## Angewandte manmonem Chemie

Supporting Information<br>© Wiley-VCH 2013

69451 Weinheim, Germany

Thiophosphoramide-Based Cooperative Catalysts for Brønsted Acid Promoted Ionic Diels-Alder Reactions**<br>Alina Borovika, Pui-In Tang, Seth Klapman, and Pavel Nagorny*<br>ange_201307133_sm_miscellaneous_information.pdf

## Table of Contents

## Contents

S-1. General remarks

S-1. Synthesis of 7c
S-2. Synthesis of 7d
S-3. Synthetic procedures and characterization data for the cycloadducts S-3. General procedures

S-4. Synthesis and characterization for 10c (Table 2, Entry 4)
S-5. Characterization data for $\mathbf{1 0 g}$ (Table 2, Entry 8)
S-5. Characterization data for $\mathbf{1 0 h}$ (Table 2, Entry 9)
S-6. Characterization data for $\mathbf{1 0 i}$ (Table 2, Entry 10)
S-6. Proposed mechanism for the ionic Diels-Alder reaction
S-6. ${ }^{1}$ H NMR continuous variation method (Job plot)
S-7. ${ }^{1} \mathrm{H}$ NMR titrations
S-7. Computational studies
S-18. References
S-19. Spectroscopic data

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without purification. Toluene ( PhMe ), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ were filtered through a column (Innovative Technology PS-MD-5) of activated alumina under nitrogen atmosphere. All reactions were carried out under an atmosphere of nitrogen in flame- or oven-dried glassware with magnetic stirring. Reactions were cooled via external cooling baths: ice water ( $0{ }^{\circ} \mathrm{C}$ ), Neslab Cryotrol CB-80 immersion cooler ( 0 to $-60^{\circ} \mathrm{C}$ ) or Neslab Cryocool immersion cooler CC-100 II. Purification of the reactions mixtures was performed by flash chromatography using SiliCycleSiliaFlash P60 (230-400 mesh) silica gel. All spectra were recorded on Varian vnmrs 700 (700 MHz ), Varian vnmrs $500(500 \mathrm{MHz})$, Varian MR400 ( 400 MHz ), Varian Inova 500 ( 500 MHz ) spectrometers and chemical shifts ( $\delta$ ) are reported in parts per million ( ppm ) and referenced to the ${ }^{1} \mathrm{H}$ signal of the internal tetramethylsilane according to IUPAC recommendations. ${ }^{1}$ Data are reported as $(\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, q $=$ quartet, $\mathrm{qn}=$ quintet, sext $=$ sextet, $\mathrm{m}=$ multiplet; coupling constant(s) in Hz ; integration). High resolution mass spectra (HRMS) were recorded on MicromassAutoSpecUltima or VG (Micromass) 70-250-S Magnetic sector mass spectrometers in the University of Michigan mass spectrometry laboratory. Infrared (IR) spectra were recorded as thin films on NaCl plates on a Perkin Elmer Spectrum BX FTIR spectrometer. Absorption peaks were reported in wavenumbers ( $\mathrm{cm}-1$ ). All commercially unavailable acetals and ketals were prepared following the procedure reported by Lu and coworkers. ${ }^{2}$ Commercially unavailable hydrogen bond donors were synthesized by previously reported procedures. ${ }^{3}$


## Synthesis of thiophosphoramide 7c.

Phenol ( $1.11 \mathrm{~g}, 11.8 \mathrm{mmol}$ ) and triethylamine ( $1.81 \mathrm{~mL}, 18.9 \mathrm{mmol}$ ) were added to a flame-dried 200 mL round bottom flask charged with 30 mL dry dichloromethane. Flask was cooled to $0{ }^{\circ} \mathrm{C}$ and thiophosphoryl chloride ( $0.60 \mathrm{~mL}, 5.9 \mathrm{mmol}$ ) was added dropwise. After two hours TLC indicated reaction went to completion. Solvent was evaporated and ${ }^{1} \mathrm{H}$ NMR confirmed desired diphenoxythiophosphoryl chloride. Compound was used directly in the following reaction without purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}) .{ }^{4}$

Previously made diphenoxythiophosphoryl chloride ( $285 \mathrm{mg}, 1 \mathrm{mmol}$ ) was dissolved in 3 mL of dry acetonitrile. 4-Dimethylaminopyridine ( $244.3 \mathrm{mg}, 2 \mathrm{mmol}$ ) was then added followed by triethylamine ( $0.98 \mathrm{~mL}, 7 \mathrm{mmol}$ ), and 3,5-bis(trifluoromehtyl)aniline $(313 \mu \mathrm{~L}, 2 \mathrm{mmol})$ at room temperature. The mixture was refluxed for 48 hours. Reaction was then quenched with saturated $\mathrm{NaHCO}_{3}$. The product was extracted with diethyl ether, and then organic layer was dried over $\mathrm{MgSO}_{4}$, filtered and concentrated in vacuo. Crude product was purfied by column chromatography ( $3: 1$ hexanes/ethyl acetate) and all
fractions with product, including those with impurities were collected. Product was recrystallized from hexanes.
White solid, $62 \%$ yield ( 592 mg ). IR (thin film, $\mathrm{cm}^{-1}$ ): 3246, 1717, 1621, 1490, 1471, 1391, 1276, 1183, 1136, 986, 927, 794, 686. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.66(\mathrm{~s}, 2 \mathrm{H})$, $7.58(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H})$, $6.01(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $175 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 150.1(2 \mathrm{C}), 140.5,133.0(\mathrm{q}, J$ $=34 \mathrm{~Hz}, 2 \mathrm{C}), 129.8,126.0,123.7,122.2,121.0(2 \mathrm{C}), 117.9,116.2,{ }^{31} \mathrm{P}$ NMR ( 162 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 55.0(\mathrm{~s}) ;{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-63.1(\mathrm{~s}) ;$ HRMS (ESI+) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{NO}_{2} \mathrm{PS} 478.0453$, found 478.0460.


## Synthesis of thiophosphoramide 7d.

Phenol ( $277.6 \mathrm{mg}, 2.95 \mathrm{mmol}$ ) and triethylamine ( $0.50 \mathrm{~mL}, 3.54 \mathrm{mmol}$ ) were added to a flame-dried 200 mL round bottom flask charged with 30 mL dry dichloromethane. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and thiophosphoryl chloride ( $0.30 \mathrm{~mL}, 2.95 \mathrm{mmol}$ ) was added dropwise. After two hours TLC indicated reaction went to completion. Solvent was evaporated and ${ }^{1} \mathrm{H}$ NMR confirmed desired phenoxythiophosphoryl chloride. Compound used directly in following reaction without purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.44(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.315(\mathrm{~m}, 3 \mathrm{H}){ }^{3}$

Phenoxythiophosphoryl chloride, together with 4-dimethylaminopyridine ( $1.194 \mathrm{~g}, 11.8$ mmol ) were added to a 200 mL round bottom flask followed by triethylamine ( 15 mL , 88.5 mmol ) and 3,5-bis(trifluoromehtyl)aniline ( $2.7 \mathrm{~g}, 11.8 \mathrm{mmol}$ ). The mixture was refluxed for 48 hours. Reaction was then quenched saturated $\mathrm{NaHCO}_{3}$. Products were extracted with diethyl ether. Organic layer was then dried over $\mathrm{MgSO}_{4}$, filtered and concentrated. The product was purfied by column chromatography using gradient from $5 \%$ to $20 \%$ dichloromethane in hexanes). All fractions with product, including those with impurities were collected. Product was then recrystallized from hexanes.
White solid, $40 \%$ yield ( 713 mg after 2 recrystallizations). IR (thin film, $\mathrm{cm}^{-1}$ ): 3414 , $3239,1622,1592,1491,1471,1388,1279,1188,1133,1004,979,928,896,683 .{ }^{1} \mathrm{H}$ NMR ( $700 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.56(\mathrm{~s}, 4 \mathrm{H}), 7.55(\mathrm{~s}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(175 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) 149.1 (2C), 139.8, 133.0 (q, $J=33.7 \mathrm{~Hz}, 6 \mathrm{C}$ ), 130.1, 126.4, 125.1, 123.6, 122.0, 121.2 (2C), 118.5, 116.8; ${ }^{31} \mathrm{P}$ NMR ( $283 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 51.2$ (s); ${ }^{19} \mathrm{~F}$ NMR ( 376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$-63.2 (s); HRMS (ESI+) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{OPS}$ 613.0367, found 613.0361.

## Synthetic procedures and characterization data for the cycloadducts from Table 2.

The cycloadducts $\mathbf{8},{ }^{5} \mathbf{1 0 a},{ }^{6} \mathbf{1 0 b},{ }^{7} \mathbf{1 0 d},{ }^{8} \mathbf{1 0 e},{ }^{4} \mathbf{1 0 f}{ }^{9}$ have been previously characterized. The characterization data for compounds $\mathbf{1 0 c}, \mathbf{1 0 g}, \mathbf{1 0 h}$, and $\mathbf{1 0 i}$ is provided below.


8


10e







## General procedure for catalyst screening, Table 1.

Reactions were run on $0.5-0.7 \mathrm{mmol}$ scale based on dienophile. An oven-dried $4-\mathrm{mL}$ scintillation vial was charged with anthracene, $3 \mathrm{~mol} \% \mathrm{pTSA}$ and $6 \mathrm{~mol} \%$ catalyst 7. The vial was then flushed with nitrogen. Dry solvent (toluene or diethyl ether) was added to ensure 0.3 M concentration of 2-vinyl-1,3-dioxolane. The reaction mixture was brought to $-78{ }^{\circ} \mathrm{C}$ and then 2-vinyl-1,3-dioxolane ( 1 equiv, 0.5 mmol ) and cyclopentadiene ( 3 equiv, 1.5 mmol ) were added via micro syringe. The resulting mixtrure was stirred at the temperature indicated in Table 1 for the indicated time. The reaction was quenched with approximately $6 \mathrm{~mol} \%$ of triethylamine. The conversions were determined using the following formula: conversion (\%) $=100 \%$ - (yield (starting material, \%). Yield of the starting material $(\%)=100 \% \cdot[v($ starting material $) / v($ standard $)] \cdot n$, where $v$ (product) $/ v$ (standard) is the integral ratio of the corresponding ${ }^{1} \mathrm{H}$ NMR peaks and $n$ is the ratio of the standard to the initial amount of starting material (in mol).

## General procedure A for Diels-Alder reactions catalyzed by pTSA or pTSA/7a, Table 2 (entries 1-3, 6, 7)

Reactions were run on $0.5-0.9 \mathrm{mmol}$ scale based on dienophile. An oven-dried $4-\mathrm{mL}$ scintillation vial was charged with anthracene, $3 \mathrm{~mol} \%$ pTSA and $6 \mathrm{~mol} \%$ catalyst 7a. The vial was then flushed with nitrogen. Dry toluene was added to ensure 0.3 M concentration of a dienophile. The reaction mixture was brought to $0{ }^{\circ} \mathrm{C}$ and then dienophile ( 1 equiv) and diene ( 5 equiv) were added via micro syringe. The resulting mixtrure was stirred at $0^{\circ} \mathrm{C}$ for the time indicated in Table 2. The reaction was quenched with approximately $6 \mathrm{~mol} \%$ of triethylamine. The ${ }^{1} \mathrm{H}$ NMR yields were calculated using the following formula: yield $(\%)=100 \% \cdot[v$ (product) $/ v$ (standard) $] \cdot n$, where $v($ product $)) / v($ standard $)$ is the integral ratio of the corresponding ${ }^{1} \mathrm{H}$ NMR peaks and $n$ is the ratio of the standard to starting material (in mol).

## General procedure B for Diels-Alder reactions catalyzed by pTSA/7e, Table 2 (entries 1-3, 6, 7)

Reactions were run on $0.5-0.9 \mathrm{mmol}$ scale based on dienophile. An oven-dried $4-\mathrm{mL}$ scintillation vial was charged with $3 \mathrm{~mol} \% \mathrm{pTSA}$ and $6 \mathrm{~mol} \%$ catalyst 7e. The vial was then flushed with nitrogen. Dry toluene was added to ensure 0.3 M concentration of a dienophile. The reaction mixture was brought to $0^{\circ} \mathrm{C}$ and then dienophile ( 1 equiv) and diene ( 5 equiv) were added via micro syringe. The resulting mixtrure was stirred at $0{ }^{\circ} \mathrm{C}$ for the time indicated in Table 2. The reaction was quenched with approximately $6 \mathrm{~mol} \%$ of triethylamine. The mixture was directly subjected to column chromatography. Elution with hexanes allowed removal of excess toluene and diene. Subsequent purification of the cycloadduct was performed using 20:1 hexanes/diethyl ether.

## General procedure C for Diels-Alder reactions catalyzed by pTSA or pTSA/7a, Table 2 (entries 5, 8-10)

Reactions were run on 0.3-0.7 mmol scale based on dienophile. An oven-dried 4-mL scintillation vial was charged with anthracene, $5 \mathrm{~mol} \%$ pTSA and $10 \mathrm{~mol} \%$ catalyst 7a. The vial was then flushed with nitrogen. Dry dichloromethane was added to ensure 0.6 M concentration of a dienophile. The reaction mixture was brought to $0{ }^{\circ} \mathrm{C}$ and then dienophile ( 1 equiv) and diene ( 5 equiv) were added via micro syringe. The resulting mixtrure was stirred at the temperature indicated in Table 2 for the indicated time. The reaction was quenched with approximately $10 \mathrm{~mol} \%$ of triethylamine. The ${ }^{1} \mathrm{H}$ NMR yields were calculated using the following formula: yield (\%) $=100 \% \cdot[v($ product $) /$ $v$ (standard)] $n$, where $v$ (product) $/ v$ (standard) is the integral ratio of the corresponding ${ }^{1} \mathrm{H}$ NMR peaks and $n$ is the ratio of the standard to starting material (in mol).

## General procedure D for Diels-Alder reactions catalyzed by pTSA/7e, Table 2 (entries 5, 8-10)

Reactions were run on $0.3-0.7 \mathrm{mmol}$ scale based on dienophile. An oven-dried $4-\mathrm{mL}$ scintillation vial was charged with $5 \mathrm{~mol} \% \mathrm{pTSA}$ and $10 \mathrm{~mol} \%$ catalyst 7 e . The vial was then flushed with nitrogen. Dry dichloromethane was added to ensure 0.6 M concentration of dienophile. The reaction mixture was brought to $0{ }^{\circ} \mathrm{C}$ and then dienophile ( 1 equiv) and diene ( 5 equiv) were added via micro syringe. The resulting mixtrure was stirred at the temperature indicated in Table 2 for the indicated time. The reaction was quenched with approximately $10 \mathrm{~mol} \%$ of triethylamine. Volatiles were evaporated in vacuo and then the mixture was subjected to column chromatography using 20:1 hexanes/diethyl ether.


Synthesis of 2-(1',2',3',4'-tetrahydro-[1,1':4',1''-terphenyl]-2'-yl)-1,3dioxolane (10c, Entry 4)

An oven-dried 4-mL scintillation vial was charged with $5 \mathrm{~mol} \%$ ( 3.6 mg , 0.0209 mmol ) pTSA and $10 \mathrm{~mol} \% ~(31.2 \mathrm{mg}, 0.0418 \mathrm{mmol})$ catalyst 7e. The
vial was then flushed with nitrogen. In a separate vial a 0.9 M solution of 259 mg ( 1.25 mmol ) ( $1 E, 3 E$ )-1,4-diphenylbuta-1,3-diene (3 equiv) in dry dichloromethane was made and added to the mixture of catalysts. Then $41.8 \mu \mathrm{~L}(0.418 \mathrm{mmol})$ of 2-vinyl-1,3dioxolane ( 1 equiv) and was added via micro syringe. The resulting mixtrure was stirred at room temperature for 5 h . The reaction was quenched with approximately $10 \mathrm{~mol} \%$ of triethylamine. Volatiles were evaporated in vacuo and then the mixture was subjected to column chromatography using $1: 1$ hexanes/toluene. Reactions catalyzed by pTSA or pTSA/7a were analyzed by crude ${ }^{1} \mathrm{H}$ NMR using anthracene as an internal standard.

Colorless oil, $62 \%$ yield, 8.3:1 endo/exo; IR (thin film, $\mathrm{cm}^{-1}$ ) 3024, 2950, 2883, 1600, 1491, 1451, 1414, 1311, 1156, 1079, 1032, 957, 925, 857, 758, 701. Endo product: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.28$ (m, $2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 5.89(\mathrm{ddd}, J=10.1,2.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.53$ (m, 1H), 2.22 (dddd, $J=13.2,8.1,5.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$ (dd, $J=12.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.56$ (q, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}$ ). Distinct peaks for exo product: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 4.81$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.83(\mathrm{dd}, J=10.5,6.6 \mathrm{~Hz}, 1 \mathrm{H})$; Endo only: ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 145.3,138.1,135.4,128.4,128.1,125.8,106.8,67.1,51.5,49.4,47.0,46.7$, 44.3, 26.0; HRMS (ESI+) $(\mathrm{m} / \mathrm{z}):\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{2}$ 274.1802; found 274.1800 .


10 g

6,7-Dimethyl-3,4,4a,5,8,8a-hexahydro-2H-spiro[naphthalene-1,2'[1,3]dioxolane] (10g, Entry 8)
Colorless oil, $68 \%$ yield. IR (thin film, $\mathrm{cm}^{-1}$ ) 2927, 2829, 1717, 1441, 1377, 1354, 1298, 1160, 1098, 1087, 1050, 940, 876, 771. ${ }^{1} \mathrm{H}$ NMR ( 400 $(\mathrm{m}, 4 \mathrm{H}), 1.79-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{br} \mathrm{s}, 6 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.17(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $175 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 123.5$, 122.6, 64.1, 40.9, 37.9, 32.9, 29.8, 29.6, 26.0, 23.2, 19.1, 18.9. HRMS (EI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} 222.1620$, found 222.1621.

$6^{\prime}, 7^{\prime}, 8 a^{\prime}-$ trimethyl- $3^{\prime}, 4^{\prime}, 4 a^{\prime}, 5^{\prime}, 8^{\prime}, 8 a^{\prime}-h e x a h y d r o-2^{\prime} H$ -
spiro[[1,3]dioxolane-2,1'-naphthalene] (10h, Entry 9)
Pale yellow oil, $84 \%$ yield. : IR (thin film, $\mathrm{cm}^{-1}$ ) 2927, 1448, 1368, 1172, $1085,950 .{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.98-3.92(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~d}, J=$ $18.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{td}, J=13.3,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.68-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{qt}, J=13.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.29$ $(\mathrm{qd}, J=13.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.87(\mathrm{~m}, 1 \mathrm{H}), 0.85-0.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $175 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 122.0$, 121.9, 112.9, 65.0, 64.8, 41.3, 38.3, 36.2, 35.7, 30.3, 28.4, 22.8, 19.2, 19.0, 18.2. HRMS (ES+) ( $\mathrm{m} / \mathrm{z}$ ): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$ 237.1849, found 237.1841.


6,7-Dimethyl-1,3,4,5,8,8a-hexahydronaphthalen-4a(2H)-yl)-1,3dioxolane (10i, Entry 10)
Colorless oil, $59 \%$ yield. IR (thin film, $\mathrm{cm}^{-1}$ ) 2923, 2861, 1704, 1453, 1394, 1351, 1165, 1137, 1121, 1084, 1066, 955, 856. ${ }^{1} \mathrm{H}$ NMR ( 700 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 4.87(\mathrm{~s}, 1 \mathrm{H}), 3.95-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.79(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{~d}, J=$ $18.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=18.3,1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.61(\mathrm{~m}$, $1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 3 \mathrm{H})$, 1.26-1.18 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ( $175 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 123.0,121.8,106.2,65.3,64.9,39.2$, $36.2,34.9,32.6,29.2,26.7,25.8,21.5,19.0,18.9$. HRMS (EI) $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$ 236.1776, found 236.1776.

## Proposed mechanism for the ionic Diels-Alder reaction



## ${ }^{1}$ H NMR continuous variation method (Job plot)

Stock solutions of $N$-methylpyridinium tosylate and thiophosphoramide in $\mathrm{CDCl}_{3}$, both having a concentration of 5 mM , were prepared. Aliquots of each solution were mixed in several 5 mm NMR tubes such that the total volume in each tube was 1.0 mL and the mole fraction of catalyst was varied from 0.1 to 1.0 M across 10 samples. ${ }^{1} \mathrm{H}$ NMR spectra were collected on a 500 MHz instrument at $25^{\circ} \mathrm{C}$. The chemical shift of the amide proton of the catalyst ( $\delta_{\text {obs }}$ ) was noted in each sample and a Job plot was created by plotting $\left(\delta_{\text {obs }} \delta_{\text {free }}\right) \cdot[\text { catalyst }]_{0}$ against the mole fraction of the catalyst, where [catalyst] ${ }_{0}$ is the initial concentration of catalyst measured into each sample. The plot thus obtained showed a maxima at a mole fraction of 0.5 , suggesting a $1: 1$ binding stoichiometry in the tosylate-thiophosphoramide complex.

| N-H peak shift |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Mole fraction | $\boldsymbol{\delta}_{\text {obs }}$ | $\boldsymbol{\delta}_{\text {obs }}-\boldsymbol{\delta}_{\text {tree }}[\text { [Phosph }]_{0}$ | $\left(\boldsymbol{\delta}_{\text {obs }}-\boldsymbol{\delta}_{\text {free }}\right) \cdot[\text { Phosph }]_{0}$ |  |
| 0.1 | 8.1506 | 2.3925 | 0.0005 | 0.00119625 |
| 0.2 | 8.1448 | 2.3867 | 0.001 | 0.0023867 |
| 0.3 | 8.135 | 2.3769 | 0.0015 | 0.00356535 |
| 0.4 | 8.115 | 2.3569 | 0.002 | 0.0047138 |
| 0.5 | 8.0756 | 2.3175 | 0.0025 | 0.00579375 |
| 0.6 | 7.5603 | 1.8022 | 0.003 | 0.0054066 |
| 0.7 | 6.8571 | 1.099 | 0.0035 | 0.0038465 |
| 0.8 | 6.4503 | 0.6922 | 0.004 | 0.0027688 |
| 0.9 | 6.1046 | 0.3465 | 0.0045 | 0.00155925 |
| 1 | 5.7581 | 0 | 0.005 | 0 |
|  |  |  |  |  |



## ${ }^{1} \mathrm{H}$ NMR titrations

A 0.5 mM solution of thiophosphoramide in $\mathrm{CDCl}_{3}$ was prepared, of which $500 \mu \mathrm{~L}$ was placed in a 5 mm NMR tube. A 2.5 mM solution of $N$-methylpyridinium tosylate in $\mathrm{CDCl}_{3}$ containing 0.5 mM thiophosphoramide 7 e was prepared as the titrant. Aliquots of $5-10 \mu \mathrm{~L}$ of the second solution were sequentially added to the NMR tube and the ${ }^{1} \mathrm{H}$ NMR spectrum was collected after each addition on a 500 MHz instrument at $25^{\circ} \mathrm{C}$. The chemical shift of the amide proton of the catalyst was noted in each sample. The binding constant was then calculated using the WinEQNMR program. ${ }^{10}$ Three titrations were thus performed to furnish an averaged binding constant $\left(K_{a}=7.3 \cdot 10^{4}\right)$.

## Computational Studies

Computational studies were performed using Spartan 2010. Geometry was optimized with MM2 (molecular mechanics) and then by DFT calculations:

Thiophosphoramide Catalyst 7e
Energy (kcal/mol): -2273472.26
Job type: Single point.
Method: RB3LYP
Basis set: $6-31+G^{*}$
Number of shells: 261
Number of basis functions: 925
Multiplicity: 1
Coordinates (XYZ):

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :---: | :---: | :---: | :---: |
| P | -0.054160 | 0.009696 | -0.189104 |
| C | 2.359336 | -4.915996 | 0.058476 |
| C | 1.447459 | -2.332969 | -0.603251 |
| C | 3.146376 | -4.059166 | -0.714679 |
| C | 1.113154 | -4.464877 | 0.491034 |
| C | 0.648562 | -3.187890 | 0.165880 |
| C | 2.704656 | -2.778032 | -1.038428 |
| H | -0.327224 | -2.868146 | 0.514556 |
| H | 3.335131 | -2.123795 | -1.634109 |
| C | -4.468079 | 1.312396 | 0.546018 |
| C | -3.874591 | -0.889114 | -1.041591 |
| C | -3.141999 | 1.046840 | 0.209496 |
| C | -5.510446 | 0.497843 | 0.094649 |
| C | -5.198292 | -0.599878 | -0.704581 |
| C | -2.836358 | -0.064459 | -0.592187 |
| H | -2.355444 | 1.697811 | 0.571914 |
| H | -6.538528 | 0.719248 | 0.353674 |



| H | -3.652505 | -1.755958 | -1.658715 |
| :---: | :---: | :---: | :---: |
| C | 3.352900 | 3.100822 | 0.540394 |
| C | 1.134808 | 3.771585 | -0.992777 |
| C | 3.199705 | 4.418648 | 0.110055 |
| C | 2.420406 | 2.115252 | 0.210647 |
| C | 1.299119 | 2.447375 | -0.561318 |
| C | 2.081254 | 4.740038 | -0.661557 |
| H | 3.929937 | 5.175760 | 0.367739 |
| H | 2.566823 | 1.101499 | 0.565327 |
| H | 0.265380 | 4.046286 | -1.584084 |
| H | 2.705760 | -5.911041 | 0.308212 |
| N | 1.010518 | -1.050273 | -0.997629 |
| H | 1.611907 | -0.583006 | -1.668944 |
| N | -1.515469 | -0.348888 | -0.997127 |
| H | -1.426644 | -1.108211 | -1.665144 |
| N | 0.348374 | 1.482031 | -0.952097 |
| H | -0.358220 | 1.810150 | -1.602496 |
| C | 0.223802 | $-5.354353$ | 1.327080 |
| C | 4.523171 | -4.495713 | -1.154227 |
| C | -6.285685 | -1.504636 | -1.231319 |
| C | -4.789312 | 2.480919 | 1.447515 |
| C | 1.901285 | 6.142009 | -1.190830 |
| C | 4.529729 | 2.711399 | 1.403730 |


| F | -5.964778 | 3.064932 | 1.111939 |
| :---: | :---: | :---: | :---: |
| F | -4.900023 | 2.094824 | 2.743620 |
| F | -3.835993 | 3.441918 | 1.402666 |
| F | $-7.515251$ | -1.128024 | -0.821119 |
| F | -6.103386 | -2.790321 | -0.836088 |
| F | -6.302597 | -1.520320 | -2.590920 |
| F | 0.701802 | -6.614420 | 1.426227 |
| F | 0.081138 | -4.879336 | 2.588899 |
| F | -1.027117 | -5.438976 | 0.802281 |
| F | 4.859821 | -3.973518 | -2.360292 |
| F | 4.624470 | $-5.840531$ | -1.253918 |
| F | 5.476562 | -4.091913 | -0.275394 |
| F | 0.604128 | 6.535116 | -1.150711 |
| F | 2.293480 | 6.237039 | -2.490231 |
| F | 2.620248 | 7.050389 | -0.496100 |
| F | 5.500960 | 3.651330 | 1.403453 |
| F | 5.093426 | 1.549644 | 0.983239 |
| F | 4.159927 | 2.518729 | 2.694189 |
| S | -0.064692 | -0.034590 | 1.746971 |

Thiophosphoramide Catalyst 7e + Mesylate Energy (kcal/mol): -2690086.83
Job type: Single point.
Method: RB3LYP
Basis set: $6-31+G^{*}$
Number of shells: 293
Number of basis functions: 1030
Charge : -1
Multiplicity: 1
Coordinates (XYZ):

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :---: | :---: | :---: | :---: |
| P | -0.010625 | 0.013533 | -0.740398 |
| C | 1.677731 | -5.232520 | -0.468896 |
| C | 0.420573 | -2.712024 | -0.206436 |
| C | 0.806370 | -4.974540 | 0.592557 |
| C | 1.913017 | -4.210784 | -1.389866 |
| C | 1.298570 | -2.962082 | -1.274564 |
| C | 0.187630 | -3.734832 | 0.733005 |
| H | 1.495461 | -2.192254 | -2.010312 |
| H | -0.468465 | -3.538845 | 1.575176 |
| C | 2.786153 | 3.745765 | -1.280467 |
| C | 3.073421 | 2.035209 | 0.890391 |
| C | 1.995327 | 2.596226 | -1.205134 |
| C | 3.724828 | 4.054411 | -0.296411 |
| C | 3.855216 | 3.181874 | 0.788373 |
| C | 2.135044 | 1.723613 | -0.114087 |
| H | 1.280144 | 2.376130 | -1.987910 |
| H | 4.333707 | 4.948522 | -0.367604 |


| H | 3.164586 | 1.379268 | 1.749923 |
| :--- | :--- | :--- | :--- |
| C | -4.618481 | 0.660922 | -1.445585 |
| C | -3.359870 | 1.558378 | 0.862481 |
| C | -5.393704 | 1.210925 | -0.423859 |
| C | -3.229448 | 0.559428 | -1.339243 |
| C | -2.583332 | 1.009287 | -0.176112 |
| C | -4.742726 | 1.659017 | 0.728551 |
| H | -6.469888 | 1.286392 | -0.520410 |
| H | -2.649395 | 0.140951 | -2.152858 |
| H | -2.866699 | 1.885653 | 1.772846 |
| H | 2.159705 | -6.197610 | -0.572395 |
| N | -0.257761 | -1.500165 | -0.016362 |
| H | -0.698434 | -1.431682 | 0.914235 |
| N | 1.404256 | 0.537191 | 0.035752 |
| H | 1.522747 | 0.107367 | 0.967375 |
| N | -1.193258 | 0.969859 | 0.011178 |
| H | -0.910978 | 1.256915 | 0.961997 |
| C | 2.812096 | -4.488895 | -2.565982 |
| C | 0.581688 | -6.036600 | 1.635599 |
| C | 4.835770 | 3.529598 | 1.876476 |
| H | 2.672611 | 4.646328 | -2.482375 |
| H | 0.218866 | -2.721277 |  |
| H |  |  |  |


| F | 1.462470 | 4.576438 | -3.083078 |
| :---: | :---: | :---: | :---: |
| F | 2.882651 | 5.953112 | -2.166103 |
| F | 3.597109 | 4.338434 | -3.437400 |
| F | 6.037047 | 3.925541 | 1.368585 |
| F | 5.084411 | 2.498192 | 2.715332 |
| F | 4.399001 | 4.564903 | 2.648686 |
| F | 2.147795 | -5.118716 | -3.577446 |
| F | 3.347936 | -3.366190 | -3.097779 |
| F | 3.849425 | -5.306064 | -2.235067 |
| F | -0.616051 | $-5.914702$ | 2.256893 |
| F | 1.528813 | $-6.002717$ | 2.615025 |
| F | 0.628560 | $-7.291061$ | 1.110961 |
| F | $-5.869203$ | 1.223072 | 2.779200 |
| F | -6.735885 | 2.731270 | 1.471575 |
| F | -4.902773 | 3.161625 | 2.570394 |
| F | -6.584443 | -0.136570 | $-2.526907$ |
| F | -4.669218 | -0.842586 | -3.292648 |
| F | -5.302070 | 1.207049 | -3.661294 |
| S | 0.009403 | 0.034169 | -2.696421 |
| S | -0.043295 | -0.079759 | 3.241550 |
| O | -0.932373 | -1.204407 | 2.799335 |
| O | 1.385606 | -0.277328 | 2.827404 |
| O | -0.576322 | 1.264187 | 2.837836 |


| C | -0.054451 | -0.109925 | 5.044604 |
| :--- | :---: | :---: | :---: |
| H | 0.589994 | 0.695028 | 5.404064 |
| H | 0.322743 | -1.081951 | 5.369082 |
| H | -1.082750 | 0.037785 | 5.381037 |

Thiourea Catalyst 7a
Energy (kcal/mol):-1480032.09
Job type: Single point.
Method: RB3LYP
Basis set: 6-31+G*
Number of shells: 177
Number of basis functions: 628
Multiplicity: 1


Coordinates (XYZ):

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :---: | :---: | :---: | :---: |
| C | 0.000000 | 0.000000 | 0.247169 |
| C | 4.270519 | 1.094513 | -0.600500 |
| C | 3.395253 | -0.901622 | 1.125949 |
| C | 2.923564 | 1.032493 | -0.251415 |
| C | 5.194294 | 0.174071 | -0.093396 |
| C | 4.746340 | -0.817699 | 0.776016 |
| C | 2.481704 | 0.021899 | 0.612949 |
| H | 2.224230 | 1.761286 | -0.639156 |
| H | 6.240779 | 0.235222 | -0.369543 |
| H | 3.055148 | -1.695174 | 1.785260 |
| C | -4.270519 | -1.094513 | -0.600500 |
| C | -3.395253 | 0.901622 | 1.125949 |
| C | -5.194294 | -0.174071 | -0.093396 |


| C | -2.923564 | -1.032493 | -0.251415 |
| :--- | :--- | :--- | :--- |
| C | -2.481704 | -0.021899 | 0.612949 |
| C | -4.746340 | 0.817699 | 0.776016 |
| H | -6.240779 | -0.235222 | -0.369543 |
| H | -2.224230 | -1.761286 | -0.639156 |
| H | -3.055148 | 1.695174 | 1.785260 |
| N | 1.134252 | -0.047417 | 1.041215 |
| H | 1.006729 | -0.439253 | 1.968273 |
| N | -1.134252 | 0.047417 | 1.041215 |
| H | -1.006729 | 0.439253 | 1.968273 |
| C | 5.723410 | -1.791359 | 1.386512 |
| C | 4.749230 | 2.152849 | -1.565536 |
| C | -5.723410 | 1.791359 | 1.386512 |
| C | -4.749230 | -2.152849 | -1.565536 |
| F | 3.892747 | 3.196651 | -1.649269 |
| F | 5.957957 | 2.650916 | -1.204358 |
| F | 4.892101 | 1.655307 | -2.820511 |
| F | 6.834392 | -1.946038 | 0.633637 |
| F | 5.173678 | -3.019878 | 1.555506 |
| F | 6.134298 | -1.379822 | 2.616597 |
| F | -6.134298 | 1.379822 | 2.616597 |
| F | -634392 | 1.946038 | 0.633637 |
| F | 3.019878 | 1.555506 |  |
| F |  |  |  |


| F | -5.957957 | -2.650916 | -1.204358 |
| :--- | :--- | :--- | :--- |
| F | -3.892747 | -3.196651 | -1.649269 |
| F | -4.892101 | -1.655307 | -2.820511 |
| S | 0.000000 | 0.000000 | -1.412840 |

Thiourea Catalyst 7a + Mesylate
Energy (kcal/mol): -1896642.93
Job type: Single point.
Method: RB3LYP
Basis set: 6-31+G*
Number of shells: 209
Number of basis functions: 733
Charge : -1
Multiplicity: 1
Coordinates (XYZ):

|  | $\mathbf{X}$ | $\mathbf{Y}$ | $\mathbf{Z}$ |
| :---: | :---: | :---: | :---: |
| C | 0.007778 | -0.728897 | -0.084693 |
| C | -4.343415 | -1.617060 | 0.692652 |
| C | -3.375901 | 0.593532 | -0.686417 |
| C | -2.966388 | -1.390787 | 0.642416 |
| C | -5.249046 | -0.765620 | 0.057173 |
| C | -4.746195 | 0.343879 | -0.626421 |
| C | -2.467334 | -0.281610 | -0.061024 |
| H | -2.285575 | -2.060342 | 1.147351 |
| H | -6.315109 | -0.956757 | 0.098572 |
| H | -2.995089 | 1.468765 | -1.203274 |
| C | 4.411972 | -1.655478 | -0.606802 |


| C | 3.386635 | 0.691371 | 0.468922 |
| :--- | :--- | :--- | :--- |
| C | 5.294270 | -0.706340 | -0.095310 |
| C | 3.027096 | -1.462245 | -0.584139 |
| C | 2.497675 | -0.284967 | -0.031865 |
| C | 4.760001 | 0.471508 | 0.437775 |
| H | 6.364908 | -0.873379 | -0.112332 |
| H | 2.365025 | -2.214818 | -0.986315 |
| H | 2.983181 | 1.618719 | 0.864718 |
| N | -1.113337 | 0.069294 | -0.123433 |
| H | -0.971052 | 1.076239 | -0.329541 |
| N | 1.137548 | 0.043229 | 0.028108 |
| H | 0.982183 | 1.037723 | 0.278592 |
| C | -5.708810 | 1.307299 | -1.267259 |
| C | -4.867844 | -2.827352 | 1.418215 |
| C | 5.706225 | 1.527049 | 0.944547 |
| C | 4.952852 | -2.954644 | -1.141817 |
| F | -4.031997 | -3.256092 | 2.394212 |
| F | -6.072683 | -2.590795 | 2.007989 |
| F | -5.062314 | -3.887095 | 0.582572 |
| F | -6.809364 | 0.677847 | -1.765317 |
| F | -5.156400 | 1.999786 | -2.288896 |
| F | -6.176509 | 2.231152 | -0.379006 |
| F | 2.260348 | -0.069627 |  |


| F | 6.763223 | 0.981012 | 1.611862 |
| :--- | :--- | :--- | :--- |
| F | 5.119934 | 2.403881 | 1.788568 |
| F | 6.229040 | -2.839036 | -1.599501 |
| F | 4.213466 | -3.448186 | -2.164828 |
| F | 4.982307 | -3.927048 | -0.186176 |
| S | -0.025474 | -2.412307 | -0.170634 |
| S | 0.002866 | 3.645398 | 0.031812 |
| O | 0.683763 | 4.646309 | -0.814114 |
| O | -1.044412 | 2.827253 | -0.681626 |
| O | 0.929243 | 2.738776 | 0.806460 |
| C | -0.900061 | 4.571612 | 1.298294 |
| H | -1.421069 | 3.861758 | 1.944682 |
| H | -1.612919 | 5.229511 | 0.795716 |
| H | -0.178264 | 5.157310 | 1.872345 |

[^0]${ }^{1} \mathrm{H}$ NMR 400 Hz


${ }^{13} \mathrm{C}$ NMR, 175 MHz


${ }^{31}$ P NMR, 162 MHz


${ }^{19}$ F NMR, 376 MHz


${ }^{1} \mathrm{H}$ NMR, 700 MHz


${ }^{13} \mathrm{C}$ NMR, 175 MHz


7d
-Ph

${ }^{31}$ P NMR, 283 MHz

${ }^{19}$ F NMR, 376 MHz


${ }^{1} \mathrm{H}$ NMR, 400 MHz

${ }^{13} \mathrm{C}$ NMR, 101 MHz


${ }^{1} \mathrm{H}$ NMR, 400 MHz


10 g

${ }^{13} \mathrm{C}$ NMR, 175 MHz


10 g

${ }^{1} \mathrm{H}$ NMR, 700 MHz


${ }^{13} \mathrm{C}$ NMR, 175 MHz


10h

${ }^{1} \mathrm{H}$ NMR, 700 MHz


10i

${ }^{13} \mathrm{C}$ NMR, 175 MHz




[^0]:    ${ }^{1}$ Harris, R. K.; Becker, E. D.; Cabral de Menezes, S. M.; Goodfellow, R.; Granger, P. Pure Appl. Chem. 2001, 73, 1795.
    ${ }^{2}$ Lu, T.-J.; Yang, J.-F.; Sheu, L.-J. J. Org. Chem. 1995, 60, 2931-2934.
    ${ }^{3}$ a) Kim, H. Y.; Oh, K. Org. Lett. 2011, 13, 1306-1309; b) Liu, H.; Tomooka, C. S.; Moore, H. W. Synth. Commun. 1997, 27, 2177-2180; c) Rodriguez, A. A.; Yoo, H.; Ziller, J. W.; Shea, K. J. Tetrahedron Lett. 2009, 50, 6830-6833.
    ${ }^{4}$ Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B.-S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493-5499.
    ${ }^{5}$ Chavan, S. P.; Sharma, A. K. Synlett 2001, 2001, 0667-0669.
    ${ }^{6}$ Borovika, A.; Nagorny, P. Tetrahedron 2013, 69, 5719-5725.
    ${ }^{7}$ Chavan, S. P.; Ethiraj, K. S.; Dantale, S. W. Synthetic Commun 2007, 37, 2337-2343.
    ${ }^{8}$ Inokuchi, T.; Tanigawa, S.; Torii, S. J. Org. Chem. 1990, 55, 3958-3961.
    ${ }^{9}$ Kumareswaran, R. Tetrahedron 1999, 55, 1099-1110.
    ${ }^{10}$ We thank Dr. Hynes for providing us permission to use WinEQNMR for calculating the $\mathrm{K}_{\mathrm{a}}$ of $7 \mathrm{e}: \mathrm{M} . \mathrm{J}$. Hynes, J. Chem. Soc., Dalton Trans. 1993, 311.

