### SUPPLEMENTAL MATERIALS AND METHODS

### Yeast strains and media

*S. cerevisiae* strains list in Table S3. Strains grown at 24°C in YEPD (yeast extract/peptone/glucose) or SC (synthetic complete) media supplemented with the appropriate amino acids. Yeast plasmids derived from the pRS400 series of vectors.

Chromosomal integrants of Fab1p, Vac7p, Fig4p, Vac14p and Atg18p with a Cterminal tag of 3XGFP, the YFP variant, Venus or TAP were generated. The corresponding tagged versions of Fab1p, Fig4p, Vac14p and Atg18p were functional. However, Vac7p-Venus could not be detected (data not shown). Venus inserted between amino acids 84-85 of Vac7p produced a functional construct (pcVenus-Vac7).

## Identification of fab1-2 mutation site

The *FAB1* gene was cut with NdeI-XmaI. The resulting three *FAB1* fragments were cloned into linearized pRS416. Each plasmid was transformed into yeast strain *fab1-2* (EMY119) (Gary et al., 1998) to determine which fragment had the ability to undergo homologous recombination and replace the mutated region of DNA. Integration of wild-type DNA into the mutation site was inferred from the appearance of sporadic colonies at 37°C. Homologous replacement of the mutation was also achieved with a Bsu36-MluI fragment. Isolation of this region of chromosomal DNA was achieved through homologous recombination using Bsu36-MluI gapped pRS416\_*FAB1*. A single mutation of guanine to adenine at position 2591, resulted in a glycine to glutamic acid (G864E) substitution. Site directed mutagenesis of wild-type *FAB1* revealed that this single missense mutation caused phenotypes identical to the *fab1-2* strain.

### Screen for the *vac14-2* mutant

VAC14 was PCR amplified from pRS416-VAC14 using a primer from the VAC14 5' untranslated region, GCAGGATTACACCGTGATTTG and reverse primer (in pRS416) AGCGGCAGTGAGCGCAACGC and standard Taq polymerase conditions (Boehringer Mannheim, Germany), to produce a 3.9 kb product, which included the full-length open reading frame of VAC14. PCR product was transformed into a vac7/Δvac14Δ strain along with pRS416-VAC14 linearized with XbaI, and transformants selected on SC-URA plates. Transformants were replica plated onto SC-URA plates supplemented with 100 μM bathophenanthroline disulfonic acid (Fluka - Switzerland). Wild-type colonies are white while vac7Δ cells are red and temperature sensitive for growth (Duex et al., 2006). Following incubation at 37°C for 24 hours, large white colonies were selected as potential candidates. Colonies were grown in SC-Ura liquid media, and vacuole morphology of the candidates was assessed with FM4-64. Plasmids isolated from positive candidates were confirmed by retransformation into vac7Δ / vac14Δ.

### TAP tagged protein purification

S13 faction was prepared as described above. IgG Sepharose beads (GE Healthcare) were added to the S13 fraction and incubated at 4°C; 1 hour. Protein complexes bound to the beads were washed 7 times with lysis buffer containing 0.5% octyl-glucoside, followed by elution in sample buffer at 80°C, 5 min.

## *In vitro* kinase assay

in vitro kinase assay adapted from (Okada et al., 1996). Fab1p-TAP protein from 5 OD cells bound to IgG beads, was used for one reaction. Assays performed with 10 μl beads, a liposome mixture 34.7 μl including 0.02 mg phosphatidylethanolamine (Sigma)

and 0.006 mg PI3P (Echelon), in a final volume of 65 µl of 25 mM HEPES pH 7.4, 120 mM NaCl, 1.5 mM MgCl<sub>2</sub>, 5 mM 2-glycerophosphate and 1 mM DTT. Samples incubated at 30°C for the times indicated. Kinase reactions terminated by the addition of 243 µl Me-OH/CHCl<sub>3</sub> (2:1). Lipids were extracted with 58 µl 2.4 M HCl, 245 µl CHCl<sub>3</sub>, and the lipid phase extracted a second time with 239 µl 1M HCl/methanol/chloroform (47:48:3). Reaction products were analyzed on K6 silica Gel 60A 20 x 20 cm glass-backed TLC plates (Whatman Inc) chromatographed with the solvent (chloroform/acetone/methanol/acetic acid/H<sub>2</sub>O; 70:20:50:20:20). Labeled phosphoinositides were visualized by autoradiography.

# <sup>32</sup>P labeled lipid standards

<sup>32</sup>P labeled PI3P and PI(3,5)P<sub>2</sub> generated as described (Rameh et al., 1995). PI and PI5P were phosphorylated using phosphoinositide 3-kinase p110γ human (Sigma). A liposome mixture, 20 μl, including 0.018 mg PE and 0.002 mg PI or 0.002 mg PI5P (Echelon) in 30 mM HEPES pH 7.0, 1 mM EGTA, ATP mixture 9 μl (0.5 mM ATP, 0.13 M MgCl<sub>2</sub>, 0.04 M HEPES pH 7.0), and 1μl [<sup>32</sup>P]ATP (GE Healthcare), final volume of 100 μl in 20 mM HEPES pH 7.0. After 30 min at 30°C, kinase reactions were terminated and products were analyzed by TLC.

# **Supplemental References**

- Duex, J.E., Tang, F. and Weisman, L.S. (2006) The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. *J Cell Biol*, **172**, 693-704.
- Gary, J.D., Wurmser, A.E., Bonangelino, C.J., Weisman, L.S. and Emr, S.D. (1998) Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. *J Cell Biol*, **143**, 65-79.

- Okada, T., Hazeki, O., Ui, M. and Katada, T. (1996) Synergistic activation of PtdIns 3-kinase by tyrosine-phosphorylated peptide and beta gamma-subunits of GTP-binding proteins. *Biochem J*, **317** ( **Pt 2**), 475-480.
- Rameh, L.E., Chen, C.-S. and Cantley, L.C. (1995) Phosphatidylinositol (3,4,5)P<sub>3</sub> interacts with SH2 domains and modulates PI 3-kinase association with tyrosine-phosphorylated proteins. *Cell*, **83**, 821-830.

Table S1. Yeast mutants Vac14-L>R, fab1-2 and vac14-2 are defective in hyperosmotic shock induced synthesis and turnover of  $PI(3,5)P_2$ .

| <u> </u>                       |                |                      |               |                |  |
|--------------------------------|----------------|----------------------|---------------|----------------|--|
| PI(3,5)P <sub>2</sub> / PI3P % |                |                      |               |                |  |
| After hyper-osmotic shock      |                |                      |               |                |  |
|                                | basal          | 10 min 20 min 30 min |               |                |  |
| WT                             | 0.043 ± 0.006  | 0.49 ± 0.023         | 0.27 ± 0.018  | 0.089 ±0.016   |  |
| L>R                            | 0.026 ± 0.0009 | 0.064 ± 0.0053       | 0.064 ±0.0091 | 0.063 ± 0.0025 |  |

| PI(3,5)P <sub>2</sub> / PI3P % |                |                  |                |                |
|--------------------------------|----------------|------------------|----------------|----------------|
| After hyper-osmotic shock      |                |                  |                | hock           |
|                                | basal          | 10 min 20 min 30 |                | 30 min         |
| WT                             | 0.056 ± 0.0038 | 1.15 ± 0.086     | 0.32 ± 0.034   | 0.11 ± 0.0031  |
| fab1-2                         | 0.033 ± 0.0064 | 0.076 ± 0.0049   | 0.035 ± 0.0036 | 0.023 ± 0.0049 |

| PI(3,5)P <sub>2</sub> / PI3P % |                |                  |               |                |
|--------------------------------|----------------|------------------|---------------|----------------|
| After hyper-osmotic shock      |                |                  |               | hock           |
|                                | basal          | 10 min 20 min 30 |               | 30 min         |
| WT                             | 0.046 ± 0.0016 | 0.38 ± 0.0011    | 0.13 ± 0.0056 | 0.041 ± 0.0093 |
| 14-2                           | 0.11 ± 0.0051  | 0.19 ± 0.0012    | 0.15 ± 0.0051 | 0.085 ± 0.010  |

Table S2. Comparison of the *ingls* mouse with two other mutants in the PI(3,5)P<sub>2</sub> pathway. n.a., not applicable because mice do not survive long enough to evaluate pigmentation. References: ingls, this paper;  $\beta$ -geo, (Zhang et al., 2007); pale tremor, (Chow et al., 2007).

| mutant                           | ingls    | β-geo       | pale tremor |
|----------------------------------|----------|-------------|-------------|
| gene                             | Vac14    | Vac14       | Fig4        |
| mutation                         | L156R    | null        | null        |
| protein level                    | normal   | none        | none        |
| Maximal survival                 | P21      | P1          | P42         |
| pigmentation dilution            | mild     | n.a.        | severe      |
| fibroblast vacuoles              | yes      | yes         | yes         |
| fibroblast PI(3,5)P <sub>2</sub> | low      | low         | low         |
| CNS vacuolization                | moderate | moderate    | severe      |
| enlarged ventricles              | severe   | moderate    | moderate    |
| astrocytosis                     | severe   | moderate    | moderate    |
| DRG neurons                      | normal   | degenerated | degenerated |
| spleen                           | normal   | normal      | degenerated |

Table S3. Strains used in this paper.

| Strains | Genotype                                                                                                                                                             | Source                        |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| PJ69-4A | MATa,leu2,3-112, ura3-5, his-∆200, trp1-901,                                                                                                                         | (James et al., 1996)          |
|         | gal4∆, gal80∆, GAL2-ADE2,met::GAL7-lacZ                                                                                                                              |                               |
| LWY7235 | <i>MATa</i> , leu2,3-112, ura3-52, his-Δ200, trp1-Δ901, lys2-801, suc2-Δ9                                                                                            | (Bonangelino et al., 1997)    |
| LWY2055 | <i>MATa</i> , leu2,3-112, ura3-52, his-Δ200, trp1-Δ901, lys2-801, suc2-Δ9, fab1Δ::LEU2                                                                               | (Bonangelino et al., 1997)    |
| LWY5177 | MATa, leu2,3-112, ura3-52, his- $\Delta$ 200, trp1- $\Delta$ 901, lys2-801, suc2- $\Delta$ 9, vac14 $\Delta$ ::TRP1                                                  | (Bonangelino et al.,<br>1997) |
| LWY6474 | MATa, leu2,3-112, ura3-52, his- $\Delta$ 200, trp1- $\Delta$ 901, lys2-801, suc2- $\Delta$ 9, fig4 $\Delta$ ::TRP1                                                   | (Duex et al., 2006a)          |
| LWY6538 | MATa, leu2,3-112, ura3-52, his- $\Delta$ 200, trp1- $\Delta$ 901, lys2-801, suc2- $\Delta$ 9, fig4 $\Delta$ ::TRP1, vac14 $\Delta$ ::TRP1                            | (Duex et al., 2006b)          |
| LWY8792 | MATa, leu2,3-112, ura3-52, his- $\Delta$ 200, trp1- $\Delta$ 901, lys2-801, suc2- $\Delta$ 9, FIG4-3xGFP::KAN                                                        | This study                    |
| LWY8014 | MATa, leu2,3-112, ura3-52, his-Δ200, trp1-Δ901, lys2-801, suc2-Δ9, VAC14-Venus::KAN                                                                                  | This study                    |
| LWY8953 | MATa, leu2,3-112, ura3-52, his-Δ200, trp1-Δ901, lys2-801, suc2-Δ9, FAB1-Tdtomato::HIS3, VAC14-Venus::KAN                                                             | This study                    |
| LWY8251 | MAT $\alpha$ , leu2,3-112, ura3-52, his- $\Delta$ 200, trp1- $\Delta$ 901, lys2-801, suc2- $\Delta$ 9, vac14 $\Delta$ ::TRP1, fig4 $\Delta$ ::TRP1, ATG18-Venus::KAN | This study                    |
| LWY8429 | Werus::KAN  MATa, leu2,3-112, ura3-52, his- $\Delta$ 200, trp1- $\Delta$ 901, lys2-801, suc2- $\Delta$ 9, vac14 $\Delta$ ::TRP1, FAB1-TAP::KAN                       | This study                    |
| LWY8436 | MATa, leu2,3-112, ura3-52, his- $\Delta$ 200, trp1- $\Delta$ 901, lys2-801, suc2- $\Delta$ 9, fig4 $\Delta$ ::TRP1, FAB1-TAP::KAN                                    | This study                    |
| LWY8789 | MATa, leu2,3-112, ura3-52, his- $\Delta$ 200, trp1- $\Delta$ 901, lys2-801, suc2- $\Delta$ 9, vac14 $\Delta$ ::TRP1, FAB1-3xGFP::KAN                                 | This study                    |
| LWY8798 | MATa, leu2,3-112, ura3-52, his- $\Delta$ 200, trp1- $\Delta$ 901, lys2-801, suc2- $\Delta$ , vac14 $\Delta$ ::TRP1, FIG4-3xGFP::KAN                                  | This study                    |
| LWY8812 | MATα, leu2,3-112, ura3-52, his- $\Delta$ 200, trp1- $\Delta$ 901, lys2-801, suc2- $\Delta$ 9, fig4 $\Delta$ ::TRP1, FAB1-3xGFP::KAN                                  | This study                    |
| LWY8640 | MATa, leu2,3-112, ura3-52, his- $\Delta$ 200, trp1- $\Delta$ 901, lys2-801, suc2- $\Delta$ 9, fig4 $\Delta$ ::TRP1, VAC14-Venus::KAN                                 | This study                    |
| LWY8818 | <i>LWY2055, FIG4-3xGFP::KAN</i>                                                                                                                                      | This study                    |
| LWY8257 | LWY2055, VAC14-Venus::KAN                                                                                                                                            | This study                    |
| LWY8958 | MATa, leu2,3-112, ura3-52, his-Δ200, trp1-Δ901, lys2-801, suc2-Δ9, FAB1-TAP::KAN, VAC14-Venus::KAN                                                                   | This study                    |
| LWY8964 | MATa, leu2,3-112, ura3-52, his- $\Delta$ 200, trp1- $\Delta$ 901, lys2-801, suc2- $\Delta$ 9, fig4 $\Delta$ ::TRP1, FAB1-TAP::KAN, VAC14-Venus::KAN                  | This study                    |
| LWY8966 | <i>MATa</i> , leu2,3-112, ura3-52, his- $\Delta$ 200, trp1- $\Delta$ 901, lys2-801,                                                                                  | This study                    |

|         | suc2-∆9, FAB1-TAP::KAN, FIG4-Venus::KAN                                                      |            |
|---------|----------------------------------------------------------------------------------------------|------------|
| LWY8967 | $MAT\alpha$ , leu2,3-112, ura3-52, his-Δ200, trp1-Δ901, lys2-                                | This study |
|         | 801, suc2-∆9, FAB1-Tap::KAN, FIG4-Venus::KAN,                                                |            |
|         | vac14Δ::TRP1                                                                                 |            |
| LWY8274 | <i>MATa, leu2,3-112, ura3-52, his-∆200, trp1-∆901, lys2-801,</i>                             | This study |
|         | suc2-∆9, VAC14-Mcherry::HIS3, FIG4-Venus::KAN                                                |            |
| LWY8538 | <i>MATa</i> , leu2,3-112, ura3-52, his-Δ200, trp1-Δ901, lys2-801,                            | This study |
|         | suc2-∆9, VAC14-Mcherry::HIS3, vac7∆::KAN                                                     |            |
| LWY8279 | <i>MATa</i> , leu2,3-112, ura3-52, his-Δ200, trp1-Δ901, lys2-801,                            | This study |
|         | suc2-∆9, VAC14-Mcherry::HIS3, ATG18-Venus::KAN                                               |            |
| LWY8816 | <i>MATa</i> , leu2,3-112, ura3-52, his-Δ200, trp1-Δ901, lys2-801,                            | This study |
|         | suc2-∆9, VAC14-Venus::KAN, vac7∆::KAN                                                        |            |
| LWY8923 | <i>MATa</i> , leu2,3-112, ura3-52, his-Δ200, trp1-Δ901, lys2-801,                            | This study |
|         | suc2-∆9, FAB1-3xGFP::KAN, vac7∆::KAN                                                         |            |
| LWY8834 | $MAT\alpha$ , leu2,3-112, ura3-52, his- $\Delta$ 200, trp1- $\Delta$ 901, lys2-              | This study |
|         | 801, suc2-∆9, FIG4-4xGFP::KAN, vac7∆::KAN                                                    |            |
| LWY8287 | <i>MATa</i> , $leu2,3-112$ , $ura3-52$ , $his-\Delta 200$ , $trp1-\Delta 901$ , $lys2-801$ , | This study |
|         | suc2-Δ9, vac14Δ::TRP1, vac7Δ::KAN                                                            |            |





Jin et al., Supp Fig 2



В

| # of F2 offspring | ingls/- | ingls/+ | +/- | +/+ |
|-------------------|---------|---------|-----|-----|
| at P0             | 5       | 7       | 6   | 6   |
| at P14            | 0       | 7       | 6   | 6   |

Jin et al., Supp Fig 3



Jin et al., Supp Fig 4









Jin et al., Supp Fig 6







### SUPPLEMENTARY FIGURE LEGENDS

Supplementary Video. Movement disorder of the ingls mouse. Shown are a compound heterozygous  $Vac14^{ingls}/Vac14^{\beta-geo}$  mutant and corresponding wild-type littermate.

**Supplementary Figure 1**. **Morphology of the** *ingls* **nervous system**. A. Brain sections from wildtype (C57BL/6J), *ingls* (L156R/L156R) and compound heterozygous (L156R/-) mice. B. DRG and spinal cord sections. H&E stained.

**Supplementary Figure 2**. Enlarged ventricles and gliosis in *ingls* mutant mice. A. Saggital sections of control and mutant brain immunostained for GFAP, a marker of astrocytes. B. Western blot of cortical extracts stained for GFAP.

Supplementary Figure 3. Genetic mapping of *ingls* and noncomplementation of the lethality of the null allele  $Vac14^{\beta\text{-}geo}$ . A. Marker genotypes for 62 affected (DBA.ingls X B6)F2 mice localize *ingls* to a 5.7 Mb interval. B. Genotypes of 24 F2 mice from a cross between heterozygous ingls/+ mice ( $Vac14^{L156R/+}$ ) and heterozygous null mice ( $Vac14^{\beta\text{-}geo/+}$ ) mice. Compound heterzygotes were born in the predicted 25% proportion (P0) but were uniformly lethal by two weeks of age (P14).

### Supplementary Figure 4.

(A) - (D) Immunoprecipitation of Fab1p and its regulators. (A) Vac14p-HA coimmunoprecipitated Vac14p-V5. *vac14*Δ cells co-expressing pRS413-*VAC14-HA* and pRS416-*VAC14-V5* were used. (B) Fab1p-TAP coprecipitated Vac14p-V5. *vac14*Δ or *vac14*Δ / *FAB1-TAP* cells expressing pRS416-*VAC14-V5* were used. (C) Vac14p-V5 coimmunoprecipitated Fig4p-Myc. *vac14*Δ / *fig4*Δ cells expressingpRS415-*FIG4-Myc* / mock or pRS415-*FIG4-Myc* / pRS413-*VAC14-V5* were used. (D) Fab1-TAP coprecipitated Fig4p-Myc. *fig4*Δ or *fig4*Δ / *FAB1-TAP* cells expressingpRS415-*FIG4-Myc* were used. (E) and (F) In the absence of Vac14p or Fig4p, Fab1p does not form a complex with Fig4p or Vac14p, respectively. Pull-down experiments (E) using *FAB1-TAP* in *FIG4-Venus* / *Vac14*Δ cells, (F) *FAB1-TAP* in *VAC14-Venus* / *Fig4*Δ cells.

Supplement Figure 5. Vac14p colocalizes with Fab1p, Fig4p, Vac7p and Atg18p. VAC14-mCherry/ FAB1-Venus cells, VAC14-mCherry/ FIG4-Venus cells, VAC14-mCherry/vac7\Delta expressing pcVenus-VAC7 cells and VAC14-mCherry/ATG18-Venus cells were used.

Supplement Figure 6. Vac7p is not required for the formation of the ternary complex. (A)-(B) The ternary complex forms in  $vac7\Delta$  cells. Fig4p-3xGFP or Vac14p-Venus protein was immunoprecipitated from detergent solubilzed cell extracts using anti-GFP antibody. (A) FIG4-3xGFP / VAC7 or  $vac7\Delta$  cells. (B) VAC14-Venus / VAC7 or  $vac7\Delta$  cells. (C) Vac7p is not required for the localization of Fab1p, Fig4p and Vac14p.

Also Vac14p and Fig4p are not required for the localization of Vac7p. VAC14-Venus, FIG4-3xGFP or FAB1-3xGFP /  $vac7\Delta$  cells were used. A  $vac14\Delta$  /  $vac7\Delta$  or  $fig4\Delta$  /  $vac7\Delta$  cell expressing cVenus-VAC7 was used. Cells were labeled with FM4-64 to visualize the vacuole membrane.

Supplement Figure 7. The vac14-L149R mutant is partially functional. (A) The vac14 L149R mutant retains its ability to interact with Fig4p. pRS413-VAC14(WT), pRS413-VAC14-HA (WT-HA) or pRS413-vac14-L149R-HA (L>R-HA) were coexpressed with pRS415-FIG4-Myc in a vac14Δ/fig4Δ strain. The indicated Vac14 protein was immunoprecipitated from detergent solubilzed cell extracts using anti-HA antibody. (B) The vac14 L149R mutant retains its ability to interact with itself. pRS413-VAC14(WT), pRS413-VAC14-HA(WT-HA) or pRS413-vac14-L149R-HA(L>R-HA) were coexpressed with pRS416-VAC14-V5(WT) or pRS416-vac14-L149R-V5(L>R) in a vac14Δ strain. Immunoprecipitation of Vac14p-HA or vac14-L149R-HA protein coprecipitates Vac14p-V5 or vac14-L149R-V5 proitein using an anti-HA antibody.

Supplement Figure 8. When measured in vitro, isolated fab1-2 protein has same kinase activity as Fab1p. A fab1∆ strain expressing FAB1-TAP or fab1-2-TAP was used. Fab1p-TAP or fab1-2-TAP protein was bound to IgG beads, protein from 5 OD cells was used for each reaction. Liposomes contained phosphatidylethanolamine and PI3P (70:30). (A) Autoradiograph of a thin-layer chromatogram of the products of the *in vitro* kinase assay. The red asterisk indicates the migration of <sup>32</sup>P-labeled

PI(3,5)P<sub>2</sub>standards. The blue asterisk indicates the migration of standard <sup>32</sup>P-labeled PI3P. (B) Western blot of Fab1-TAP or fab1-2-TAP pulled down for each reaction.