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Abstract 

Shape memory alloys (SMAs) are utilized in a wide range of applications due to their 

unique characteristics, most notably the shape memory effect and superelasticity. In spite of 

intensive research, much is still unknown about the solid-to-solid, diffusionless phase 

transformation from a cubic austenite phase to a monoclinic martensite phase that is responsible 

for these properties, and the complex thermo-mechanical interactions that accompany this 

transformation. The aim of this research was to characterize this phase transformation during 

displacement-controlled cyclic loading in superelastic nickel-titanium (also known as Nitinol or 

NiTi), which is the most commonly utilized SMA, with a focus on the effect of globally applied 

strain rate and crystallographic texture. Experimental studies of thin sheet specimens of 

polycrystalline NiTi under uniaxial tensile loading were conducted using a combination of digital 

image correlation (strain fields) and infrared thermography (thermal fields). Specimens were 

prepared along directions oriented 0° (RD), 45°, and 90° (TD) to the rolling direction of the sheet 

and subjected to fifty cycles at prescribed strain rates of 10-4, 10-3, and 10-2 s-1. 

A strong cycle-to-cycle strain similarity was found in the martensite, indicating that local 

elastic stress fields are driven by a dislocation structure and martensitic nuclei that largely 

stabilize during the first loading cycle. This cyclic similarity increased when the crystallographic 

orientation of the test specimen was less favorable for phase transformation. It was also found 

that on loading, these unfavorably oriented specimens accommodated less axial strain inside the
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martensitic deformation band and more axial strain outside of the band. Unfavorable textures 

also resulted in the nucleation of more martensitic bands, and this became increasingly apparent 

at faster applied strain rates. At an applied strain rate of 10-2 s-1, the cyclic behavior exhibited 

significantly greater transformation homogeneity and accumulated more latent heat, which 

affected the macroscopic response between cycles. Thus, testing at 10-2 s-1 was performed with a 

1800 second hold between cycles in order to examine the effect of accumulated latent heat. Other 

parameters including the evolution of martensite volume fraction and velocity of the bands were 

examined with respect to strain rate and specimen crystallographic texture. 
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Chapter 1 

Introduction 

Smart materials such as shape memory alloys, shape memory polymers, and 

magnetostrictive and piezoelectric materials are used in a wide range of applications because of 

their unique characteristics. Among them, shape memory alloys (SMAs) have been intensively 

studied because of their high work density and their shape memory and superelastic capabilities. 

The shape memory effect refers to the reversion of a SMA to its original shape after deformation 

and subsequent heating of the alloy to above a specified transition temperature. Superelasticity is 

the ability of a SMA to recover large amounts of strain through solid to solid, diffusionless phase 

transformation when loading and unloading above a specified transition temperature.  

Many superelastic applications require SMAs to be subjected to cyclic loading at varied 

applied strain rates. In addition, the crystallographic texture of the specimen (i.e., the preferred 

crystallographic orientation of the sample incurred by standard processes like drawing or rolling) 

can significantly impact material behavior, such as the amplitude of the stress plateau and the 

amount of recoverable strain.  In order to use the superelastic properties of Nitinol successfully, 

it is critical to understand the effect of cycling, applied strain rate, and crystallographic texture 

on the thermo-mechanical behavior of NiTi during stress-induced martensitic phase 

transformation.
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1.1 Motivation 

In spite of intensive research for more than 50 years, much is still unknown about the 

complex local thermo-mechanical interactions that underlie phase transformation in SMAs. The 

ambient and local temperature, applied strain rate, cycling, and crystallographic texture show 

complex interactions with each other that are reflected in the macroscopic behavior. Because 

phase transformation results in large localized deformations, it is important to examine the 

spatial distribution of transformation as well as the averaged macroscopic stress-strain response. 

Until recently, the quantitative examination of phase transformation across relatively large fields 

of view has been difficult due to experimental limitations. Recently, this has become possible by 

the application of digital image correlation (DIC) to map transformation [1]. DIC is an in-situ 

optical technique used to quantify surface displacements by marker tracking. The full-field strain 

map obtained by DIC allows the quantitative characterization of the nucleation and propagation 

of the stress-induced martensitic phase transformation by tracking localized regions of high 

strain. Here, we utilize a combination of simultaneous full-field strain mapping by stereo digital 

image correlation (DIC) and full-field thermal mapping by infrared thermography in order to 

examine stress-induced martensitic phase transformation and its dependence on cycling, applied 

strain rate, and crystallographic texture. In addition, the interaction between latent heat and the 

extent of transformation is observed by overlaying infrared thermography with local strain 

values. This approach enables investigation of transformation characteristics including the 

relation between local strain and temperature during phase transformation, and how factors such 

as the cycling, strain rate, latent heat and texture affect the phase transformation. 
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1.2 Background on Shape Memory Alloys 

Three crystallographic phases, termed austenite (A), martensite (M), and R-phase (R), 

play a significant role in the phase transformation underlying the shape memory effect and 

superelasticity, as shown schematically in figure 1-1. Austenite has a B2 cubic crystal structure, 

which is highly symmetric and is stable at high temperatures and low stresses. Martensite has a 

B19’ monoclinic crystal structure, which has lower symmetry and is stable at low temperatures 

and high stresses. There are 12 correspondence variants of martensite arising from the 

relationship between the different symmetries of the cubic and monoclinic structures [2]. 

Additionally, twinned martensite and detwinned martensite can exist, as described by thermal-M 

and oriented-M in figure 1-1, respectively. The R-phase is an intermediate state and a 

rhombohedral distortion of the B2 cubic austenite that occurs in some transformations. 

The favorable crystallographic phase at a given stress and ambient temperature is 

determined by the critical transformation temperatures of the material. Because the phase 

transformation is first order, these can be measured by differential scanning calorimetry (DSC) 

as shown in figure 1-2 [3]. DSC monitors the heat flow rate to/from a sample in a pan versus an 

empty reference pan at a constant thermal scanning rate. The vertical axis in figure 1-2 is 

converted to specific heat. Above the austenite finish temperature (Af) during heating, austenite 

is the preferred phase; during cooling below martensite finish temperature (Mf), martensite is 

preferential.  
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Figure 1-1 Schematics of three primary crystallographic structures and their microstructures. 
[Figure 2 from 3] 

Figure 1-2 Differential scanning calorimetry thermograms of superelastic wire. [Figure 3b 
from 3] 
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Both the shape memory effect and superelasticity are caused by a solid-to-solid, 

diffusionless phase transformation between the austenite and martensite phases, but these effects 

proceed along different pathways. The three-dimensional graph in figure 1-3 shows the paths of 

the shape memory and superelastic effects. The path of the shape memory effect follows from 

point 0 to point 5 in figure 1-3. At point 0, the sample is initially twinned martensite. As the 

sample is loaded until point 1, the twinned martensite becomes detwinned martensite. When the 

sample is released, there is only elastic unloading and the sample exhibits more than 4% residual 

strain, which appears at this point to be plastic deformation. However, as the sample is heated 

above Af, the detwinned martensite phase transforms to austenite between points 3 and 4, and 

there is a reversion of the material to its original shape. When the sample is cooled down to a 

temperature below Mf, the austenite phase transforms to twinned martensite with no apparent 

shape change. 

Superelasticity occurs at a consistent temperature above Af, i.e. on the plane from point 5 

to point 10 in figure 1-3. The sample is initially in the austenite phase at point 5. As the sample is 

loaded, the austenite transforms to detwinned martensite between points 6 and 7, and during this 

transformation there is a constant stress plateau under increasing strain. The transformation 

proceeds by large bands of localized strain that consist largely of martensite. At the end of the 

stress plateau, the bands have propagated completely through the specimen and it is considered 

to be macroscopically martensite. However, although the specimen is considered 

macroscopically martensite at this point, it has been observed that the specimen is not fully 

martensite upon the completion of transformation and residual pockets of austenite remain [4, 5]. 
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Upon unloading, the detwinned martensite reverts to the austenite phase with nearly zero strain 

because the detwinned (stress-induced) martensite is not stable at this temperature. During the 

load-unload cycle, there is a noticeable hysteresis that can be exploited for damping applications. 

The ability of the sample to recover large strains with relatively little plastic deformation 

incurred is referred to as superelasticity, or pseudoelasticity.  

Superelastic behavior is sensitive to temperature as shown in the macroscopic stress-

strain curves of as-received NiTi wires at various temperatures in isothermal experiments shown 

in figure 1-4 [6]. In figure 1-4, the green, blue, and red lines indicate the R-phase, martensite, 

and austenite phases, respectively. When the ambient temperature is below Af (in this case Af = 

13 ± 2 °C), the curves do not show complete superelastic behavior and exhibit residual strain 

upon unloading. As the ambient temperature is increased, the stress plateau of phase 

 

 

Figure 1-3 Three-dimensional stress-strain-temperature graphs describing the paths of the 
shape memory effect (0-5) and superelasticity (5-10). [Figure 7 from 3] 
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transformation shifts vertically upward. Once the temperature reaches Af, the initial phase 

becomes macroscopically fully austenite and the curves show superelastic behavior, exhibiting a 

clear stress plateau and little residual strain. As the operating temperature continues to increase, 

the height of stress plateau also increases. Noticeable residual strain reappears at high operating 

temperatures due to plastic deformation with locked-in pockets of residual martensite. Ambient 

temperature is an important factor when considering the effect of globally applied strain rate on 

phase transformation during superelasticity because of the interaction between strain rate and 

latent heat distribution. The effect of strain rate will be discussed in section 1.4. 

 
 Figure 1-4 Macroscopic stress-strain curves of as-received superelastic wire under isothermal 

experiments at various temperatures. [Figure 8 from 6] 
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SMAs utilize either the shape memory effect or superelasticity in many applications in 

the automotive, robotics, aerospace and biomedical fields. One of the primary applications of 

SMAs is wire actuators due to their high work density, light weight, and compact size [7, 8]. 

SMA wire actuators essentially consist of a bias spring, an external spring and a SMA wire as 

shown in figure 1-5 [7]. The SMA wire is initially martensite phase and is stretched by δ0 in 

equilibrium with the bias and external springs. When the wire is subjected to Joule heating, it 

transforms to the austenite phase contracting and providing work against the external spring by 

the amount of δ – δ0. When the current is disconnected and the wire cools, the length of the wire 

reverts to the reference condition. In this way, the work against the external spring can be 

repeated and used to induce motion in applications such as micro circuit breakers and prosthetic 

limbs [9]. Other applications of the shape memory effect include commercial coupling methods,  

 

 

 
Figure 1-5 Prototype uniaxial SMA /bias spring actuator working against an external spring by 
joule heating [Figure 1 from 7]. 
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such as CryoFit for aerospace tubing, where the shrinkage of NiTi pipe in warm temperature is 

used in metal-to-metal couplings for leak free performance [10, 11]. 

The superelastic effect is utilized in numerous devices, particularly in biomedical 

applications. In medical devices, superelastic self-expanding stents (see figure 1-6a) to support 

the arteries of vascular disease patients are made with SMA for its biocompatibility, its ability to 

maintain a constant load in a large strain range, and an evenly distributed stress field along the 

radial direction [10]. Additionally, the ability of SMA stents to self-expand inside the body 

minimizes invasive medical procedures [12]. Dental braces (see figure 1-6b) are also made of 

SMAs to obtain a narrow range of the correction force, which leads a reduction in length of 

orthodontic treatments and check-ups [10]. Other examples of the use of Nitinol in daily 

applications include superelastic eyeglasses frames (see figure 1-6c) and cell phone antennas (see 

figure 1-6d) [13]. In civil engineering, SMA wires are used for self-centering structures in 

seismic applications because of their superelasticity, large damping, energy storage capacity [14, 

15]. 

Numerous shape memory alloys, such as AuCd, CuZnAl, CuAlNi, and NiTi, have been 

discovered since the mid-1900s. SMAs are roughly classified into Fe-based alloys, Cu-based 

alloys, and Ni-Ti alloys. Because Fe-based alloys do not have a significant two-way effect or 

superelasticity, Cu-based alloys (such as CuZnAl, CuAlNi, and CuAlBe) and NiTi alloys are 

largely used in commercial applications. Among them, nearly equiatomic NiTi -- known by its 

commercial name Nitinol and discovered in 1959 by William J. Buehler of the U.S. Naval 

Ordnance Laboratory [16]) -- is extensively used in practical applications and is under rigorous 
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investigation. Polycrystalline NiTi can exhibit approximately 8% shape recovery, 8% 

superelastic strain above transient temperature (Af), and near 800 MPa of recovery stress. 

Additionally, NiTi shows higher work density, 2.5 x 107 J/m3, than other smart materials, which 

is suitable for the compact designs shown in table 1-1, and has good biocompatibility as well as 

corrosion resistance [17]. 

 

 

 
 
 

Figure 1-6 Applications of superelastic SMAs: (a) Stent [www.ev3.net], (b) Dental braces 
[www.business-opportunities.biz], (c) Superelastic eyeglasses frame  
[todaysmachiningworld.com], and (d) Cell phone antenna [education.mrsec.wisc.edu] 
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Table 1- 1 Work per unit volume for various microactuators. [Table 1 from 19]. NiTi SMA has a 
higher work density than other smart materials and is particularly well-suited for compact design. 

Actuator Type W/v (J/m3) Comments 

Ni-Ti SMA 2.5 x 107 max, one-time output, 5% strain, 500 MPa 
6.0 x 106 thousands of cycles, 2% strain, 300 MPa 

Solid-Liquified Phase 
Change 4.7 x 106 water (2.2 GPa bulk modulus) 

acetamide (8% volume change) 
Thermo-pneumatic 1.2 x 106 measured values (20N, 50 μm displacement) 
Thermal Expansion 4.6 x 105 ideal, nickel on silicon, ∆T = 200°C 

Electro-magnetic 
4.0 x 105 ideal, variable reluctance 
2.8 x 104 measured, variable reluctance 
1.6 x 103 measured torque, external field 

Electro-static 
1.8 x 105 ideal, 100 V, 0.5 µm gap 
3.4 x 103 measured, comb drive 
7.0 x 102 measured, integrated force array 

Piezoelectric 1.2 x 105 calculated, PZT 
1.8 x 102 calculated, ZnO 

Muscle 1.8 x 104 measured, 350 kPa, 10% strain 
Microbubble 3.4 x 102 measured, 71 μm diameter 

 
 

Figure 1-7 History of the discovery of important shape memory alloys. [18] 
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Constitutive modeling has been used to predict SMA material behavior, both for use in 

finite element methods and to determine relationships between an input microstructure and the 

resulting macroscopic stress-strain relation. Roughly speaking, two approaches have been 

developed – internal state variable models and micro-mechanical models. The internal state 

variable approach has been developed using constitutive equations determined by 

thermodynamics considering internal state variables and for use in engineering analysis tools 

including finite element methods. Conversely, micro-mechanical approaches use numerical 

averaging methods in order to quantitatively examine the relationship between microstructural 

input variables and the stress-strain response spanning the micro to macro scale. The internal 

state variable approach is currently more developed for the modeling of cyclic loading, due to the 

lack of micro-mechanism fatigue theory in SMAs [20]. Recently, Tanaka’s phenomenological 

one-dimensional model has been further developed by Liang and Rogers [21] and Brinson [22]. 

The model begins with the energy balance (first law of thermodynamics) and the Clausius-

Duhem inequality (another expression of the second law of thermodynamics). Tanaka [23] 

assumes a set of state variables – Green strain, temperature, and the fraction of martensite as an 

internal state variable – to describe material behavior. Using Helmholtz free energy and the 

inequality equation, constitutive equations and the dissipated energy term are derived and 

expressed in rate form using five material constants. This model can show both superelasticity 

and the shape memory effect. Brinson [22] further developed Tanaka and Liang’s models 

thorough a separation of the martensite fraction as a purely temperature-induced martensite and a 

stress-induced martensite. 
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In the micro-mechanical approach, the crystallographic theory of martensitic 

transformation has been widely studied [24-28]. It was found that the recoverable strain in a 

polycrystalline SMA depends on both the crystallographic texture of the polycrystal and the 

change of symmetry during transformation. Crystallographic symmetry is an important factor in 

determining the recoverable strain in polycrystalline shape memory alloys. It has been shown 

through the calculation of recoverable strain in various types of polycrystals that transformations 

with small changes in symmetry, such as cubic to tetragonal, do not show significant amounts of 

recoverable stain. This is because of the small number of accessible variants, which means that 

each grain can be rearranged to transform only in limited strain directions. A cubic to monoclinic 

transformation, such as that of NiTi, shows significant amount of recoverable strains due to high 

symmetry [24].  In addition, Shu and Bhattacharya [25] calculated recoverable strains using the 

inner bound (Taylor bound or Voigt’s assumption), which is obtained by assuming the same 

average strain on each grain, and outer bound (Sachs bound or Reuss’s assumption), which is 

obtained by ignoring compatibility between grains and allowing each grain to deform as it 

prefers. They found that the Taylor bound is conservative in its estimation of the recoverable 

strain of a cubic-monoclinic transformation by direct comparison with experimental results.  

The effect of crystallographic texture on the shape memory effect on Ti-Ni and Cu-Zn-Al 

alloys has also been studied and it is found that the crystallographic texture which develops 

during rolling and drawing is favorable for the large recoverable strains in Ti-Ni. Inoue et al. [27] 

and Miyazaki et al. [28] theoretically calculated the recoverable strain in each grain with lattice 

parameters during martensitic transformation and found that the maximum recoverable strain 
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exists near [011] and [111] poles in a standard stereographic triangle but not at the [100] pole. 

The effect of crystallographic texture on mechanical properties on NiTi will be discussed in 

detail in section 1.5. 

 

1.3 The Effect of Cycling 

Mechanical cycling significantly affects superelastic characteristics of SMAs, such as the 

critical stress required for phase transformation, the accumulated residual strain, and the amount 

of hysteresis. Several factors can influence the behavior of nickel-titanium under cyclic loads, 

including Ni content, heat treatment of the sample prior to testing, temperature and applied strain 

rate at which the test is conducted, and initial microstructure, among others. An example of the 

effect of cycling on experimentally obtained macroscopic stress-strain curves of nickel-titanium 

wire (0.5 mm diameter) are shown in figure 1-8 [29]. The changes of the stress-strain response 

incurred by cyclic loading can be somewhat controlled by processing; for example, a decrease in 

the amount of accumulated residual strain can be achieved by suppressing slip during phase 

transformation through raising the critical stress for slip using an appropriate heat treatment. 

However, fatigue will eventually cause failure even with appropriate heat treatments that prolong 

life.  

Previous research has intensively examined the effect of mechanical cycling on the 

characteristics of superelasticity and stability of these characteristics [4, 29-35]. The general 

effect of cycling is to increase residual strain, and decrease both the critical stress for phase 

transformation and amount of hysteresis. Miyazaki et al. [29] postulated that slip deformation, 
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responsible for the accumulation of residual strain, occurs during phase transformation and 

causes internal stresses that assist in the formation of stress-induced martensite. Thus, the 

stresses required for the nucleation and propagation of martensite during loading significantly 

decrease with cycling, but the stresses required for the nucleation and propagation of austenite 

during unloading remain nominally constant. They observed that the residual strain, stress 

required for phase transformation, and hysteresis stabilize with cycling, and explained this 

stabilization by work hardening due to introduction of dislocations. As part of this work, 

Miyazaki et al. also found that changes in the macroscopic responses incurred by cycling are not 

caused by elastic cycling of the austenite, but rather by cyclic transformation between the 

austenite and martensite. Nominally similar macroscopic stress-strain responses were observed 

for the 1st and 52nd transformation cycles with fifty interim elastic cycles. In addition, optical 

micrographs of the surface of the NiTi specimens were examined during loading and after 

unloading, and increases in the amount of residual martensite near the grain boundaries in the  

 

 

Figure 1-8 Effect of cycling on macroscopic stress-strain curves. [Figure 2b from 29] 
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unloaded samples after cycling were observed. They concluded that retained martensite plates, 

caused by slip deformation in the martensite, assist in the formation of the martensite in 

subsequent cycles and decrease the stress required for phase transformation with cycling [29]. In 

support of this finding, Brinson et al. [4] also observed residual martensite pockets upon 

unloading under optical microscopy and determined that these result in the accumulation of 

residual strain. 

Strnadel et al. [31, 32] found that larger nickel content in Ti-Ni shape memory alloys 

increases the critical stress for slip, resulting in smaller accumulated residual strain.  

Displacement-controlled and load-controlled cycling tests were conducted for specimens varying 

in Ni content at temperatures where the specimens had a constant critical stress for phase 

transformation in the first cycle. Conducting cycling tests with the same transformation stress 

was performed to give objective results independent of nickel content, which affects critical 

phase transformation temperatures and thus changes the magnitude of the stress for phase 

transformation. In order to characterize the stability of the cycling, the residual strain, the critical 

stress for transformation, and the hysteresis were measured. Higher nickel content (through 

suitable heat treatment) caused an increase in the critical stress for slip due to increased 

dislocation activity [31]. If the critical stress for slip is high enough and the material easily 

undergoes cyclic strain hardening at a given test temperature, the residual strain rapidly reduces 

and the stress-strain curves stabilize with cycling. Strnadel et al. concluded that the critical stress 

for slip is the dominant factor in deformation at low cycles but the stress required for phase 

transformation becomes dominant at high cycles. This was investigated by observing a reversal 
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in the amount of accumulated residual strain of various nickel-content alloys at the eighth hard 

loading cycle. 

In addition to nickel content, the ambient test temperature also affects the cyclic response 

of SMAs. In addition to observing the effects of cycling on residual strain and hysteresis 

corresponding with the findings described above, Nemat-Nasser et al. [30] also examined the 

effect of testing temperature on the cyclic compression tests of 4.5mm diameter nickel-titanium 

wire. Compression tests at different ambient temperatures were conducted and it was found that 

a higher (326K) testing temperature results in a more rapid stabilization than a lower (296K) 

testing temperature.  

Stabilization of the macroscopic response of SMAs, known as shakedown, occurs with 

cycling [29-32, 34]. The degree of stability can be characterized by factors such as the amplitude 

of stress required for phase transformation, the amount of accumulated residual strain and the 

amount of hysteresis. One proposed mechanism for cyclic shakedown is the continuous 

accumulation of dislocations around defects, which increases internal stresses and assists with 

the austenite to martensite transformation [29, 31]. Crystallographic orientation and the existence 

and size of (Ti3Ni4) precipitates also affect dislocation activities and consequently the cyclic 

shakedown characteristics of NiTi [29, 31, 35, 36]. The dependence of macroscopic shakedown 

under compressive cyclic loading with regard to crystallographic orientation and Ti3Ni4 

precipitates was examined on specimens of single crystal NiTi containing Ti3Ni4 precipitates of 

various sizes by Gall and Maier [35]. They observed that the crystallographic orientations 

approaching [100] pole of the stereographic triangle have the highest fatigue resistance, i.e.  
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limited change in the associated stress-strain curves with cycling. However, orientations 

approaching the [111] pole have the lowest resistance, i.e. significant changes in the stress-strain 

curves and large accumulation of residual strain with cycling. With respect to Ti3Ni4 precipitates, 

a smaller precipitate size (10nm) resulted in more fatigue resistance than 500 nm precipitates due 

to the absence of dislocation activity during cycling. 

 

1.4 The Effect of Strain Rate on Phase Transformation 

The first order phase transformation that underlies superelasticity in SMAs causes local 

self-heating (self-cooling) when the sample is loaded (unloaded). Local temperature directly 

affects the phase transformation and material behavior as discussed in section 1.2 (for more 

examples please see [37-42] and the references contained therein). Because the amount of 

accumulated latent heat varies with applied strain rate, the mechanical response of SMAs, 

including the stresses required for transformation and the amount of accumulated residual strain, 

is significantly affected. For example, faster applied strain rates cause an ineffective escape of 

latent heat, thus causing a corresponding increase in the global stresses required for phase 

transformation at local hot locations in the specimen. The general effect of strain rate on the 

macroscopic stress-strain curve is shown in figure 1-9 [40]. For example, the stress required for 

martensite nucleation, the amount of dissipated energy, and the residual strain increase at higher 

strain rates, but the stress for reverse phase transformation and the recoverable strain energy 

decreases. These changes are caused by the trapped latent heat at higher strain rates 

( -3 -1ε  1.667  10  s≥ × ). However, the material properties such as stress for phase transformation, 
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dissipated work, and recoverable strain energy are not dependent on strain rates of 

-4 -1ε  3.333  10  s≤ ×  [40]. 

 

 

The Clausius-Clapeyron relation is a well-known relation that uses the equivalence of 

Gibbs free energy in the quasi-static condition to define the relationship between phase 

transformation temperature and stress. Designating the austenite and martensite phases by α and 

β, respectively, the characteristic potential is defined as:  

U TS fLφ = − −    (Eqn. 1) 

where U is internal energy [J], T is temperature [K], S is entropy [J/K], f is applied load [N] and 

L is the length of the gage section [m]. After applying the 1st and 2nd thermodynamic laws, the 

derivative form of the characteristic potential is expressed by: 

Figure 1-9 Effect of strain rate on the stress-strain curves at T = 353 K. [Figure 1b from 40] 
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d SdT Ldfφ = − −    (Eqn. 2) 

The Clausius-Clapeyron relation assumes that the free energies of the α and β phases are 

the same on the phase boundary in order to determine the slope of the phase boundary between 

the phases. The two-phase coexistence line is defined by: 

α βφ φ=    (Eqn. 3) 

where ϕα and ϕβ are the characteristic potentials of the α and β phases. Equivalently, 

d dα βφ φ=  along * *( , )f T    (Eqn. 4) 

where f* is the applied load and T* is specimen temperature at the location of phase 

transformation. Combining equations (2) and (4) yields, 

*

*

( ) 0
( )

df S S
dT L L

β α

β α

−
= − >

−
   (Eqn. 5) 

where (Sβ - Sα) < 0 and (Lβ - Lα) > 0. Because the entropy of the α phase is higher than β phase 

(austenite, the α phase, is stable at high temperature and martensite, the β phase, is stable at low 

temperature) and the martensite (monoclinic) is longer than the austenite phase (B2 cubic), the 

result of equation (5) is that the stress for phase transformation increases as the temperature of 

transformation increases. The Clausius-Clapeyron relation is only valid under quasi-static 

conditions and gives insight into the relation between phase transformation stress and 
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temperature. The stress required for phase transformation increases as temperature increases as 

seen in the Clausius-Clapeyron relation: 
*

* 0d
dT
σ

>  [37, 38, 40, 43] at ~6.5 MPa/K [6, 38]. 

The stress required for nucleation of the martensite phase is affected by both strain rate 

and cycling. Under quasi-static loading, there is a distinct constant stress plateau during phase 

transformation. However, at faster strain rates, the amplitude of stress plateau is not constant but 

continuously increases during forward phase transformation because of trapped latent heat [37, 

40]. Tobushi et al. [40] also found that there exist distinct transformation nucleation peaks at the 

onset of the stress plateau at slow strain rates, and hypothesized that the peaks is due to sufficient 

time by slow strain rates that allow a stress relaxation. However, the peaks diminish with cycling 

because the accumulation of martensite makes it easier to transform in cycling. Nemat-Nasser 

and Guo [30] found that, in experiments performed at extremely fast strain rates (4200 s-1) with 

Split Hopkinson Bars, the stress plateau disappeared and the macroscopic curve appeared similar 

to ordinary austenite metal. They hypothesized that the phase transformation changes from a 

diffusionless and shear-like mechanism to a dislocation-based slip mechanism. 

 

1.5 The Effect of Texture 

General processes to produce SMA sheets and wires, including cold-rolling and cold 

drawing followed by heat treatment, induce preferred microstructural orientations. The 

crystallographic texture significantly affects superelastic properties, such as the stress required 

for phase transformation, and the amount of recoverable and residual strain. These are important 



22 
 
 

factors that need to be considered for the proper use of NiTi in many applications. In previous 

research, the transformation stress and strain were examined by experiments using SMA samples 

cut at different angle along to the rolling direction in flat sheet specimens. It was observed that 

samples cut along the rolling direction exhibited the largest transformation strains and those cut 

along the transverse direction exhibited the largest transformation stresses [1, 44, 45]. One 

example of the effect of crystallographic texture on the macroscopic stress-strain response is 

shown in figure 1-10 [46]. In these experiments by Gao et al. [46], an angular dependence to the 

rolling direction of the Young’s modulus of austenite, transformation stress from austenite to 

martensite, and superelastic transformation strain was observed. Maximum values of austenite 

Young’s modulus and the transformation stress were found at an angle of 70° to the rolling 

direction and the maximum transformation strain was measured at an angle of 30° to the rolling 

direction. Similarly, Zhao et al. [47] examined a TiNiCu alloy under constant load thermal 

cycling to see how the crystallographic texture plays a role in determining the amount of 

transformation strain. They observed that the transformation strain remains constant upon 60° to 

the rolling direction, then rapidly decreases with the orientation towards the transverse direction. 

Similarly, significant angular dependence of transformation strain in the shape memory alloys 

has been shown in other research [44, 45, 48]. 
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Bhattacharya et al. [24] theoretically explained that a greater change in crystallographic 

symmetry during transformation shows greater recoverable and residual strains in polycrystalline 

SMAs due to a greater number of rearranging martensite variants. Shu et al. [25] found that the 

texture that develops in NiTi during rolling, extrusion, and drawing is extremely favorable for 

Figure 1-10 Effect of texture on the stress-strain curve. [Figure 1 from 46] 
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large recoverable strains, whereas NiTi thin films with an unfavorable {110}  or random 

sputtering texture recover comparatively small strains. Mulder et al. [49] calculated the angular 

dependence of Schmid factor for slip on the M(001) [100]  system for the four possible martensite 

phases, which can be caused by P{110} <110>  system of the austenite, and found that the Schmid 

factor for the transverse direction was close to zero indicating less slip and residual strain. Chang 

et al. [50] experimentally measured the angular dependence of residual strains and verified the 

postulate by Mulder et al. The crystallographic texture also results in an asymmetry of tension 

and compression response of SMAs and has been examined both experimentally and 

theoretically [51-53]. A model for polycrystalline SMAs applied an approach of constant stress 

average was developed and showed how the crystallographic orientation affects macroscopic 

behaviors, such as asymmetric response between tension and compression [51]. 

The crystallographic texture, which strongly impacts the mechanical properties of SMAs, 

is itself affected by heat treatments and cold rolling reduction as well as how the specimen is 

produced, such as by drawing into tubes or rolling into plates. The texture of as-drawn NiTi 

tubes and rolled plates under various heat treatment conditions were measured and it was found 

that the texture of both tube and plate specimens, followed by annealing, significantly changed 

[54]. For NiTi plate, the texture of as-rolled plate was {111} <112>  and changed to {435} < >312  

after annealing because of grain growth and recrystallization. The effect of cold-rolling reduction 

and annealing temperature on crystallographic texture, and the angular dependence of 

transformation strain on NiTi rolled thin plates and sputter-deposited thin films were also 

examined by Miyazaki et al. [28]. They theoretically calculated the transformation strain in a 



25 
 
 

single grain using lattice parameters and the contour lines of the same transformation strain was 

expressed on a standard stereographic triangle of [001]-[011]-[ 111] . In the results on the standard 

stereographic triangle, the transformation tensile strains near [ 111]  and [011]  show high strains 

of 9.9% and 8.4%, respectively, but the transformation strain near [001]  has smallest strain of 

3.0%. The cold-rolling reduction also affects the degree of texture. Though the largest 

transformation strain commonly appears from 0° to 35° from the rolling direction for all cold-

rolling reduction, the degree of anisotropy on the transformation strain decreases as the cold-

rolling reduction increases from 0% to 70%. They explained both the dislocation generation and 

texture distribution cause the change of the transformation strain by loading direction [28]. The 

sputter-deposited thin films were examined and they did not show angular dependence on the 

transformation strain because the thin film has a strong {110}  pole normal to the specimen 

surface. Inoue et al. [27] showed similar calculated results of the transformation strain using 

lattice constants and compared them with experimental results. The gap between theoretical and 

experimental results were explained by the increasing number of grain boundaries as the angle 

approaches 90° to the rolling direction. This was verified by observation of the number of grain 

boundaries per unit length under the optical microscope. It was hypothesized that the constraints 

becomes more pronounced as the number of grain boundaries increased and the constraints cause 

a deviation of the recoverable strain between the theoretical and experimental results. 
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1.6 Summary 

In this chapter, the unique characteristics of SMAs, including their shape memory and 

superelastic effects, which are both based on a solid-to-solid phase transformation between 

austenite and martensite, were demonstrated with crucial applications. Next, a background 

discussion of the effects of cycling, applied strain rate, and crystallographic orientation on phase 

transformation, including thermo-mechanical effects such as the stress required for 

transformation and residual strain, was addressed in sections 1.3 to 1.5. In spite of this previous 

research, much is still unknown about the complex local-thermo mechanical interactions that 

underlie this transformation. Because the phase transformation causes large localized 

deformations that release/absorb latent heat, the measurement of simultaneous full-field strain 

and temperature maps by DIC and infrared thermography are utilized here to examine the spatial 

distribution of transformation. This experimental approach is described in chapter 2. Through 

application of this approach, transformation characteristics including cycle-to-cycle strain 

similarity, phase front velocity, martensite volume fraction and the relation between local strain 

and temperature are investigated. In chapter 3, the effect of cycling on local deformation fields, 

including strain similarity in a single cycle and cycle-to-cycle, will be discussed. In chapter 4, the 

effect of crystallographic orientation on phase transformation characteristics, such as stress for 

phase transformation, number of localized deformation bands, and cycle-to-cycle strain 

similarity, are examined. In chapter 5, the effect of applied strain rate on the phase 

transformation and its relationship to the accumulation of latent heat is also discussed. Finally, 

conclusions and possibilities for future work are described in chapter 6.  
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Chapter 2 

Experimental Setup 

This chapter describes the determination of transition temperatures in the SMA Nickel-

Titanium by differential scanning calorimetry (DSC), the introduction of digital image 

correlation (DIC) and infrared thermography in the study of phase transformation, and the 

preparation of test specimens. Technical tips including sensitive calibration of 3D-DIC, proper 

setup procedure for optical equipment, and sample preparation with speckle patterning are 

explained in detail. Finally, an overview of the experimental setup is described. 

2.1 Differential Scanning Calorimetry 

Measuring critical transformation temperatures is an important step in the 

characterization of SMAs.  The material exhibits hysteretic response in stress-free exothermic 

and endothermic process with several critical transformation temperatures including the austenite 

start temperature (As) and the austenite finish temperature (Af) during heating, and the martensite 

start temperature (Ms) and the martensite finish temperature (Mf) during cooling. In the 

experiments presented here, the austenite finish temperature (Af) was below room temperature, 

thus ensuring the specimen was austenite at room temperature and exhibited superelasticity. 

Differential scanning calorimetry (DSC) is an effective method for obtaining the transformation
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temperatures and the latent heats required for transformation. A model TA-Q200 calorimeter was 

used to obtain the austenite start and finish temperatures, As and Af. Tests using approximately 

15 to 35mg of NiTi in one pan and an empty sample pan were both placed into the DSC to scan 

the heat flow of the specimen pan compared to the empty pan under a constant temperature rate. 

An intermediate temperature rate of 10°C/min was selected because higher rates can have 

thermal lag but small rates can show indistinct enthalphy peaks [1]. Consistent results were 

obtained with the exception of indistinct enthalphy peaks observed at a very low temperature 

range, around -70°C to -80°C, due to limitations with the DSC. This technical limitation of the 

DSC resulted in inaccurate martensite start (Ms) and finish (Mf) temperatures. Thus, for an 

accurate reading of these temperatures, the same DSC procedure was followed by TA 

Instruments and the result is shown in figure 2-1. 

 Figure 2-1 The critical transition temperatures by differential scanning calorimetry (DSC). 
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2.2 Digital Image Correlation 

Digital image correlation (DIC) is an in-situ, non-contact optical method used to measure 

the full-field displacements on the surface of a specimen by tracking a non-uniform, random, 

isotropic, high contrast pattern on the sample surface. Because the DIC technique is robust, 

scalable, and accurate, it has emerged as a leading technique for quantifying heterogeneous strain 

fields on the surface of solid structures. One can choose between two-dimensional DIC, which 

uses one camera and maps deformations of flat materials deformed in-plane, and three-

dimensional DIC which uses two cameras and can map out of plane displacements. For a 

detailed description of the fundamental concepts, computational algorithms, technical skills and 

useful applications of DIC, please refer to references [2-5]. In these experiments, commercial 

software (Vic-Snap from Correlated Solutions) was used to synchronize the two charge-coupled 

devices (CCDs) and take images, and commercial DIC software (Vic-3D from Correlated 

Solutions) was used to analyze the deformed images. Note that other software can be used in 

place of Vic-Snap for image capture, but the image format should be uncompressed, such as 

bitmap or tiff. 

3D-DIC is an ideal method for measuring full-field, quantitative maps of surface strains 

incurred by stress-induced martensite phase transformation because of the large difference in 

local strains between the B2 cubic austenite phase and the monoclinic martensite phase. Two 

five-megapixel gray scale CCD (model Point Grey GRAS-50S5C) cameras were used to capture 

images of the specimens during testing. The setup of the CCDs with respect to the specimen and 

a pre-test calibration are important in order to obtain high quality results in a 3D-DIC analysis. 

Several factors affect the quality of the specimen images and the resulting strain analysis, 
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including the stereo angle between the two CCDs, specimen illumination, CCD depth-of-field 

(DOF), and CCD field-of-view (FOV). These factors should be carefully considered during test 

setup. The experimental setup procedure used here is described below, where general 

photography techniques were used. 

1. Two CCD cameras were positioned on an optical table in front of an Instron (model 5585) 

load frame. The optical table prevents vibration that would cause rigid body motion in the 

images and increase correlation errors. Thus, using the optical table is recommended in 

the DIC experiments rather than placing the cameras directly on a floor-mounted tripod. 

2. The position of the CCDs was determined by the CCD field-of-view (FOV) and lens 

choice. The CCD field of view was chosen in accordance with general DIC rules wherein 

it is recommended that each speckle should occupy nominally 3 x 3 image pixels and a 

subset should contain at least 3 x 3 speckles [2].  The maximum displacement of the 

specimen during testing should be considered while setting the field of view. During 

testing, the bottom grip of the load frame was fixed and the upper grip moved vertically 

upward; thus, the bottom of the specimen was aligned at the bottom of the image and the 

top of the image had nominally 5mm of empty space to capture the whole specimen at the 

maximum elongation. Additionally, since grip slippage can be an issue for small or thin 

specimens and can be detected by the sequence of images, it is helpful to set the FOV to 

contain both the top and bottom grips, if the resolution of the FOV is sufficient. Lenses 

and the distance between the cameras and the specimen were chosen after choosing both 

the resolution and the FOV. The stereo angle between two cameras, which affects the 

result of the calibration between the two cameras, was set to approximately 30°.  
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3. Obtaining a clear focus is the next step to obtain high quality images for 3D-DIC, and 

this is closely related to a depth-of-field (DOF), aperture, exposure time, and illumination. 

Because the procedures for obtaining a clear focus follow standard photography 

techniques, the specifics are not discussed here. However, the basic procedure is to fully 

open the aperture for centering the DOF, to find a clear focus, and to close back down the 

aperture before enlarging to the test DOF. The DOF increases as the aperture closes. 

However, an overly closed aperture (in these tests, nominally below f/8) produces blurred 

images and poor correlations. Image blurriness can be exacerbated by small CCD pixel 

size, particularly when the Airy disc (caused by light diffraction through the aperture) is 

larger than a pixel. Closing the aperture also requires a larger amount of light, but high 

intensity light can increase the specimen temperature and cause changes in mechanical 

behavior. This is particularly true in the case of NiTi, where increased temperatures can 

cause changes in factors such as the critical stress for phase transformation and the 

amount of recoverable strain. In addition, the exposure time changes the required amount 

of light. Since the fastest globally applied strain rate in our experiments was 10-2 s-1, a 

shorter exposure time was needed to avoid image blur and thus more light was required. 

The lighting source should be carefully chosen considering the specimen temperature and 

required illumination under the fixed aperture and exposure time. In these experiments, 

two fluorescent light diffuser boxes wrapped with translucent plastic were placed behind 

the cameras to produce a diffuse and flat light, and flexible fiber optic lights with 

adjustable light intensity were positioned above the CCDs with their light positioned 

directly onto to the specimen. Care should be taken so that the cameras are not disturbed 

and all equipment around the cameras should be controlled. Cables should be securely 
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tied down. If the cameras are bumped or otherwise moved, they need to be reset 

following the procedure outlined above and considering all conditions including the FOV, 

the DOF, illumination, aperture, the exposure time and the focus. 

4. A calibration procedure is necessary to precisely obtain the relative orientation of two 

cameras prior to testing and post-test image correlation. Generally, the calibration 

procedure is performed by taking images of a known calibration grid (located in the 

position of the test specimen) in different positions and orientations. The calibration grid 

size should be carefully selected and it is recommended that all dots in the grid are visible 

in the FOV. However, using too small of a grid may lead to a failed calibration. The 

calibration grid and adequate size of the grid are shown in figure 2-2. At least four 

calibration images are required, but a greater number will reduce measurement 

uncertainty and better quantify the effect of lens distortions. More details regarding the 

calibration procedure are explained in commercial testing guides [6]. In these 

experiments, the specimen was removed from the grips and the calibration grid (model 

P/N AIG 045466 or P/N AIG 052985, designed to be backlit by cold light illumination) 

was attached to the top grip. A white flat sheet was placed behind the grid and the fiber 

optic light was used to make an even backlight for the calibration grid. Nominally 35 - 40 

different pairs of calibration images were taken with six degrees of freedom using a three 

axis gimble, two micrometer stages and movement of the top grip. Since the calibration 

result is sensitive to certain conditions, including the stereo angle between the cameras, 

the degree of even backlight, and the tilting angle of the calibration grid, obtaining a good 

calibration result can be labor-intensive. However, the calibration of the cameras is a 

critically important step in obtaining accurate strain fields, and it is strongly  
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recommended to spend significant effort in obtaining a high quality calibration. If at this 

point the CCDs are moved or bumped, even slightly, the whole calibration procedure 

needs to be re-performed prior to testing. 

5. Performing a trial test with the specimen is strongly recommended before the start of 

testing. The trial test includes checking parameters of the DIC setup like exposure time, 

frame rate, and the amount of light, and also includes checking factors that impact image 

quality, such as the FOV, image focus, and DIC tracking pattern speckle size and  

distribution. Analyzing a select number of trial images of a rigid body test or a static test 

can provide the quality of images and the amount of error. Since a significant source of 

error can be due to poor calibration of the cameras, the calibration procedure should be 

performed again until the error value becomes satisfactorily low. 

Figure 2-2 (a) Vic-3D Calibration Grid, (b) correct selection of the calibration grid in the 
field-of-view [6]. 

(a) (b) 
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2. 3 Infrared Imaging 

Nitinol is inherently sensitive to temperature. The stress-induced phase transformation 

between austenite and martensite is a first order transformation that releases (absorbs) latent heat 

upon loading (unloading). It is well known that the accumulation of this latent heat can 

significantly impact the mechanical properties of Nitinol. In order to quantify the accumulated 

latent heat in the specimen during stress-induced phase transformation, infrared imaging was 

utilized. An emissivity of 0.91 as calibrated by a K-type thermocouple was recorded. An infrared 

camera (model Inframetrics ThemaCam SC 1000) was placed between the two CCDs used for 

DIC, and a bottle containing ice water was placed behind the specimen in the FOV of the 

infrared image to increase contrast. While the IR camera was positioned, special care was 

necessary not to disturb the calibrated DIC setup and for the IR camera not to touch any CCDs 

because of the tendency of the IR camera to vibrate during testing. It was difficult to measure 

high-resolution images from the CCDs and IR camera simultaneously because the position of the 

IR camera with the best FOV would interfere with the position of the CCDs that results in the 

best FOV. The decision was made to place the CCDs in the optimal position, and then place the 

IR camera in the best possible position that remained open.  

 

2.4 Specimen Preparation 

 
A flat polycrystalline sheet of Nitinol with an alloy composition of 55 wt% nickel and 45 

wt% titanium was obtained from Nitinol Devices and Components (NDC), Johnson and Johnson. 

The material was cold-rolled by the supplier into a continuous flat strip nominally 63.5 x 3048 

mm long and 254 µm thick. The transition temperature (Af = 1.293 °C) was determined as shown 
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in section 2.1 and the specimen exhibited superelasticity at room temperature. Dog-bone shaped 

tensile specimens were fabricated using electric discharge machining (EDM) at three different 

directions to the rolling direction of the flat sheet: 0º (RD), 45º, and 90º (TD). Specimen 

dimensions followed ASTM standard E8 with a thickness of 0.254 mm, width of 3.125 mm and 

gage length of 12.5 mm as shown in figure 2-3. Optical microscopy was conducted on an 

Olympus SC30 stereo-microscope with an MPlanFL N 20x lens in order to examine the surface 

of the as-received textured samples as shown in figure 2-4. 

 
 

 
 

(a) (b) (c) 

Figure 2-4 Specimen geometry followed ASTM standard E8 

Figure 2-3 Optical micrographs of the textured surfaces at (a) RD, (b) 45°, and (c) TD to the 
rolling direction of the as-received sheet. 
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The specimen was speckled with white and black paints using a spray airbrush (model 

Iwata Custom Micron B) in order to satisfy the patterning condition for DIC, which is randomly 

oriented, uniformly dispersed, and high contrast. First, the specimen was painted with a 

background coat of Golden Airbrush Titanium White (model #8380). A thin, uniform white 

background is recommended for high contrast, but it is recommended to spray as thin a uniform 

background as possible in order to avoid cracking in the background coat during cyclic loading. 

The white-coated specimen was then painted with Golden Airbrush Carbon Black (model #8040) 

to produce a DIC pattern on the surface of the specimen. Useful tips for producing a quality 

airbrushed DIC pattern are as follows:  

1. The spray airbrush was held approximately 50 – 100 mm away from the specimen and 

the paint flow was held continuous during a scan across the specimen without stopping in 

order to make uniformly dispersed pattern. 

2. It was found that the smallest speckle size was produced by pulling the airbrush needle 

back as little as possible to allow paint to flow at a smaller rate for a longer period of time. 

3. The air pressure setting affects the speckle size and the rate and continuity of paint flow. 

High air pressure is recommended for the smallest speckle size and uniformly dispersed 

pattern. 

4. The recommended size of speckles for DIC is approximately 3 x 3 camera pixels as 

discussed in section 2.2 and Sutton et al. [2]. However, controlling the size of speckles is 

difficult. Thus, producing speckles with sizes ‘in the ballpark’ and then setting the FOV 

of the DIC cameras to follow the 3 x 3 rules is recommended. 
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After completing specimen preparation and CCD setup, the quality of image should be 

confirmed by analyzing trial experiments, including static and rigid body tests. One method to 

measure pattern quality is grey scale intensity histograms, where a good pattern should be 

nominally Gaussian in nature. An example of a patterned specimen, a histogram of grey scale 

intensity in the gage section, and a Gaussian fit are shown in figure 2-5. The spatial resolution in 

this case was 9 µm/pixel. 

 
 
 
 
 

(a) 

(b) 

(c) 

Figure 2-5 (a) Dog-bone shaped Nitinol thin sheet specimen and speckle pattern, (b) a 
histogram of grayscale intensity, and (c) a curve fitting of the grayscale with Gaussian 
distribution. 
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2.5 Overview of Experimental Setup 

The experimental setup is discussed below. Note that the setup as described in this 

section is general and equivalent setups were used in the tests on thin sheet Nitinol specimens 

described in chapters 3-5. 

A LabVIEW data acquisition (DAQ) system was used to collect all data, including 

elapsed time, load, grip displacement, CCD image capture time, and IR image capture time. 

Because it is important to synchronize all data from various equipment at one time domain, 

trigger signals from CCDs and IR camera were also recorded in the LabVIEW data acquisition 

system. A schematic of all equipment and connection between them is shown in figure 2-6 and 

the actual experimental setup is shown in figure 2-7.  A 200.17-kN Instron (model Instron 5585) 

uniaxial load frame with mechanical wedge grips (model 2736-004, 100kN capacity) was used to 

perform displacement-controlled cycling tests up to N = 50. Tests were performed under a ramp 

profile at three globally prescribed (based on the total free length between the grips) strain rates 

( ) for each of the RD, 45º, and TD textures. Because these tests were 

performed under displacement control (hard cycling), the specimen did undergo a small amount 

of compression at the end of each cycle as residual strain accumulated. The 1st, 2nd, 5th, 10th, 

25th, and 50th cycles were simultaneously recorded by the two CCDs and the IR camera to 

measure the full-field maps of local strains and temperature. The LabVIEW data acquisition 

system was used to collect the load (measured by a 453.6 kg load cell), grip displacement and 

time data for cycles N = 1, 2, 5, 10, 25, and 50. The CCDs (model Point Grey GRAS-50S5C) 

each had a 2048 x 2448 pixel field of view and pixel size (on the sensor) of 3.45μm. Camera 

positioning resulted in a stereo angle between the cameras of approximately 32° and a spatial  

-4 -3 -2 -1
gε  = 10  ,10 , and 10  s
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resolution of 9 μm/pixel. The CCDs capture approximately 300 images per cycle and were 

operated by a function generator with adequate set of frequency depends on the strain rates. Note 

that approximately 110 images per cycle were captured on the fast strain rate, , 

because of the limit of transferring frame rate on Vic-Snap software. The range of exposure time 

was 23.2 – 50 ms and the aperture size (f-stop) was f/8. The full-field strain maps were generated 

using commercial DIC software [2, 4, 5] with a subset size of 17 and a step size of 1 using the 

default cross correlation function in the software. For strain calculations, a Gaussian filter with a 

size of 15 was used. In these experiments, the Biot strain was calculated in order to have work 

conjugate measure. Biot strain is defined by , where U is the right stretch tensor from 

the polar decomposition of the deformation gradient , with rigid rotation R and identity 

tensor I. The infrared camera (model Inframetrics ThermaCam SC 1000) was placed between the 

CCDs to obtain full-field temperature maps, which were generated with commercial Dynamite 

IR software (Themoteknix Systems Ltd.). In chapter 5, additional testing was conducted at a  

-2 -1
gε  = 10  s

BE U I= −

F R U= ⋅

Figure 2-6 Schematic of equipment and connections. 
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strain rate of   using a hold time of 1800 seconds between each cycle. For these 

“with-hold” tests, which were conducted on specimens with all three crystallographic textures 

described above, used an equivalent experimental setup excepting the use of a  different uniaxial 

load frame (MTS model 359) and IR camera (FLIR model SC5000). 

The static and rigid body motion tests were performed to measure a static and translation 

error in 3D-DIC measurements after completing setup. The translation error in DIC 

-2 -1
gε  = 10  s

Figure 2-7 Experimental setup. The infrared camera is placed between two optical CCDs. The 
fiber optic light and the fluorescent light diffuser boxes provide uniform and diffuse light that 
enables a fast CCD frame rate and minimal blurring. 
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measurements fell within the error in the load frame applied translation (< 0.02 mm) for a range 

of 0 – 2 mm, and static error was approximately 0.025% as shown in figure 2-8.  

 

  

  

(a) (b) 

Figure 2-8 (a) Static and (b) rigid body motion tests in order to measure a static and translation 
error in 3D-DIC measurements, respectively. V is the displacement of the y-axis. 
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Chapter 3 

Martensite Strain Similarity in Nickel-Titanium Under 

Mechanical Cycling 

This chapter describes an experimental study of stress-induced martensitic phase 

transformation in the SMA nickel-titanium. The rich local thermo-mechanical interactions that 

underlie transformation are examined using three-dimensional Digital Image Correlation (strain 

fields) and infrared imaging (thermal fields). We quantify the complex local interactions between 

released/absorbed latent heat and the extent of transformation, and explore the characteristics of 

the phase fronts and the evolution of martensitic volume fraction. We also quantify a strong 

strain similarity in the martensite that forms in the wake of the phase transformation front and 

persists from cycle to cycle. The accommodated strain in the martensite will remain nearly 

constant during loading as the existing phase front propagates. There also exists a remarkable 

amount of strain similarity in the martensite that persists from cycle to cycle, indicating that the 

local elastic stress fields in the martensite are driven by a dislocation structure and martensitic 

nuclei that largely stabilize during the first loading cycle. 
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3.1. Characteristics of Phase Fronts  

The macroscopic stress-strain curve for the first cycle of an as-received specimen under a 

displacement-controlled strain rate of -4 -1
gε  = 10  s , along with corresponding strain and thermal 

images at select points, is shown in figure 3-1. In this chapter, full-field maps of surface strain 

and temperature are shown on the length of a reduced section (15 mm) that is centered on and 

slightly larger than the gage section (12.5 mm). For reference, specimen geometry is shown in 

figure 2-3. Mapping across the length of reduced section shows, in addition to the response in the 

gage section, the completion of transformation near fillet regions that is reflected in the 

macroscopic response. The length of reduced section was mapped in order to have a larger 

visible strain region and track the completion of transformation. Each data point on the stress-

strain curve in figure 3-1 represents an average of approximately 600,000 points on the full-field 

Lagrangian strain map across the gage section of the specimen at a point in time ( AVG
YYε ), plotted 

against the global engineering stress applied to the specimen as measured by the load cell at the 

same moment in time. Images of the specimen were taken after each displacement increment, 

and the strains in the gage section along the axis of applied load ( yyε ) were computed by digital 

image correlation. DIC images were triggered and captured directly into LabVIEW with the 

corresponding load data.  

The specimen is macroscopically austenitic at the beginning of the test, behaving in a 

linear elastic manner with an approximate modulus of 62.3 GPa. The behavior begins to deviate 

from linearity at AVG
YYε   0.007≈  for cycle 1. As loading continues, the macroscopic 

transformation from austenite to stress-induced martensite begins and the curve levels out into a 
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stress plateau. During this transition regime, a localized band of high strain indicating martensitic 

transformation forms at the top of the specimen and propagates through the gage section. The 

nucleation and propagation of the martensitic band can be seen in figure 3-1. The band gradually 

propagates through the entire gage length of the test sample, and the stress begins to increase 

around a macroscopic strain of AVG
YYε   0.063≈ . Following this, the behavior once again becomes 

linear with a modulus of approximately 20.5 GPa as the martensite is loaded. This value agrees 

with prior experimental and numerical investigations into the elastic modulus of stress-induced 

martensite, which found a range of 14-36 GPa depending on a variety of factors including 

applied strain rate and temperature [1-4]. The unloading follows a similar pattern, with an almost 

linear unloading with a modulus of nominally 35.8 GPa, followed by a departure from linearity 

at a strain of nominally AVG
YYε   0.062≈ . The stress plateau on unloading is indicative of the 

reverse transformation from martensite back to austenite, and the localized band accompanying 

this transformation can be seen through DIC and IR imaging in figure 3-1. 

The experimental data in figure 3-1 shows the local self-heating that occurs with the 

nucleation of the martensitic band, and the relatively quick diffusion of this heat as the band 

propagates. The initial band nucleation causes a local heat rise of approximately 1.6°C compared 

with the average temperature in the specimen. Similarly, the final coalescence of the phase front 

upon unloading causes an approximate 1°C drop in temperature compared with the average 

temperature in the specimen. In figure 3-2, the local self-heating is examined by considering the 

simultaneous strain and thermal data down the centerline of the sample. Because there is inherent 

error in temporally matching the DIC data with the IR data, two IR profiles are shown that are 

both within this error range. In figure 3-2a, the strain and thermal data down the centerline of the  



51 
 

 

 

 

 

 

sample are shown just prior to the formation of a localized martensitic band. There is a small 

amount of local heating on the side of the specimen where the front will form, but overall the 

heat is fairly uniform. In figure 3-2b, the load on the specimen has increased, and the martensitic 

front has nucleated and propagated through approximately a third of the gage section. In figure 

Figure 3-1 Stress-strain curve in the gage section of an as-received nickel-titanium specimen 
loaded at -4 -1

gε  = 10  s  under displacement control in a ramp profile. The applied stress is 

obtained from the load cell and the strain along the axis of the specimen, AVG
YYε , is obtained by 

averaging approximately 600,000 strain values in each DIC image. 
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3-2c, the load on the specimen has further increased and the martensitic phase front has 

propagated through approximately two-thirds of the gage section. In figure 3-2d, the specimen 

has just become fully martensite. In these measurements, one can see that the local temperature 

maximum slightly leads the martensitic phase front, whose position is clearly visible through the 

DIC measurements. The pixel resolution of the strain measurements is approximately 9 µm, and 

each pixel contains hundreds of grains. The IR camera has a sensitivity of <0.07°C and an 

accuracy of 1.2°C. Note that the accuracy of the IR camera, 1.2 °C, refers to the difference in the 

recorded IR temperature as compared with the calibration thermo-couple, whereas the camera 

sensitivity (0.07 °C) refers to the resolution in the temperature field as measured by the IR 

camera. IR images were generated using the Dynamite IR program and analyzed with Matlab. 

In figure 3-2e, the temperature at a fixed point in the center of the gage section of the 

specimen is monitored as the stress-induced martensitic phase front passes through that location. 

The discretization of the IR measurements in figure 3-2e is 0.3°C, due to interpolation in the 

dynamite IR program and the value of 60°C set for the temperature span range of the camera. 

After the phase front has passed through the center point, the temperature at this point slowly 

decreases as shown in figure 3-2e. The plateaus in the decreasing temperature may be due to the 

presence of a small martensitic off-shoot branch from the primary phase front, which gradually 

coalesces; this branch can be seen in the DIC images in figure 3-2e. 

Let us take a closer look at the propagation of the stress-induced martensitic phase front 

in the as-received specimen. As shown in figure 3-3, there exist small branches that nucleate off 

of the larger martensitic band as the phase front propagates. The nucleation/coalescence of each 

branch corresponds directly to a small drop/rise in the macroscopic stress-strain curve. For  



53 
 

 

 

 

(e) 

Figure 3-2 (a-d) show the nucleation and propagation of a stress-induced martensitic phase in the 
gage section of the sample, and corresponding IR data. Data in (a)-(d) is plotted on a line down the 
center of the specimen. (e) shows thermal data at a fixed point in the center of the specimen as the 
stress-induced martensitic phase front passes through that location. The lengths (in mm) that are 
indicated in the middle region of figure 3-2(e) are the distances from the fixed point to the phase 
interface. Both data sets are from the experimental test described in figure 3-1. 
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example, point 1 in figure 3-3 corresponds to the nucleation of the primary martensitic band; this 

drop in stress at nucleation has been widely observed. The primary martensitic band propagates 

as a single front until point 2, where a small branch occurs on the top right of the front. At point 

3 in figure 3-3, the phase front begins to branch out and continues to branch out throughout the 

remainder of the macroscopic martensitic transformation; this is evident as ‘bumpiness’ in the 

macroscopic stress plateau. Branches nucleate at points 3-17 in figure 3-3, and each small branch 

from the primary transformation front has a corresponding stress drop in the macroscopic stress-

strain curve. Similarly, upon unloading, rises in stress correspond to a coalescence of two smaller 

branches (as shown in figure 3-3, images 20 to 21). It is evident that the single large martensitic 

phase front propagates through the gage section by the formation of small branches off of the 

primary martensitic phase front, and that the nucleation and coalescence of these small branches 

directly affect the macroscopic stress-strain behavior. 

The velocity of the phase transformation during loading is shown in figure 3-4a. Because 

the transformation front branches while it is propagating, it is not appropriate in this case to track 

the velocity perpendicular to the angled front, because there is no clearly delineated line that 

remains stable throughout the entire transformation. Instead, the velocity is calculated by 

tracking the position of the phase front on a line down the center of the gage section of the 

sample, as shown in the schematic in figure 3-4a. Thus, the peaks in the velocity data correspond 

to the nucleation of small branches off of the primary phase front. The front initially propagates 

as a single line angled approximately 53 degrees to the longitudinal axis of the sample. Small 

branches then nucleate off of the primary front, changing the phase front from an angled straight 

line into an inverted “v” shape, as shown in the DIC-calculated images of full-field strain in 

figure 3-4a. When a small branch nucleates off the primary front, it can shift the symmetry of  
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Figure 3-3 Detailed images of stress-induced martensitic transformation during the uniaxial tension test described in figures 3-
1 and 3-2. Small branches of martensite appear off of the primary phase front; the nucleation/coalescence of these branches 
correlates directly with a small rise/drop in the stress. The nucleation of many of these branches in the second half of the 
plateau cause the latter half of the stress plateau to appear bumpy. 
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this inverted “v,” leading to an apparent jump in velocity. In order to make this clear, two images 

of the phase front used to calculate the velocity are shown for various points in the graph. In 

figure 3-4b, the velocity of the phase front upon unloading is shown. Again, due to the 

appearance of small martensitic branches off of the primary phase front, the velocity is 

calculated by tracking the position of the phase front on a line down the center of the gage 

section of the sample, as shown in the schematic in figure 3-4b. 

However, from a strain of nominally AVG
YYε  = 0.005 - 0.035 upon loading and unloading, 

the band propagates as a single phase front with no branching. In figure 3-4c, this characteristic 

is exploited to calculate the velocity perpendicular to the angled phase front in the strain range 

where it is clearly delineated (no branching). Figure 3-4c shows the sum of the velocities of both 

sides of the martensitic phase front upon loading and unloading in the strain range where there 

exists a single, clearly delineated phase front. Although the top and the bottom of a single phase 

front can propagate at substantially different velocities (for example, note in the DIC images of 

full-field strain in figure 3-1 that upon loading, the top phase front stays relatively still, while it is 

only the bottom phase front that propagates), the sum of the two perpendicular velocities upon 

loading and unloading appears to stay nominally equal, which in this test is at a value of 

  0.04 mm/sV ≈ . There are some preliminary indications that the sum of velocities of the phase 

front faces during loading may tend to be slightly faster than the sum of velocities during 

unloading; however, a detailed examination of the relationship of phase front velocities, as they 

depend on texture, strain rate, temperature, and other variables, necessitates an in-depth study 

and is left to future work. 
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(a) (b) 

(c) 

Figure 3-4 (a) The velocity of the phase transformation during loading in the uniaxial tension 
test described in figure 3-1. The velocity is calculated by tracking the position of the phase front 
on a line down the center of the gage section of the sample as shown in the schematic. (b) The 
velocity of the phase transformation during unloading in the uniaxial tension test described in 
figure 3-1. The velocity is calculated by tracking the position of the phase front on a line down 
the center of the gage section of the sample, as shown in the schematic. (c) The sum of the 
velocities of both sides of the martensitic front upon loading and unloading in the strain range 
where there exists a single, clearly delineated phase front (no branching). Although the top and 
the bottom of the phase front can propagate at different speeds, the sum of the two perpendicular 
velocities is nominally equal, here at a value of   0.04 /V mm s≈ . 
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3.2. Strain Similarity 

In the macroscopic stress-strain curves shown in figure 3-5a, the transformation stress 

decreases with pseudoelastic cycling, in agreement with results from prior work. This effect is 

generally attributed to local elastic stress fields developed during cycling that are attributed to 

changes in dislocation structure and/or the retention of martensitic nuclei [5-8]. It is generally 

known that stress-inducing martensite under mechanical cycling results in a decrease in the 

forward transformation stress with cycle number, while the reverse transformation stress 

decreases relatively at slow rate. The macroscopic cycling curve produced through spatially 

averaging DIC images clearly shows this tendency, as well as the characteristic decrease in 

hysteresis with an increase in cycle number. We observe that the total amount of residual plastic 

deformation increases, and the rate of accumulation of residual plastic deformation decreases, as 

cycling increases. These trends in the accumulation of residual plastic deformation are known 

phenomena that are attributed to the increase in dislocation hardening, and thus the critical stress 

required for slip, with the increase in cycle number (for example, see [9] and the discussion 

contained therein).  

Figure 3-5b shows the full-field strains in the specimen at the mid-point of transformation 

for cycles 1, 2, 5, 10, 25 and 50, and figure 3-5c shows the corresponding IR-obtained thermal 

fields. There is sometimes a tendency of the martensitic band to “flip,” i.e. to nucleate and 

propagate from the opposite side of the specimen in a subsequent cycle. This occurs more 

frequently in the earlier cycles. However, even when the martensitic band has flipped to the other 

side of the specimen, as is the case from cycle 1 to cycle 2, and from cycle 5 to cycle 10 in figure 

3-5b, note that the martensitic phase front maintains a similar profile.  
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(a) 

(b) 

(c) 

Figure 3-5 (a) Stress-strain curves in the gage section of an as-received nickel-titanium specimen 
loaded at -4 -1

gε  = 10  s  under displacement control in a ramp profile, taken at cycles 1, 2, 5, 10, 25, 
and 50. The applied stress is obtained from the load cell and the strain along the axis of the 
specimen, AVG

YYε , is obtained by averaging approximately 600,000 values (330 x 1830 pixels) of 

yyε  in each DIC image. (b) Full-field strains ( yyε ) in the specimen at the mid-point of 
transformation for cycles 1, 2, 5, 10, 25, and 50. (c) IR-obtained thermal fields corresponding to 
the full-field strains shown in (b) 
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As the cycle number increases, the martensitic phase transformation becomes 

increasingly homogeneous. The number of nucleation sites increases and the delineation of the 

phase front degrades. However, the degree of positional similarity for the bands is very strong; 

bands tend to nucleate in the same locations, and propagate in the same manner, from cycle to 

cycle. In order to investigate this tendency for strain similarity, let us examine two situations. In 

the first case (figure 3-6), the strain on a line down the center of the sample is captured during 

stress-induced martensitic phase transformation in an as-received specimen. Initially (figure 3-6-

i) there is no macroscopic phase front, although the specimen is at a high, relatively uniform 

strain of 0.0095. The specimen is further loaded and the phase front nucleates and propagates 

(figure 3-6-ii to figure 3-6-iii), and eventually the stress-induced martensitic band has completely 

propagated through the gage section of the specimen (figure 3-6-iv). What is interesting to note 

here is that the accommodated strain in the martensite remains the same, even as loading is 

increased. For example, the martensite strain profile in figure 3-6-ii closely matches that in figure 

3-6-iii, although the loading has increased and the martensitic band has propagated. Even with 

the increased amount of load and the propagation of the martensitic front, the accommodated 

strain in the martensite remains constant once it has formed.  

In the second case, let us examine the axial strain on a line down the center of the sample 

at the mid-point of martensitic phase transformation, during cycle 1 and cycle 50 (figure 3-7). 

Figure 3-7a shows the macroscopic stress-strain curves for cycle 1 and 50, and the four points at 

which the centerline strain profiles are compared (labeled i-iv). These four points correspond to 

immediately after the large localized band appears (point (i)), during the martensitic band 

propagation (points (ii) and (iii)), and after the band has finished propagating throughout the 

gage section (point (iv)). The points between cycle 1 and 50 are chosen when the martensitic 
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band is at the same position in the gage section, determined through the full-field quantitative 

strain field maps. However, it is interesting to note that this exact choice of points on the 

macroscopic curve is not necessary in order to see the strain similarity effect. The strain 

similarity in the martensite phase is so strong and consistent throughout the loading that it is 

easily possible to see the strain similarity effect using the axial strain profile on quite different 

points during phase transformation. 

 
 
 
 

 
 
 Figure 3-6 The strain ( yyε ) on a line down the center of the gage section during stress-induced 

martensitic phase transformation in an as-received specimen loaded at -4 -1
gε  = 10  s  under 

displacement control in a ramp profile. The accommodation strain in the martensite remains the 
same, even as loading is increased and the phase front propagates. 
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(a) 

(b) (c) 

Figure 3-7 The axial strain on a line down the center of the sample at the mid-point of 
martensitic phase transformation, during cycle 1 and cycle 50. (a) shows the macroscopic 
stress-strain curves for cycle 1 and 50, and the points at which the centerline strain profiles are 
compared (labeled i-iv). (b) shows the strain profile at points i-iv in cycle 1, and (c) shows the 
strain profile at points i-iv in cycle 50. Note the homogenization of the phase transformation as 
the cycle number is increased. 
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Figure 3-7b shows the strain profile at points i-iv in cycle 1, and figure 3-7c shows the 

strain profile at points i-iv in cycle 50. Note the homogenization of the phase transformation as 

the cycle number is increased. In cycle 1 (figure 3-7b), the strain outside the martensitic band 

stays constant at nominally 0.008 and the strain inside the martensitic band is nominally 0.063. 

However, by cycle 50, the strain in the specimen is nominally 0.019 outside the martensitic band, 

and the strain inside the martensitic band is nominally 0.057. As the number of nucleation sites 

increases and the phase transformation becomes more homogeneous, the difference in the strain 

between the inside and outside of the band decreases by 30%, from ~0.055 (cycle 1) to ~0.038 

(cycle 50). The increasing homogeneity with cycle number can be largely attributed to the 

advantageous formation of dislocation structures and the existence of residual pockets of 

martensite [5, 10-12].  

The tendency of the strain in the martensite to stabilize within a loading cycle is again 

evident in figures 3-7b and 3-7c. If the strain profiles from cycle 1 and from cycle 50 are now 

overlaid with each other, there is also clear evidence of strain similarity in the martensite from 

cycle to cycle (figure 3-8). To display this cycle-to-cycle martensite strain pattern similarity, the 

strain profiles for cycles 1 and 50 are vertically shifted and compared at various points during the 

phase transformation (figure 3-7, points i-iv) in figure 3-8. At point i, which immediately follows 

nucleation, most of the specimen is austenite and there is little strain similarity in the strain field. 

In figure 3-8d, the band has completely propagated through the gage section and the specimen 

can be considered as fully martensite. (Note that although we classify outside the band as 

macroscopic ‘austenite’ and inside the band as macroscopic ‘martensite,’ this is a bit of a 

misnomer. As is discussed by Brinson et al. [13], martensitic transformation in fact occurs 

throughout the material at all strain levels, and it is not correct to consider the areas outside the 
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large localized bands as martensite-free, nor the areas inside the large localized bands as 

completely martensite.) In figure 3-8d (fully macroscopically martensite), the strain similarity 

between cycle 1 and cycle 50 is quite strong; the strain profiles overlay faithfully with each 

other. In figures 3-8b and 3-8c, mid-way through phase transformation, the strain similarity in 

the martensite is also quite faithful, while again there is significantly less strain similarity in the 

austenite. In order to quantitatively examine cycle-to-cycle strain similarity, correlation 

coefficients of the centerline strains between cycle 1 and 50 were calculated for two cases: (case 

1) where the specimen was fully (macroscopically) austenite immediately prior to nucleation of 

localized band and (case 2) when the bands had finished propagating through the specimen and it 

was fully (macroscopically) martensite. The correlation coefficient indicates the amount of 

periodic similarity between the strains of two cycles regardless of differences in the strain 

magnitude, and is defined as the following. Here, an r value approaching 1 indicates a greater 

degree of similarity, Amn and Bmn are the data sets for cycles 1 and 50 respectively, and A  and B  

are the means of the respective data sets:  

 

The correlation coefficient of the centerline strains for the macroscopic austenite (case 1) 

between cycle 1 and 50 was 0.59 and that of the centerline strains for the macroscopic martensite 

(case 2) was 0.82. The strain accommodated by the stress-induced martensite exhibited 

significantly greater cycle-to-cycle similarity than the strain accommodated by austenite. This 

finding indicates that the initial manner in which the martensite accommodates strain in the first 

cycle strongly dictates how the martensite will accommodate strain in future cycles. Thus, one 
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can argue that the local elastic stress fields in the martensite are driven by a dislocation structure 

and martensitic nuclei that largely stabilize during the first loading cycle [5]. 

  
Figure 3-8 Overlay of strain profiles from cycle 1 and from 50, where strain profiles are taken on 
a line down the center of the gage section and the strain of cycle 50 is shifted vertically upward. 
There is clear evidence of strain pattern memory in the martensite phase from cycle to cycle. 
Figure (a) overlays the strain profiles for cycle 1 and 50 at point i, which is immediately 
following nucleation. Most of the specimen is macroscopically austenite at this point, and there is 
little similarity in the centerline strains. In figure 3-8d, the band has completely propagated 
through the gage section and the specimen can be considered as fully martensite. Here, the 
similarity in the centerline strains between cycle 1 and cycle 50 is quite strong. 
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3.3. Evolution of Martensitic Volume Fraction 

The evolution of martensitic volume fraction across the gage section can be roughly 

estimated from the full-field strain data obtained by DIC. Figure 3-9a shows the macroscopic 

stress-strain curve for the first loading cycle on the specimen, as first described in figure 3-1. 

Lines of slope EA (austenite Young’s modulus) and EM (martensite Young’s modulus) are offset 

from the onset and saturation of transformation, respectively, by 0.1% in order to quantify the 

strains at which macroscopic phase transformation begins and saturates. A 0.1% offset of 

linearity method is used to determine consistent values for the start and completion of 

transformation, as the elastic modulus of austenite gradually decreases prior to nucleation of 

localized band and a similar nonlinearity is evident in the martensite modulus. This effect is due 

to the heterogeneous behavior of transforming grains at the microscale, which is reflected in the 

macroscopic stress-strain curve. Phase transformation preferentially begins at small sub-grain 

and grain-level pockets of austenite prior to appearing as large localized bands of transformed 

martensite as the applied loading is increased [13, 14]. Following this method, four relevant 

strains for the stress-strain curve are determined at each cycle: the 0.1% offset values for the (1) 

start of martensitic transformation on loading (εAL), (2) finish of transformation on loading (εML), 

(3) start of transformation on unloading (εMU), and (4) finish of transformation on unloading 

(εAU). Note that these four representative values need to be determined following any change in 

loading or sample parameters, such as cycle number, initial crystallographic texture, or applied 

strain rate, as the macroscopic stress-strain curve will change. After obtaining these values for a 

specific experimental condition, each individual DIC image in the test is then evaluated in order 

to determine the extent of martensitic transformation in that image. To evaluate the martensitic 

volume fraction in a single DIC image, approximately 600,000 points in that image are 
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individually binned using a rule-of-mixtures approach. The overall martensitic volume fraction 

for the image is taken as: 

M
M

Total

N
N

δ =   (Eqn. 1) 

 
where NM is the amount of martensite in all of the pixels, and NTotal is the total number of pixels 

in the image. We consider the number of martensitic pixels as, 

M P TN M M= +   (Eqn. 2) 

where MP is the number of pure martensite pixels and MT is the summed martensitic fraction of 

the pixels that can be considered as partially martensite. During loading, MP is defined as the 

sum of all pixels that have a strain 

 

ε ≥εML , and MT is defined as the sum of the martensitic 

fraction of pixels that have a strain 

 

εAL < ε < εML , where  

AL
T

ML AL

M ε ε
ε ε

−
=

−
  (Eqn. 3) 

Similarly, during unloading, MP is defined as the sum of all pixels that have a strain 

 

ε ≥εMU , and MT is defined as the sum of the martensitic fraction of pixels that have a strain

 

εAU < ε < εMU , where 

AU
T

MU AU

M ε ε
ε ε

−
=

−
  (Eqn. 4) 

Binning is performed for all the pixels in the image. For a simple example, consider the 

case where the offset values are εAL= 0.01 and εML=0.06, and the strain value of one pixel in a 
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DIC image is 0.03. This single pixel would then, by the rule of mixtures, be binned as 40% 

austenite and 60% martensite. This procedure is repeated for the nominally 600,000 pixels in 

each image, and all of the values in each bin are summed in order to determine the final value for 

martensitic volume fraction (δM) for that image, taken at a specific point in the loading cycle. 

This entire procedure is then repeated for each image in the test in order to build up the evolution 

of δM as a function of applied stress (P/A0). This approach results in the quantitative measures of 

the evolution of martensitic volume fraction shown in figure 3-9b (loading) and 3-9c 

(unloading). This method captures the salient features of the evolution of martensitic volume 

fraction, but there are sources of error that need to be discussed. Firstly, there is possible error in 

computing the four critical values (εAL, εML, εMU, εAU) through the 0.1% offset of linearity 

method; to create the linear lines in loading and unloading, the linear curve fitting was used with 

a norm of residuals of 2.43 MPa. An important error to note comes from the assumption that a 

pixel is 100% martensite after it contains a strain greater than εML. As shown by previous 

research and discussed in this paper (for example, see [13, 14] and the references contained 

therein), it is extremely likely that the pixel still contains a significant amount of residual 

austenite at strains greater than εML. Because each analyzed pixel contains a large number of 

grains, the amount of residual austenite will be relatively consistent from pixel to pixel with 

respect to the strain within that pixel. However, it will not be negligible; therefore, what is 

referred to as 100% martensite or 100% austenite in the evolution of volume fraction should be 

considered as 100% martensite/austenite as defined by the macroscopic strain, rather than on the 

microstructural level. 
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The cycle number has a clear effect on the evolution of δM on loading, and substantially 

less effect on the evolution of δM upon unloading. This observation agrees with prior 

macroscopic observations that the reverse transformation stress decreases substantially with 

cycling upon loading, but stays nearly constant upon unloading. Similar to the macroscopic 

stress-strain curves, the nucleation or coalescence of bands has a direct impact on the evolution 

of δM, appearing as small but noticeable bumps in figures 3-9b and 3-9c. 

 
 

(c) 

(a) 

(b) 

Figure 3-9 The evolution of martensitic volume fraction in the gage section during loading and 
unloading in a sample that is tested in uniaxial tension at -4 -1

gε  = 10  s  under displacement control 
in a ramp profile. 
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3.4. Conclusions on Strain Similarity 

Simultaneous three-dimensional digital image correlation and infrared imaging were used 

to examine stress-induced martensitic transformation in nickel-titanium during uniaxial, zero-to-

tension loading at an applied strain rate of -4 -1
gε  = 10  s . The effect of hard cyclic loading was 

examined, particularly the appearance of a strain pattern similarity in the macroscopically 

martensite region both within a cycle and from cycle to cycle. The following was determined:  

• Stress-induced martensitic phase transformation can propagate either by a single, clearly 

delineated front, or alternatively by the offshoot of small branches from the primary phase 

front. A single martensitic front can change to a branched front in the middle of phase 

transformation, as shown in figure 3-1. The nucleation/coalescence of these small branches 

directly corresponds to a load drop/rise in the macroscopic stress-strain curve. 

• Although the top and the bottom of a single phase front can propagate at substantially 

different velocities (for example, note in figure 3-1 that upon loading, the top phase front 

stays relatively still, while it is only the bottom phase front that propagates), the sum of the 

two velocities taken perpendicular to the phase front was found to be nominally equal upon 

loading and unloading in these tests. 

• The accommodated strain in the microstructure of martensite that has already been formed 

will remain constant, even as loading is increased and the martensitic phase front propagates 

through the gage region (figure 3-6). 

• The number of nucleation sites increases and the delineation of the stress-induced martensitic 

phase fronts decreases as cycle number is increased. However, although the transformation 

becomes more homogeneous during cycling, there is a remarkable amount of strain similarity 
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in the martensite from cycle to cycle. This can be seen in an overlay of the strain values 

down the centerline of the gage section from the 1st cycle on an as-received specimen and 

from the 50th cycle on the same specimen, as shown in figure 3-8. Note that the tendency to 

have strain similarity is much stronger in the stress-induced martensite (inside the localized 

band) than in the austenite (outside the localized band). This tendency is quantitatively 

shown by a higher correlation coefficient of the centerline strains for the martensite between 

cycles 1 and 50 than that for the austenite. This indicates that the initial manner in which the 

martensite accommodates strain in the first cycle strongly dictates how the martensite will 

accommodate strain in future cycles. Thus, one can argue that the local elastic stress fields in 

the martensite are driven by a dislocation structure and martensitic nuclei that largely 

stabilize during the first loading cycle. 

• By using a rule-of-mixtures approach on the DIC-obtained full-field strains, the evolution of 

martensitic volume fraction across the gage section of the specimen as a function of the 

applied load can be roughly quantified and examined. The cycle number has a clear effect on 

the spatial evolution of δM on loading, and substantially less effect on the spatial evolution of 

δM upon unloading.  
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Chapter 4 

The Effect of Texture on Stress-Induced Martensitic 

Transformation in Nickel-Titanium 

In this chapter, an experimental study was performed to investigate the effect of 

crystallographic texture on stress-induced martensitic phase transformation in the shape memory 

alloy nickel-titanium (Nitinol). Thin sheet specimens of Nitinol were examined under uniaxial 

tensile loading using three-dimensional digital image correlation in order to spatially and 

temporally track strain localization indicative of martensitic transformation. Tensile specimens 

were fabricated along directions oriented 0° (RD), 45°, and 90° (TD) to the rolling direction of 

the sheet and subjected to 50 cycles at prescribed strain rates of -4 -3 -2 -1
gε  = 10 ,10 , and 10 s . It was 

found that upon loading, specimens with crystallographic textures that were unfavorably oriented 

for transformation (TD specimens) nucleated a greater number of deformation bands due to a 

smaller difference between nucleation and propagation stresses, and also accommodated less 

axial strain inside the band and more axial strain outside of the band. The unfavorable (TD) 

specimens also exhibited a stronger cycle-to-cycle similarity in the strain accommodated inside 

the band. Finally, the (primarily martensite) region of the deformation band(s) consistently 

showed significantly stronger cycle-to-cycle similarity than the (primarily austenite) region 

outside of the band(s), regardless of specimen texture.  
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4.1 Characterization of Specimen Crystallographic Texture  

Optical micrographs of three specimens cut parallel (RD), 45°, and perpendicular (TD) to 

the rolling direction of the sheet are shown in figure 4-1. It was determined by X-ray diffraction 

(XRD) that the RD specimens had a {110}  texture, which is a favorable orientation for large 

recoverable transformation strains [1, 2]. These specimens also showed the largest recoverable 

strain under the uniaxial loading imposed in these tests. The 45° specimen had a texture that was 

favorably oriented for large recoverable transformation strains as well, though with a slightly 

smaller intensity than the RD. The TD specimens had a significantly less favorable texture for 

transformation strain (and correspondingly exhibited the shortest transformation plateau in the 

macroscopic stress-strain curves shown in figure 4-5). 

X-ray diffraction of the as-received material revealed the presence of the two dominant 

peaks shown in figure 4-2; a major peak intensity at 2θ=42.36° and a second peak intensity at 

2θ=77.48°, which correspond to the (110)  and (211)  planes in the parent austenite phase, 

respectively. Strong texture in the (110)  plane in cold-rolled NiTi has also been observed in

  

(a) (b) (c) 

Figure 4-1 Optical micrographs of the textured surfaces at specimens cut at (a) RD, (b) 45°, 
and (c) TD to the rolling direction of the as-received sheet. 
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previous research on NiTi plates [2-4]. Note that the minor third peak intensity at 2θ=43.36° was 

determined to be (200)  of a TiO surface oxide. The {111}, {100}, and {110} pole figures of the 

test material were obtained by orientation density functions calculated by MTEX and are shown 

in figure 4-3a through 4-3c respectively. The test specimens possessed a small average grain size 

on the order of tens to hundreds of nanometers (nominally 40nm as measured with the Scherrer 

equation). Note that there was some overlap between differently oriented grains in the pole 

figures because of the large diffraction spot size to grain size ratio. The pole figures and inverse 

pole figures indicate that the orientations of most grains were {111}[110]  and {110}[110] , with the 

{h k l} plane parallel to the sample surface and the [u v w] direction parallel to RD. 

The orientation of the crystallite axis in the specimen is known to significantly affect 

transformation strain in thin rolled plates and sheets [1, 2]. Miyazaki et al. theoretically 

 

  

Figure 4-2 X-ray diffraction analysis of the as-received NiTi sample. There is a major peak 
intensity at 2θ=42.36° and a second peak intensity at 2θ=77.48°, which correspond to the (110)  
and (211)  planes in the parent austenite phase, respectively. 
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calculated this dependence of transformation strain during martensitic transformation, projected 

on a [001] [011] [111]− −  standard stereographic triangle. The recoverable strain was found to 

depend on whether the crystallite axes were preferentially located around the [011] [111]−  line of 

this orientation dependent transformation strain map [1]. Similarly, the transformation strain 

became small if the crystallite axes were preferentially located around the [001]  direction. This 

map [1] was calculated by using the lattice parameters of the austenite and martensite phases to 

compute lattice distortion due to martensitic transformation, where it was assumed that the most 

favorable martensite variant grows to induce the maximum transformation strain in each grain. A 

similar map was constructed in [2], where higher transformation strains were again calculated 

along the [011] [111]−  line and inhibited transformation strain calculated along the [001] direction. 

Larger recoverable strains observed in some of the calculated versus experimentally measured 

results in [2] were attributed to the introduction of permanent strain via slip; also, differences in 

the recoverable strain versus orientation curves were attributed to constraints becoming more 

pronounced as the quantity of grain boundaries increased near TD. Note that this orientation  

 

  

(a) (b) (c) 

Figure 4-3 The pole figures obtained by orientation density functions of (a) {111}, (b) {100}, 
and (c) {110}are shown with a legend of intensity, multiple of a random distribution (m.r.d). 
Specimen coordinates of the pole figures are shown at right. Strong intensities appear at RD 
and 45° in the {110} pole figure. 
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dependence of the transformation strain was only found for thin rolled plates and sheets; in 

sputter-deposited thin films, transformation strain was found to be nearly independent of in-plane 

direction. 

Following these calculations, diffraction studies of the RD and 45° test specimens 

indicated that they had crystallographic textures favorably oriented for large transformation 

strains, and that the TD specimen had a crystallographic texture that was relatively unfavorably 

oriented for transformation. Inverse pole figures of the test specimens were experimentally 

 

  

(a) (b) 

(c) (d) 

Figure 4-4 The inverse pole figures of the (a) normal direction to the surface (ND); (b) rolling 
direction (RD); (c) 45° direction; and (d) transverse direction (TD). In plane, the density of 
{0 11}  is the highest at RD and decreases as the angle approaches TD; the density of {001} is the 
lowest at RD and increases as the angle approaches TD. 
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obtained to examine the crystallite axis density distributions along specific directions, and are 

shown in figure 4-4. The RD inverse pole figure in figure 4-4b showed a high density around 

{0 11}  and {1 11} . The highest density of {0 11}  was observed for RD and decreased as the in-

plane angle approached 90° (TD). Conversely, the intensity of {001}  was lowest at RD and 

increased as the in-plane angle approached 90° (TD). This finding is in agreement with the 

macroscopic stress-strain responses shown in figure 4-5, where the TD orientation shows a 

markedly lower transformation strain. 

 

4.2 Effect of Crystallographic Texture and Applied Strain Rate on Stress-Strain 

Response and Localization  

The macroscopic stress-strain response of a TD specimen was markedly different from 

the RD and 45° responses at all strain rates studied here, requiring a higher load to nucleate and 

propagate martensite, and exhibiting a transformation plateau with a shorter length and a smaller 

strain at completion. Details of strain rate effects are well explained in Shaw and Kyriakides [5]. 

Macroscopic stress-strain responses are shown in figure 4-5 for globally applied strain rates of 

-4 -3 -2 -1
gε  = 10 ,10 , and 10 s . Each strain value on the x-axis ( AVG

YYε ) is an average of the DIC-

measured full-field strains (εyy) in the gage section at a given global stress (y-axis), where P is 

the applied load measured by the load cell and A0 is the reference cross-sectional area of the 

specimen. At a set strain rate, the macroscopic stress-strain curves of the RD and 45° specimens 

were nominally similar. These characteristics are consistent with the crystallographic textures of 

the RD and 45° specimens, which were found to be favorably oriented for large transformation 

strains (long transformation plateaus), and with the assertion that crystallographic texture is an 
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important factor in determining the propensity of a SMA to transform [6]. It was determined 

through IR measurements that crystallographic texture did not significantly affect the amount of 

released/absorbed latent heat during phase transformation. 

As seen in table 4-1, the macroscopic (averaged) strain at the start of phase 

transformation in the TD specimen was higher than in the RD and 45° specimens at all strain 

rates. Because it was not possible to assess the exact strain at which the first band nucleated due 

to the discrete nature of the imaging, and it is likely that the amount of microscale martensite that 

accumulated prior to band nucleation depended on crystallographic texture, the initiation strain 

of the A → M transformation was obtained using a 0.1% offset from linearity of the elastically 

loaded austenite. A schematic of this method is shown in figure 4-6. The larger macroscopic 

strain at the start of transformation in TD specimens is reasonable given its unfavorable 

crystallographic texture. The globally applied stress at the start of transformation (σMS), and its 

dependence on cycling, is shown in figure 4-7.   

  

(a) (b) (c) 

Figure 4-5 Macroscopic stress vs. DIC-averaged strain curves of textured specimens (cycle1) at 
the applied strain rate of (a) -4 -1

gε =10 s  , (b) -3 -1
gε =10 s  , and (c) -2 -1

gε =10 s  . The TD specimen 
requires higher stress to nucleate and propagate martensitic bands. Martensite band nucleation 
and propagation in the TD specimen starts at a higher averaged strain value and completes at a 
lower averaged strain value than in the RD and 45° specimens. 
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Table 4-1 Averaged strain values at the start of phase transformation, calculated by 0.1% offset 
from the linear austenite region in the stress-strain curve at cycle 1. Phase transformation in the 
TD (unfavorable) specimen begins at higher (averaged) strain values than in the RD and 45° 
specimens, for all applied strain rates. 

 

 

 

 

 

 

 

 

Strain 
Rate  Texture  

AVG
YYε  at beginning of phase transformation 

[%] 

-4 -1
gε =10 s   

 RD  0.76 
 45°  0.84 
 TD  0.94 

-3 -1
gε =10 s   

 RD  0.81 
 45°  0.86 
 TD  0.97 

-2 -1
gε =10 s   

 RD  0.81 
 45°  0.82 
 TD  0.95 

Figure 4-6 Schematic of the 0.1% offset from linearity used to calculate the average strain 
values ( AVG

YYε ) at the start of martensitic transformation, tabulated in table 4-1. 
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In addition to these characteristics, the accumulated residual strain was smallest for the 

TD specimen. The effect of cycling on the accumulation of residual strain (εP) is shown in figure 

4-8. Note that a small amount of bending was apparent in the unloaded specimen due to 

accumulated plasticity, which created a slight nonlinearity in the stress-strain curve at the tail end 

of unloading; thus, residual strain was calculated using the intersection between the linearly 

extended stress-strain line and the x-axis. Even though transformation is inhibited for the TD 

specimen, there is a small residual strain accumulation likely due to low Schmid factors for slip. 

For a similar cold-rolled nickel-titanium TD sheet specimen, Mulder et al. found that the possible 

slip Schmid factors were close to zero [7]. Similarly, Chang and Wu [3] also measured a low 

accumulation of residual strain in unfavorably textured specimens. 

The unfavorably oriented (TD) specimens also tended to nucleate a greater number of 

deformation bands than the RD and 45° specimens at a given strain rate, and this behavior 

became more pronounced at faster strain rates. This is evident in the full-field strain maps of the 

  

(a) (b) (c) 

Figure 4-7 Stress required for the onset of stress-induced martensitic phase transformation at 
globally applied strain rates of (a) -4 -1

gε =10 s  , (b) -3 -1
gε =10 s  , and (c) -2 -1

gε =10 s  . The 
transformation stress is calculated by a 0.1% offset from linearity. 
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sample gage section shown in figure 4-9. The strain fields were obtained when the specimen was 

in the middle of the phase transformation plateau during loading on the first cycle. High strain 

regions indicate primarily stress-induced martensite, and low strain regions indicate regions of 

primarily austenite. Note that each pixel contains hundreds of grains (the pixel resolution was 9 

μm), and individual grains can and usually do contain both austenite and martensite [8, 9]. Thus, 

each point value in these strain fields represents an averaged contribution from both the austenite 

and martensite phases. As the applied stress level initially increased from zero, small sub-grain 

and grain-level pockets of austenite began to transform to martensite prior to the nucleation of a 

large macroscopic band, as first observed by Brinson et al. [8]. When the applied stress reached a 

critical level, large localized bands of strain nucleated and propagated; these martensitic fronts 

are clearly visible in figure 4-9. 

The propensity of a TD specimen to nucleate more martensitic bands than RD or 45° 

specimens at a given strain rate arises from a dependence on crystallographic texture of the 

difference between the nucleation and propagation stresses. For -4 -1 -3 -1
gε =10 s  and 10 s , the 

(a) (b) (c) 

Figure 4-8 Residual strain at the applied strain rate of (a) -4 -1
gε =10 s  , (b) -3 -1

gε =10 s  , and (c) 
-2 -1

gε =10 s  . 
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nucleation stress (σN) was defined as the maximum stress prior to the onset of the first 

deformation bands (note all bands nucleated near the fillets but in the gage section), and the 

propagation stress (σP) was defined as the reduced value observed after nucleation of the first 

band. However, at -2 -1
gε =10 s  it became difficult to define the nucleation and propagation stresses 

because of the nearly simultaneous nucleation of multiple fronts. Thus, the nucleation stress for 

-2 -1
gε =10 s  is defined as the stress where the multiple fronts (near simultaneously) nucleated, and 

the propagation stress is defined as the stress where the multiple fronts (near simultaneously) 

began to propagate. Note that at the applied strain rate of -2 -1
gε =10 s , five and four fronts nucleate 

simultaneously in the RD and the 45° specimens respectively – thus, in this case, a larger stress 

drop is observed in the 45° specimen than in the RD specimen. Finally, note that (σN - σP) for the 

TD specimen at -2 -1
gε =10 s  was unable to be determined due to the continuous nucleation of 

 

  

(a) (b) (c) 

Figure 4-9 Full-field local strain maps of the gage section at cycle 1 at the middle of the phase 
transformation plateau at the applied strain rate of (a) -4 -1

gε =10 s  , (b) -3 -1
gε =10 s  , and (c) -2 -1

gε =10 s 

. Though the number of deformation bands increases with faster strain rates, the TD specimen 
shows greater number of deformation bands at a given strain rate. 
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numerous new fronts that resulted in no clear delineation between the two values. The stresses 

required for nucleation (σN) and propagation (σP) of the martensite are calculated in table 4-2. At 

a set strain rate, the TD specimen exhibited both higher nucleation (σN) and propagation (σP) 

stresses than the RD and 45° specimens. However, the difference between these stresses (σN - σP) 

was substantially smaller, as shown in table 4-2. The smaller (σN - σP) difference resulted in the 

TD specimen being more inclined to nucleate a new deformation band in a cooler location, rather 

than propagate an existing deformation band in a location that had accumulated latent heat. 

Although accumulated latent heat will trigger the nucleation of multiple bands as the strain rate 

increases regardless of texture [5] (for example, see figure 4-9), the number of deformation 

bands is greatest in the TD specimen. 

 

 

Table 4-2 The stress required to nucleate (σN) and propagate (σP) deformation bands of primarily 
martensite during loading at cycle 1. At a given strain rate, the TD specimen requires higher 
stresses for band nucleation and propagation than the RD and 45° specimens, but exhibits a 
smaller difference between stresses (σN - σP). This smaller (σN - σP) leads to a greater number of 
deformation bands, as the TD specimen is more willing to nucleate a new front in a cooler 
location rather than try to propagate an existing front in a location that has accumulated latent 
heat. 

Strain 
Rate  Texture  σN [MPa]  σP [MPa]  σN - σP [MPa] 

 
 RD  445  411  34 
 45°  443  412  31 
 TD  492  480  12 

 
 RD  467  450  17 
 45°  473  460  13 
 TD  513  511  2 

 
 RD  475  472  3 
 45°  490  479  11 
 TD  520  N/A  N/A 

-4 -1
gε =10 s 

-3 -1
gε =10 s 

-2 -1
gε =10 s 
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During stress-induced martensitic transformation, the TD specimen exhibited more axial 

(εyy) strain outside the localized (primarily martensite) deformation band, and less axial strain 

inside the band, compared to the more favorably orientated RD and 45° specimens. Otherwise 

stated, in the TD specimen, a ‘less strained’ band propagated through a ‘more strained’ matrix 

during loading. This was true at all three globally applied strain rates. One possible cause for this 

is the low Schmid factors for both slip and transformation in the TD specimen. An increased 

number of non-transforming grains and grain clusters in the TD specimen would result in a more 

constrained transformation landscape, where individual pockets of martensite could still nucleate 

in the austenite region, but saturation of martensitic transformation in the deformation band 

would occur at lower strains. Additionally, the low Schmid factors for both transformation and 

slip may limit any synergistic interactions between the two mechanisms. However, these are 

hypotheses that need to be explored with studies on the length scale of the microstructure, 

currently under investigation. The range of all pixel strain values taken inside and outside of the 

deformation band(s), where each pixel encompassed hundreds of grains, are shown in table 4-3 

at globally applied strain rates of -4 -1 -3 -1 -2 -1
gε =10 s 10 s 10 s, , and  . Pixel strain ranges were 

determined when the specimen was in the middle of the phase transformation plateau during the 

first loading cycle, where the averaged AVG
YYε  = 3.77%, 3.67%, and 3.25% for RD, 45° and TD 

specimens, respectively. The macroscopically austenite region in the TD specimen 

accommodated an average strain of 1.1%, versus an average strain of 0.9% in the RD and 45° 

specimens. Conversely, the macroscopically martensite region in the TD specimen 

accommodated an average strain of 5.1%, versus an average of 6.2% in the RD and 45° 

specimens. In all cases, the strains were spatially heterogeneous, with the minimum and 

maximum pixel strain values varying by as much as a factor of 18. 
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Table 4-3 The range of strain values observed in individual pixels (each pixel encompassing 
hundreds of grains), as well as averaged across the region, outside and inside of the localized 
deformation band during loading at cycle 1. Strains are spatially heterogeneous, exhibiting a 
large range of pixel strain values. When the specimen had an unfavorable crystallographic 
texture for martensitic transformation (TD), smaller average strains were observed inside the 
(primarily martensitic) deformation band and larger average strains were observed outside the 
deformation band. 

Strain 
Rate  Texture  

Axial Strain Outside 
Deformation Band 
(Macroscopically 

Austenite) 
Min. – Max. (Avg.) [%] 

 

Axial Strain Inside 
Deformation Band 
(Macroscopically 

Martensite) 
Min. – Max. (Avg.) [%] 

-4 -1
gε =10 s   

 RD  0.4 – 1.5 (0.9)  4.9 – 7.3 (6.2) 
 45°  -0.3 – 2.1 (0.9)  4.7 – 7.6 (6.2) 
 TD  0.4 – 1.8 (1.1)  3.5 – 6.2 (5.1) 

-3 -1
gε =10 s   

 RD  0.3 – 1.5 (0.9)  5.5 – 7.2 (6.3) 
 45°  0.2 – 1.5 (0.9)  5.4 – 7.3 (6.3) 
 TD  0.6 – 1.9 (1.3)  3.7 – 6.3 (5.1) 

-2 -1
gε =10 s   

 RD  0.1 – 1.7 (1.0)  4.3 – 10.1 (6.4) 
 45°  0.1 – 1.8 (1.0)  5.3 – 7.4 (6.3) 
 TD  0.7 – 2.5 (1.4)  3.3 – 6.8 (5.0) 

 

 

4.3 Effect of Crystallographic Texture and Applied Strain Rate on Cyclic Strain 

Similarity   

A strong similarity in the strains incurred by stress-induced (primarily martensite) regions 

of localized deformation was observed from cycle to cycle in chapter 3 [10], indicating that the 

manner in which the localized martensitic deformation accommodates strain in the first loading 

cycle strongly dictates how it will accommodate strain in future cycles. In this chapter, the 

dependence of this cyclic strain memory on crystallographic texture and strain rate is examined 

in both the (primarily martensite) region inside the deformation band and the (primarily 

austenite) region outside of the band. Recall that although the stress-induced deformation band(s) 
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are largely martensite, they do contain a significant amount of untransformed austenite. 

Similarly, although the regions outside of the deformation band are largely austenite, they 

contain a significant amount of transformed martensite [8, 9]. Thus, we will refer to the regions 

as “(primarily) martensite” and “(primarily) austenite” in the analysis below and we urge the 

reader to remember that we are referring to regions that are mixed in their composition. It was 

found that the strain accommodated by the (primarily) martensite region exhibited a greater 

cycle-to-cycle similarity in the unfavorably oriented (TD) specimen than in the RD and 45° 

specimens. Additionally, the (primarily) martensite region consistently showed much stronger 

cycle-to-cycle similarity than the (primarily) austenite region, regardless of specimen 

crystallographic texture. Finally, the strain similarity in the (primarily) martensite region evolved 

with cycling for all specimens and strain rates. For example, the similarity between cycles 25 and 

50 was larger than the similarity between cycles 1 and 50, indicating that dislocation networks 

and the retention of martensitic nuclei continued to evolve, although at a reduced rate, as cycling 

progressed. 

DIC-calculated strains on a vertical line down the center of the specimen at the 1st and 

50th cycles were examined when: the specimen was fully (primarily) austenite before band 

nucleation; during stress-induced deformation band propagation; and after the specimen was 

fully (primarily) martensite. The phases are denoted here as (primarily) austenite and (primarily) 

martensite as a reminder that there exist microscopic pockets of martensite in the 

macroscopically austenite region prior to band nucleation, and there also exist microscopic 

pockets of austenite in the transformed deformation band, as observed in [8, 9]. Strains down the 

centerline of the specimen at cycle 1 and 50, after the deformation band(s) had fully propagated 

through the specimen, are shown in figure 4-10 for the three crystallographic textures. The 
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strains are taken down the dotted line shown in the sample schematic to the bottom right of 

figure 4-10. The cycles are shifted and overlaid for clear comparison of their strain profiles, since 

only the trend/similarity of the accommodated strain, and not the magnitude, is under 

 

  

(a) (b) 

(c) 

Figure 4-10 Axial strains for cycle 1 and 50 of (a) RD, (b) 45°, and (c) TD specimens at a 
globally applied strain rate of -4 -1

gε =10 s  , taken when the specimen is fully (macroscopically) 
martensite. The strain is taken on a vertical line down the center of the sample as shown by the 
dotted line in the sample schematic. The strain profiles for cycle 1 and 50 are shifted and 
overlaid, since only the profile and not magnitude is under consideration. The strain 
accommodated by the (macroscopically) martensite phase shows significant similarity from 
cycle to cycle for all textures, and particularly for the TD specimen. Correlation coefficients 
between the cycle 1 and 50 profiles are calculated in table 4-4. 
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consideration here. The left vertical axis shows the axial strain values for the first cycle and the 

right vertical axis shows the axial strain values for the 50th cycle.  Note that each point on these 

profiles represents the averaged strain of hundreds of grains, and thus contains an averaged 

contribution from both martensite and austenite phases. 

In order to compare the effect of texture on the amount of strain similarity between cycle 

1 and 50, correlation coefficients of the centerline strain profiles from cycle 1 and 50 were 

calculated and are shown in table 4-4. The correlation coefficient is described in chapter 3.2; as a 

brief reminder, the correlation coefficient captures the amount of periodic similarity between the 

strains of two cycles, and is defined as the following, where a r value approaching 1 indicates a 

greater degree of similarity, Amn and Bmn are the data sets of cycle 1 and 50 respectively, and A  

and B  are the means of their respective data sets:  

 

As evidenced by the calculated correlation coefficients, the strain accommodated by the 

stress-induced (primarily) martensite exhibited significantly greater cycle-to-cycle similarity in 

the unfavorably oriented (TD) specimen than in the RD and 45° specimens. Additionally, the 

(primarily) martensite consistently showed a significantly stronger cycle-to-cycle similarity than 

the (primarily) austenite, regardless of specimen texture. Recall that the local strain values 

(encompassing numerous grains) inside the martensite band of the TD specimen were found to 

be significantly less than in the RD and 45° specimens. The strong cycle-to-cycle strain 

similarity and the smaller strains contained within the (primarily) martensite bands of the TD 
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specimen could be due to preferentially oriented microscale pockets of austenite transforming to 

martensite prior to band nucleation. These microscale pockets of transformed martensite, in a sea 

of heavily constrained grains, could then lead to a stronger cycle-to-cycle similarity in the strain 

accommodated by the martensitic transformation. This hypothesis and its relation to the variation 

in Schmid factors will be scrutinized in our current efforts to characterize martensitic 

transformation at the length scale of the microstructure. 

 

Table 4-4 Correlation coefficients of the strain similarity between cycles 1 and 50, at each 
texture, and globally applied strain rate gε , indicating greater periodical similarity as it 
approaches 1. Cycle-to-cycle strain similarity is greater for martensite than austenite at all 
textures and applied strain rates, and appears to increase with unfavorable texture. 

Strain 
Rate  Texture  Austenite 

Correlation coefficient  Martensite 
Correlation coefficient 

-4 -1
gε =10 s   

 RD  0.59  0.82 
 45°  0.66  0.79 
 TD  0.54  0.91 

-3 -1
gε =10 s   

 RD  0.55  0.83 
 45°  0.58  0.83 
 TD  0.63  0.85 

-2 -1
gε =10 s   

 RD  0.38  0.80 
 45°  0.20  0.86 
 TD  0.65  0.95 

 

 

4.4 Evolution of Strain Similarity 

The evolution of cycle-to-cycle similarity was investigated by comparing correlation 

coefficients between line strains at each set reference cycle and cycle of interest, such as cycle 1-

2, 1-5, 1-10, 1-25 and 1-50 (reference cycle is 1), and cycle 2-5, 2-10, 2-25, 2-50 (reference cycle 
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is 2), etc. The selection of the specific images that are used to extract the line strains significantly 

affects the result of the cycle-to-cycle similarity due to the amount of plastic deformation at 

different points after full (macroscopic) martensitic transformation. Therefore, images 

immediately prior to transformation (specimen is macroscopically austenite) and immediately 

after transformation (specimen is macroscopically martensite) were consistently selected by 

applying a 0.1% offset from linearity. It was hypothesized that a greater amount of accumulated 

plastic deformation following the phase transformation would increase the cycle-to-cycle 

similarity. Images of increasingly strained specimens post-transformation were selected to 

examine this hypothesis, including a 0.1% offset, +0.2% offset, and +0.4% offset from 

martensite linearity. The evolution of the cycle-to-cycle similarity of the TD specimen at an 

applied strain rate of -4 -1
gε  = 10  s  is shown in figure 4-11 for these three points of increasing 

plasticity. 

 

 

(a) (b) (c) 

Figure 4-11 Correlation coefficients between a reference cycle and other compared cycles using, 
(a) 0.1% offset strain, (b) 0.1% offset strain + 0.2% strain, and (c) 0.1% offset strain + 0.4% strain, 
of the TD specimen at applied strain rate of -4 -1

gε  = 10  s . For example, in each figure, the 
correlation coefficient between reference cycle 1 and other compared cycles is black line with 
square (cycle 1-2, 1-5, 1-10, 1-25, and 1-50). 
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At a set reference cycle, as the compared cycle number increases (for example, cycle 1-2, 

1-5, 1-10, 1-25, and 1-50), the correlation coefficient tends to decrease regardless of offset strain. 

One can see this by following lines (e.g. the black line for reference cycle 1) horizontally across 

the graph. It is reasonable to expect that the similarity in accommodated axial strain (comparing 

centerline profiles) would be greater between cycles 1-2 than it would between cycles 1-50. That 

is, we would expect similarity to the 1st cycle to degrade slightly after 50 cycles; however, it is 

interesting to note that it does not degrade significantly, and it stabilizes by nominally 25 cycles. 

Another way to look at this is that at a set compared cycle number, as the reference cycle number 

increases (for example, cycles 1-25, 2-25, 5-25, and 10-25), the correlation coefficient increases. 

This is particularly when the offset strain is low (0.1%, Figure 4-11a). One can see this by 

following points upwards at a set compared cycle number (x-axis value). For example, the strain 

similarity is greater between cycles 10-25 than between cycles 1-25, indicating that similarity 

‘mechanisms’ (dislocation networks, retention of martensitic nuclei) continue to accumulate with 

cycling, although at a reduced rate.  

In order to examine the effect of the amount of plastic deformation following phase 

transformation on cycle-to-cycle similarity, correlation coefficients between cycles are calculated 

for three image sets with an increasing amount of post-transformation plasticity. As shown in the 

inset of the macroscopic stress-strain curve in figure 4-12(a), images “A”, “B”, and “C” are taken 

at increasing levels of post-transformation plasticity. The analysis in figure 4-12 is shown for a 

TD specimen at an applied strain rate of -4 -1
gε  = 10  s . As the data is selected from increasingly 

strained images (A to C), higher correlation coefficients are observed because of the 

(diminishing) accumulation of plastic deformation after completion of the stress plateau 
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(macroscopic phase transformation). As the reference cycle number increases (figure 4-12a to 4-

12e), the correlation coefficients between image sets at different strains become close and 

finally, nominally the same (figure 4-12e). These results are consistently observed for specimens 

of all three crystallographic textures. The RD and 45° specimens show lower correlation 

coefficient values than the TD specimen, but these correlation coefficients also become 

nominally the same in the most strained images (C). This indicates that dislocation networks and 

the amount of plastically deformed martensite saturate with cycling, in this case near cycle 50 

(see figure 4-12e) regardless of crystallographic orientation. 

 
 

 

(a) (b) 

(d) (e) 

(c) 

Figure 4-12 Correlation coefficients (a) between a reference cycle 1 and other cycles (cycle 1-2, 
1-5, 1-10, 1-25, and 1-50), (b) between a reference cycle 2 and other cycles (cycle 2-5, 2-10, 2-
25, and 2-50), (c) between a reference cycle 5 and other cycles (cycle 5-10, 5-25, and 5-50), (d) 
between a reference cycle 10 and other cycles (cycle 10-25 and 1-50), (e) between a reference 
cycle 25 and 50 (cycle 25-50) at different sets of images, A, B and C (A: 0.1% offset strain, B: 
0.1% offset strain + 0.2% strain, and C: 0.1% offset strain + 0.4% strain), of the TD specimen at 
applied strain rate of -4 -1

gε  = 10  s . 
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The accumulated latent heat under faster applied strain rates affects the evolution of 

cycle-to-cycle similarity in the (macroscopically) martensite phase. In order to examine this 

effect, a highly strained image (“C”) was selected with enough cycles to result in a significant 

accumulation of plastic martensite (reference cycle 5). Correlation coefficients between 

reference cycle 5 and other compared cycles at the globally applied strain rate of 

-4 -1
g

-3 -2ε  = 10  10  and 10  s,  are shown in figure 4-13. All have high correlation coefficient values, 

(> 0.87) and indicate a strong cycle-to-cycle similarity, but more similarity is observed at 

-2 -1
gε  = 10  s  regardless of the crystallographic texture of the specimen. It is hypothesized that the 

large amount of accumulated latent heat (more than 50°C) at a strain rate of -2 -1
gε  = 10  s  increases 

the relative amount of slip and results in stronger cycle-to-cycle similarity, in a similar manner to 

higher residual strain accumulation at faster strain rates and higher temperatures. 

 

 

 

 

(a) (b) (c) 

Figure 4-13 Correlation coefficient between reference cycle 5 and others (e.g. cycle 5-10, 5-25, 
and 5-50) at applied strain rates of -4 -1

g
-3 -2ε  = 10  10  and 10  s,  at the crystallographic textured 

specimen (a) RD, (b) 45°, and (c) TD. The higher applied strain rate shows stronger cycle-to-cycle 
similarity due to easier dislocation movement at higher temperature. 
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4.4. CONCLUSIONS  

Full-field methods were used to explore the effects of crystallographic texture on the 

formation of stress-induced martensite during the cyclic loading of Nitinol.  Three texture 

orientations from a cold-rolled 254µm thick sheet (RD, 45°, TD) were examined under 

displacement-controlled cycling at globally applied strain rates of -4 -3 -2 -1
gε  = 10 ,10 , and 10 s .  

• The RD and 45° test specimens were found to have crystallographic textures that were 

favorably oriented for large transformation strains, and the TD specimen had a 

crystallographic texture that was relatively unfavorably oriented for transformation.  

• The observed propensity of the TD specimen to nucleate more martensitic deformation bands 

than the RD or 45° specimens arises from the difference between the nucleation and 

propagation stresses. At a set strain rate, the TD specimen exhibited significantly higher 

nucleation (σN) and propagation (σP) stresses than the RD and 45° specimens. However, the 

difference between these stresses (σN - σP) was substantially smaller. Thus, the TD specimen 

was more inclined to nucleate a new deformation band in a cooler location, rather than 

propagate an existing deformation band in a location that had accumulated latent heat.  

• During stress-induced martensitic transformation, the TD specimen accommodated more 

average axial strain outside the (primarily martensite) deformation band, and less axial strain 

inside the band, compared to the more favorably orientated RD and 45° specimens. 

Otherwise stated, in the TD specimen, a ‘less strained’ deformation band propagated through 

a ‘more strained’ matrix during loading.  

• The pixel strain distribution (each pixel encompassing hundreds of grains and containing 

contributions from both martensite and austenite), once the deformation band had fully 
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propagated through the specimen, was remarkably similar from cycle to cycle. The 

(primarily) martensite region consistently showed a stronger cycle-to-cycle strain similarity 

than the (primarily) austenite region for all three globally applied strain rates and 

crystallographic textures.  

• Additionally, the strain similarity in the (primarily) martensite region evolved with cycling 

for all specimens and applied strain rates. For example, the similarity between cycles 25 and 

50 was larger than the similarity between cycles 1 and 50. This indicates that the dislocation 

networks and retention of martensitic nuclei continued to evolve, although to a reduced 

extent, as cycling progressed. 

• The cycle-to-cycle strain similarity was stronger in the TD specimen than in the RD and 45° 

specimens. The strong cycle-to-cycle strain similarity and the relatively smaller strains 

contained within the (primarily martensite) deformation bands of the TD specimen could be 

due to preferentially oriented microscale pockets of austenite transforming to martensite prior 

to band nucleation. These microscale pockets of transformed martensite, in a sea of heavily 

constrained grains, could then lead to a stronger cycle-to-cycle similarity in the strain 

accommodated by the martensitic transformation. This hypothesis and its relation to the 

variation in Schmid factors will be scrutinized in our current efforts to characterize 

martensitic transformation at the length scale of the microstructure. 

• In order to examine the effect of the amount of plastic deformation following phase 

transformation on cycle-to-cycle similarity, correlation coefficients between cycles were 

calculated for three image sets with an increasing amount of post-transformation plasticity. 

As the data was selected from increasingly strained images (A to C), higher correlation 

coefficients were observed because of the (diminishing) accumulation of plastic deformation 
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after completion of the stress plateau (macroscopic phase transformation). These results were 

consistently observed for specimens of all three crystallographic textures.  

• The accumulated latent heat under faster applied strain rates affects the evolution of cycle-to-

cycle similarity in the (macroscopically) martensite phase. It is hypothesized that the large 

amount of accumulated latent heat (more than 50°C) at faster strain rates increases the 

relative amount of slip and results in stronger cycle-to-cycle similarity, in a similar manner to 

higher residual strain accumulation.  
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Chapter 5 

The Effect of Cycling and Strain Rate on the Pseudoelastic 

Deformation of Nickel-Titanium 

In this chapter, the effect of applied strain rate and displacement-controlled cycling are 

examined through full-field strain and thermal mapping by three-dimensional Digital Image 

Correlation (3D-DIC) and infrared thermography, respectively. Transformation characteristics 

including the released (absorbed) latent heat during loading (unloading) and the relationship 

between transformation stresses and temperature were analyzed at strain rates of 

-2 -3 -4 -1
gε =10 , 10  and 10 s  during displacement-controlled loading to 50 cycles. Additionally, 

testing with holds between cycles (to remove accumulated absorbed latent heat from the previous 

cycle) was performed at an applied strain rate of -2 -1
gε  = 10  s  and differences between these 

“with-hold” tests and “without hold” tests are discussed. The evolution of martensitic volume 

fraction and the velocities of the martensitic bands and small offshoot branches are examined. 

 

5.1. Effect of Applied Strain Rate on Deformation and Thermal Response  

The macroscopic stress-strain curve of the as-received Nitinol and corresponding images 

of the strain and temperature fields in the gage section are shown in figure 5-1 through 5-3 at 
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applied strain rates of -4 -1
gε  = 10  s

, 
-3 -1

gε  = 10  s
, and -2 -1

gε  = 10  s  respectively. Strain values in 

the macroscopic curve ( AVG
YYε ) were calculated by averaging approximately 600,000 strain values 

in the gage section. In figure 5-1 at an applied strain rate of -4 -1
gε  = 10  s , the behavior was as 

follows: at AVG
YYε  < 0.0076 , the austenite phase was elastically loaded until the stress reached a 

nucleation stress for A->M phase transformation of σNM = 445 MPa, at which point a large 

localized band of martensite nucleated. The stress-induced martensitic band then propagated at a 

lower stress than the nucleation value (σPM = 413 MPa). The martensitic band was easily visible 

through DIC imaging, due to the large difference in the localized strain between the austenite and 

martensite phases. 

 Determining the start and finish points of transformation can be difficult, since as 

discussed earlier in this thesis, there is likely microscopic martensite in a ‘fully austenitic’ 

sample and vice versa. In order to consistently determine the start and finish points of the phase 

transformation while taking microscopic marensite (austenite) accumulation into consideration 

prior to A->M (M->A) transformation, a 0.1% linear off-set method was adopted to define four 

points, denoted as the martensite start, martensite finish, austenite start, and austenite finish. 

These points are shown as points 1, 6, 7, and 12, respectively in figure 5-1(a) and the procedure 

to determine them is shown in chapter 4, figure 4-6. Six pairs of DIC strain fields and IR thermal 

fields taken from the transformation plateau are shown and numbered from ① to ⑥ in figure 5-

1(b). Similarly, six pairs of images, from ⑦ to ⑫ in figure 5-1(b) show reverse phase 

transformation. In the microscopic view, we again note that A → M transformation occurs on the 
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microscopic level prior to the nucleation of large martensitic bands. Thus, we consider the elastic 

region of the austenite phase as ‘macroscopically’ austenite and similarly, the elastic region of 

the martensite phase as ‘macroscopically martensite,’ as a reminder that it is likely not fully 

saturated. A study by Brinson et al. [1] found that approximately 30 - 40% of a specimen 

remained austenite even when the stress-induced martensitic phase transformation was 

considered macroscopically complete.   

Figures 5-2 and 5-3 shown strain and thermal fields, respectively, from tests performed at 

globally applied strain rates of -3 -2 -1
gε  = 10 , and 10  s . Note that stress-induced martensitic phase 

transformation appears incomplete at the end of loading in the first cycle at a strain rate of 

-3 -1
gε  = 10  s , as evident in the stress-strain curve in Fig. 5-2 (a).  However, the completion of 

martensitic band propagation was verified by DIC-obtained strain field images. At the relatively 

slow strain rate of -4 -1
gε  = 10  s  (figure 5-1(a)), only one primary martensitic band nucleated and 

propagated, and the transformation plateau was nominally flat.  As the strain rate increased, more 

martensitic bands nucleated and the transformation plateau became increasingly inclined, as 

shown in figures 5-2 and 5-3. At a strain rate of -3 -1
gε  = 10  s , two martensitic bands nucleated 

and propagated during phase transformation as shown in figure 5-2(b), and the phase 

transformation plateau in figure 5-2(a) is inclined with a slope of approximately 1136 MPa. At 

an applied strain rate of -2 -1
gε  = 10  s , approximately five martensitic bands nucleate, and the 

phase transformation plateau is further inclined with the slope of approximately 3204 MPa as 

seen in figure 5-3.  The inclination of the stress plateau during transformation is directly related 

to the temperature of the specimen. The difference of the maximum and minimum local 
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temperatures in the specimen during the first cycle is 4.3 °C ( -4 -1
gε  = 10  s ), 19.9 °C 

( -3 -1
gε  = 10  s ), and  >39.5 °C ( -2 -1

gε  = 10  s ). Note that the maximum local temperature in the 

first cycle at -2 -1
gε  = 10  s  is >50 °C, but the exact value was unable to be measured due to a 

50°C maximum resolution limit on the infrared camera. The high temperature gradients at fast 

strain rates, caused by the accumulation of the latent heat during martensitic phase 

transformation, results in an increase in the transformation stress and an increase in the stress 

required for the nucleation of the martensitic band (σNM). Observation of the full-field strain 

maps at each globally applied strain rate, from figures 5-1(b), 5-2(b), and 5-3(b), shows 

increasing homogenization of the strain across the specimen surface. Additionally, the 

temperature maps show higher local and global temperatures with an increase in applied strain 

rate. It is known that at faster strain rates, these temperature gradients cause a preference for the 

nucleation of new martensite bands at a cooler location away from a propagating band that has 

accumulated latent heat. An increased nucleation of martensitic bands with higher strain rates is 

expected given the known interaction between latent heat and band nucleation [2].  
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(a) (b) 

Figure 5-1 (a) Macroscopic stress-strain curve of cycle 1 a globally applied strain rate of -4 -1
gε  = 10  s  and crystallographic 

texture in the rolling direction of the sheet. (b) DIC and IR images show full-field and quantitative maps of the strain and 
temperature in the gage section of the sample during phase transformation, corresponding with numbers (from ① to ⑫) on the 
stress-strain curve, in the first cycle. At a slow strain rate, only one large martensitic band nucleates and propagates, with small 
martensitic branches offshoots that cause small fluctuations in the stress-strain curve. 
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(a) (b) 

Figure 5-2 (a) Macroscopic stress-strain curve of cycle 1 at a globally applied strain rate of -3 -1
gε  = 10  s  and crystallographic 

texture in the rolling direction of the sheet. (b) DIC and IR images show full-field and quantitative maps of the strain and 
temperature in the gage section of the sample during phase transformation, correspond with numbers (from ① to ⑫) on the 
stress-strain curve. Two martensitic bands nucleate and propagate. The accumulation of latent heat results in an inclined stress 
plateau in the stress-strain curve. 
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(a) (b) 

Figure 5-3 (a) Macroscopic stress-strain curve of cycle 1 at a globally applied strain rate of -2 -1
gε  = 10  s  and crystallographic 

texture in the  rolling direction of the sheet. (b) DIC and IR images show full-field quantitative maps of the strain and 
temperature in the gage section of the sample during phase transformation, corresponding with numbers ① to ⑫ on the stress-
strain curve. More than four martensitic bands nucleate and propagate. Higher accumulation of latent heat results in an inclined 
stress plateau in the stress-strain curve. 
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5.2. Effect of Cycling and Strain Rate 

The combined effects of applied strain rate and cycling are shown for 

-4 -1 -3 -1 -2 -1
gε  = 10  s , 10  s  and 10  s  in figures 5-4 (a) through (c).  Comparison between figures 5-

4(a) through (c) shows the effect of strain rate, and each plot individually shows the effect of 

cycling at a set strain rate. At each strain rate, the stress required to nucleate and propagate 

martensitic bands decreases and the amount of residual strain increases with cycling. However, 

the rate of decrease in the nucleation/propagation stresses and the rate of increase of residual 

strain become smaller with cycling. These cycling effects agree with many previous cyclic 

studies [1, 3-9]. The shape of stress-strain curves becomes smoother with cycling as a result of 

more spatial homogeneity in phase transformation evident through DIC imaging. These cycling 

effects are particularly pronounced at an applied strain rate of -2 -1
gε  = 10  s , which will be 

discussed in the chapter.  

 (a) 
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(b) 

(c) 

Figure 5-4 Macroscopic stress-strain curve of cycles 1, 2, 5, 10, 25, and 50 at a globally applied 
strain rate of (a) -4 -1

gε  = 10  s , (b) -3 -1
gε  = 10  s  and (c) -2 -1

gε  = 10  s . Crystallographic texture is in 
the rolling direction of the sheet and phase transformation start and finish points, shown as purple 
stars, are defined through a 0.1% offset from linearity. 
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The elastic modulus of the austenite and martensite phases at -4 -1
gε  = 10  s  and varied 

cycle number (N) are tabulated in Table 1. These are calculated by linear fits to the austenite and 

martensite loading portions of the macroscopic response. The elastic moduli of both the austenite 

and martensite phases decrease as cycling increases, both during loading and unloading. Liu [10] 

observed a similar value of the austenite elastic modulus in the first loading cycle and a similar 

amount of decrease in the austenite elastic modulus after ten cycles. Mao et al. [11] attributed 

this softening of austenite elastic modulus to grain reorientation and development of 

defects/dislocations during mechanical cycling. This decrease in the austenite elastic modulus 

could also be enhanced by increased pockets of residual martensite that form with cycling.  The 

martensitic elastic modulus also decreases with cycling, also likely due to the development of 

defects and dislocations. However, note that in the 50th cycle the elastic modulus of the 

martensite phase increases slightly from cycle 25, by approximately 1 MPa; here, the phase 

transformation plateau is shortened and more plasticity is accumulated in martensite under the 

displacement-controlled test. 

 
Table 5-1 The elastic modulus of austenite and marteniste during loading and unloading at a 
globally applied strain rate of -4 -1

gε  = 10  s  and crystallographic texture in the rolling direction of 
the sheet. 

 

Austenite 
Loading 
[GPa] 

Martensite 
Loading 
[GPa] 

Martensite 
Unloading 

[GPa] 

Austenite 
Unloading 

[GPa] 
Cycle 1 60.45 21.56 30.58 57.69 
Cycle 2 58.25 21.75 30.70 58.83 
Cycle 5 57.94 20.25 30.21 56.35 
Cycle 10 55.70 17.53 28.94 54.62 
Cycle 25 52.41 16.61 26.94 47.66 
Cycle 50 49.83 17.97 27.62 43.23 
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The stress required to nucleate localized martensitic band(s), the amount of hysteresis, 

and the accumulation of residual strain were examined in the context of the effect of cycling and 

strain rate on the macroscopic stress-strain response. As seen in figure 5-4, the residual strain (εP) 

accumulates as cycling progresses. It is hypothesized that dislocation hardening with cycling 

results in a rise in stress required for slip, while at the same time the stress required for phase 

transformation decreases with cycling [3, 4]. Thus, the transformation stress becomes 

increasingly dominant, resulting in the increment of accumulated residual strain decreasing with 

cycling. Secondly, the amount of residual strain accumulation (εP) increases as the applied strain 

rate increases. The greater global and local temperature increases caused by a faster applied 

strain rate causes an increase in the stress required for transformation. However, the resolved 

shear stress for slip decreases as temperature increases due to the thermal activation of 

dislocation motion. As a result, the difference between stresses required for slip and 

transformation becomes lower as the strain rate increases [3, 4]. Consequently, cycling or 

decreasing the strain rate, as seen in figure 5-5, causes a decrease in the amount of residual strain. 

In figure 5-5, the increment in accumulation of the residual strain at a set strain rate decreases 

with cycling, and a large amount of residual strain is evident as the strain rate is increased. 

One of the advantages of this experimental approach is that the nucleation stress of the 

first martensitic band can be accurately obtained within ±15 MPa (due to discrete image) through 

full-field strain mapping. By using this method, the critical stresses and strains (globally 

averaged across the image) for the nucleation of the first martensitic band are tabulated in Table 

5-2 for all applied strain rates and cycles. Note that the nucleation stress could not be determined 

at select points, due to the inherently fuzzy and criss-cross character of the martensitic bands 

under certain loading conditions that combine high cycle number and fast strain rates; these are  
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Table 5-2 The strain and stress required for nucleation of the localized martensitic bands during 
loading at various strain rates and cycling, determined from full-field strain mapping. Note the 
particularly large drop in nucleation stress at a strain rate of 10-2, due to decreased specimen 
temperature by absorbed latent heat from cycle 1. 

Strain 
Rate 10-4 s-1 10-3 s-1 10-2 s-1 

Cycle AVG
YYε  [%] σNM [MPa] AVG

YYε  [%] σNM [MPa] AVG
YYε  [%] σNM [MPa] 

1 1.07 415 1.17 450 1.19 474 
2 1.07 402 1.20 427 1.24 368 
5 1.15 390 1.29 412 N/A N/A 
10 1.40 370 1.69 390 N/A N/A 
25 1.86 336 N/A N/A N/A N/A 
50 2.06 300 N/A N/A N/A N/A 

Figure 5-5 Accumulation of a residual strain at -4 -1 -3 -1 -2 -1
gε  = 10  s , 10  s  and 10  s  for a specimen 

with crystallographic texture in the rolling direction of the sheet. At a set applied strain rate, the 
increment of the residual strain decreases with cycling. Residual strain accumulates more 
quickly at faster strain rates. 
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denoted as N/A. At a set strain rate, the nucleation stress decreases with cycling as observed and 

explained in the macroscopic stress-strain data. As the strain rate increases, the stress required 

for nucleation of the martensitic band increases. Though many values cannot be measured at 

global strain rate of -2 -1
gε  = 10  s  due to strain homogenization, the nucleation stress shows a 

large drop between cycle 1 and 2. It is hypothesized that this large drop is caused by decreased 

specimen temperature at beginning of cycle 2 due to absorbed latent heat in unloading process of 

cycle 1. This latent effect from previous cycle is examined in detail in chapter 5.3.  

A high damping capacity, characterized by the amount of hysteresis in the macroscopic 

response, is used in seismic protection and vibration isolation applications of Nitinol [12-15]. In 

order to examine the damping capacity, the energy is calculated as the area under the stress-strain 

curve during loading and unloading. Energy is dissipated when the specimen is loaded and 

absorbed when the specimen is unloaded. The amount of dissipated (loading) and absorbed 

(unloading) energy is shown in figure 5-6(a) and (b), respectively. The hysteresis is obtained as 

the difference of the dissipated and absorbed energies, and is shown in figure 6(c). Note that the 

amount of energy is calculated from the stress-strain curves and is affected by the maximum 

deformation (strain). Note that due to a limited number of samples and a strong dependence of 

the length of the stress plateau on applied strain rate and crystallographic texture, it was difficult 

to know apriori the displacement limit to set in order to obtain optimal transformation, i.e. 

transformation completion without unwanted plasticity. Although it was confirmed that the 

martensite band(s) propagated fully through the gage section by the full-field DIC images, please 

note that the maximum strain at -3 -1
gε  = 10  s  was smaller than that at other strain rates by a 

significant amount (0.55%), thus the amount of both the dissipated and stored energy could be  
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(a) 

(b) 
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larger than the amount of energies in figure 5-6 (a) and (b). A significant amount of energy is 

dissipated at -2 -1
gε  = 10  s  in the first cycle, but the amount of dissipated energy at -2 -1

gε  = 10  s  

drops continuously and crosses below that of -3 -1
gε  = 10  s  and -4 -1

gε  = 10  s  around the fifth 

cycle. After the fifth cycle, the amount of dissipated energy at each strain rate is relatively the 

same, though they all continue to continuously decrease with cycling. The dissipated and 

absorbed energy at -2 -1
gε  = 10  s  substantially drop between cycle 1 and 2. 

 

Figure 5-6 (a) Dissipated energy during loading, (b) absorbed energy during unloading, and (c) 
stored energy, hysteresis for texture in the rolling direction of the sheet. The energy of (a) and (b) 
is calculated as the area under the stress-strain curve during loading and unloading, respectively. 
The hysteresis indicates a damping capacity for use of NiTi in seismic protection and vibration 
isolation applications. 

(c) 
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5.3 Effect of Accumulated Latent Heat between Cycles 

Tests were undertaken to examine the effect of a hold time in between cycles on the 

macroscopic stress-strain behavior. The hold time acted to remove the effect of latent heat 

accumulation from prior cycles from the observed macroscopic response. A strain rate of 

-2 -1
gε  = 10  s

 was chosen for these tests because of the relatively rapid accumulation of latent heat.  

It was found that the macroscopic stress-strain curves that were obtained from testing without 

holding in-between cycles generally had a lower stress level than those with holding; if one 

attributes this difference to temperature alone, and does not consider plasticity, this means that 

the samples without holding are in fact cooler at the beginning of subsequent cycles (e.g. cycle 2) 

than those with holding – thus meaning the ‘with hold’ samples find it easier to dissipate heat 

instead of absorb heat. 

In order to quantify the accumulated absorbed latent heat, the average temperature in the 

gage section of the specimen was obtained by averaging all temperature values (pixels) of the IR 

images. Let us first examine the tests with no holding between cycles, as shown in figure 5-7(a) 

for a relatively fast globally applied strain rate of -2 -1
gε  = 10  s , the averaged temperature of the 

specimen at the start of testing prior to cycle 1 was 18.3 °C. However, the temperature at the end 

of cycle 1 was 13.0°C, as the applied strain rate was too fast to allow the absorbed latent heat 

form the M->A transformation to equilibriate with the ambient environment. Because the latent 

heat cannot equilibriate effectively, the average temperature at the beginning of cycle 2 was then 

13.0 °C. This relative decrease in the average specimen temperature at the start of cycle 2 

decreases the transformation stress, causing the large drop of stress required for nucleation and 

the decrease in the amount of dissipated energy observed in figure 5-6(a).  
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To remove the effect of latent heat on the cycling dependence of the macroscopic stress-

strain response, testing at an applied strain rate of -2 -1
gε  = 10  s  with a hold time of 1800 seconds 

between cycles was performed in order to remove the effect of absorbed latent heat from the 

previous cycle. The averaged temperature of the specimen gage section is plotted with respect to 

the averaged applied strain in figure 5-7(b). Because the hold time between cycles allowed the 

latent heat absorbed from the M->A transformation to equilibriate, the start temperature of the 

specimen gage section was stable at approximately 20.8 °C at the start of every cycle. The 

corresponding macroscopic stress-strain curve of this ‘with-hold’ test is shown in figure 5-8. 

Though a large drop of the transformation stress between cycle 1 and cycle 2 is observed in the 

macroscopic curves of the without hold test (figure 5-4(c)), there is a relatively small drop of the 

transformation stress in the with-hold test (figure 5-8). All stress-strain curves (except cycle 1) in 

the with-hold test show a higher transformation stress than those in the without-hold test.  

The dissipated/absorbed energy and hysteresis of the with-hold test as a function of 

cycling is shown in figure 5-9. The amount of dissipated energy quickly drops until cycle 10, at 

which point it begins to level out. The amount of dissipated energy at -2 -1
gε  = 10  s  stays 

consistently larger than that at other strain rates ( -3 -1
gε  = 10  s  and -4 -1

gε  = 10  s ) regardless of 

cycle number (recall that this is with-hold; hence the specimen begins at a stable temperature at 

the start of every cycle, which results in a higher dissipation of energy as it does not have the 

advantage of starting from a cooler state). Though the amount of stored energy at each strain rate 

cannot be compared due to different maximum deformation as explained earlier, the tendency of 

stored energy with cycling is nominally similar regardless of the strain rate. Compared to the 

without-hold test, the amount of both dissipated and stored energy in with-hold test is larger, thus  
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(a) 

(b) 

Figure 5-7 Averaged temperature as a function of averaged axial strain in the gage section of the 
specimen for all cycles at -2 -1

gε  = 10  s  (a) with no holding between cycles, and (b) with a 1800 
second hold time between cycles. 
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the amount of hysteresis between the without-hold and with-hold tests is relatively constant. The 

large drop of the transformation stress and amount of dissipated energy between cycles 1 and 2 

in the without-hold test is likely due to the absorbed latent heat from cycle 1, causing a cooler 

specimen temperature at the start of cycle 2. However, the fast degradation of these factors still 

exist at applied strain rate of -2 -1
gε  = 10  s  due not only to the effect of residual latent heat from 

previous cycles but also to the pure effect of strain rate without the accumulated latent heat from 

the previous cycle. 

 
 
 

Figure 5-8 Macroscopic stress-strain curves as a function of cycling, at a globally applied strain 
rate of -2 -1

gε  = 10  s . A hold of 1800 seconds is prescribed between each cycle. Specimen 
crystallographic texture for these tests is in the rolling direction of the sheet. 
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(a) 

(b) 
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In both the with-hold and without-hold tests, an interesting result was observed with 

regard to the location of the first new martensitic band at cycle 2. Generally, the nucleation of the 

martensitic phase transformation has been considered as random in the absence of a defined 

stress concentration. However, in the without-hold tests, it was observed that the location of the 

first new martensitic band at cycle 2 was consistently close to the location where the reverse 

phase transformation completed in cycle 1, as shown in figure 5-10(a). The location of the last 

coalescence of reverse phase transformation is usually near the fillets of the gage section due to 

stress concentration. Figure 5-10(a) shows the strains calculated down the center line of the at 

two points in time, the end of reverse phase transformation during cycle 1 (black line), and the 

Figure 5-9 The following values, calculated for a test at -2 -1
gε  = 10  s   with a 1800 second hold 

between each cycle: (a) dissipated energy during loading, (b) absorbed energy during unloading; 
and (c) hysteresis. The amount of both dissipated and stored energy in with-hold test increases over 
without-hold test, thus the amount of hysteresis between without-hold and with-hold tests is 
relatively the same. 

(c) 
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beginning of the martensitic phase transformation during cycle 2 (red line). Though two 

martensitic bands concurrently nucleate at the beginning of cycle 2, the right side band is near 

the position of the last reverse transformation. In contrast, in the with-hold test, the location of 

the first martensitic band at cycle 2 is the middle of the specimen regardless of the location 

where the reverse phase transformation completed at cycle 1. Without holding, the lower local 

temperatures from the latent heat of cycle 1 affects the location of the first martensitic band at 

cycle 2 because the stress required to nucleate the martensitic band decreases with the decrease 

of temperature. In order to examine this hypothesis, the line temperature down the center line of 

the specimen was extracted from the IR image of 0.5 second before the first band nucleates. Both 

the line strain and the line temperature where the first bands nucleate and 0.5 second before, 

respectively are shown in figure 5-10(b). It is evident that the martensitic transformation starts at 

a location with a minimum in local temperature, located at the top of the specimen. This 

observation is consistent across all textures (RD, 45°, TD) at strain rate of -2 -1
gε  = 10  s . 

Consequently, at fast strain rate, it is anticipated where the martensitic phase transformation 

initiates by the location of the last reverse phase transformation in the previous cycle. 
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(a) 

(b) 

Figure 5-10 In a without-hold test at an applied strain rate of 10-2: (a) strains down the center line 
of the specimen at the end of reverse phase transformation in cycle 1 (black) and at the beginning 
of the martensitic phase transformation in cycle 2 (red) and (b) strain (black) where the first 
martensitic bands nucleate in cycle 2 and line temperature (red) at 0.5 second before where the first 
martensitic bands nucleate. The martensitic transformation starts at the lower local temperature. 
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5.4. The Relationship between Transformation Stress and Temperature 

Surface temperature changes have been tracked in past research in order to observe the 

stress-induced martensitic phase transformation by their released (absorbed) latent heat during 

forward (reverse) phase transformation [5, 16, 17]. Although the latent heat released (absorbed) 

is generally assumed to be where the A->M (M->A) phase transformation occurs, the locations 

of maximum and minimum latent heat was verified in these tests. In these tests, it was found that 

the latent heat is maximally released (absorbed) at the phase boundary during loading 

(unloading).  

The relationship between transformation stress and local temperature is examined 

through the full-field, corresponding strain and temperature maps. It is first shown that the local 

maximum (minimum) temperatures closely follow the phase boundaries during loading 

(unloading), independent of the applied strain rate and cycling. The maximum (minimum) 

temperature of the specimen is on the boundary of the martensitic band during loading 

(unloading) as shown in figure 5-11 for cycles 1 and 50, at all three strain rates. The pixels of the 

maximum and the minimum temperatures in the IR images are aligned and overlaid on the DIC 

images (using white and black pixels, respectively), and the maximum (minimum) temperature at 

every image is close to the boundary of the transformation bands as indicated in the red circles in 

figure 5-11. At an applied strain rate of -4 -1
gε  = 10  s , a small degree of error appears because the 

temperature difference is only 3.9 °C. However, as the applied strain rate increases and the 

temperature difference increases (to 19.7 °C and 39.6 °C at strain rates of -3 -1
gε  = 10  s  and 

-2 -1
gε  = 10  s  respectively), the peak temperatures and phase boundary match well. Note that in 
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figure 5-11, there exist possible errors including the difference between DIC and IR images 

resolution at ±1.14 mm spatial error, specimen alignment error, and IR camera sensitivity. 

  

 

Figure 5-11 Strain field images overlaid with the maximum (minimum) temperatures determined 
from IR imaging during A->M (M->A) transformation. The locations of maximum and minimum 
temperature are indicated by white and black pixels, respectively. The globally applied strain rate is 
(a) -4 -1

gε  = 10  s , (b) -3 -1
gε  = 10  s  and (c) -2 -1

gε  = 10  s . The maximum and minimum temperatures 
amass at the phase boundary during both loading and unloading. 

(c) (b) (a) 
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Macroscopic stress–strain curves (from DIC-averaged data) are overlaid with both the 

maximum/minimum temperature-strain curves, and shown in figure 5-12 for the three applied 

strain rates. Note that only the maximum temperature is shown during loading and only the 

minimum temperature is shown during unloading. Though temperature changes at -4 -1
gε  = 10  s  

(figure 5-12(a)) are relatively small at ~4 °C, the fluctuation of peak temperature directly 

corresponds to the stress peaks observed in the macroscopic stress–strain curve. When the 

localized martensitic band nucleates upon loading, the maximum temperature jumps 

approximately 0.9°C from the accompanying release of latent heat. When small branches 

nucleate at the end of the primary boundary of the localized band, stress and maximum 

temperature fluctuate together during loading, shown at select points by arrows in figure 5-12(a). 

Similarly, the coalescence of two martensitic bands during unloading causes a substantial stress 

rise and a corresponding drop in the minimum temperature due to latent heat absorption. There 

also exists a continuous temperature drop during the A  M transformation at -4 -1
gε  = 10  s  from 

the effective dissipation of released latent heat into the ambient environment (air). A large jump 

in the maximum temperature is clearly observed at all applied strain rates whenever the localized 

martensitic band nucleates, as seen in figures 5-12 (a) through (c). Because the maximum 

temperature at -2 -1
gε  = 10  s  increases to > 50 °C, which is above the capacity of the IR camera, 

the maximum temperature >50°C could not be obtained in the region indicated by the arrow and 

dotted box ( AVG
YYε  = 6.0% to 6.9% ). The accumulated latent heat strongly increases specimen 

temperature during loading at fast strain rates because there is not enough time to escape released 

latent heat. This increasing temperature of the specimen in turn increases the stress required for 

phase transformation, which is evident in the macroscopic stress-strain curve. 
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The larger amount of accumulated latent heat at faster strain rates significantly raises the 

stress required for phase transformation. To quantitatively investigate the relation between 

transformation stress and latent heat, the phase transformation stress (σ†) and temperature (T†) 

are examined, where σ† and T† refer to the global stress and the maximum temperature 

(corresponding to the temperature at the phase front during transformation). In order to define 

these variables, the 0.1 % linear offset method described in chapter 4.2 was used to determine the 

start and end of the transformation plateau in the stress-strain curve, and the local temperature 

(c) 

Figure 5-12 Macroscopic stress-strain curve overlaid with temperature-strain plots for the 
maximum (loading) and minimum (unloading) temperature at a globally applied strain rate of (a) 

-4 -1
gε  = 10  s , (b) -3 -1

gε  = 10  s  and (c) -2 -1
gε  = 10  s . A large jump in the maximum temperature is 

observed at all strain rates with the nucleation of a localized martensite band. The nucleation of 
small branches from the primary martensite band directly corresponds to the fluctuation in stress 
and temperature values at the applied strain rate of -4 -1

gε  = 10  s . 
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and global stress values of the phase transformation section were extracted from the IR imaging 

and load data, respectively. The σ† and T† values are plotted in figure 5-13 during loading and 

unloading for the applied strain rates of -3 -1
gε  = 10  s  and -2 -1

gε  = 10  s . The linear regions in the 

σ† - T† plots shown in figure 5-13 indicate macroscopic phase transformation proceeding by 

large localized martensitic bands, and the non-linear regions indicate microscopic phase 

transformation before the nucleation of large localized bands of martensite (austenite) during 

loading (unloading). Note that due to an IR camera limitation, a small set of the temperature data 

is erroneously limited to 50°C; this region is indicated by the red dotted box and arrow in figure 

5-13(c). The σ† - T† slopes in figures 5-13 (a) – (d) are calculated using only the linear portion of 

the plot (the macroscopic phase transformation proceeding by deformation bands), and these 

slopes are tabulated in table 5-3. The dσ†/dT† slope is an indicator for how much more difficult 

(easy) phase transformation becomes as latent heat accumulates (absorbs or escapes) during 

loading (unloading). Note that dσ†/dT† during loading at -3 -1
gε  = 10  s  is nominally the same for 

all cycles except the second cycle, in which its value undergoes a big drop. During the second 

cycle at -3 -1
gε  = 10  s , three major martensitic bands and small offshoot branches appear, which 

causes the specimen temperature to increase. However, because the stress required for 

propagation is smaller than the stress required for nucleation, the stress reduces in value. The 

temperature rise from the numerous band nucleations and the simultaneous stress drop result in 

drop in dσ†/dT† during the second cycle at -3 -1
gε  = 10  s . As cycling increases, the change in 

maximum temperature (on the phase front) dT† decreases because of an increased number of 

martensitic bands and a more spatially homogeneized transformation. However, the change in 

global stress required for transformation, dσ†, increases with cycling during loading showing 



129 
 

slightly inclined stress plateau as shown in figures 5-4(b) and (c). Thus, dσ†/dT† increases as 

cycling increases. This cycling effect during loading is more evident at faster strain rates as 

shown in table 5-3 because of more residual martensite and more homogenization of 

macroscopic phase transformation at faster strain rates. As the applied strain rate increases, both 

dσ† and dT† increase during loading because greater accumulated latent heat trapped during 

phase transformation. During unloading, dσ†/dT† is not affected by cycling as evidenced by the 

much more stable stress for reverse phase transformation under cycling. 

Table 5-3 Tabulated values of dσ†/dT† at the applied strain rate of -3 -1
gε  = 10  s  and -2 -1

gε  = 10  s . 

 dσ†/dT† [MPa/°C] 

Strain Rate 10-3 s-1 10-2 s-1 

Cycle Loading Unloading Loading Unloading 
1 6.4 18.3 5.3 16.5 
2 3.3 16.8 7.2 17.5 
5 6.2 17.7 8.2 18.3 
10 6.6 17.6 8.8 18.7 
25 6.9 17.1 11.7 20.5 
50 8.6 17.4 12.8 21.1 
 

5.5. Martensitic Volume Fraction 

A estimate of the evolution of the martensitic volume fraction is obtained using a rule of 

mixtures, where each of the nominally 600,000 strain values in the image are taken and each 

binned by a rule of mixtures into a percentage austenite and a percentage martensite. Note that 

this is an estimate of evolution, and because it relies of the local strain values as an indicator of 

transformation, comparing between tests on specimens with different crystallographic textures is 

not valid. First, four critical strain points, Ms, Mf, As and Af, are calculated using a 0.1% offset 
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(a) (b) 

(c) (d) 

Figure 5-13 The global stress at phase transformation (σ†) versus maximum (minimum) temperature (T†) located at the phase 
boundary upon loading (unloading), plotted (a) during loading at -3 -1

gε  = 10  s , (b) during unloading at -3 -1
gε  = 10  s , (c) during 

loading at applied -2 -1
gε  = 10  s , and (d) during unloading at -2 -1

gε  = 10  s . The slope, dσ†/dT†, shows the effect of latent heat on 
the difficulty of transformation.  
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from the relevant linear region on the macroscopic stress-strain curve. Ms and Mf are the starting 

and finishing data points of martensitic phase transformation during loading, and As and Af are 

the starting and finishing data points of austenitic phase transformation upon unloading. These 

four points determine whether a pixel is considered as pure austenite, pure martensite or a value 

between austenite and martensite. The values of Ms, Mf, As and Af change with experimental 

conditions, such as cycling number and strain rate, and need to be redetermined. The martensitic 

volume fraction is obtained at each individual image, which consists of approximately 600,000 

pixels of gage section, by a rule-of-mixtures approach,  

M
M

Total

N
N

δ =    (Eqn. 10) 

where NM is the amount of martensite in all of the pixels and NTotal is the total number of pixels 

in the image. The sum amount of martensite in all of the pixels (NM) consists of the sum of MP 

and MT, where MP is the number of pure martensite pixels and MT is the summed martensite 

fraction of the pixels that are considered as partially martensite, 
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The results at -4 -3 -2 -1
gε  = 10 , 10 , and 10  s  are shown in figures 5-14 through 5-16, 

respectively. At each set strain rate, cycling affects the evolution of martensitic volume fraction. 
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The stresses required for the nucleation and propagation of martensite decrease because of 

increasing residual martensite nuclei and the establishment of dislocation networks, as previously 

discussed. However, the evolution of martensitic volume fraction during unloading is not 

significantly affected by cycling, consistent with the observation that the stress for M->A phase 

transformation during unloading stays nominally stable with cycling. An increased strain rate 

also decreases the slope of the stress – volume fraction curve during phase transformation. At an 

applied strain rate of -4 -1
gε  = 10  s , the linear region of martensite volume fraction is nominally 

parallel with the y-axis, but the slope of this linear region decreases as strain rate increases due to 

increasing stress plateau in the stress – strain curve caused by accumulated latent heat. During 

loading, the nucleation stress of martensite is higher at a faster strain rate at the first cycle 

because of simultaneous nucleation of multiple martensitic bands due to local temperature 

gradient by released latent heat. However, the nucleation stress at the applied strain rate of 

-2 -1
gε  = 10  s  is lower than the nucleation stress at -4 -1

gε  = 10  s  and -3 -1
gε  = 10  s  in cycle 50 due 

to more pronounced cycling effect at faster strain rates.  

 

5.6. Velocity of Martensitic Front 

The velocity of martensitic bands during loading at -3 -1
gε  = 10  s  is obtained and 

compared with the previous result (chapter 3.1) for a single martensitic band during loading at 

-4 -1
gε  = 10  s , as shown in figure 5-17. At a globally applied strain rate of -4 -1

gε  = 10  s , only one 

front nucleated with small off shoot branches and the velocity of front was calculated as 0.04 

mm/s (chapter 3.1). For the applied strain rate of -2 -1
gε  = 10  s , because several fronts and 
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(a) 

(b) 

Figure 5-14 The evolution of martensite volume fraction of all cycles at the applied strain rate of 
-4 -1

gε  = 10  s  upon (a) loading and (b) unloading. The linear line of martensite volume fraction is 
nominally parallel to the y-axis and the stress for transformation during loading decreases with 
cycling coinciding the macroscopic response. The evolution of martensitic volume fraction 
during unloading is not significantly affected by cycling. 
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(a) 

(b) 

Figure 5-15 The evolution of martensite volume fraction of all cycles at the applied strain rate of 
-3 -1

gε  = 10  s  during (a) loading and (b) unloading. The slope of the linear (transformation) region 
becomes inclined and the stress for transformation during loading decreases with cycling 
coinciding the macroscopic response. The evolution of martensitic volume fraction during 
unloading is not significantly affected by cycling. 
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(a) 

(b) 

Figure 5-16 The evolution of martensite volume fraction of all cycles at the applied strain rate of 
-2 -1

gε  = 10  s  during (a) loading and (b) unloading.  The slope of the linear (transformation) region is 
further inclined from figure 5-15 due to accumulated latent heat, and the decrease in stress for 
transformation during loading with cycling. The evolution of martensitic volume fraction during 
unloading is not significantly affected by cycling. 
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branches nucleate and coalesce in a short amount of time, the velocity of the front at -2 -1
gε  = 10  s  

is not feasible to calculate. At the applied strain rate of -3 -1
gε  = 10  s , two major martensitic fronts 

nucleate and propagate with three small off shoot branches during the first loading cycle. The 

schematic on the right side of figure 5-17 shows the identification of fronts and branches: the 

lower major front is denoted by Front A, the upper major front is denoted by Front B, the 

branches are denoted by Branch a, b, and c as follow the order of nucleation. There are two 

boundaries to each front or branch, denoted as the upper (+) and lower (-) boundary. The 

velocities of all boundaries are measured perpendicular to the linear line of the boundary and the 

front propagation direction is taken as positive. The sum of absolute values of V- and V+ of each 

front and branch are calculated as -  i i iV V V += +  where i denotes a specific front or branch.  All 

front and branch velocities are shown in the figure 5-17. 

The major fronts (A and B) interact with each other. During the propagation of front A, 

which nucleates at an average strain of AVG
YYε  = 0.0117 , front B nucleates at the upper right of the 

specimen at an average strain of AVG
YYε  = 0.0133 . When front B nucleates, the velocity of front A 

immediately decreases from 0.344 mm/s to 0.058 mm/s while the starting velocity of Front B is 

extremely fast at 0.416 mm/s  as shown in figure 5-17.  During the propagation of the two fronts, 

this trend continues: if the velocity of one front increases, the velocity of the other decreases. 

After an average strain of AVG
YYε  = 0.0484 , which is after dash-dot line with an arrow in figure 5-

17, both front A and B velocities decrease because the upper boundary of front B (VB
+) and the 

lower boundary of front A (VA
-) exit the analyzed region. Though all of the branch velocities are 

relatively slow in comparison to front velocities, one of the two front velocities slowed whenever 
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a new branch nucleated, as shown by the labeled points in ① - ③ in figure 5-17. Some velocities 

of branches are negative because propagation of these branches is relatively smaller compared to 

the displacement of the specimen. For example, while the bottom of branch c remains stable, the 

specimen is still elongated upwards. In this case, the velocity of branch c is expressed by 

negative value.  

 
 

 
 

 
 

 

Figure 5-17 The velocities of the localized stress-induced martensitic bands and offshoot 
branches from the bands, during loading at the applied strain rate of -3 -1

gε  = 10  s . During the 
propagation of two front, If the velocity of one front increases, the velocity of the other 
decreases. The nucleation of the offshoot branches will cause a decrease in one of the front 
velocities. 
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A small graph of front velocity at the applied strain rate of -4 -1
gε  = 10  s  is inserted in 

figure 5-17 at the top right of the macroscopic stress-strain curve. The velocity of the single front 

that nucleates and propagates at -4 -1
gε  = 10  s  is measured before the nucleation of small off shoot 

branches from that front. Its average velocity is 0.04 ± 0.005 mm/s. At the applied strain rate of 

-3 -1
gε  = 10  s , the average front velocity is 0.18 mm/s. Shaw and Kyriakides [2] defined an 

equation of the velocity of fronts with an assumption of propagating two fronts at the same 

constant velocity  as 

tnc ε δ∆ =        (Eqn. 13) 

where n is the number of fronts, c is constant speed of propagating fronts, tε∆  is the change of 

strain during the stress plateau, and δ  is the applied displacement rate. Based on the equation 13, 

another equation is defined considering the velocity of branches and relationship between 

propagating fronts and branches. Because two major bands exist at -3 -1
gε  = 10  s , the equation for 

velocity is defined as  

1 2
2 2 1 1

2 1

( )NV v V v
N

ε
ε

+ = × × +



      (Eqn. 14) 

where V is the average front velocity, v is the average branch velocity, N is the number of fronts, 

and ε  is the globally applied strain rate. The subscript 1 denotes a nominally quasi-static 

experiment and the subscript 2 denotes an experiment at faster applied strain rate. Here, the 

results are fit into equation (14) as follows,  
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


 (Eqn. 15) 

2 2 0.18 0.018 0.198V v+ = + =   (Eqn. 16) 

Here, the velocity of front is closely related with the number of fronts, strain rate, and 

nucleation of branches. This equation was verified at applied strain rate of -4 -3 -1
gε  = 10  and 10  s . 

However, it is difficult to verify at applied strain rate of -2 -1
gε  = 10  s  due to the limited frame 

rate of image at this strain rate. Thus, this equation needs to be verified with further testing at 

faster strain rate with enough frame rates. 

 

5.7. Conclusions 

In this chapter, phase transformation during superelastic deformation in the shape 

memory alloy Nitinol is examined experimentally by simultaneous strain and thermal mapping.  

The effect of displacement-controlled cycling (N=1, 2, 5, 10, 25, 50) and three different globally 

applied strain rates ( -2 -3 -4 -1
gε =10 , 10  and 10 s ) is investigated. Full-field and quantitative 

measures of surface strain and temperature are analyzed to investigate the effects of cycling and 

strain rate on the stress required for phase transformation, amount of energy dissipation, 

accumulation of residual strain, and the relationship between local temperatures at the phase 

boundaries and the globally applied stress. During cycling, the transformation stress, hysteresis, 

difference between maximum and minimum temperatures, and the increment in accumulated 

residual strain decrease as the transformation becomes more homogeneous and stable. As the 

strain rate increases, the transformation stress, slope of the transformation plateau, difference 
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between the maximum and minimum temperatures, and accumulated residual strain increase as 

both the surface temperature and number of large localized martensitic bands increase. A larger 

impact of cycling is also observed as the strain rate is increased. Through the combination of 

strain and temperature mapping, latent heat released/absorbed at the boundary of the martensitic 

band and the peak temperatures are observed at the boundary during loading/unloading. Thus, 

the relation between the local temperatures at the transformation boundary and the globally 

applied stress can be obtained. 

• The linear elastic moduli of the austenite and martensite phases, both on loading and 

unloading, decrease as cycling progresses. The softening of the elastic moduli can be 

attributed to grain reorientation and the development of defects/dislocations, and possibly the 

introduction of residual martensite pockets that occur during cycling.  

• The amount of dissipated energy decreases and stabilizes with cycling due to a decrease of 

cyclic hardening and the stress required for phase transformation. Though a large amount of 

dissipated energy appears at the fastest strain rate, it rapidly decreases as cycling progresses. 

The effect of cycling increases at faster strain rates. 

• Tests were undertaken to examine the effect of a set hold time in between cycles on the 

macroscopic stress-strain behavior. “With-hold” tests were set with a 1800 second hold time 

between each cycle, and “Without-hold” tests progressed continuously. At -2 -1
gε  = 10  s

 , the 

macroscopic stress strain curves in the ‘without-hold’ tests generally had a lower stress level 

than those with holding in between cycles. If one attributes this difference to temperature and 

not plasticity, this means that the samples without holding are in fact cooler than those with 
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holding – thus meaning the ‘with hold’ samples find it easier to dissipate heat instead of 

absorb heat. 

• The location of band nucleation was examined in both the “with-hold” and “without-hold” 

tests. It was found that during the “without-hold” tests, the martensitic transformation in the 

subsequent cycle tends to start at the position of minimum local temperature caused by 

transformation coalescence in the previous cycle. Consequently, at the faster strain rates, the 

most likely initiation location of martensitic transformation can be predicted by the location 

of the last reverse phase transformation in the previous cycle. 

• The maximum (minimum) temperatures during loading (unloading) are located at or very 

near to the boundary of the martensitic band. The relation between the local temperature 

at/near the phase boundary (T†) and the global stress (σ†) was observed to be linear during 

macroscopic transformation (martensitic band propagation) at most conditions examined here.  

During loading, the slope (dT†/dσ†) increases as cycling progresses because of increasing dσ† 

and decreasing dT†. The impact of cyclic loading is stronger at faster strain rates. As the 

applied strain rate increases, both dσ† and dT† increase during loading because greater 

accumulated latent heat trapped during phase transformation. However, during unloading, the 

coefficient is nominally the same in cycling. 

• Quantitative, approximate estimates of the evolution of martensitic volume fraction are 

obtained by a rule of mixtures where every individual pixel is binned as a certain fraction of 

martensite and austenite, and all fractions are summed. At each set strain rate, cycling affects 

the evolution of martensitic volume fraction. The stresses required for the nucleation and 

propagation of martensite decrease because of increasing residual martensite nuclei and the 

establishment of dislocation networks. However, the evolution of martensitic volume fraction 
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during unloading is not significantly affected by cycling, consistent with the observation that 

the stress for M->A phase transformation during unloading stays nominally stable with 

cycling. An increased strain rate also decreases the slope of the stress – volume fraction 

curve during phase transformation. 

• The velocities and behaviors of the stress-induced martensitic bands at a strain rate of 10-3 

are calculated and compared to the velocity of the (single) band at a strain rate of 10-4.  The 

interaction of two major fronts at a strain rate of 10-3 is observed. Though the two fronts have 

different velocities, the sum of two velocities remains relatively constant. Small offshoot 

branches affect the velocity of the major fronts at the applied strain rate of -3 -1
gε  = 10  s . In 

addition, an equation for the velocity of the fronts is postulated.   
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Chapter 6 

Summary and Conclusions 

6.1 Summary 

This thesis presents an investigation into stress-induced martensitic phase transformation 

in NiTi SMA thin sheet specimens and its dependence on displacement-controlled cycling, 

crystallographic texture and globally applied strain rate. In addition to the macroscopic stress-

strain response, local full-field maps of strain and temperature were simultaneously obtained and 

compared under these varied conditions. The thin sheet (254 µm) NiTi test specimens were 

tested under ramp profile cyclic loading (up to N=50) at three different crystallographic textures 

(cut along the rolling direction - RD, 45°, and transverse to the rolling direction - TD) and three 

global strain rates ( -4 -3 -2 -1
gε  = 10  ,10 , and 10  s ). 

First, the critical transition temperature for phase transformation (Af = 1.29°C) was 

determined to ensure that the as-received specimens exhibited superelasticity upon loading. The 

fundamental principles of the 3D Digital Image Correlation technique used in these tests were 

explained, and a number of practical recommendations to obtain accurate DIC measurements 

were made, such as the optical camera position, camera field-of-view (FOV) selection, lighting, 

focusing, appropriate specimen preparation, and sensitive calibration procedures. The overall 

experimental setup using a load frame with the simultaneous DIC and IR imaging was reviewed. 
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In chapter 3, the effect of displacement-controlled cycling on the stress-induced 

martensitic phase transformation was investigated under uniaxial, zero-to-tension loading at the 

applied global strain rate of -4 -1
gε  = 10  s . The specimen was as-received thin sheet NiTi cut along 

the rolling direction (all three crystallographic textures were characterized and compared in 

chapter 4.1).  The stress-induced martensitic phase transformation was tracked utilizing DIC and 

IR imaging. The macroscopically martensite region was apparent through regions of high local 

strains in the DIC maps and by high temperature regions on the thermal IR images. The 

macroscopic response (stress-strain curve) was created by averaging the ~600,000 strain values 

in every individual DIC image and plotting those values against the globally applied stress. It 

became apparent through full-field strain mapping that the stress-induced martensite phase can 

transform either by a single front(s) or alternatively by the offshoot of small branches from the 

primary phase front(s). The nucleation (coalescence) of these small branches directly 

corresponded to the drop (rise) of the load in the macroscopic response. As cycling progressed, 

the stress required to nucleate and propagate the phase front decreased. From the DIC images, it 

was found that with cycling, the global strains where the phase transformation starts increased 

and the delineation of the stress-induced martensitic phase fronts decreased. Cycling appears to 

result in the establishment of residual pockets of martensite that cause the transformation to 

become increasingly spatially homogeneous. In order to see how the phase transformation 

propagates, the velocity of the phase front was examined. Although the top and bottom of a 

single phase front can propagate at different velocities, the sum of the two velocities remains 

nominally constant. 
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In this experiment, a strain similarity in the macroscopic martensite bands was found 

during both a single cycle and from cycle to cycle. This strain similarity was examined by 

extracting the strains down the centerline of the gage section from four stages which included: (1) 

immediately before the martensitic phase front nucleated, (2, 3) during propagation of the 

front(s), and (4) immediately after the phase transformation completed. These centerline strains 

were examined during the 1st and 50th cycle. During martensitic transformation (in a single 

cycle), the accommodated strain in the martensite wake remained constant even as loading 

increased and the phase front propagated through the gage section, that is, the additional 

mechanical work was spent in transformation rather than in plastic deformation of the already 

formed martensite. The strain similarity between cycles 1 and 50 was determined by overlaying 

the strains down the centerline of the gage section during the (1)-(4) points of transformation 

described above.  The macroscopically martensite region (inside the localized band) exhibited 

strong cycle-to-cycle strain similarity. This similarity is much stronger in the macroscopically 

martensite region than in the macroscopically austenite (outside the localized band) region.  This 

indicates that the accommodated strain in the martensite upon initial loading strongly dictates 

how the martensite will accommodate strain in the subsequent cycles. 

Specimens with three different crystallographic texture orientations (RD of the sheet, 45° 

to RD, and TD of the sheet) cut from the as-received thin sheet NiTi were tested to examine the 

effects of crystallographic texture on the stress-induced martensitic phase transformation. These 

tests were performed on the same experimental setup as the previous tests, where displacement 

controlled cyclic loading was applied up to N=50 at globally applied strain rates of  

-4 -3 -2 -1
gε  = 10  ,10 , and 10  s . The crystallographic textures of the specimens were determined by 
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pole figures and inverse pole figures using X-ray diffraction and orientation density functions 

(ODF). It was observed that the TD specimen, which had a crystallographic texture (relatively) 

unfavorably oriented for martensitic transformation, required a higher stress to nucleate (σN) and 

propagate (σP) the phase front than the RD and 45° specimens, which had crystallographic 

textures (relatively) favorably oriented for transformation. However, the difference between the 

nucleation and propagation stresses (σN - σP) of the TD specimen was substantially smaller than 

that of the RD and 45° specimens. This smaller (σN - σP) of the TD specimen causes the 

nucleation of a greater number of localized bands in the TD specimen than in the RD and 45° 

specimens. It was also observed that in the TD specimen, a martensitic band accommodating 

lower strain propagated through a ‘higher strained’ austenite matrix during loading.  

The cycle-to-cycle strain similarity was affected by crystallographic texture. Correlation 

coefficients between the centerline strains were calculated to quantitatively examine the degree 

of similarity between different cycles and its dependence on texture. It was observed that strain 

similarity evolved with cycling regardless of crystallographic texture and strain rate. This 

indicates that the dislocation networks and retention of martensite nuclei continued to evolve 

with cycling in every case, although at a slower rate as cycling progressed. The cycle-to-cycle 

strain similarity was significantly stronger in the TD specimen than in the RD and 45° specimens. 

This stronger strain similarity and less strained localized band in the TD specimen could be due 

to preferentially oriented microscale pockets of austenite transforming to martensite prior to band 

nucleation. These microscale pockets transforming to martensite through a matrix of heavily 

constrained grains could then lead to a stronger cycle-to-cycle strain similarity. 
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Finally, the combined effects of strain rate and cycling on the stress-induced martensitic 

phase transformation were examined at the globally applied strain rates of 

-4 -3 -2 -1
gε  = 10  ,10 , and 10  s . As the applied strain rate increased, more martensitic bands 

nucleated and the transformation plateau became increasingly inclined, consistent with previous 

observations by other researchers and due to the accumulation of latent heat. It was verified that 

the latent heat was released (absorbed) at the phase front during loading (unloading) by 

overlaying thermal and strain maps. In order to remove the effect of accumulated latent heat 

from the previous cycle and examine the pure strain rate dependence, additional experiments 

with a hold time between cycles of 1800 seconds were performed in order to allow for the 

equilibration of specimen temperature between cycles. The first localized band of the second 

cycle was found to occurr at or very near to a cold location in the gage section caused by 

absorbed latent heat from the end of the first cycle. Thus, if the difference of the local 

temperature is known on the specimen, it is possible to specify the location where transformation 

will likely initiate. 

 

6.2 Future Work 

To this point, this study has focused on examining the effects of displacement-controlled 

cycling, crystallographic texture, and globally applied strain rates on thin sheet NiTi SMA at the 

macro-scale. There are many opportunities for future work. 

In the crystallographic texture experiments, it was determined that the TD specimen 

exhibited smaller strains in the localized band (as well as larger strains outside the band) and 

stronger cycle-to-cycle strain similarity than the more favorably oriented RD and 45° specimens. 
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It was postulated that the microscale pockets of transformed martensite in heavily constrained 

grains caused a stronger cycle-to-cycle similarity in the strain. In order to verify this hypothesis 

and link to the length scale of the microstructure, other microscale in-situ experiments are 

required. Here are few ideas for future experiments: 

• While the specimens (RD, 45°, and TD) are under loading right before the martensitic 

transformation, we need to examine the crystal orientation and the amount of microscale 

pockets of transformed martensite. 

• While the specimens (RD, 45°, and TD) are in the middle of phase transformation, we need 

to examine the amount of microscale pockets of austenite in the localized bands and the 

amount of microscale pockets of martensite outside the bands. 

• While the specimens (RD, 45°, and TD) complete the martensitic transformation, we need to 

examine the amount of microscale pockets of untransformed austenite. 

• Whenever the specimens (RD, 45°, and TD) complete a cyclic loading, we need to examine 

the amount of microscale pockets of residual martensite. 

Electron backscatter diffraction (EBSD) and in-SEM strain mapping can be utilized for 

these experiments, which will provide a stronger understanding of the effect of crystallographic 

texture on stress-induced martensitic transformation and link the macroscale experiments 

described in this thesis to quantitative microscale observations. 

Examining the impact of cycling, strain rates and crystallographic texture on fracture 

mechanisms in NiTi is also interesting. In my experiments, the TD specimens were successfully 

cycled up to 50 cycles at the applied strain rates of -4 -3 -2 -1
gε  = 10  ,10 , and 10  s  in continuous 
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testing, with no holding applied between cycles. However, at a test applying 1800 seconds of 

hold between each cycle at an applied strain rate of -2 -1
gε  = 10  s , only the TD specimen was 

found to consistently fracture after approximately 40 cycles. It is hypothesized that the transverse 

direction to the rolling direction is weaker for the cyclic loading at fast strain rates and the 

increased stress for phase transformation by the holding time might cause fracture. Thus, fatigue 

tests with different crystallographic textures and crystallographic texture analysis after cycles 

near the fractured cycle can be useful to determine the exact reason for the fracture in the SMAs 

under stress-induced martensitic phase transformation. Thus, applying the effects of cycling, 

crystallographic texture, strain rates, and the cycle-to-cycle strain similarity by the different 

crystallographic textures will result in better fatigue performance for many applications. 

The crystallographic orientation of Nitinol has a substantial influence on the macroscopic 

responses including stress for phase transformation, the completion strain of phase 

transformation, the length of transformation strain and residual strain. The crystallographic 

orientation also strongly affects material properties in other cold-rolled alloys. In the automotive 

industry, though the effort to increase efficiency of automotive engines has been continuous, the 

effort is recently facing the limit of efficiency. Thus, an alternative method can be weight 

optimization of automotive vehicles to increase the efficiency. For example, if we can reduce the 

thickness of materials that satisfy the requirement of mechanical properties, such as stiffness, 

strength, or fatigue life, by changing crystallographic orientation, it will allow for significant 

weight reduction in the automotive industry. Thus, the examination of crystallographic 

orientation in other materials, which are used in the commercial automotive industry, would be 

interesting and practical study. 
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Taking a step away from academic research, an interesting application of Nitinol is found 

in my personal favorite sport, tennis. In the two years that I have played tennis, I have seen 

tennis players, both amateur and professional, suffer from tennis elbow because of repeated 

impact on their elbow. In order to reduce the risk of tennis elbow, many players are using arm 

bands to reduce the impact or stretching their elbow carefully before the match. One possible 

method to reduce the likelihood of tennis elbow is through the use of superelastic Nitinol string 

on tennis racquets due to its high damping capacity. The application and use of its high damping 

capacity in seismic devices is shown in chapter 1.2 and how the damping capacity is affected by 

cycling, strain rate, and accumulated latent heat from previous cycle is examined in chapter 5.2 

and 5.3. In addition to the high damping capacity, one reason to change the racquet string due to 

reduced string tension after a few months. Nitinol wire can solve this problem by heating up 

above Af temperature. Thus, there are two advantages using Nitinol string, preventing tennis 

elbow and regular replacement of racquet string. The use of Nitinol in tennis racquet was 

patented (publication number: US4909510 A) in 1990 and shortly mentioned by Duerig at NDC 

in 1995, but it has not been commercialized yet. Thus, after measuring the impact load and 

displacement, and applied strain rate on the string, commercialization of Nitinol tennis string 

would be interesting. The challenge on this task will be the superelastic response at high strain 

rates because the superelastic response disappears at extremely fast strain rates, such as 4200 s-1 

as described in chapter 1.4.  
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