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What determines the rate of protein evolution is a fundamental question in biology. Recent genomic
studies revealed a surprisingly strong anticorrelation between the expression level of a protein and
its rate of sequence evolution. This observation is currently explained by the translational
robustness hypothesis in which the toxicity of translational error-induced protein misfolding selects
for higher translational robustness of more abundant proteins, which constrains sequence
evolution. However, the impact of error-free protein misfolding has not been evaluated. We
estimate that a non-negligible fraction of misfolded proteins are error free and demonstrate by a
molecular-level evolutionary simulation that selection against protein misfolding results in a
greater reduction of error-free misfolding than error-induced misfolding. Thus, an overarching
protein-misfolding-avoidance hypothesis that includes both sources of misfolding is superior to the
translational robustness hypothesis. We show that misfolding-minimizing amino acids are
preferentially used in highly abundant yeast proteins and that these residues are evolutionarily
more conserved than other residues of the same proteins. These findings provide unambiguous
support to the role of protein-misfolding-avoidance in determining the rate of protein sequence
evolution.
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Introduction

The rate of protein sequence evolution has long been of central
interest to molecular evolutionists (Zukerkandl and Pauling,
1965; Kimura, 1968; Kimura and Ohta, 1974; King and Wilson,
1975; Nei, 1987; Li, 1997; Page and Holmes, 1998; Koonin and
Galperin, 2003). Earlier studies of this subject led to the
discovery of the molecular clock (Zukerkandl and Pauling,
1965) and prompted the proposal of the paradigm-shifting
neutral theory of molecular evolution (Kimura, 1968; King and
Jukes, 1969). It is now well known that, the same protein tends
to have similar evolutionary rates in different evolutionary
lineages (i.e., the molecular clock), whereas different proteins
of the same species evolve at vastly different rates (Li, 1997;
Nei and Kumar, 2000). In the framework of the neutral theory
(Kimura, 1983), this latter phenomenon is explained primarily
by a variation in functional constraint among different proteins
(Kimura and Ohta, 1974). However, it is unclear how to
quantify the functional constraint of a protein from the
knowledge of its function. Rather, the usual practice is to

gauge the functional constraint of a protein by the inverse of its
evolutionary rate. As a result, the molecular underpinning of
‘functional constraint’ remains elusive.

In the past decade, the availability of various types of
genomic data from model organisms stimulated an empirical
search for the determinants of the rate of protein sequence
evolution. Gene properties that have been examined for this
purpose include, for example, gene importance measured by
the fitness effect of gene deletion, gene expression level, gene
expression breadth across tissues, protein subcellular localiza-
tion, number of protein–protein interactions, and gene
structural parameters such as protein and intron lengths
(Hurst and Smith, 1999; Hirsh and Fraser, 2001; Pal et al, 2001;
Fraser et al, 2002; Jordan et al, 2003; Rocha and Danchin, 2004;
Subramanian and Kumar, 2004; Zhang and Li, 2004; Wall et al,
2005; Zhang and He, 2005; Drummond et al, 2006; Liao et al,
2006, 2010; Wolf et al, 2006, 2008; Drummond and Wilke,
2008; Wang and Zhang, 2009). It is found that the evolutionary
rate is influenced by multiple mutually correlated factors (Wolf
et al, 2006) and that somewhat different rules apply to different
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organisms (Liao et al, 2010). Owing to the interdependence of
various rate determinants, it has been argued that the search
for the rate determinants of protein evolution is a typical
systems biology question (Koonin, 2005). The most unex-
pected discovery from the extensive searches for rate
determinants is a very strong anticorrelation between the
expression level and evolutionary rate of a protein (E–R
anticorrelation), observed in bacteria, yeast, and several other
model organisms (Pal et al, 2001; Rocha and Danchin, 2004;
Drummond and Wilke, 2008). In some of these species, the
evolutionary rate correlates with the expression level far better
than with any other factor, including potential proxies for
functional constraints such as gene importance and the
number of protein interactions (Drummond et al, 2006). For
example, in yeast, the variance in gene expression level
explains 25–30% of the variance in protein evolutionary rate,
whereas the variance in gene importance explains only 4–6%
(Zhang and He, 2005).

Because the E–R anticorrelation largely alters the classic
view of a dominant role of protein function in determining the
rate of protein sequence evolution (Kimura and Ohta, 1974;
Kimura, 1983; Li, 1997), it is of fundamental importance to
uncover the mechanisms underlying the E–R anticorrelation.
The prevailing explanation of the E–R anticorrelation is the
translational robustness hypothesis proposed by Drummond
et al (2005). This hypothesis posits that mistranslation induces
protein misfolding, which is toxic to cells. Consequently,
highly expressed proteins are under stronger pressures to be
translationally robust and thus are more constrained in
sequence evolution. In this hypothesis, the central element
that imposes the selective pressure on protein evolution is the
generic toxicity of misfolded proteins (Drummond et al, 2005;
Drummond and Wilke, 2008). While proteins containing
translational errors may misfold, error-free proteins may also
misfold (Pakula and Sauer, 1989; Dobson, 2003). Although the
potential influence of error-free protein misfolding on the E–R
anticorrelation has been proposed (Drummond et al, 2005;
Drummond and Wilke, 2008, 2009), it has not been evaluated.
As a result, the relative importance of selection against error-
induced and error-free protein misfolding remains unclear
(Drummond and Wilke, 2009).

In this study, we first show by theoretical calculation that a
non-negligible fraction of misfolded proteins are error free. We
then show by a molecular-level evolutionary simulation that
selection against protein misfolding is more effective in
reducing error-free misfolding than error-induced misfolding.
These results suggest that a protein-misfolding-avoidance
hypothesis that includes both sources of misfolding is superior
to the translational robustness hypothesis. Finally, using yeast
genomic data, we offer the strongest empirical evidence thus
far for the role of protein-misfolding-avoidance in generating
the E–R anticorrelation.

Results

Fraction of misfolded proteins that are error free:
theoretical calculation

All protein molecules, regardless of the presence or absence of
translational errors, can misfold (Figure 1). Let DG be the

unfolding energy of a protein molecule (i.e., larger DG
corresponds to higher protein stability). Assuming thermo-
dynamic equilibrium (see Discussion for justification), the
probability that the protein is folded into its native structure
(Pnative) and the probability that it is unfolded (Punfold) follow

Punfold

Pnative
¼ e�DG=ðkTÞ; ð1Þ

where k is the Boltzmann constant of 1.986 cal/mol/K, T is the
absolute temperature, and Pnativeþ Punfold¼1 (Pakula and
Sauer, 1989). The so-called unfolded state is an ensemble of
many non-native structures, including completely disordered
structures. It is likely that the toxicity of protein misfolding is
largely dependent on the number of molecules that are in non-
native states rather than the specific non-native structures that
they form (Bucciantini et al, 2002). In fact, cellular responses
to unfolded and misfolded proteins, such as the unfolded
protein response of the endoplasmic reticulum (Schroder and
Kaufman, 2005), are often the same. Thus, for a given protein,
Pmisfold is expected to be approximately proportional to Punfold,
or PmisfoldEaPunfold, where a is a protein-specific constant.
Without loss of generality, we assume a¼1. Then,

PmisfoldEPunfold ¼
e�DG=ðkTÞ

1þ e�DG=ðkTÞ : ð2Þ

When e�DG/(kT) � 1, Equation (2) can be simplified as

PmisfoldEe�DG=ðkTÞ: ð3Þ

Most natural proteins have a DG of 5–10 kcal/mol when
synthesized correctly (Bava et al, 2004; Dill et al, 2008).
AssumingDG¼5 kcal/mol and T¼302 K (301C), the probability
that a correctly translated wild-type protein will be misfolded
is 2.40�10�4. The translational error rate has been estimated
to be B5�10�4 per codon (Drummond and Wilke, 2008,
2009). For a protein with L amino acids, the probability that a
protein molecule is error free is (1–5�10�4)L, which equals

Figure 1 Sources of misfolded proteins. The translational robustness
hypothesis considers only translational error-induced misfolding (arrow 6),
whereas the overarching protein-misfolding-avoidance hypothesis considers
both error-induced misfolding (arrow 6) and error-free misfolding (arrow 4).
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81% for an average-length yeast protein (L¼415) (Drummond
et al. 2005). The number of misfolded error-free proteins is
then Merror free¼N� (1–5�10�4)L� 2.40�10�4, where N is the
total number of protein molecules synthesized from a gene.
For example, the number of misfolded error-free molecules for
an average-length yeast protein is 1.95�10�4N.

Now, let us consider mistranslation-induced misfolding. We
denote the increase in unfolding energy caused by an amino-
acid change in a protein by DDG; DDG is usually negative
because most errors reduce protein stability. If we assume that
the total increase in unfolding energy caused by multiple
amino-acid changes is the sum of the increase by individual
changes (SDDG), the unfolding energy of a mistranslated
protein is

DG
0 ¼ DGþ SDDG: ð4Þ

For each of the 497 yeast proteins whose structures (or
homologs’ structures) are available, we estimated the prob-
ability of each of the 19 possible mistranslations at each
amino-acid residue and its associated DDG, with the use of (i)
actual mistranslation patterns (Freeland and Hurst, 1998),
(ii) the average mistranslation rate of 5�10�4 per codon, and
(iii) the assumption of DG¼5 kcal/mol (see Materials and
methods). We then calculated the probability of occurrence of
each possible protein sequence of the gene with one, two, or
three errors and its associated Pmisfold. We ignored the scenario
of having more than three errors in a molecule, because of its
low probability (o7�10�5 for an average-length protein).
These probability and Pmisfold values allowed the estimation of
the expected probability of mistranslation-induced misfolding
for the gene. On the basis of this number and the number of
error-free misfolded molecules, we calculated the fraction of
misfolded proteins that are error free for each gene. We found
that this fraction varies widely, with 95% of the genes falling in
the range between 3.3 and 67.8%. The mean and median
values are 19.7 and 14.0%, respectively. We also repeated the
above analysis by assuming a DG of 10 kcal/mol. In this case,
the fraction of misfolded proteins that are error free is
considerably lower, with 95% of the genes falling in the range
between 0.07 and 52.0%. The mean and median values
become 4.8 and 0.91%, respectively.

These results showed that when a protein is not very stable,
a sizable fraction of misfolded molecules are error free. But,
when a protein is very stable, this fraction is much smaller.
Nonetheless, because high protein stability is probably a result
of natural selection against misfolding (see next section), the
finding based on DG¼5 kcal/mol is more likely to reflect the
situation when protein misfolding has not been reduced much
by selection, whereas the finding based on DG¼10 kcal/mol is
more likely to reflect the situation when protein misfolding has
been substantially reduced by selection. In other words, the
low fraction of error-free misfolding for stable proteins is likely
a consequence of selection against misfolding (see next
section). Our calculations thus suggest the existence of a
sizable fraction of error-free misfolding that may be reduced
considerably by selection. Therefore, it is important to
consider error-free protein misfolding, in addition to error-
induced misfolding.

Selection against error-free and error-induced
protein misfolding: computer simulation

Can we differentiate between selection against error-free and
error-induced protein misfolding? Selection against error-free
misfolding will result in an increase of DG (see Equation (2)).
As a by-product of this increase, DG0 also increases (see
Equation (4)), which leads to a reduction of error-induced
misfolding. Selection against error-induced misfolding can
have two consequences. First, the mistranslation rate may be
reduced by preferential use of codons with lower mistransla-
tion rates. Second, DG may be increased such that DG0

becomes larger. As a by-product of the increase of DG, error-
free misfolding is also reduced. Thus, natural selection against
one type of misfolding also results in the reduction of the other
type. This property makes it difficult to evaluate the relative
contributions of the two sources of misfolding using actual
data. However, it is possible to examine the effects of the two
types of misfolding separately using computer simulation.

We carried out three molecular-level evolutionary simula-
tions following the general strategy used previously in
demonstrating the translational robustness hypothesis (Drum-
mond and Wilke, 2008) (Figure 2A). We used a lattice model
(Taverna and Goldstein, 2002a, 2002b) to describe the
structure and folding dynamics of proteins of 25 amino acids.
We first identified 500 relatively stable protein sequences. For
each of them, the most stable conformation was regarded as its
native structure. A unique expression level was assigned to
each protein such that the number of correctly folded
molecules must meet the given expression level. We then
created a population of 1000 haploid individuals of a
hypothetical unicellular organism for each of these 500
protein-coding genes. The fitness of each individual depended
on the number of misfolded proteins (see Equation (6) in
Materials and methods), which we determined probabilisti-
cally from Equations (2) and (4). This procedure may be more
realistic than that used in the previous study (Drummond and
Wilke, 2008), which applied an unfolding energy cutoff for
misfolding. The populations were subject to evolution with
mutation, drift, and selection for 100 000 generations to reach
equilibrium (i.e., DG stabilizes). Following the previous study
(Drummond and Wilke, 2008), we assigned different transla-
tional error rates to different codons according to the empirical
patterns of mistranslation (Freeland and Hurst, 1998) and
assigned the preferred synonymous codons of each amino
acid an error rate that is one-fifth that of the unpreferred
synonymous codons. The translational error rate was adjusted
such that 20% of proteins have at least one error when
synonymous codons are equally frequent.

In the first simulation, only error-induced misfolding was
allowed and all error-free proteins were assumed to fold
correctly as in the previous study (Drummond and Wilke,
2008). As expected, our results are similar to those from the
previous study (Drummond and Wilke, 2008), including a
positive correlation between the protein expression level and
the DG of the error-free protein (Figure 2B), a negative
correlation between the expression level and the fraction of
protein molecules that misfold after being mistranslated
(Figure 2C), a negative correlation between DG and the
evolutionary rate measured by the number of fixed amino-acid
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substitutions between the 100 000th and 150 000th generations
(Figure 2D), and a negative correlation between the expression
level and the evolutionary rate (i.e., the E–R anticorrelation)
(Figure 2E).

In the second simulation, we assumed a zero mistranslation
rate but allowed misfolding of error-free molecules as

described by Equation (2). The results (Figure 2F–I) are
similar to those from the first simulation. Apparently, the
translational robustness hypothesis is not necessary for
explaining the E–R anticorrelation, as we recapitulated the
anticorrelation without invoking mistranslation. Interestingly,
the resulting E–R anticorrelation from the second simulation

Figure 2 A molecular-level evolutionary simulation for examining the roles of error-induced and error-free misfolding in generating the anticorrelation between protein
expression level and evolutionary rate. (A) The general scheme of the simulation. Simulations are conducted under error-induced misfolding only (B–E), error-free
misfolding only (F–I), or both types of misfolding (J–M). In all cases, after 100 000 generations of evolution, protein unfolding energy DG is highly positively correlated
with the gene expression level (B, F, and J); the probability of protein misfolding is highly negatively correlated with the gene expression level (C, G, and K); and the
number of fixed amino acid changes per sequence per 50 000 generations is highly negatively correlated with DG (D, H, and L) and gene expression level (E, I, and M).
Correlation coefficients and significance levels are determined by Spearman’s rank correlation tests. The red lines in panels B–M are estimated using locally weighted
scatterplot smoothing.
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(r¼�0.703) is even stronger than that from the first simulation
(�0.578; Po10�6), suggesting that, under the current para-
meter settings, selection against error-free misfolding is more
effective than selection against error-induced misfolding in
generating the E–R anticorrelation.

Because both error-free and error-induced misfolding exist,
we performed a third, more realistic simulation in which both
sources of misfolding were included. We again observed all of
the patterns found in the first two simulations (Figure 2J–M).
The resulting E–R anticorrelation (�0.719) is even stronger
than that from the second simulation (�0.703), although their
difference is not statistically significant (P¼0.23). We repeated
the above three simulations with different parameters of
mistranslation rates (Supplementary Figures S1–S2), minimal
stability of wild-type proteins (Supplementary Figure S3), and
protein length (Supplementary Figure S4), and found the
results to be very similar.

In the third simulation, we also separately estimated the
probabilities of error-free and error-induced misfolding.
Among lowly expressed proteins, the average probability of
error-free misfolding (Figure 3A) exceeds that of error-induced
misfolding (Figure 3B), and B58% of misfolded proteins are
error free (Figure 3C). As the expression level increases, the
probabilities of both types of misfolding decrease in our
simulated proteins (Figure 3A and 3B), but the amount of
decrease is larger for error-free misfolding (Figure 3A) than for
error-induced misfolding (Figure 3B), such that the fraction of
misfolded molecules that are error free is only B40% for
highly abundant proteins (Figure 3C). If we compare between
very lowly and very highly expressed proteins, B60% of the
difference in their probabilities of misfolding is contributed by
a reduction in error-free misfolding, whereas B40% is
contributed by the reduction in error-induced misfolding. In

other words, selection against misfolding of highly expressed
proteins results in a greater reduction in error-free misfolding
than in error-induced misfolding.

The above finding can be explained as follows. On the one
hand, as the expression level rises, selection favoring the use of
more accurately translated codons becomes stronger. Indeed,
we observed the mistranslation rate to decrease with the rise of
the protein expression level, although the magnitude of this
decrease is only B25% from the lowest to highest expressions
(Figure 3D). On the other hand, the rise in expression level
leads to the preferential use of amino acids that maximize DG.
This usage consequently renders the expected�DDG (which is
usually positive) larger when a translational error occurs (i.e.,
the error is of greater magnitude). Indeed, we observed that
�DDG increases by B400% from lowly to highly expressed
proteins (Figure 3E). Hence, although the translational error
rate is slightly reduced in highly expressed proteins, errors are
on average much larger. The total effect of mistranslation in
destabilizing protein structure, measured by the product of the
mistranslation rate and e�DDG/(kT), rises with expression level
(Figure 3F). Consequently, error-induced misfolding does not
decrease as much as error-free misfolding when the protein
expression level increases. Our results also demonstrate that,
in the simulation, the translational robustness of abundant
proteins is actually realized by increasing the stability of the
error-free protein (i.e., DG), rather than by reducing the total
destabilizing effect of mistranslation (i.e., the product of the
mistranslation rate and e�DDG/(kT)). This said, we caution
that the fraction of misfolded molecules that are error free
appears higher in the simulation than what was calculated
for actual yeast proteins. This discrepancy is likely due to
the considerably shorter proteins used in the simulation than
in reality.

Figure 3 Amount of error-free and error-induced protein misfolding found in computer simulations when both sources of misfolding are considered. The probabilities of
error-free misfolding (A) and error-induced misfolding (B) and the fraction of misfolded molecules that are error-free (C) all decrease with the rise of the gene expression
level. (D) The rate of translational error per protein decreases as the gene expression level increases. (E) The destabilizing effect (�DDG) per translational error
increases with gene expression level. (F) The total destabilization effect of mistranslation increases with gene expression level. Correlation coefficients and significance
levels are determined by Spearman’s rank correlation tests. The red lines are estimated using locally weighted scatterplot smoothing.
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Empirical evidence for the protein-misfolding-
avoidance hypothesis

Our theoretical calculation and computer simulation clearly
showed that (i) both error-free and error-induced misfolding
occur and contribute to the generation of the E–R anti-
correlation and (ii) selection against protein misfolding is
more effective in reducing error-free misfolding than error-
induced misfolding. It is important to note that when the
translational robustness hypothesis was proposed, the authors
mentioned both sources of protein misfolding, although the
focus was quickly turned to error-induced misfolding only
(Drummond et al., 2005). We suggest that the overarching
protein-misfolding-avoidance hypothesis that considers both
error-free and error-induced protein misfolding is more
complete and accurate than the translational robustness
hypothesis for explaining the E–R anticorrelation.

The protein-misfolding-avoidance hypothesis makes three
key predictions. First, it predicts that highly expressed
proteins are, on average, more stable than lowly expressed
proteins. Second, it predicts that codons minimizing protein
misfolding are used more frequently in highly expressed
proteins than in lowly expressed ones. Third, it predicts that,
within the same protein, amino-acid residues in which a
random nonsynonymous mutation is more likely to increase
the protein misfolding probability are evolutionarily
more conserved. Below, we examine these three predictions
using empirical data from the baker’s yeast Saccharomyces
cerevisiae.

For the first prediction, the most direct support would be a
positive correlation between the expression level of a protein
and its DG. DG has been experimentally determined for only a
few proteins of any given species, and these DG values of
different proteins were often measured under different
conditions, making any meaningful comparison difficult.
Furthermore, computational estimation of DG is unreliable,
except when the protein is very small and has an experimen-
tally determined structure (Boas and Harbury, 2007; Dill et al,
2008). We searched the ProTherm database (Bava et al, 2004)
and found only five non-prion yeast wild-type proteins. We
extracted their DG values from the condition that is closest to
pH 7 and 251C. Consistent with our prediction,DG is positively
correlated with the mRNA expression level (Holstege et al,
1998), although the correlation is not significant (r¼0.80;
Po0.13) because of the small sample size. We did not use
protein expression data here because the sample size would be
further reduced. Another often-used measure of protein
stability is the protein melting temperature (Tm). There are
11 wild-type yeast proteins with experimentally measured Tm

in ProTherm. After extracting their Tm values from the
condition that is closest to pH 7, we found that Tm is also
positively correlated with mRNA expression level, but the
correlation is again not significant (r¼0.32; Po0.44).

Protein instability may also be measured by protein
aggregation, which is a common form of misfolding and has
been reported to correlate negatively with gene expression
level in bacteria (de Groot and Ventura, 2010) and human
(Tartaglia et al, 2007). We attempted to verify this antic-
orrelation in yeast using two different computational predic-
tions of aggregation propensity based on protein sequences

TANGO and AGGRESCAN (Fernandez-Escamilla et al, 2004;
Conchillo-Sole et al, 2007). A significant anticorrelation
between mRNA expression level and protein aggregation
propensity was observed when TANGO was used (Po10�16,
Mann–Whitney test; Supplementary Figure S5A), whereas no
significant correlation was observed when AGGRESCAN was
used (P¼0.182, Mann–Whitney test; Supplementary Figure
S5B). Nonetheless, on average, the 5% most expressed genes
have significantly lower aggregation propensities than the 5%
least expressed genes, no matter which prediction method is
used (TANGO: Po10�6, Supplementary Fig S5C; AGGRES-
CAN: P¼0.027, Supplementary Figure S5D). Combined with
the comparisons of DG and Tm, these results support our first
prediction that highly expressed proteins tend to be more
stable than lowly expressed ones.

To test the second prediction, we need to calculate the
relative probability of protein misfolding (pmisfold, including
both error-free and error-induced misfolding) when each of
the 61 possible sense codons is used at each codon position of a
gene. The difference in DG between homologous proteins with
only one amino acid difference (i.e., DDG) can be computa-
tionally estimated with a reasonably high accuracy, either with
or without the use of protein structure information (Capriotti
et al, 2005). Based on this computational estimation and the
assumptions of mistranslation patterns and rates of each of the
61 sense codons, we calculated pmisfold for each of the 61
possible sense codons at each codon position of a gene
(Figure 4A; see Materials and methods). Note that the above
pmisfold is relative to the total probability of protein misfolding
for the wild-type gene, rather than the absolute probability,
which cannot be calculated without knowing DG. We identify
the codon that minimizes pmisfold for each codon position.
When the wild-type codon matches this codon, we call the
wild-type codon a matching codon. The protein-misfolding-
avoidance hypothesis predicts that the fraction of matching
codons in a gene (fmatching codon) is greater for highly
expressed genes than for lowly expressed ones. Indeed, we
found fmatching codon to be positively correlated with the level of
gene expression (r¼0.43; Po10�166; Figure 4B). Here, we used
protein expression levels measured by immunodetection of
tagged proteins (Ghaemmaghami et al, 2003). Use of micro-
array-based mRNA expression levels (Holstege et al, 1998)
yielded similar results (r¼0.36; Po10�153). Although the
above analyses used sequence-based estimation of DDG, we
repeated them using protein-structure-based estimation of
DDG on a subset of yeast proteins whose structures (or
homologs’ structures in most cases) have been experimentally
determined (see Materials and methods). Although the sample
size is reduced, the obtained results are similar (Supplemen-
tary Figure S6).

In calculating pmisfold, we assumed that the mistranslation
rates of preferred synonymous codons are one-fifth that
of unpreferred synonymous codons (Figure 4A). Because
preferred codons appear more frequently in highly expressed
genes than in lowly expressed genes (Hershberg and Petrov,
2008), fmatching codon may be greater in more highly expressed
genes even without the selection against protein misfolding. To
examine whether factors other than synonymous codon usage
bias also contribute to the correlation between fmatching codon

and gene expression level, we define amino-acid residues in

Protein misfolding and protein evolutionary rate
J-R Yang et al

6 Molecular Systems Biology 2010 & 2010 EMBO and Macmillan Publishers Limited



wild-type proteins as matching residues if they match the
amino acids encoded by the codons with the smallest pmisfold.
We calculated the fraction of such matching amino-acid
residues (fmatching aa) in each wild-type protein. Because
different synonymous versions of a gene have the same
fmatching aa, it is not influenced by synonymous codon usage
bias. We found a significant correlation between fmatching aa

and the gene expression level, measured at either the protein
(r¼0.074; Po10�5; Figure 4C) or mRNA (r¼0.044; Po0.002)
level. Thus, compared with lowly expressed proteins, highly
expressed ones use not only more preferred codons to reduce
mistranslation but also more misfolding-minimizing amino-
acid residues. Because gene expression level correlates with
fmatching codon much better than with fmatching aa, the majority of
the covariance between expression level and fmatching codon is
due to codon usage bias. Although biased synonymous codon
usage results, at least in part, from the selection against protein
misfolding, it may also have other causes (see Discussion).
Thus, part of the covariance between expression and
fmatching codon may be due to factors unrelated to misfolding

avoidance. Consequently, our results do not imply that
misfolding avoidance primarily results in the use of preferred
synonymous codons rather than preferred amino acids.

It has been reported that amino acids that are more costly to
synthesize are used less frequently in highly abundant
proteins than in lowly expressed proteins (Akashi and
Gojobori, 2002). This biased amino-acid usage potentially
affects fmatching aa and thus needs to be controlled. Using
previously published amino-acid synthesis cost data (Wagner,
2005), we calculated the mean energy cost per amino-acid
residue for each yeast gene. A positive correlation between
fmatching aa and the energy cost is found under both respiratory
(r¼0.42; Po10�160) and fermentative (r¼0.095; Po10�8)
conditions, suggesting that the underuse of costly amino acids
in highly abundant proteins might have weakened the positive
correlation between fmatching aa and expression level. Indeed, a
higher correlation between fmatching aa and expression level
was found after the energy cost of amino acids was controlled
(respiratory condition: r¼0.114; Po10�11; fermentative con-
dition: r¼0.0899; Po10�7; partial correlation).

Figure 4 Codons minimizing the probability of protein misfolding are used more frequently in highly expressed yeast genes than in lowly expressed genes.
(A) An example showing the relative protein misfolding probability (pmisfold) of the yeast gene YDR071C (encoding polyamine acetyltransferase) and those of its 60
mutants that each have the 164th codon of the gene replaced by one of the other 60 sense codons. Note that pmisfold is the misfolding probability of a mutant gene relative
to that of the wild-type gene. The wild-type codon at this position is marked in blue. Bars are boxed for preferred synonymous codons and unboxed for unpreferred
synonymous codons of each amino acid. The inset is an enlarged figure that better shows small differences in pmisfold among some synonymous mutants.
(B) The fraction (fmatching codon) of wild-type codons that match the codons with the smallest pmisfold is positively correlated with protein expression level. (C) The fraction
(fmatching aa) of wild-type amino acids that match the amino acids encoded by the codons with the smallest pmisfold is positively correlated with protein expression level. In
both B and C, genes are separated into 10 equal-size bins. The expression ranges of the 10 bins are [49.2, 358], (358, 688], (688, 1140], (1140, 1630], (1630, 2250],
(2250, 3130], (3130, 4870], (4870, 7720], (7720, 18 000], and (18 000, 1 260 000], respectively. Error bars indicate standard errors. Correlations and P-values are
estimated from unbinned data, using Spearman’s rank correlation tests. (D) Comparison of fmatching codon between paralogous genes in yeast. Red dots show gene pairs
with at least a 20-fold expression difference, whereas gray dots show gene pairs with a o20-fold expression difference. There are significantly more red dots above the
diagonal line than expected by chance (P¼3.72� 10�3, binomial test). (E) Comparison of fmatching aa between paralogous genes in yeast. Colors have the same
meanings as in D. There are significantly more red dots over the diagonal line than expected by chance (P¼0.0357, binomial test).
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In all of the above analyses, we assumed that proteins of
different expression levels are comparable, which may not be
true if proteins of different expression levels represent vastly
different structures or functional categories. A better compar-
ison would be between paralogous proteins that have different
expression levels, because paralogous proteins originate from
the same ancestral protein through gene duplication and thus
usually belong to the same functional categories and have
similar structures (Zhang, 2003). We examined 308 pairs of
yeast paralogous genes to test whether the more abundant
protein of a duplicate pair tends to have a higher fmatching codon

than that of the less abundant protein. We found that this is
true for 51.6% of duplicate pairs (all dots in Figure 4D), not
significantly greater than 50% (P¼0.61; binomial test).
However, when a subset of duplicates, in which the expression
ratio of the two paralogs exceeds 20, is examined (red dots in
Figure 4D), this fraction increases to 78.6%, significantly
greater than 50% (P¼0.0037). Similarly, when all duplicate
pairs are examined, 45.5% show a higher fmatching aa for the
more abundant paralog of the pair (P¼0.12; all dots in
Figure 4E). However, when only those pairs with an
expression ratio exceeding 20 are examined, this proportion
increases to 71.4% (P¼0.036; red dots in Figure 4E). These
results are conservative, because the control for amino-acid
synthesis cost would improve the correlations. Thus, our
findings from duplicates further support the second prediction
of the protein-misfolding-avoidance hypothesis that codons
and amino acids that minimize protein misfolding are
preferentially used in highly expressed genes.

To test the third prediction of our hypothesis, let us first
define the mutational sensitivity of a codon by the increase in
protein misfolding probability caused by a random nonsynon-
ymous mutation in that codon. The third prediction can be
rephrased as a stronger evolutionary conservation of amino-
acid residues encoded by more sensitive codons than those
encoded by less sensitive ones in the same gene. We measure
the mutational sensitivity of a focal codon by averaging pmisfold

of all one-nucleotide nonsynonymous neighbors of the focal
codon (Figure 5A) and do so for all codons of all yeast genes.
By comparing orthologous proteins of S. cerevisiae and its
sister species S. paradoxus, we identified conserved amino-
acid positions and varied positions in each protein. In each S.
cerevisiae protein, we then calculate the mean codon
sensitivity at conserved positions (Sconserved) and at varied
positions (Svaried). Consistent with our prediction, significantly
more proteins show Sconserved4Svaried (60.4%) than the
opposite (39.6%) (Po10�42; binomial test) and the proportion
of proteins showing Sconserved4Svaried increases with expres-
sion level (r¼0.299; P¼0.003; Figure 5B). We also calculated
Sconserved/Svaried for each gene and found a positive correlation
between the expression level and Sconserved/Svaried (r¼0.134;
Po10�12) (Figure 5C).

In the above analyses, we defined the mutational sensitivity
of a codon by averaging pmisfold of all one-nucleotide
nonsynonymous neighbors of the focal codon (Figure 5A).
One may argue that a better measure of sensitivity is the
minimal pmisfold of all one-nucleotide nonsynonymous neigh-
bors of the focal codon (Supplementary Figure S7A), because
an amino-acid residue does not need to be conserved when the
minimal pmisfold is low. Indeed, using this modified definition

of sensitivity, we were able to repeat the results of Figure 5, and
the new correlations are slightly stronger than those of Figure 5
(Supplementary Figure S7).

Taken together, our tests of the three predictions offer the
strongest empirical evidence thus far for the role of protein-
misfolding-avoidance in generating the E–R anticorrelation.

Figure 5 Evolutionary conservation of amino acid residues correlates with the
mutational sensitivity to misfolding. Proteins with at least three varied sites are
considered. (A) An example (codon no. 58 of YAL001C) showing the
measurement of the mutational sensitivity (S) of a codon, which is defined by
the mean pmisfold of its one nonsynonymous mutation neighbors indicated by the
dotted red line. Here, pmisfold is the protein misfolding probability of a mutant
relative to that of the wild-type gene. The nucleotide differences from the wild-
type as well as the altered amino acids are colored in red. (B) Fraction of genes
with Sconserved4Svaried increases significantly with expression level. Here,
Sconserved and Svaried are the mean S-values for codons with conserved and
varied amino acids between S. cerevisiae and S. paradoxus orthologs,
respectively. The genes are grouped into 100 equal-size bins according to the
yeast protein expression level. (C) The ratio of Sconserved and Svaried within a gene
is positively correlated with its expression level. In B and C, correlation
coefficients and significance levels are determined by Spearman’s rank
correlation tests.
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Discussion

The strong anticorrelation between the expression level of a
protein and its rate of sequence evolution (Pal et al, 2001) is
one of the most surprising and puzzling findings of molecular
evolution in the postgenomic era. The innovative proposal of
the translational robustness hypothesis (Drummond et al,
2005) offers a plausible explanation for this anticorrelation
and provides an entirely new perspective on the previously
unrecognized impact of protein mistranslation and protein
misfolding on protein sequence evolution. In this work, we
demonstrated by theoretical calculation and computer simula-
tion that error-free misfolding is a non-negligible source of
protein misfolding and that selection against misfolding is
more effective in reducing error-free misfolding than error-
induced misfolding. We suggest that the overarching protein-
misfolding-avoidance hypothesis that considers both sources
of protein misfolding is superior to the translational robustness
hypothesis for explaining the E–R anticorrelation.

In estimating the percentage of misfolded molecules, we and
previous authors (Drummond and Wilke, 2008) both assumed
thermodynamic equilibrium of protein unfolding in vivo. In
reality, however, some proteins retain their functional con-
formation through kinetic stability instead of thermodynamic
stability (Sanchez-Ruiz, 2010). Nevertheless, thermodynamic
stability can often translate directly to kinetic stability (Parsell
and Sauer, 1989; Sanchez-Ruiz, 2010), although this fact does
not necessarily mean that most proteins are in thermodynamic
equilibrium in vivo. A recent proteomic-scale analysis of
kinetic stability revealed that only 5.6% of 900 examined
proteins are kinetically stable (Xia et al, 2007), but the false-
negative rate may be non-negligible. Thus, although the
assumption of thermodynamic equilibrium is likely appro-
priate for most proteins, we do not know accurately the
proportion of proteins under thermodynamic equilibrium.
When the activation free energy is known for many proteins,
kinetic stability can also be included in the consideration of
protein misfolding using a formula similar to Equation (3).

In addition to generating the E–R anticorrelation, it was
previously shown that the translational robustness hypothesis
can also explain the phenomenon of stronger synonymous
codon usage biases of highly expressed genes than lowly
expressed genes, under the assumption that unpreferred
codons have higher mistranslation rates than preferred codons
(Drummond and Wilke, 2008). Because the overarching
protein-misfolding-avoidance hypothesis includes minimizing
mistranslation-induced misfolding, we predicted that this
hypothesis can also explain the codon usage bias, and
confirmed it in our molecular-level evolutionary simulation
(Supplementary Figure S8). Interestingly, however, the corre-
lation between the gene expression level and the fraction of
preferred codons (Fop) in the gene is weaker under the
overarching hypothesis (r¼0.63; Po10�56; Supplementary
Figure S8B) than under the translational robustness hypoth-
esis (r¼0.77; Po10�97; Supplementary Figure S8A). Further-
more, Fop in very highly expressed genes is lower under the
overarching hypothesis (B0.55) than under the translational
robustness hypothesis (B0.85) (Supplementary Figure S8).
These findings are not unexpected, because the relative
importance of using preferred codons to minimize protein

misfolding is decreased in the presence of error-free misfold-
ing. Because error-free misfolding exists in reality, our results
suggest that the power of misfolding avoidance in explaining
codon usage bias was likely slightly overestimated in the
previous study (Drummond and Wilke, 2008). It is worth
noting that the strongest observed correlation between gene
expression level and Fop of any species is between 0.5 and 0.6,
in yeast and nematode (Drummond and Wilke, 2008). Thus,
the simulation with both sources of misfolding produced
results that are more similar to the empirical observation than
the simulation with error-induced misfolding only. This said,
we caution that owing to many simplifying assumptions made
in the simulation, the quantitative results from the simulation
may not be directly comparable with empirical observations.
In this context, a recent empirical study provided strong
evidence for the role of protein-misfolding-avoidance in
generating codon usage bias. It was shown that, within a
protein, preferred codons tend to be used at residues in which
a random amino-acid change would substantially decrease the
unfolding energy of the protein (Zhou et al, 2009). Further-
more, the finding that evolutionary conserved amino-acid
residues tend to be encoded by preferred codons is also
consistent with the hypothesis that preferred codons are used
to minimize mistranslation-induced misfolding (Akashi, 1994;
Stoletzki and Eyre-Walker, 2007; Drummond and Wilke,
2008). However, it remains possible that protein-misfolding-
avoidance is not the sole or even the major cause of codon
usage bias (Kudla et al, 2009).

In this work, we provided empirical evidence for three key
predictions of the overarching protein-misfolding-avoidance
hypothesis of the E–R anticorrelation. Two of our tests
rely heavily on the computational prediction of DDG by
I-mutant2.0 (Capriotti et al, 2005), a support-vector-machine-
based method trained by experimental data (Bava et al, 2004).
Although it has been shown that the correlation between the
predicted DDG values of this method and experimentally
determined values are satisfactorily high (0.62 for sequence-
based prediction and 0.71 for structure-based prediction)
(Capriotti et al, 2005), prediction errors are inevitable. None-
theless, random prediction errors cannot generate the patterns
observed in Figures 4 and 5. Rather, random prediction errors
likely have weakened the signals of protein-misfolding-
avoidance. Thus, the true signals of the selection against
protein misfolding may be stronger than that presented in
Figures 4 and 5.

It is important to emphasize that the predictions of the
overarching protein-misfolding-avoidance hypothesis tested
here can also be made from the translational robustness
hypothesis, because of the similarity in the consequences of
selection against the two types of misfolding. Our tests are not
intended to differentiate between these two hypotheses, as it is
clear that the overarching hypothesis is both more inclusive
and more accurate than the translational robustness hypoth-
esis. One of the rationales behind the initial proposal of the
translational robustness hypothesis was the observation that
the rate of protein sequence evolution negatively correlates
with the amount of mRNA (and by inference the amount of
translation) slightly better than with the amount of protein
(Drummond et al, 2005). Similar to the amount of error-
induced misfolding, the amount of error-free misfolding is also
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expected to be proportional to the number of protein
molecules synthesized, which is equivalent to the amount of
translation. However, protein concentrations and mRNA
concentrations are highly correlated (Ghaemmaghami et al,
2003), and the small difference between their correlations with
the rate of protein evolution is probably attributable to a larger
measurement error of protein concentrations than that of
mRNA concentrations (Lu et al, 2007).

Besides the evidence we provided for protein-misfolding-
avoidance, the hypothesis is also supported by several other
pieces of evidence from empirical data, although many of them
are only circumstantial and are not predicted exclusively by
protein-misfolding-avoidance. First, a recent study showed
that highly expressed and slowly evolving proteins share
compositional properties with thermophilic proteins (Cherry,
2010). Because, at the same temperature, thermophilic
proteins tend to be more stable (i.e., having higher DG) than
mesophilic proteins, this finding is consistent with the first
prediction of the protein-misfolding-avoidance hypothesis that
highly expressed proteins are more stable than lowly
expressed ones. Second, misfolding may be prevented or
remedied by chaperoning processes. Consistent with our
hypothesis, overexpression of the chaperonin GroEL in
Escherichia coli, which enhances chaperoning, leads to faster
sequence evolution of target proteins (Tokuriki and Tawfik,
2009). Third, it was recently reported that sporadic targets of
the E. coli chaperonin GroEL use preferred synonymous
codons more frequently than obligate targets of GroEL
(Warnecke and Hurst, 2010). This phenomenon can be
explained by decreased pressures for using preferred codons
to reduce mistranslation of the obligate targets of GroEL
(Warnecke and Hurst, 2010). Fourth, the protein-misfolding-
avoidance hypothesis predicts that, within multidomain
proteins, different domains, on average, should evolve at
substantially closer rates than the same domains in different
proteins. Substantial homogenization of evolutionary rates in
multidomain proteins was observed in both animals and
plants, although highly significant differences between do-
main-specific rates remained (Wolf et al, 2008). Fifth, a recent
study showed that a universal pattern of the evolutionary rate
variation among different proteins of the same organism can
be explained by the physics of protein folding (Lobkovsky
et al, 2010). Despite the existence of substantial circumstantial
and direct evidence for the role of selection against protein
misfolding in shaping protein evolution, one crucial piece of
evidence is still lacking. That is, the quantitative level of the
generic toxicity of protein misfolding is unknown. Without
such information, it is difficult to quantify precisely the impact
of protein-misfolding-avoidance in protein evolution.

It is important to note that, although the gene expression
level appears to be the major determinant of protein
evolutionary rate in some species such as bacteria and yeast
(Rocha and Danchin, 2004; Drummond et al, 2006), it does not
seem to be so in some other species. For example, gene
expression level is not as important as gene essentiality, gene
structure, and protein subcellular localization in determining
the mammalian protein evolutionary rate (Liao et al, 2006,
2010). A recent analysis of nematode and fruit fly proteomic
data also suggested that translation-independent factors are
more important rate determinants than translation-dependent

factors (Wolf et al, 2010). The same study also proposed a
deleterious effect of error-free protein misfolding caused by the
loss of functional molecules, rather than the generic toxicity of
protein misfolding, as proposed in the translational robustness
hypothesis and in the protein-misfolding-avoidance hypoth-
esis. The consequences of the two types of selection are very
different. For example, under the proposal by Wolf et al (2010),
fitness is increased when the gene expression level is
enhanced. Under our hypothesis, an increase of expression
level decreases fitness because of the production of more
misfolded molecules. In the future, it will be important to
explore the reasons of protein-misfolding-avoidance and study
whether and why it is more important to certain organisms
than others.

Materials and methods

Genomic data and comparative analysis

Protein and DNA sequences of S. cerevisiae were downloaded from the
Saccharomyces Genome Database (Engel et al, 2010). Energy costs for
amino-acid biosynthesis in yeast during respiratory and fermentative
conditions were previously reported (Wagner, 2005). S. paradoxus
orthologs of S. cerevisiae genes, as well as their sequences, were
extracted from Fungal Orthogroups Repository (Wapinski et al,
2007). Paralogous S. cerevisiae genes and their alignments were
obtained from a previous study (Wang and Zhang, 2009). We used
microarray-based measurements of S. cerevisiae mRNA expression
levels (Holstege et al, 1998) and immunodetection-based measure-
ments of protein expression levels (Ghaemmaghami et al, 2003).
The numbers of nonsynonymous substitutions per nonsynonymous
site (dN) between S. cerevisiae and S. paradoxus orthologs were
estimated using a maximum-likelihood method implemented in
PAML (Yang, 2007). When protein structures were used for DDG
prediction, each yeast protein was BLASTed against all PDB entries
(Berman et al, 2000) using an E-value cutoff of 10�6. The best-hit PDB
entry was used as the native structure if 480% of the yeast protein
could be aligned to it and the sequence identity of the aligned region
was at least 40%.

Molecular-level evolutionary simulations

Following a recent study (Drummond and Wilke, 2008), we
implemented a lattice-based protein structure model (Taverna and
Goldstein, 2002a, b). First, a randomly generated 75-nucleotide DNA
sequence that has an open reading frame starting with ATG was
translated into protein. We then folded the protein sequence following
a 5� 5 lattice model, with each amino acid occupying one point in the
lattice. Folding energy of any given structure was the sum of the
contact energies of adjacent residues (Miyazawa and Jernigan, 1985).
Among all 1081 possible conformations of a protein, the one with the
largest unfolding energy was defined as the native structure, and all
other 1080 structures were treated as misfolded. The stability of the
protein was then calculated by

DG ¼ Ef � kT ln
XM
i¼1

eEi=kT

 !
: ð5Þ

Here, k¼1.986 cal/mol/K, T¼302 K, Ef is the unfolding energy of the
native structure, Ei is the unfolding energy of the ith misfolded
structure, and M is the total number of misfolded structures (Wilke,
2004). In the simulation, a certain DGmin was set, and only wild-type
sequences with DG4DGmin are considered as functional genes. We
used DGmin¼0 and generated 500 random sequences to represent 500
genes. The native protein structure for a gene was fixed during
subsequent evolution. For any protein sequence of that gene that
appears in evolution or after translation, its misfolding probability was
calculated using Equation (1), where DG was the unfolding energy of
the specific protein sequence in the fixed native protein structure for
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the gene. Errors were introduced in translation such that on
average 20% of protein molecules each contain one error when
synonymous codons are equally frequent. In terms of mistranslation
patterns, we extrapolated relative probabilities of nine possible single-
nucleotide translational errors for each codon, following empirical
spectrum of translational errors (Freeland and Hurst, 1998). For each
amino acid with multiple synonymous codons, we designated
preferred codons and unpreferred codons based on empirical
observations in yeast. The translational error rate of a preferred codon
was assumed to be one-fifth that of an unpreferred codon. We assigned
a per-cell expression level (ranging from 10 to 300 000 protein
molecules) to each of these genes. The actual expression levels were
adjusted such that the numbers of correctly folded molecules met the
above assigned levels. Second, in silico evolution of a population of
1000 haploid unicellular organisms was carried out to study the
evolution of each of the 500 genes. Each sequence evolves with a
mutation rate of 10�5 per nucleotide site per generation. Genetic drift
and natural selection were then simulated. The probability of
reproduction was proportional to the fitness of the sequence, which
was determined by

FðmÞ ¼ e�cm; ð6Þ
where c¼0.0001 and m is the number of misfolded molecules
(Drummond and Wilke, 2008). The evolutionary process was repeated
for 100 000 generations to allow DG to reach equilibrium. Third, we
further evolve the population for another 50 000 generations to
calculate the number of amino-acid substitutions fixed in the entire
population per sequence during these 50 000 generations.

To compare the relative contributions of error-free and error-
induced misfolding with the anticorrelation between the expression
level and evolutionary rate, we conducted three simulations. In the
first simulation, we assumed that all error-free molecules fold
correctly. In the second simulation, we assumed no mistranslation.
In the last simulation, we considered both error-free and error-induced
misfolding. To examine the robustness of our simulation results, we
repeated the simulations with different parameters. Briefly, we
respectively modified the mistranslation rate ratio between preferred
and unpreferred codons to either 0.5 or 0.1, used proteins of 16 amino
acids (4� 4 lattice), and increased DGmin to 1 kcal/mol in four
additional sets of simulations. We were not able to examine proteins
longer than 25 amino acids because of the exponential increase in the
number of possible protein conformations and thus computational
time with protein length.

Experimentally measured DG and Tm

Experimentally measured unfolding energy (DG) values of yeast
wild-type proteins were extracted from ProTherm (Bava et al,
2004). We removed prions and considered only the DG values
obtained in the absence of denaturants (termed DGH2O in ProTherm).
From the various conditions under which DG was measured,
we chose those that are closest to pH 7 (47 is preferred over o7)
and 251C for each protein. For a protein, if there are multiple DG
measures under these criteria, they were averaged to obtain a single
DG value.

Protein aggregation propensity

Aggregation propensities of yeast wild-type proteins were computa-
tionally estimated by TANGO (Fernandez-Escamilla et al, 2004) and
were compared as in a previous study (Chen and Dokholyan, 2008).
We also repeated the above analysis using aggregation propensities
predicted by AGGRESCAN (Conchillo-Sole et al, 2007; de Groot and
Ventura, 2010).

Misfolding probabilities of wild-type and mutant
yeast proteins

The total protein misfolding probability for a wild-type yeast gene,
Pmisfold(wt), is the sum of the probability of error-free misfolding,
PEF(wt), and that of error-induced misfolding, PEI(wt). According to

Equations (3 and 4),

PEFðwtÞ ¼ qe�DG=ðkTÞ ð7Þ
and

PEIðwtÞ ¼
X

i

½hie
�ðDGþDDGiÞ=ðkTÞ�: ð8Þ

Here, q is the probability that a protein molecule contains no
translational error, hi is the probability of the ith possible translational
error in the protein, DG is the unfolding energy of the wild-type error-
free protein (which is always positive), and DDGi is the increase in
unfolding energy caused by the ith translational error (which is usually
negative). Note that in Equation (8), we assumed that the increase in
the unfolding energy of a molecule caused by two amino-acid changes
equals the sum of the increases caused by each change. Combining
Equations (7 and 8), we have

PmisfoldðwtÞ ¼ PEFðwtÞ þ PEIðwtÞ

¼ qe�DG=ðkTÞ þ
X

i

½hie
�ðDGþDDGiÞ=ðkTÞ�: ð9Þ

Now, let us consider a mutant gene that differs from the wild-type in
one codon and denote the increase in unfolding energy of the protein
caused by this single codon replacement by DDGmt. Thus, the total
protein misfolding probability for this mutant gene is

PmisfoldðmtÞ ¼ PEFðmtÞ þ PEIðmtÞ

Eq0e�ðDGþDDGmtÞ=ðkTÞ þ
X

i

½h0ie�ðDGþDDGmtþDDG0
i
Þ=ðkTÞ� ; ð10Þ

where q0 is the probability that a mutant protein molecule contains no
translational error, h0 i is the probability of the ith possible translational
error in the mutant protein, and DDG0i is the increase in unfolding
energy caused by the ith translational error in the mutant protein. The
approximation sign reflects the fact that the total increase in unfolding
energy caused by the codon replacement and a translational error is
approximately the sum of the individual increases of the unfolding
energy. Now let us define the relative misfolding probability of the
mutant gene by

pmisfoldðmtÞ ¼
PmisfoldðmtÞ
PmisfoldðwtÞ

: ð11Þ

It can be shown that

pmisfoldðmtÞ ¼
q0e�ðDGþDDGmtÞ=ðkTÞ þ

P
i

½h0ie�ðDGþDDGmtþDDG0iÞ=ðkTÞ�

qe�DG=ðkTÞ þ
P

i

½hie�ðDGþDDGiÞ=ðkTÞ�

¼
q0 þ

P
i

½h0ie�DDG0i=ðkTÞ�

qþ
P

i

½hie�DDGi=ðkTÞ� e
�ðDDGmtÞ=ðkTÞ:

ð12Þ

Note the disappearance of DG, which is usually unknown, from
Equation (12). To use Equation (12), we estimated DDGmt, DDGi, and
DDG0i by sequence-based I-mutant (Capriotti et al, 2005) predictions
and estimated the translational error rates as follows. Based on (i) the
actual codon usage patterns in 3790 yeast genes weighted by protein
expression levels (Ghaemmaghami et al, 2003), (ii) the empirical
mistranslation patterns previously reported (Freeland and Hurst,
1998), (iii) the assumption that a preferred codon has a per-codon
mistranslation rate that is one-fifth that of an unpreferred codon
(Drummond and Wilke, 2008), and (iv) the average translational error
rate of 5�10�4 per codon (Drummond and Wilke, 2008, 2009), we
determined the probability that a codon is translated correctly and the
probabilities that it is mistranslated into each of the other 19 amino
acids. The hi and h0i values in Equation (12) were simply these
mistranslation probabilities, and the q and q0 values were the product
of the probability of correct translation of every codon for all codons of
the wild-type and mutant genes, respectively. The matrix of 61 sense
codons � 20 amino acids is presented in Supplementary Table S1.
Note that mistranslation of a sense codon to a stop codon was not
considered because of the difficulty in calculating the misfolding
probabilities of truncated proteins. We thus calculated the pmisfold for
all possible single-codon-replacement mutants of each yeast protein
using Equation (12) and set the pmisfold of each wild-type gene at 1.
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For a subset of yeast proteins with structural information or the
structural information of their homologs, we also estimated DDGmt,
DDGi, and DDG0i by structure-based I-mutant predictions. Here, if a
native residue in the PDB record is different from that in the wild-type
yeast sequence, we set the DDG of the yeast wild-type residue as 0 and
change the DDG of other mutants at this position accordingly.

Mutational sensitivity of a codon

Mutational sensitivity of a codon in a wild-type yeast gene is calculated
by averaging pmisfold of all possible mutants that each contain one
nonsynonymous nucleotide mutation in this codon. Because the wild
type has a pmisfold of 1, the mutational sensitivity of a codon measures
the expected misfolding probability after a random nonsynonymous
mutation in the codon, relative to the wild type. For simplicity, we
assumed that all single-nucleotide nonsynonymous changes in a
codon have equal mutation rates.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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