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Migration of activated macrophages is essential for resolu-

tion of acute inflammation and the initiation of adaptive

immunity. Here, we show that efficient macrophage mi-

gration in inflammatory environment depends on Mac-1

recognition of a binary complex consisting of fibrin within

the provisional matrix and the protease tPA (tissue-type

plasminogen activator). Subsequent neutralization of tPA

by its inhibitor PAI-1 enhances binding of the integrin–

protease–inhibitor complex to the endocytic receptor LRP

(lipoprotein receptor-related protein), triggering a switch

from cell adhesion to cell detachment. Genetic inactivation

of Mac-1, tPA, PAI-1 or LRP but not the protease uPA

abrogates macrophage migration. The defective macro-

phage migration in PAI-1-deficient mice can be restored

by wild-type but not by a mutant PAI-1 that does not

interact with LRP. In vitro analysis shows that tPA pro-

motes Mac-1-mediated adhesion, whereas PAI-1 and LRP

facilitate its transition to cell retraction. Our results em-

phasize the importance of ordered transitions both tempo-

rally and spatially between individual steps of cell

migration, and support a model where efficient migration

of inflammatory macrophages depends on cooperation of

three physiologically prominent systems (integrins, co-

agulation and fibrinolysis, and endocytosis).
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Introduction

Inflammation is associated with increased vascular perme-

ability, activation of the coagulation pathway, and the for-

mation of fibrin clots. In response to acute inflammation,

monocytes/macrophages accumulate at the site of injury

(Leibovich and Ross, 1975), where they participate initially

in innate immune responses and then in wound healing.

During resolution of the inflammation, they migrate in a

Mac-1 (aMb2, CD11b/CD18, CR3)-dependent manner (Cao

et al, 2005) from the site of injury to the lymphatic system

(Bellingan et al, 1996), where they present antigens to

lymphocytes and help maintain immune surveillance.

Failure of monocyte/macrophage efflux from the site of injury

to the draining lymph nodes contributes in part to the

pathogenesis of many chronic inflammatory diseases, includ-

ing atherosclerosis (Libby, 2002; Llodra et al, 2004). Thus,

understanding the mechanisms controlling macrophage

migration within different environments is of paramount

importance.

Cell migration is a complex process involving multiple

steps, including intracellular signaling, cell adhesion, cyto-

skeletal reorganization, cell detachment, and recycling of

cell surface receptors (Stossel, 1994; Murphy and Gavrilovic,

1999; Sanchez-Madrid and del Pozo, 1999; Webb et al,

2002), and therefore requires participation of a wide range

of biological processes (Bretscher, 1984; Murphy and

Gavrilovic, 1999). In particular, the low-density lipoprotein

receptor-related protein (LRP), an endocytic receptor that

recognizes a wide range of ligands, including protease–

protease inhibitor complexes, has been shown to modulate

cell migration in several in vitro systems (Herz and Strickland,

2001), in part via its interaction with the uPA/uPA receptor

(uPAR)/integrin complex (Wei et al, 1996; Czekay et al,

2003). However, the effects of the LRP/uPA/uPAR system on

cell migration in vivo remains to be tested, especially given

the fact that no substantial migration defects have been

reported for uPAR-deficient mice (Dewerchin et al, 1996).

In this work, we have studied the roles of PAI-1 and LRP in

macrophage migration in response to inflammation. These

results support a novel mechanism underlying the Mac-1-

dependent migration of activated macrophages within an

inflammatory environment, where tissue-type plasminogen

activator (tPA), its specific inhibitor PAI-1, and the endocytic

receptor LRP work together to facilitate the transition bet-

ween the individual steps of cell migration. Specifically, we

show that tPA initiates macrophage adhesion by enhancing

Mac-1 recognition of fibrin, which is present in the provi-

sional matrices and shown to play a critical role in macro-

phage adhesion in vivo (Szaba and Smiley, 2002). This is

followed by PAI-1 inhibition of tPA, which in turn couples the

adhesion complex to LRP, and leads to the internalization

of the adhesion complex and the detachment of the cell

trailing edges via LRP-mediated endocytosis. Together, these
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data provide new mechanistic insight in macrophage migra-

tion during inflammation, a process that is critical to

many physiological and pathological events. Significantly,

our results demonstrate the importance of an ordered transi-

tion for the individual steps of cell migration, and provide

novel and detailed mechanistic information that may help us

better understand how the different steps of cell migration are

coordinated on a molecular level.

Results

tPA is required for efficient macrophage adhesion

to fibrin(ogen)

Proper host response to an acute injury requires both the

initial infiltration of blood leukocytes to the site of injury and

the subsequent efflux of inflammatory macrophages during

resolution of inflammation (Bellingan et al, 2002). Although

infiltration of blood neutrophils and monocytes through the

endothelium is well studied, little is known about the mecha-

nism underlying the emigration of mature macrophages to

the lymphatics. Recently, Bellingan et al (2002) reported that

unstimulated macrophages migrate spontaneously over a

4-day period to the lymph nodes in a b1-integrin-dependent
manner. We showed that the efficiency of such macrophage

emigration is dramatically increased upon LPS stimulation,

potentially owing to switching from a b1 to a Mac-1-depen-

dent process (Cao et al, 2005). Indeed, we found that func-

tion-blocking antibodies of VLA-4 and VLA-5 did not have

significant effects on in vivo macrophage migration in the

presence of LPS (Supplementary data).

Given that genetic inactivation of fibrin(ogen), a ligand of

Mac-1 (Altieri et al, 1993), also leads to defective macrophage

adhesion/migration in vivo (Szaba and Smiley, 2002), we

hypothesized that macrophage migration under inflamma-

tory conditions requires Mac-1 and its recognition of fibrin

(ogen). As Mac-1 binds fibrin(ogen) with relatively low

affinity (Altieri et al, 1993), we speculated that additional

factors may be involved that promote specifically Mac-1-

dependent migration. tPA, which is known to interact with

fibrin at a site close to the Mac-1 recognition sequences (P1

and P2) (Altieri et al, 1993; Ugarova et al, 1998; Medved and

Nieuwenhuizen, 2003), could provide this cofactor activity.

To test this hypothesis, we conducted cell adhesion experi-

ments using human 293 cells that stably express recombinant

Mac-1 (Zhang and Plow, 1996), and the fibrin DDE fragment

that contains two fibrinogen D domains and one central E

domain (Olexa and Budzynski, 1979). The addition of tPA

to immobilized DDE increased Mac-1-dependent cell adhe-

sion in a concentration-dependent manner, which could be

blocked by the addition of the specific Mac-1-antagonist

neutrophil inhibitory factor (NIF) (Muchowski et al, 1994)

(Figure 1A). Thus the tPA/fibrin complex leads to enhanced

Mac-1-mediated cell adhesion.

tPA is a novel Mac-1 ligand

One of the mechanisms by which tPA may promote Mac-1-

mediated adhesion to fibrin(ogen) is by direct interaction

with Mac-1, thus converting a monovalent interaction bet-

ween Mac-1 and either fibrin or tPA into a bivalent interaction

between Mac-1 and the tPA/fibrin complex. To test this

hypothesis, we conducted solid-phase binding assays in two

different formats with either purified Mac-1 (Figure 1B) or

purified tPA (data not shown) immobilized to microtiter

wells. In both cases, the reciprocal ligand bound specifically

in a dose-dependent manner. In addition, NIF blocked tPA

binding to Mac-1 (Figure 1B). These data indicate that

purified Mac-1 binds to purified tPA. In further support, we

found that Mac-1 transfected but not mock transfected

human 293 cells adhered directly to tPA, and this adhesion

could be blocked by NIF (data not shown). No adhesion was

seen to a control protein (ovalbumin).

To see if tPA could also promote Mac-1-mediated macro-

phage adhesion, we conducted cell adhesion assays as above

using freshly obtained peritoneal macrophages from mice.

We found that, in agreement with the above results, the

Figure 1 tPA binds Mac-1 and promotes cell adhesion to fibrin.
(A) Mac-1-expressing (J) or mock (&) 293 cells were added to
DDE (50 mg/ml)-coated 24-well plates in the presence of different
concentrations of tPA without or with NIF (100nM) (D), and the
number of adherent cells was quantified. (B) Different concentra-
tions of tPA were added to Mac-1-coated 96-well plates in the
presence (D) or absence (J) of NIF (100 nM). The amount of
bound tPA was detected using anti-tPA antibody and an HRP
conjugate of secondary antibody. For both (A) and (B), the data
shown are the means7s.d. and are representative of two to three
independent experiments. (C, D) Fresh macrophages isolated from
WT (C) or different knockout mice with or without add-back of
tPA (50 nM) or uPA (50nM) (D) were allowed to adhere to DDE
(50 mg/ml)-coated wells. Macrophage adhesion was measured as in
(A). In panel C, WT macrophages were treated, prior to adhesion
assays, with anti-Fg (50mg/ml), anti-tPA (50 mg/ml), NIF (100nM),
or a control IgG. The data shown are the means7s.d. (n¼ 3).
*Student’s t-test Po0.005. (E) Fresh macrophages isolated from
WT or tPA-deficient mice with or without add-back of tPA (50 nM)
or uPA (50 nM), or pretreatment with anti-tPA (50mg/ml), NIF
(100nM), anti-b1 (9EG7, 20 mg/ml), or a control IgG, were allowed
to adhere to fibronectin-coated wells (10 mg/ml). Macrophage adhe-
sion was measured as in (A). The data shown are the means7s.d.
(n¼ 3). *Student’s t-test, Po0.05.
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Mac-1 antagonist, NIF, as well as polyclonal antibodies

against fibrinogen or tPA could block cell adhesion

(Figure 1C), demonstrating the contribution of these mole-

cules in the adhesion of macrophages. Since no endogenous

tPA was added to this assay, these data imply that the

adhesion of wild-type (WT) macrophages utilizes endogen-

ous tPA produced by the macrophages. Indeed, a significant

amount of tPA could be detected on the cell surface of freshly

purified macrophages by FACS analysis (data not shown).

Most importantly, when similar cell adhesion assays were

performed using Mac-1�/� or tPA�/� macrophages, these

cells exhibited dramatically reduced adhesion (B5-fold less

than WT; Figure 1D). Moreover, the defective adhesion of

the tPA�/� macrophages, but not the Mac-1�/� cells, could

be significantly restored by adding back exogenous tPA,

whereas add-back of the related plasminogen activator uPA

to the tPA�/� macrophages failed to restore cell adhesion

(Figure 1D). To further examine the specificity of Mac-1 and

tPA in this system, we also analyzed cell adhesion using

macrophages isolated from mice deficient in uPA�/� or mice

deficient in the tPA inhibitor PAI-1 (PAI-1�/�) as well as

macrophage adhesion to another extracellular matrix protein

fibronectin. These data demonstrated that cell adhesion to

fibrin was not affected by either uPA or PAI-1 deficiency

(Figure 1D), suggesting that macrophage adhesion to fibrin

requires the integrin Mac-1 and its specific recognition of

tPA, but is independent of either uPA or PAI-1. In contrast,

cell adhesion to fibronectin is not dependent on Mac-1 or

tPA, since addition of the Mac-1-specific antagonist NIF, or

blocking antibodies to tPA, or genetic inactivation of tPA had

no effect on macrophage adhesion to fibronectin (Figure 1E).

tPA and PAI-1 are required for Mac-1-dependent

macrophage migration

Given the critical role of tPA in Mac-1-dependent cell adhe-

sion to fibrin (Figure 1), we analyzed whether tPA also plays

a role in macrophage migration. To test this, in vitro migra-

tion assays, using the Boyden chamber-type transwells, were

performed on macrophages isolated from the tPA�/� mice.

These data indicated that genetic inactivation of tPA results

in a 18-fold reduction in macrophage migration on fibrin

(Figure 2A) but not on fibronectin (Figure 2B). In contrast,

migration was essentially normal with macrophages from both

uPA�/� mice and mice deficient in the uPAR (uPAR�/�)

(Figure 2A). However, when macrophages deficient in the

tPA inhibitor PAI-1 (PAI-1�/�) were analyzed, migration was

reduced by 4.8-fold. Thus, Mac-1, tPA and fibrin are impor-

tant for both macrophage adhesion and migration in vitro,

whereas PAI-1 is not required for macrophage adhesion

(Figure 1D), but is critical for cell migration on fibrin. To

confirm that tPA and PAI-1 are also important for macrophage

migration in vivo, we evaluated macrophage efflux out of

the peritoneum, using the same four gene-knockout mice

(tPA�/�, uPA�/�, uPAR�/�, and PAI-1�/�). This in vivomodel

of macrophage migration has been described and character-

ized by us (Cao et al, 2005) and others (Szaba and Smiley,

2002), where both we and Szaba et al showed that in

response to LPS stimulation, mature macrophages migrate

across the peritoneal mesothelium to the lymphatics in both

a Mac-1- and fibrin-dependent manner. Thus, macrophage

migration can be measured by the difference in the total

lavaged leukocyte number between the LPS-treated mice and

the control PBS-treated mice. In this assay, the infiltrated

monocytes, induced by intraperitoneal (i.p.) thioglycollate

(TG) injection, were allowed to mature into macrophages

over 4 days. Macrophage migration was then initiated by i.p.

injection of LPS, and 4 h later, the total peritoneal cells were

retrieved by lavage. We found that as in vitro, both tPA�/�

and PAI-1�/� mice exhibited defective macrophage migration

in vivo, and no significant difference in the peritoneal cell

numbers was observed between the LPS- (Figure 2C, filled

bars) and PBS-treated mice (Figure 2C, open bars), indicating

that the majority of the PAI-1�/� and tPA�/� macrophages

(95 and 93% respectively) remained within the peritoneal

cavity. In contrast, both uPA�/� and uPAR�/� mice had

normal macrophage migration in response to LPS stimu-

lation, resulting in similar reductions in the peritoneal

cell numbers between the LPS-treated mice (Figure 2C, filled

bars) and PBS-treated mice (Figure 2C, open bars) (WT, 75%;

uPA�/�, 70%; and uPAR�/�, 64%). Moreover, the LPS-

stimulated loss of macrophages could be inhibited by the

Mac-1 antagonist NIF (Cao et al, 2005) but not by blocking

antibodies specific for integrin a4 or a5 (Supplementary data).

These data indicate that like Mac-1 (Cao et al, 2005) and

fibrin (Szaba and Smiley, 2002), tPA and PAI-1 are also

critical for macrophage migration in vitro.

A critical role of LRP in macrophage migration

The above data suggest that Mac-1, fibrin and tPA form

an adhesive complex, whereas PAI-1 likely functions at a

different step during cell migration on fibrin. One possibility

Figure 2 Macrophage migration in vitro and in vivo depends on
tPA and PAI-1 but not on uPA or uPAR. (A, B) Macrophages
obtained from different deficient mice were subjected to in vitro
migration assays using fibrin(ogen)- (10mg/ml) (A) or fibronectin-
coated transwell plates (10mg/ml) (B). The number of WT macro-
phages that migrated into the lower chamber in 4 h at 371C was set
at 100%. The data shown are the means7s.d. (n¼ 3). (C)
Macrophage migration to the draining LNs was measured in vivo
by the difference in the number of peritoneal leukocytes between
the LPS-treated (filled bars) animals and the PBS-treated (open
bars) controls. The data shown are the means7s.d. (n¼ 6).
**Student’s t-test, Po0.003.
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is that inhibition of tPA by PAI-1 could promote the removal

of tPA from the fibrin matrix and thereby destabilize the Mac-

1/tPA/fibrin adhesion complex. This scenario is suggested by

previous studies that have shown that upon interaction with

a target protease, such as tPA, PAI-1 undergoes a conforma-

tional change that leads to high-affinity binding to LRP

(Stefansson et al, 1998). Therefore, to determine if LRP

plays a role in macrophage migration, we conducted

in vitro cell adhesion and migration assays with and without

the LRP antagonist the receptor-associated protein (RAP), a

39 kDa protein that inhibits all known LDLR family proteins

including LRP (Strickland et al, 1990). We found that addition

of either RAP or function-blocking antibodies against LRP

dramatically inhibited in vitro macrophage migration

(Figure 3A), but not cell adhesion (data not shown), and

that i.p. injections of RAP significantly blocked the loss of

macrophages from the peritoneal cavity (Figure 3B). As PAI-1

and LRP are required for migration, but have no effect on

adhesion, these data suggest that PAI-1 and LRP are not part

of the initial adhesion complex and instead they act at

a different step during macrophage migration on fibrin,

most likely during the transition between cell adhesion and

detachment.

Cre/Lox-mediated genetic inactivation of LRP inhibits

macrophage migration

To confirm the importance of LRP in macrophage migration

genetically, we performed tissue-specific inactivation of the

LRP gene in macrophages using a Cre/Lox system. This was

necessary since the complete deletion of LRP is embryonic

lethal (Herz et al, 1992). The inactivation of LRP was carried

out in macrophages isolated by peritoneal lavage following

TG injection from homozygous mice carrying a floxed LRP

gene (Rohlmann et al, 1996). These isolated macrophages

were infected with a recombinant adenovirus carrying the

Cre gene and a marker gene (GFP). Expression of Cre in

macrophages from the LRP-floxed mice, but not from control

WT mice, resulted in the loss of LRP surface expression

(Figure 3C), and importantly, in a significant reduction in

cell migration in vitro (Figure 3D). To exclude potential

influences of viral infection on macrophage migration, we

also infected macrophages from both WT mice and the LRP-

floxed mice with a control adenovirus that carries only the

GFP gene. These cells demonstrated both normal LRP expres-

sion (Figure 3C) and macrophage migration (Figure 3D).

LRP is required for efficient Mac-1 internalization

As LRP is known to cycle efficiently between the cell surface

and intracellular compartments (Herz et al, 1992), LRP could

promote macrophage migration by enhancing Mac-1 inter-

nalization and recycling back to the cell surface. To test this

hypothesis, we measured Mac-1 internalization in the pre-

sence or absence of the LRP antagonist RAP. As shown in

Figure 4A, approximately 30% of surface-labeled Mac-1 was

internalized after 30min at 371C, and this internalization

required stimulation by LPS (Figure 4A). However, in the

presence of RAP (Figure 4A) or when LRP was genetically

deleted (Supplementary data), the LPS-stimulated internali-

zation was completely blocked, suggesting that LRP is

required for efficient Mac-1 internalization in macrophages.

Genetic inactivation of PAI-1 also abolished Mac-1 internali-

zation, which could be restored by the addition of WT PAI-1

but not the mutant PAI-1 R76E that inhibits tPA normally but

binds LRP with markedly reduced affinity (Stefansson et al,

1998) (Figure 4B). Finally, addition of RAP did not have

a significant effect on the internalization of an irrelevant

receptor MHC II that is also expressed on the macrophage

surface (see Supplementary data). Together, these data

demonstrate that LPS-stimulated internalization of Mac-1

depends specifically on PAI-1 and LRP.

LRP colocalizes with Mac-1 on the cell surface

To determine if LRP promotes integrin internalization by

colocalizing with Mac-1 on the macrophage surface, we

measured the molecular proximity between these two pro-

teins, using fluorescence lifetime imaging microscopy (FLIM)

(von Arnim et al, 2004). This high-resolution imaging tech-

nique is based on fluorescence resonance energy transfer that

Figure 3 LRP is critical to Mac-1-dependent macrophage migration.
(A) Addition of RAP (1mM) or a LRP-specific antibody R2629
(100mg/ml) abolished macrophage migration in vitro. The data
represent the means7s.d. of three independent experiments.
**Student’s t-test, Po0.001, n¼ 3. (B) I.p. administration of RAP
(1mM) blocked LPS-stimulated macrophage efflux from the perito-
neum in vivo. The data represent the means7s.d. of seven mice
per group. **‘LPS’ versus ‘LPSþRAP’, Student’s t-test, P¼ 0.005.
(C, D) Macrophages from WT and the LRP-floxed mice were
infected with adenovirus expressing GFP alone or GFP and Cre.
Expression of the Cre gene but not a GFP control in the LRP-floxed
macrophages abolished LRP surface expression as determined by
two-color FACS analysis (C), and inhibited cell migration in vitro
(D). The data represent the means7s.d. and are representative of
two independent experiments. *GFP versus Cre; Student’s t-test,
Po0.01, n¼ 3.
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occurs if two fluorophores are in very close proximity

(o100 Å). Accordingly, we labeled primary macrophages

simultaneously with different antibody pairs, including rabbit

anti-LRP extracellular domain (R2629)/rat anti-Mac-1 (M1/

70), or as a control, mouse anti-LRP intracellular domain

(11H4)/M1/70. Other control reactions included R2629/rat

IgG, M1/70/rabbit IgG and M1/70/anti-MHC II, followed by

staining with Alexa 488 and Alexa 568 conjugates of their

corresponding secondary antibodies, and the fluorescence

lifetimes were determined using a multiphoton confocal

microscope. We found that the presence of Mac-1 (i.e. the

acceptor Alexa 568) significantly shortened the average fluor-

escence lifetime of the anti-LRP extracellular domain fluoro-

phore (i.e. the donor Alexa 488) (Po0.001, n¼ 25; Table I),

indicating that Mac-1 and LRP resided o100 Å from each

other on the cell surface. No FLIM was observed between

other antibody pairs (Table I), thus confirming the specificity

of colocalization between LRP and Mac-1. Figure 4C shows

Figure 4 LRP modulates cell migration by interacting with Mac-1. (A, B) Surface Mac-1 on WT (A) or PAI-1�/� (B) macrophages was labeled
with anti-Mac-1 (M1/70) at 41C with (&) or without (J) RAP (in panel A) and with PAI-1 (K), PAI-1 (R76E) (m), or a control protein BSA (&)
(in panel B). Mac-1 internalization upon incubation of macrophages in the presence (except for -D-) of LPS (10 ng/ml) at 371C was measured by
FACS analysis using an FITC conjugate of anti-rat IgG. The mean fluorescence intensity at time zero was assigned 100%. The data shown
represent the means7s.d. of a duplicate experiment. (C) Macrophages were stained with only the donor antibody (anti-LRP) (a, b), or a pair of
donor and acceptor antibodies specific for LRP (R2629) and Mac-1 (M1/70) (c, d), LRP (R2629) and control rat IgG (e), control rabbit IgG and
Mac-1 (M1/70) (f), MHC II (2G9) and Mac-1 (M1/70) (g), and the LRP intracellular domain (11H4) and Mac-1 (M1/70) (h), followed with Alexa
488–antidonor (rabbit or mouse) IgG and Alexa 568–anti-rat IgG. The fluorescence images (a, c) show surface staining for LRP. The FLIM
images (b, d, e–h), taken at the z-section of the cell surface and presented in pseudocolors from red to blue, show the fluorescence lifetimes (in
picoseconds) of Alexa 488 in the absence (b) or presence (d, e–h) of the acceptor Alexa 568. The datum shown is representative of two
independent experiments. (D, E) Co-IP was performed with anti-LRP (5A6) or a control IgG using cell lysates from WT macrophages with or
without RAP, WT PAI-1, or a mutant PAI-1(R76E) (D), and using the cell lysates from either tPA�/� or PAI-1�/� macrophages with or without
add-back of exogenous tPA or PAI-1, respectively (E). The IPs were separated on 10% SDS–PAGE and probed with anti-Mac-1 (ARC22) by
immunoblot. Equal loading was verified by immunostaining of either total b-actin (D) or Mac-1 and LRP (E) in the lysates. The figures shown
are representative of two to three independent co-IP experiments.
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a representative pseudocolor-coded images of surface co-

localization between LRP and Mac-1 (i.e. the z-section is set

at the height of the cell surface), where a uniformly bluish

image (thus long fluorescence lifetime) was obtained in the

absence of the acceptor (panel b) or in the presence of a

nonimmune control IgG (panel e), and a red/orange-filled

image representing short fluorescence lifetime (therefore

close proximity) was obtained in the presence of the acceptor

Mac-1 fluorophore (panel d). Similarly, uniformly bluish

images were also obtained when either a nonimmune control

IgG (panel f) or MHC II (panel g) was used as the donor and

Mac-1 as the acceptor. Finally, to exclude the possibility that

the colocalization observed in the above experiments occurs

between extracellular Mac-1 and intracellular LRP (e.g.

within the endosomes), the cell surface Mac-1 was labeled

with M1/70 and the intracellular domain of LRP was labeled

with mAb 11H4 after cell permeabilization. A bluish image

was obtained (panel h) with the 11H4/M1/70-labeled cells,

demonstrating that no FLIM exists between the two receptors

that reside on the opposite sides of the plasma membrane.

Altogether, these experiments demonstrate that LRP asso-

ciates with Mac-1 on the cell surface, and furthermore,

taken with the data shown in Figure 2, they suggest that

this interaction may be at least partially tPA- and PAI-1-

dependent.

LRP associates with Mac-1 directly:

co-immunoprecipitation (co-IP) experiments

We next examined whether LRP directly associates with

Mac-1. To test this, we conducted reciprocal co-IP experi-

ments using mAbs against LRP or Mac-1 for immunoprecipi-

tation (IP) and antibodies against the 95 kDa b-subunit
of Mac-1 or the 85 kDa subunit of LRP for immunoblots.

These data indicated that Mac-1 is precipitated as a complex

with LRP, and that this association is partially blocked

with RAP (Figure 4D). Reciprocally, LRP could be precipitated

with a mAb (M1/70) specific for Mac-1 but not by a control

IgG, confirming specificity (data not shown). Moreover, the

interaction of LRP with Mac-1 was inhibited by a mutant

of PAI-1 (R76E), which inhibits tPA normally but binds

LRP with markedly reduced affinity (Stefansson et al, 1998)

(Figure 4D), suggesting that the R76E PAI-1 functions as a

competitive inhibitor of endogenous PAI-1. To confirm that

endogenous PAI-1 enhances the association of Mac-1 with

LRP, we conducted additional co-IP experiments using macro-

phages obtained from either PAI-1�/� or tPA�/� mice. In the

absence of PAI-1, only small amounts of the LRP/Mac-1

complex could be detected, despite similar amounts of

Mac-1 (Figure 4E, middle panel) and LRP (Figure 4E, bottom

panel) were present in the cell lysates. Adding back exo-

genous PAI-1 into their corresponding cell lysates signi-

ficantly enhanced the complex formation (Figure 4E).

Likewise, cells that lack tPA also show reduced LRP/Mac-1

complexes and complex formation in these lysates was stimu-

lated by the addition of tPA. Together, these data suggest that

LRP associates weakly with Mac-1, a finding consistent with a

recent report (Spijkers et al, 2005). However, tPA and PAI-1,

both of which could be detected on the macrophage cell

surface by FACS analysis (data not shown), enhance the

association of LRP with Mac-1 as evidenced by co-IP analysis.

The role of PAI-1 in macrophage migration in vitro

and in vivo

Based on all of the results above, we hypothesized that

efficient macrophage migration depends on ordered transi-

tion among the three individual steps of macrophage migra-

tion: adhesion, movement, and integrin disengagement/

internalization (Stossel, 1994; Murphy and Gavrilovic,

1999; Sanchez-Madrid and del Pozo, 1999; Webb et al,

2002). In our model, macrophage adhesion and movement

requires Mac-1 recognition of the tPA/fibrin complex, where-

as integrin internalization occurs when PAI-1 binds tPA and

thereby couples the adhesion complex to LRP resulting in a

switch from cell adhesion to receptor internalization. To test

this model, we attempted to reconstitute the migratory func-

tion of the PAI-1�/� macrophages in vitro and in vivo, using

WT PAI-1 and PAI-1 (R76E) which is not recognized by LRP.

For the in vitro reconstitution experiments, different concen-

trations of PAI-1 were mixed with the PAI-1�/� macrophages

prior to the cell migration experiments and these results are

shown in Figure 5A and B. The addition of WT PAI-1 restored

the migration of the PAI-1�/� macrophages in a dose-depen-

dent manner and full restoration (92% of that of WT macro-

phages) was achieved with PAI-1 concentrations between 1

and 10 nM. In comparison, the PAI-1 mutant (R76E) failed to

restore the migratory function of the PAI-1�/� macrophages,

indicating that PAI-1 binding to LRP is critical to its ability to

enhance Mac-1-mediated macrophage migration on fibrin.

Similar reconstitution experiments were also performed

in vivo, by administering different concentrations of WT PAI-1

or mutant PAI-1(R76E) into the peritoneum of PAI-1�/� mice,

and measuring macrophage migration out of the peritoneum.

These data demonstrated that the effect of exogenous PAI-1

on macrophage migration in vivo mirrored that of macro-

phage migration in vitro (Figure 5C), where efflux of the

PAI-1�/� macrophages was increased with increasing con-

centrations of administered PAI-1, as evidenced by the gra-

dual reduction of the macrophage numbers from peritoneal

lavage. The optimal concentration of PAI-1 needed to fully

restore the migratory function of the PAI-1�/� macrophages

in vivo was significantly higher than the concentration

required in vitro. However, in vitro the PAI-1 concen-

tration represented the final concentration in the system,

whereas in vivo there is a significant dilution of PAI-1 and

the final local concentration is not known. Finally, like the

reconstitution experiments in vitro, administration of the

mutant PAI-1(R76E) failed to restore macrophage migration

Table I Association between LRP and Mac-1 on macrophages

Donor
(Alexa 488)

Acceptor
(Alexa 568)

Lifetime
(ave.7s.d.) (ps)

No. of
cells

LRP — 2147750 26
LRP Mac-1 17437163* 25
LRP IgG 20987100 24
LRP (CT) Mac-1 2082745 26
MHC II Mac-1 23417205 14
IgG Mac-1 2159747 26

The fluorescence lifetimes of the donor fluorophore were calculated
within each pixel that interacts with an acceptor fluorophore. A
strong FLIM was observed between LRP and Mac-1, indicating that
they interact with each other on the cell surface. *Student t-test,
Po0.001, Mac-1 versus ‘—’ or IgG.
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in vivo at concentrations where WT PAI-1 was fully effective

(0–1 mM) (Figure 5D).

Morphological analysis of macrophage migration

The molecular and functional data presented above suggest

that tPA, PAI-1 and LRP interact at different points both

temporally and spatially during Mac-1-dependent macro-

phage migration on fibrin. To examine this possibility,

we performed live cell imaging experiments on freshly iso-

lated macrophages obtained from WT mice, treated with

or without RAP, and on macrophages that were deficient in

Mac-1, tPA, PAI-1, or LRP. Time-lapse images were captured

at 20-s intervals and representative images are shown in

Figure 6A as individual frames (video clips are available in

Supplementary data). During migration the macrophages go

through repeated cycles of round-polarized-round morpho-

logical changes, corresponding to the extension of the lamel-

lipodia on the leading edge and retraction of their trailing

edge. At a given time point, approximately 30–60% of the WT

macrophages were motile, and within 20min, a majority of

the migrating cells had successful retraction of their trailing

extensions. Compared to WT cells, addition of RAP, or

deficiency in Mac-1, PAI-1, tPA, or LRP significantly reduced

the speed of cell migration (Po0.001; Supplementary data).

Two distinct macrophage phenotypes were observed either

in the presence of RAP or from mice with gene deletions

(Figure 6A). WT macrophages in the presence of RAP or

macrophages with a genetic deletion of PAI-1 or LRP could

extend their lamellipodia but failed to efficiently retract the

trailing edge (average tail length 2.4570.2 mm for WT versus

9.471.1 mm for WT with RAP, 9.970.8 mm for PAI-1�/� and

15.271.8 mm for LRP�/� cells, Po0.001; Supplementary

data). This suggests that interfering with LRP function or

removing PAI-1 both lead to a reduction in macrophage

detachment. In contrast, the Mac-1�/� or tPA�/� macro-

phages were able to form lamellipodia extensions, but

they appeared to form weak attachments and often failed

to pull the cell body forward, consistent with a role in cell

adhesion.

Colocalization of LRP and Mac-1 at the trailing edges

of migrating macrophages depends on tPA and PAI-1

The delayed retraction in the RAP-treated and PAI-1�/� cells

suggests that cell detachment might be facilitated by interac-

tions between Mac-1 and LRP at the trailing edges of the

migrating macrophages. Therefore, additional colocalization

studies, focusing primarily on polarized macrophages were

performed. Confocal fluorescence images of migrating macro-

phages from the WT mice showed strong colocalization

between LRP and Mac-1 (Figure 6B). Quantification (based

on 120 randomly selected cells) by the algorithm using

Volocity software indicated that 66.570.1% LRP and 32.4%

of Mac-1 are colocalized with each other, which agrees well

with the FLIM experiment (Figure 4C). Prominent colocaliza-

tion of LRP (in green) and Mac-1 (in red) was found prefer-

entially at the cell trailing edges (Figure 6C). Furthermore,

addition of RAP or genetic inactivation of PAI-1 or tPA

significantly reduced LRP/Mac-1 colocalization in the trailing

edges (31.070.9% for WT versus 4.370.2% with RAP,

1.270.01% for PAI-1�/� cells, and 5.070.2% for tPA�/�

cells) (Figure 6C). Add-back of exogenous PAI-1 to PAI-1�/�

cells could partially restore LRP staining in the trailing edge

and its colocalization with Mac-1 (data not shown). Mac-1

deficiency did not affect LRP distribution, and vice versa.

Together, these results strongly suggest that colocalization

between LRP and Mac-1 is required for efficient retraction of

the trailing edge, thus supporting a model of macrophage

migration where Mac-1 and tPA are required for firm adhe-

sion, and PAI-1 and LRP are necessary for efficient cell

retraction.

Figure 5 Reconstitution of defective macrophage migration in vitro
and in vivo. (A, B) The PAI-1�/� macrophages, mixed with different
concentrations of WT PAI-1 (A) or a mutant PAI-1 (R76E) (B), were
subjected to in vitro macrophage migration assays using transwell
plates. Migration of the WT macrophages was determined in
parallel to gauge the efficiency of reconstitution. The values
shown are the means7s.d. of a duplicate experiment and are
representative of two independent experiments. (C, D) To rescue
the defective migration phenotype of the PAI-1�/� mice, different
concentrations of WT PAI-1 (C) or a mutant PAI-1 (R76E) (D) were
administered into the peritoneum of the PAI-1�/� mice, prior to LPS
injections. The degree of restoration was determined by comparison
of the PAI-1�/� mice to the WT mice that were treated in a similar
manner. Restoration of macrophage migration was indicated by the
reduced cell number from peritoneal lavage. The values shown
represent the means7s.d. of three to six mice and are representa-
tive of two independent experiments.

Figure 6 Coordination between LRP and Mac-1 is critical to macrophage migration. (A) Time-lapse images of macrophage migration were
taken in 20-s intervals, and are presented here as individual frames of representative images (video clips were available as Supplementary
data). Compared to WT macrophages, the PAI-1�/�, LRP-deficient (LRPflox/Cre), or RAP-treated WTcells had normal lamellipodia extensions
but defective retraction, and the tPA�/� and Mac-1�/� cells formed weak lamellipodia extensions. Images shown were representatives of 20
random fields per genotype taken from three independent experiments. (B, C) Colocalization between Mac-1 and LRP on the surface of
macrophages from WT and deficient mice. Macrophages migrating on fibrin(ogen)-coated coverslips were fixed and then stained with rabbit
anti-LRP (R2629) and rat anti-Mac-1 (M1/70) antibodies, followed by Alexa 488–anti-rabbit IgG and Alexa 568–anti-rat IgG. Specificity was
verified using nonimmune IgGs (data not shown). The two-dimensional images (x–y) with a 0.4mm z-section were taken at � 60 objective lens
(B). Representative images of polarized macrophages were taken with a � 100 lens (C), showing strong colocalization at the trailing edge for
WT cells, but not for PAI-1�/�- or tPA�/�-deficient cells or WT cells in the presence of RAP. Scale bars, 10 mm.
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Discussion

Despite the extensive studies in the past two decades and the

development of a generic cell migration model, composed of

cell adhesion, detachment, and receptor recycling (Stossel,

1994; Murphy and Gavrilovic, 1999; Sanchez-Madrid and del

Pozo, 1999; Webb et al, 2002), the extracellular events that

orchestrate temporally and spatially the transition among
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these individual steps are unknown. Moreover, evidence for a

critical role of macrophage emigration to the lymph nodes in

inhibiting the progression of atherosclerosis is emerging

(Libby, 2002; Llodra et al, 2004). However, the mechanism

that controls their emigration, especially under activated

conditions, remains elusive. In this work, we explored the

mechanism by which activated macrophages migrate within

an inflammatory environment using genetic and biochemical

approaches. Our data reveal that deletion of the PAI-1, tPA,

LRP, and Mac-1 genes all impair the ability of macrophages to

migrate from the peritoneal cavity in response to LPS, and to

migrate in transwell assays on a fibrin matrix. Biochemical

studies show that LRP associates with Mac-1 and that this

association is enhanced in the presence of tPA:PAI-1 com-

plexes. We discovered that like LRP, Mac-1 also has the ability

to bind directly tPA. Together, our data are consistent with

a model in which the tPA:PAI-1 complex bridges LRP with

the integrin Mac-1, which in turn promotes the internaliza-

tion of Mac-1 and facilitates cell detachment.

The unique feature of tPA as a Mac-1 ligand in promoting

macrophage migration is its ability to link cell adhesion

directly to proteolysis of fibrin, a provisional matrix that

was shown by (Szaba and Smiley, 2002) to support macro-

phage adhesion/migration in vivo, and its ability to facilitate

Mac-1 internalization by potentially linking the tPA/fibrin/

Mac-1 complex to the PAI-1/LRP pathway. Therefore, the

sequential interaction between Mac-1, fibrin, tPA, and PAI-1

enables the transitions among the individual steps within the

cell migratory process, including cell adhesion, detachment,

and receptor recycling, to occur in an ordered manner: tPA

binding to fibrin and its subsequent neutralization by PAI-1

control the transitions in time; the association between LRP

and Mac-1 on the cell surface (Figure 6) controls the transi-

tions in space; and finally, tPA/PAI-1 binding to LRP links the

transitions in space and time into a single functional unit. In

this regard, another plasminogen activator uPA, which also

interacts with both Mac-1 and PAI-1 (Pluskota et al, 2004),

and is able to promote the internalization of integrins and cell

detachments via the uPA/uPAR/integrin pathway (Czekay

et al, 2003), was unable to compensate for tPA in supporting

macrophage migration in the tPA�/� mice, possibly owing to

its inability to interact specifically with fibrin. Similarly, other

cell surface receptors for tPA, for example, Annexin II (Ling

et al, 2004), are unable to compensate Mac-1 in promoting

macrophage migration in Mac-1�/� mice, owing to their

inability to interact with PAI-1 and LRP.

Together, our data suggest a hypothesis where macro-

phage migration within an inflammatory environment requires

well-coordinated events between thrombosis (Szaba and

Smiley, 2002) and the tPA-mediated fibrinolysis (Medved and

Nieuwenhuizen, 2003), as well as integrin engagement and its

subsequent internalization. Specifically, we hypothesize that

thrombosis, which is often associated with inflammation,

generates the necessary fibrin-rich provisional matrix; the

subsequent formation of the tPA/fibrin complex (Medved and

Nieuwenhuizen, 2003) promotes macrophage adhesion via the

integrin Mac-1 and also ensures that the adhesion complex is

transient and can be removed as cells move forward. Cell

detachment is achieved by tPA-mediated degradation of the

fibrin polymer and by linking the Mac-1/fibrin/tPA adhesion

complex to the endocytic receptor LRP via PAI-1, which triggers

integrin internalization and cell detachment. Therefore, PAI-1

and LRP function as a switch between cell adhesion and

integrin disengagement/receptor internalization (Figure 7).

Figure 7 A model for macrophage migration within an inflammatory environment. Stimulated macrophages attach to the extracellular matrix
via the tPA/fibrin binary complex (Step 1) and move forward. Fibrin at the trailing edge is partially degraded by tPA-mediated fibrinolysis. PAI-
1-neutralized tPA by which it links the adhesion complex to LRP (Step 2). LRP engagement results in a switch from cell adhesion to cell
detachment and integrin internalization (Step 3). The internalized Mac-1/LRP complex is returned to the cell surface (Step 4), moves to the cell
leading edge (Step 5), and the cycle starts over again. Thus, PAI-1 and LRP, functioning as a master switch, ensure cell attachment, detachment,
and integrin recycling to proceed properly in time and in space, leading to efficient cell migration.
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In summary, our study emphasizes the critical role of an

ordered transition, both in time and in space, between the

individual steps of the cell migratory process (adhesion, forward

movement, cell detachment, and receptor recycling) in efficient

cell migration. Moreover, our results support a model in which

efficient migration of inflammatory macrophages within

an inflammatory environment depends on the cooperation

of at least three physiologically prominent systems (integrin-

mediated adhesion, fibrinolysis, and endocytosis). Therefore,

the information provided in this study could be useful to

our understanding of the molecular mechanism that regulates

the transition from innate to adaptive immunity and that

prevents the development of various inflammatory diseases.

Materials and methods

Reagents
Mac-1/293 cells, LRP-specific antibodies (R2629 and mAb 5A6),
and PAI-1(R76E) were prepared as described previously (Strickland
et al, 1990; Zhang and Plow, 1996; Stefansson et al, 1998). The DDE
complex was provided by Dr Medved (Baltimore, MD). NIF was
obtained from Dr Plow (Cleveland, OH). Other reagents, including
mAb 11H4 against LRP, were obtained from commercial sources
(see Supplementary data for details).

Mice
The WT and deficient mice were all in the C57BL6J background,
8–13 weeks old. The Mac-1�/� mice were kindly provided by
Dr Ballantyne, Baylor College of Medicine. Mice deficient in uPA,
uPAR, tPA, or PAI-1 were kindly provided by Dr Bugge (Bethesda,
MD). The GFP transgenic mice were from the Jackson Laboratory.
The LRP-floxed mice were prepared as described (Rohlmann et al,
1996). Animals were housed in a pathogen-free facility, and all
procedures were performed in accordance with Institutional Animal
Care and Use Committee approval.

Macrophage migration in vivo
WTand deficient mice were injected i.p. with 1ml of 5% sterile TG
broth. After 4 days, mature macrophages were stimulated by i.p.
injection of 200 ml of 5mg/ml LPS. After 3 h, the leukocyte numbers
in the peritoneal lavage were determined by hemocytometer, and
the percentages of macrophages were assessed by FACS analysis
with mAb F4/80, and by morphological examination.

Macrophage migration on fibrin(ogen)
Peritoneal macrophages stimulated with10ng/ml LPS were allowed
to migrate across fibrin(ogen)- (10mg/ml) or fibronectin-coated
inserts (10mg/ml) (5mm pore) using a 24-well transwell plate
(Costar). After 4 h at 371C, the number of migrated cells was
determined by hemocytometer, and cell differential counts were
carried out by Cytospin as described above.

For live cell imaging, migration of freshly isolated macrophages
from WTand different deficient mice was performed with the Neue
LiveCell System (Camp Hill, PA) at 371C and 5% CO2. Time-lapse
images were taken in 20-s intervals. Image analysis was performed
using Metaview (Universal Imaging). Cell retraction was expressed
as the percentages of motile cells that have successfully detached
their trailing edges within 20min, based on analyses of the entire

view field taken at � 20 magnification. Migration speeds and the
lengths of the trailing tails were measured using MetaMorph
(Universal Imaging).

Genetic deletion of LRP in macrophages
Peritoneal macrophages from WT and the LRP-floxed mice were
infected with adenoviruses expressing either GFP alone (Ad5CMV-
GFP) or GFP and Cre (Ad5 CMV-Cre-GFP). At 20 h after infection,
LRP expression was evaluated by two-color FACS analysis, using
GFP (marker of infection) and antibody R2629 (LRP) and RPE-anti-
rabbit IgG.

Binding assays
ELISA were conducted as described previously (Li and Zhang,
2003). The IP experiments were performed as described (Li and
Zhang, 2003) and internalization of surface Mac-1 was determined
by FACS analysis. Cell adhesion to the fibrin DDE complex was
carried using our published methods (Li and Zhang, 2003). Please
see Supplementary data for details.

Confocal laser scanning fluorescence microscopy
LPS-stimulated peritoneal macrophages were stained with R2629
(for LRP) and M1/70 (for Mac-1), and their corresponding
secondary antibody conjugated with Alexa 488 or Alexa 568
(Molecular Probes). Nonimmune IgGs were used as controls. The
stained macrophages were analyzed using a Bio-Rad Radiance 2000
Confocal Laser Scanning Fluorescence Microscope System. The
extent of colocalization between Mac-1 and LRP was analyzed by
calculating the volumes of Mac-1 and LRP staining that have the
same x–y–z coordinates (overlapping) and then divided by the total
volumes of the Mac-1 and LRP staining, as instructed by the
Volocity software (Improvision). Three-dimensional reconstruction
of the fluorescence confocal images was carried out by deconvolu-
tion using Volocity based on the manufacturer’s instruction.

Fluorescence lifetime imaging microscopy
Images were acquired using a BioRad Radiance 2000 multiphoton
microscope, equipped with a high-speed Hamamatsu MCP detector.
Excitation at 800 nm was empirically determined to excite Alexa
488, but not Alexa 568. Donor (Alexa 488) fluorophore lifetimes
were fit to two exponential decay curves to calculate the fraction of
fluorophores within each pixel that interact with an acceptor. As a
negative control, Alexa 488 lifetime was measured in the absence of
acceptor (Alexa 568), which showed lifetimes equivalent to FITC–
IgG alone or in solution (von Arnim et al, 2004).

Statistical analysis
Student’s t-test was used to analyze significance between two
groups. A P-value of less than 0.05 was considered significant.

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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