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COMPUTER SIMULATION OF AN ATRBAG-RESTRAINED PASSENGER
IN IMPACT SIMULATOR AND CRASH BARRIER TESTS: DEVELOPMENT OF

AN IMPROVED PROCEDURE FOR USING A HYGE SLED

1.0 BACKGROUND

The primary goal of the research described here is to
establish, by way of computer simulations, an improved procedure
for using an Impact Simulator (HYGE sled) to obtain estimates of
dummy responses that would occur in full-scale vehicle crash
tests. The MVMA 2-D CVS Q-FEM Airbag Model (Bowman, 1979;
Bowman and Bennett, 1988) was used for all simulations. Impact
Simulator tests, a vehicle crash test, and all computer simulations
were for a right front-seat passenger in a Chrysler preprototype,
S-body vehicle with a midmount passenger-airbag system. The
general conclusions reached in the study are likely valid,
however, for other types of frontal crash tests as well. [Note:
References to the Chrysler preprototype, S-body will be made,
hereafter, simply as "S-body."]

Dummy responses can differ significantly between a
vehicle crash test and an Impact Simulator test supposedly having
the same crash pulse. There are several reasons that differences
result. One is that the X-acceleration pulse of the Impact ,
Simulator test is not always a good replication of the pulse from
the vehicle crash test. Second, an Impact Simulator test does
not reproduce pitching motion that occurs in a vehicle crash.
Third, in some instances the primary reason for differences is
that occupant-compartment panels can move in a crash test whereas
in an Impact Simulator test, panels do not move. There are two
significant factors: a) In a crash test, because of occupant-
compartment intrusion, a panel may not be in its design position
at the time it is struck by some part of the dummy. b) A panel
may have nonzero velocity with respect to the occupant
compartment at the time of contact with the dummy, i.e., it may
actually strike the dummy as well as being struck by the dummy.
The first factor can be accounted for by establishing guidelines
for use of nondesign positions for panels in Impact Simulator
tests. The second factor certainly cannot be accounted for in
any direct, practical way in Impact Simulator tests.! Finally,
floorpan buckling can occur in vehicle crash tests, with
concomitant upward or downward motion of the occupant's seat.

Tt may be possible to compensate for nonzero panel velocities at impact with the dummy by further
adjustment of fixed panel positions, but this seems unlikely since experience from simulation work has shown
that typical nonzero velocity panel impacts can have very significant effects on dummy response. Thus, it
is not probable that satisfactory vehicle crash simulation by an Impact Simulator test or by a computer
simulation of an Impact Simulator test can be accomplished if panel motion has not ceased before contact
with the occupant occurs.



2.0 APPROACH AND METHODS

By determining, for a computer simulation of occupant
response in an Impact Simulator, the modifications that will give
us the best simulation of response in a vehicle crash test, we
establish the best manner in which to modify a laboratory Impact
Simulator test. It must be kept in mind, however, that not all
modifications that can be made in input data sets can be so
easily made, if at all, in laboratory tests. Practicality of the
corresponding test procedure therefore becomes an important
consideration in the simulations, although, for the purpose of
establishing mechanisms for particular characteristics of
occupant response, computer simulations can still be used in an
investigative role.

The most logical way in which to conduct the simulation
study described here would probably have been to mimic a
corresponding experimental study that could be conducted--with
considerably greater difficulty--with vehicle crash and Impact
Simulator tests: viz., to first simulate (or conduct) a vehicle
crash test and then try to replicate it with a computer
simulation (or actual test) of a modified, Impact Simulator
test. In fact, however, the test data for the vehicle crash
test of this study were not provided until a number of months
after the Impact Simulator test data were provided, so the
simulations were conducted in reverse order. That is, computer
simulations of the Impact Simulator tests were done first. The
first series of simulations established a reasonable baseline for
computer prediction of Impact Simulator tests; a second series of
simulations then investigated possible ways in which the Impact
Simulator simulations might be modified to obtain a reasonable
baseline simulation for the vehicle crash test. Here, and
throughout this report, the term "baseline" implies a computer
simulation that replicates an experimental test with good
accuracy and upon which a parameter variation study may be
reasonably based.

2.1 Data Provided

The data used in the simulations were a mixture of measured,
estimated, and assumed data. Data provided by Chrysler are
described briefly here. All airbag-system data provided were for
one type of airbag--specifically, a midmount passenger bag of
one basic shape.

m Vehicle interior dimensions for the S-body vehicle were
provided together with mechanical properties for some
parts of the occupant compartment, such as the force-
deflection curve for the IP.

®» Hybrid 3 dummy initial position values were given.

s A time-sequence of profiles for a freely deploying airbag
were provided in the form of digitized data. These data
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were described as having been derived from sketches and
not directly from film. It was thought, however, that
times, sizes, and shapes were all reasonably accurate.

The dimensions of the airbag were given, together with a
value for its full volume (6 cu ft), which was said to be
accurate to within 10 percent.

At different times during the study three different mass
influx time histories for the airbag system used in the
tests were provided. The third one was the one described
eventually as the correct one.

Two different temperature-vs-time histories for source gas
were provided. The second, accompanying the third mass
influx rate time history, was described as the correct
one.

A pressure-vs-time history for a freely deploying airbag
was given in plotted form.

The airbag was described as being without deflation vents.
Gas loss was through porous fabric. Data were provided
for two types of fabric, one of high porosity and one of
low porosity. A "medium porosity" fabric was said to be
the best to use; therefore, values half way between the
high and low porosity data were used in the simulations.

Test data were provided from two Impact Simulator tests,
which were said to be "identical." These were tests
IS11144 and IS11145. The corresponding vehicle crash test
data were from test VC04240. All tests were nominally

for delta-V's of 35 mph. Data from tests consisted of
crash pulses and occupant responses. The vehicle interior,
occupant, and airbag system in the Impact Simulator and
vehicle crash tests were described as having been made as
nearly identical as possible. Data initially provided
were not all filtered, but final provided data used in
this simulation study were filtered at 100 Hz (Channel
Frequency Class 60, corner frequency 100 Hz). Crash pulse
data were used as input to the computer simulations.
Occupant response data were used for comparison with
computer simulation results. For the simulation work the
time history data provided for tests IS11144 and IS11145
were averaged, point by point, to establish a single
Impact Simulator "test"--"test IS11144/45."

Occupant response data provided did not include head angle
as a function of time. Instead, for Impact Simulator
tests, two angle-vs-time curves estimated from film were
described by Chrysler in a telephone conversation. Since
the two curves were considerably different, both were
plotted with the computer simulation results from the
Impact Simulator simulations.
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2.

2

Other Data, Assumed and Estimated

Data described above as "provided" cannot all be considered
to be measured data. It is clear from the descriptions of
the data that much of it must be considered estimated. Data
in addition to those described above are required as input
to the MVMA 2-D model; all of these data must be considered
to have estimated or assumed values. They are described
briefly below.

The "standard" Hybrid 3 dummy data set for the MVMA 2-D
model was used. Values in the data set are for size,
inertial, and mechanical properties of the dummy. Most
values in the data set were determined by General Motors,
the developers of the dummy, but no value in the data set
can be said with certainty to be the correct value.

Representative mechanical property data were used for some
parts of the S-body vehicle interior, such as the toepan,
where data were not provided by Chrysler.

It was concluded from computer simulations that wvehicle
pitching must have been an important determinant of
occupant dynamics in the vehicle crash test. (This will
be discussed later.) However, neither vehicle pitch angle
nor any time histories from which it could be derived were
included in data provided for test VC04240. Data found in
the literature for a 35-mph barrier crash were therefore
used in some of the vehicle crash simulations. They are
assumed to be representative.



3.0 COMPUTER SIMULATIONS

A series of simulations of Impact Simulator test IS11144/45
resulted in two baseline simulations, given the names "IS1" and
"IS2". The two baseline simulation data sets were used as the
basis for all subsequent simulations, which were made for the
purpose of identifying important factors in the simulation of a
(barrier) vehicle crash. The IS1 and IS2 simulations both
predict laboratory occupant responses reasonably well. Neither,
however, is satisfactory in all regards, and it was unknown which
data set, when modified for factors important in barrier crashes,
would lead to the best replication of vehicle crash test VC04240.
A series of simulations based on each of the two Impact Simulator
baselines was therefore run. IS1 and IS2 differ in only one
input parameter, viz., a quantity called V3, which has a direct
relationship to overall stiffness of the airbag.! The value of
V3 for IS1 is 2,500 cu in and the value for IS2 is 2,000 cu in.
Smaller values of V3 correspond to greater airbag stiffnesses.
There is greater tendency for the airbag to collapse, i.e.,
bottom out, for IS1 than for IS2. Full volume for the airbag in
all data sets was 9,331 cu in.

The IS1 and IS2 simulation results, and all others, will be
discussed in the next section. However, typical plots are
illustrated immediately following, in Figures 1 and 2. These
example plots are from IS1 and IS2; they are the (translational)
kinematic responses of the head. Simulation results for all IS
runs are plotted together with experimental, IS11144/45 results.

Table 1 identifies all final simulations by data set name
and a brief description. The descriptions (in parentheses), but
not the data set names, are printed in the heading of each page
of plotted simulation output.

1Specifically, V3 is the volume at the break point of a bilinear relationship for "taut volume" as a
function of average airbag penetration by the occupant. Taut volume can be described as follows: After
the occupant contacts the airbag, bag forces can result even if the thermodynamic volume has not reached
the geometric full-bag volume. The occupant profile at any instant of time provides a geometric constraint
on airbag shape and "full" volume. We may consider a static situation in which a bag is not fully inflated
and yet is made just taut by quasi-statically increasing occupant penetration (averaged over occupant
surfaces) to some value §. Alternatively, and equivalently, we may consider quasi-statically increasing the
amount of gas in the bag while holding the occupant position fixed at a penetration § until the bag becomes
just taut. Taut volume is thus established as a function of §. The value at §=0 is just the geometric
full-bag volume, and the value at é equal to the airbag diameter is V3.
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TABLE 1. Key to

MVMA 2-D Simulations

IS baseline
m IS1 (baseline #1: IS)
m IS2 (baseline #2: IS)

VC baseline
m VC1 (baseline #1: VC)
m VC2 (baseline #2: VC)

VC without vehicle pitch

® VC1_OTHV (VC #1 without vehicle pitch)
m VC2_0THV (VC #2 without vehicle pitch)

IS with VC x-acceleration

®m IS1 VCX (IS #1 with VC X-acceleration)
®m IS2 VCX (IS #2 with VC X-acceleration)

IS with VC pitch acceleration
m IS1 THVT (IS #1 with VC pitch acceleration)
®m IS2 THVT (IS #2 with VC pitch acceleration)

IS with fixed, nonzero vehicle pitch angle
m IS1 5THV (IS #1 with fixed, 5-degree pitch angle)
s IS2 5THV (IS #2 with fixed, 5-degree pitch angle)

IS with fixed, nonzero vehicle pitch angle
m IS1 9THV (IS #1 with fixed, 9-degree pitch angle)
m IS2 9THV (IS #2 with fixed, 9-degree pitch angle)

IS with VC x-acceleration
» IS1 VCX5 (IS #1 w. VC
m IS2 VCX5 (IS #2 w. VC

IS with VC x-acceleration
m IS1_VCX9 (IS #1 w. VC
" IS2_VCX9 (IS #2 w. VC

and fixed vehicle pitch angle
X-accel and fixed, 5-deg pitch)
X-accel and fixed, 5-deg pitch)

and fixed vehicle pitch angle
X-accel and fixed, 9-deg pitch)
X-accel and fixed, 9-deg pitch)

IS with rearward IP intrusion
m IS1 INTR (IS #1 with occupant surfaces 2" forward)
m IS2 INTR (IS #2 with occupant surfaces 2" forward)

IS with buckled floor

m IS1 BUKL (IS #1 with 3" lower seat, static)
m IS2 BUKL (IS #2 with 3" lower seat, static)




4.0 SIMULATION RESULTS
4.1 The IS Baseline Simulations

The IS1 and IS2 baseline simulation results are shown in
Figure 5 (eight pages) and Figure 6 (eight pages). [These
figures follow Section 4.2.] Simulation results are plotted
together with experimental results (IS11144/45) for all simulation
variables for which experimental data are available. These IS1
and IS2 plots are also included in full in the Appendix, where
all plots for all simulations of Table 1 may be found.

IS1 (Figure 5) is for the softer airbag and IS2 (Figure 6)
is for the stiffer airbag, as described in Section 3.0. A clear
consequence of this difference in the data sets may be seen in
the upper center plot of the first page of each set of plots.
Specifically, the head X-displacements show a greater amount of
rebound from the airbag for IS2 than for IS1. Evidence of
greater rebound may also be seen in the plot for head resultant
acceleration (lower left) for IS2. There, the spike near the end
of the curve, beginning at about 150 ms, results from the head
striking the seat headrest following rebound from the airbag.

In IS1 the peak near 120-130 ms is associated with head angular
acceleration and flexion torque in the neck that occur following
chest rebound from the airbag.

Examination of all plots for both IS1 and IS2 shows that
there is excellent agreement between experiment and simulation
with regard to timing (phase) of occupant responses. Specifically,
the available experimental data are for head X- and Z-
displacements; head resultant, A-P, and S-I accelerations; chest
resultant, A-P, and S-I accelerations; pelvis resultant, A-P, and
S-I accelerations;! and averaged left-and-right femur loads.
Simulation response curve shapes are in good agreement with
experimental results. Simulation peak magnitudes are in less
good agreement with experimental peaks, with differences in
magnitudes generally in the 25-50 percent range. (Simulation
magnitudes are consistently larger than experimental magnitudes.)
Overall, however, simulation responses for both baselines, IS1
and IS2, can be considered reasonably good. This assessment is
valid partly in view of the fact that many inputs are known only
in approximation, as discussed in Sections 2.1 and 2.2. It
should be noted, further, that in any parameter variation study,
absolute magnitudes of response are less important than the
relative magnitudes for the various simulations. Specifically,
in this instance, this means the VC (vehicle crash) computer
simulation responses relative to the IS computer simulation
responses; these comparisons are discussed below.

Teor the pelvis, inertial X- and Z-components of acceleration were plotted for the simulations since
it is unknown how A-P and S-1 components were defined in the laboratory tests.



4.2 The VC Baseline Simulations

A possibly exhaustive list of mechanisms that can account
for differences in occupant response in laboratory Impact
Simulator tests and vehicle crash tests is given in Section 1.0.
One or more of those mechanisms is anticipated to be a factor in
observed differences between Chrysler tests IS11144/45 and
VC04240. A comparison of the occupant responses for I1S11144/45
and VC04240 is shown in Figure 4 (eight pages, following this
section). It may be seen that even without modification of the
Impact Simulator experiment, results match vehicle crash
experimental responses reasonably well except for head A-P
acceleration and pelvis S-I acceleration. (The difference in
resultant head accelerations is explained almost fully by the
difference in the A-P components.) Of these two, prediction of
head acceleration is certainly the more important. "Correction"
of head translational acceleration in the Impact Simulator tests
--with possible concomitant improvement of other responses (or, at
least, no degradation of those responses)--is therefore the goal
of IS and VC computer simulations in this study. It should be
noted in particular that in the Impact Simulator tests, the head
resultant and A-P acceleration responses are narrow (=50 ms) and
high--about 75 G's. This is greatly different from the head
response in the vehicle crash test, viz., a broad (=100 ms),
plateau-like response of less than 25 G's average magnitude.
With regard to computer prediction of head acceleration response,
then, the goal will be to produce--in vehicle crash simulations--
a broad pulse that has a magnitude of about a third the magnitude
of the head acceleration in the Impact Simulator tests.

The obvious first approach to improving the degree to which
IS results match VC results is to make the HYGE X-acceleration
pulse agree more closely with the vehicle crash pulse--exactly,
if possible. Therefore, the first "VC" data sets run were
nothing more than the IS1 and IS2 baseline data sets with the
IS11144/45 crash pulse replaced by the VC04240 crash pulse. The
vehicle pitch angle in these simulations was identically zero, as
in the Impact Simulator tests and baseline computer simulations.
Therefore, the VC data sets were named VCl_OTHV and VC2_O0THV,
where "0" and "THV" indicate a value of zero for 6y, the vehicle
pitch angle. The results of these simulations are in Figures 9
and 10 (in the Appendix). There is no improvement over IS1 and IS2
in the degree to which responses match the experimental VC04240
dummy responses. Indeed, a comparison with Figures 5 and 6 shows
that VC1 OTHV and VC2_OTHV results are negligibly different from
the IS1 and IS2 results; that is to say that differences in the
X-acceleration pulses no greater than seen in the upper left
graph on the first page of Figure 4 may possibly be safely
ignored in Impact Simulator experiments.

In order to examine the importance of time-varying vehicle
pitch angle it was desired to make vehicle crash simulations like
VC1 OTHV and VC2_OTHV except with the actual vehicle pitch-angle
time history in addition to the actual X-acceleration time

10



history. It was found, however, that time histories from which
vehicle pitch angle could be derived were not included among the
channels of data provided for test VC04240. Data were not
available for pitch angle, pitch angle velocity, or pitch angle
acceleration. Further, translational data were available only in
the form of accelerations, and while both X- and Z-acceleration
data for "LEFT FRONT SILL" and "RIGHT FRONT SILL" were available
(channels 7-10) and also X-acceleration data for "LEFT REAR SILL"
and "RIGHT REAR SILL" (channels 11,12), no Z-acceleration data
were available for the "rear sill" accelerometer locations. (Nor
were locations in vehicle coordinates of the accelerometer mounts
immediately available.) Since the requisite experimental data
from test VC04240 were not available, data assumed to be represen-
tative were found in the literature (Berge, et al., 1985).
Specifically, pitching motion data--angle vs. time--for a 35-mph
barrier crash of a Volvo 760 were used. The vehicle pitch time
history is shown in Figure 3, which was extracted from the
identified reference'!. Maximum pitch angle is 6.1 deg (back end
up). In order to properly specify constrained, vehicle pitch-
related motion to the MVMA 2-D model, use was also made of data
in the paper for time-varying vertical displacement of three
points surrounding the center of gravity of the vehicle.

The data sets constructed by adding the described vehicle
pitch data to VC1_O0THV and VC2_O0THV were found to yield the best
simulations of test VC04240 determined in this study. They were
therefore named VC1l and VC2 and are the vehicle crash simulation
baselines, which correspond to IS1 and IS2, the Impact Simulator
baselines. Simulations that investigated other candidate factors
for explaining the large difference between head acceleration
response in the vehicle crash test and the Impact Simulator tests
are discussed in Section 4.3.

The simulation results for VCl and VC2 are shown in Figures
7 and 8. For both baselines the head bottoms out just before its
forward motion is stopped by the airbag, and spikes corresponding
to head-IP contact are seen at about 120 ms. This spike is
reduced in the case of the stiffer airbag (simulation VC2).
Without changes in values for airbag-system parameters thought
to be "knowns," this bottoming out against the IP in the VC
simulations cannot be prevented, but it is certain that only
relatively small revisions of "known values" would be required to
prevent IP contact since peak head-IP forces, particularly for
VC2, are small. It is apparent that the head did not bottom out
against the IP in vehicle crash test VC04240 since there is no
significant spike at 120 ms for the head resultant acceleration.
The head A-P acceleration response through 100 ms for both VC1
and VC2 matches experimental response reasonably well in an
average sense, i.e., if simulation results are smoothed. The

TBerge, S.; Lundell, B.; Nilsson, M. 1985. Simulation of vehicle pitch in sled testing. Volvo Car
Corporation, Goeteborg, Sweden. 5 p. Field Accidents: Data Collection, Analysis, Methodologies, and Crash
Injury Reconstructions. Warrendale, SAE, Feb 1985. Pp. 127-131. Report No. SAE 850098.
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Figure 3. Time-varying pitch angle for occupant compartment of a
Volvo 760 in a 35-mph barrier crash (from Berge, et al.,
1985)
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great degree of improvement that results from introducing vehicle
pitching motion is seen clearly in both head and chest acceleration
responses. Chest acceleration responses, while good in VC1_0THV
and VC2_O0THV (Figures 9 and 10 in the Appendix), are improved
substantially, with error relative to experimental response being
roughly 10-15 percent instead of 50-75 percent. Head resultant
accelerations through 100 ms (prior to bottoming out at 120 ms)
are still in disagreement with crash test VC04240 results--too
high by 50-75 percent--but they are much improved in both
magnitude and shape in comparison with the VC1_OTHV and VC2_O0THV
results, where values are on the order of 250 percent too large.
That is, inclusion of time-varying vehicle pitch angle produces
approximately a four- to five-fold improvement in head resultant
acceleration response and yields errors versus experimental data
much more like errors in the IS baseline simulations (25-50
percent, high). Thus, on a relative basis, the vehicle crash
baseline simulations, VC1l and VC2, are of about the same quality
as the Impact Simulator baseline simulations, IS1 and IS2. This
may indicate that there is not great likelihood, without changing
values of "knowns," as discussed previously with regard to IS1
and IS2, that it will be possible to greatly improve upon VC1

and VC2.

[Section 4.3 begins on page 54.]
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Vehicle X-acceleration

MVMA 2-D CVS Quasi-Finite Element Airbag Model
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body IS Test Simulation / IS baseline #1, Tests IS11144/45

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body IS Test Simulation / IS baseline #1, Tests I1S11144/45
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body IS Test Simulation / IS baseline #1, Tests IS11144/45
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body IS Test Simulation / IS baseline #1, Tests 1S11144/45
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body IS Test Simulation / IS baseline #1 , Tests IS11144/45
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body IS Test Simulation / IS baseline #2, Tests 1IS11144/45

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body IS Test Simulation / IS baseline #2, Tests 1IS11144/45
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body IS Test Simulation / IS baseline #2, Tests 1S11144/45

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body IS Test Simulation / IS baseline #2 , Tests 1S11144/45

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #1 , Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #1, Test VC04240
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IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #1 , Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #2, Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #2 , Test VC04240
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #2, Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #2 , Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #2 , Test VC04240

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #2 , Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #2 , Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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4.3 Other simulations: replication of vehicle crash test
results with an impact simulator

The important preliminary conclusion has been reached that,
for at least one type of vehicle crash test, a modification of
primary importance in an Impact Simulator test intended to
replicate vehicle crash tests is introduction of time-varying,
occupant -compartment pitching motion similar to that of the
vehicle crash. While such a modification is possible (discussed
later), it is more difficult than fixed, static modifications and
is thus less desirable. If it can be established, however, that
no fixed modification is a reasonable equivalent of time-varying
pitching--at least with regard to effect on occupant dynamics--
then the preliminary conclusion becomes a firm one: accommodation
for time-varying, occupant-compartment pitching must be made.

It must be noted here that, while there is strong indication
that normal amounts of vehicle pitching will always importantly
affect occupant response, pitching may not be of overriding
importance--or even of greatest importance--in vehicle crashes in
which there are occupant-compartment intrusions or other factors
discussed in Section 1.0. 1In test VC04240, however, there is
good evidence from simulations discussed below that factors other
than vehicle pitching motion were not of significance--either
because they did not occur or simply because their effects were
small.

The simulations described below were all made for the
purpose of investigating the degree to which static modifications
in Impact Simulator tests like IS11144/45 could improve agreement
with vehicle crash tests like VC04240. These simulations are
therefore all parametrically varied versions of the IS simulation
baselines, IS1 and IS2. All figures for these simulations may be
found in the Appendix. When examining these figures (11 to 26)
for the purpose of assessing improvement (if any) in simulation
head response relative to the experimental vehicle crash results
(VC04240), it must be kept in mind that the experimental data:
plotted there (dashed lines) are from Impact Simulator tests.

The experimental, head resultant acceleration pulse in the
vehicle crash test is much broader, with a width of about 100 ms,
and much lower, at about 25 G's average magnitude--about a third
the magnitude of the plotted IS11144/45 response. This was
discussed earlier and may be seen in Figure 4, which compares
experimental vehicle crash and Impact Simulator results. Chest
response in the vehicle crash test is not greatly different from
chest response in the Impact Simulator tests.

4.3.1 IS with VC X-acceleration. Simulation data sets
IS1_VCX and IS2_VCX are the same as IS1 and IS2 except that they
have the X-acceleration crash pulse from VC04240 instead of from
I1S11144/45. (These data sets are thus, in fact, identical to
VC1l _O0THV and VC2 _O0THV.) The results are negligibly different
from the IS1 and IS2 results. (See Figures 11 and 12.) These
simulations thus -establish the validity of using the IS11144/45
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X-acceleration pulse in all simulations in which there is no
accompanying vehicle pitching.

4.3.2 IS with VC pitch acceleration. Simulation data sets
IS1_THVT and IS2_THVT are the same as IS1 and IS2 except that
they have the same occupant-compartment pitching motion as the
VC1l and VC2 baselines. They are also the same as VC1l and VC2
except that they have the IS11144/45 X-acceleration pulse. While
differing from VCl and VC2 in only this way, the simulation
results (Figures 13 and 14) are not in as good agreement with
VC04240 crash test results as are the results for VCl1 and VC2,
discussed above in Section 4.2 and shown in Figures 7 and 8.
These simulations thus illustrate that if full advantage is to be
taken of the improvement that can be derived from adding time-
varying occupant-compartment pitching motion to an Impact
Simulator, it is important to reproduce the actual vehicle crash
X-acceleration pulse as closely as possible in the HYGE test.
The match should be better than the match between the X-
acceleration curves for IS11144/45 and VC04240, i.e., the curves
in the upper left graph of Figure 4. The primary difference
between the curves is a phase shift of about 5 ms. (The
IS11144/45 curve is early.) Improving alignment by revising
metering pin parameters can be accomplished easily. (Firing the
airbag 5 ms earlier would have the same effect in the absence of
occupant -compartment pitching.)

4.3.3 IS with fixed, nonzero vehicle pitch angle. The
degree to which Impact Simulator experiments might be made to

approximate vehicle crash tests more closely by introducing a
fixed, nonzero pitch angle for the occupant compartment on the
sled was investigated by runs for data sets IS1_5THV, IS2_5THV,
IS1_9THV, and IS2 9THV. The first two of these are the same as
the IS baseline data sets except that a fixed pitch angle of 5
deg (back end up) is specified. The second two are for a pitch
angle of 9 deg. Values of 5 and 9 deg were selected based on
consideration of the maximum pitch value of 6.1 deg for the Volvo
data used in VCl and VC2. (See Section 4.2 and Figure 3.) The
results of these simulations, in Figures 15 to 18, show no
tendency toward improvement of agreement with crash test VC04240
results. While time-varying pitch angle in VC1l and VC2 causes
substantial and needed reduction of head A-P and resultant
acceleration and improvement of chest accelerations, for example,
the introduction of the fixed pitch angles of 5 and 9 deg causes
an increase in responses.

Since the runs for data sets IS1_THVT and IS2_THVT (Section
4.3.2) show that replacing a zero pitch angle with a time-varying
pitch angle is not of benefit unless a good X-acceleration pulse
is used, it might be the case that the runs discussed here for
fixed pitch angles could be improved by using additionally the
actual X-acceleration pulse from vehicle crash test VC04240.

This was investigated in runs for data sets IS1_VCX5, IS2_VCX5,
IS1_VCX9, and IS2_VCX9. The results, shown in Figures 19 to 22,
are very little different from the results for IS1_5THV, IS2_5THV,
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IS1_9THV, and IS2_9THV--just as was the case for zero pitch
angle; i.e., improving the X-acceleration pulse does not help if
the nonzero vehicle pitch angle is fixed.

4.3.4 IS with rearward IP intrusion. Another potential
cause of differences between occupant responses in vehicle crash
tests and Impact Simulator tests is intrusion of occupant-
compartment surfaces in the vehicle crash test. Normally no
attempt is made to represent displacement of such surfaces in the
Impact Simulator test unless it is known that the intruding
surfaces in the vehicle crash come to rest before interacting
with the occupant. Occupant-compartment surfaces in Impact
Simulator tests IS11144 and IS11145 were in their undisplaced
positions. It is not known whether there were important rearward
intrusions in vehicle crash VC04240; evidence from simulations
indicates there were not. The VC04240 femur loads are accurately
predicted in the VC1 and VC2 baseline runs and others, and it may
therefore be assumed that there was no significant intrusion of
either the knee bolster or the toepan. The greatest difference
between VC04240 responses and simulation responses was for the
head (A-P acceleration). Therefore, the possibility of rearward
intrusion of higher parts of the instrument panel was
investigated in simulations with data sets IS1 INTR and IS2_ INTR.
These are the same as the baseline data sets IS1 and IS2 except
that the airbag and IP are nearer to the occupant's chest by 2
inches. The most appropriate way to accomplish this in the data
set is by causing the IP to move 2 inches rearward, but model
constraints make this impossible when an airbag is "attached" to
the surfaces. Approximately the same effect was accomplished by
displacing the chest surfaces of the occupant--not the occupant
itself--forward by 2 inches. Simulation results are shown in
Figures 23 and 24. Results are not greatly different from the
IS1 and IS2 results; i.e., representation of a modest amount of
intrusion of the upper and middle IP does not improve the degree
of agreement between vehicle crash test VC04240 results and
computer simulations for the Impact Simulator. An implication is
that there was no such intrusion in test VC04240.

4.3.5 IS with buckled floor. Buckling of the floorpan,
with resulting upward or downward motion of the seat, can cause
occupant response in a vehicle crash test to be different from
that in an Impact Simulator test. The direction of buckling
would depend on structural characteristics of the vehicle, but it
is unlikely that upward buckling occurred in test VC04240. If it
had, there would very likely have been head contact with the roof
header, which is not indicated by the VC04240 head acceleration
time histories. Upward buckling of the floorpan was not studied
in any simulations. The effect of possible downward buckling was
investigated in runs for data sets IS1_BUKL and IS2_BUKL. These
data sets are the same as IS1 and IS2 except that the seat drops
by 3 inches from its initial position relative to the vehicle
coordinate frame. Simulation results are shown in Figures 25 and
26. Of simulations other than the VC1 and VC2 baselines (Figures
7 and 8), in which both vehicle pitching and the actual vehicle
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crash X-acceleration are used, these simulations produce the best
agreement with the experimental VC04240 data. In particular,
head and chest acceleration responses are reduced relative to the
Impact Simulator baseline simulations IS1 and IS2 (Figures 5 and
6), as desired. However, neither magnitude nor shape of either
the head response or chest response curves match the vehicle
crash experimental results as well as do the VC1l and VC2 results.
Also, femur loads are much less good in these simulations. It
should be possible to cause the seat to drop away by 2 or 3
inches in an Impact Simulator test, but downward buckling of the
floorpan probably did not occur in test VC04240.
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5.0 SUMMARY AND CONCLUSIONS

The primary goal of the research described in this report
was to establish, by means of computer simulations, an improved
procedure for using an Impact Simulator (HYGE sled) to predict
dummy responses that would occur in full-scale, vehicle crash
tests. By determining, for a computer simulation of occupant
response in an Impact Simulator, the modifications that will give
us the best simulation of response in a vehicle crash test, we
establish the best manner in which to modify a laboratory Impact
Simulator test. This approach is valid provided that a good
baseline simulation of the experimental Impact Simulator test is
accomplished.

The specific tests studied were for a Chrysler S-body
vehicle and occupant compartment. The frontal crash pulses had
velocity changes of nominally 35 mph and peak accelerations of
approximately 40 G's. The experimental data used were for the
right front-seat passenger, a Hybrid 3 dummy, which interacted
with a midmount passenger airbag. The dummy was not
restrained additionally by belts, although a knee bolster was
present. Data from two Impact Simulator tests and a vehicle
crash test were available, as were data describing the airbag
system. All simulation work in the study was conducted with the
MVMA 2-D CVS Q-FEM Airbag Model.

The primary finding of this study is that--for the specific
type of crash examined--time-varying pitch angle of the occupant
compartment is the most important determinant of the differences
between occupant motions in an Impact Simulator test and a
vehicle crash test. It is of great importance to simulate the
pitching motion of the occupant compartment of the vehicle crash
test in the Impact Simulator test. Further, in the presence of
pitching in an Impact Simulator test, it will be important, as
well, to match the X- and Z-motions of the occupant compartment in
the vehicle crash test as closely as possible. The X-motion can
be matched by accurately reproducing the longitudinal
acceleration from the vehicle crash test. Matching the Z-motion
is accomplished by providing the proper center of rotation for
the pitching motion.

Several alternative modifications of the Impact Simulator
experiment were investigated by means of simulations. Those
simulations show, however, that no modification except a time-
varying pitch angle will greatly improve the degree to which
Impact Simulator results are made to agree with vehicle crash
test results. Factors tested in simulations and found not to be
helpful included fixed, occupant-compartment pitch angles and
rearward IP intrusion. Simulation of downward buckling of the
floorpan produced mixed results, viz., some (smaller)
improvements but also some detrimental effects. It was clear
from the vehicle crash data that no significant amount of toepan
intrusion or upward buckling of the floorpan occurred, so those
factors were not studied. The effect of making the HYGE crash
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pulse identical to the vehicle crash longitudinal acceleration
was also examined; it was found not to be an important factor in
the absence of time-varying pitch angle.

A great improvement from introducing vehicle pitching motion
is seen clearly in both head and chest acceleration responses.
Chest acceleration responses, while good even without inclusion
of pitching, are improved substantially, but the greatest
improvement is in head accelerations. There is improvement in
both magnitude and shape in comparison with simulations that do
not include pitching, where peak head accelerations (without IP
contact) are on the order of 250 percent too large compared with
the vehicle crash dummy responses. With inclusion of pitching,
head accelerations are still too high by 50-75 percent, but this
represents a four- to five-fold improvement. Further, inclusion
of pitching yields head-acceleration errors versus experimental
data much more like the errors in the Impact Simulator baseline
computer simulations, which are 25-50 percent (high). Thus, on
a relative basis, the "vehicle crash" simulations, i.e., with
pitching, are of about the same quality as the Impact Simulator
simulation baselines. No other modification tested produced
improvement of nearly this magnitude.

The results of this study suggest that it is important to
consider vehicle pitching in design of airbag systems. It may
be said, however, that design on the basis of results from Impact
Simulator tests that do not provide pitching will be conservative
since normal, "back end up" pitching in a frontal crash can be
expected to reduce chest and, especially, head accelerations.

At least two different methods have been tested at HYGE sled
facilities for providing time-varying occupant-compartment
pitching in sled tests. One method makes use of hydraulic
cylinders at the corners of the test rig. A second method uses
supplemental rails that guide an angular motion of the test rig
as the sled moves along the track. Information pertinent to
these methods is in the paper by Berge, et al. (1985). A copy of
that paper accompanies this report.

It does not seem unlikely that similar conclusions regarding
the importance of pitching would result from a simulation study
of belt-restrained occupants in Impact Simulator and vehicle
crash tests. Such a study is recommended.

It should be emphasized, however, that in some types of
crashes, differences in pitching motion may not have the
overriding importance found in this study. The vehicle crash of
this particular study apparently did not have any significant
rearward intrusions of IP or toepan. It is a fact, however, that
occupant interaction with a displaced or moving vehicle-interior
surface can have a large consequence with respect to occupant
forces and accelerations. Development of guidelines for
accounting for that type of effect in Impact Simulator tests
could be done in -a study such as the one herein reported if the
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vehicle crash data were for a test that had such vehicle-interior
intrusion. Similarly, floorpan buckling, which was apparently
absent in the vehicle crash in this study, is known to be of
particular significance in some types of crash tests; guidelines
for accounting for effects related to floorpan buckling, too,
could be developed in a simulation study.

Additional simulations of the specific Impact Simulator and
vehicle crash tests of this study might be useful for the purpose
of refining results relevant to two parameters. One is the
pitch-angle time history, which should be derived from pertinent
VC04240 test data if such data exist (rather than using data from
the literature). The second is velocity change. The velocity
change for the VC04240 vehicle crash pulse is 34.75 mph while the
velocity change for the averaged IS11144 and IS11145 Impact
Simulator tests is 33.23 mph; the effects of the difference in
magnitude separate from phase were not examined in this study.

Finally, it should be noted that the computer simulation
results of this study confirm experimental findings that show
that, for the specific type of crash examined, Impact Simulator
experiments without pitching provide a more severe test of a
restraint-system design than does a vehicle crash experiment.

61






LIST OF REFERENCES

Berge, S.; Lundell, B.; Nilsson, M. 1985. Simulation of
vehicle pitch in sled testing. Volvo Car Corporation, Goeteborg,
Sweden. 5 p. Field Accidents: Data Collection, Analysis,
Methodologies, and Crash Injury Reconstructions. Warrendale, SAE,
Feb 1985. Pp. 127-131. Report No. SAE 850098.

Bowman, B. M. 1979. MVMA two-dimensional crash victim
simulation - advanced airbag-system submodel. Final report.
Highway Safety Research Institute, Ann Arbor, Mich. 286 p.
Sponsor: General Motors Corporation, Research Laboratories,
Biomedical Sciences Department, Warren, Mich. Report No.
UM-HSRI-79-51.

Bowman, B. M.; Bennett, R. 0. 1988. MVMA two-dimensional
crash victim simulation, version 6. Volumes 1, 2, and 3. Final
report. Michigan University, Ann Arbor, Transportation Research
Institute. 210 p. Sponsor: Motor Vehicle Manufacturers
Association, Detroit, Mich. Report No. UMTRI-88-23-1,2,3.

63



64



APPENDIX

Simulation Plots
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body IS Test Simulation / IS baseline #2, Tests 1S11144/45
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body IS Test Simulation / IS baseline #2, Tests IS11144/45
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body IS Test Simulation / IS baseline #2, Tests 1S11144/45

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body IS Test Simulation / IS baseline #2, Tests 1S11144/45
IP-Mount Passenger Airbag / mixed Bendix data and estimated data

AIRBAG FORCES (SUMMARY)
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body IS Test Simulation / IS baseline #2, Tests IS11144/45

IP-Mount Passenger Airbag / mixed Bendix data and estimated data

MISCELLANEOUS AIRBAG RESPONSE VARIABLES
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Acceleration (g's)

Acceleration (g's)

MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #1, Test VC04240

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #1 , Test VC04240

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #1, Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #1, Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #1, Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #1, Test VC04240

IP-Mount Passenger Airbag / mixed Bendix data and estimated data

AIRBAG FORCES (SUMMARY)
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #1 , Test VC04240

IP-Mount Passenger Airbag / mixed Bendix data and estimated data

MISCELLANEOUS AIRBAG RESPONSE VARIABLES
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #2, Test VC04240

IP-Mount Passenger Airbag / mixed Bendix data and estimated data

HEAD KINEMATIC RESPONSE

Simulation/VC X-acc. (-)
----- Vehicle X-accel VC04240

Vehicle X-acceleration

2
- 4
o .
c 8——
e
E -
@
© o4
2
o
< 71\4;7‘;_.0.
o
) " 1 + } 4 } +
t 1 v v v > ¥
o 40, 80. 120. 160.
Time (ms)
Head resultant accel.
------- Head res. accel. VC04240
' Resultant Accel.
(=}
= 4
o .
=4 8--
K]
Oa -
e
o
89T
o
< e 23
d Ll
0.

Position (in)

Acceleration (g's)

X-Displacement (wrt veh)

Head CG x-position

8§
8"_-
3’_-
g"-..
3 ——+ —t—t—t
0. 40. 80. 120. 160.
Time (ms)
Head A-P acceleration
------- Head A-P accel. VC04240
_ A-P Acceleration
3
g4
'-""'s~ h'~~ Z [ 0.
v
=
L : 1 3 } + } $
t T ¥ 1 v > 0
0. 40. 80. 120. 160.
Time (ms)

Head CG z-position (-)
Z-Displacement (wrt veh)

50.
1
T

Position (in)
“

8_-
] R ! $ ! + } t
t 1 ' T v ) v
o 40. 80, 120. 160.
Time (ms)
Head S-| acceleration(-)
------- Head S-I accel. VC04240
_ S-| Acceleration
8
w 1
=
g . -~.~.‘
go —— N
© ’
o> U
@
(3}
O E
<
8
- . ) $ ! 4 { +
$ 1 t T ' Y d
0. 40 80 120. 160.



LZ-¥Y

‘g aanbta

MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #2 , Test VC04240

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #2, Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #2, Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data

HEAD ANGULAR RESPONSE / OTHER RESPONSES
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #2, Test VC04240

IP-Mount Passenger Airbag / mixed Bendix data and estimated data

AIRBAG MASS INFLUX/OUTFLUX
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #2, Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data

AIRBAG FORCES (SUMMARY)
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC baseline #2, Test VC04240

IP-Mount Passenger Airbag / mixed Bendix data and estimated data

MISCELLANEOUS AIRBAG RESPONSE VARIABLES
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC #1 without vehicle pitch , Test VC04240

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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Acceleration (g's)

Acceleration (g's)
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC #1 without vehicle pitch , Test VC04240

Simulation/VC X-acc. (-)
Vehicle X-accel VC04240

Vehicle X-acceleration

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC #1 without vehicle pitch, Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data

HIP KINEMATIC RESPONSE
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC #1 without vehicle pitch, Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data

HEAD ANGULAR RESPONSE / OTHER RESPONSES
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC #1 without vehicle pitch, Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC #1 without vehicle pitch , Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data

AIRBAG MASS INFLUX/OUTFLUX
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC #1 without vehicle pitch , Test VC04240

IP-Mount Passenger Airbag / mixed Bendix data and estimated data

AIRBAG FORCES (SUMMARY)
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC #2 without vehicle pitch , Test VC04240

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC #2 without vehicle pitch , Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC #2 without vehicle pitch, Test VC04240

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC #2 without vehicle pitch , Test VC04240

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body Vehicle Crash Test Simulation / VC #2 without vehicle pitch , Test VC04240
IP-Mount Passenger Airbag / mixed Bendix data and estimated data

MISCELLANEOUS AIRBAG RESPONSE VARIABLES
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body IS Test Simulation / IS #1 with VC X-acceleration, Tests 1S11144/45
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body IS Test Simulation / IS #1 with VC X-acceleration, Tests IS11144/45
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body IS Test Simulation / 1S #1 with VC X-acceleration , Tests 1S11144/45

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model
UMTRI Preliminary S-Body IS Test Simulation / IS #1 with VC X-acceleration, Tests IS11144/45
IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body IS Test Simulation / IS #1 with VC X-acceleration, Tests IS11144/45

Gauge pressure
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IP-Mount Passenger Airbag / mixed Bendix data and estimated data

THERMODYNAMIC VARIABLES
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body IS Test Simulation / IS #1 with VC X-acceleration, Tests 1S11144/45

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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MVMA 2-D CVS Quasi-Finite Element Airbag Model

UMTRI Preliminary S-Body IS Test Simulation / IS #1 with VC X-acceleration, Tests IS11144/45

IP-Mount Passenger Airbag / mixed Bendix data and estimated data
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