and as younger siblings, the survival probability of a randomly
selected Aabb genotype is:

2H (Xi,2 2 ) + H2(xi,, 2 ) + fI2(z1,22)

The survival probability of a randomly selected an genotype is

2 { H i(2 22) +f2(21,22)) .

(22)

(23)

population of aabb genotypes to resist such an invasion is that H'1(xi,±2) <
H 1(Z,22) for all possible strategies x,.

A parallel line of reasoning applies to a dominant mutant B gene such that
aaBb genotypes take action x2 rather than the normal action, i2. Putting these
results together, we have:

Proposition 4. In an asymmetric 2-sibling game, if the genes that determine a
child's behavior when it is born as an older sibling and the genes that control its
behavior when it is born as a younger sibling are found in two distinct genetic
loci, then a monomorphic population in which older siblings take action ±, and
younger siblings take action 22 resists invasion by dominant mutants only if
(±1, r2) is a Nash equilibrium for the asymmetric game in which player 1 has
the inclusive fitness payoff Hl (.,-) and player 2 has the inclusive fitness payoff

H
2
(-,). A sufficient condition for this population to resist invasion is that

( ±iX2) is a strict Nash equilibrium for this game.

A pair of actions (z, ,±2) is seen to be a Nash equilibrium for the asymmet-

ric game with payoff functions H1(-, -) and H
2
(.,.) if and only if the strategy

j = (21,x2) is a symmetric Nash equilbrium for the symmetric game in which
the payoff function is given by H(x,y) = H1(x,,y 2) + H

2
(y,,X2 ). Therefore

Proposition 4 has the following corollary.

Corollary. In an asymmetric 2-sibling game, if the genes that determine a
child's behavior in its two possible roles are found in two distinct genetic loci,

then a monomorphic population in which older siblings take action 2, and
younger siblings take action 22 resists invasion by dominant mutants only if
x = (±1,x2) is a symmetric Nash equilibrium for the symmetric payoff func-
tion H(x, y). A sufficient condition for this population to resist invasion is that
(21,±2) is a strict symmetric Nash equilibrium for this game.

Strategic complementarity and substitutability

In a two-player asymmetric game, two strategies x = (x, ,x 2) and y = (y1, y2)
are said to be strategic complements if the expected total payoff to the two
players when they "coordinate" by randomly choosing one of the two strategies
and both playing it exceeds the expected total payoff when they "diversify" by

randomly assigning one of the strategies to one player and the other strategy
to the other player. Strategies are said to be strategic substitutes if the total
payoff is higher if the players diversify than if they coordinate. A more formal
statement of this definition is:

Definition. Define U(x,, x2) = H'(i, x2)+ +H2(x,,x2). For any two strategies

x = (x,, x2) and y = (yi,y2), let

Therefore a dominant mutant gene A can invade a monomorphic population of
aabb genotypes if

IHl'(ri,2 2)+ I2(xi,y 2) + -H2(±i, 2) > 2 (HI(x,- 2)+ H2(±i,2 2)) . (24)

Inequality 24 is equivalent to:

- (x1,22)+ 2P(Xi,> 2 ) >fl 1(1,,2)+1 H2(±1,±2),
2 i 4

which in tturn is equivalent to:

(25)

H1(xi2) > H'(z,,±
2
). (26)

It follows that a necessary condition for a monomorphic population of aabb
genotypes to resist invasion by a dominant mutant gene that makes older siblings
use a strategy x1 is that Ht (x1,,z2) < H'(i,22) for all possible strategies
r,. Similar reasoning shows that a sufficient condition for a monomorphic C(x, y) = 1(11, x2) -t- iy2 - fl(xl, y2 ) - fl(y1, z2). (27)
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The strategies x = (XI, x2) and y = (y,, y2) are said to be strategic complements
if C(x, y) > 0 and strategic substitutes if C(x, y) < 0.

In the case of differentiable payoff functions, strategic complementarity and
substitutability are related in a simple way to the cross-partial derivatives of
the payoff functions.

Lemma 6. Let the set S of possible strategies be a convex set and let the
function n(zI, x2) be twice continuously differentiable. Then the matrix of
cross partials 1 2(x1 z2) is positive semi-definite for all (Xi, x2) E S if and
only if every pair of strategies in S are strategic complements, and negative

semi-definite for all (x1, x2) E S if and only if every pair of strategies in S are
strategic substitutes.

For games in which there is strategic complementarity or strategic substi-
tutability, there is a nice, crisp relationship between Nash equilibrium for the
gamie with the semi-Kantian payoff function V(., .), and Nash equilibrium for the
corresponding asymmetric game with inclusive fitness payoff function H(.,-).

Straightforward calculation shows the following:

Lemma 7. for any pair of strategies, x = (xi, x2) and i = (a,, 22),
V(x,2) - V(2,2) = H(x,2) - H(2,2) + rC(x,2). (28)

The following result is almost immediate from Lemma 7.

Proposition 5. In an'asymmetric two-sibling game: If every pair of strategies
are strategic complements, then a Nash equilibrium for the game with inclusive
fitness payoffs is also a Nash equilibrium for the corresponding game with a
semi-Kantian payoff function. If every pair ofstrategies are strategic substitutes,
then a Nash equilibrium for the game with semi-Kantian payoffs is also a Nash
equilibrium for the game with inclusive fitness payoffs.

In an additive game between siblings, C(x, y) = 0 for all x = (zx,z2) and

y = (yi, y2), so that all strategies are strategic complements, as well as strategic
substitutes. This implies the following Corollary to Proposition 5.

Corollary. In an additive, asymmetric two-sibling game, a Nash equilibrium
for inclusive fitness payoffs is a Nash equilibrium for semi-Kantian payoffs.

Appendix

A Additive Games Between Relatives

The class of additive games between relatives is defined as follows. There is a
population of individuals such that each individual i interacts with a finite set
Si of relatives, bearing specific familial relationships to that individual, grand-
parent, parent, siblings, aunt, uncle, cousin and so on.

1 1

For each individual i and each of i's relatives j, there is a set Aij of possible

actions that i could take toward j. Define a function c;(-) such that c(a,,) is
the "cost" to i of taking action ai3 towards j. Also, for each of i's relatives

j E Si, define a function b,1(.) so that b,1(a,1) is the "benefit" conferred on i
by the action a3 i taken by j toward i. Let a1 be the vector of all actions taken
by i toward its relatives and let (al,..., an) be a list of the vectors of actions

taken by all individuals toward their relatives. The probability that individual
i survives to reproductive age is the sum of benefits that i receives from its
relatives minus the cost of i's own action. This can be expressed as:

HIf(a,...,,a) = bji(a,1) - : ci(aij). (29)

jES, jES,
In a population of individuals playing additive games with their relatives,

the inclusive fitness Hi of individual i is defined by the equation:

H.(a,....,an) = II'(a 1,...,an) + ( ri jI(at,...,,) (30)
jes,

where rig is the degree of relationship between individuals i and j and where
a,(a,...,an) is defined by Equation 29.

B Proof of Lemma 1

From Equation 8, it follows that

k=n-1

Viz, ) E= p(k)fi1(x, i, k).
k=1

The gradient of 4s(x,2x, k) with respect to x is:

k times n-k-I times

Bn,(x, z,...,z, 2,..., z )
41(x(,k) = .Ox

(31)

(32)

I1A single individual will typically bear different familial relationships to several other peo-
ple. For example Arthur can simultaneously be Betty's brother, FRed's son, and Curious

George's uncle.

17 18



k times n-k-i times k times n-k-1 times

= Hi(x,x, ... ,x, 2,. .. ,2)+kH (x,x,...,x, i,... ,2) (33)

Equation 34, below, follows from Equations 31 and 33. Equation 35 then
follows from the fact that for the probability distribution p(k), $ ~ p(k) = 1
and ' p(k)k = (n - 1)r.

n-1 n-Itimes n-times

Vi(2, ) = p(k)i (, ,. 2) + E p(k)kfi(t,,.
k=0 k=0

n-i time. n-1 times

=Hx,,.. )+ (n -1)rli(x,tx.,)

Differentiating Equation 10, we find that

HI (x, y) = Hi (x, y, ... , y) + r(n - 1)112(x, y, ... , y)

Therefore

Hi , :t) = l ((, x, . . . ,.) + (n - 1)rl(2, 2, . .. , )

= Vi(2,2).

(34)

(35)

(36)

(37)
(38)
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