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Phosphatase and tensin homolog deleted on chromosome

ten (PTEN) is an important regulator of phosphatidylino-

sitol-(3,4,5,)-trisphosphate signalling, which controls cell

growth and differentiation. However, PTEN is also highly

expressed in the adult brain, in which it can be found in

dendritic spines in hippocampus and other brain regions.

Here, we have investigated specific functions of PTEN in

the regulation of synaptic function in excitatory hippo-

campal synapses. We found that NMDA receptor activation

triggers a PDZ-dependent association between PTEN and

the synaptic scaffolding molecule PSD-95. This association

is accompanied by PTEN localization at the postsynaptic

density and anchoring within the spine. On the other

hand, enhancement of PTEN lipid phosphatase activity

is able to drive depression of AMPA receptor-mediated

synaptic responses. This activity is specifically required

for NMDA receptor-dependent long-term depression

(LTD), but not for LTP or metabotropic glutamate receptor-

dependent LTD. Therefore, these results reveal PTEN as a

regulated signalling molecule at the synapse, which

is recruited to the postsynaptic membrane upon NMDA

receptor activation, and is required for the modulation of

synaptic activity during plasticity.
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Introduction

Phosphatase and tensin homolog deleted on chromosome ten

(PTEN; also known as MMAC1 or TEP1) was originally

cloned as a tumour suppressor protein (Li et al, 1997; Steck

et al, 1997). PTEN antagonizes phosphatidylinositosl-30-kinase

(PI3K) signalling by dephosphorylating phosphatidylinositol-

(3,4,5,)-trisphosphate (PIP3) to generate phosphatiylinositol-

(4,5)-bisphosphate (PIP2) (Maehama and Dixon, 1999). As a

negative regulator of the PI3K-PIP3 pathway, PTEN restrains

cell proliferation and survival during embryogenesis.

Consistent with this developmental function, PTEN null

mice die during embryogenesis, whereas heterozygotes are

tumour prone and display enlargement of multiple organs

(Stiles et al, 2004). Similarly, alterations in the function of

PTEN are of major relevance for the incidence of a wide

variety of human cancers (Li et al, 1997; Pendaries et al,

2003).

In the central nervous system, PTEN is expressed in most,

if not all neurons. It is present in dendrites and spines of

cerebral cortex, cerebellum, hippocampus and olfactory bulb

(Perandones et al, 2004). Mutation or inactivation of PTEN

contributes to brain tumours, macrocephaly, seizures and

ataxia (Backman et al, 2001; Kwon et al, 2001; Eng, 2003).

PTEN mutations have been also associated with mental

retardation and autism spectrum disorders (Butler et al,

2005; Kwon et al, 2006). At the cellular level, neurons lacking

PTEN develop larger and more branched dendrites, which

harbour more synapses (Jaworski et al, 2005; Kwon et al,

2006; Fraser et al, 2008). Therefore, it is likely that the

neurological deficits associated to PTEN mutations are

derived from aberrant neuronal growth and connectivity

during brain development. These widespread morphological

changes may also be the reason for the pleiotropic effects on

synaptic function and plasticity that have been reported

for mice with reduced PTEN expression (Wang et al, 2006;

Fraser et al, 2008).

Besides these developmental aspects, the PIP3 pathway has

specific functions at synapses in differentiated neurons. For

example, acute blockade of PI3K, the PIP3 synthesizing

enzyme, has been shown to impair some forms of memory

formation (Chen et al, 2005) and long-term potentiation

(LTP) in hippocampal slices (Sanna et al, 2002; Tang et al,

2002; Cammalleri et al, 2003; Opazo et al, 2003). The PIP3

pathway has also been linked to AMPAR trafficking (Qin et al,

2005) and synaptic localization (Arendt et al, 2010) in hippo-

campal neurons. However, a specific function for PTEN in

synaptic transmission or plasticity in developed neurons has

not been pinpointed yet.

From a mechanistic point of view, PTEN possesses a PDZ-

binding motif at its C-terminus (residues Thr401-Lys402-Val403-

COOH), which interacts with multiple PDZ domain-containing

proteins, such as the scaffolding proteins MAGI-1/2/3, hDlg/

SAP97 and the Ser/Thr kinase MAST205 (Bonifant et al,

2007). The physiological consequences of these PDZ-depen-

dent interactions remain poorly characterized; however, it has

been shown that the binding of PTEN to specific PDZ domain-

containing proteins contributes to PTEN protein stability

(Valiente et al, 2005). Nevertheless, no interaction between

PTEN and synaptic PDZ proteins has been reported yet.

In this study, we have investigated specific functions of

PTEN in synaptic plasticity, separate from its developmental
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functions. In particular, we have found that NMDA receptor

activation triggers the association between PTEN and post-

synaptic density-95 (PSD-95) through a PDZ-dependent inter-

action. This interaction leads to the recruitment and

anchoring of PTEN to the postsynaptic membrane, and

possibly mediates a specific function of PTEN in the expres-

sion of long-term depression (LTD). These results have

revealed PTEN as a regulated component of the intracellular

signalling machinery that controls synaptic transmission and

plasticity at hippocampal excitatory synapses.

Results

NMDA receptor activation regulates a PDZ-dependent

association between PTEN and PSD-95

As an initial step to evaluate potential functions of PTEN at

synapses, we tested its association with PSD-95, a critical

regulator of synaptic function and plasticity (El-Husseini

et al, 2000; Ehrlich and Malinow, 2004; Bhattacharyya et al,

2009). To this end, we immunoprecipitated PTEN from total

hippocampal extracts, and the presence of co-immunopreci-

pitated proteins was analysed by western blot (see Materials

and methods). As shown in Figure 1A (upper panels,

‘Control’ lanes), there was a detectable association between

PSD-95 and PTEN, which was specific, according to the

immunoprecipitation with a non-immune (‘n.i.’) antibody.

Interestingly, the association between PSD-95 and PTEN

appeared to be regulated by activity, as it was increased

after 5 min bath application of 20mM NMDA (Figure 1A,

compare ‘Control’ and ‘NMDA’ lanes), and this increase

was abolished by incubation with the NMDAR antagonist

AP5 (Figure 1B, ‘NMDAþAP5’ lanes). There was also a

weak, but detectable, interaction between PTEN and MAGI-

2, another PDZ protein known to associate with PTEN

(Wu et al, 2000). However, this interaction was not altered

by NMDAR activation (Figure 1A, middle panels).

We then tested whether the association between PSD-95

and PTEN was specifically regulated by NMDAR activation or

whether it could also be induced by other forms of neuronal

activation or depolarization. To this end, we compared the

amount of PTEN-PSD-95 co-immunoprecipitation from slices

incubated for 5 min with NMDA (20 mM), AMPA (100 mM) or

KCl (50 mM). A control immunoprecipitation with an n.i.

antibody was also carried out. Interestingly, the association

between PTEN and PSD-95 was only enhanced in slices

treated with NMDA, but not with AMPA or KCl (Figure 1C,

right panel; total protein inputs for all conditions are shown

in the left panel). To evaluate the time course of this associa-

tion, we carried out immunoprecipitations at different times

after the 5 min incubation with NMDA. As shown in Figure

1D and E, the association between PTEN and PSD-95 persists

for a period of time after the end of NMDAR activation,

although it gradually declines by the end of the time course.

It should also be pointed out that the fraction of PSD-95

associated with PTEN is rather low at all times: around 1% of

the total PSD-95 under basal conditions, roughly doubling

after NMDA induction (see quantification in Figure 1E). The

regulated association between PSD-95 and PTEN was also

observed after immunoprecipitation of PSD-95 and detection

of PTEN as a co-precipitated protein (Supplementary Figure

1). This regulation appears to be specific for PTEN, because

the interaction of PSD-95 with another PDZ-dependent

partner (the NMDA receptor) was not enhanced by this treat-

ment (Supplementary Figure 1, PTEN versus GluN1 panels).

To further characterize the structural requirements of this

regulated association between PSD-95 and PTEN, we ex-

pressed GFP-tagged PTEN in organotypic slice cultures of

rat hippocampus for 15–20 h (GFP is fused to the N-terminus

of PTEN). Confocal imaging of infected CA1 neurons showed

widespread distribution of GFP-PTEN, including distal den-

drites and spines (Figure 1F). Recombinant GFP-PTEN was

functional, as evidenced from its ability to antagonize the

PI3K/PIP3 pathway, leading to a decrease in Akt phospho-

rylation at Ser473 (Stambolic et al, 1998) (Supplementary

Figure 2A and B). Total protein extracts were prepared from

untreated slices or from slices treated with NMDA, AMPA or

KCl, as described above. Immunoprecipitations were carried

out with an anti-GFP antibody, and the immunoprecipitated

fractions were analysed by western blot. As shown in

Figure 1G, PSD-95 was co-precipitated with GFP-PTEN only

after NMDAR activation, but not after AMPA or KCl treat-

ment, similar to the results obtained with endogenous PTEN

(Figure 1C). The kinetics of GFP-PTEN association with PSD-

95 were also similar to the endogenous protein (Figure 1H,

right panels; inputs for all conditions are shown in the left

panels). As control, cytosolic GFP did not co-immunopreci-

pitate with PSD-95 with or without NMDA (Figure 1H).

PDZ-dependent interactions anchor PTEN at dendritic

spines upon NMDA receptor activation

To determine whether the association between PTEN and

PSD-95 was PDZ dependent, we generated a PTEN mutant

lacking the last four amino acids, which contain the PDZ

ligand motif (-ITKV*). We then carried out co-immunopreci-

pitations from slices expressing GFP, full-length GFP-PTEN or

the truncated form of PTEN lacking its PDZ-binding motif

(GFP-PTEN-DPDZ) (see Supplementary Figure 2C for a wes-

tern blot analysis of the expression of this and other PTEN

derivatives used in this study). As shown in Figure 2A (upper

right panel), the association with PSD-95 was only detectable

with GFP-PTEN, but not with GFP-PTEN-DPDZ or cytosolic

GFP, and only after NMDAR activation. This result confirms

that the association between PTEN and PSD-95 requires the

PDZ motif at the PTEN C-terminus.

PSD-95 is a well-known synaptic scaffolding molecule that

organizes multiple signalling complexes at the synapse

(Sheng, 2001). Therefore, our biochemical results described

above suggest that PTEN may be recruited and anchored at

synapses after NMDAR activation. To test this possibility, we

evaluated real-time dynamics of PTEN in dendritic spines

using fluorescence recovery after photobleaching (FRAP; see

fluorescence images from a representative experiment in

Figure 2B). GFP-tagged PTEN was expressed in organotypic

hippocampal slices, and the NMDA treatment was carried out

as described above. Spines expressing GFP-PTEN were photo-

bleached and the extent of fluorescence recovery was mea-

sured before and after NMDAR activation (‘þ 5’, ‘þ 15’ and

‘þ 25’ min; for simplicity, the ‘þ 15-min’ time point is only

shown in the summary Figure 2F). As shown in Figure 2C

(white circles), approximately 50% of the GFP-PTEN signal is

recovered in the spine over a time course of 10–20 s, arguing

that 50% of GFP-PTEN is stable in spines (over this period of

time) under basal conditions. Intriguingly, GFP-PTEN fluore-

scence recovered to a significantly greater extent (around
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70%) 5 min after the NMDA treatment (Figure 2C, red cir-

cles). This result indicates an increase in PTEN mobility

rapidly after NMDAR activation. In contrast, 20–30 min

after the NMDA treatment, the recovery of fluorescence of

GFP-PTEN in the spine was drastically reduced (around 20%;

Figure 2C, dark red circles; Figure 2F), implying that a larger

fraction of PTEN is retained in spines in a long-lasting

manner after NMDAR activation.

To test the function of PDZ interactions in this behaviour,

we carried out similar experiments with the truncated form of
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Figure 1 NMDA receptor-dependent association between PTEN and PSD-95. (A) Total protein extracts from hippocampal slices were
immunoprecipitated with anti-PTEN or with a non-immune (‘n.i’) antibody (‘Control’ lanes). Some slices were treated with 20 mM NMDA
for 5 min before the immunoprecipitation (‘NMDA’ lanes). For all western blots, immunoprecipitated proteins are shown in the right panels,
and 10% of the inputs in the left panels. (B) Similar to (A), but some slices were preincubated with the NMDAR antagonist AP5 before and
during the NMDA treatment (‘NMDAþAP5’). (C) Similar to (A), with slices treated for 5 min with 20mM NMDA, 100mM AMPA, 50 mM KCl or
left untreated (‘Control’), as indicated. (D) Similar to (A), with untreated slices (‘Control’), treated with 20mM NMDA for 5 min (‘NMDA’) or
transferred to regular ACSF for 10 min (þ 100) or 25 min (þ 250) after the NMDA treatment. Asterisk (*) indicates the position of the IgG used
for immunoprecipitation. (E) Quantification of the fraction of PSD-95 co-precipitated with PTEN (as percentage from the total PSD-95 amount
in the input), from five independent experiments as the one shown in (D). The 5 min NMDA treatment is represented with a black bar.
(F) Representative confocal image showing the distribution of recombinant GFP-PTEN in soma, dendrites and spines in a hippocampal neuron
from organotypic slice cultures. (G) Hippocampal slices expressing GFP-PTEN were treated for 5 min with 20mM NMDA, 100mM AMPA, 50 mM
KCl or left untreated (‘Control’), as indicated. Total protein extracts were immunoprecipitated with anti-GFP and analysed by western blot with
anti-PSD-95 (upper panels) or anti-GFP antibodies (lower panels). Asterisk (*) indicates the position of the IgG used for immunoprecipitation.
(H) Hippocampal slices expressing GFP or GFP-PTEN, as indicated, were left untreated (‘Ctrl.’), or were treated with 20 mM NMDA for 5 min
(‘NMDA’), or were transferred to regular ACSF for 10 min after the NMDA treatment (þ 100). Total protein extracts were immunoprecipitated
with anti-GFP and analysed as in (G). Asterisk (*) indicates the position of the IgG used for immunoprecipitation.

PTEN is recruited to synapses for LTD
S Jurado et al

&2010 European Molecular Biology Organization The EMBO Journal VOL 29 | NO 16 | 2010 2829



PTEN lacking the PDZ motif, GFP-PTEN-DPDZ. As shown in

Figure 2D, the extent of fluorescence recovery was also

greater 5 min after NMDAR activation (60% at baseline—

white circles—versus 90% 5 min after the NMDA treatment—

red circles). But in marked contrast with full-length PTEN,

this increase in PTEN mobility was long lasting (20–30 min
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Figure 2 PDZ-dependent interactions and anchoring of PTEN in spines. (A) Coimmunoprecipitation experiments were similar to those in
Figure 1H, with slices expressing GFP, GFP-PTEN or the PDZ truncated mutant GFP-PTEN-DPDZ. Slices were treated with 20mM NMDA for
5 min (‘þNMDA’) or left untreated (‘Control’). Western blot is representative of three independent experiments. (B) Representative confocal
images from an FRAP experiment. Left panel (‘baseline’) shows GFP-PTEN expression in a dendritic branch and its spines. A specific spine
(white dashed circle) was bleached (‘bleaching’) and its fluorescence partially recovered 40 s later (‘recovery’). (C) Quantitative analysis of
FRAP experiments as the one shown in (B). ‘Baseline’ (white symbols) represents FRAP experiments on GFP-PTEN-expressing slices perfused
with ACSF (untreated). The perfusion solution was then switched to ACSF containing 20 mM NMDA; 5 min later, the slices were washed again
with standard ACSF. Further FRAP images were acquired after 5, 15 and 25 min of ACSF wash (‘þ 5 min’, red symbols; ‘þ 25 min’, dark red
symbols; the ‘þ 15 min’ time courses are similar to the ‘þ 25 min’ ones and are only represented in the summary plot in (F), for simplicity).
GFP fluorescence in the spine was normalized to the fluorescence in the unbleached dendritic shaft to correct for ongoing bleaching during
imaging. Average values±s.e.m. are plotted normalized to the baseline before bleaching. Number of spines analysed were 12 (‘baseline’),
8 (‘þ 5 min’) and 9 (‘þ 25 min’) (different spines are imaged at each time point). (D, E) Similar to (C), with slices expressing GFP-PTEN-DPDZ
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(‘þ 25 min’). (F) Recovery fractions from experiments shown in (C–E) were calculated from the fraction of fluorescence recovered 40 s (GFP-
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the 5 min NMDA treatment (the ‘þ 15 min’ is not plotted in panels (C–E) for simplicity). Average values±s.e.m. are plotted for GFP-PTEN
(black symbols), GFP-PTEN-DPDZ (grey symbols) and GFP (white symbols). Statistical significance was calculated with respect to the recovery
fractions before NMDA treatment. There was no significant difference in the case of GFP-expressing neurons.
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after the NMDA treatment) and was never followed by an

enhanced retention in spines (Figure 2D, dark red circles;

Figure 2F).

As a control for potential changes in fluorophore diffusion

in spines as a result of NMDA application, we carried out

similar NMDA-FRAP experiments in slices expressing GFP. As

shown in Figure 2E and F, fluorescence recovery was nearly

complete for GFP and was not altered at any time point in

response to the NMDA treatment. In addition, neither the

rates of recovery nor the net distribution between spines and

dendrites were significantly altered for any of the recombi-

nant proteins after the NMDA treatment (Supplementary

Figure 3A and B, respectively).

Therefore, we conclude that NMDAR activation triggers a

biphasic regulation of PTEN mobility in dendritic spines.

First, there is a rapid and transient increase in mobility,

which is independent from PDZ interactions. This phase is

then followed by a longer-lasting and PDZ-dependent anchor-

ing of PTEN at the spine (Figure 2F).

Biochemical association of PTEN with the PSD after

NMDA receptor activation

To further investigate the recruitment of PTEN to the post-

synaptic machinery upon NMDAR activation, we evaluated

its association with the PSD using standard fractionation

methods (Carlin et al, 1980). To this end, we isolated synapto-

somal fractions from 3 to 4 weeks rats (see Supplementary

data). NMDARs were then activated on the purified synapto-

somes by adding 20mM NMDA and 10 mM glycine. After 5 min

incubation, NMDAR activation was stopped with AP-5 and

synaptosomes were incubated for 10 min more to allow for

PTEN stabilization. Then, the PSD fraction was isolated

as a Triton-insoluble pellet from treated and untreated

synaptosomes and was analysed by western blot (see

Supplementary data).

As shown in Figure 3, the abundance of PTEN at the PSD

was significantly enhanced (two-fold) on the synaptosomes

treated with NMDA plus glycine. The PSD enrichment of

other postsynaptic markers was not altered (PSD-95) or was

slightly decreased (GluN1 and aCaMKII) with this treatment,

ruling out potential artefacts because of non-specific protein

aggregation or precipitation. In conclusion, these experi-

ments indicate that PTEN biochemically associates with the

PSD scaffold after NMDAR activation, in agreement with its

co-precipitation with the PSD-95 protein complex.

Local redistribution of PTEN within dendritic spines

in response to NMDAR activation

To directly visualize the recruitment of PTEN to the post-

synaptic scaffold, we evaluated the ultrastructural localiza-

tion of endogenous PTEN within dendritic spines before and

after NMDA treatment. PTEN has been described to be

present in axonal and dendritic compartments in hippocam-

pal neurons (Perandones et al, 2004), but the fine-scale

distribution of PTEN in dendritic spines had never been

evaluated before.

We characterized the ultrastructural distribution of endo-

genous PTEN in close proximity to synaptic sites using

postembedding immunogold electron microscopy (see

Materials and methods; Figure 4A for representative micro-

graphs). Most synaptic PTEN immunolabelling was found in

the postsynaptic terminal (70% versus 30% presynaptic;

Figure 4B). Within the postsynaptic compartment, PTEN

labelling was predominantly located in the intracellular

space of the spine (Figure 4B, ‘Intra’), outside of the PSD

and the extrasynaptic membrane (‘Extra’).

Remarkably, upon NMDAR activation (25 min after the

NMDA treatment), PTEN fraction in the PSD increased by

six-fold, whereas the amount of PTEN in other synaptic

compartments was not significantly affected (Figure 4B,

black columns; representative micrographs in Figure 4A). In

addition, and consistent with this redistribution of PTEN into

the PSD, we observed a global shift in the population of PTEN

molecules towards the PSD (Figure 4C).

Therefore, and in agreement with our biochemical and

fluorescence imaging data, these data confirm that endogen-

ous PTEN redistributes to the postsynaptic membrane in

response to NMDAR activation.
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Enhancement of PTEN activity depresses AMPA

receptor-mediated synaptic transmission

As an initial step to examine PTEN function in synaptic

transmission, we overexpressed wild-type GFP-PTEN or a

catalytically dead mutant (GFP-PTEN-C124S) in CA1 neurons

from organotypic slice cultures. Importantly, expression of

this mutant produced an increase in phospho-Akt over basal

levels (Supplementary Figure 2A and B), indicating that this

construct behaves as a dominant negative against endogen-

ous PTEN activity in neurons, as it has been described earlier

in other cell types (Maehama and Dixon, 1998).

The effect of GFP-PTEN and GFP-PTEN-C124S on synaptic

transmission was evaluated by simultaneous double whole-

cell recordings from pairs of nearby infected and uninfected

CA1 neurons, under voltage-clamp configuration, while sti-

mulating presynaptic Schaffer collateral fibres (to note, under

this configuration, the recombinant proteins are always ex-

pressed exclusively in the postsynaptic neuron). As shown in

Figure 5A–C, PTEN overexpression produced a significant

depression of AMPAR-mediated currents as compared with

uninfected cells, whereas NMDAR responses remained un-

changed. In contrast, the catalytically dead mutant, PTEN-

C124S, did not alter AMPAR- or NMDAR-mediated transmis-

sion (Figure 5D–F). This result verifies that the catalytic

activity of PTEN is required for the depression of AMPAR-

mediated transmission and that this is not due to virus

infection or non-specific sequestration of regulatory proteins.

Importantly, passive membrane properties, such as input

resistance and holding current (related to basal ionic con-

ductances), and whole-cell capacitance (related to cell size)

were also similar in control and in PTEN-overexpressing

neurons (Supplementary Figure 4).

Intriguingly, the depression of AMPAR responses produced

by overexpression of PTEN was observed for basal synaptic

transmission, that is conditions under which PTEN is not

normally recruited to the postsynaptic membrane (earlier

biochemical and imaging experiments). One possible expla-

nation is that overexpressed PTEN is able to reach the

postsynaptic membrane in the absence of its regulated asso-

ciation with PDZ proteins at the postsynaptic scaffold. To test

this possibility, we carried out similar recordings with neu-

rons overexpressing the truncated PTEN mutant lacking the

PDZ motif (PTEN-DPDZ). As shown in Figure 5G–I, over-

expressed PTEN was able to depress AMPAR responses in the

absence of PDZ-dependent interactions. This depression was

still specific for AMPARs, as compared with NMDARs.

Therefore, although the recruitment of PTEN to the synaptic

scaffold requires NMDAR activation and PDZ-dependent

interactions, these requirements can be overcome by over-

expression of the recombinant protein.

The depression of basal synaptic responses produced by

PTEN might be a consequence of an abnormal cycling of
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AMPARs at synapses. AMPARs are believed to cycle continu-

ously in and out of synapses in an activity-independent

manner, which depends on the interaction between the

GluA2 subunit (also known as GluR2;Collingridge et al,

2009) and NSF (N-ethylmaleimide-sensitive fusion protein)

(Nishimune et al, 1998; Song et al, 1998; Luscher et al, 1999).

When this interaction is impaired by intracellular infusion of

a peptide containing the NSF-binding sequence of GluA2

(pep2m/G10), AMPAR-mediated synaptic transmission

rapidly ‘runs down’ as the receptors continue to be inter-

nalized, but fail to be reinserted at the synaptic membrane

(Nishimune et al, 1998; Luscher et al, 1999). We have used

the same approach to determine whether PTEN affects the

constitutive cycling of AMPA receptors. To this end, we
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recorded AMPAR-mediated synaptic responses from CA1

hippocampal neurons infected with PTEN, whereas infusing

them with the GluA2-NSF peptide pep2m/G10. The peptide

produced a fast ‘run-down’ of synaptic transmission in the

uninfected cells (Figure 5J, white symbols), as expected. This

‘run-down’ was virtually identical in the cells expressing

PTEN (Figure 5J, black symbols), indicating that PTEN

activity does not alter the continuous cycling of AMPARs.

Although PTEN was expressed in postsynaptic CA1 neu-

rons, we examined whether presynaptic properties may have

been altered retrogradely (Regalado et al, 2006; Futai et al,

2007). As shown in Figure 5K, paired-pulse facilitation (PPF),

an indicator of presynaptic function, was unaltered by PTEN

overexpression.

The PIP3 pathway is also involved in the regulation of gene

expression (Brunet et al, 2001). Nevertheless, overnight over-

expression of PTEN did not affect the expression levels of

GluA1 and GluA2 subunits of AMPA receptors, or their

phosphorylation state (phospho-Ser 831 and 845 for GluA1,

and phospho-Ser 880 for GluA2; Supplementary Figure 5).

Therefore, these combined data strongly suggest that

PTEN has a specific postsynaptic function at excitatory

hippocampal synapses.

PTEN activity is required for NMDA receptor-dependent

LTD

The depression of AMPAR responses as a consequence of

PTEN overexpression led us to think that this phosphatase

may have a function in long-lasting changes of synaptic

strength, and particularly, in LTD. In addition, the NMDA

treatments that we found to regulate the association of PTEN

with postsynaptic elements (Figures 1 and 3) and its redis-

tribution in spines (Figures 2 and 4) are known to lead to

synaptic depression (Lee et al, 1998).

To directly test a potential function of PTEN in LTD in

hippocampal slices, we used a bis-peroxivanadium deriva-

tive, bpV(HO)pic, which has been shown to specifically

inhibit PTEN when used at a low nanomolar concentrations

(Schmid et al, 2004) (see Supplementary Figure 6 for a test of

bpV(HO)pic specificity). LTD was induced on control or on

bpV(HO)pic-pretreated slices by pairing presynaptic stimula-

tion (1 Hz, 500 pulses) with moderate postsynaptic depolari-

zation (�40 mV). Interestingly, when compared with control

cells, inhibition of PTEN with bpV(HO)pic greatly reduced

the magnitude of LTD (Figure 6A and D), suggesting that

PTEN activity is necessary for LTD in CA1 hippocampal

synapses (bpv(HO)pic did not have significant effect on the
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control pathway—Figure 6D—or on basal synaptic transmis-

sion—not shown). Similar blockade of LTD expression was

observed when the PTEN inhibitor was applied only during

the time of LTD induction (see Supplementary Figure 7).

As an alternative approach to test the function of PTEN in

LTD, we carried out similar experiments with neurons

expressing the catalytically dead mutant PTEN-C124S. It

is important to keep in mind that this mutant did not have

any effect on basal AMPAR- or NMDAR-mediated transmis-

sion (Figure 5D–F). Interestingly, PTEN-C124S displayed a

dominant negative effect on LTD. That is, PTEN-C124S

expression blocked LTD to a similar extent as the PTEN

inhibitor (Figure 6B and D).

PTEN is known to have both lipid and protein phosphatase

activity, as well as phosphatase-independent functions

(Tamguney and Stokoe, 2007). To test whether the function

of PTEN in LTD was specifically dependent on its PIP3-

phosphatase activity, we used a lipid phosphatase PTEN

mutant that retains its protein phosphatase activity:

PTEN-G129E (Myers et al, 1998). Similar to our results with

PTEN-C124S, neurons expressing PTEN-G129E did not

undergo long-lasting depression (Figure 6C and D). Taken

together, these pharmacological and genetic approaches

indicate that PTEN lipid phosphatase activity is required for

LTD in CA1 hippocampal synapses.

To further explore the function of PTEN in synaptic depres-

sion, we evaluated LTD in neurons overexpressing wild-type

PTEN. As shown in Supplementary Figure 8, PTEN over-

expression did not alter LTD expression. Taking into account

that PTEN-overexpressing neurons display reduced AMPAR-

mediated synaptic transmission under basal conditions

(Figure 5A and B), these data suggest either that PTEN-

induced depression does not saturate subsequent LTD

expression, or, alternatively, that overexpressed PTEN acts

on a different pool of AMPARs from those removed during

synaptically induced LTD.

PTEN is neither required for LTP nor for metabotropic

glutamate receptor-dependent LTD

After having established the importance of PTEN for LTD, we

wished to investigate whether PTEN activity is required for

LTP, another paradigmatic form of NMDAR-dependent synap-

tic plasticity. To this end, we evaluated the effect of the

catalytically dead mutant, PTEN-C124S, on LTP in CA1

hippocampal neurons. LTP was induced on infected and

uninfected CA1 neurons by pairing presynaptic stimulation

(3 Hz, 300 pulses) with postsynaptic depolarization (0 mV).

As shown in Figure 7A and C, no significant difference was

found between uninfected (control) and infected (PTEN-

C124S-expressing) neurons. PTEN-C124S did not have any

effect on the non-potentiated (unpaired) pathway either

(Figure 7C). Virtually identical results were obtained with

the specific PTEN inhibitor bpV(HO)pic (Figure 7B and C).

Therefore, these data indicate that PTEN is required specifi-

cally for LTD, and not for other forms of NMDAR-dependent

synaptic plasticity.

In addition, we tested whether PTEN would be required for

another prominent form of LTD in CA1 hippocampal sy-

napses, which is dependent on the activation of metabotropic

glutamate receptors (mGluRs) (Oliet et al, 1997; Palmer et al,

1997). mGluR-dependent LTD was induced by bath applica-

tion of 50mM DHPG (group I mGluR agonist) in the presence

of 100 mM AP5 (NMDAR antagonist) (see Materials and

methods). As shown in Figure 7D and F, neurons expressing

the catalytically dead PTEN-C124S displayed similar depres-

sion to the control, uninfected neurons. Again, identical

results were obtained when blocking PTEN activity pharma-

cologically (Figure 7E and F). Therefore, we conclude that

PTEN is not required for mGluR-dependent LTD in CA1

neurons.

Involvement of PDZ-dependent interactions of PTEN

during NMDAR-dependent LTD

Our electrophysiological data shown above indicate that

PTEN activity is specifically required for NMDAR-dependent

LTD, but not for basal synaptic transmission or other forms of

synaptic plasticity. In part, these conclusions are based on the

observation that catalytically inactive forms of PTEN have a

dominant negative effect on endogenous PTEN to block

NMDAR-dependent LTD (Figure 6B and C). In other words,

these PTEN mutants appear to be competing with endogen-

ous PTEN for some important interaction required for LTD.

An obvious candidate for this interaction is the PDZ motif at

the C-terminus of PTEN, which we have found to mediate the

anchoring of PTEN in the spine and its association with PSD-

95 upon NMDAR activation (Figure 2).

To investigate whether PDZ-dependent interactions of

PTEN are important for its function in LTD, we tested

whether the dominant negative effect of PTEN-C124S re-

quires its PDZ C-terminal motif. To this end, we generated a

catalytically dead mutant (C124S) lacking the PDZ ligand

motif (-ITKV*). This mutant (PTEN-C124S-DPDZ) did not

affect basal synaptic transmission mediated by AMPA or

NMDA receptors (Figure 8A–C), consistent with the results

with PTEN-C124S (Figure 5D–F). Then, we carried out LTD

experiments in CA1 neurons expressing this truncated, cata-

lytically dead mutant. Interestingly, neurons expressing

PTEN-C124S-DPDZ displayed normal LTD, undistinguishable

from uninfected cells (Figure 8D and E). Therefore, these

results suggest that the C-terminal PDZ-binding motif of

PTEN is necessary for its function in LTD.

Discussion

In this study, we show that the lipid phosphatase PTEN,

typically associated with cell growth and proliferation, is

recruited to synapses and is required for the expression of

NMDAR-dependent LTD. This is based on three main lines of

evidence. First, using electrophysiological assays on hippo-

campal slices, we have determined that enhancement of

PTEN activity is sufficient to depress AMPAR-mediated sy-

naptic transmission, and that PTEN lipid phosphatase activity

is specifically required for NMDAR-dependent LTD. Second,

a combination of live imaging, electron microscopy and

biochemical assays indicate that NMDAR activation triggers

a PDZ-dependent association between PTEN and the synaptic

scaffold, which anchors PTEN at the postsynaptic terminal.

And third, this PDZ-dependent interaction appears to be

involved in PTEN’s action during LTD, as a dominant nega-

tive mutant of PTEN is ineffective when lacking its PDZ

motif. These combined results reveal PTEN as a regulated

signalling molecule at synapses, which is recruited to the

postsynaptic membrane in an activity-dependent manner and
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is required for the modulation of synaptic activity during

plasticity.

An important aspect of this work is the identification of a

precise synaptic function for PTEN during plasticity. PTEN is

a well-known negative regulator of PI3K signalling, and as

such, it controls multiple aspects of neuronal development,

including neurite growth, axon specification, dendritic arbori-

zation and growth cone dynamics (Jaworski et al, 2005;

Chadborn et al, 2006; Kwon et al, 2006). In this context,

it may not be surprising that earlier studies using heterozygous

or mosaic PTEN knock-out mice have reported multiple

impairments in synaptic function, including basal transmis-

sion, PPF, LTP and LTD (Wang et al, 2006; Fraser et al, 2008).

These complex phenotypes are probably related to general

neuronal dysfunctions caused by alterations in the PIP3 path-

way during development. Our data presented here indicate

that semi-acute (15–20 h) blockade of PTEN activity, either

through pharmacological or genetic approaches, results in a

very specific impairment of NMDAR-dependent LTD, without

affecting basal synaptic transmission, NMDAR function, LTP,

mGluR-dependent LTD or presynaptic function. Therefore, we

believe that these results are revealing an acute and distinct

function of PTEN at otherwise unperturbed synapses.

Perhaps one of the most surprising observations of this

study is the recruitment of PTEN to the postsynaptic complex

in response to NMDAR activation. PTEN was already known

to interact with PDZ domain-containing proteins in different

cell types (Bonifant et al, 2007). However, no such interaction

had been reported in neurons before this work. We now

identify PSD-95 as a potential PDZ synaptic partner for PTEN.

This association is very low under basal conditions, but it is

rapidly triggered upon NMDAR activation. We should also

point out that our results do not prove a direct interaction

between PTEN and PSD-95. Given the dense network of

interactions present at the postsynaptic membrane, it is

possible that the association between PTEN and PSD-95 is

just reflecting the recruitment of PTEN to the postsynaptic

scaffold. Indeed, this recruitment may be maintained by

different sets of interactions at different time points, as the

anchoring of PTEN in spines and its presence at the PSD

(fluorescence and electron microscopy data) appears to be

longer lasting than its association with PSD-95 (co-immuno-

precipitations). This interpretation would also fit with earlier

reports showing that PSD-95 is partially removed from spines

during LTD (Horne and Dell’Acqua, 2007; Bhattacharyya et al,

2009; Sturgill et al, 2009).
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Figure 7 PTEN activity is not required for LTP or for mGluR-dependent LTD. (A) LTP was induced in CA1 hippocampal neurons expressing
GFP-PTEN-C124S (black symbols) or in control (uninfected) neurons (white symbols). Amplitude of the synaptic response is normalized to
a 2 min baseline. Inset: sample traces averaged from the baseline (thin lines) or from the last 10 min of the recording (thick lines). (B) Similar
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The regulation of PTEN interactions during LTD is likely to

occur at multiple levels. For example, we have observed that

NMDAR activation triggers a transient mobilization of PTEN

within dendritic spines, which precedes its PDZ-dependent

anchoring. Therefore, it is likely that the regulation of PTEN

in response to NMDAR activation will involve release from

basal retention interactions, as well as association with new

synaptic partners. In fact, the initial mobilization of PTEN

may facilitate its subsequent association with PSD-95 at the

PSD. Undoubtedly, further work will be required to dissect

the details of this dynamic behaviour of PTEN within den-

dritic spines. Nevertheless, these new results strengthen the

emerging notion that PSD-95 acts as an important organizer

of synaptic signalling during LTD (Xu et al, 2008;

Bhattacharyya et al, 2009).

What are the functional consequences of this activity-

dependent recruitment of PTEN to the postsynaptic complex?

It is reasonable to hypothesize that binding of PTEN to the

postsynaptic complex positions PTEN in close proximity to

the postsynaptic membrane, which in turn would facilitate

access to its PIP3 substrate during NMDAR-dependent LTD.

On the one hand, the stabilization of PTEN in close proximity

to its substrate could have significant effects on its catalytic

efficiency. But perhaps more importantly, this mechanism

would also restrict PTEN action to the postsynaptic mem-

brane of the synapses being activated. In other words, this

regulated PDZ-dependent recruitment of PTEN may provide

the means to achieve synapse-specific modulation of PIP3

signalling during plasticity.

And finally, how does PTEN activity lead to LTD expres-

sion? We have recently described that downregulation of PIP3

leads to the redistribution of AMPARs from the postsynaptic

membrane into the extrasynaptic surface of the spine (Arendt

et al, 2010). On the one hand, this short-range movement is

expected to depress synaptic transmission, as perisynaptic

AMPARs will not be significantly activated by synaptically

released glutamate (Raghavachari and Lisman, 2004). On the

other hand, this redistribution of AMPARs may facilitate their

access to perisynaptic endocytic hotspots (Blanpied et al,

2002; Petralia et al, 2003; Racz et al, 2004), and, therefore,

may act as an initial step preceding AMPAR internalization.

A downstream effector of the PIP3 pathway is glycogen

synthase kinase-3 b (GSK-3b). Upregulation of PIP3 levels

leads to activation of the Ser/Thr kinase Akt, which in turn

phosphorylates and inactivates GSK-3b (Cross et al, 1995).

Therefore, PTEN will act as a positive regulator of GSK-3b, by

reducing PIP3 levels with the concomitant decrease in Akt

activation and dephosphorylation (activation) of GSK-3b.

Interestingly, GSK-3b has been recently shown to be activated

(dephosphorylated) upon LTD induction, and this activation

was required for the specific expression of LTD (versus LTP)

(Peineau et al, 2007). Therefore, it is possible that the
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Figure 8 Involvement of the PDZ motif of PTEN in LTD. (A) Sample traces of evoked AMPAR- and NMDAR-mediated synaptic responses
recorded at �60 or þ 40 mV, respectively, from CA1 neurons expressing GFP-PTEN-C124S-DPDZ and neighbouring control (uninfected)
neurons. (B) Average AMPAR-mediated current amplitude (peak of the synaptic response recorded at �60 mV) from pairs of uninfected and
GFP-PTEN-C124S-DPDZ-expressing neurons. For (B) and (C),‘n’ represents number of pairs of cells, and statistical significance was determined
with the Wilcoxon’s test. (C) Average NMDAR-mediated current amplitude (recorded at þ 40 mV and measured at a latency of 60 ms) from
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recruitment of PTEN to the postsynaptic membrane during

LTD is relayed through the PIP3 pathway to activate GSK-3b at

specific synapses. This mechanism would be consistent with

the presence of GSK-3b in synaptosomal preparations and

dendritic spines (Hooper et al, 2007; Peineau et al, 2007).

Therefore, our results propose a specific mechanism for the

synaptic compartmentalization of PIP3 signalling during plas-

ticity.

In addition, it has been recently shown that LTD requires

PIP2 turnover by phospholipase C (PLC), which leads to the

loss of the scaffolding molecules AKAP79 and PSD-95 from

synapses and initiates the structural remodelling of the spine

(Horne and Dell’Acqua, 2007). Taking together, Dell’Acqua’s

study and ours would suggest an interesting relay of phos-

phoinositide metabolism during LTD, which would involve

degradation of PIP3 into PIP2 (through PTEN) for initial

AMPAR depression, and subsequent PIP2 turnover (through

PLC) for further structural and functional changes in the spine.

In summary, this work has offered new insights into the

organization of synaptic signalling during plasticity and has

revealed distinct functions for the tumour suppressor PTEN

as a critical mediator of LTD in hippocampal neurons.

Materials and methods

Expression of recombinant proteins and antibodies used in this
study are described in Supplementary data.

Co-immunoprecipitations and pharmacological treatments
Hippocampal slices were transferred to a submersion-type holding
chamber containing artificial cerebrospinal fluid (ACSF, composi-
tion described in Supplementary data), gassed with 5% CO2/95%
O2 at 301C. Slices were equilibrated in the holding chamber for
10 min before each experiment and were transferred to a separate
chamber containing ACSF plus 20mM NMDA, 100 mM AMPA or
50 mM KCl, in which they remained for 5 min. After these
treatments, some slices were taken immediately for homogeniza-
tion in a buffer containing 10 mM HEPES, 150 mM NaCl, 10 mM
EDTA, 0.1 mM phenylmethanesulphonylfluoride, 2mg/ml of chymo-
statin, leupeptin, anti-pain and pepstatin, 10 mM NaF, 1 mM
microcystin LR, 0.5mM calyculin A and 1% Triton X-100. Other
slices were transferred to another chamber containing ACSF, for
variable recovery times, as indicated in each experiment. Total
protein extracts were prepared in the buffer described above. For
immunoprecipitations, 200–300mg of protein extracts were incu-
bated with the corresponding antibodies and with 40 ml of protein
G-sepharose beads (50%) (Amersham Biosciences) for 4 h at 41C.
These samples were then washed and immunoprecipitated proteins
were eluted by boiling in 1x Laemmli sample buffer and separated
by SDS–PAGE. Visualization of immunoprecipitated proteins was
performed by western blot developed with chemiluminescence or
with the Odyssey fluorescence system, and quantified with Image J
under linear conditions.

Electrophysiology
Voltage-clamp whole-cell recordings were obtained from nearby
infected and uninfected CA1 pyramidal neurons, under visual
guidance using fluorescence and transmitted light illumination.
Composition of ACSF and internal solution and description of
synaptic plasticity protocols are included in Supplementary data.
Bipolar stimulating electrodes were placed over Schaffer collateral
fibres between 250 and 300mm from the CA1 recorded cells, and
synaptic responses were evoked with single voltage pulses (200ms,

up to 30 V). Responses were collected at �60 and þ 40 mV and
averaged over 50–100 trials. All electrophysiological data were
collected with pCLAMP software (Molecular Devices).

Fluorescence recovery after photobleaching
Hippocampal slices (5–7 DIV) were perfused with ACSF for 15–30
min. Confocal images of dendritic spines were obtained on an
Olympus FV500 confocal microscope using a 60� oil immersion
objective. Digital images were acquired using the FluoView
software. After acquisition of baseline images, dendritic spines
were photobleached for 5 s (approximate time to completely bleach
fluorescence signal in the spine). Recovery of fluorescence in the
spine was measured from images acquired up to 50 s after the
photobleaching. After collecting several images from dendritic
spines under baseline conditions, the perfusion solution was
switched to an ACSF containing 20 mM NMDA. After 5 min of
NMDA treatment, the slices were washed again with standard ACSF.
Further FRAP images were acquired after 10, 20 and 30 min of the
NMDA treatment. Images were reconstructed and analysed using
NIH Image J software.

Electron microscopy
Rat hippocampus was fixed, dehydrated and processed for
postembedding immunogold labelling as earlier described (Phend
et al, 1995). Immunostaining was done with anti-PTEN antibody
(Neomarkers) followed by an anti-mouse secondary antibody
coupled to 10 nm gold particles (Electron Microscopy Sciences).
Images were acquired with a Philips CM-100 transmission electron
microscope coupled to a Kodak 1.6 Megaplus digital camera.
Quantification of gold particles and distance measurements were
carried out on the digital images using NIH Image J software.

Statistical analysis
Statistical differences were calculated according to non-parametric
tests. Comparisons between multiple groups were carried out with
the Kruskal–Wallis ANOVA. When significant differences were
observed, P-values for pairwise comparisons were calculated
according to two-tailed Mann–Whitney tests (for unpaired data)
or Wilcoxon’s tests (for paired data). Comparisons between
cumulative distributions (Figure 4C) were calculated with the
Kolmogorov–Smirnov test.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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