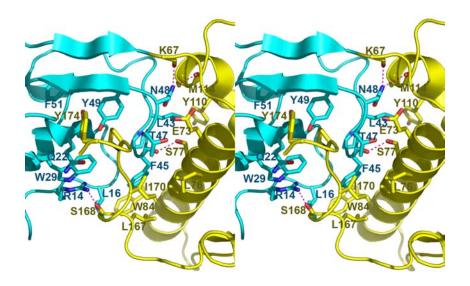
Supplementary Information

Crystal Structure of the N-terminal region of Human Ash2L Reveals a Winged Helix Motif Involved in DNA Binding

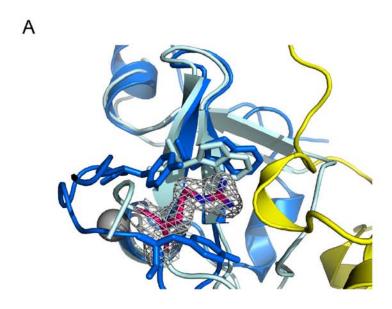
Yong Chen^{1,2,*}, Bingbing Wan^{1,2,*}, Kevin C. Wang^{4,5,*}, Fang Cao³, Yuting Yang², Angeline Protacio^{4,5}, Yali Dou^{2,3}, Howard Y. Chang^{4,5}, Ming Lei^{1,2#}

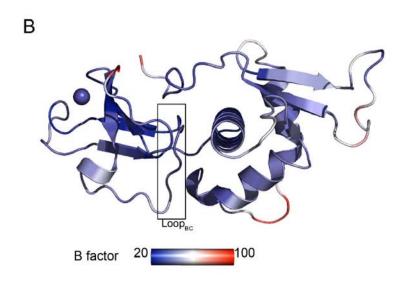
¹Howard Hughes Medical Institute, ²Department of Biological Chemistry, ³Department of Pathology, University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA

⁴Howard Hughes Medical Institute, ⁵Program in Epithelial Biology, Stanford University School of Medicine, CA 94305, USA

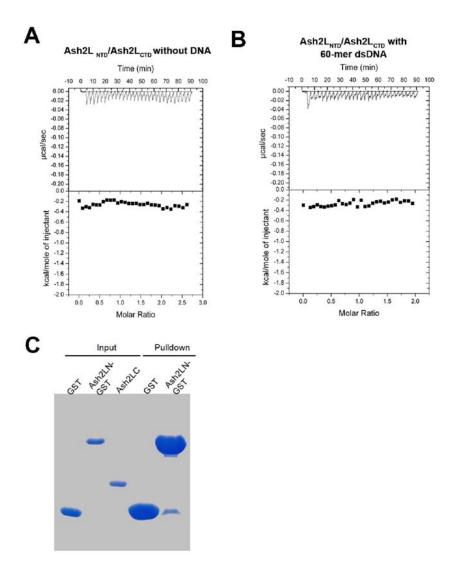

^{*}These authors contribute equally to this work

^{*}Correspondence and requests for materials should be addressed to M.L. (leim@umich.edu).

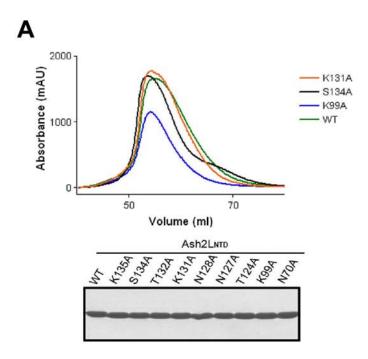

SUPPLEMENTARY FIGURES

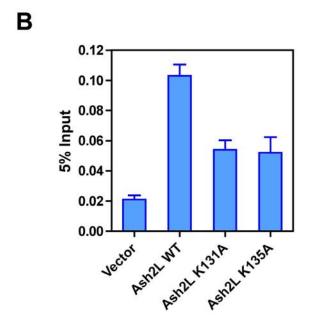

	PHD			SPRY	
Hm	TQAGSVDEENGRQLGEVELQCGICTKWFTADTFGIDTSSCLPFM	46	Hm	LYRACLYERVLLALHDRAPOLKISDDRLTVVGEKGYSMVRASHGVRKGAW	334
Mm	TOAGSVDEENGROLGEVELOCGICTKWFTADTFGIDTSSCLPFM	135	Mm	LYRACLYERVLLALHDRAPOLKISDDRLTVVGEKGYSMVRASHGVRKGAW	416
Dm	SAAGVCYCGKERNLNIVELLCATCSRWVHETCVSYOLGKGKLLPFI	144	Dm	LYRILVPHSVLLALHDRAPOLKISEDRLAVTGERGYCMVRATHSVNRGCW	416
Aq	CYCGKERNLNIVELLCATCSRWFHESCIGFQLGRLVPFM	60	Ag	LYRVLSPNAVLIALHDRAPOLKVSEDRLSITGEKGYCMARASHYVTKGCW	323
Ce	CYCDGKRELGSVEVVCSTCLKWFHGRCLKEFHEFSR-NSNGVPFM	65	Ce	HYRELLNPTVNVSSNDRAFQLSINGNSITGFEGYSMARASHGVSKGTW	341
	PHD WH			SPRY	
Hm	TNYSFHCNVCHHSGNTYFLRKOANLKEMCLSALANLTWOSRTODEHPK	94	Hm	YFEITVDEMPPDTAARLGWSQPLGNLQAPLGYDKFSYSWRSKKGTKFHQS	382
Mm	TNYSFHCNVCHHSGNTYFLRKOANLKEMCLSALANLTWOSRTODEHPK	183	Mm	YFEITVDEMPPDTAARLGWSOPLGNLOAPLGYDKFSYSWRSKKGTKFHOS	466
Dm	TNYVFVCKNCSASGLESFRKSQATISQMCHCAIANMQ-QAASRDGRRQ	191	Dm	YFEVTIEEMPDGAATRLGWGREYGNLOAPLGYDKFGYSWRSRKGTKFTES	466
Ag	MNYVFVCKNCSMTGLESFRKVQASIPOMCITALANLO-QTAAKEGKAR	107	Ag	YWEATVEDMPDGSACRLGWGQEYANLQAPLGYDKFGYSWRSRKGTKFHES	373
Ce	ICYTFTCKQCRPTA-EDWKAKKADLVQMCVTVLATLSAERLKADGKLSAE	114	Ce	YFEVNFDDQPDDSHIRIGWSQSYASLQACVGYNKFSYGWRSKHGTKFHEA	391
	WH			SPRY	
Hm	TMFSKDKDIIPFIDKYWECMTTRORPGKMTWPNNIVKTMSKE-R	142	Hm	IGKHYS-SGYGOGDVLGFYINLPEDTETAKSLPDTYKDKALI	430
Mm	TMFSKDKDIIPFIDKYWECMTTRORPGKMTWPNNIVKTMSKE-R	226	Mm	IGKHYS-SGYGOGDVLGFYINLPEDTETAKSLPDTYKDKALI	507
Dm	IOFSKDKEIIPYIEOYWEAMTTMPRRLTOSWYSTVORSLVKDVO	235	Dm	HGKHYS-DAYVEGDTLGFLIELPEEASLDYLPNTFKDRPLV	506
Ag	LMFSKDKDIIPYMDHYWEAMTTMARRSTOSWYATVORSLIKDIN	151	Ag	HGKHYS-AGYGEGDTLGFLITLPSDNQANQASNTFKDRPLV	413
Ce	HVPEDFTYLSLKDEIVPYMNENWYMLTAIKOKKEWHONLAPTLLKE-K	161	Ce	KGKKYHFGGFKQGDVLGCLIHLPVDKKLQIPANLPSEKYLPVSHKGFNLI	441
	WH WH			SPRY	
5.5					
Hm	DVFLVKEHPDPGSKDPEEDYPKFGLLDQDLSNIGPAYDNQKQSSAVSTSG	190	Hm	KFKSYLYFEEKDFVDKAEKSLKQTPHSEIIFYKNGVNQGVAYKDIFEGVY	478
Mm	DVFLVKEHPDPGSKDPEEDYPKFGLLDQDLSNIGPAYDNQKQSSAVSASG	276	Mm	KFKSYLYFEEKDFVDKAEKSLKQTPHSEIIFYKNGVNQGVAYRDIFEGVY	557
Dm	TLFTYEEHAEHGAMYGLFHQDLRIIKPNYESMSKSGALRLTD	277	Dm	KFKSHLYYEDKDKITETLKNLHILQGSRIEFFKNGQSQGVAFEDIYAGSY	556
Ag	TLFSYEESNEQGQMYGLANTDLTQIKPTYDEAT	184	Ag	KFKSHLYYEDKDRVNETLKALKVQPGSKIHYFKNGVCQGEAFVDVYKGAY	463
Ce	NIFVQHNDDDDLFALAEKNLSLLGPLHEAVKLIGKRPIER	201	Ce	SFKANYFFEVQEESADIAKTLVEMPGSYIEFFHNGKSCGKAYENIYAGAY SPRY SDI	491
Hm	NLNGGIAAGSSGKGRGAKRKOODGGTTGTTKKARSDPLFSA	238	Hm	FPAISLYKSCTVSINFGPCFKYPPKDLTYRPMSDMGWGAVVEHTLADV	526
Mm	NLNGGIAAGSSGKGRGAKRKQQDGGTTGTTKKARSDPLFSA	317	Mm	FPAISLYKSCTVSINFGPSFKYPPKDLTYHPMSDMGWGAVVEHTLADV	605
Dm	DGYTQASLSKNNRQKRKFPGTD-SGPTGKKGRPSSD-ITAN	316	Dm	FPAISIHKSATVSVNFGPAFKYPEVLVEHKAKGMHDRVEELITEOCLADT	606
Ag	ALATONFSKSROOKRKLPNSEOSGALGKKSRLGTD-VGAL	223	Ag	YPAISLHKNVTISVNFGPKFKHPEVLKEFKAQSMHERVEEMICEQTMADM	513
Ce	ENREPRHIELPPIEGPKTRGASKRRHAEAPVTGKKQKLAADYS	244	Ce	YPSISIFKSATATMNLGPKFRNLPRGATGIHARADEQQHEQTLSDM	537
	SPRY			SDI	
Hm	QRLPPHGYPLEHPFNKDGYRYILAEPDPHAPDPEKLELDC-WAGKPIPGD	286	Hm	LYHVETEVDGR-RSPP 534	
Mm	QRLPPHGYPLEHPFNKDGYRYILAEPDPHAPDPEKLELDC-WAGKPIPGD	366	Mm	LYHVETEVDGR-RSPPWEP 623	
Dm	VKLPPHGYPLEHPFNKDGYRYILAEPDPHAPFRQEFDESSDWAGKPIPGW	366	Dm	LYLTEHDGRLRLDN 623	
Ag	VKLPAHGYPLEHPFNKDGYRYILAEPDPHAPFRQEFDESADWAGKPIPGW	273	Ag	MYFTENDGKLRLDTYSI 530	
Ce	STAAPNGVQIDIPFSKDNYRYYLTEVDPNVPEDPAWNQNQ-SSAYVIPSF	293	Ce	LYLVSKEVNLDHPPRVKREDDDDVKDIKKEIKQEI 572	

Supplementary Fig S1. Multiple equence alignment of Ash2L proteins from five species, *Homo sapiens, Mus musculus, Drosophila melanogaster, Anopheles gambiae,* and *Caenorhabditis elegans.* Domains of Ash2L are highlighted by colored bars above the sequences (PHD in cyan, WH in yellow, SPRY in green and SDI in red).



Supplementary Fig S2. Stereo view of the interface between the PHD finger (cyan) and the WH motif (yellow) of Ash2L. Ash2L $_{PHD}$ and Ash2L $_{WH}$ pack across an extensive interface, involving both hydrophobic and electrostatic interactions (shown as magenta dotted lines).





Supplementary Fig S3. Ash $2L_{NTD}$ is not a histone-binding module. (A) Structure superimposition of Ash $2L_{PHD}$ (pale cyan) and PHF 8_{PHD} (marine). The electron density (2Fo-Fc) map, contoured at 1.0 σ is shown for Arg14 of Ash $2L_{NTD}$. (B) The structure of Ash $2L_{NTD}$ is colored by B-factor. The lowest B factor is in blue and the highest in red. The loop between strands βB and βC has low B factor and its conformation is well defined.

Supplementary Fig S4. Ash $2L_{NTD}$ does not directly interact Ash $2L_{CTD}$. (A) *In vitro* ITC measurement of the interaction between Ash $2L_{NTD}$ and Ash $2L_{CTD}$ showed that there is no direct interaction between these two domains of Ash2L. (B) *In vitro* ITC measurement of the interaction between Ash $2L_{NTD}$ and Ash $2L_{CTD}$ in the presence of 60mer dsDNA. (C) In vitro pull-down assay showed no interaction between Ash $2L_{NTD}$ and Ash $2L_{CTD}$ in the presence of DNA. GST-Ash $2L_{NTD}$ was incubated with Ash $2L_{CTD}$ in the present of 60-mer dsDNA.

Supplementary Fig S5. Mutational studies of Ash2L. (A) Preparation of mutant Ash2L_{NTD} proteins. Upper panel: gel filtration chromatography profiles (Hiload Superdex 75) of wild-type and three representative mutant Ash2L_{NTD}. Lower panel: SDS-PAGE of wild-type and nine mutant Ash2L_{NTD} proteins corresponding to the peak fractions in the gel filtration profiles. (B) Mutants K131A and K135A decreased Ash2L localization to the *HOXC8* locus in cells, as shown by ChIP assay. Error bars in the graph represent standard deviation.

 $\begin{tabular}{ll} \textbf{Supplementary Table S1}. & Data collection, phasing and refinement statistics for human $A sh2L_{NTD}$ \\ \end{tabular}$

	Se-Met Ash2L _{NTD}			
Data collection				
Space group	<i>P</i> 3 ₁ 21			
Cell dimensions				
a, b, c (Å)	49.984, 49.984, 165.519			
a, b, g (°)	90, 90, 120			
Wavelength (Å)	0.9785 (Se peak)			
Resolution (Å)	100-2.1			
R _{merge}	0.063(0.525)*			
I / σĬ	73.7(3.8)			
Completeness (%)	99.4(97.9)			
Redundancy	19(10.2)			
Refinement				
Resolution (Å)	35-2.1			
No. reflections	26822			
$R_{\text{work}} / R_{\text{free}}$ (%)	21.3/25.4			
No. atoms				
Protein	1336			
Ligand (Zn)	1			
Water	75			
B-factors ($Å^2$)				
Protein	44.73			
Ligand (Zn)	35.21			
Water	44.57			
R.m.s deviations				
Bond lengths (Å)	0.011			
Bond angles (°)	1.117			

^{*}Values in parentheses are for highest-resolution shell.