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Customer Acquisition via Display Advertising
Using Multi-Armed Bandit Experiments

Abstract

Online advertisers regularly deliver several versions of display ads in a single campaign
across many websites in order to acquire customers, but they are uncertain about which ads
are most effective. As the campaign progresses, they adapt to intermediate results and allocate
more impressions to the better performing ads on each website. But how should they decide
what percentage of impressions to allocate to each ad?

This paper answers that question, resolving the classic “explore/exploit” tradeoff using
multi-armed bandit (MAB) methods. However, this marketing problem contains challenges,
such as hierarchical structure (ads within a website), attributes of actions (creative elements of
an ad), and batched decisions (millions of impressions at a time), that are not fully accommo-
dated by existing MAB methods. We address this marketing problem by utilizing a hierarchical
generalized linear model with unobserved heterogeneity combined with an algorithm known as
Thompson Sampling. Our approach captures how the impact of observable ad attributes on ad
effectiveness differs by website in unobserved ways, and our policy generates allocations of
impressions that can be used in practice. We implemented this policy in a live field experiment
delivering over 700 million ad impressions in an online display campaign with a large retail
bank. Over the course of two months, our policy achieved an 8% improvement in the customer
acquisition rate, relative to a control policy, without any additional costs to the bank. Beyond
the actual experiment, we performed counter-factual simulations to evaluate a range of alterna-
tive model specifications and allocation rules in MAB policies.

Keywords: multi-armed bandit, online advertising, field experiments, adaptive experiments,
sequential decision making, exploration/exploitation tradeoff, reinforcement learning, hierar-
chical models.



1 Introduction

Business experiments such as A/B or multivariate tests have become increasingly popular

as a standard part of a firm’s analytics capabilities (Anderson and Simester 2011; Davenport

2009; Donahoe 2011; Urban et al. 2013). As a result, many interactive marketing firms are

continuously testing and learning in their market environments. But as this practice becomes

part of regular business operations, such sequential testing has to be done profitably: firms

ought to be earning while learning.

One domain frequently using such testing is online advertising. For example, allocating all

future impressions to the current “champion” ad – which, after testing multiple ad executions,

has performed the best to date – could be a myopic strategy, also known as a greedy policy. By

doing so, the firm may capitalize on chance, so it is not necessarily optimizing profits through

learning. To reduce that risk, the firm may choose to test for a longer period, further explor-

ing ad effectiveness before exploiting that information. We later refer to such a practice as a

test-then-learn policy. Firms with limited advertising budgets commonly face this resource-

allocation problem, so how should they decide what percentage of impressions to allocate to

each ad on a week-by-week basis? In practice, an online advertiser commonly pre-purchases

media, e.g., impressions, to be placed on a number of different websites, but it still needs to

determine which ad to use for each of those impressions.

We focus on solving this problem, but first we emphasize that it is not unique to online

advertisers; it belongs to a much broader class of sequential allocation problems that marketers

have faced for years across countless domains. Many other activities – sending emails or direct

mail catalogs, providing customer service, designing websites – can be framed as sequential

and adaptive experiments. All of these problems are structured around the following questions:

Which targeted marketing action should we take, when should we take it, and with which
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customers and in which contexts should we test such actions?

This class of problems can be framed as a multi-armed bandit (MAB) problem (Robbins

1952; Thompson 1933). The MAB problem (formally defined later) is a classic adaptive ex-

perimentation and dynamic optimization problem. Some challenges of the associated business

problems have motivated the development of various MAB methods. However, existing meth-

ods do not fully address the richness of the online advertising problem or many of the other

aforementioned marketing problems. That is, the methods for solving the basic MAB problem,

and even some generalizations, fall short of addressing common managerial issues.

The purpose of this paper is to shrink that gap. We aim to make two contributions, one

substantive and one methodological. Substantively, we improve the practice of adaptive testing

in online display advertising; methodologically, we extend existing methods to address a more

general MAB problem, representative of a broader class of interactive marketing problems. To

do so, we implemented our proposed MAB policy in a large-scale, adaptive field experiment

in collaboration with a large retail bank focused on direct marketing to acquire customers. The

field experiment generated data over two months in 2012, including more than 700 million ad

impressions delivered across 84 different websites, which featured 12 unique banner ads that

were described by three different sizes and four creative concepts. For comparison, we ran-

domly assigned each observation to be treated by either our proposed MAB policy or a control

policy (i.e., a balanced experiment). Using the data collected, we ran counterfactual policy

simulations to understand how other MAB methods would have performed in this setting.

From a substantive perspective, we solve the problem facing firms buying online display

advertising designed to acquire customers. How can you maximize customer acquisition rates

by testing many ads on many websites while learning which ad works best on each website?

Key insights include quantifying the value of accounting for attributes describing different ads
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and unobserved differences (across websites) in viewers’ responsiveness to those ad attributes.

We glean these insights by using each website (more specifically, each media placement) as the

unit of analysis in a heterogeneous model of acquisition from ad impressions. We introduce

hierarchical modeling with partial pooling into our MAB policy, so we leverage information

across all websites to allocate impressions across ads within any single website. In addition,

while most existing MAB methods learn about each “arm” (e.g., ad creative) independently,

we take an attribute-based approach that allows for “cross-arm” (e.g., cross-ad) learning, which

speeds up the process of earning while learning.

The setting of online display advertising is particularly interesting because it presents three

challenges. (1) While advertisers often try dozens of different ads, those ads are typically

interrelated, varying by such attributes as creative design, message, and size/format. Thus,

observing one ad’s performance can suggest how similar ads will perform. (2) The way those

attributes affect the ad’s performance depends upon the context, such as the website on which

it appears. (3) As is common in media buying, the advertiser’s key decision is what percentage

of the next batch of already-purchased impressions should be allocated to each ad, which is

referred to as rotation weights used by the publisher. Our MAB method overcomes these three

challenges commonly faced by firms.

From a methodological perspective, we propose a method for a version of the MAB that is

new to the literature: a hierarchical, attribute-based, and batched MAB policy. The most crit-

ical component is unobserved heterogeneity (i.e., hierarchical, partially-pooled model). While

some recent work has incorporated attributes into actions and batched decisions (Chapelle and

Li 2011; Dani et al. 2008; Rusmevichientong and Tsitsiklis 2010; Scott 2010), no prior work

has considered a MAB with action attributes and unobserved heterogeneity, which are central to

the practical problem facing an online advertiser. Our proposed policy improves performance

3



(relative to benchmark methods) because we include unobserved heterogeneity in ad effective-

ness across websites via partial pooling. In addition, we illustrate how incorporating (rather

than ignoring) that heterogeneity leads to substantively different recommended allocations of

resources.

To solve that problem, we propose an approach based on the principle known as Thompson

Sampling (Thompson 1933) (also known as randomized probability matching, Chapelle and Li

2011; Granmo 2010; May et al. 2011; Scott 2010), but we extend existing methods to account

for unobserved heterogeneity in the attribute-based MAB problem with batched decision mak-

ing. The principle of Thompson Sampling is simply stated: The current proportion of resources

allocated to a particular action should equal the current probability that the action is optimal

(Thompson 1933). Beyond discussing how the proposed approach is conceptually different

from prior work (Agarwal et al. 2008; Bertsimas and Mersereau 2007; Hauser et al. 2009), we

also show via numerical experiments that it empirically outperforms existing methods in this

setting. From a theoretical perspective, Thompson Sampling may seem like a simple heuristic,

but it has recently been shown to be an optimal policy with respect to minimizing finite-time

regret (Agrawal and Goyal 2012; Kaufmann et al. 2012), minimizing relative entropy (Ortega

and Braun 2013), and minimizing Bayes risk consistent with a decision-theoretic perspective

(Russo and Roy 2013).

The rest of the paper is structured as follows. Section 2 surveys the landscape of the sub-

stantive problem, online display advertising and media buying, from industry and research

perspectives, as well as some background on MAB methods. This provides motivation for the

extended MAB framework we describe. In Section 3, we translate the advertiser’s problem

into MAB language, formally defining the MAB. Then in Section 4, we describe our two-part

approach to solving the full MAB problem: a hierarchical (heterogeneous) generalized linear
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model and the Thompson Sampling allocation rule. To contrast this problem (and our method)

with existing versions of the MAB, we describe how existing methods would only solve simpler

versions of the advertising problem. In particular, the Gittins index policy is an optimal solution

to the Markov decision process of what we refer to as the “basic MAB problem” (Gittins 1979;

Gittins and Jones 1974). However, the Gittins index only solves a narrow set of problems with

restrictive assumptions (e.g., all ads are assumed to be unrelated). Therefore, we discuss why it

is an inappropriate MAB policy for the ad allocation problem of interest in this paper and why

Thompson Sampling is a more appropriate method to use here.

In Section 5, we turn to the empirical context. We illustrate institutional and implementation

details about our field experiment with a large retail bank and then discuss the actual results.

In Section 6, we consider what might have happened if we had used other MAB methods

in the field experiment. These counterfactual policy simulations reveal which aspects of the

novel method account for the improved performance. In particular, we split our analysis into

evaluations of the two key components: the model and the allocation rule. Finally, in Section

7, we conclude with a general discussion of issues at the intersection of MAB methods, online

advertising, customer acquisition, and real-time, scalable optimization of business experiments.

2 Online Display Advertising and Bandit Problems

We build on two main areas of the literature: online advertising and multi-armed bandit

problems. Despite the common concerns about the (presumed) ineffectiveness of display ads,

advertisers still use them extensively for the purpose of acquiring new customers. In 2012,

combining display, search, and video, U.S. digital advertising spending was $37 billion (eMar-

keter 2012b). Out of that total, display advertising accounted for 40%. Display advertising’s

share of U.S. digital advertising spending is growing, and is expected to be greater than spon-
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sored search by 2016 (eMarketer 2012b). While display advertising may be used to build brand

awareness, it is also purchased to generate a direct response (e.g., sign-up, transaction, or ac-

quisition) from those impressions. Indeed, direct-response campaigns were the most common

purpose of display advertising campaigns and accounted for 54% of display advertising budgets

in the U.S. and 67% in the U.K. in 2011 (eMarketer 2012a). Research in this area has focused

on the impact of exposure to ads on purchases (Manchanda et al. 2006) or other customer

activities like search behavior (Reiley et al. 2011).

In contrast to previous work (Manchanda et al. 2006; Reiley et al. 2011), we focus on opti-

mizing the allocation of resources over time across many ad creatives and websites by sequen-

tially learning about ad performance. This challenge relates to other work at the intersection

of online advertising or online content optimization and MAB problems (Agarwal et al. 2008;

Scott 2010; Urban et al. 2013). Like those studies, we downplay what the firm is specifically

learning about ad characteristics (e.g., Is one color better than others for ads? Are tall ad for-

mats better than wide ones?) in favor of addressing, “How can we learn which ads are most

effective as profitably as possible?” In our particular setting, as mentioned, we solve the prob-

lem of how to allocate previously purchased impressions (i.e., the firm bought a set number

of impressions for each website). But the general approach can be extended to the problem of

where to buy media and other sequential resource allocations common to interactive marketing

problems.

The marketing literature has had limited exposure to MAB problems and almost no expo-

sure to methods beyond the dynamic programing literature, such as the Gittins index solution

(Hauser et al. 2009; Lin et al. 2013; Meyer and Shi 1995; Urban et al. 2013). We recognize

that Gittins (1979) solved a classic sequential decision making problem that attracted a great

deal of attention (Berry 1972; Bradt et al. 1956; Robbins 1952; Thompson 1933; Wahrenberger

6



et al. 1977) and was previously thought to be intractable (Berry and Fristedt 1985; Gittins et al.

2011; Tsitsiklis 1986; Whittle 1980).

While the Gittins index has been applied to some extent in marketing and management

science (Bertsimas and Mersereau 2007; Hauser et al. 2009; Urban et al. 2013), these same

applications note that the Gittins index only solves a special case of the MAB problem with

restrictive assumptions.1 We echo those sentiments to reiterate that the Gittins index is inap-

propriate for our ad allocation problem. While our problem does not have an exact solution

using dynamic programming methods, we can still evaluate the performance of different poli-

cies, as we do empirically using a set of benchmark policies.

Nevertheless, the bandit literature is large and spans many fields, so our aim is not a com-

plete review (Gittins et al. 2011; White 2012). But as we noted earlier, currently existing MAB

methodologies do not adequately address all of the ad problem’s key components. Therefore,

an alternative MAB method is needed to address those challenges and is described next.

3 Formalizing Online Display Advertising as a Multi-Armed Bandit Problem

We translate the advertiser’s problem into MAB language, formally defining the MAB and

our approach to solving it with all components of the problem included. To contrast this prob-

lem with existing versions of the MAB, we will briefly describe how current MAB methods

would only solve simpler versions of the advertising problem.

The MAB problem facing advertisers bears little resemblance to that basic bandit problem.

In the problem addressed here, the firm has ads, k = 1, . . . , K, that it can serve on any or all of

a set of websites, j = 1, . . . , J . Let impressions be denoted by mjkt and conversions, by yjkt,

1Hauser et al. (2009) applies the Gittins index to a webmorphing problem, adapting a website’s content based
on a visitor’s inferred cognitive style. The MAB policy used assumes each morph (action) is independent, but it
does account for unobserved heterogeneity via latent classes. Therefore, the Expected Gittins Index is a weighted
average of the class-specific Gittins index over the class membership probabilities, which is an approximation
shown in Krishnamurthy and Wahlberg (2009).
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from ad k on website j in period t. Each ad’s unknown conversion rate, µjk, is assumed to be

stationary over time, but is specific to each website-ad combination.

The ad conversion rates are not only unknown, but they may be correlated since they are

functions of unknown common parameters denoted by θ, and a common set of d ad attributes.

Hence, the MAB is attribute-based. This attribute structure is X , which is the design matrix of

sizeK×d, where xk corresponds to the kth row. To further emphasize the actions’ dependence

on those common parameters, we sometimes use the notation µjk(θ), but we note that µjk is

really a function of both xk and a subset of parameters in θ.

For each decision period and website, the firm has a budget of Mjt =
∑K

k=1 mjkt im-

pressions. In the problem we address, this budget constraint is taken as given and exogenous

due to previously arranged media contracts, but the firm is free to decide what proportion of

those impressions will be allocated to each ad. This proportion is wjkt, where
∑K

k=1wjkt = 1.

Since many observations are allocated simultaneously instead of one observation at-a-time, the

problem is a batched MAB (Chick and Gans 2009).

In each decision period, the firm has the opportunity to make different allocations of impres-

sions acrossK ads on each of J different websites. This ad-within-website structure implies the

problem is hierarchical. Since each ad may perform differently depending on which website it

appears, we allow an ad’s conversion rate to vary by using website-specific attribute importance

parameters, βj . Then the impact of the ad attributes on the conversion rate can be described by

a common generalized linear model (GLM), µjk(θ) = h−1(x′kβj), where h is the link function

(e.g., logit, probit). Later, we specify the form of heterogeneity across websites. In particular,

we will use a partial pooling approach, assuming all websites come from the same broader

population. Intuitively, we can think of each website as a different slice of the population of all

Internet traffic.
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3.1 MAB Optimization Problem

The firm’s objective is to maximize the expected total number of customers acquired by

serving impressions. Like any dynamic optimization problem, the MAB problem requires the

firm to select a policy. We define a MAB policy, π, to be a decision rule for sequentially setting

allocations, wt+1, each period based on all that is known and observed through periods 1, . . . , t,

assuming f, h,K,X, J, T and M are given and exogenous. That is, π maps information onto

allocation of resources across actions. We aim to select a policy, π, that corresponds to an

allocation schedule, w, to maximize the cumulative sum of expected rewards, as follows,

max
w

Ef

[
T∑
t=1

J∑
j=1

K∑
k=1

Yjkt

]
subject to

K∑
k=1

wjkt = 1,∀j, t, (3.1)

where Ef [Yjkt] = wjktMjtµjk(θ).

Equation 3.1 lays out the undiscounted finite-time optimization problem, but we can also

write the discounted infinite-time problem if we assume a geometric discount rate 0 < γ < 1,

let T = ∞, and maximize the expected value of the summations of γtYjkt. However, we will

continue on with the undiscounted finite-time optimization problem, except where otherwise

mentioned.

We can also express this optimization problem in a Bayesian decision-theoretic framework

by specifying the likelihood of the data p(Y |θ) and prior p(θ),

max
w

∫
θ

T∑
t=1

J∑
j=1

K∑
k=1

Yjkt · p(Yjkt|θ)p(θ)dθ subject to
K∑
k=1

wjkt = 1,∀j, t. (3.2)

Due to the curse of dimensionality (Powell 2011), this problem does not correspond to

an exact value function satisfying the Bellman optimality equations. However, there is mar-

riage between dynamic programming and reinforcement learning seen in the correspondence
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between the error associated with a value function approximation (i.e., Bellman error) and re-

gret (i.e., opportunity cost expressed as ∆k = µk∗ − µk, where k∗ is the optimal arm) (Osband

et al. 2013). While we do not provide a theoretical analysis deriving Thompson Sampling as a

solution method to MAB problems, we refer the reader to work supporting its use (Kaufmann

et al. 2012; Ortega and Braun 2010; Russo and Roy 2013).

To emphasize why we need a MAB policy to be more flexible than traditional approaches

used in management sciences, we illustrate the special case of the MAB problem that would

be solved exactly by a Gittins index policy. We would have to dramatically simplify and make

largely unrealistic assumptions about our current advertising allocation problem to reduce it to

the basic MAB problem. For instance, we would have to suppose there are no ad attributes (X

is the identity matrix) yielding K independent and uncorrelated actions, there is just one single

website (J = 1), and each batch contains only one observation (Mjt = 1). In addition, we

would have to apply geometric discounting to rewards over an infinite-time horizon (0 < γ < 1,

T = ∞; Gittins 1979). However, in our setting, we have to accommodate the aforementioned

components of the marketing problem, and next we propose the policy that we use to overcome

those real-world challenges.

4 MAB Policies

4.1 Thompson Sampling with a Hierarchical Generalized Linear Model

Now that we have described the advertising allocation problem as a hierarchical, attribute-

based, batched MAB problem, we can focus on our MAB approach. While it is not an exact

solution in the traditional, dynamic programming sense, it is a policy supported by a growing

body of empirical evidence and theoretical guarantees of Thompson Sampling’s superior per-

formance (Agrawal and Goyal 2012; Chapelle and Li 2011; Granmo 2010; Kaufmann et al.
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2012; May et al. 2011; Ortega and Braun 2010; Russo and Roy 2013; Scott 2010).

Our proposed bandit policy is a combination of a model, the hierarchical generalized linear

model (HGLM), and an allocation rule, Thompson Sampling. The specific HGLM of customer

acquisition is a logistic regression model with varying parameters across websites. The Thomp-

son Sampling allocation rule is straight-forward: the probability that an action is believed to be

optimal is the proportion of resources that should be allocated to that action (Thompson 1933).

This is achieved by drawing posterior samples from any model, which encodes parameter un-

certainty. As a result, one draws actions randomly in proportion to the posterior probability

that the action is the optimal one, encoding policy uncertainty. Before describing how we

take advantage of Thompson Sampling in our setting, we describe the model of conversions

accounting for display ad attributes and unobserved heterogeneity across websites.

Let the data collected in each time period, t, be fully described by the number of conver-

sions, yjkt, out of impressions, mjkt, delivered per period, per ad for each of the J websites

(contexts) and K ads (actions). We summarize our hierarchical logistic regression with covari-

ates and varying slopes,

yjkt ∼ binomial (µjk|mjkt)

µjk = 1/ [1 + exp(−x′kβj)]

βj ∼ N(β̄,Σ)

xk = (xk1, . . . , xkd), (4.1)

where {βj}J1 = {β1, . . . , βJ}, and all parameters are contained in θ = ({βj}J1 , β̄,Σ). We could

use a fully Bayesian approach with Markov Chain Monte Carlo simulation to obtain the joint

posterior distribution of θ. However, for implementation in our large-scale real-time experi-

11



ment, we rely on the Laplace approximation to obtain posterior draws (Bates and Watts 1988),

as is done in other Thompson Sampling applications (e.g., Chapelle and Li 2011). After ob-

taining estimates using restricted maximum likelihood, we perform model-based simulation by

sampling parameters from the multivariate normal distribution implied by the mean estimates

and estimated variance-covariance matrix of those estimates (Bates et al. 2013; Gelman and

Hill 2007).

To simplify notation in subsequent descriptions of the models and allocation rules, we de-

note all conversions and impressions we have observed through time t as the set {yt,mt} =

{yjk1,mjk1, . . . , yjkt,mjkt : j = 1, . . . , J ; k = 1, . . . , K}. To include the attribute design ma-

trix, we denote all data through t as, Dt = {X,yt,mt}. After an update at time t, we utilize

the uncertainty around parameters βj to obtain the key distribution for Thompson Sampling,

the joint predictive distribution of conversion rates (expected rewards), p(µj|Dt).2

The preceding paragraphs described the HGLM, but this is one piece of the proposed MAB

policy. The other piece is the allocation rule: Thompson Sampling (TS). Hence, we refer

to the proposed MAB policy as TS-HGLM. In order to translate the predictive distribution

of conversion rates into recommended allocation probabilities, wj,k,t+1, for each ad on each

website in the next period, we apply the principle of TS, which works with the HGLM as

follows. In short, for each website,j, we compute the probability that each of the K actions is

optimal for that website and use those probabilities for allocating impressions. More formally,

we obtain the distribution p(µj|Dt), and we can carry through our subscript j and then follow

the procedures from the TS literature (Chapelle and Li 2011; Granmo 2010; May et al. 2011;

Scott 2010). For each j, suppose the optimal action’s mean is µj∗ = max{µj1, . . . , µjK} (e.g.,

2Although we express the website-specific vector of the mean reward of each action as aK-dimensional vector,
µj = (µj1(θ), . . . , µjK(θ)), it is important to note that the reward distributions of the actions are not independent.
The reward distributions of the actions in any website j are correlated through the common set of attributes X and
common website-specific parameter βj .
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the highest true conversion rate for that website). Then we can define the set of allocation

probabilities,

wj,k,t+1 = Pr (µjk = µj∗|Dt) =

∫
µj

1 {µjk = µj∗|µj} p(µj|Dt)dµj, (4.2)

where 1 {µjk = µj∗|µj} is the indicator function of which ad has the highest conversion rate

for website j. The key to computing this probability is conditioning on µj and integrating over

our beliefs about µj for all J websites, conditional on all information Dt through time t.

Since our policy is based on the HGLM, we depart from other applications of Thompson

Sampling because our resulting allocations are based on a partially pooled model. While our

notation shows separate wjt and µj for each j, those values are computed from the parameters

βj , which are partially pooled. Thus, we are not obtaining the distribution of βj separately for

each website; instead, we leverage data from all websites to obtain each website’s parameters.

As a result, websites with little data (or more within-website variability) are shrunk toward the

population mean parameter vector, β̄, representing average ad attribute importance across all

websites. This is the case for all hierarchical models with unobserved continuous parameter

heterogeneity (Gelman et al. 2004; Gelman and Hill 2007). Given those parameters, we use

the observed attributes, X , to determine the conversion rates’ predictive distribution, p(µj|Dt).

For this particular model, the integral in Equation 4.2 can be rewritten as,

wj,k,t+1 =

∫
Σ

∫
β̄

∫
β1,...,βJ

1
{
βjxk = max

k
βjxk|βj, X

}
p(βj|β̄,Σ, X,yt,mt)p(β̄,Σ|β1, . . . , βJ)dβ1 . . . dβJdβ̄dΣ. (4.3)

However, it is much simpler to interpret the posterior probability, Pr (µjk(θ) = µj∗(θ)|Dt),

as a direct function of the joint distribution of the means, µj(θ). It is natural to compute
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allocation probabilities via posterior sampling (Scott 2010).3 We can simulate independent

draws g = 1, . . . , G of βj . Each β(g)
j can be combined with the design matrix to form µ

(g)
j =

h−1(X ′β
(g)
j ). Then, conditional on the gth draw of theK predicted conversion rates, the optimal

action is to select the ad with the largest predicted conversion rates, µ(g)
j∗ = max{µ(g)

j1 , . . . , µ
(g)
jK}.

Across G draws, we approximate wj,k,t+1 by computing the fraction of simulated draws in

which each ad, k, is predicted to have the highest conversion rate,

wj,k,t+1 ≈ ŵj,k,t+1 =
1

G

G∑
g=1

1
{
µ

(g)
jk = µ

(g)
j∗ |µ

(g)
j

}
. (4.4)

Computed from the data through periods 1, . . . , t, the allocation weights, ŵj,k,t+1, com-

bine with, Mj,t+1, the total number of pre-purchased impressions to be delivered on website j

across all K ads in period t + 1. Since the common automated mechanism (e.g., DoubleClick

for Advertisers) delivering the display ads does so in a random rotation according to the allo-

cation weights, (ŵj,1,t+1, . . . , ŵj,K,t+1), the allocation of impressions is a multinomial random

variable, (mj,k,t+1, . . . ,mj,K,t+1), with the budget constraint Mj,t+1. However, since the num-

ber of impressions in the budget is generally very large in online advertising, each observed

mjkt ≈Mjtŵjkt.

To conclude the description of our HGLM-TS policy, we provide additional justification

for our use of TS. As mentioned earlier, while TS is a computationally efficient and simple

allocation rule, it is not a suboptimal heuristic. Reinforcement learning and statistical learning

work evaluates the performance of any MAB method by examining how the policy minimizes

finite-time regret (error rate) asymptotically (Auer et al. 2002; Lai 1987). Recent research

demonstrates that TS reduces that regret at an optimal rate (Agrawal and Goyal 2012; Kauf-

3In the case of two-armed Bernoulli bandit problem, there is a closed-form expression of the probability of one
arm’s mean is greater than the other’s (Berry 1972; Thompson 1933).
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mann et al. 2012). Other avenues of research focus on a fully Bayesian decision-theoretic

perspective, and such approaches reach similar conclusions, finding TS minimizes Bayes risk

(Russo and Roy 2013), as well as minimizing entropy when facing uncertainty about policy

(Ortega and Braun 2010, 2013). After all, posterior sampling encodes the uncertainty in cur-

rent beliefs, and the dynamics in the MAB stem exclusively from the explore/exploit tradeoff

of how to learn profitably.

One major benefit of TS is that it is compatible with any model. Given a model’s predic-

tive distribution of the arm’s expected rewards, it is straightforward to compute the probability

of each arm having the highest expected reward. This means that we can examine a range of

model specifications, just as we would ordinarily do when analyzing a dataset, and we can ap-

ply the TS allocation rule to each of those models. Later, we consider a series of benchmark

MAB policies, including alternative models less complex than our HGLM and a set of alterna-

tive allocation rules instead of TS. For now, we turn to the empirical section and examine the

performance of our proposed TS-HGLM policy in the field.

5 Field Experiment

5.1 Design and Implementation

We implemented a large-scale MAB field experiment by collaborating with the aforemen-

tioned bank and its online media-buying agency. The bank had already planned an experiment

to test K = 12 new creative executions for their display ads using a two-factor design with

three different ad sizes and four different ad concepts. The ad sizes were industry standards

(160x600, 300x250, and 728x90 pixels), and the ads were delivered across J = 84 media

placements. However, not every ad size was available on each website, but every ad concept

is always available on each website regardless of ad sizes. We use the terms “website” and
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“media placement” interchangeably for simplicity of exposition. We also use “acquisition” and

“conversion” (i.e., from visitor to customer) interchangeably.

The goal of the test was to increase customer acquisition rates during the campaign. Pre-

viously, the bank had been running tests for a pre-set period of time (e.g., two months). After

the test, they had been measuring ad performance using ad click-through rate in aggregate,

across all websites. However, following our TS-HGLM policy, we changed this in four ways:

(i) we measured performance using customer acquisition (not clicks); (ii) we looked at a more

disaggregate level by analyzing ad performance website-by-website reflecting heterogeneity in

βj; (iii) we changed the allocations each period, approximately every week (for T = 10 peri-

ods), following our proposed MAB policy based on ad performance throughout the campaign,

and (iv) we simultaneously tested two policies (our TS-HGLM policy and a static balanced

experiment).

To summarize the first three changes, we reiterate that while the campaign’s goal, maximiz-

ing customer acquisition, is simply stated, it involves learning which ad has the best acquisition

rate for each media placement (e.g., website). The bank had already set its schedule over two

months, as it purchased Mjt impressions for each media placement to be delivered each week,

but the banked wanted to optimize its allocation of those impressions to ads within each media

placement to maximize their return on their media purchases.

The fourth change reflects our desire as researchers to measure the impact of our proposed

adaptive MAB policy compared to a control policy (e.g., static balanced experiment) in a real-

time test. Therefore, the field experiment can be viewed as two parallel and identical hier-

archical attribute-based batched MAB problems, with one treatment and one control group,

where their only difference was the policy used to solve the same bandit problem. In the static

group, we used an equal-allocation policy across ads (e.g., experiment with balanced design).
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In the adaptive group, we ran the proposed algorithm, TS with a heterogeneous logit model

(TS-HGLM). The same ads were served across all of the same websites over the same time pe-

riod. The only difference was due to how our MAB policy allocated impressions between ads

within any website for each time period. In the initial period, both groups (adaptive and static)

were treated with the same equal-allocation policy. So any observed differences between the

groups’ acquisition rates in the initial period can be attributed to random binomial variation.

Throughout this empirical portion of this paper, all conversion rates reported are rescaled

versions of the actual data from the bank (per the request of the firm to mask the exact customer

acquisition data). We performed this scaling by a small factor, so it has no effect on the relative

performance of the policies, and it is small enough so that almost all values of interest are

within the same order of magnitude as their actual observed counterparts. In addition, we

assign anonymous identities to media placements (j = 101, . . . , 184), ad sizes (A, B, and C),

and ad concepts (1, 2, 3, and 4).

5.2 Field Experiment Results

To compare the two groups, we examine how the overall acquisition rate changed over

time. The difference can be attributed to the proposed MAB (treatment) policy. On average,

we expect the static (control) group’s aggregate acquisition rate to remain flat. By contrast,

we expect the rate for the adaptive (TS-HGLM) group to increase on average over time as

the MAB policy “learns” which ad is the best ad k∗ for each website j. Figure 1 provides

evidence in support of those predictions, showing the results of the experiment involving more

than 700 million impressions, where reallocations using TS-HGLM were made on each of

the J = 84 websites every five to seven days over the span of two months, yielding a total

of T = 10 periods. We examine the cumulative conversion rates at each period t, aggregated
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across all ads and websites, computed as aggregate conversions
∑t

τ=1

∑J
j=1

∑K
k=1 yjkτ divided

by aggregate impressions
∑t

τ=1

∑J
j=1

∑K
k=1mjkτ . We compare this cumulative conversion

rate to the conversion rate during the initial period of equal allocation to show a percentage

increase (as well as masking the firm’s true acquisition rates).

To summarize the key result, compared to the static balanced design, the TS-HGLM policy

(the solid line in Figure 1) improves overall acquisition rate by 8%. In terms of customers,

the economic impact of this treatment policy compared to the control can be stated as follows:

We acquired approximately 240 additional new customers beyond the 3,000 new customers

acquired through the control policy.

[INSERT FIGURE 1 ABOUT HERE]

From a substantive perspective, we note that these extra conversions come at no additional

cost because the total media spend did not increase. They are the direct result of adaptively

reallocating already-purchased impressions across ads within each website. Therefore, the cost

per acquisition (CPA) decreases (CPA equals total media spend divided by number of customers

acquired). In essence, we increased the denominator of this key performance metric by 8%.

The new CPA has consequences beyond the gains during the experiments; it provides guidance

for future budget decisions (e.g., how much the firm is willing to spend for each expected

acquisition). We return to this in the general discussion when we show potential linkages to

post-acquisition activities such as customer lifetime value.

5.3 A Closer Look at How the Thompson Sampling Works

We examine how the TS-HGLM policy works by focusing on the three aspects of the policy:

(1) how allocations differ across combinations of ad concept and ad size (i.e., attributes), (2)

how allocations differ across websites (i.e., heterogeneity), and (3) how allocations across ads
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within a website change over time (i.e., learning). Consider two representative websites (j =

103 and 149) highlighted at two time points (t = 1 and 6) in Figure 2. The boxplots and

lines summarize the predictive marginal distributions of the corresponding µjk(θ) based on the

HGLM.

[INSERT FIGURE 2 ABOUT HERE]

We see ad attribute importance by noting the differences in the µjk(θ) distributions across

the ad concepts and ad sizes (within a website at any snapshot in time). In particular, it is clear

that the interactions between ad concepts and ad sizes are meaningful: the rank order of the ad

concepts’ conversion rates varies for different ad sizes. For instance, consider the snapshot of

how the TS-HGLM policy evaluated ads and allocated impressions to website j = 103 using

data through t = 6. This is shown as the second row (from the top) of four panels in Figure

2, which we continue to refer to throughout this subsection to explain the findings about ad

attributes. For ad size A, the ad concept with the best predicted mean conversion rate is ad

concept 4 (14 acquisitions per million impressions), but that same concept is neither the best

on the ad size B (mean conversion rate is 131 per million) nor on C (mean conversion rate is

47 per million). In both cases, the best predicted ad concept for sizes B and C is ad concept 3.

The distributions of µjk(θ) shown as boxplots in Figure 2 are the heart of the TS proce-

dure. They represent our current beliefs in the conversion rates reflecting our uncertainty in the

HGLM parameters based on the data through t periods. At the end of each period, we simulate

G draws from each of those distributions. Using these empirical distributions, we approximate

the probability that each ad has the highest mean for each website-by-size pair.

As a result of this procedure, the right side of each panel of Figure 2 shows the next set

of allocation probabilities, wj,k,t+1, within each ad size, website, and time period for all ad

concepts. Looking at these allocation probabilities for j = 103 using data through t = 6, we
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see that for sizes B and C, ad concept 1 is hardly given any impressions in the next period.

However, for size A, ad concept 1 is actually predicted to be as good as ad concept 3.

Figure 2 not only shows the importance of attributes (differences within a website across

ads), but it also shows learning (changes within an ad-website combination over time) and

heterogeneity (differences across websites). The MAB policy learns parameters over time. In

our case, it is not practical to report how all parameters are learned, but we highlight how the

TS-HGLM policy updates its beliefs about µjk(θ) for particular ad-website combinations. It is

clear from Figure 2 that the distributions are wider after the initial period (t = 1) than they are

after more data has accumulated (t = 6).

For instance, after the initial period (t = 1) for ad size B and ad concept 3, the predicted

distribution of the conversion rate has a 95% interval of (0.92, 56.65) with a mean of 7.35 per

million. The probability that it is optimal is 27%. Later on, after the policy learns more about

the parameters (t = 6), we see that the interval not only shrinks (0.82, 10.31), but also shifts its

mean to 2.93 customers per million impressions. This leads the MAB policy to assign a higher

probability that this ad concept is optimal, hence allocating 41% of impressions for the next

period.

The unobserved heterogeneity in the hierarchical model leads allocations to differ across

websites. For example, the two websites in Figure 2 have different winning ads. After t = 6

periods, for website j = 103, the predicted winners for each ad size (A, B, and C) are ad

concepts 4, 3, and 3, whereas those for website j = 149 are ad concepts 1, 3, and 4, respectively.

Capturing such patterns of website-to-website differences enables the proposed MAB policy to

reach greater improvement than other MAB policies that may ignore those patterns.

The key benefit of partial pooling is capturing heterogeneity across websites, but an added

benefit is providing a predictive distribution for the ads on any website in question, even in the
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absence of a large amount of data on that website. Such sparse data on any one website is a

natural feature of this problem. If we were to rely on the observed data alone, especially early

in the experiment, we would see that observed conversion rates would be highly misleading.

After the initial period for website j = 149, there were zero conversions in total, except for

some customer acquisition from ad concept 2 on ad size B. That would be rated the best ad con-

cept and ad size combination if we were only using the observed conversion rate for evaluating

the ads. But can we really trust that signal given the rare incidence rate in the environment?

Trusting that data alone, without leveraging other information, would be problematic; typically,

such oversight leads to significant variability in performance of any policy that relies heavily

on observed data (e.g., policies referred to as greedy) and independently on each unit’s ob-

servations (e.g., policies that lack partial pooling across websites). Thus, we leave aside such

volatile policies, but in the next section, we examine counterfactual policy simulations (i.e.,

how a variety of other policies would have performed).

6 Policy Simulations Based on Field Experiment Data

How would a bandit policy perform if we ignored the hierarchical structure, but only ac-

counted for the attribute structure using a homogeneous binomial regression (e.g., TS-GLM)?

What if we ignored both the hierarchical and attribute structure, making it a one-factor test

treating each action independently, using a binomial model without a regression (e.g., TS-

Binomial)? What if we simply stopped the experiment after five periods, and for the remaining

time only served the best performing ad(s) at that point (e.g., test-rollout)? This section con-

siders what would have happened if we used other MAB methods in the field experiment.

These counterfactual policy simulations reveal which aspects of the method are accounting for

improved performance. We begin by detailing how these simulations are constructed.
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6.1 Performing Policy Simulations

To run these counterfactual policy simulations, we have to decide on the “truth” (i.e., specify

the data-generating process). In particular, we need to set the true conversion rates for each ad

on each website. To come up with these conversion rates, we consider two options: a fully

model-based approach and a non-parametric approach.

The fully model-based approach uses the exact model (e.g., HGLM) from our proposed

MAB policy. This means using the model parameters (mean of distributions) obtained from the

actual experimental data through all periods. By construction, this favors the proposed policy

because it would generate data from a hierarchical logistic regression model and estimate a

hierarchical logistic regression model with TS to show this policy performs best. This can be

misleading, yet it is often unquestioned in the practice of evaluating MAB policies (e.g., Filippi

et al. 2010; Hauser et al. 2009). Instead of validating MAB policy performance in a realistic

setting, this type of policy simulation quantifies how model misspecification (in contrast to the

full model assumed to be true) is translated into relative loss of bandit performance.

We therefore utilize a non-parametric approach instead. Like the model-based approach, all

of the data across time is included. However, we compute the observed conversion rates (e.g.,

cumulative conversions divided by cumulative impressions) for each combination of website

and ad at the end of the experiment. Those conversion rates are then used as the binomial

success rates. In simulation, the conversions (successes) are generated, fixing the number of

impressions (trials) to the observed impression count in each decision period for each place

(summing across ads), which was already pre-determined by the firm’s media schedule before

the experiment. Since we compute conversion rates separately for each ad-website combi-

nation, our data-generating process does not assume there is any particular structure in how

important ad attributes are or how much websites differ from one another.

22



Given a true conversion rate, the key assumption is that the truth is a stationary binomial

model, so each website-ad combination has a stationary conversion rate. In addition, we assume

that the conversion rate of any ad on a website is unaffected by the number of impressions of

that ad, that website, or any other ad or website. This assumption is known as the Stable Unit

Treatment Value Assumption (SUTVA; Rubin 1990).

We obtain all of the remaining empirical results in this section using this same data-generating

process. These true parameters define our MAB problem. In addition to selecting the data-

generating process for the policy simulations, we need to decide how we will measure perfor-

mance. Our main measure of performance is the total number of customers acquired, averaged

across replications. We scale this to be the aggregate conversion rate of customers per million

impressions. We use a measure commonly seen in industry, which is expected lift above the

expected reward earned during the experiment, if the firm were to run a balanced design (the

null benchmark). An equal-allocation policy (static experiment with balanced design) earns an

average reward equal to the average of the actions, 1
K

∑K
k µk(θ). Intuitive to a manager and

useful from a practical perspective, lift captures the improvement of any bandit policy over

commonly practiced static A/B/n or multivariate tests.

We will discuss a variety of benchmark MAB policies, so we analyze the performance in

groups. The first counterfactual simulation we perform is intended to show consistency with

the field experiment on which all the subsequent analyses are based.

6.2 Replicating the Field Experiment

In the actual field experiment, we implemented two policies: TS-HGLM and equal allo-

cation. While we observe the adaptive TS-HGLM group improve by 8% over a baseline (as

shown in Figure 1), is this difference really meaningful in a statistical sense? We replicate
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this experiment via simulation to capture the uncertainty around the observed performance of

these two policies, which were actually implemented. This simulation is designed to serve as

100 replications of the field experiment. The resulting simulated worlds allow us to compute

predictive distribution of the observed results.

First, we can compare the observed performance of the TS-HGLM (treatment) policy that

was actually implemented to the predicted distribution of the balanced design (control) pol-

icy. This is analogous to comparing the observed data to a null distribution. We find that the

TS-HGLM policy achieves levels of improvement that are outlying with respect to this null

distribution, but it takes time for the policy to learn and reach that higher level of performance.

Second, we can compare the full distribution of the balanced design to the full distribution

of the TS-HGLM policy. On average, they should reflect the performance observed when they

were actually implemented. As expected, these results match the actual relative performance

of the two methods: TS-HGLM achieves 8% higher mean performance than equal allocation

(4.717 versus 4.373 conversions per million). This consistency gives validity to the counter-

factuals to follow. In effect, this shows that our data-generating process and implementation of

these two policies can recover the actual performance. The key benefit of looking at simulated

versions of the same policies that we implemented in the field experiment is that it enables us

to examine the variability in performance and then turn off components of these policies to

motivate other policies (which we do for the rest of this section).

To quantify the difference in performance of any pair of policies, we compute a poste-

rior predictive p-value (ppp), the probability that one policy has performance greater than or

equal to the performance of another. This is computed empirically using each policy’s repli-

cates. Despite each policy’s variability in performance across worlds, the TS-HGLM policy

out-performs the equal allocation policy in every sampled world (ppp = 1.00). This is not very
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surprising; the equal-allocation policy is a weak benchmark policy for comparison. Although

the balanced design was the firm’s previous plan for running the multivariate test, it is not a

strong enough benchmark for fully evaluating MAB policies.

6.3 Evaluation of Benchmark Policies

We evaluate a range of alternative MAB policies to inform our two key decisions: model

and allocation rule. First, we consider TS to be the allocation rule, but examine which is the best

model to go with it. Then, we consider which is the best-performing randomized allocation rule

by comparing TS with standard MAB heuristics from reinforcement learning. Finally, we also

consider a managerially relevant and intuitive way to trade off exploration and exploitation: run

a balanced test, pick the winning ad, and roll out the winner (i.e., test-rollout policies). For this

group of policies, we consider a range of stopping times. Finally, since these are simulations,

we can also include the oracle policy for reference, although it is not feasible in practice. The

oracle policy always delivers the truly best ad on each website (i.e., as if the oracle knew the

aforementioned true data-generating process).

6.3.1 Evaluating the Model Component of the MAB Policy

We now examine a range of MAB policies from complex to simple, all derived from the hi-

erarchical generalized linear model with TS by shutting off the MAB policy’s components one

at a time. Figure 3 shows the boxplots for each policy’s distribution of total reward accumulated

by the end of the experiment. The results of the TS with the partially-pooled / heterogeneous

regression (TS-HGLM); latent-class regression (TS-LCGLM); pooled / homogeneous regres-

sion (TS-GLM); and binomial (TS-binomial) policies are all compared to the equal-allocation
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policy (Balanced) and the oracle policy (Oracle) in Figure 3, Table 1, and Table 2.4 These con-

firm that the inclusion of continuous heterogeneity (partial pooling via the hierarchical model)

is a major driver of performance.

[INSERT FIGURE 3 ABOUT HERE]

[INSERT TABLE 1 ABOUT HERE]

[INSERT TABLE 2 ABOUT HERE]

The results for these TS-based policies suggest that the partial pooling aspect of our pro-

posed policy is important. Recall that the TS-HGLM policy yields an 8% increase in mean

above a balanced design. The TS-GLM policy and TS-binomial policy each yields only a 3%

improvement above a balanced design. The TS-LCGLM policy falls between those, but only

at 4%. The variability and degree of overlap among these policies is shown in Table 2, which

shows the probability that any one of these policies using TS performs better than any one of

the others. For instance, at the lower end of the performance range, the TS-binomial policy out-

performs Balanced policy (ppp = 0.73), while at the higher end of the range, the TS-HGLM

performs better than its latent-class counterpart, TS-LCGLM (ppp = 0.60).

6.3.2 Evaluating the Allocation Rule Component of the MAB Policy

With the evidence clearly pointing in the direction of the HGLM model combined with the

TS allocation rule, we now turn to evaluate a range of alternative allocation rules. We consider

standard MAB heuristic policies from the reinforcement learning literature (Sutton and Barto

1998) such as greedy and epsilon-greedy.5 The greedy policy allocates all observations to the

4The model in TS-LCGLM is a logistic regression with two latent classes where all ad attribute parameters
vary across the latent classes.

5We exclude upper confidence bound (UCB) policies despite their coverage in the machine learning and statis-
tical learning literature (Auer 2002; Auer et al. 2002; Filippi et al. 2010; Lai 1987) because these are deterministic
solutions. As a consequence, there is no agreed-upon way to transform their indices to allocation probabilities for
our batched decision problem. The same is true with other index policies, including the Gittins index.
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ad with the largest aggregate observed mean based on all cumulative data. That is, the greedy

policy is a myopic and deterministic policy that reflects pure exploitation without exploration.

It can change which ad it allocates observations to during each period, but it will always be

a “winner-take-all” allocation. The epsilon-greedy policy is a randomized policy that mixes

exploitation with a fixed amount of exploration. For any 0 ≤ ε ≤ 1, then ε of observations

allocated uniformly across the K ads, and 1 − ε of observations are allocated to the ad with

the largest aggregate observed mean (as in the greedy policy). We employ this with with ex-

ploration parameter ε set to 10% and 20% (epsgreedy10 and epsgreedy20, respectively). At the

extremes, epsilon-greedy nests both a balanced design of equal allocation (ε = 100%) and a

greedy policy (ε = 0%).

[INSERT FIGURE 4 ABOUT HERE]

[INSERT TABLE 3 ABOUT HERE]

[INSERT TABLE 4 ABOUT HERE]

The greedy policy has a higher mean and more variability than both epsilon-greedy policies

(Figure 4 and Table 3). This is expected since ε controls the riskiness of the policy. The

epsilon-greedy policies with 10% and 20% perform similarly. The main difference is that ε =

20% leads to less variability on the downside of performance, leading to a better worst-case

scenario. Again, the pairwise comparisons of the full distributions of performance illustrate

that TS-HGLM dominates the greedy and both epsilon-greedy policies (ppp ≥ 0.90 for all

three comparisons).

6.3.3 Evaluating Different Stopping Times for Equal Allocation Policies

Finally, we consider fairly intuitive policies with clear managerial interpretation and call

these the test-rollout policies. For a fixed amount of time, the firm runs a balanced design, then
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estimates a population-level logit model after the test and allocates all subsequent observations

to the ad with the highest-predicted conversion rate. This reflects a complete switch from

exploration to exploitation (learn, then earn) as opposed to a simultaneous mixture of the two

or a smooth transition from one to the other (earning while learning). At the extreme, when the

test lasts all periods, the test-rollout policy reduces a static balanced design.

[INSERT FIGURE 5 ABOUT HERE]

[INSERT TABLE 5 ABOUT HERE]

[INSERT TABLE 6 ABOUT HERE]

We implemented the test-rollout heuristic with six different lengths of the initial period

of balanced design (pure exploration). While the average performance for different amounts

of initial learning does not change substantially, all achieve approximately a 2% improvement

above keeping a balanced design (pure exploration) for all of the periods (Figure 5 and Table 5).

Table 6 confirms that TS-HGLM outperforms the whole group of test-rollout policies similarly

and consistently (ppp ≥ 0.90 for all test-period lengths).

The variation within any test-rollout policy is greater than the differences between them.

Just looking at mean performance, picking the winner after the initial testing period with a

balanced design that lasts for 2 periods yields only a slightly better average performance than

when it lasts for 1, 3, 4, 5, or 6 periods. However, Table 6 shows that the probability with which

that policy out-performs any other is quite small (between ppp = 0.51 and ppp = 0.64). So

there is not strong evidence of a clear winner among these policies. This may be idiosyncratic

to the present context, but it does confirm that such a test-rollout policy is quite sensitive to the

choice of the test-period length, which one would not know how to set in practice. In other

words, the intuitive test-then-learn approach appears to be much less reliable than an earning

while learning MAB policy. Second, the variability in performance is asymmetric. The upper
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tails (better conversion rate) of policies’ performance distributions do not vary as much as their

lower tails. The longer the test period, the smaller the variability around performance because

the potential downside is reduced. At the extreme, however, if we consider a balanced test

without the rollout phase, the potential upside of the performance distribution would diminish.

7 General Discussion

We have focused on improving the practice of real-time adaptive experiments with online

display advertisements to acquire customers. We achieved this by identifying the components

of the online advertiser’s problem and mapping them onto the existing MAB problem frame-

work. The component missing from existing MAB methods is a way to account for unobserved

heterogeneity (e.g., ads differ in effectiveness when they appear on different websites) in the

presence of a hierarchical structure (e.g., ads within websites). We extended the existing MAB

policies to form a TS-HGLM policy, a natural marriage of hierarchical regression models and

randomized allocation rules. In addition to testing this policy against benchmarks in simula-

tion, we implemented it in a live field experiment with a large retail bank. The results were

encouraging. We not only demonstrated an 8% increase in customer acquisition rate by using

the TS-HGLM policy instead of a balanced design, but we also showed that on average, even

strong benchmark MAB policies only reached a level of a 4% increase, half that of the proposed

policy.

Nevertheless, there are some limitations to our field experiment and simulations, which may

offer promising future directions for research. We acknowledge that acquisition from a display

ad is a complex process, and our aim is not to capture all aspects of it. One particular aspect that

we do not address is multiple ad exposures. It is natural to imagine the reality that an individual

saw more than one of the K ads during the experiment or had multiple exposures to the same
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ad. Our data does not contain individual-level (or cookie-level) information, but this could be

an interesting area of research, trying to combine ad attribution models with MAB policies.

The issue of multiple exposures would raise concerns in this paper if the following conditions

were true: (i) the repeated viewing of particular types of ads has a substantially different impact

on acquisition than the repeated viewing of other types of ads; (ii) that difference is so large

that a model including and a model ignoring repeated exposures each identifies a different

winning ad; and (iii) there is a difference in the identified winning ad for many of the websites

with large impression volume. While this scenario is possible, we argue it is unlikely. As

further evidence, we also do not see those problematic time dynamics of conversion rates at the

website-ad level. The data suggest the assumption of a constant µjk is reasonable during our

experiment. Considering the short time window in which display advertising campaigns run,

this assumption is not particularly limiting.

Another limitation of our work is that we do not take into account the known and finite time

horizon. While we used 10 periods, we did not take this time horizon into account while making

allocations for periods 1 through 9. In a typical dynamic programming solution, one considers

either backward induction from the end point or some other explicitly forward-looking recur-

sion. If the relative cost required to run the experiment is negligible, then there is little gained

from optimizing the experiment during that period. In fact, this reduces to a test-rollout setting

where it is best to learn then earn. By contrast, if the observations are relatively costly or if

there is always earning to be gained from learning (and such learning takes a long time), then

it would be useful to consider a MAB experiment for an infinite horizon. However, most MAB

experiments fall somewhere between those two extremes. Perhaps the length of the MAB

experiment is a decision that the experimenter should optimize. This extra optimal stopping

problem is the focus of a family of methods known as expected value of information gained
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and knowledge gradient methods (Chick and Inoue 2001; Chick and Gans 2009; Powell 2011).

While we have utilized the fact that batch size was exogenous and given to us for each

website and each period (Mjt), we could generalize our problem to a setting where we had

control of the batch size and were making allocations of impression volume across websites.

This is relevant as real-time bidding for media on ad exchanges becomes even more common.

However, introduces complexities to the MAB problem, such as correlations among impression

volume, cost per impression, and expected conversion rate. In addition, we would need to

consider methods that explicitly consider the batch size (Chick and Gans 2009; Chick et al.

2010; Frazier et al. 2009).

One key limitation comes from our data: We only observe conversion without linking those

customers to their subsequent post-acquisition behavior. It seems natural to acquire customers

by considering the relative values of their expected customer lifetime value (CLV) and acquisi-

tion cost instead of merely seeking to increase acquisition rate (i.e., lower cost per acquisition).

Sequentially allocating resources to acquire customers based on predictions about their future

value seems like a promising marriage between MAB and CLV.

Finally, we see the bandit problem as a powerful framework for optimizing a wide range of

business operations. This broader class of problems is centered around the question, “Which

targeted marketing action should we take, when, with which customers, and in which con-

texts?”As we continue equipping managers and marketing researchers with these tools to em-

ploy in a wide range of settings, we should have a more systematic understanding of the ro-

bustness and sensitivity of these methods to common practical issues.
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Appendix A: Values from Figure 2

Tables 7, 8, and 9 provide the underlying key values illustrated in the panels of Figure 2 (one

table for each ad size), as well as the observed data of cumulative conversions and impressions

broken down by two time periods (t = 1 and 6), two websites (j = 103 and 149), each ad size

(A, B, and C), and each ad concept (1, 2, 3, and 4). The belief distributions of µjk(θ) for all k

and the two j are summarized by mean and 95% intervals. The resulting allocations, wj,k,t+1,

are shown in the tables and match those shown in Figure 2.

[INSERT TABLE 7 ABOUT HERE]

[INSERT TABLE 8 ABOUT HERE]

[INSERT TABLE 9 ABOUT HERE]
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8 Tables and Figures

Improvement Efficiency Improvement Relative Relative
Mean SD above Balanced to Oracle Balanced to Oracle Mean Precision

Oracle 5.932 0.078 36% 100% 100% 26% 33%
TS-HGLM 4.717 0.090 8% 80% 22% 0% 0%

TS-LCGLM 4.527 0.088 4% 76% 10% -4% 4%
TS-GLM 4.493 0.091 3% 76% 8% -5% -3%

TS-binomial 4.493 0.087 3% 76% 8% -5% 5%
Balanced 4.373 0.138 0% 74% 0% -7% -58%

Table 1: Summary of performance for MAB policies using TS. The policy TS-HGLM is the best
performing policy, and it is compared to other TS-based policies. Balanced refers to the equal
allocation policy, and Oracle refers refers to the hypothetical ideal policy. They are shown in
subsequent tables to show the lower and upper end of policies.
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Bal T-B T-G T-LG T-HG

Balanced Bal 1
TS-binomial T-B 0.73 1
TS-GLM T-G 0.78 0.44 1
TS-LCGLM T-LG 0.83 0.61 0.60 1
TS-HGLM T-HG 1.00 0.96 0.95 0.96 1

Table 2: Pairwise comparison of policies using TS. The values are the probability that the policy
in the row is better than (or at least as good as) the policy in the column. For instance, there is a
96% probability that the TS-HGLM policy achieves at least as high of an aggregate conversion
rate as the TS-GLM policy. These posterior predictive p-values were computed via simulation
from the distribution of aggregate conversions shown in boxplots. The same method is used
throughout the tables with pairwise comparisons of policies.
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Mean Mean Mean
Improvement Efficiency Improvement Relative Relative

Mean SD above Balanced to Oracle Balanced to Oracle Mean Precision

Oracle 5.932 0.078 36% 100% 100% 26% 33%
TS-HGLM 4.717 0.090 8% 80% 22% 0% 0%

greedy 4.520 0.115 3% 76% 9% -4% -39%
epsgreedy(10) 4.489 0.094 3% 76% 7% -5% -9%
epsgreedy(20) 4.504 0.089 3% 76% 8% -5% 2%

Balanced 4.373 0.138 0% 74% 0% -7% -58%

Table 3: Summary of performance for greedy and epsilon-greedy policies. The greedy and
epsilon-greedy policies are compared alongside the TS-HGLM, Balanced, and Oracle policies.
The policies labeled “epsgreedy(10)” and “epsgreedy(20)” refer to epsilon-greedy policies with
the exploration variable ε set to 10% and 20%, respectively.

39



Bal G EG10 EG20 T-HG

Balanced Bal 1
greedy G 0.79 1
epsgreedy10 EG10 0.77 0.44 1
epsgreedy20 EG20 0.78 0.44 0.51 1
TS-HGLM T-HG 1.00 0.93 0.97 0.93 1

Table 4: Pairwise comparison of policies using greedy and epsgreedy. The two epsgreedy
policies have similar performance, since one is better than the other only 51% of the time.
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Mean Mean Mean
Improvement Efficiency Improvement Relative Relative

Mean SD above Balanced to Oracle Balanced to Oracle Mean Precision

Oracle 5.932 0.078 36% 100% 100% 26% 33%
TS-HGLM 4.717 0.090 8% 80% 22% 0% 0%

testrollout-t6 4.450 0.085 2% 75% 5% -6% 10%
testrollout-t5 4.446 0.098 2% 75% 5% -6% -16%
testrollout-t4 4.463 0.099 2% 75% 6% -5% -18%
testrollout-t3 4.463 0.108 2% 75% 6% -5% -32%
testrollout-t2 4.479 0.128 2% 76% 7% -5% -51%
testrollout-t1 4.453 0.155 2% 75% 5% -6% -67%

Balanced 4.373 0.138 0% 74% 0% -7% -58%

Table 5: Summary of performance for test-rollout policies. The test-rollout policies with var-
ious lengths of the initial test period are compared alongside the TS-HGLM, Balanced, and
Oracle policies. The test-rollout policy with two initial test periods performs better than other
test-rollout policies in this setting. The Balanced policy is equivalent to a test-rollout policy
with 10 initial test periods without any rollout period afterward.
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Bal TR1 TR2 TR3 TR4 TR5 TR6 T-HG

Balanced Bal 1
testrollout-t1 TR1 0.68 1
testrollout-t2 TR2 0.74 0.49 1
testrollout-t3 TR3 0.70 0.54 0.46 1
testrollout-t4 TR4 0.66 0.51 0.47 0.51 1
testrollout-t5 TR5 0.64 0.48 0.36 0.48 0.44 1
testrollout-t6 TR6 0.72 0.48 0.39 0.40 0.46 0.51 1
TS-HGLM T-HG 1.00 0.93 0.94 0.97 0.99 1.00 1.00 1

Table 6: Pairwise comparison of policies using test-rollout policies with different lengths of the
initial test period. Using a two test periods is better than one test period 51% of the time and
better than three test periods with a probability of 53%.
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size A

website time concept wj,k,t+1 µjk Mean µjk 2.5% µjk 97.5% yjkt mjkt

j103 1 1 0.30 4.76 0.42 43.70 0 13086
2 0.27 3.99 0.36 46.47 0 13086
3 0.19 2.81 0.19 40.03 0 13086
4 0.23 3.64 0.25 43.96 0 13086

6 1 0.24 12.99 4.52 35.13 1 96415
2 0.17 9.94 2.71 36.93 1 78776
3 0.26 12.73 3.84 44.13 1 86540
4 0.33 13.88 4.23 41.37 2 97296

j149 1 1 0.27 5.83 0.55 64.33 0 3572
2 0.25 4.84 0.34 64.83 0 3572
3 0.22 3.99 0.19 79.68 0 3572
4 0.27 4.70 0.29 85.16 0 3572

6 1 0.30 6.08 1.09 33.82 1 48028
2 0.16 3.43 0.47 22.71 0 38914
3 0.28 5.61 0.82 37.47 0 40281
4 0.27 5.05 0.66 37.00 0 48360

Table 7: Values from Figure 2 for ad size A. The predictive distribution of each µjk based on
the model and data through t periods, is summarized by its mean (column labeled “µjk Mean”)
and 95% interval (columns labeled µjk 2.5% and µjk 97.5%). The predictive distributions are
based on the actual cumulative number of conversions and impressions (columns labeled yjkt
and mjkt, respectively). The subsequent allocation weights are for period t+1 (column labeled
wj,k,t+1). The above descriptions apply here and to Tables 8 and 9.

43



size B

website time concept wj,k,t+1 µjk Mean µjk 2.5% µjk 97.5% yjkt mjkt

j103 1 1 0.01 76.05 28.40 210.40 1 18215
2 0.22 165.29 56.90 492.54 5 18215
3 0.41 210.07 78.38 662.32 5 18215
4 0.37 206.97 75.22 554.49 3 18215

6 1 0.01 88.70 44.36 171.69 2 24814
2 0.30 147.29 71.24 303.86 14 88826
3 0.52 167.57 89.55 299.38 36 207258
4 0.18 131.02 61.53 294.88 8 61298

j149 1 1 0.16 5.69 1.07 36.85 0 28356
2 0.33 9.03 1.41 63.44 1 28356
3 0.27 7.35 0.92 56.65 0 28356
4 0.23 6.81 1.03 56.76 0 28356

6 1 0.21 2.35 0.76 7.41 0 295132
2 0.22 2.17 0.59 8.67 1 404384
3 0.41 2.93 0.82 10.31 2 403467
4 0.15 1.87 0.52 7.18 0 302950

Table 8: Values from Figure 2 for ad size B.
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size C

website time concept wj,k,t+1 µjk Mean µjk 2.5% µjk 97.5% yjkt mjkt

j103 1 1 0.10 27.48 6.68 116.32 2 17439
2 0.08 21.36 4.27 93.26 1 17439
3 0.26 40.23 8.58 190.65 0 17439
4 0.57 61.37 14.87 256.00 1 17439

6 1 0.02 26.28 12.08 58.81 3 43323
2 0.31 45.15 17.26 119.30 4 40787
3 0.39 50.49 20.97 121.70 5 102441
4 0.28 47.01 19.73 111.75 3 115023

j149 1 1 0.23 3.31 0.29 31.32 0 14059
2 0.18 2.78 0.29 31.35 0 14059
3 0.22 2.98 0.20 42.94 0 14059
4 0.37 5.01 0.50 75.27 0 14059

6 1 0.25 1.63 0.36 6.97 0 186382
2 0.20 1.34 0.23 8.13 0 157923
3 0.22 1.53 0.32 6.60 0 222576
4 0.33 1.90 0.33 9.14 1 288744

Table 9: Values from Figure 2 for ad size C.
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Figure 1: Results observed in field experiment. The field experiment results show the TS-
HGLM (adaptive group, solid line) achieves a higher cumulative improvement than the bal-
anced design (static group, dashed line), relative to the cumulative conversion rate after the
initial period. For the adaptive policy, the circles indicate when reallocations occurred (every
five to seven days).
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Figure 2: Heterogeneity in conversion rates across websites and learning over time. The lines
represent the belief distributions of conversion rates, based on predictive distributions of param-
eters from the HGLM (hierarchical logit model). Within each panel of a website j, time period
t, and an ad size, there are four ad concepts (horizontal lines, ordered from top to bottom, ad
concepts 1 to 4). The allocation probabilities based on that model are printed (and shown by
level of transparency of shading, from invisible 0% to opaque 100%). The four vertical panels
show two different websites at two different time periods. Heterogeneity is shown through dif-
ferences across the two websites (j) for the same time period. Learning is shown through the
two time periods (t) for the same website. Both heterogeneity and learning cause allocations to
differ across ads. The three panels in each row show the different ad sizes. Appendix A con-
tains tables with the underlying values from this figure (wj,k,t+1 and summaries of the posterior
distributions of µjk), as well as the observed data of cumulative conversions and impressions
broken down by each website (j = 103 and 149), ad size, ad concept, and time period (t = 1
and 6).
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Figure 3: Distributions of conversions following TS-based policies. The distributions of total
conversions for TS-based are compared. TS-HGLM performs better than the other versions
of TS with alternative model specifications, suggesting that the continuous parameter hetero-
geneity across websites drives the improvement in performance. For all of the boxplots, the
center line is the median, the box represents the interquartile range (IQR), the whiskers stretch
to 1.5*IQR beyond the edges of the IQR, and the points are any values beyond the range of the
whiskers.
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Figure 4: Distributions of conversions greedy and epsilon-greedy policies. The distributions of
total conversions for greedy and epsilon-greedy policies are compared to the TS-HGLM policy
and the balanced design policy. Setting epsilon to 20% performs better than setting it to 10%.
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Figure 5: Distributions of conversions following test-rollout policies. The distributions of total
conversions for test-rollout policies are compared to the TS-HGLM policy and the balanced
design policy. Testing for only two initial periods yields better performance than testing for
any other length of time between 1 and 6 periods.
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