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ABSTRACT

Feedback Control Design for MARLO,
a 3D-Bipedal Robot

by

Alireza Ramezani

Chair: Professor Jessy W. Grizzle

This work develops feedback controllers for bipedal walking in 3D on level ground, both

in simulation and experimentally. MARLO is a new robot that has been designed for the

study of 3D-bipedal locomotion, with the aim of combining energy efficiency, speed, and

robustness with respect to natural terrain variations in a single platform. The robot is highly

underactuated, having six actuators and, in single support, 13 degrees of freedom. Its sagit-

tal plane dynamics are designed to embody the spring loaded inverted pendulum (SLIP),

which has been shown to provide a dynamic model of the body center of mass during steady

running gaits in a wide diversity of terrestrial animals. A detailed dynamic model is used to

optimize walking gaits with respect to the cost of mechanical transport (cmt), a dimension-

less measure of energetic efficiency. A feedback controller is designed that balances

the robot during the quiet standing mode, and another feedback policy is developed such

that the robot can take a transition step from quiet standing to walking. A feedback con-

troller is designed that stabilizes steady-state 3D walking gaits, despite the high degree of

underactuation of the robot. These controllers are combined through a state machine that

handles switching among the three controllers controllers. In experiments on planarized

xv



(2D) and untethered (3D) versions of the robot with point feet and passive feet (prosthetic

feet) walking over flat ground or on a ramp with a shallow slope, the adaptability of the

designed controller to the environment (planar or untethered, flat ground or ramp), and to

the morphology of the robot (point feet or passive feet), is demonstrated. In experiments

on a planarized version of the robot with passive feet, the controller yielded stable walking

after starting from quiet standing, autonomously and without any intervention from the op-

erator. In experiments on an untethered (3D) version of the robot, the controller was able to

balance the robot over flat ground or on a shallow ramp during the quiet standing mode. In

addition, the controller yielded six-untethered “human-like” steps after starting from quiet

standing, autonomously without any intervention from the operator.
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CHAPTER I

Introduction

Currently, no robotic solutions can compete with the efficiency, speed and agility of

mammalian locomotion. The speed and agility of a cheetah chasing its quarry and the

accuracy of a mountain goat climbing up craggy hill sides are examples of animal loco-

motion that are inspiring roboticists. The mechanisms of mammalian walking and running

are quite complicated and involve the use of various tendons on the back as energy storing

springs to enhance energy efficiency. Mammalian legged locomotion remains one of engi-

neering’s most challenging questions: how to design machines that can efficiently navigate

rough terrain with agility and speed?

This chapter begins with an overview of the mainstream approaches to achieving sta-

ble bipedal locomotion in machines. It is followed by the objectives of this work and an

explanation of how they relate to the existing literature. The chapter concludes with the

organization of the dissertation.

1.1 Literature Overview

1.1.1 Time-independent vs. Time-dependent control strategies

Two major trends in feedback policy design are apparent in the robot locomotion litera-

ture: “time-dependent” and “time-independent” control policies. Time-dependent policies
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rely on an external clock to generate a rhythmic walking pattern [1], [2], [3], [4]. Typi-

cally, the state of the clock is used to parameterize a set of joint trajectories, which are then

implemented on the robot via a classical control method, such as PD control or computed

torque. The design of the rhythmic external reference for the joints has been based on

several methods, including “bio-inspired neural oscillators,” the “zero moment point,” and

“passive dynamics.” As discussed below, in some cases the state of the robot is fed back to

adjust the phase of the external clock.

Time-independent policies, on the other hand, seek to generate a rhythmic motion with-

out recourse to an external clock [5]. Several approaches have been taken, including a

naturally oscillating element (i.e., spring) in the robot itself [6]; using virtual models and

Jacobians to define torques that keep the torso upright while advancing the robot’s body

forward [7]; using feedback to shape the potential energy of a robot so that it walks as if

on sloped ground [8, 9]; and using a gait-timing variable that is a monotonically increasing

function of the robot’s configuration during a walking pattern [10].

1.1.2 Biologically Inspired Schemes

Roboticists have sought inspiration in nature for creating the rhythmic motions asso-

ciated with walking. An important theme in this regard are “central pattern generators”

(CPGs), which are networks of neurons that produce periodic signals without external forc-

ing. Such oscillators are believed to originate rhythmic activities such as walking gaits,

wing flapping, fish swimming, hearts beating, and respiration. Mathematical models of

neural oscillators presented in [11, 12, 13, 14, 15, 16, 17] suggest a mutual inhibition net-

work composed of a continuous-variable neuron model in order to generate oscillation.

A specific instance of this is Matsuka’s neural oscillator [12], which consists of two

simulated neurons in mutual inhibition; when gains are tuned properly it exhibits oscillatory

behavior. Matsuka’s oscillator was used in the KIST humanoid robot. A reduced model

of the robot, including virtual dampers and springs that capture the dominant dynamic
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response of the robot in the frontal plane, was coupled with the neural oscillator model in

order to balance the robot.

Buchanan [14] proposed a circuit for the lamprey locomotor network consisting of three

bilateral pairs of inter-neurons (two inhibitory and one excitatory) and a bilateral pair of

motoneurons. Similar models have been employed in robotics to generate rhythmic mo-

tions [18, 19, 20, 21, 22, 23, 24, 25]. Collins and Richmond [26] designed a series of com-

puter experiments to test whether a hard-wired CPG can produce multiple phase-oscillation

patterns that correspond to natural animals gaits. In order to address their hypothesis, they

modeled a quadrupedal locomotor CPG as a system of four coupled nonlinear oscillators

and tested the ability of these models to generate three common quadrupedal motions —

walking, trotting and bounding. They addressed and analyzed three common oscillator

models of the Stein neuronal model, Van der Pol oscillator and FitzHugh-Nagumo model

as the unit oscillator for the quadrupedal locomotor. They attempted to generate transitions

between the different gaits by changing the networks’ driving signal and by altering the

internal parameters of the CPG oscillators.

In another work, the “musculo-skeletal” system proposed by Taga [27] consisted of a

chain of rigid links confined to the sagittal plane and walked on compliant ground. It used

a neural rhythmic generator composed of six oscillators connected in an inhibitory fashion.

The robot was modeled as an inverted pendulum actuated with antagonistic muscles. Two

sensors measured the angle of the inverted pendulum with respect to the ground when it

was leaning forward and backward. A stretch-reflex-like feedback strategy was responsible

for the entrainment between the activity of the neural oscillator and the inverted pendulum

representation of the robot.

Or et al. [18] proposed a combined CPG-ZMP (central pattern generator and zero mo-

ment point) approach to generate walking gaits using a WABIAN-based robot model with

flexible spine. Their model was a human-size robot with relatively similar human-like

physiology which hosted a two-stage controller. Primarily, a ZMP-based pattern generator
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generated a walking pattern for the joints of the robot; then a CPG model generated rhyth-

mic motions for the flexible spine. The controller retrieved the force data to measure ZMP

(discussed below) and verified that the ZMP was inside the support polygon. If the robot

was on the verge of toppling, an inhibitory signal was sent to reduce the neural activity

within the CPG by dropping the global excitation.

1.1.3 Passive Dynamics

Passive dynamics was introduced and studied primarily with the motivation of energy

efficiency. The secondary motivation for studying passive dynamics is the fact that passive

walkers often demonstrate a natural walking pattern. In robots designed based on passive

dynamic principles, the dissipation of energy due to the impact or damping is compensated

for with variations in the total potential energy level of the the robot. Realizing a rhythmic

walking pattern and maintaining a stable cyclic gait without reliance on active control effort

was first studied by McGeer (1990) [28], in an attempt to replicate energetically efficient

walking patterns comparable to humans. As McGeer pointed out in his original paper,

passive walkers can be traced back to a diagram by Fallis in 1888 for a toy walker [29],

which produced leg clearance by waddling side to side. Formal analysis of passive walking

seems to have begun with Mochon and McMahon (1980), who noted that human walking is

at least partially passive because “no signal is supplied to a leg during its swing phase” [30].

However, McGeer provided the first mathematical model for un-powered walking down

a shallow slope, showing clearly how “gravity and natural dynamics alone” (meaning no

actuation is required) could generate rhythmic gaits. McGeer called this “passive walking.”

He proved the correctness of his model and mathematical analysis by building a bipedal

robotic mechanism based on his passive walking principle. McGeer’s mechanism did not

rock from side to side to achieve swing foot clearance as did the toy by Fallis. Instead, with

each step, small motors retracted the swing foot end far enough to clear the ground.

Similar to McGeer’s studies, Goswami [31, 32] studied the passive gait of an un-
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powered compass-like legged robot with point masses and knee-less legs, which was kine-

matically equivalent to a double inverted pendulum. Through the systematic study of the

compass-gait model on inclined slopes, he showed that in response to a continuous pertur-

bation of the gait parameters, such as ground slope angle, a symmetric and asymptotically

stable gait of the un-powered robot gradually evolves through a regime of bifurcations char-

acterized by progressively more complicated asymmetric gaits, eventually reaching a state

where no consecutive steps are similar.

Kuo [33] proposed a simple controller for stabilizing a 3D-passive walker after showing

the passive system was unstable. The passive walking machine consisted of two legs and

a pelvis and walked forward by placing one foot on the ground and riding on the stance

leg, which rolled forward as an inverted pendulum mounted on the stance foot. The swing

legs was moving in a pendular arc, bringing the foot forward so that it was making ground

contact. He defined three DoF in his passive walker: two were analogous to those of

a planar two-legged walker without knees similar to McGeer’s work, and the third DoF

allowed the machine to move side to side in the frontal plane of walking. Assessment of

the stability of the machine, showed that there were unstable modes in the dynamics of the

passive walker corresponding to the lateral side-to-side motion. Five potential controllers

with minimal control authority, reflecting the philosophy of passive walker design, were

proposed: the first three controllers suggested direct modifications of the frontal trajectory;

two controllers suggested foot-placement in the frontal plane of walking.

The bipedal kneed passive dynamic walker by Collins [34, 35] was similar to McGeer’s

passive walker in that it too could walk only over shallow slopes. The mechanism was

distinguished from its predecessors, however, by walking stably in 3D. Compensation for

the yaw and roll instability were achieved through detailed mechanical design instead of

actuation, sensing, and feedback. In fact, yaw compensation was achieved by friction (to

increase reactive torques), a flexible ankle (to achieve better ground contact), and counter

swinging arms (to negate the yaw motion induced by the forward motion of the swing
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leg). Side-to-side lean (roll) compensation was also achieved through specific mechanical

designs such as the use of arc-shaped feet, together with freely laterally moving arms with

high friction joints, which seemed to help the dissipation of lateral side-to-side energy and

resulted in stable passive walking.

Cornell’s Ranger developed by Ruina [36] is an example of a self-contained (computing

unit and batteries on-board), tether-free, four-legged and knee-less biped that could walk on

flat ground. The mechanism was designed to have favorable “passive dynamics,” meaning

that it could walk stably down shallow slopes without actuation.

The robot’s overall control strategy was similar to that in the work of Mura and Shi-

moyama [4], where the controller consisted of an open-loop time-based pattern generator

and a feedback controller to stabilize a set point. The nominal trajectories were based on

minimization of an energy metric. The feedback controller applied corrections at the end

of each step on the basis of measurements made at the beginning of the step. The nominal

trajectories and feedback controller were designed to exploit the robot’s “natural dynam-

ics.”

1.1.4 Zero Moment Point (ZMP)

The most widely used control scheme in the robotics community is based on the ZMP

or “zero moment point” criterion introduced by Vukobrativić et al. [37]. To define the zero

moment point, assume the robot is in single support, with the stance foot flat on the ground

and not sliding. The point on the ground where the resultant of the ground reaction forces

acting on the stance foot produces zero moment in the ground plane is the zero moment

point or ZMP. The “support polygon” of the robot is defined to be the convex hull of the

stance foot. Vukobrativić’s ZMP criterion is that the vertical component of the ground

reaction force be positive and the zero moment point lie in the support polygon. When this

is true, the foot will not rotate and will act as a base of support for the robot. To ensure

that the foot is in fact not sliding, the resultant of the ground reaction forces must lie in the
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friction cone. Due to its very nature, the ZMP criterion leads to flat-footed waking.

Walking patterns that satisfy the ZMP criterion have been computed both off-line and

on-line, as illustrated in Vukobratović et al. [38], Vukobratović and Juricic [39], Goswami

[40], Wieber [41], Hemami and Farnswort [42], Arakawa and Fukuda [43], Hirai et al.

[44], to name just a few of the hundreds of references that employ this method. In most of

the applications of the ZMP method, the ankle torque is the primary actuator for shifting

the ZMP safely within the support polygon. The maximum torque that can be compensated

for is limited by the size of the support polygon. For this reason, robots using this method

of control are fitted with large feet.

WABOT-1 [45] was the first powered robot with human morphology and of human

size. It was able to communicate with humans in Japanese and had external sensors for

measuring the distance to objects around it. WABOT-1 demonstrated successful tether-free

walking motions using a controller based on the ZMP criterion. Its walking motion was

realized with two levels of control action, one dealing with the relative motion of the links

with respect to the torso, and a second level concerned with the overall dynamic balance of

the mechanism, so that during the walking motion the ZMP was adjusted to keep the whole

foot in contact with the ground.

The bipedal robot WABIAN [46, 47] used a family of smooth polynomials, determined

with angular velocity, angular acceleration and height of the swing leg with respect to the

ground, to generate a smooth motion of the swing leg during the single support phase. A

moment compensation controller based on the ZMP criterion sought to counter the desta-

bilizing moments generated by the moving links of the robot. The characterization of the

ZMP as the point where the resultant ground force has zero moment about the ground

plane was used to compute a set of nonlinear equations relating the position of the ZMP

to a reference frame and a system of point masses representing the links of the robot. Us-

ing an on-line recursive calculation, the moment compensation controller minimized the

errors that represented the divergences of two decoupled linearized ZMP equations from
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the desired pre-computed ZMP positions.

The ZMP approach was employed in the development of KHR-2 [48] with the desire

to produce an anthropomorphic robot with light weight, backlash-free actuators (harmonic

drives), simple kinematic structure and low power consumption. It consisted of two arms,

two legs, a torso and a head. The robot used a multistage dynamic walking controller based

on the ZMP criterion and consisted of a real time damping controller, ZMP-based balance

compensator, and a landing position controller. The damping controller, designed on the

basis of a simplistic inverted pendulum model of the robot aimed to damp out the oscil-

lations generated during the single support phase. A linear fifth-order ZMP compensator

designed on the basis of pole-placement techniques compensated for the movement of the

ZMP within the support polygon by moving the torso forward or backward and the pelvis

side-to-side. The landing controller regulated both the swing foot landing position and

orientation as well as landing time.

Johnnie [49], an anthropomorphic robot equipped with 6-axis force sensors in the feet,

applied ZMP for both desired trajectory generation and dynamic balance achievement. A

reduced dynamic model of Johnnie lumping its overall mass at the center of gravity was

used during trajectory generation to represent the relation between the motion of the CoM

and the position of the ZMP. The objective of its ZMP compensator was to satisfy a set of

constraints that described the unilateral contact between the foot and the ground. The uni-

lateral constraints were used to formulate a “linear complementary problem” (LCP) whose

solution met the ZMP constraints. The resulting trajectories were tracked via computed

torque, as in Hemami and Katbab [50], Lee and Liao [51], Hurmuzlu [52], Yang [53],

Jalics et al. [54], Lum et al. [55], Song and Guo [56], Park [57], and Taga [58].

In [59], Furusho and Sano proposed a hierarchical ZMP-based control structure in or-

der to balance a nine-link tether-free bipedal robot called BLR-G2. They considered the

frontal and sagittal dynamics separately and designated a controller to each dynamic. An

optimal regulator strategy (Frank [60], Saidouni and Bessonnet [61]) balanced the reduced
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linearized frontal dynamics of the robot after selecting a performance index and deriving

the optimal control law. The sagittal controller was composed of a torque controller and a

position controller, which switched from one to the other based on the actual state of the

robot.

1.1.5 Raibert’s Controller

Despite the long-standing investigations of the potential advantages of active stability

and intermittent support, the slow progress in building robots that employ these techniques

highlights the difficulty of the task. The first dynamically stable machine with an inter-

mittent support point seems to have been Raibert’s hopper, a monopedal spring-legged

machine employing an intuitive control scheme to maintain balance and move forward [6].

The hopping machine was composed of a pneumatic leg attached to a rolling-cage torso

through a set of gimbals where the rolling-cage carried the electronics, gyros, accelerome-

ter and pressure regulators. Turning to the control strategy, the robot employed three sim-

ple and decoupled strategies to regulate attitude, forward motion velocity and the height of

hopping. The robot controlled forward running by positioning the foot with respect to the

position of the COM. The attitude control was achieved during the moment that the foot

was in contact with the ground by applying torque at the hip joint. The pneumatic leg pro-

vided the system with enough energy to bounce in a periodic motion while absorbing the

energy at the impact moment, hence achieving energetic efficiency during hopping. The

height of hopping was regulated by the regulation of air pressure of the pneumatic leg.

1.1.6 Passivity-based control

Motivated by the passive walkers, Spong and Bullo [9] demonstrated that stable walk-

ing could be achieved in a fully actuated biped by “potential energy shaping.” Specifically,

for the case of a three dimensional biped with n DoF and n independent actuators, they

showed that changes in the ground slope define a group action on the configuration man-
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ifold and that the kinetic energy and the impact dynamics are invariant under this group

action. Moreover, it is possible to use feedback to modify the potential energy of the sys-

tem in order to achieve invariance of a passive limit cycle (i.e., a limit cycle that would

be present in the biped walking down a slope and using no actuation). They introduced a

potential energy forming ([62, 63, 64]) controller which ensured the biped is invariant un-

der the slope changing action and they referred to that as “control symmetry” because the

Lagrangian of the open-loop system was not invariant under the group action, but became

invariant after feedback [65].

1.1.7 Virtual model control

Pratt et al. [5], introduced the notion of virtual model control and illustrated it on two

bipedal walking robots, the Spring Turkey and the Spring Flamingo. The control scheme

was based on the simulation of virtual components (e.g., spring, damper, mass, latch, bear-

ing, nonlinear potential field, and dissipative field) in order to generate joint torques that

create the same effect that the virtual components would have created if had they actually

been presented and connected to the robot. For example, to maintain the torso upright, the

virtual model control conceptually attached a spring and damper between the top of the

torso and the world frame.

Pratt et al. control strategy assumed that all the joints of the robot were actuated. This

limited the applicability of the method to robots with actuated feet and gaits that maintain

the foot flat on the ground. This limitation is overcome with the next method we discuss.

1.1.8 Hybrid Zero Dynamics

In [10, 66], Grizzle et al. introduced a control design method with provable stability

properties for a planar three-link bipedal robot with passive point feet, torso, hip and two

identical legs. They used the monotonically increasing horizontal position of the hip to re-

parametrize the desired trajectories which encode the angles of the joints of the robot (e.g.,
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leg angles); hence, this work falls in the category of time-independent control schemes.

The core of this gait design and stabilization methodology was the judicious choice of

a set of holonomic constraints (output functions) which were enforced with a feedback law.

Constraints enforced via feedback are called “virtual constraints”. In general, the maximal

internal dynamics of a system that are compatible with the output being identically zero is

known as the “zero dynamics” [67]. The importance of the zero dynamics is multi-fold as

it allows provable stability analysis of the closed-loop system, and second, it reduces the

dimension of the dynamic model, making it possible to conduct fast parametric walking

pattern design based on nonlinear optimization methods. In contrast to Grizzle’s early work

where only the zero dynamics corresponding to the swing phase is considered, Westervelt’s

work [68, 69] showed that the zero dynamics, in general, is not invariant under the impact

map and as a result it is not possible to relate the stability properties of the zero dynamics to

the stability properties of the closed-loop system unless the required invariance conditions

are met. Meeting these conditions results in the notion of the “hybrid zero dynamics”

(HZD) .

Chevallereau et al. [70] reported the first successful walking experiment based on HZD

using Rabbit an anthropomorphic bipedal robot with point feet. Later, Westervelt et al.

[71] used Rabbit to extensively study the performance of HZD based controllers which

induced stable walking on underactuated robots. They studied the stability properties of

the resulting walking motions in terms of lower-dimensional sub-dynamics of the robot’s

full dynamics.

After successful biped walking experiments, HZD-based control design was employed

for biped running. A continuous HZD controller was employed by Chevallereau et al.

[72] in order to achieve a stable running gait with Rabbit. The controller consisted of two

parts, a continuous action controller based on HZD and a discrete action which adjusted the

coefficients in the continuous portion of the controller in order to achieve landing objectives

that ensure the existence of HZD. They studied the proposed running control law in an
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extensive simulation study by computing the Poincaré return map for 10 different running

trajectories to demonstrate the feasibility of a stable running gait with Rabbit. Morris et

al. [73] employed a feedback law based on HZD framework in order to achieve dynamic

running with Rabbit. They reported six consecutive running steps with long stride length,

flight phase, upright posture and average speed of 0.6[m
s

]. Recent successful experimental

studies based on the HZD framework were reported by Sreenath et al. [74] on running of

an anthropomorphic bipedal robot with point feet called MABEL . Park et al. [75] reported

implementation of HZD-based control strategies for achieving a stable walking gait with

MABEL over highly rough terrain.

1.2 Objectives of the Study

The main goals of the study are twofold — analytical and experimental. The analytical

portion includes the design of stable walking gaits for MARLO, a tether-free anthropomor-

phic bipedal robot of human size, which is energy efficient and relatively fast, walking on

flat ground of at least 1[m
s

]. The experimental portion primarily focuses on achieving a

stable walking gait with the robot in the lab, with no attention paid to the energy efficiency.

The analytical studies addressed in this study are motivated by the energetically effi-

cient, fast and agile walking pattern of biologic systems. The desire here is to replicate

such motions with a robot physiologically similar to animals. Various robotic missions

require robots that can operate outdoors relying only on on-board power supplies such as

batteries or fuel tanks with limited energy capacity. During missions where access to ad-

ditional energy resources is highly unlikely, power budgets are tight and energy efficiency

plays a very critical role in fulfilling the objectives of the missions. Currently, operation

time for legged robots is limited. BigDog is a rough-terrain robot that walks, runs, climbs

and carries heavy loads. It has four legs that articulate like those of an animal, with com-

pliant elements to absorb shock and recycle energy from one step to the next. BigDog

has demonstrated recovery from falling after a large perturbation applied to it, and it has
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demonstrated complex navigation tasks through rough terrain. However, the robot is pow-

ered by a gasoline engine that drives an energy consuming hydraulic actuation system, and

has only been able to achieved 12.8 miles without refueling. In 2010, Ranger [36] walked

non-stop for 14.3 miles. In 2012, by improving the control algorithm and the electronics,

Ranger’s energy use was reduced by 43 % over that of 2010 and Ranger walked a 40.5 mile

ultra-Marathon of 186,076 steps. However, Ruina’s Ranger demonstrated a slow walking

speed of approximately 1.32 mph over flat ground and could not clear obstacles higher than

a few millimeters.

1.2.1 Theoretical Milestones

The above contrasting examples of BigDog and Ranger helped establish the overall

goal of the MARLO project, which is to demonstrate walking gaits that are comparable

to the speed and robustness of BigDog’s walking gait and energy efficiency of Ranger’s

strides. However, this study tries to primarily assess the feasibility of these objectives

through a theoretically organized framework after taking into account the robot’s design

and morphology. Theoretical milestones include developing a dynamic model of the robot,

developing an optimization algorithm, developing a gait initiation feedback policy, devel-

oping a periodic walking feedback policy and developing an algorithm to verify the sta-

bility of the periodic walking gait. In the following sections, each theoretical milestone is

described briefly and the relevant studies are cited as a means to highlight the similarities

and differences to prior studies in perspective.

1.2.1.1 Dynamic Model

Developing a model capturing the dynamic characteristics of the robot for control al-

gorithm design is seen as a preliminary step in a “model based controller design” approach

for MARLO. To develop the model, three methodologies are possible: (1) modeling based

on data-driven methods known as “system identification,” (2) physical modeling based
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on known differential algebraic equations governing robot dynamics, 1 and (3) modeling

based on the combination of system identification and physical modeling. A combination

of these three methods is used by Park et al. [76] to model MABEL. Such a model provides

a simulation environment for verifying the performance and functionality of the developed

walking controller algorithms before implementing them on the actual robot.

1.2.1.2 Optimization Algorithm

The method used in this study is inspired by Westervelt et al. [77] and Sreenath et al.

[78], who reported successful optimal gait design for the planar robots Rabbit and MA-

BEL, based on HZD optimization. In this study, the HZD method is taken into 3D and

series elastic actuation, which together more than double the dimension of the underlying

mathematical model. After a careful choice of the controlled variables, the zero dynamics

is computed for MARLO. It is 14 dimensional, whereas the zero dynamics for MABEL

was dimension 4. The increased dimensionality makes the associated gait design prob-

lems much more numerically challenging. One way that we deal with this challenge is to

introduce a new family of virtual constraints based on non-uniform rational B-splines, or

NURBs for short. Using the zero dynamics and the new family of curves for the virtual

constraints, gaits are designed through numerical optimization subjected to equality and

inequality constraints (e.g., unilateral contact points, friction).

1.2.1.3 Gait Initiation Feedback Strategy

Few works have tackled gait initiation, a transition from a stand-still configuration to

periodic walking, in bipedal locomotion and a relatively large number of studies consider

periodic walking in the first place. The current studies on gait initiation strategies use ZMP-

based algorithms and deal mainly with fully actuated anthropomorphic robots with big flat

feet, where achieving and maintaining stability is trivial. Among the very few gait initiation

1Method of Lagrange.
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studies, Wight et al. [79] introduced a measure called “foot placement estimator” (FPE)

to restore balance to an unstable system. They defined a region of stability and, based on

these regions, the derivations of FPE took place, which it was later extended to a complete

gait cycle using the combination of a state machine and a series of simple linear control

strategies.

Even robots such as MABEL and Rabbit, with physical design similarities2 to MARLO,

and similar control architectures, employed only a periodic walking controller, with gait

initiation taking place through a push by the operator. As such, these robots are not fully

autonomous. In fact, since Rabbit and MABEL’s walking motions are constrained to the

sagittal plane of walking with a boom supporting these robots in the frontal plane, the push

force does not cause lateral instability. In contrast, to these studies, the high degree of

underactuation in MARLO highlights the necessity for a gait initiation feedback policy to

ensure a transitory step from stand-still to periodic walking.

1.2.1.4 Planar and Tether-free Periodic Walking Feedback Strategy

The perspective and the relevance of MARLO’s feedback scheme to the prior studies

has been addressed previously; however, it is worth looking at MARLO’s feedback from a

different perspective. In fact, MARLO’s feedback strategy attempts to stabilize the robot

without over-reliance on external sensory systems (e.g., vision sensors, laser range finder).

In this context, MARLO’s walking controller has similar responsibilities to those of a hu-

man’s spinal controller, which regulates reflex actions. Evidence exists of both spinal and

brain regulations of walking in human-beings, and based on [80], spinal regulated motions

are involuntary and usually happen quickly in response to environmental stimuli where the

human brain has no time to perform data processing and high level path planning, whereas

brain control strategies are employed as the human brain receives sensory feedback data

such as eyes and it involves the time consuming path planning tasks that affect the perfor-

2They are all categorized as underactuataed bipedal robots. In contrary to Rabbit , MABEL has compliant
components, i.e., springs.
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mance of human motions. Therefore, the design objective of MARLO’s walking control

lies in a context different from that of ASIMO, HRP-2 and similar androids, where visual

and sonar feedback are employed.

1.2.1.5 Walking Stability Verification

Determining the existence of stability properties (i.e., asymptotically, exponentially sta-

bility) of a periodic orbit for a model including nonlinear dynamics and impact dynamics

(hybrid nonlinear dynamics) is practical using classical methods that lead to rigorous con-

clusions. The goal is to use Poincaré maps to determine the stability characteristics of the

robot in a closed-loop with the controller algorithm.

1.2.2 Experimental Milestones

Experimental milestones include the development of a mobile computing kernel, imple-

mentation and verification of an autonomous planar walking strategy, and implementation

and verification of an autonomous tether-free walking strategy. The milestones follow.

1.2.2.1 Mobile Signal Processing Kernel

The mobile signal processing kernel aims to interface MARLO’s controller algorithm

with numerous sensors and actuators through a high bandwidth network of microproces-

sors known as slave units [81]. MARLO’s communication architecture, which resembles

a modular electronic data acquisition mechanism, facilitates the expansion of this network.

The network is composed of seven electronic printed circuit boards (PCB), each called a

medulla and each hosting two microprocessors. Each medulla is hard wired to the sen-

sors and actuators of the specific parts of the robot (e.g., inertial measurement unit (IMU)).

At each sample time, a dual level communication involving medulla-sensor communica-

tion, using a universal asynchronous receiver/transmitter (USART), and medulla-network

communication, using a serial peripheral interface bus (SPI), takes place.
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1.2.2.2 Autonomous Planar Walking

An autonomous planar walking experiment involves MABEL-like walking experiments

with MARLO using an external power supply and a lateral support provided by a boom;

during these experiments, the frontal plane angles of the hips will be held to a constant

value to mimic a planar walker.

1.2.2.3 Autonomous Tether-Free Walking

Autonomous tether-free walking in the laboratory takes place with the help of an over-

head crane found in industrial environments. The hoist is running on a “fixed” rail and

the only possibilities, as long as the robot is connected to the hoist through a chain-pulley

mechanism, are walking forwards and backwards in the laboratory, unlike planar walking,

where external power supplies are used, tether-free walking utilizes internal power (i.e.,

Lipo batteries).

1.3 Organization of the Dissertation

The dissertation is organized as follows. Chapter II describes the design philosophy

of MARLO and gives an overview of the mechanism and the electronics. Similarities and

differences of MARLO with respect to existing robots are discussed in Section 2.1.1. In

Chapter III, after introducing the modeling hypotheses, both a planar and a 3D dynamic

model are developed using the method of Lagrange. In Chapter IV, after addressing the se-

lection of virtual constraints adapted to the morphology of the robot, zero-dynamics-based

optimization is used to design energetically efficient walking gaits. Chapter IV analyzes the

walking efficiency of the 3D model of MARLO, measured by the “coefficient of mechan-

ical transport” (cmt) [35], for average walking speeds varying from 0.5 to 1.4[m
s

]. Chapter

V introduces a family of curves, non-uniform rational B-spline (NURB), to parameter-

ize the virtual constraints. Properties of NURB curves over Bézier polynomials for gait
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design are highlighted, with NURB curves shown to improve the energetic efficiency of

MARLO. Chapter VI presents a continuous-time time-invariant feedback controller based

on virtual constraints and input-output linearization to asymptotically stabilize one of the

optimal walking gaits obtained using the optimization method. Stability is checked with a

Poincaré section analysis. The continuous-time feedback controller is augmented with an

event-based controller to stabilize gaits in the 3D model. Chapter VII addresses feedback

control design for two modes of “quiet standing,” and “quiet standing to walking transitory

step.” In Chapter VIII, the experimental results for planar and 3D walking experiments are

presented and discussed. Finally, the concluding remarks, contributions of the dissertation,

and future works are presented in Chapter IX.
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CHAPTER II

MARLO

This chapter is organized as follows. First, an overview of the design philosophy of

MARLO is given followed by a mechanical-design-focused literature review with the pur-

pose of comparing and contrasting MARLO’s design with respect to current and prior

robots. Next, MARLO’s mechanism and electronics are explained in separate sections,

where the mechanism section describes the mechanical components, e.g. torso, legs, hips

and springs and the electronics section focuses on body-frame sensors, inertial sensors and

the communication architecture linking these components. Finally, the last section summa-

rizes the material provided in this section.

2.1 Testbed Overview

The bipedal robot [82] MARLO shown in Fig. 2.1 is a version of the ATRIAS 2.1bipedal

robot series, a collaborative effort of Oregon State University, Carnegie Mellon University,

and the University of Michigan. The robot has been conceived for energy efficiency, speed,

and robustness with respect to natural terrain variations, without over-reliance on external

sensing, such as vision. The robot is untethered, with all computation and power on board,

using electric motors, batteries, and mechanical springs for cyclic gait-energy storage.
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Figure 2.1: MARLO, a tether-free bipedal robot with point feet and springs.

2.1.1 Design philosophy

MARLO’s sagittal plane dynamics is designed to embody the “spring-loaded inverted

pendulum” ( SLIP ) model, which has been shown to approximate the body CoM motion

during the “steady-state running gaits” of a wide diversity of terrestrial animals [83, 84,

85, 86, 87]. Successful running robots, such as the Planar Hopper, ARL Mono Pod II and

CMU Bowleg Hopper, also exhibit SLIP model behavior [88, 89, 90]. An earlier machine

by Hurst and Grizzle, the planar bipedal robot MABEL, also approximates a SLIP model:

the robot achieved a peak walking speed of 1.5[m
s

] [91], a peak running speed of 3[m
s

]

[92], and walked over terrain with variations exceeding 15% of leg length [75, 93]. These

robots demonstrate that the spring-mass model is a successful and promising approach to
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machine design for robotic running. It is also promising for walking gaits: the same spring-

mass model arranged in a bipedal pair has also been shown, in simulation, to reproduce

the steady-state dynamics of human walking [94]. MARLO takes the spring-mass design

philosophy into 3D, and combines it with tether-free electric actuation.

A number of robots have been built for the purposes of walking and running, [95, 96,

89, 70, 97]. One class of robots relies on large actuators and active control to implement a

variety of behaviors. Examples include robots with rigid transmissions such as Rabbit and

ASIMO [70, 97]. While these robots are capable of an aerial phase, it is at the expense of

heavy actuators with high energetic cost and potentially unpredictable dynamic behavior at

ground impact.

At the other end of the spectrum, the McGeer walker and similar robots use only passive

elements. While these robots can efficiently walk down shallow slopes, they are extremely

sensitive to disturbances and hard code only a single behavior [98, 28].

There are robots that fall in between those two extremes. For instance, the Cornell’s

Ranger adds minimal actuation at the ankle to an otherwise passive machine and can main-

tain a very efficient walking gait on flat ground. Yet this and similar machines [26, 35]

retain the extreme sensitivity of passive dynamic walkers to disturbances and the focus on

only one dynamic behavior.

The MIT Leg Lab’s Spring Flamingo walking biped and Boston Dynamics’ BigDog

walking and running quadruped both use series springs, a passive dynamic element, to

improve the performance of their actuators in certain situations. Like the rigid-transmission

robots, however, they attempt to create all gait dynamics through software control [99,

100]; the springs on these robots are primarily for force sensing and mechanical filtering

purposes, and are essentially a soft load cell, acting as a force sensor for the low-level

controllers [101]. Although this approach can result in impressive agility and robustness

surpassing a rigid system, the energetic cost is still very high. For example, Big Dog uses

a gasoline engine as a power source.
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Recently, robots have been purposely built with high-bandwidth actuators and no springs,

with the objective of implementing compliance in software. Examples include the hydrauli-

cally actuated HyQ [102] and MIT’s electrically powered Cheetah [103].

The jury is still out as to which design philosophy will provide the best tradeoffs in

terms of agility, efficiency, and ease of control. MARLO is very much in the camp of seek-

ing to combine the advantages of passive dynamics with actuation and feedback control for

achieving a wide range of legged mobility. Its design exploits springs for energy-efficient

steady-state locomotion and accommodating large disturbances, while using powerful actu-

ators to achieve legged dexterity and gait stability when needed during transient behaviors.

(a) ASIMO (b) Rabbit

(c) Raibert Hopper (d) McGeer Walker

Figure 2.2: Legged robot with various morphology.
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2.1.2 Mechanism

MARLO’s mechanical design is aimed at matching the key features of a SLIP model.

While a massless limb is an abstract mathematical concept, MARLO’s legs account for less

than 10% of the total weight of the robot, making them as massless as physically possible.

Each leg is formed by a parallelogram mechanism composed of lightweight carbon fiber

tubes. The placement of two coaxial motor drives, which actuate the two topmost links

of the parallelogram mechanism, is such that the mass concentration takes place at the

hip, which is the point where the two legs are pinned to each other, thus enhancing the

SLIP-like features of the robot. Through the parallelogram mechanism, both motor drives

contribute to the leg angle and leg length changes. The design results in a smaller choice

of motor drives because the stance force, which is acting at the end of the stance leg, is

compensated for through the contribution of both motors. If, on the other hand, separate

motors were designated for leg angle and leg length, a single motor would compensate

for the stance force, requiring a larger motor. Figure 2.3a illustrates the parallelogram

mechanism; Figures 2.3b and 2.3c show the contribution of the two topmost carbon fiber

tubes in the leg angle and leg length changes. Figure 2.4 shows the contribution of the hip

join in the lateral motions of the leg.

23



(a) 4-bar parallelo-

gram

(b) Shin contribution (c) Thigh contribu-

tion

Figure 2.3: (a) Parallelogram mechanism. (b, c) Contribution of the two topmost carbon
fiber tubes in the leg angle and leg length changes, respectively.

Figure 2.4: Contribution of the right hip joint in lateral motions of the leg.

24



To construct a “series-elastic actuator” (SEA), a fiberglass leaf spring, with stiffness

chosen to coincide with the natural frequency of the preferred locomotion gait, and sized

large enough to store gait energy, is placed between each of the upper links of the parallel-

ogram mechanism and a motor drive output shaft. The series-elastic actuators in the legs

are powered by electric motors mounted in the hip through a 50:1 harmonic drive. Hence

the reflected inertia of the rotors of the motors dominate leg rotation, while the light legs

and springs dominate the impact dynamics. In other words, the parallelogram mechanism

allows the leg to be extremely lightweight, which minimizes the impact losses of the foot

during touchdown of each stride, and maximizes the gait energy that can be stored in the

springs and recycled. MARLO’s SEA is illustrated in Fig. 2.5. The overall configuration

of the parallelogram mechanism with mass-less carbon fiber tubes and the motor harmonic

drives is dynamically equivalent to a SLIP model. Most commonly, the SLIP model as-

sumes a linear spring stiffness; however, due to the configuration of the parallelogram and

fiberglass leaf spring, the equivalent spring actuating the two topmost carbon fiber tubes

has a nonlinear stiffness.

Figure 2.5: MARLO’s series-elastic actuator composed of a motor, a harmonic drive, fiber-
glass leaf spring, and carbon fiber tube.

In order to extend the robot’s motion from planar to 3D, the left and right legs are
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hinged to the torso through revolute joints at the hip, with a common axis that enables the

legs to rotate normal to the sagittal plane. The point where the legs attach is not equal to the

CoM of the robot, which is less in keeping with the features of a SLIP model. Each leg is

independently actuated in the frontal plane by a brushless DC-motor, which is considerably

smaller than those driving the legs in the sagittal plane. The motor is attached to the hip

through a rigid carbon fiber tube, with the motor being mechanically attached to a semi-

circular part using 4 wire-reinforced timing belts. The equivalent gear ratio of this hip

actuation mechanism is 26.7:1 and is shown in Fig. 2.6. Each hip is approximately 15 cm

wide, so that the total width of the hips when parallel is 30 cm.

Figure 2.6: Hip actuation mechanism.

As indicated above, the hip actuation motors are mounted on the torso, which accounts

for approximately 40% of the mass of the robot. Moreover, the torso houses the on-board

26



real-time computing, amplifiers, and batteries.

2.1.3 MARLO’s DoF and DoU

MARLO’s legs each have four DoF in the sagittal plane, where two DoF arise from the

two upper links of the parallelogram used in the leg construction, and two DoF arise from

the fiberglass springs in the SEAs. Each leg’s motions in the frontal plane is attached to the

torso through a revolute joint, which adds one more DoF to each leg for a total 5 DoF for

each leg. Because each leg has 5 DoF and 3 actuators, there are 2 degrees of underactuation

(DoU) per leg.

Six DoF are associated with the translation and orientation of the torso when MARLO

is unconstrained (e.g., in flight phase). However, during a single support phase, where

one foot is in contact with the ground surface, the (x − y − z) positions of the torso are

dependent on other configuration variables; hence, overall three DoF are associated with the

torso. Because MARLO’s feet are unactuated, there is no direct control over the orientation

of the torso, resulting in 3 additional DoU. It follows that the robot is highly underactuated.

Indeed, when MARLO is not in contact with the environment, it has sixteen DoF, whereas

when it is in contact with the ground, it has thirteen DoF. It has six independent actuators

and seven DoU.

2.1.4 Electronics

As illustrated in Fig. 2.7, MARLO’s electronic system includes microprocessors, en-

coders, thermistors, limit switches, motors and DC/DC converters. The specific sensors

available on the robot depend on whether it is setup for planar or 3D operation.

In planar mode, it is attached to a boom to constrain the roll and yaw orientations. The

boom, which is attached to the ground support structure on one side and to the torso on

the other side, confines the walking motion of the robot to its sagittal plane. The boom’s

circular motion due to the robot’s walking around the ground support structure is measured
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with the Z-boom-encoder (yaw), and the boom’s lateral motion due to the robot’s motions

in the frontal plane of walking is measured with the X-boom-encoder (roll). The “pitch-

boom-encoder,” which is mounted on the boom and coupled with the motions of the torso

in the sagittal plane of the robot using pulleys and timing belts, measures the pitch angle

of the torso with respect to the boom. In 3D mode (meaning the robot is not supported

by the boom mechanism), the roll, pitch and yaw angles of the torso are measured with an

“inertial measurement unit” (IMU) attached to the torso.

Absolute encoders mounted on the harmonic drives measure the angles of the two top-

most links of the parallelogram as well as the two fiberglass leaf springs, all relative to

the robot’s torso. Incremental encoders mounted on the frontal-plane hip-actuation motors

measure the hip angles with respect to the torso; an absolute encoder in the hip actuators is

used for calibration purposes. The limit switches, together with “E-stop” switches (emer-

gency stop) mounted on several points on the harmonic drives and hip motor actuators,

act as a safety mechanism by killing the robot’s power when the actuators reach the limits

of their work-space or when an emergency situation arises. The thermistors measure the

internal temperature of certain electronic components of the robot, such as the amplifiers

and motors.
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Figure 2.7: MARLO’s electronic schematic.

Seven special purpose PCB boards, called medulla boards (shown in dark gray in Fig.

2.7), are used on the robot to connect and route sensing and actuation signals. Each board

is composed of local computing units and an EtherCat chip. The boards are associated to

specific parts of the robot (e.g., left leg or right hip), and receive signals from encoders,

IMU, thermistors, and limit switches and send command signals to the power amplifiers.

These medulla boards are interconnected using a daisy-chained EtherCAT network and

allow MARLO’s electronics to be extended in a modular fashion.
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2.1.5 Nominal parameters

Nominal values for the mass of various elements of the robots, inertia tensors, position

of the CoM and the dimensions of the robot’s components (e.g., torso, hip) were obtained

numerically from the cad file. Parameters for the leg and hip actuator motor torque con-

stants, the harmonic drive and hip actuator friction, the harmonic drive and hip actuator

viscous damping, are based on the manufacturer data sheets. The leg motors’ torque con-

stants and rotor inertias were also estimated through system identification.1 The spring

stiffness and damping ratios were also estimated through system identification.

2.1.6 Concluding Remarks

MARLO’s design philosophy reflects the motivations of energy efficiency and a natural

walking pattern. The legs are composed of a carbon-fiber-based parallelogram mechanism

actuated through leaf springs with powerful non-back-drivable harmonic drives in the sagit-

tal plane and through back-drivable gearing in the frontal plane. The robot is designed to

be capable of efficient, fast and robust walking patterns in natural environments. The mass

distribution of MARLO’s components and the design of the SEA mechanisms were done

so that the equivalent dynamic model of the robot resembles a SLIP model.

1Courtesy of B. Buss and J. Grizzle.

30



CHAPTER III

Dynamic Model of Walking

This chapter develops four mathematical models for the study of walking of the bipedal

robot MARLO. The dynamic models cover both 3D and planar modes of operation when

the ground model is either rigid or compliant. In general, the rigid ground model is mostly

used for gait design purposes and the compliant ground model is used for feedback eval-

uation purposes. The chapter begins with the modeling hypotheses for the robot itself,

the gait, and the ground impacts. Next, the unconstrained dynamic model (i.e., no contact

with the environment) is developed using the method of Lagrange. Then the constrained

dynamics models, both 3D and planar, are derived using the method of Lagrange.

3.1 Modeling Hypotheses

Walking consists of alternating phases of single support and double support. During the

single support phase, one leg is in contact with the ground, whereas in the double support

phase, both legs are in contact with the ground. In single support, the leg in contact with

the ground is called the stance leg and the non-contacting leg is the swing leg. In double

support, the ambiguity concerning the swing leg is resolved by considering the retracting

leg as the swing leg during the double support phase.
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3.1.1 Gait Hypotheses for Walking on Rigid Ground

This subsection explains the modeling assumptions that are used for the robot walking

over rigid ground; the assumptions for a compliant ground model are found in [104]. Con-

ditions on the controller will ensure the following assumptions are met when the robot is in

motion. During the single support phase, the stance leg acts as a pivot. The normal compo-

nent of the ground reaction force at the pivot point is positive, where “Coulomb’s friction

law” holds, ensuring that no slippage of the stance point occurs. The double support phase

is instantaneous (see below). In steady state motion, the walking gait is symmetric with

respect to the two legs: with each step, the swing leg starts from strictly behind the stance

leg and lands strictly in front of the stance leg. The robot’s CoM position monotonically

increases along the direction of walking. Unless otherwise mentioned, the gait takes place

on level ground.

3.1.2 Planar Robot with Point Feet Hypotheses

For the planar dynamic model with trivial feet, the robot’s motion is constrained to the

sagittal plane of walking. The robot is composed of 9 rigid links connected by 8 revolute

joints to form an open kinematic chain. The joints are rigid and frictionless. Each link has

a distributed mass. The legs are symmetric and are connected to a common point called

hip. Not all revolute joints are independently actuated, 1 and the point of contact between

the end of the stance leg and the ground is unactuated.

3.1.3 Tehter-free Robot with Point Feet Hypotheses

For the tether-free dynamic model with point feet it is assumed that the robot is com-

posed of 11 rigid links connected by 10 revolute joints. The joints are rigid and frictionless,

forming an open kinematic chain; each link has a distributed mass; the robot’s motions are

considered both in the frontal plane and the sagittal plane; legs are symmetric and are con-

1 The parallelogram mechanism has unactuated revolute joints.
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nected to the hips. The hips are connected at a common point to the torso, not all revolute

joints are independently actuated, and the point of contact between the end of the stance

leg and the ground is unactuated.

3.1.4 Impact Hypotheses

Impact results when the swing leg contacts the ground. The impact is instantaneous

and causes neither “rebound” nor “slipping.” At the moment of impact, the stance leg

lifts off the ground without any interaction. External forces acting during impact can be

considered as impulses, while internal torques and forces cannot generate impulses. The

impact impulse force may cause discontinuities in velocity, but cannot cause discontinuities

in angles.

3.2 Modeling

3.2.1 MARLO’s Unconstrained Dynamic Model

The Lagrangian for a multi-link rigid body robot with 1 DoF revolute joints such as

MARLO is a functional acting on points in state space xf = (q, q̇) ∈ Xf = TQf , where

Qf is the configuration space, an open subset of T10 × R3 and T10 = S1 × . . . × S1,

and S1 is the unit circle. Coordinates are defined for the robot in general position, that is,

when neither leg is in contact with the ground. Denote the generalized coordinate used in

the unconstrained model by qf = {q1, . . . , qi, . . . , q16}. The members of the generalized

coordinate set follow.

Let a world frame n be defined and attach a Cartesian coordinate frame b1 = (xT , yT , zT )

to the CoM of the torso, oriented so that when the torso is upright, the z-axis points upward

and the y-axis points forward (Fig. 3.2). Euler angles are used to parametrize the orienta-

tion of the torso with respect to the world frame n. These angles are denoted by qz, qx, and

qy and are called yaw, pitch, and roll, respectively (Fig. 3.1). The yaw coordinate of the
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torso is also called heading. A Cartesian coordinate frame b2 is attached to the CoM of the

right hip such that when the hip is perpendicular to the torso, the z-axis points upward and,

the y-axis points forward (Fig. 3.2). A similar Cartesian coordinate is attached to the CoM

of the left hip and is labeled b3. The angles of the right and left hips relative to the torso

are denoted by q3R and q3L, respectively, as shown in Fig. 3.1. Because the four links in

each leg form a parallelogram, only two coordinates are needed to parametrize them. The

angles of the top two links relative to the hip are denoted by q1R and q2R for the right leg,

and q1L and q2L for the left leg (Fig 3.1). All relative angles explained above are positive in

the direction that respects the right-hand rule with one exception – the left hip joint angle.

Two Cartesian coordinates b4 and b5 are attached to the CoM of the two topmost links of

the right parallelogram mechanism such that the z-axis is along the link pointing downward

and the y-axis pointing forward (Fig. 3.2). Likewise, two Cartesian coordinates b6 and b7

are attached to the CoM of the two topmost links of left parallelogram mechanism, Fig. 3.2.

Figure 3.1: Angles used to uniquely determine the configuration of MARLO.
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(a) (b)

Figure 3.2: (a) Coordinate frames: blue is world coordinate and blacks are body coor-
dinates. (b) Moment of inertia tensor associated with each link is computed in the local
coordinate frame (red) and is then transformed into the world frame (blue).

Turning to the actuators, because the motors at the hips are connected to the body

through a fixed gear ratio, the angles of the rotors relative to the torso are uniquely de-

termined from q3R and q3L. On the other hand, the motors driving the legs are connected

through springs, and hence additional coordinates are needed. For each motor, the angle

of the output shaft of the harmonic drive is denoted by qgr. These angles are used instead

of the angles of the rotors of the motors because qgr1R, qgr2R, qgr1L, and qgr2L are in the

same coordinate frame as the respective link angles of the legs. To complete the set of

generalized coordinates, the position of an arbitrary point on the robot, pe = (phe , p
v
e , p

l
e), is

added to the generalized coordinate set, qe = (pe, qz, qy, qx, q1R, q2R, q1L, q2L, qgr1R, qgr2R,

q3R, qgr1L, qgr2L, q3L). This completes the coordinates for the robot; see Fig. 3.1.

The Lagrangian for the unconstrained system Lf : Xf 7→ R is defined as the difference
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of total kinetic energy and total potential energy; therefore,

Lf := Kf − Vf (3.2.1)

where Kf : Xf 7→ R and Vf : Qf 7→ R are kinetic and potential energy, respectively.

Using Hamilton’s principle, the equation of motion is obtained from the Lagrangian,

d

dt

∂Lf
∂q̇i
− ∂Lf

∂qi
= fi (3.2.2)

where fi represents generalized forces and generalized torques corresponding to the i-th

generalized coordinate. The first element that must be calculated in order to compute

(3.2.1) is the total kinetic energy of the system. Using the Cartesian coordinated frames de-

fined previously {n,b1,b2, . . . ,b11}, a set of rotation matricesRn,b1 ,Rb1,b2 ,Rb1,b3 ,Rb2,b4 ,

Rb2,b5 , Rb3,b6 , Rb3,b7 ∈ SO3 are defined. Rbi,bj
takes the vectors expressed in coordinate

frame bj and expresses the vector in the coordinate frame bi. Now that the transforma-

tion from one Cartesian coordinate to another Cartesian coordinate is well defined, let the

kinetic energy of the robot’s i-th link be

Kf,i =
1

2

∫
Vi

ρ(r̂εbi
)
∥∥∥ˆ̇rεn∥∥∥2

dV (3.2.3)

where Vi ∈ R3 is the region occupied by the i-th link, ρ(r̂εbi
) is the density of the i-th link

at the point r̂εbi
∈ Vi, ˆ̇rεn is the velocity of an element of i-th link with respect to the world

frame n, and ‖‖2 is the two-norm. Considering the rotation matrices Rn,bi
∈ SO3, it is

possible to re-write r̂εn as

r̂εn = r̂bi 7→n +Rn,bi
r̂εbi

(3.2.4)

where r̂bi 7→n is the vector starting from the origin of n and ending at the origin of bi. The
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time derivative of ˆ̇rεn is given as,

ˆ̇rεn = ˆ̇rbi 7→n + Ṙn,bi
ˆ̇rεbi

(3.2.5)

Now that r̂εn and ˆ̇rεn are known with respect to the world frame, substituting these terms

in (3.2.3) gives,

Kf,i =
1

2

∫
Vi

ρ(r̂εbi
)
∥∥∥ˆ̇rbi 7→n + Ṙn,bi

ˆ̇rεn
∥∥∥2

dV

=
1

2

∫
Vi

ρ(r̂εbi
)

(∥∥∥ˆ̇rbi 7→n

∥∥∥2

+
∥∥∥Ṙn,bi

ˆ̇rεn
∥∥∥2

+ 2
(

ˆ̇rbi 7→n

)(
Ṙn,bi

ˆ̇rεn
))

dV

=
1

2

∫
Vi

ρ(r̂εn)

(∥∥∥ˆ̇rbi 7→n

∥∥∥2

+
∥∥Rn,bi

[Ω]bi
r̂εn
∥∥2

+ 2
(

ˆ̇rbi 7→n

) (
Rn,bi

[Ω]bi
r̂εn
))

dV

(3.2.6)

In (3.2.6), using the fact that (Rn,bi
)−1 Ṙn,bi

is skew-symmetric, Ṙn,bi
can be written

as follows,

Ṙn,bi
=Rn,bi

(Rn,bi
)−1 Ṙn,bi

=Rn,bi
[Ω]bi

(3.2.7)

where [Ω]∨bi
= Ω̄bi

∈ R3 and the ∨ operator changes a skew-symmetric matrix into a vector.

In (3.2.6), the kinetic energy associated with the i-th link is composed of three terms. The

first term is due to the translational energy of the link,

KTranslation
f,i =

1

2

∫
Vi

ρ(r̂εbi
)

(∥∥∥ˆ̇rbi 7→n + Ṙn,bi
ˆ̇rεn
∥∥∥2
)
dV (3.2.8)
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The second term is the rotational kinetic energy of the link,

KRotation
f,i =

1

2

∫
Vi

ρ(r̂εbi
)
(∥∥Rn,bi

[Ω]bi
r̂εn
∥∥2
)
dV

=
1

2

∫
Vi

ρ(r̂εbi
)
(
Rn,bi

[Ω]bi
r̂εn
)′ (Rn,bi

[Ω]bi
r̂εn
)
dV

=
1

2

∫
Vi

ρ(r̂εbi
) (r̂εn)′

(
[Ω]bi

)′
(Rn,bi

)′Rn,bi
[Ω]bi

r̂εndV

=
1

2

∫
Vi

ρ(r̂εbi
) (r̂εn)′

(
[Ω]bi

)′
[Ω]bi

r̂εndV

=
1

2

∫
Vi

ρ(r̂εbi
)
(
[Ω]bi

)′
(r̂εn)′ r̂εn [Ω]bi

dV

=
1

2

(
[Ω]bi

)′∫
Vi

ρ(r̂εbi
) (r̂εn)′ r̂εndV

 [Ω]bi

=
1

2

(
[Ω]bi

)′
(Jin) [Ω]bi

(3.2.9)

where Jin is the moment of inertia corresponding to i-th link with respect to the world

frame n. Since the body coordinate frames are located at the CoM of i-th link, the third

term in the Kf,i is zero. Therefore,

Kf,i =KTranslation
f,i +KRotation

f,i

=
1

2
mi

∥∥∥ˆ̇rbi 7→n

∥∥∥2

+
1

2
[Ω]′bi

Jin [Ω]bi

(3.2.10)

Now the terms ˆ̇rbi 7→n and [Ω]bi
are expressed in the configuration variables

ˆ̇rbi 7→n =
∂r̂bi 7→n

∂q
q̇ := Jbi

q̇ (3.2.11)

where Jbi
is the Jacobian of the i-th body frame position bi with respect to configuration
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vector q. [Ω]bi
is written as

[Ω]bi
=

N∑
i=1

(Rn,bi
)−1 ∂Rn,bi

∂qi
q̇i

=

[(
(Rn,bi

)−1 ∂Rn,bi

∂q1

)
. . .

(
(Rn,bi

)−1 ∂Rn,bi

∂qN

)]
q̇

=Oi(q)q̇

(3.2.12)

Therefore, Kf,i is,

Kf,i =
1

2
q̇′Df,i(q)q̇ (3.2.13)

where Df,i(q) is given by

Df,i =
1

2
miJ

′
bi

(q)Jbi
(q) +

1

2
(Oi)′(q)Jin(q)Oi(q) (3.2.14)

Df,i is a symmetric positive semi-definite matrix. The system’s total kinetic energy is

written as follows:

Kf =
1

2

M∑
i=1

q̇′Df,i(q)q̇ (3.2.15)

The system’s potential energy is composed of the potential energy of each link due to

the gravitational field V Gravity
f,i and is written as

Vf =
M∑
i=1

gmip
v
cm,i(q) (3.2.16)

where g is the gravitational acceleration and pvcm,i(q) the vertical position of the CoM of

i-th link.

Now that both the total kinetic energy and total potential energy of the system are

known, expanding (3.2.2) results in

d

dt

∂Kf
∂q̇i
− ∂Kf

∂qi
− ∂Vf

∂qi
= fi (3.2.17)
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Considering (3.2.15), the first term in (3.2.17) is re-written as follows:

d

dt

∂Kf
∂q̇i

=
N∑
j=1

Di,j(q)q̈j +
N∑

j,k=1

∂Di,j(q)

∂qk
q̇j q̇k (3.2.18)

and
∂Kf
∂qi

=
1

2

N∑
j,k=1

∂Dk,j(q)

∂qi
q̇j q̇k (3.2.19)

Substituting (3.2.18) and (3.2.19) in (3.2.17) results in:

N∑
j=1

Di,j(q)q̈j +
N∑

j,k=1

∂Di,j(q)

∂qk
q̇j q̇k −

1

2

N∑
j,k=1

∂Dk,j(q)

∂qi
q̇j q̇k +

∂Vf
∂qi

= fi (3.2.20)

The second and third terms in (3.2.20) are components of the Coriolis matrix Cf,i ∈ RN×N ,

which is written as

N∑
j,k=1

∂Di,j(q)

∂qk
q̇j q̇k −

1

2

N∑
j,k=1

∂Dk,j(q)

∂qi
q̇j q̇k =

N∑
j=1

Cf,i,j q̇j (3.2.21)

The effect of the gravitational field represented as Gf,i ∈ RN enters into the model as

follows:

Gf,i =
∂Vf
∂qi

(3.2.22)

Re-writing (3.2.20) after substituting (3.2.21) and (3.2.22) in (3.2.20), the robot’s equations

of motion are given by

Df (qf )q̈f + Cf (qf , q̇f )q̇f + Gf (qf ) = f(qf , q̇f , u). (3.2.23)

As previously mentioned, matrix Df is the unconstrained mass-inertia matrix, Cf is the

unconstrained matrix of Coriolis and centrifugal terms, Gf is the gravity vector for the

unconstrained robot, and f(qf , q̇f , u) is the vector of generalized forces acting on the un-

pinned model of the robot. Using the principle of virtual work, f(qf , q̇f , u) can be written
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as

f(qf , q̇f , u) = Bu+ Bsp(qf )τsp(qf , q̇f ), (3.2.24)

where the matricesB andBsp define how the motor torques u = [u1R, u2R, u3R, u1L, u2L, u3L]′

and the spring torques τsp enter the unconstrained model, respectively.

3.2.2 Tether-Free Model on Rigid Ground

MARLO’s tether-free dynamic model is derived using the method of Lagrange when

the ground is non-compliant (i.e., rigid). The model is composed of two phases: double

support and single support. The single support model is formulated first and then the impact

dynamics, mapping the state of the robot before impact to the states of the robot after

impact, are derived. Finally, the hybrid model of walking, which combines the swing

phase dynamics and impact dynamics, is presented.

3.2.2.1 Single Support Phase

When the robot is in single support, meaning one and only one leg is in contact with the

ground, the coordinates are defined independent of which leg is eventually the stance leg.

This is different from the approach followed in [105]. The Lagrangian for the constrained

model of the robot with 1 DoF revolute joints is a functional acting on points in state space

xf = (q, q̇) ∈ Xs = TQs, whereQs is the configuration space, an open subset of T10×R3.

Coordinates are defined for the robot when one leg is in contact with the ground. Denote the

generalized coordinates used in the constrained model by qs = {q1, . . . , qi, . . . , q13}. When

in single support, the configuration variable pe used in the unconstrained model is redun-

dant and can be eliminated. Thus, for developing the single-support model with either the

left or the right leg in stance, the configuration variables are qs = (qz, qy, qx, q1R, q2R, q1L,

q2L, qgr1R, qgr2R, q3R, qgr1L, qgr2L, q3L). Recall that the last six coordinates are indepen-

dently actuated, whereas the first seven coordinates are un-actuated. LetQs ⊂ SO(3)×S10

be a connected open subset giving the feasible set for the configuration variables.

41



The model and its feasible set of variables will of course depend on which leg is in

stance. This will be made clear in Section 3.2.2.3 by appending a subscript “L” or “R”

as appropriate. Because the mechanism in each leg forms a parallelogram, the linear and

angular velocities of the two lower links are identical to the linear and angular velocities of

the corresponding upper links. It follows that the Lagrangian of the model can be developed

as if the robot were a pinned open kinematic chain.

To compute the Lagrangian, the kinetic energy and potential energy of each rigid body

are calculated and expressed in the generalized coordinates. Summing over the rigid bodies

then gives the total kinetic energy Ks and the total potential energy Vs, yielding

Ls(qs, q̇s) := Ks(qs, q̇s)− Vs(qs). (3.2.25)

Lagrange’s equation then gives the standard robot equations

Ds(qs)q̈s + Cs(qs, q̇s)q̇s + Gs(qs) = Γs, (3.2.26)

where matrix Ds is the mass-inertia matrix, Cs is the matrix of Coriolis and centrifugal

terms, Gs is the gravity vector, and Γs is the vector of generalized forces acting on the

robot. Using the principle of virtual work, Γs can be written as

Γs = Bsu+ Bsp(qs)τsp(qs, q̇s) + Byaw(qs)τyaw(qs, q̇s), (3.2.27)

where the matrices2 Bs, Bsp, and Byaw define how the motor torques

u = [u1R, u2R, u3R, u1L, u2L, u3L]′ , (3.2.28)

the spring torques τsp, and the stance-leg end yaw torque τyaw enter the model, respectively.

2Because of the way coordinates have been assigned, Bs is a constant matrix. Moreover, because the
actuators are independent, Bs has (full) rank equal to the number of actuators, namely 6.
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For i ∈ {1R, 2R, 1L, 2L}, the spring torque of the i-th series-elastic actuator is mod-

eled as

τsp,i = −ksp,i(qi − qgr,i)− bsp,i(q̇i − q̇gr,i), (3.2.29)

where ksp,i denotes spring stiffness and bsp,i is a damping coefficient.

The primary joint friction is due to the harmonic drives used in the series-elastic ac-

tuators and is ignored in the model at the current time. References [106, 107] provide

nonlinear models of power-loss at the harmonic drives and will be incorporated in future

work when sufficient experimental data is available from the robot. The stance-leg end yaw

torque is also modeled as viscous friction

τyaw = −byawωshin(qs, q̇s), (3.2.30)

where ωshin is the vertical component of the angular velocity about the stance shin and byaw

is a constant.

Setting x = (qs; q̇s) ∈ T Qs, the model in state-variable form is

ẋ =

 q̇s

D−1
s (qs)(−Hs(qs, q̇s) + Bsu)

 , (3.2.31)

where
Hs(qs, q̇s) =Cs(qs, q̇s)q̇s + Gs(qs)− Bsp(qs)τsp(qs, q̇s)−

Bfric(qs)τfric(qs, q̇s)− Byaw(qs)τyaw(qs, q̇s).

(3.2.32)

Equation (3.2.31) immediately leads to the state variable model

ẋ = fs(x) + gs(x)u. (3.2.33)
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3.2.2.2 Impact model

An impact occurs when the end of the swing leg contacts the ground. The impact

dynamics is presented in the form of a map that takes the states of the robots before impact

x−s ∈ Qs and gives the states after the impact x+
s ∈ Qs. Let pv : Qs 7→ R denote the

vertical height of the swing leg above the ground so that the impact surface is

S = {x ∈ T Qs | pv(qs) = 0, pv(qs) > 0}. (3.2.34)

The impact is modeled as a contact of two rigid bodies, using the methodology of [108].

(See [109] for the details) Consequently, the impact is instantaneous, the generalized con-

figuration variables are constant across the impact, while the generalized velocities undergo

a jump. Consider the unconstrained model of the robot again:

Df (qf )q̈f + Cf (qf , q̇f )q̇f + Gf (qf ) = f(qf , q̇f , u) + δFimp, (3.2.35)

where δFimp ∈ R4 denotes the instantaneous impact force. The impact hypothesis men-

tioned previously ( no-slipping, no-rebound and no-yaw-motion), yield the following equa-

tions q̇+
f

Fv

 =

Df (q−f ) Ev

−Ev O4×4


−1 Df (q−f )q̇−f

04×1

 (3.2.36)

where Ev ∈ R4

Ev =

 ∂pv(q−f )

∂qf

∂ωshin(q−f ,q̇f )

∂qf

 . (3.2.37)

The first thirteen entries of q̇+
f should be used to initialize the single support phase

after the impact. Moreover, the configuration angles before impact q−s are equal to the

configuration angles after the impact q+
s since there is no rebound or jump in the angles.
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This is written in the form of a map that results in the states of the robot after impact,

x+
s = ∆(x−s ), (3.2.38)

where x−s is the value of the state just before the impact and x+
s is its value just after the

impact.

3.2.2.3 Hybrid model

Combining the swing phase models and the impact models for the left and right legs

results in the hybrid model

ΣL :

 ẋ = fs,L(x) + gs,L(x)u, x− 6∈ SL

x+ = ∆L→R(x−), x− ∈ SL

(3.2.39)

ΣR :

 ẋ = fs,R(x) + gs,R(x)u, x− 6∈ SR

x+ = ∆R→L(x−), x− ∈ SR.

In the hybrid model, the dynamics evolve according to (3.2.33) until the swing leg impacts

the ground. The impact map given by (3.2.38) is inactive until the state of the robot reaches

the switching surface S, at which point the impact map becomes active and results in jump

(or discontinuity) in the velocity states. (3.2.39) gives the hybrid nonlinear system for 3D

bipedal walking.

3.2.3 Tether-Free Model on Compliant Ground

The tether-free model with point feet walking over a compliant ground model is ob-

tained from the unconstrained model of the robot introduced earlier with ground contact

forces applied to the leg ends. Indeed, using the principle of virtual work and the uncon-
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strained model results in

Df (qf )q̈f + Cf (qf , q̇f )q̇f + Gf (qf ) = f(qf , q̇f , u) + J ′(qf ).F (3.2.40)

where J ′(qf ) ∈ R6×16 is a Jacobian matrix of the robot’s legs end-points,

J ′(qf ) =
∂

∂qf



xR

yR

zR

xL

yL

zL


(3.2.41)

and F ∈ R6 consists of tangential and normal forces acting at the ends of the robot’s legs.

F =



FR,x

FR,y

FR,z

FL,x

FL,y

FL,z


(3.2.42)

The tangential and normal forces F are modeled as in [104] with the following equa-

tions:
Fx = µx(d, v). |Fz|

Fy = µy(d, v). |Fz|

Fz = −λav. |zG|
n .żG + kν . |zG|n

(3.2.43)
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with
ḋ = ν − |ν| . σh0

αh0
.d

µx,y(d, ν) = σh0 .d+ σh1 .ḋ+ αh2 .ν

(3.2.44)

The normal forces Fz have been modeled as a vertical nonlinear spring damper, where

zG is the penetration of the link into the ground, λaν is the damping coefficient of the vertical

damper, kν is the stiffness of the vertical spring, and n = 1.5 is a coefficient characterizing

the form of the surface in contact. The tangential forces Fx,y are in the form of a friction

model with a non-constant friction coefficient. Specifically, the LuGre friction model has

been used to evaluate the friction coefficients µ. The model supposes that the interaction

between the leg end and the walking surface resembles a set of ”bristles.” If the average tan-

gential force is sufficient, the springs and dampers used to model the bristle-like interaction

will deflect; otherwise, the foot will slide. In the above, d is the deflection where ν is the

relative velocity of the contacting surface; σh0 is the stiffness of the horizontal spring; αh0

is the coefficient of static friction; σh1 is the damping coefficient of the horizontal damper;

and αh2 is the coefficient of viscous friction.

3.2.4 Planar Model on Rigid Ground

A sagittal plane model is obtained from the unconstrained model by imposing six holo-

nomic constraints and setting the width of the hips to zero. The position and velocity of

the stance leg-end point pst = (x; y; z) ∈ R3 are set to zero. The yaw and roll coordinates

of the torso, qz and qy, and their derivatives are set to zero, thereby constraining the torso

to the sagittal plane. The hip coordinates q3R and q3L and their derivatives are also set to

zero, so that the hip axis is perpendicular to the sagittal plane. The Lagrangian of the planar

model is then the Lagrangian of the unconstrained model restricted to the surface:

T Qs,2D = {(qf ; q̇f ) ∈ T Qf | pst = 0, qz = 0, qy = 0, q3R = 0, q3L = 0,

ṗst = 0, q̇z = 0, q̇y = 0, q̇3R = 0, q̇3L = 0}. (3.2.45)
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The control torques associated with q3R and q3L are removed, leaving four actuators.

The mass of these actuators is retained in the model so that solutions of the tether-free and

planar models can be compared.

3.2.4.1 Single Support Phase

The Lagrange equations for the constrained planar model at a point q
s,2D
∈ Q

s,2D
,

q̇
s,2D
∈ T Q

s,2D
is written as

D
s,2D

(q
s,2D

)q̈
s,2D

+ C
s,2D

(q
s,2D

, q̇
s,2D

)q̇
s,2D

+ G
s,2D

(q
s,2D

) = Γ
s,2D

, (3.2.46)

where matrixD
s,2D

is the mass-inertia matrix, C
s,2D

is the matrix of Coriolis and centrifugal

terms, G
s,2D

is the gravity vector, and Γ
s,2D

is the vector of generalized forces acting on the

planar robot. Using the principle of virtual work, Γ
s,2D

is written as

Γ
s,2D

= B
s,2D

u+ Bsp,s,2D(q
s,2D

)τsp,s,2D(q
s,2D

, q̇
s,2D

) (3.2.47)

where matrices B
s,2D

and Bsp,s,2D define how the motor torques u = [u1R, u2R, u1L, u2L]′

and the spring torques τ
s,2D

enter the model, respectively. For i ∈ {1R, 2R, 1L, 2L}, the

spring torque of the i-th series-elastic actuator is modeled similar to the tether-free model.

Setting x
s,2D

= (q
s,2D

; q̇
s,2D

) ∈ T Q
s,2D

, the model in state-variable form is

ẋ
s,2D

=

 q̇
s,2D

D−1
s,2D

(q
s,2D

)(−H
s,2D

(q
s,2D

, q̇
s,2D

) + B
s,2D

u)

 , (3.2.48)

where

H
s,2D

(q
s,2D

, q̇
s,2D

) =C
s,2D

(q
s,2D

, q̇
s,2D

)q̇
s,2D

+ G
s,2D

(q
s,2D

)− Bsp,s,2D(q
s,2D

)τsp,s,2D(q
s,2D

, q̇
s,2D

)−

Bfric,s,2D(q
s,2D

)τfric,s,2D(q
s,2D

, q̇
s,2D

)

(3.2.49)
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Equation (3.2.49) immediately leads to the state variable model

ẋ
s,2D

= f
s,2D

(x
s,2D

) + g
s,2D

(x
s,2D

)u. (3.2.50)

3.2.4.2 Impact Model

The impact map is once again developed using the method in [108]. Let pv,s,2D :

Qs,2D 7→ R denote the vertical height of the swing leg above the ground so that the impact

surface is

S
s,2D

= {x
s,2D
∈ T Q

s,2D
| pv,s,2D(q

s,2D
) = 0, pv(qs,2D) > 0}. (3.2.51)

The impact map for the planar model is obtained from the unconstrained model of the robot

with the same approach explained previously, therefore,

x+
s,2D

= ∆
s,2D

(x−
s,2D

), (3.2.52)

where x−
s,2D

is the value of the state just before the impact and x+
s,2D

is its value just after

the impact.

3.2.4.3 Hybrid Model

A hybrid model is then formed, just as in (3.2.39). The model can be simplified to a

single-phase system with impulse effects if leg swapping is incorporated into the impact

map, as in [110], yielding

Σ
s,2D

:


ẋ

s,2D
= f

s,2D
(x

s,2D
) + g

s,2D
(x

s,2D
)u, x−

s,2D
6∈ S

s,2D

x+
s,2D

= ∆
s,2D

(x−
s,2D

), x−
s,2D
∈ S

s,2D
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3.2.5 Planar Model on Compliant Ground

The planar model with point feet walking over compliant ground is obtained from the

unconstrained model of the robot after defining four holonomic constraints – that restrict

the motion of the robot to the sagittal plane of walking

T Q
f,2D

= {(qf ; q̇f ) ∈ T Qf | qz = 0, qy = 0, q3R = 0, q3L = 0, q̇z = 0, q̇y = 0, q̇3R = 0, q̇3L = 0}.

The Lagrangian restricted to T Q
f,2D

for q
f,2D
∈ Q

f,2D
and q̇

f,2D
∈ T Q

f,2D
results in

D
f,2D

(q
f,2D

)q̈
f,2D

+ C
f,2D

(q
f,2D

, q̇
f,2D

)q̇
f,2D

+ G
f,2D

(q
f,2D

) = f(q
f,2D

, q̇
f,2D

, u) + J ′(q
f,2D

).F

where J ′(q
f,2D

) ∈ R4×12 is a Jacobian matrix of the robot’s legs end-points,

J ′(q
f,2D

) =
∂

∂q
f,2D



y1

z1

y2

z2


and F ∈ R4 consists of tangential and normal forces acting at the ends of the robot’s

legs,

F =



F1,y

F1,z

F2,y

F2,z


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The tangential and normal forces F are modeled similar to the tether-free model.
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CHAPTER IV

Gait Design and Optimization

When a holonomic constraint is imposed through the action of an actuator rather than

the internal forces of a physical constraint, it is said to be virtual [110, 69, 111]. Virtual

constraints can be used to synchronize the links of a robot in order to achieve common

objectives of walking, such as supporting the torso, advancing the swing leg in relation

to the stance leg, or specifying foot clearance. Analogous to physical constraints, virtual

constraints induce a reduced-dimensional model compatible with the constraints, called

zero dynamics [112, 69]. When combined with parameter optimization, virtual constraints

can be designed to achieve additional objectives such as walking at a desired speed and

respecting bounds on ground reaction forces. Energy efficiency can also be increased, as

explained in [69, 109, 105, 113].

This chapter begins with detailed derivations of the equations governing MARLO’s

zero dynamics using a general family of output functions that are only a function of the

angles and not the angular velocities. Thereafter, a more specialized family of virtual con-

straints tied to MARLO’s morphology are introduced, followed by a systematic gait design

algorithm based on optimizing a metric characterizing MARLO’s energetic efficiency sub-

ject to equality and inequality constraints. Simulations for nominal walking speeds of 0.5

to 1.4 [m
s

], in increments of 0.1 [m
s

], are presented. Walking at 1 [m
s

] is analyzed in greater

detail. In addition, this chapter will provide guidelines and suggestions for improving the
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energetic efficiency of walking in the context of positive work and negative work before

concluding with a summary note.

4.1 MARLO’s Zero Dynamics

One virtual constraint per actuator is proposed in the form of an output that, when

zeroed by a feedback controller, enforces the constraint. The constraints are written in the

form

y = h(qs, α) = h0(qs)− hd(θ(qs), α), (4.1.1)

where h0(qs) specifies the vector of variables to be controlled, hd(θ, α) is the desired

evolution of the controlled variables as a function of θ(qs), and α = [αj,i] ∈ R 6×(n+1) is

a matrix of real parameters to be chosen. The number of columns, n + 1, is defined later

in Section 5.1. A gait-timing variable θ(qs) is used to replace time in parametrizing the

motion of the robot. Thus, θ(qs) is selected to be strictly monotonic (i.e., strictly increasing

or decreasing) along normal walking gaits.

When the decoupling matrix (6.2.5) is invertible, see [112, 69, 109], zeroing of the

virtual constraints in (4.1.1) via feedback creates a parametrized smooth manifold Zα that

is invariant under the flow of the closed-loop single support dynamics. The dynamics

restricted to this surface, that is, the dynamics compatible with the constraints, is called

“zero dynamics”. In each single-support phase, zero dynamics can be expressed in the

form of a second-order system,

Dzero(qzero, α)q̈zero +Hzero(qzero, q̇zero, α) = 0, (4.1.2)

where (qzero, q̇zero) are the unactuated variables in the Lagrangian model and constitute a set

of local coordinates for the manifold Zα. Dzero includes inertial terms and Hzero includes
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gravity and Coriolis terms. Because the actuators are doing work on the system when

zeroing the outputs, the resulting dynamics may not be Lagrangian, although in special

cases, the zero dynamics is Lagrangian [69]. When the virtual constraints in (4.1.1) have

vector relative degree two1 [112, 69], as is the case here, the dimension of qzero equals

the dimension of qs minus the number of independent actuators. Hence, for the tether-free

model used here, qzero = (qz; qy; qx; q1R; q2R; q1L; q2L).

4.1.1 Gait timing variable and coordinate partition

Let θ be defined by

θ(qs) = C0qs + C1, (4.1.3)

for an appropriate row vector C0 and scalar C1. Let qcon = h0(qs) denote the controlled

variables in the output in (4.1.1) and suppose that qcon can be expressed as an affine function

of the configuration variables,

qcon = H̃0qs + H̃1. (4.1.4)

Let qzero be a complementary set of variables satisfying (4.1.5),

qzero = Ĥ0qs + Ĥ1, (4.1.5)

and selected so that (4.1.6) is a set of generalized coordinates for Qs,

q̄ =

 qcon
qzero

 (4.1.6)

Define

H0 =

H̃0

Ĥ0

 , H1 =

H̃1

Ĥ1

 , (4.1.7)

1This means that the second derivatives of the six outputs in (4.1.1) depend on six inputs in a full rank or
independent manner.
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where it follows that H0 has (full) rank equal to the dimension of Qs. Defining T0 = H−1
0

and T1 = −H−1
0 H1 leads to (4.1.8),

qs = T0q̄ + T1. (4.1.8)

The coordinates expressed in (4.1.6) have been partitioned into those that are directly

actuated and those that are not actuated. The first block of coordinates are sometimes

referred to as the “controlled variables,” while the second block are sometimes referred to

as “unactuated” coordinates.

4.1.2 Key assumptions

The following conditions are assumed to hold.

1. The controlled variables qcon in (4.1.4), the gait-timing variable θ(qs) in (4.1.3), and

the desired evolution hd(θ) in (4.1.1) have been selected so that the decoupling matrix

is invertible.

2. The complementary variables qzero of (4.1.5) have been selected so that T ′0B =

B̄1

0


and B̄1 is 6 × 6, that is, it is square with the size determined by the number of

actuators.

3. The gait-timing variable can be expressed in terms of qzero, that is:

θ(q̄) = C̄0qzero + C̄1. (4.1.9)

4.1.3 Model decomposition and zero dynamics

Expressing the mechanical model (3.2.26) in the coordinates (4.1.6) leads to:

D̄(q̄)¨̄q + H̄(q̄, ˙̄q) = B̄u, (4.1.10)
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where

D̄(q̄) = T ′0Ds(qs)T0|qs=T0q̄+T1 , (4.1.11)

H̄(q̄, ˙̄q) = T ′0Hs(qs, q̇s)T0|
qs =T0q̄ + T1

q̇s =T0 ˙̄q

(4.1.12)

and

B̄ = T ′0Bs. (4.1.13)

In the transformed coordinates, the dynamic model can be partitioned as,

D̄11(q̄) D̄12(q̄)

D̄21(q̄) D̄22(q̄)


 q̈con
q̈zero

+

H̄1(q̄, ˙̄q)

H̄2(q̄, ˙̄q)

 =

B̄1

0

u (4.1.14)

The zero dynamics is the unactuated part of this model, namely,

D̄21(q̄)q̈con + D̄22(q̄)q̈zero + H̄2(q̄, ˙̄q) = 0. (4.1.15)

We now bring the virtual constraints into consideration,

0 = qcon − hd(θ), (4.1.16)

that is,

qcon = hd(θ). (4.1.17)

Computing the derivatives of qcon with respect to time so that we can substitute into (4.1.15)

gives,

q̇con =
∂hd(θ)

∂θ
θ̇, (4.1.18)

and

q̈con =
∂hd(θ)

∂θ
θ̈ +

∂2hd(θ)

∂θ2
(θ̇)2. (4.1.19)
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(4.1.9) yields:

θ̇ = c̄0q̇zero (4.1.20)

θ̈ = c̄0q̈zero. (4.1.21)

Substituting these expressions into (4.1.15) and simplifying leads to:2

Dzero(qzero)q̈zero +Hzero(qzero, q̇zero) = 0, (4.1.22)

where

Dzero = D̄22 + D̄21
∂hd(θ)

∂θ
c̄0 (4.1.23)

and

Hzero = H̄1 + D̄21
∂2hd(θ)

∂θ2
(θ̇)2. (4.1.24)

The control signal u compatible with the virtual constraints being zeroed can also be

computed from (4.1.14), (4.1.19), and (4.1.21):

u∗ =B̄−1
1

{[
D̄12 + D̄11

∂hd(θ)

∂θ
c̄0

]
q̈zero+

H̄1 + D̄11
∂2hd(θ)

∂θ2
(θ̇)2

}
. (4.1.25)

4.2 Specification of the Virtual Constraints

For the tether-free model of MARLO, the controlled variables, when the right leg is the

stance leg, follow.

2When the decoupling matrix is invertible, Dzero is guaranteed to be invertible as well.
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4.2.1 Leg Angles

The leg angle variables represent quantities in the sagittal plane, on the motor side of

the series-compliant actuators; specifically, they correspond to the angles of the right and

left legs relative to the torso when the spring deflection is zero:

hLegAngle0 (qs) =


qgr1R + qgr2R

2
qgr1L + qgr2L

2

 (4.2.1)

4.2.2 Knee Angles

The knee angle variables represent quantities in the sagittal plane, on the motor side

of the series-compliant actuators; specifically, they correspond to the relative angle of the

thigh and shin links, when the spring deflection is zero:

hKneeAngle0 (qs) =


qgr2R − qgr1R

2
qgr2L − qgr1L

2

 (4.2.2)

4.2.3 Hip Angles

The hip angle variables are the angles of the legs relative to the torso, in the frontal

plane; recall that these variables are not actuated through springs.

hHipAngle0 (qs) =

 q3R

q3L

 (4.2.3)

Stacking the leg angle, knee angle and hip angle variables to form the vector of con-
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trolled variables defines h0(qs) as

h0(qs) =



qgr1R + qgr2R
2

qgr1L + qgr2L
2

qgr2R − qgr1R

qgr2L − qgr1L

q3R

q3L


=



qLAgrR

qLAgrL

qKneegrR

qKneegrL

qHipR

qHipL



, (4.2.4)

4.2.4 Gait-Timing Variable

The gait-timing variable is selected as

θ(qs) =


θR(qs) if the right leg is stance;

θL(qs) otherwise,
(4.2.5)

where θR(qs) is the angle between the virtual leg3 and the ground surface normal vector

when the right leg is the stance leg. θL(qs) is defined in an analogous manner when the left

leg is the stance leg.

3Virtual leg is defined as a virtual line connecting the pivot point of the stance leg to the hip joint.
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4.3 Systematic Gait Design, Optimization Method

As shown in Section 4.1, the process of deriving (4.1.22) provides a closed-form ex-

pression for the control input u∗α(qzero, q̇zero),

u∗ =B̄−1
1

{[
D̄12 + D̄11

∂hd(θ)

∂θ
C̄0

]
q̈zero+

H̄1 + D̄11
∂2hd(θ)

∂θ2
(θ̇)2

}
, (4.3.1)

that is, the control input that zeros the virtual constraints and creates the zero dynamics

manifold Zα

0 = h(qs, α)⇔ h0(qs) = hd(θ, α). (4.3.2)

Solutions of the zero dynamics (4.1.22) are exact solutions of the full-dimensional model

(3.2.31) in a closed-loop with u∗α [109, 114, 105]. This motivates posing an optimization

problem to select α, resulting in a periodic solution of the hybrid model (3.2.39), where the

lower-dimensional dynamic equations of the zero dynamics (4.1.22) are integrated in place

of the full dynamics (3.2.33) in a closed loop with u∗α.

The cost function will be taken as the cost of mechanical transport cmt [35],

J(α, q−zero, q̇
−
zero) =

1

gMtotd

TI∫
0

6∑
i=1

[pi(t)]+dt, (4.3.3)

where (q−zero; q̇
−
zero) denotes the final condition of the zero dynamics. Furthermore, TI is

the step duration, d represents the distance traveled by the CoM in one step, g denotes

the gravitational constant, Mtot is the total mass of the robot, pi(t) is actuator power, and

[p]+ = p when p ≥ 0 and equals zero otherwise. According to [35], for humans walking at

approximately 1 m/s, cmt is approximately 0.05.

The parameter vector α and the initial conditions (q−zero; q̇
−
zero) are chosen to minimize

J(α, q−zero, q̇
−
zero) subject to the walking gait being periodic and symmetric, the ground re-
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action forces are feasible, and the speed is a desired value. Here, the minimization was

carried out in MATLAB using the fmincon function.

If the optimization process is successful, it returns the (locally) optimized value for the

parameters in the virtual constraints α∗, and the final conditions (q−zero; q̇
−
zero) for a periodic

solution of the hybrid model (3.2.39) corresponding to a walking gait with the specified

properties. Chapter VI will discuss how the virtual constraints can be used to synthesize a

feedback controller that asymptotically stabilizes the walking gait.

4.4 Optimal Solutions

The optimization framework of Sections 4.3 and 5.1 has been applied to the 3D model

of Section 3.2.2 to compute walking gaits that are locally optimal with respect to cmt . The

gaits may only be locally optimal because the dependence of the cost function (4.3.3) on

the parameters of the virtual constraints and the final conditions of the zero dynamics is

non-convex. Simulations for nominal walking speeds of 0.5 to 1.4 [m
s

], in increments of

0.1 [m
s

], are presented. Walking at 1 [m
s

] is analyzed in greater detail.

4.4.1 Walking Efficiency versus Speed

For comparison purposes, the reported cmt corresponding to human walking gait at

1[m
s

] is 0.05, and the cmt-based efficiency of Cornell’s Ranger is 0.04 at a speed of 0.6[m
s

].

Figure 4.1 shows the computed cmt versus speeds of 0.5 to 1.4 [m
s

], in increments of 0.1

[m
s

], when Bézier curves are used to parametrize the desired trajectories for the holonomic

constraints in the tether-free model of MARLO while it walks over rigid flat ground with

point feet. Figure 4.1 suggests that a quadratic relation exists between the walking speed

and the cmt, and that the minimum cmt of 0.09 takes place at a speed of 0.5[m
s

]. Chapter

V shows how using a new family of parametric curves makes it possible to improve the

energetic efficiency of MARLO’s walking gait.
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]

Figure 4.1: cmt versus walking velocity for nominal walking speeds of 0.5 to 1.4 [m
s

], in in-
crements of 0.1 [m

s
], when Bézier curves are used as desired trajectories for the holonomic

constraints.

4.4.1.1 Walking at 1 [m
s

]

A periodic walking gait optimized at 1 [m
s

] is analyzed in more detail. In the following,

the right leg is the stance leg while the left leg is the swing leg. The evolution of the

virtual constraints is shown in Fig. 4.2. The motor-side right leg angle qLAgrR decreases from

187[deg] to 175[deg] and the corresponding left leg angle qLAgrL increases from 175[deg] to

187[deg]. The motor-side right knee angle qKneegrR varies between 4[deg] and 10[deg] and

the left knee angle qKneegrL varies from 2[deg] to 8[deg]. In the frontal plane, the right hip

joint angle qHipR and the left hip joint angle qHipL shown in Fig. 4.2c are essentially constant,

being bounded between 4[deg] and 5[deg]. Figure 4.3 shows the motor torques for u1R, u1L,

u2R, u2L, u3R and u3L, while Fig. 4.4 shows the corresponding actuator power (product of

torque and angular velocity at the motor shafts).
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Figure 4.2: Evolution of (a) the right leg angle qLAgrR and the left leg angle qLAgrL, (b) the right
knee angle qKneegrR and the left knee angle qKneegrL , (c) the right hip joint angle qHipR and the
left hip joint angle qHipL during two steps for an optimal walking motion with the nominal
velocity of 1.0[m

s
] and cmt 0.096.
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Figure 4.3: Control effort (a) u1R, u1L, (b) u2R, u2L, and (c) u3R, u3L during two steps
corresponding to a fixed point with a nominal walking speed of 1.0[m

s
] and cmt 0.096.
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Figure 4.4: Actuation power (a) p1R, p1L, (b) p2R, p2L, and (c) p3R, p3L during two steps
corresponding to a fixed point with a nominal walking speed of 1.0[m

s
] and cmt 0.096.

Tables 4.1 and 4.2 present the amount of positive work W⊕ performed by each actuator

as well as the amount of negative work W	 absorbed by each actuator over the course of

a single step. A notable point is the large amount of negative work done by actuator u1 of

the stance leg. Due to the parallelogram mechanism, u1 is positive to support the robot but

moves in a negative direction to advance the body of the robot. In Tables 4.1 and 4.2, pmax

and umax denote the peak power and peak torque during the single step when the right leg

is stance.
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uiR W⊕ W	 pmax umax

u1R 0.154 3.605 84.518 4.154

u2R 1.711 1.265 113.720 5.358

u3R 0.429 0.608 42.834 4.989

Table 4.1: Right actuator’s energy breakdown over one step for walking at 1.0[m
s

]; right leg
is stance. The cmt is 0.096.

uiL W⊕ W	 pmax umax

u1L 1.339 1.487 174.23 4.154

u2L 4.434 3.444 391.780 5.358

u3L 0.283 0.330 27.298 4.989

Table 4.2: Left actuator’s energy breakdown over one step for walking at 1.0[m
s

]; right leg
is stance. The cmt is 0.096.

4.5 Effects of Torso’s CoM and Harmonic Drive Gear Ratio on En-

ergy Efficiency of MARLO

Section 3.2.4 obtained a planar model from the tether-free model by adding constraints

to the Lagrangian. This section suggests that the planar and tether-free models are in agree-

ment.

Consider an optimal walking motion with a cmt of 0.08 and an average walking speed

1.0[m
s

], which is obtained using the HZD optimizer for the tether-free model. Next, by

removing the yaw and roll coordinates qz and qy and their derivatives q̇z and q̇y from the

final state (q−zero, q̇
−
zero), and also removing the free parameters corresponding to q3R and

q3L in the virtual constraint, an initial guess is obtained for the planar HZD optimizer. It

is worth mentioning that the controlled variables for the planar model are equal to those

of the tether-free model in the sagittal plane. Continuing the optimization process using

the fmincon function results in a locally optimal solution for the planar model with cmt
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0.0778 and an average walking speed 1.0[m
s

]. The evolution of the sagittal plane angles for

the planar and the tether-free models are shown in Fig. 4.5. It can be seen that the virtual

constraints and initial conditions for the states of the tether-free model result in very good

initial solutions for performing iterative gait optimization of the planar model, resulting

in nearly identical predictions of cmt. Now that it has been shown that the planar model

and the tether-free model are in agreement, a parametric design is addressed on the planar

model.
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Figure 4.5: Comparison between the planar model and tether-free model.

An optimal solution for the tether-free model with cmt 0.0778 and a nominal walking

speed of 1.0[m
s

] is used as the initial condition for optimizing the planar model using HZD.

The optimization of the planar model is repeated as the position of CoM of the torso is

moved down by 0.3[m], which resulted in only a slight change in cmt value, an increase

of approximately 0.5%. Next, the position of the CoM is returned to its nominal value
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and the gear ratio of the harmonic drive is modified to 30 : 1 instead of 50 : 1. When

the optimization is redone, the cmt decreases by 38.6%. Figures 4.6 and 4.7 show the

sagittal plane controllers ugr1R,ugr1L,ugr2R and ugr2L, respectively. These results suggest

that modifications of the position of CoM may not vary the value of cmt on the tether-free

model. In contrast, the changes in the harmonic drive gear ratio strongly affect the energetic

efficiency of the tether-free model.
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Figure 4.6: Controller effort for the planar model (a) u1R and (b) u1L, respectively. The
black solid curve corresponds to the nominal gait. The red solid thick curve corresponds to
the model with a modified position of the CoM, and the dashed black curve corresponds to
the model with a modified gear ratio.
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Figure 4.7: Controller effort for the planar model (a) u2R and (b) u2L, respectively. The
black solid curve corresponds to the nominal gait. The red solid thick curve corresponds to
the model with a modified position of the CoM, and the dashed black curve corresponds to
the model with a modified gear ratio.

69



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1000

−500

0

time [s]

[N
]

(a) Ft

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

2000

4000

time [s]

[N
]

(b) Fn

Figure 4.8: Forces at the end of stance leg for the 2D model, (a) Ft tangential force and (b)
Fn normal force. Solid black curve corresponds to the nominal gait. Red solid thick curve
corresponds to the model with a modified position of the CoM, and the dashed black curve
corresponds to the model with a modified gear ratio.
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CHAPTER V

Non Uniform Rational B-spline NURBs

As noted in the previous chapter, Bézier polynomials have been used in references

[69], [109, Chap. 6], [91] and [105] to parametrize virtual holonomic constraints during

gait design and optimization for robots such as Rabbit and MABEL. In this chapter, a more

general family of parametric curves called NURBs is introduced for this purpose.

The chapter first explains how NURB curves are mathematically defined. Then, after

introducing some of the useful features of NURB curves, the holonomic constraints cor-

responding to the leg angles, knee angles, and hip angles, explained in Chapter IV, are

parametrized in terms of NURB curves before being employed in a constrained optimiza-

tion based on HZD. Thereafter, the optimal cmt solutions based on NURB and Bézier de-

sired trajectories for walking speed starting from 0.5 to 1.4[m
s

] are compared to each other

and relevant properties of NURB curves are discussed to explain the solutions. Finally, the

last section suggests applications of NURB curves for walking controller design.

5.1 NURB Curves

A NURB curve is defined in a two-dimensional homogeneous coordinate space as fol-

lows. Let s be related to the gait timing variable by s = θ(qs)−θ+
θ−− θ+

, where θ+ and θ−

are the initial and final values of the gait timing variable θ on the periodic orbit, and let

P (s) = (s;hd,j(s)) ∈ R2 be the 2D position (i.e., graph) of the NURB curve for the j-th
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output. Then

P (s) =

∑n+1
i=1 BiwiNi,k(s)∑n+1
i=1 wiNi,k(s)

=
n+1∑
i=1

BiRi,k(s), (5.1.1)

where wi, i = 1, · · · , n + 1 are non-negative real scalars, Bi = (si;αj,i) ∈ R2 is the 2D

position of the i-th control vertex for the j-th output function,Ni,k(s) denotes the basis func-

tion of order k corresponding to the i-th control point defined by Cox-de Boor recursion,

[115], namely,

Ni,0(s) =


1 si ≤ s < si+1

0 otherwise,
(5.1.2)

Ni,k(s) =
(s− si)Ni,k−1(s)

si+k−1 − si
+

(si+k − s)Ni+1,k−1(s)

si+k − si+1

(5.1.3)

where si are the values of the knot vector s = (s1; s2; . . . ; sn+1) with si < si+1; moreover,

n+ 1 denotes the number of control points. It is worth noting that if the number of control

points and the order of the basis functions are the same, then a NURB curve is equivalent

to a Bézier curve [115].

For later use, the first derivative of a NURB curve can be expressed formally as

∂P (s)

∂s
=

n+1∑
i=1

Bi

(
wiṄi,k(s)∑n+1
i=1 wiNi,k(s)

− wiNi,k(s)
∑n+1

i=1 wiṄi,k(s)
(
∑n+1

i=1 wiNi,k)2

)
(5.1.4)

where Ṅi,k is the first derivative of the basis function with respect to s.

5.1.1 Properties of NURBs

Important properties of NURB curves include:

1. Each rational basis function,Ri,k(s), is non-negative for all values of real number s.

2. For each real value of s, the sum of the rational basis functions,Ri,k(s), equals one:

n+1∑
i=1

Ri,k(s) = 1.
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3. Except forR1,k(s), all other rational basis functions have only one maximum.

4. A NURB curve of order k is Ck−2 continuous.

5. A NURB curve generally follow the shape of its control polygon.

6. For wi > 0 a NURB curve lies within the union of convex hulls formed by k succes-

sive control polygons.

7. An affine transformation map is applied to a NURB curve by applying the transfor-

mation to its control polygon.

As noted above, Bézier polynomials are a special case of NURB curves, and thus using

NURB curves in place of Bézier polynomials allows more solutions when designing gaits

via optimization, as in Chapter IV, which may result in a lower value of the cost function.

5.2 HZD Optimization with NURB Curves

Recall that in Chapter IV, the HZD gait design method based on virtual constraints and

parameter optimization was explained. Here, the algorithm is modified for the vector of

parameters α associated with NURB equations.

5.2.1 The vector of free parameters

The set of decision parameters is {q−zero; q̇−zero; B; w; N; k;n}, where q−zero ∈ Z and

q̇−zero ∈ T Z are the unactuated variables right before the moment of impact in the La-

grangian model. B, w, N ∈ R6×(n+1) are the matrices of control points, weight numbers

and basis functions:

B =



B1,1 B1,2 · · · B1,n+1

B2,1 B2,2 · · · B2,n+1

...
... . . . ...

B6,1 B6,2 · · · B6,n+1


, (5.2.1)
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w =



w1,1 w1,2 · · · w1,n+1

w2,1 w2,2 · · · w2,n+1

...
... . . . ...

w6,1 w6,2 · · · w6,n+1


, (5.2.2)

and

N =



N1,1,k(s) N1,2,k(s) · · · N1,n+1,k(s)

N2,1,k(s) N2,2,k(s) · · · N2,n+1,k(s)

...
... . . . ...

N6,1,k(s) N6,2,k(s) · · · N6,n+1,k(s)


. (5.2.3)

In the above matrices, Bi,j , wi,j and Ni,j,k(s) are associated with the j-th control vertex of

the desired trajectory corresponding to the i-th control variable in the vector of variables to

be controlled, h0(qs). k is the order of the basis function in (5.1.3) and n+ 1 is the number

of control points.

5.2.2 Relating full state to the zero dynamics

The single support phase state vector at the end of the step x−s = (q−s ; q̇−s ) ∈ T Qs is ob-

tained using the decision parameters after ensuring that the decoupling matrix is invertible

and the zero dynamics manifold Z is nonempty. Denote by q−s , q̇−s , q+
s and q̇+

s the config-

uration variables at the end and at the beginning of a step. When the virtual constraints are

enforced using a feedback controller, (4.1.16) implies that the controlled variables can be

written in terms of Bi,j , wi,j and basis functions Ni,j,k, namely,


qc,i =

n+1∑
i=1

Bi,jRi,j,k(s)

q̇c,i =
n+1∑
i=1

Bi,j
∂Ri,j,k(s)

∂s

∂s

∂θ

∂θ

∂qz
q̇z

Using (4.1.8), qs and q̇s are,
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qs = T0q̄ + T1

q̇s = T0 ˙̄q

where q̄ is given by (4.1.6).

Because s is computed from qzero, (4.1.8) suggests an insertion map F : ZB,N,w,n,k 7→

Qs from a zero dynamics manifold corresponding to B,N,w, n, k to the manifold of stance

configuration variables. In addition, a projection map π : Qs 7→ ZB,N,w,n,k follows from

(4.1.8). Using F , π, ∆Right
s and TqzF , 1 it is possible to obtain q+

z and q̇+
z as illustrated in

Fig. 5.1. Now, employing (4.1.22) and (4.3.3), the energetic efficiency of walking char-

acterized in the form of cmt is minimized, subjected to a series of equality and inequality

constraints.

q−z q−s q+
s q+

z

q̇−z q̇−s q̇+
s q̇+

z

F ∆Right
qs π

Tq−z F ∆Right
q̇s

T∆Right
q̇s

q̇−s
π

Figure 5.1: Diagram shows F : ZB,N,w,n,k 7→ Qs and π : Qs 7→ ZB,N,w,n,k.

5.2.3 Selecting the orders

The number of control points in the control polygon and the order of the basis functions

determine the local flexibility of a NURB curve. This point will be discussed in Section 5.3.

Lower values for the order k of the basis functions results in more local behavior of a NURB

curve, meaning that the control points have a smaller domain of effectiveness around the

1Is equivalent to the derivative of the differentiable map F at the point qz ∈ ZB,N,w,n,k, TqzF :
TqzZB,N,w,n,k 7→ TF(qz)Qs.
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control points. However, as the order decreases, a NURB curve loses smoothness; indeed,

it is Ck−2. In practice, it is important to maintain a balance between the smoothness of a

NURB curve and the local behavior of a NURB curve. In order to parametrize the desired

trajectories of the virtual holonomic constraints, an order of k = 3 is chosen, since it is the

lowest possible order that results in a differentiable trajectory.2 Six control points are used

therefore, if k = 6, the NURB curve reflects the behavior of a Bézier curve.

5.2.4 NURB-based parametrization of desired trajectories

The parameterizations of the desired trajectories for the holonomic constraints based

on NURB curves requires the determination of the basis functionsN i, j, k and knot vector

s. Recall from (5.1.3) that the basis functions are recursively defined. The dependency

diagram shown below depicts the Cox-de Boor algorithm in a graphical sense. The dia-

gram shows that in order to compute the basis functionN i, 1, 3,N i, 1, 2 andN i, 2, 2 must

already have been computed. And, in order to computeN i, 1, 2,N i, 1, 1 andN i, 2, 1 must

first be computed. Hence, the basis functions that fall inside a triangle under the basis

function N i, j, k are used in the recursive Cox-de Boor algorithm.

Ni,1,3 · · · Ni,2,3 · · · Ni,3,3 · · · Ni,4,3 · · · Ni,5,3 · · · Ni,6,3
...

...
...

...
...

...

Ni,1,2 · · · Ni,2,2 · · · Ni,3,2 · · · Ni,4,2 · · · Ni,5,2 · · · Ni,6,2 · · · Ni,7,2
...

...
...

...
...

...
...

Ni,1,1 · · · Ni,2,1 · · · Ni,3,1 · · · Ni,4,1 · · · Ni,5,1 · · · Ni,6,1 · · · Ni,7,1 · · · Ni,8,1

In addition, the dependency diagram and (5.1.2) show that in order to compute Ni,8,1,

2This is because we are using outputs that have relative degree 2.
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the knot points s8 and s9 are required. Hence, s = (s1; . . . ; s9) is defined such that si = i
9
.

To initiate the recursive computation of the basis functions, for 0 ≤ s < s1,

Ni,1,1(s) = 1

Ni,1,2(s) = s

Ni,1,3(s) =
(s)2

2

Ni,i,1(s) = 0 i 6= 1

Ni,i,2(s) = 0 i 6= 1

Ni,i,3(s) = 0 i 6= 1

and for s1 ≤ s < s2,

Ni,2,1(s) = 1

Ni,i,1(s) = 0 i 6= 2

Ni,1,2(s) = (s2 − s)

Ni,2,2(s) = (s1 − s)

Ni,i,2(s) = 0 i 6= 1, 2

Ni,1,3(s) =
s(s2 − s)

2

+
(s3 − s)(s− s1)

2

Ni,2,3(s) =
(s− s1)2

2

Ni,i,3(s) = 0 i 6= 1, 2, 3
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Using the dependency diagram and the Cox-de Boor algorithm, the values of the basis

functions for the remaining regions are obtained, si ≤ s < si+1. The parametrized desired

trajectory is given in matrix form as follows:

hd =
1∑n+1

j=1 wi,jNi,j,3

(
wi,1Ni,1,3 . . . wi,6Ni,6,3

)
(B)′

where B represents a matrix containing the control points for the desired trajectory.

5.3 NURB Curves vs. Bézier Curves

As [116] formally proves, Bézier polynomials are special cases of NURB curves. The

first two of the following subsections show qualitatively how the use of NURB curves may

result in more efficient walking gaits than Bézier polynomials, while the third subsection

illustrates a quantitative advantage.

5.3.1 Local Action

As the order of the NURB basis functions Ni,j,k(s) decreases, the control points affect

the curve over smaller ranges of s (i.e., they act more locally), which has advantages.

For example, Fig. 5.2 shows Ni,j,k(s), ∂Ni,j,k(s)

∂s
and ∂2Ni,j,k(s)

∂s2
for k = 6 (solid line) and

k = 3 (dashed line), with n = 6. When k = 3, B4, B5 and B6 make no contribution

to the shape of the desired trajectory at s = 0 because the basis functions corresponding

to those control points vanish at s = 0. On the other hand, for k = 6, all of the control

points contribute to the value of the trajectory at s = 0. Figure 5.2 also shows that when

k = 6, at the boundaries where the control points B1, B2, B5 and B6 affect hd(q(s)), their

corresponding basis functions have large values for ∂Ni,j,k(s)

∂s
and ∂2Ni,j,k(s)

∂s2
. This can cause

numerical instability of the solutions, as a numerical optimizer tries to adjust the control
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points to minimize cost while achieving periodicity of the solution.
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Figure 5.2: (a) Basis functions, b) first derivative of the basis functions, and (c) second
derivative of the basis functions, all with respect to the timing variable s for each control
point Bi when the order k is six (solid line) and three (dashed line).

5.3.2 Subphase

Because a Bézier polynomial is an analytic function (in the sense of globally conver-

gent Taylor series), if it (or one of its derivatives) is constant over an open set, then it (or

the derivative) is constant everywhere. When k < n, a NURB is no longer an analytic

function, and thus it becomes possible to have non-trivial regions where the curve or one

of its derivatives is constant, while the NURB is not globally constant. These regions are

informally referred to as “subphases.” Figure 5.3 illustrates this for one of the trajectories

associated with the right leg knee angle, in the regions for s ∈ [0 0.25], s ∈ [0.25 0.5],

s ∈ [0.5 0.75] and s ∈ [0.75 1]. This figure shows that the velocity of the knee angle is

commanded to a small value at the beginning of the stance phase. Consequently, the energy

of the impact forces is directed into the springs. The energy stored in the springs is released
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later in the gait.
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Figure 5.3: (a) Desired trajectory for the right (stance) leg knee angle qKneegrR , (b) first deriva-
tive of the desired trajectory and (c) the second derivative of the desired trajectory when
the order of the NURB basis function is 3.

5.3.3 cmt

Figure 5.4 shows the computed cmt versus speed when Bézier and NURB are used

as desired trajectories for the holonomic constraints, circles and squares, respectively. For

comparison purposes, according to [35], the cmt of a human is estimated from experimental

data to be 0.05 at a speed of 1 [m
s

], while according to [36], the experimentally estimated

CMT of the Cornell Biped is 0.04 at a speed of 0.6 [m
s

]. Interpolating a cubic polynomial

through the NURB-based simulation data of MARLO results in a minimum cmt of 0.05 at
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0.7 [m
s

]. At 1[m
s

], the simulated cmt of MARLO is 0.096, which means the robot would

require approximately twice the power of a human when walking at 1[m
s

], assuming once

again that the harmonic drives are lossless. If the harmonic drives are assumed to be 70%

efficient on average, then the motors in the sagittal plane must produce approximately 43%

more power when realizing the walking gaits of Fig. 5.4. When this is taken into account,

MARLO’s estimated cmt at 0.7[m
s

] is 0.071, or approximately one and a half times that of

a human, while at 1[m
s

], cmt would 0.13, or approximately two and a half times that of a

human.

0.6 0.8 1 1.2 1.4

0.1

0.2

Walking speed[ m
sec

]

Figure 5.4: Circles represent computed cmt using Bézier curves for the desired trajectories
versus walking speed from 0.5 to 1.4 [m

s
]. The thick solid line is a cubic interpolation of

these data. Squares represent computed cmt using NURB curves versus walking speeds
0.5, 0.7, 0.9, 1.1 and 1.4 [m

s
]. The dashed line is a cubic interpolation of these data. Losses

at the harmonic drives are ignored.

5.4 NURB Curves with Control Objectives

In addition to being useful in gait design via HZD optimization, the NURB curves

introduced in this chapter have implications for achieving control objectives. For example,

suppose an optimized periodic orbit O has been designed for the standard set of output

functions in (4.2.4). Now let h̄0 represent a different choice of controlled outputs. If h̄d can

be found such that ȳ = h̄0−h̄d still vanishes on the periodic orbit, then ȳ can still be used for

implementing a feedback controller without re-doing the optimization. A straightforward

way to obtain h̄d is to regress (via least squares) a set of splines against h̄0 evaluated on the
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periodic orbitO; see Section 6.5 of [109]. With Bézier curves, high degree polynomials are

required, and experience has shown that this often leads to singularities in the decoupling

matrix (see Chapter VI). In cases that we have investigated, NURBs have allowed us to

avoid such singularity problems.

Two choices for controlled outputs are illustrated below, namely, the distance between

the CoM and swing-leg-end and the orientation of the torso defined by roll, pitch or yaw.

In addition, regression of experimentally measured actuator torque versus a gait-timing

variable is used as a feed-forward term.

Reference [105] proposes a virtual constraint that specifies the distance between CoM

and the swing-leg-end point as one of the variables to be controlled. This virtual constraint

will be covered in greater detail in Chapter VI. The desired trajectories for this distance-

based virtual holonomic constraint were parametrized using NURB curves with twenty

basis functions of order k = 3. The vector s was selected as

s = (s1; . . . ; s23),

with si = i
18

. Using the dependency diagram, the basis functions are computed recursively.

Recalling (5.1.1), the desired trajectories for the distance-holonomic constraint are formally

defined in terms of the basis functions, control polygon, weight vector and the knot vector.

h
r|SE

CoM
d =

1∑20
j=1w

r|SE
CoM

1,j N r|SE
CoM

1,j,3

(
w
r|SE

CoM
1,1 N r|SE

CoM
1,1,3 . . . w

r|SE
CoM

1,20 N
r|SE

CoM
1,20,3

)
(Br|SE

CoM )′ (5.4.1)

Figure 5.5 illustrates the regressed NURB curve to the curve of the projected horizontal

distance between the CoM and swing-leg-end; the red dashed curve represents the fitted

NURB curve and the square marks represent the control points.
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Figure 5.5: Regressed r|SECoM versus gait-timing variable when (a) right leg stance, and (b)
left leg stance.

The same regressing algorithm was applied to parametrize the torso orientation angles,

roll, pitch and yaw against the gait-timing variable. These parametrized orientations define

the orientation of the torso with respect to a world frame and are shown in Fig. 5.6.

Figures 5.7 and 5.8 illustrate the regressed experimental actuators torque over gait-

timing variable, which are used as feed-forward terms in the walking controller algorithm.

83



0 0.2 0.4 0.6 0.8 1
0.02

0.04

0.06

0.08

s

[d
eg
]

(a) pitch

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

s

[d
eg
]

(b) roll

0 0.2 0.4 0.6 0.8 1
−0.01

0

0.01

s

[d
eg
]

(c) yaw

Figure 5.6: Regressed optimal torso angles versus gait-timing variable for (a) pitch, (b) roll
and (c) yaw over a single step, when right leg is stance; the red dashed curve represents the
fitted NURB curve; the square marks represent the control points.
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Figure 5.7: Regressed experimental actuation torques versus gait-timing variable for (a)
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NURB curve, the square marks represent the control points.

85



0 0.2 0.4 0.6 0.8

−100

0

100

s

[N
.m

]

(a) u1L

0 0.2 0.4 0.6 0.8
−200

0

200

s

[N
.m

]

(b) u2L

0 0.2 0.4 0.6 0.8

−50

0

50

s

[N
.m

]

(c) u3L

Figure 5.8: Regressed experimental actuation torques versus gait-timing variable for (a)
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CHAPTER VI

Feedback Control

In this chapter an “input-output linearizing controller,” which is the main control loop

on the robot, is presented and the choices of the virtual constraints and their effects on the

stability of the walking gaits are presented. Two choices for the virtual constraints, one

similar to Chapter IV and the other as proposed in [105], both result in an unstable walking

gait. Stability of the gait is characterized with the help of the Poincaré method. Stability is

achieved after applying an “event-based controller.

The controllers developed in this chapter are simulated with the 3D model of the robot,

assuming point feet and a rigid ground model.

6.1 Input Output Linearizing Controller

Each of the gaits presented in Chapter IV comes with a set of outputs (i.e., virtual

constraints), which vanish on the periodic orbit traced out by the robot’s states over the

periodic walking motion. Let α∗ denote the vector of the free parameters resulting from the

optimization of the virtual constraints, giving

y = h(qs, α
∗) = h0(qs)− hd(θ(qs), α∗). (6.1.1)

A feedback controller is required to impose the constraints by driving the outputs to
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zero when the robot is away from the periodic orbit. Designing a feedback policy that

enforces the virtual constraints introduced in Chapter IV is our first step in the design of

the feedback controller.

6.2 Normal Virtual Constraints

Recall that the virtual constraints introduced in Chapter IV are referred to as normal

virtual constraints. The proposed input-output linearizing controller enforces the normal

virtual constraints. Consider the following output function representing a normal virtual

constraint,

y = h(qs). (6.2.1)

The first derivative of y along the solutions of the single-support phase model (3.2.26) is

simply

ẏ =
∂h(qs)

∂qs
q̇s, (6.2.2)

and the second derivative is

ÿ =− ∂h(qs)

∂qs
D−1
s (qs)Hs(q̇s, qs)+ (6.2.3)

∂

∂qs

(
∂h(qs)

∂qs
q̇s

)
q̇s +

∂h(qs)

∂qs
D−1
s (qs)Bsu. (6.2.4)

The decoupling matrix is given by

A(qs, q̇s) =
∂h(qs)

∂qs
D−1
s (qs)Bs, (6.2.5)
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while u∗ is obtained by solving for the input that sets ÿ = 0, namely

u∗(qs, q̇s) =A−1(qs, q̇s)

(
∂

∂qs

(
∂h(qs)

∂qs
q̇s

)
q̇s −

∂h(qs)

∂qs
D−1
s (qs)Hs(q̇s, qs)

)
. (6.2.6)

Assuming the decoupling matrix is invertible, input-output linearization yields the feed-

back controller

u(x) = u∗(x)−A(x)−1(
1

ε2
KPy +

1

ε
KDẏ), (6.2.7)

which renders the input-output map linear, namely,

ÿ +
1

ε
KDẏ +

1

ε2
KPy = 0. (6.2.8)

The control gains KP and KD are chosen such that the matrix

 0 I

−KD −KP

 (6.2.9)

is Hurwitz; ε > 0 is a tuning parameter.

6.2.1 Controller Performance

The feedback controller in (6.2.7) was implemented on the 3D model for the nom-

inal walking speed of 1.0[m
s

]. Figure 6.1 illustrates the tracking error y and Fig. 6.2

shows the actuation torques corresponding to the harmonic derive and the hip actuators

over five periodically stable steps. The maximum tracking error in leg angles occurs at

qLAgrR and is −0.08[deg], while the maximum tracking error in knee angles occurs at qKneegrL

and is 0.15[deg]. For the hip, the maximum tracking error is associated with qHipL and

it is 0.35[deg]. The maximum actuation torques for u1R and u1L are bounded between

−0.5[N.m] and 1.1[N.m]. The maximum value for u2R is −1.5[N.m] and corresponding
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to the u2L, it is 1.2[N.m]. Hip actuators require more torque and the maximum required

torque is −6.5[N.m].

0 0.5 1 1.5 2 2.5 3
−0.1

−0.05

0

0.05

time[s]

[d
eg
]

 

 

qLA
grR

qLA
grL

(a)

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

time[s]

[d
eg
]

 

 

qKnee
grR

qKnee
grL

(b)

0 0.5 1 1.5 2 2.5 3

−1

0

1

time[s]

[d
eg
]

 

 

qHip
R

qHip
L

(c)

Figure 6.1: Tracking error for the proposed I/O linearizing controller that enforces the
normal virtual constraints, (a) qLAgrR, qLAgrL, (b) qKneegrR , qKneegrL , and (c) qHipR , qHipL .
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Figure 6.2: Actuation torque for the I/O linearizing controller that enforces the normal
virtual constraints, (a) u1R, u2R, (b) u3R, u1L, and (c) u2L, u3L.

Figure 6.3 illustrates the power required by the leg motors, where p1R and p1L reach

their maximum value at the end of each step. p2R afnd p2L are maximum at the beginning

of each step and fluctuate between −220[W ] and 200[W ]. The hip actuators are consume

less power, and with each step, their magnitude varies between −8[W ] and 3[W ]. Figure

6.4 illustrates the components of the ground reaction force acting at the end of the stance

leg. The Fz component has jumps at the end of each step, which reflects the impulsive

behavior of the impact model. The maximum magnitude associated with Fx and Fy is
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60[N ].
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Figure 6.3: Actuation power for the I/O linearizing controller that enforces the normal
virtual constraints, (a) p1R, p2R, (b) p3R, p1L, and (c) p2L, p3L.
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Figure 6.4: Components of the ground reaction force at the end of the stance leg, Fx, Fy,
and Fz.

6.2.2 Poincaré Analysis

Recall that the switching surface is S := {(qs; q̇s) ∈ T Qs|pvtoe = 0, pvtoe > 0}. The

stability of the fixed point is checked using a linearized Poincaré map P : ∆S → ∆S,

where xj+1 = P(xj) and ∆S is the Poincaré section taken at the map of the switching

surface by the impact. xj = (qz; qy; · · · ; q̇z; q̇y; · · · ) ∈ ∆S denotes the projection of the

state vector for the full dynamic model during step j onto ∆S. Because the Poincaré section

∆S is a hyperspace in R26, the Poincaré section has twenty-five independent components.

To implement this, define a projection map Π(x) = (qz; qy; · · · ; q̇z; q̇y; · · · ) that eliminates

qx (pitch angle) from the state vector; defining perturbations as δxj = Π(xj − x∗), the

linearization of the Poincaré map around the fixed point x∗ results in the Jacobian A = ∂P
∂x

of the Poincaré map. In particular,

Aj =
P(x∗ + ∆xj)− P(x∗ −∆xj)

2∆xj
, (6.2.10)

where Aj is jth column of A = [A1, A2, · · · , A25] and ∆xj = (0; · · · ; 0; εj; 0; · · · ; 0).

Using the output functions explained in (4.2.4) and computing the linearized Poincaré map

for ε = 0.01, the feedback controller of (6.2.7) makes the zero dynamics manifold invariant

and attractive, however, due to the existence of compliant components and a high degree of

under actuation, it does not make the zero dynamics manifold hybrid invariant [114]. As

expected from [105], calculations show that one eigenvalue has a magnitude greater than
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one; hence, the gait is unstable under this controller.

6.3 Modified Virtual Constraints

When the normal virtual constraints are applied to the planar model (q3R and q3L re-

moved), a stable gait is achieved. Based on this fact, one suspects that the instability of

the 3D model may be due to the roll or yaw motions. From [105], the position of the CoM

in the frontal plane is important. If at leg touchdown, the CoM is not between the feet

but outside the position of the next supporting foot, the robot will topple sideways. Based

on this physical intuition, the control of the variable q3 (which regulates step width on the

swing leg) was replaced by the control of the distance between the swing leg end and the

CoM along the frontal direction. The modified virtual constraints are given by

h
r|SE

CoM
0 (qs) =



qgr1R + qgr2R
2

qgr1L + qgr2L
2

qgr2R − qgr1R

qgr2L − qgr1L

q3R

phCoM − phSE


=



qLAgrR

qLAgrL

qKneegrR

qKneegrL

qHipR

r|SECoM



, (6.3.1)

where r|SECoM = phCoM − phSE is the projected horizontal distance between swing-leg end SE

and CoM into the frontal plane.

The optimal distance between the end of the swing leg and the CoM of the robot in

the frontal plane is computed and is explained in Section 5.4 using a NURB curve. The

modified virtual constraint is written in as,

yr|
SE
CoM = hr|

SE
CoM (qs, α

∗r|SE
CoM ) = h

r|SE
CoM

0 (qs)− h
r|SE

CoM
d (θ(qs), α

∗r|SE
CoM ). (6.3.2)
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Considering (6.3.2) and taking first and second time derivatives similar to (6.2.2) and

(6.2.4), the decoupling matrix for the modified virtual constraint is given as

Ar|SE
CoM (qs, q̇s) =

∂hr|
SE
CoM (qs)

∂qs
D−1
s (qs)Bs, (6.3.3)

while u∗r|SE
CoM is obtained by solving for the input that sets ÿr|SE

CoM = 0, giving

u∗r|
SE
CoM (qs, q̇s) =(Ar|SE

CoM )−1(qs, q̇s)

(
∂

∂qs

(
∂hr|

SE
CoM (qs)

∂qs
q̇s

)
q̇s −

∂hr|
SE
CoM (qs)

∂qs
D−1
s (qs)Hs(q̇s, qs)

)
. (6.3.4)

Similar to (6.2.7), at points where the decoupling matrix is invertible, input-output lin-

earization yields the feedback controller

ur|
SE
CoM (x) =u∗r|

SE
CoM (x)−Ar|SE

CoM (x)−1(
1

(εr|
SE
CoM )2

Kr|
SE
CoM

P yr|
SE
CoM +

1

εr|
SE
CoM

Kr|
SE
CoM

D ẏr|
SE
CoM ),

(6.3.5)

where ur|SE
CoM (x) enforces the modified virtual constraints, and Kr|

SE
CoM

P , Kr|
SE
CoM

D and εr|SE
CoM

are the control parameters for the modified virtual constraints.

6.3.1 Controller Performance

The feedback controller in (6.3.5) was implemented on the 3D model for the nominal

walking speed of 1.0[m
s

]. Figure 6.5 illustrates the tracking error y and Fig. 6.6 shows the

actuation torques corresponding to the harmonic drive and the hip actuators during five pe-

riodically stable walking steps. The maximum tracking error in the leg angles takes place

at qLAgrR and is−0.04[deg], while the maximum tracking error in the knee angles takes place

at qKneegrL and is 0.07[deg]. The tracking error is larger in the hip actuators, where the max-

imum tracking error is −0.18[deg] and is associated with qHipR . For the actuation torques,
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the maximum occurs at the hip actuators, with a value of −6.7[N.m]. The magnitude of

the actuation torques associated with the leg harmonic drive is −1.5[N.m], and it occurs at

u2L or u2R.
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Figure 6.5: Tracking error for the proposed I/O linearizing controller that enforces the
modified virtual constraints, (a) qLAgrR, qLAgrL, (b) qKneegrR , qKneegrL , and (c) qHipR , qHipL .
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Figure 6.6: Actuation torque for the I/O linearizing controller that enforces the modified
virtual constraints, (a) u1R, u2R, (b) u3R, u1L, and (c) u2L, u3L.

Figure 6.7 demonstrates the power required by the motor actuators during five periodi-

cally stable steps. Maximum torque occurs at u2R or u2L. At the first step, where the right

leg is the stance leg, p2R performs negative-work, meaning the corresponding harmonic

drive is generating torque in the opposite direction from the motion. The minimum power

demand takes place at the hip actuators and varies between −8[N.m] and 5[N.m]. Fig-

ure 6.8 shows the components of the ground reaction force acting at the end of the stance

leg, where the normal component has jumps at the end of each step because of the impact
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map. Fz has an average value of 500[N ]; the tangential components are bounded between

−40[N ] and 50[N ]. The relatively large difference between the magnitude of the tangential

forces and the normal force is beneficial for the periodic walking because slippage is less

likely.
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Figure 6.7: Actuation power for the I/O linearizing controller that enforces the modified
virtual constraints, (a) p1R, p2R, (b) p3R, p1L, and (c) p2L, p3L.
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Figure 6.8: Components of the ground reaction force at the end of the stance leg, Fx, Fy,
and Fz.

6.3.2 Poincaré Analysis

The linearized Poincaré map for the modified virtual constraint was computed following

the procedure from the previous section. The calculations show that one eigenvalue still has

a magnitude greater than one; hence, the gait is unstable under this controller.

6.4 Event-Based Controller

Next, an event-based controller is designed and integrated with the continuous input-

output linearizing controller (6.3.5). To achieve this goal, the modified virtual constraint in

(6.3.2) is augmented with a correction term,

ỹr|
SE
CoM =hr|

SE
CoM (qs, α

∗r|SE
CoM ) =

h
r|SE

CoM
0 (qs)− h

r|SE
CoM

d (θ(qs), α
∗r|SE

CoM )−

h
r|SE

CoM
corr (qs, β

r|SE
CoM ).

(6.4.1)

where ỹr|SE
CoM is the augmented modified virtual constraint, and βr|SE

CoM is the vector of cor-

rective terms that are held constant over two steps and updated at the left-to-right impact

event. Following a similar procedure as (6.2.2), (6.2.4) and (6.2.5), the input-output lin-
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earizing controller that enforces virtual constraints in (6.4.1) is given by

ũr|
SE
CoM (x) =ũ∗r|

SE
CoM (x)−

Ãr|SE
CoM (x)−1(

1

(ε̃r|
SE
CoM )2

K̃r|
SE
CoM

P ỹr|
SE
CoM +

1

ε̃r|
SE
CoM

K̃r|
SE
CoM

D
˜̇yr|

SE
CoM ),

(6.4.2)

where ũ∗r|SE
CoM (x) is obtained by solving ¨̃yr|

SE
CoM = 0, and K̃r|

SE
CoM

P , K̃r|
SE
CoM

D and ε̃r|SE
CoM are the

controller tuning parameters.

The associated Poincaré map, denoted by

xj+1 = P̃r|SE
CoM (xj, β

r|SE
CoM

j ) (6.4.3)

is linearized around the fixed point x̃∗r|SE
CoM and β∗r|SE

CoM as

δxj+1 =
∂P̃r|SE

CoM (x, βr|
SE
CoM )

∂x
δxj+

∂P̃r|SE
CoM (x, βD)

∂βr|
SE
CoM

δβ
r|SE

CoM
j

(6.4.4)

where δβr|
SE
CoM

j = β
r|SE

CoM
j − β∗r|SE

CoM . A state feedback law given as

δxj = −K̃r|SE
CoM δβ

r|SE
CoM

j (6.4.5)

is designed such that

eig(
∂P̃r|SE

CoM (x, βr|
SE
CoM )

∂x
− ∂P̃r|SE

CoM (x, βr|
SE
CoM )

∂βr|
SE
CoM

K̃r|SE
CoM ) ≤ 1, (6.4.6)

where the gain K̃r|SE
CoM is found through the Discrete Linear Quadratic Regulator Algorithm.
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6.4.1 Poincaré Analysis

The Poincaré analysis for the closed loop system shows that the largest eigenvalues in

magnitude for the closed loop system are |λ1| = 0.74 and |λ2| = 0.066, proving local

exponential stability. Figure 6.9 shows the convergence of the phase portrait for (qx, q̇x),

(qy, q̇y),(qz, q̇z), (q1R, q̇1R), (q2R, q̇2R), (q3R, q̇3R),(qgr1R, q̇gr1R) and (qgr2R, q̇gr2R) after per-

turbing the fixed point.
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CHAPTER VII

Gait Initiation

Gait initiation consists of two parts – standing still, referred to here as quiet standing,

and a transitory step from quiet standing to a periodic walking motion. To facilitate quiet

standing, MARLO is fitted with passive feet, where the term passive refers to the fact that

the ankles are locked in a fixed configuration, similar to many prosthetic lower limbs. The

feet enable the robot to maintain balance, to a limited extent, in the sagittal and frontal

planes of walking when no active balancing control effort is acting on the robot. However,

in the face of small perturbations, such as a gentle push on the torso or a shallow-sloped

ground surface, the robot can still topple. To avoid this, an active control algorithm is

designed to achieve quiet standing. To facilitate the development of the gait initiation algo-

rithms for quiet standing and the transitory step, MARLO’s dynamic model is augmented

with passive feet and a compliant ground model.1

The chapter begins with quiet standing. The strategies and challenges of quiet standing

in a robot such as MARLO are discussed, followed by the presentation of a control policy

designed to balance the robot at quiet standing. Next, quiet standing to walking transition

is addressed. Various strategies and challenges are discussed, followed by the presentation

of a family of control policies designed to fulfill the objectives of the transition from quiet

standing to walking.

1Courtesy of K. Akbari Hamed and K. Galloway.
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7.1 Quiet Standing

Quiet standing in humans consists of an upright posture of the body and is achieved

using coordinated motion of the joints. During quiet standing, the nervous system’s bal-

ancing controller compensates for internal perturbations, such as body deformation due to

inhaling and exhaling, and for external perturbations, such as a backpack. The balancing

controller slightly rocks the body forward and backward such that the upright posture is

maintained.

7.1.1 Literature Overview and Strategies

In humans, the control system for standing is separate from that of walking [117, 118,

119, 120, 121]. In a similar manner, a separate controller for standing will be designed for

MARLO. A standing controller has two objectives: (1) stabilize the inverted pendulum that

characterizes the robot’s posture at standing; and (2) coordinate the joints in the face of

redundant DoF, meaning the robot can stand and maintain balance with different postures.

To stabilize the inverted pendulum characterizing standing, stiff ankle control is the

intuitive solution. However, such an approach is not applied in humans because the overall

stiffness of the series combination of the ankle and the “Achilles” tendon is dominated

by the torque due to the gravity force exerted on the CoM, [121]. Reference [122] takes

into account that the intrinsic stiffness of the human ankle is low and evaluates two types of

controllers to achieve quiet standing in humans: a standard linear continuous PD controller,

and an intermittent PD controller characterized by a switching function. It is found that

a soft ankle combined with a feedback term that compensates for the flexibility of the

Achilles can maintain the upright posture in humans. Moreover, there is functional merit

to such a low-stiffness solution: a soft ankle can decrease impact shocks and can adapt to

uneven terrain when walking. On the other hand, MARLO’s morphology is not compatible

with balance solutions that focus on joint coordination since the robot is underactuated and

the actuated coordinates are simple 1 DoF revolute joints. Hence, stable quiet standing in
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MARLO must focus on those strategies that are based on inverted pendulum models.

7.1.1.1 Ankle Strategy

MARLO has no actuator at the ankles and is therefore unable to use an ankle strategy

for quiet standing.

7.1.1.2 Torso Strategy

In humans, a torso strategy in quiet standing is effective mainly because the torso con-

sists of 50.80% [123] of the total body weight, whereas MARLO’s torso contains only 29%

of its total mass. Consequently, a torso strategy may not be very effective when applied to

MARLO.

7.1.1.3 Hip Strategy

Humans do not instinctively move the hips to maintain stable quiet standing. On the

other hand, a hip strategy that moves the CoM of the hips to stabilize the inverted pendulum

characterizing quiet standing – instead of moving the torso – may be very effective in

MARLO, where the hips account for 44% of the total weight.

Torso Hip Ankle

Human Y N.E. Y

MARLO N.E. Y N.P.

Table 7.1: Quiet standing balancing strategies that MARLO and humans use, (Y) yes,
(N.E.) not efficient, (N.P.) not possible.

7.1.2 Controller Design

Studies show that it is important to appropriately locate the CoP of the feet in order

to maintain standing balance. At first glance, it seems that stabilization of quiet standing

requires additional sensors, such as force sensors, to measure the CoP on the right and
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left feet. Here, assuming the ground surface is flat or nearly so, it is shown that such

sensors are not necessary for achieving stable balance. Using a double inverted pendulum

model, a feedback policy is designed such that stable quiet standing over flat ground and

a gentle slope is achieved. The robustness of the feedback policy is verified with external

perturbations such as instantaneous “push-pull” forces on the actual robot.

The intuitive explanation for the control performance follows. Suppose the leg angles

are aligned with the torso and the robot is in vertical configuration with respect to the

ground, an inverted pendulum configuration. Then changing the knee angle has relatively

little effect on the y-position of the CoM, since the CoM moves up and down. On the

other hand, as the bend in the knee increases, it forces the toe of the foot downward and

moves the CoP forward on the foot. Conversely, the knees are straightened, the toe of the

foot raise , and move the CoP backward. This happens because the angle of the foot is

fixed relative to the shin link. This explains how the relative position of the CoP and CoM

can be changed by a simple action, namely, knee bend, without making a measurement of

the CoP. The relative difference between the position of CoM and CoP along the y-axis is

proportional to the pitch accelerations of the above inverted pendulum.

The above intuitive operation of the quiet standing controller is mathematically formu-

lated using “Newton’s Law.” Considering the forces and the moments acting on the robot

at the inverted pendulum configuration, the relation between the position of the CoM, CoP

and the angular acceleration of the inverted in the sagittal plane of walking is governed by

J T
CoM + J H

CoM

Wt

q̈x = (pCoP,y − pCoM,y), (7.1.1)

where J T
CoM and J H

CoM are the torso and hip moment of inertia around the CoM in y-z

plane andWt is MARLO’s total weight. (7.1.1) relates the difference between the position

of CoP and CoM in the sagittal plane (pCoP,y − pCoM,y) to the pitch acceleration q̈x in

the context of balance control and suggests the following state feedback controller for the

quantity (pCoP,y − pCoM,y),
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ν
QS

= −KP
ε2

(qx − q∗x)−
KD
ε
q̇x, (7.1.2)

where q∗x is the equilibrium pitch angle and KP , KD and ε are controller gains to be

chosen such that the following equation is Hurwitz

J T
CoM + J H

CoM

Wt

q̈x +
KD
ε
q̇x +

KP
ε2

(qx − q∗x) = 0 (7.1.3)

(7.1.2) implies that adjusting (pCoP,y− pCoM,y) as a function of pitch angle and angular

rate can maintain balance during quiet standing. In order to change the relative distance

between the CoM and the CoP, the following feedback policy is proposed:

u
QS

=
∂h0,

QS
(q)

∂q
B−1(

1

ε2
KPy

QS
+

1

ε
KDẏ

QS
), (7.1.4)

where B is a matrix that maps control commands to the leg harmonic drives and hip

actuators. In (7.1.4), ν
QS

from (7.1.2) is added to the knee desired trajectories. Hence,

using this, an offset value is added or subtracted to the knee virtual constraints, causing the

knee angles of the robot to bend or stretch, resulting in the changes in the relative distance

between the position of the CoM and CoP along the y-axis.

7.2 Transitioning from Quiet Standing to Walking

In this section, a transition from quiet standing to walking is designed with the help of

optimization. A solution for the model is sought that joins the quiet standing position to

the initial condition of a periodic walking motion. While in principle the transition solution

could involve several walking steps, the work reported here seeks to make the transition in

a single step called the “transition step.”

The first attempt to obtaining a solution was to formulate a finitely parameterized opti-

mization problem in the form of a two-point boundary value problem, with one boundary
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specified by the quiet standing posture and the other boundary corresponding to the initial

condition of a pre-designed periodic walking motion with speed 0.3[m
s

]. A set of time-

dependent output trajectories was parameterized with Bézier, and inverse dynamics was

used to determine the torques to realize the trajectories. This direct approach did not work

in the sense that a solution to the two-point boundary problem could not be found using

fmincon.

An indirect approach was then formulated which did lead to a successful transition in

a single step. The indirect approach to designing the transition step is composed of the

following steps:

1. with the feet side-by-side and the robot in the standing position, the gait is initiated

by straightening the knees, causing the robot to pitch forward in the sagittal plane;

2. the step length of the transition step is known from the posture at time zero of the

periodic walking motion; the duration of the transition step is designed on the basis

of a lumped-mass, double inverted pendulum model; and

3. with a non-zero initial velocity established, and a fixed value given for the step dura-

tion, the two-point boundary value problem could be solved with fmincon.

Moreover, the two-point boundary value problem could be solved using time-dependent

output trajectories as well as time-independent output trajectories parameterized by the

same phase variable used in the design of periodic orbits.

7.2.1 Non-zero pitch velocity

During quiet standing, the robot actively balances itself by adjusting the relative dis-

tance between the CoM and CoP along the y-axis. In this mode, the CoM horizontal veloc-

ity is zero. Initial energy is injected to the robot such that the CoM velocity reaches 0.1[m
s

].

The inverted pendulum model of MARLO requires this initial velocity in order to swing
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forward. This energy is injected through straightening the knees. Thereafter, the transitory

step takes place as follows.

7.2.2 Transition duration, τ
QS 7→W

A reduced model, an inverted pendulum, is used to estimate the transitory step duration.

The transitory duration is later used to design time-dependent desired trajectories. In the

inverted pendulum, the ground reaction forces are exerted at the contact point between the

flat foot and the ground. Gravitational forces act on the hip and torso CoM. The torque

generated by the harmonic drives acts on the torso, which keeps the torso upright as the

inverted pendulum swings forward during the quiet standing to walking transitory step.

After applying Newton’s Law, the equations of motion that reflect the dominant dynamic

response associated with the torso are governed by a second-order differential equation,

ÿT =
WT +WH

mT z∗H
yT = βyT (7.2.1)

whereWT andWH are the torso and hip weights, respectively. mT is torso mass and

yT is the torso CoM y position. The explicit solution to the above differential equation is

given by:

yT =κ1e
√
βt + κ2e

−
√
βt (7.2.2)

where κ1 = yT |t=0
√
β+ẏT |t=0

2
√
β

, κ2 = yT |t=0
√
β−ẏT |t=0

2
√
β

; yT |t=0 and ẏT |t=0 are initial torso

position and velocity at the beginning of the quiet standing to walking transitory step. Using

(7.2.2), the time duration corresponding to the transitory step is calculated and is used to

normalize the time-dependent gait-timing variable. Let
√
β = 4.94, step length 0.3[m],

yT |t=0 = 0, ẏT |t=0 = 0.1[m
s

], using (7.2.2) the estimated transition time is computed as

240[m.s].
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7.2.3 Specification of controlled outputs

The controlled outputs, whether time dependent or independent, are written in the form

used for the virtual constraints, namely,


y
QS 7→W

= h0,
QS 7→W

(qs)− hd,
QS 7→W

(θ
QS 7→W

(t), α∗) time-dependent

y
QS 7→W

= h0,
QS 7→W

(qs)− hd,
QS 7→W

(θ
QS 7→W

(qs), α
∗) time-independent

(7.2.3)

where h0,
QS 7→W

(qs) specifies the vector of variables to be controlled, hd,
QS 7→W

is the desired

evolution of the controlled variables, and θ
QS 7→W

is the gait-timing variable.

The controlled variables are nominally selected as

h0,
QS 7→W

(qs) =



qgr1R + qgr2R
2

qgr1L + qgr2L
2

qgr2R − qgr1R

qgr2L − qgr1L

q3R

q3L


=



qLAgrR

qLAgrL

qKneegrR

qKneegrL

qHipR

qHipL



, (7.2.4)

7.2.3.1 Optimal time-dependent trajectories

The gait-timing variable is selected as

θ
QS 7→W

(t) =
t

τ
QS 7→W

, (7.2.5)

where t is zero at the beginning of the step and τ
QS 7→W

is the duration of the transition

step determined from the double inverted pendulum model. The desired evolution of the

controlled variables hd,
QS 7→W

(θ
QS 7→W

(t)) is parameterized with degree 6 Bézier polynomi-

als and inverse dynamics is used to determine torques that set the second derivative of the
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outputs to zero. The cost function is selected as cmt and is minimized subject to constraints:

1. positive normal ground reaction force.

2.
∣∣∣ FT

st

FN
st

∣∣∣ < 0.7.

3.
∥∥∥x−

QS 7→W
− x+

W

∥∥∥ = 0, where, x−
QS 7→W

represent the state vector at the end of the

transition step and x+
W is the initial state vector for a periodic walking motion.

Figure 7.1 shows the evolution of the leg angles, knee angles and hip angles during the

quiet standing to walking transition step. The transition step lasts 240[m.s] and during the

transition, qLAgrR decreases to 168[deg], while qLAgrL increases to 188[deg]. The value of qKneegrR

varies between 25[deg] and 28[deg], while qKneegrL reaches 36[deg] to avoid scuffing. The hip

angles both start from 2[deg] and qHipL decreases to −3[deg] during the step, causing the

swing hip to move upward.
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Figure 7.1: Evolution of variables during quiet standing to walking transition step (a) qLAgrR,
qLAgrL, (b) qKneegrR , qKneegrL , and (c) qHipR , qHipL .

Figure 7.2 shows the computed control effort. The maximum actuation torque required

by u1R is 5[N.m] and for u1L is 0[N.m]. The maximum torque required by u2R is−4[N.m],

whereas u2L has a maximum value of 4[N.m]. The stance hip actuator u3R demands maxi-

mum torque of −8[N.m]. Figure 7.3 shows the power required corresponding to the motor

actuators. It can be seen that the maximum power demand is associated with p1R and occurs

at the end of the step.
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Figure 7.2: Control effort during quiet standing to walking transition step (a) u1R, u1L, (b)
u2R, u2L, and (c) u3R, u3L.
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Figure 7.3: Actuator power during quiet standing to walking transition step (a) p1R, p1L,
(b) p2R, p2L, and (c) p3R, p3L.

7.2.3.2 Optimal time-independent desired trajectories

The gait-timing variable is selected as

θ
QS 7→W

(qs) =


θR,

QS 7→W
if the right leg is stance;

θL,
QS 7→W

otherwise.
(7.2.6)
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By selecting a time-independent gait-timing variable θ
QS 7→W

(qs), the previously used zero

dynamics calculations in Chapter IV are once again applicable, and the zero dynamics of

the robot is used to find a transition step through optimization. The desired evolution of

the controlled variables hd,
QS 7→W

(θ
QS 7→W

(qs)) is parameterized with degree 6 Bezier poly-

nomials. The cost function is selected as cmt and is minimized subject to constraints:

1. positive normal ground reaction force.

2.
∣∣∣ FT

st

FN
st

∣∣∣ < 0.7.

3.
∥∥∥x−

QS 7→W
− x+

W

∥∥∥ = 0, where, x−
QS 7→W

represent the state vector at the end of the

transition step and x+
W is the initial state vector for a periodic walking motion.

Figure 7.4 shows the evolution of the leg angles, knee angles and hip angles during

the transition step. The step takes 300[m.s]. During the step, qLAgrR and qLAgrL both begin at

180[deg]. At the end of the step, qLAgrR decreases to 169[deg] and qLAgrL increases to 185[deg].

The maximum knee angle corresponds to qKneegrL and is 37[deg], whereas qKneegrR slightly

increases to 30[deg] toward the end of the step. Hip angles initiate from well above 2[deg]

and vary between −2[deg] and 2[deg] during the step.
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Figure 7.4: Evolution during quiet standing to walking transition step (a) qLAgrR, qLAgrL, (b)
qKneegrR , qKneegrL , and (c) qHipR , qHipL .

Figure 7.5 shows the actuator torques during the transition step. u1R varies between

−2[N.m] and 2[N.m] and u1L varies between−4[N.m] and 2[N.m]. u2R and u2L both start

with −2[N.m] and 2[N.m] and their magnitude decrease towards the end of the step. The

maximum hip actuator is required by u3R, which is −6[N.m], and u3L fluctuates between

−3[N.m] and 0[N.m]. Figure 7.6 illustrates each actuator’s required power during the

transition step. p1R and p2R require the maximum power during the step, whereas the hip

actuators have the lowest power demand.
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Figure 7.5: Control effort during quiet standing to walking transition step (a) u1R, u1L, (b)
u2R, u2L, and (c) u3R,u3L.
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Figure 7.6: Actuator power during quiet standing to walking transition step (a) p1R, p1L,
(b) p2R, p2L, and (c) p3R, p3L.

7.2.4 Controller Design

The controllers proposed in this section enforce the time-dependent output trajectories

and time-independent virtual constraints described in the previous sections.

7.2.4.1 Time-dependent outputs

Recall that the gait-timing variable θ
QS 7→W

is time-dependent, which means that the

input-output linearizing control policy introduced in Chapter VI is not applicable. There-
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fore, a proportional-derivative PD controller is proposed for the quiet standing to walking

transition step with the time-dependent gait-timing variable. Considering (7.2.3), the feed-

back policy u
QS 7→W

(
t
QS 7→W

τ
QS 7→W

) is given by

u
QS 7→W

=
∂h0,

QS 7→W
(qs)

∂q
B−1(

1

ε2
KPy

QS 7→W
(t

QS 7→W
, qs) +

1

ε
KDẏ

QS 7→W
(t

QS 7→W
, qs))

(7.2.7)

where KP , KD, ε are control tuning parameters. B is a matrix which maps control

commands to the leg harmonic drives and hip actuators.

7.2.4.2 Controller Performance

The controller in (7.2.7) was implemented on the tether-free model of the robot with

point feet, where the ground model is a rigid ground model. Figure 7.7 demonstrates the

tracking errors corresponding to the leg angle, knee angle and hip angle. The tracking error

for all of these virtual constraints is on the order of 10−5 and it is seen the error increases

toward the end of the step.
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Figure 7.7: Tracking error during quiet standing to walking transition step (a) qLAgrR, qLAgrL,
(b) qKneegrR , qKneegrL , and (c) qHipR , qHipL .

Figure 7.8 illustrates the control actuation torque corresponding to the motors during

the transition step. u1L requires −4[N.m] to 3[N.m], whereas u1R requires 0[N.m] to

3[N.m]. u2R and u2L both start with −4[N.m] and 3[N.m] at the beginning of the step and

demand smaller torque commands towards the end of the step. Turning to the hip actuators,

u3R demands the maximum actuation torque of −6[N.m] towards the end of the transition

step.
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Figure 7.8: Actuation torque during quiet standing to walking transition step (a) u1R, u1L,
(b) u2R, u2L, and (c) u3R, u3L.

Figure 7.9 illustrates the power required by the robot’s motors. It can be seen that a

large amount of negative power is associated with p1L and p2R at the beginning of the step.

This is due to the fact that the generated torques by these actuators are in the opposite

direction of the rotation motion of the links associated with those actuators.
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Figure 7.9: Actuation power during quiet standing to walking transition step (a) p1R, p1L,
(b) p2R, p2L, and (c) p3R, p3L.

Figure 7.10 shows the components of the ground reaction force during the transition

step. The ground reaction force acts at the contact point between the right leg and the

ground. The small magnitude of the tangential components is desirable so that slippage

does not occur during the transition step.
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Figure 7.10: Components of the ground reaction force at the end of the stance leg during
quiet standing to walking transition step.

7.2.4.3 Time-Independent/ Normal Virtual Constraints

Recall that as the gait-timing variable θ
QS 7→W

is time-independent, the input-output lin-

earizing control policy introduced in Chapter VI applies. The decoupling matrix given by

the following equation is invertible:

A
QS 7→W

(qs, q̇s) =
∂h

QS 7→W
(qs)

∂qs
D−1
s (qs)Bs, (7.2.8)

while u∗
QS 7→W

(x) is obtained by solving for the input that sets ÿ
QS 7→W

= 0, giving

u∗
QS 7→W

(qs, q̇s) =A−1

QS 7→W
(qs, q̇s)

(
∂

∂qs

(
∂h

QS 7→W
(qs)

∂qs
q̇s

)
q̇s −

∂h
QS 7→W

(qs)

∂qs
D−1
s (qs)Hs(q̇s, qs)

)
. (7.2.9)

Input-output linearization yields the feedback controller for the quiet standing to walk-

ing transition step,

u
QS 7→W

(x) =u∗
QS 7→W

(x)−A−1

QS 7→W
(x)(

1

ε2
KPy

QS 7→W
+

1

ε
KDẏ

QS 7→W
). (7.2.10)
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7.2.4.4 Controller Performance

The controller in (7.2.10) was implemented on the tether-free model of the robot with

prosthetic feet where the ground model is a compliant model. Figure 7.11 demonstrates the

tracking errors corresponding to the leg angle, knee angle and hip angle. The maximum

tracking error is associated with qKneegrL , which is 6[deg]. The tracking error corresponding

to qLAgrR and qLAgrL vary between −2[deg] to 2[deg]. The tracking error corresponding to qHipR

and qHipL vary between −1[deg] to slightly more than 2[deg].
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Figure 7.11: Tracking error during quiet standing to walking transition step (a) qLAgrR, qLAgrL,
(b) qKneegrR , qKneegrL , and (c) qHipR , qHipL , black curve for right leg and red curve for left leg.

Figure 7.12 illustrates the control actuation torque corresponding to the robot’s actu-

ators during the quiet standing to walking transition step when the gait-timing variable

is time-independent. u1L varies between −11[N.m] to 19[N.m] and u1R varies between

−10[N.m] to 10[N.m]. The maximum torque demanded by u2R is −20[N.m]. The hip

actuators demand a maximum −15[N.m] at the beginning of the step.
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Figure 7.12: Actuation torque during quiet standing to walking transition step (a) u1R, u1L,
(b) u2R, u2L, and (c) u3R, u3L, black curve for right leg and red curve for left leg.

7.2.4.5 Time-Independent/ CoM Positioning

In Chapter VI, a similar modifed virtual constraint is considered for the quiet standing

to walking mode, given as
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h
r|SE

CoM
0,

QS 7→W
(qs) =



qgr1R + qgr2R
2

qgr1L + qgr2L
2

qgr2R − qgr1R

qgr2L − qgr1L

q3R

phCoM − phSE


=



qLAgrR

qLAgrL

qKneegrR

qKneegrL

qHipR

r|SECoM



, (7.2.11)

where r|SECoM is the horizontal distance between the swing-leg-end and CoM in the

frontal plane during the transition step, as previously explained in Chapter VI. The op-

timal distance between the swing-leg-end and the CoM of the robot in the frontal plane

is computed as explained in Section 5.4: a NURB curve of order five with twenty control

points is fit to this distance. The modified virtual constraint for the transition step is written

as

yr|
SE
CoM

QS 7→W
=hr|

SE
CoM

QS 7→W
(qs, α

∗,r|SE
CoM

QS 7→W
)

= h
r|SE

CoM
0,

QS 7→W
(qs)−

h
r|SE

CoM
d,

QS 7→W
(θr|

SE
CoM

QS 7→W
(qs), α

∗,r|SE
CoM

QS 7→W
),

(7.2.12)

where yr|SE
CoM

QS 7→W
, α∗,r|SE

CoM

QS 7→W
are the modified virtual constraints and modified optimal gait

parameters corresponding to the transition step. Considering (7.2.12) and taking first and

second time derivatives similar to (6.2.2) and (6.2.4), the decoupling matrix for the modi-

fied virtual constraint is given as

Ar|SE
CoM

QS 7→W
(qs, q̇s) =

∂hr|
SE
CoM

QS 7→W
(qs)

∂qs
D−1
s (qs)Bs, (7.2.13)

while u∗,r|SE
CoM

QS 7→W
is obtained by solving for the input that sets ÿr|SE

CoM

QS 7→W
= 0, giving
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u∗r|
SE
CoM

QS 7→W
(qs, q̇s) =(Ar|SE

CoM

QS 7→W
)−1(

∂

∂qs
(
∂hr|

SE
CoM

QS 7→W
(qs)

∂qs
q̇s)q̇s −

∂hr|
SE
CoM

QS 7→W
(qs)

∂qs
D−1
s (qs)Hs(q̇s, qs)).

(7.2.14)

Similar to (6.2.7), since the decoupling matrix is invertible, input-output linearization

yields the feedback controller

ur|
SE
CoM

QS 7→W
(x) =u∗,r|

SE
CoM

QS 7→W
(x)−(

Ar|SE
CoM

QS 7→W
(x)
)−1

(
1

ε2
KPyr|

SE
CoM

QS 7→W
+

1

ε
KDẏr|

SE
CoM

QS 7→W
),

(7.2.15)

where KP , KD and ε are the control parameters for the modified virtual constraints

during the transition step.

7.2.4.6 Controller Performance

The controller (7.2.15) was implemented on the tether-free model of the robot with

prosthetic feet, where the ground model is a compliant model. Figure 7.13 shows the time

evolution of the leg angles, knee angles and hip angles for four consecutive steps after

the transitory step. The transitory step takes 250[m.s]. Figure 7.14 depicts the tracking

performance of the controller where the errors are on order 10−1 at the beginning of each

step and vanish toward the end of the step. Figure 7.15 illustrates the required control effort

per actuators to enforce the transitory and periodic virtual constraints.
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Figure 7.13: The evolution of the angles during quiet standing to walking transition step
(a) qLAgrR, qLAgrL, (b) qKneegrR , qKneegrL , and (c) qHipR , qHipL , black curve for right leg and red curve
for left leg.
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Figure 7.14: Tracking error during quiet standing to walking transition step (a) qLAgrR, qLAgrL,
(b) qKneegrR , qKneegrL , and (c) qHipR , qHipL , black curve for right leg and red curve for left leg.
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Figure 7.15: Actuation torque during quiet standing to walking transition step (a) u1R, u1L,
(b) u2R, u2L, and (c) u3R, u3L, black curve for right leg and red curve for left leg.
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CHAPTER VIII

Walking Experiments

This chapter integrates the individual controllers for standing, transitioning, and steady-

state walking into an overall controller for autonomous locomotion. The controller is then

experimentally deployed on both the planar and tether-free versions of MARLO. In planar

mode, the robot’s lateral and yaw motion is constrained, whereas in tether-free mode, the

robot’s full 3D dynamics come into play.

The chapter begins with a control architecture that integrates the control strategies de-

veloped throughout this study into a single control block and appropriate switching logic

activates individual control strategies as a function of time and the state of the robot. Us-

ing this controller, autonomous planar walking is demonstrated on MARLO equipped with

passive prosthetic feet. To be clear, the term autonomous means that the robot starts in

a standing position and transitions to periodic walking without any intervention by the

operator, such as a push used in robots such as MABEL and Rabbit. The results from au-

tonomous tether-free walking are presented next. The maximum number of steps achieved

is six natural human-like steps with walking speed of 0.3[m
s

]. Concluding remarks and

discussion finish the chapter.
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8.1 Embedded Controller Environment

For embedding the controller in the robot, xPC Target is employed, which executes

Simulink and Stateflow models on a target computer for rapid control prototyping and real-

time testing applications. It provides a library of drivers, real-time kernel and host target

interface for real-time monitoring and data logging.

8.2 Overall Controller

Figure 8.1 and 8.2 show the basic architecture for each of the time-dependent and time-

independent closed-loop strategies. A set of six variables to be controlled h0 is constructed

from the position variables of the robot. Desired values for these variables are specified by

hd. In all but one case, the function hd is time-invariant, the lone exception being one of

the controllers for the transition step. A HZD-based controller Γ is employed to drive the

difference between h0 and hd to zero. In later discussion, the “tracking error” is defined as

h0 − hd.

The state vector x ∈ R26×1 consists of the angles required to parameterize the robot in

single support as well as their derivatives. The angles are directly measured, whereas the

angular velocities are estimated, S(q). The angles that relate the robot to the world frame

are measured in two different ways, depending on the configuration of the platform. For

the tether-free experiments, an IMU is used to measure the roll, pitch and yaw angles of

the torso. For the planar experiments, the pitch angle of the torso can also be measured by

an encoder between the robot’s torso and the boom. The output vector from the controller

in both planar and tether-free experiments has the same dimension, u ∈ R6×1. During pla-

nar walking, however, the commands to the hip actuators are constant set-points, whereas

during tether-free walking experiments, the hip actuators track time- or state-varying tra-

jectories.
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Figure 8.1: Time-dependent closed-loop block-diagram.
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Figure 8.2: Time-independent closed-loop block-diagram.

8.2.1 Switching logic

Figure 8.3 shows the collection of controllers available for synthesizing a walking mo-

tion. The controllers are organized into three blocks: for quiet standing (top), transition step

(middle), and periodic walking (bottom). Terminal S3 includes a state-machine that selects

the appropriate control output. Each experiment begins with the robot in quiet standing

mode; see Section 7.1. This mode remains active until the operator presses a button on the
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graphical user interface (GUI). When the button is pressed, the knees are commanded to

straighten, causing the robot to pitch forward. From here on, all decisions are made without

operator intervention.

When the CoM horizontal velocity exceeds 0.1[m
s

], the transition step is begun. The

controller is pre-selected from (7.2.7), (7.2.10), and (7.2.15). After one step, the control

mode automatically switches to one of the pre-selected controllers for periodic walking

given in (6.2.7), (6.3.5), and (6.4.2). The experiment ends when either the robot falls or the

operator kills the power.

u
QS

(x)

S3S4
u ∈ R6,1x ∈ R26,1

y ∈ R6,1

u
QS 7→W

u
QS 7→W

ur|
SE
CoM

QS 7→W

S1

u

ur|
SE
CoM

ũr|
SE
CoM

S2

Figure 8.3: MARLO’s walking controller Γ architecture.

8.2.2 Features added during experimentation

During the course of experimenting with the controller, two features were made avail-

able to the operator.
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8.2.3 Double support delay

At the end of each step, the controller must swap the support leg from left to right

or right to left. This leg swapping takes place when the spring deflection in the swing

leg exceeds a pre-defined threshold. It was observed that while using spring deflection to

detect when the swing impacting the ground worked well, it was nevertheless difficult to

set a threshold for spring deflection that would ensure adequate ground reaction force on

the swing leg before commanding it to take over the support of the robot (i.e., become the

stance leg). The solution was to delay swapping for a fixed amount of time after impact

was detected. This interval of time is called the “double support delay.”

8.2.4 Regressed Feed-Forward Terms

Feed-forward is a well known means for reducing tracking error arising in PD con-

trollers. Using the recorded torques from early walking experiments, it was possible to

estimate off-line the nominal torques required for the transition step and for steady-state

walking. Using NURBs and regression, such feed-forward torques were designed and

added to the standard PD feedback terms of the controllers used in later experiments.

8.3 Autonomous Planar Walking with Passive Feet

The planar platform shown in Fig .8.4 uses a boom to constrain the motion of MARLO

to the surface of a sphere. The resulting circular motion of the robot is different from a

standard planar model in that the center of the hips traces out a circle on the floor. Con-

sequently, the distance traveled by the inside leg during a step is, on average, shorter than

the distance traveled by the outside leg. To reduce this effect, an offset value of 2[deg] is

added to the right and left hip reference angles, causing both hips to move inwards, thus

reducing the distance between the right and left leg ends in the frontal plane. The passive
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feet (prosthetic feet1) are attached to the robot so that it can stand upright with the legs

parallel, just as it will have to do in the tether-free experiments.

8.3.1 Selected measurements and controller

The pitch angle of the torso with respect to the world frame was determined from the

IMU. At the time of the experiment, the boom pitch encoder had been loaned to the group

at Carnegie Mellon University and was thus unavailable. The controller architecture ex-

plained above is used. The experiment begins with the robot in quiet standing. The time-

independent transition controller is used. A periodic walking controller with normal virtual

constraints is selected because in planar mode, the hip angles are commanded to constant

values. The designed walking speed is 0.3[m
s

].

1Courtesy of B. Griffin
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Figure 8.4: Planar walking experiment platform.

8.3.2 Results

The controller achieved autonomous stable walking, transitioning from the quiet stand-

ing mode and entering the basin of attraction of the periodic walking gait. Figure 8.5 shows

the gait-timing variable versus time. The gait timing variable monotonically increases dur-

ing each step and falls to zero at the beginning of the following.
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Figure 8.5: Gait-timing variable.

Figure 8.6 shows the leg angles, knee angles and hip angles for 13 steps and 10 seconds

of walking. The transition from quiet standing to walking takes place at time zero. On the

first step, qLAgrR decreases to 175 [deg] and qLAgrL increases to 190 [deg]. On subsequent steps,

this process alternates. The minimum knee angle is 25 [deg] and the maximum knee angle

is 70 [deg]. The hip angles vary between -3 [deg] to 3 [deg] and this is due to the shifting

weight of the robot from one leg to the other. Between 3 seconds and 7 seconds, the gait

appears to be in a steady-state regime. At 7 seconds the gait slows down, possibly due to a

change in the height of the floor in the lab.
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Figure 8.6: (a) qLAgrR, qLAgrL, (b) qKneegrR , qKneegrL (c) qHipR , qHipL .

Figures 8.7 shows the tracking errors corresponding to the leg angles, knee angles and

the hip angles. The maximum tracking error is associated with the left knee angle and is

-20 [deg]. Despite this large error, the controller recovered and walking continued. Figure

8.8 shows the torque commands for the six actuators of the robot. The leg actuators are

saturated to ±4.5[N.m], whereas the maximum actuation torque on the hip actuator is

−2[N.m].
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Figure 8.7: Tracking error for (a) qLAgrR, qLAgrL, (b) qKneegrR , qKneegrL (c) qHipR , qHipL .
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Figure 8.8: Actuation torque for the controller, (a) u1R, u2R, (b) u3R, u1L (c) u2L, u3L.

Figures 8.9 and 8.10 show the roll, pitch and yaw angles and their corresponding rates.

In an ideal planar robot, the roll angle is not expected to vary. However, the end of the boom

is actually moving on the surface of a sphere, and thus the roll angle varies between 2 [deg]

to 3 [deg] as the height of the hips rises and falls; 1 [deg] change in roll angle corresponds to

roughly 3 cm of height change. The pitch angle starts at -4 [deg] and ends at 2 [deg] during

the one-step transition from standing to walking. On the second step, the pitch angle varies

from -4 [deg] to 2 [deg], and tends toward oscillating between -2 [deg] and 2 [deg].
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Figure 8.11 and 8.12 show snapshots of walking on the boom. Figure 8.11 shows the

single step transition from quiet standing to steady-state walking; Fig. 8.12 depicts the

periodically stable planar walking after the transition.
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Figure 8.9: IMU angles, (a) roll, (b) pitch.
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Figure 8.10: IMU rate angles, (a) roll-rate, (b) pitch-rate.
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Figure 8.11: Planar transition step from quiet standing mode to periodic walking.
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8.4 Autonomous 3D Walking with Passive Feet

The environment for the 3D experiments is shown in Fig. 8.13. An overhead gantry is

used to provide a safety line (combination of a metal chain and a nylon rope) to the robot.

The slack in the line is adjusted so that it catches the robot before its knees hit the floor.

The line is not supporting the robot; if anything, it is acting as a disturbance on the torso. In

these experiments, the robot is neither carrying its own power nor computation. Power is

supplied by five 12-volt car batteries setting on the floor of the laboratory and connected to

the robot via a cable. While the robot is designed to operate with on-board LiPo batteries,

the present set of batteries do not supply adequate current. The computer unit serving as

the target for the xPC Target system is not located on the robot. It too sets on the floor of

the laboratory and is connected to the robot via an ethernet cable.

The robot is shown standing on a shallow ramp with an angle of 2[deg]. The shallow

ramp makes it easier to initiate the gait. In addition, it is covered with a non-slip rubber

material.

The angle of the torso with respect to the world frame is measured with an IMU that is

attached to the torso. The passive feet (prosthetic feet) used in this platform facilitate the

stabilization at the quiet standing mode by increasing the area of the support polygon. In

addition, it is possible that the passive feet provide some lateral stability to the robot. The

angles of the passive feet with respect to the supporting link are adjusted through a series

of set-screws located in the connector mechanism of each prosthetic passive foot.
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Figure 8.13: Tether-free walking experiment platform.

8.4.1 Six steps of walking

This section describes one particular experiment in detail. The time-independent tran-

sition controller based on the normal virtual constraints is selected by the operator. A

periodic walking controller corresponding to an average speed of 0.3[m
s

] and which en-

forces the normal virtual constraints is selected. In 3D, the robot initiated the gait from a

quiet standing position and took five additional steps under the periodic-walking controller

before falling on the 7th step.

Figure 8.14 shows the gait-timing variable versus time. The gait timing variable (nearly

monotonically) increases during each step and falls to zero at the beginning of the next step.
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Figure 8.14: Gait-timing variable.
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Figure 8.15 shows the leg angles, knee angles and hip angles for 7 steps and 4 seconds

of walking. The transition from quiet standing to walking takes place at time zero. On the

first step, qLAgrR decreases to 175 [deg] and qLAgrL increases to 185 [deg]. On subsequent steps,

this process alternates. The minimum knee angle is 20 [deg] and the maximum knee angle

is 65 [deg]. The hip angles vary between -6 [deg] to 4 [deg] and this is due to the shifting

weight of the robot from one leg to the other.
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Figure 8.15: (a) qLAgrR, qLAgrL, (b) qKneegrR , qKneegrL (c) qHipR , qHipL .

Figures 8.16 show the tracking errors corresponding to the leg angles, knee angles and
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the hip angles. The maximum tracking error is associated to the right knee angle and is 20

[deg]. Despite this large error, the controller recovered and walking was continued. Figure

8.17 shows the torque commands for the six actuators of the robot. The leg actuators are

saturated to±2[N.m] whereas the maximum actuation torque on the hip actuator is slightly

more than −2[N.m].
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Figure 8.16: Tracking error for (a) qLAgrR, qLAgrL, (b) qKneegrR , qKneegrL (c) qHipR , qHipL .
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Figure 8.17: Actuation torque for the controller, (a) u1R, u2R, (b) u3R, u1L (c) u2L, u3L.

Figures 8.18 and 8.19 show the roll and pitch angles and their corresponding rates. The

roll angle mostly oscillates between −4[deg] and 5[deg], but reaches a maximum of 8[deg]

at 2[s], from which, however, the walking continues. The pitch angle starts from −2[deg]

and reaches 3[deg] at 0.25[s] before returning to −2[deg] at the end of the first step. The

pitch angle for the next consecutive steps follow a similar oscillating pattern, however, the

average pitch angle increase over the steps, meaning the torso gradually rotates backward

in the sagittal plane of walking. The roll rate generally oscillates between −100[deg
s

] and
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100[deg
s

] with an exception being at 2[s] where the roll angle rate reaches −200[deg
s

]. The

pitch angle rate oscillates between −80[deg
s

] and 80[deg
s

].

Figure 8.20 and 8.21 show snapshots of walking. Figure 8.20 shows the single step

transition from quiet standing to steady-state walking and Fig. 8.21 depicts tether-free

walking after the transition.
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Figure 8.18: IMU angles, (a) roll, (b) pitch.
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Figure 8.19: IMU rate angles, (a) roll-rate, (b) pitch-rate.
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Figure 8.20: Tether-free transition step from quiet standing mode to periodic walking.
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8.4.2 Discussion

Several tether-free walking experiments with MARLO revealed natural and human-like

steps, which were initiated autonomously without the intervention of an operator. Never-

theless, MARLO’s current tether-free walking gaits are unstable and work is ongoing to

stabilize them. In this section, a summary of the tether-free walking experiments is re-

ported and compared to simulated results. Through the comparison between the simulated

data and the experimental data, a hypothesis for the instability of the tether-free controller

is presented.

The controller (6.4.2) yielded an asymptotically stable periodic walking gait in our

MATLAB simulation environment. Recall that this controller adjusts the lateral position

of the swing leg so as to maintain a given distance between the CoM of the robot and the

end of the swing leg. In simulation, the controller worked with both point feet on rigid

ground and prosthetic feet on compliant ground. However, when the controller (6.4.2)

was implemented on the actual robot, it lead to excessive vibrations of the hip actuation

mechanism. In fact, the distance between the CoM and the swing leg-end is computed

using the inverse kinematic equations obtained from the model of the robot. The derivative

of this distance is “noisy” due to the numerical estimation of the angular velocity terms,

which may have contributed to the observed vibrations. Consequently, the controller (6.2.7)

which enforces the normal virtual constraints explained in Chapter VI was employed on the

actual robot for tether-free walking.

With the prosthetic feet on the robot, simulations of the untethered robot in closed-

loop with the controller (6.2.7) were conducted with the compliant ground simulator. The

results show that with a nominal torque limit of 5[N.m] for the actuators, stable walking

is achieved. On the other hand, when the torque limit is reduced to 2[N.m], the robot falls

after a few steps. The instability mechanism seems to be that the tracking error steadily

increases on the stance hip, leading to the roll angle increasing and the robot toppling

sideways. In the following, this behavior is compared to experimental data.
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8.4.2.1 Planar walking

Even with all actuators limited to 2[N.m], the planar simulation model results in stable

walking. Fig. 8.22 shows phase-portrait for qx and q1R over 15 steps. The simulated gait is

converging to a periodic orbit. The persistence of stable walking in the sagittal plane model

under severe restrictions on the torque is consistent with experiments.
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Figure 8.22: Planar phase-portrait (red curve is the fixed point).

8.4.2.2 3D walking

Simulation studies of the 3D model with (1) all actuators limited to 2[N.m] and (2)

all actuators limited to 5[N.m] are compared against experimental results for three steps

proceeding the fall. The last successful step is labeled K, the step before that K − 1, and

the one before that K− 2. Simulation with a limit of 2[N.m] results in an unstable walking

gait where the robot topples sideways after four steps. While the harsh torque limits affect

the tracking performance of each of the controlled variables, it is believed that the gait is
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most sensitive to errors in the stance hip frontal variable, q3.

In Fig. 8.23, 8.24, 8.25 and 8.26 blue circles denote the simulation corresponding to

a torque limit of 2[N.m] and the green circles correspond to 5[N.m], while the remaining

three curves correspond to experimental data. The red line is the experiment reported in

Section 8.4.1.

Figure 8.23 shows the roll angle. At 40% of step(K), the robot starts toppling side-

ways when the saturation is 2[N.m] (blue circles), and similarly for the two experiments

represented by the black solid line and dashed black line; the roll angle increases, which

means the robot is falling to the left side. When the torque limit is 5[N.m] (green circles)

instability in the frontal plane is not observed. It is seen that the red curve follows the stable

simulation. The red curve represents the evolution of the variables from the six step exper-

iment presented in previous section. It was shown that the tracking errors associated to the

six-step experiment are relatively small despite the limitations in the power amplifiers.

Turning to the pitch angles shown in Fig. 8.24, the experimental and simulated pitch

angels vary between −4[deg] and 6[deg] at the step(K − 2). In fact, the saturation level

of the actuators does not affect the pitch angle evolution at steps(K − 2, K − 1 and K). It

is seen that the six step experiment follows the simulated results, whereas, the black and

dashed black experiments show a pitch instability that we believe is initiated by the roll

instability in the robot.

Figures 8.25 and 8.26 indicate that when the saturation level is 2[N.m] (blue circles),

the experimental and simulated tracking errors in the hip angles show a similar behavior. In

Fig. 8.25, the hip tracking errors corresponding to the experiments and 2[N.m]-simulation

are larger than those of the 5[N.m]-simulation. Moreover, it is seen that the six-step exper-

iment (red curve) is in agreement with the 5[N.m]-simulation (green circles). Figure 8.25

shows that at step (K), 2[N.m]-simulation -simulation (blue circles) and the experimental

data have a large stance hip tracking error, where as the 5[N.m]-simulation and the six-step

experiment present significantly smaller stance hip tracking errors. Figure 8.26 shows the
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corresponding swing hip tracking errors. In contrast to the stance hip tracking errors, it is

seen that the 2[N.m]-simulation simulation (blue circles) and the 5[N.m]-simulation simu-

lation (green circles) are in agreement. In fact, since no force is acting at the swing leg-end,

high saturation and low saturation yield similar tracking errors.

The above simulation study and the comparison made between the experimental and

simulated results suggest that if the actuators (in particular, the hip actuators) fail to gener-

ate sufficient actuation torque, instability occurs. The minimum required actuation torque

is unknown. Through simulation, however, an attempt was made to saturate the actuator

output torque in order to model limitations dictated by the power amplifiers and motor

drives. It was seen that when the generated torques are small, the hip tracking errors build

up and consequently result in (frontal plane) instability.

159



0 20 40 60 80 100
−10

0

10

Step percentage

[d
eg
]

(a) K − 2

0 20 40 60 80 100
−10

0

10

Step percentage

[d
eg
]

(b) K − 1

0 20 40 60 80 100
−10

0

10

Step percentage

[d
eg
]

(c) K

Figure 8.23: Roll angle evolution.
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Figure 8.24: Pitch angle evolution.
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Figure 8.25: Hip angle tracking error corresponding to the stance leg.
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Figure 8.26: Hip angle tracking error corresponding to the swing leg.
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CHAPTER IX

Concluding Remarks

9.1 Summary of New Contributions

The new contributions of this study are two-fold: theoretical and experimental. The the-

oretical and experimental contributions tackled challenges in dynamic modeling, optimal

gait design, controller design, and experimental testing on a 3D-bipedal robot, which has

overall thirteen degrees of freedom and seven degrees of underactuation in single support

phase.

Using the method of Lagrange, an unconstrained dynamic model of the robot was de-

veloped. Subsequently, four dynamic models (tether-free model with rigid ground, tether-

free model with compliant ground, planar model with rigid ground, and planar model with

compliant ground) were established after imposing proper holonomic constraints on the

unconstrained dynamic model of the robot. It was demonstrated, through simulation, that

the tether-free model and the planar model are in agreement.

Various choices of virtual constraints were identified and their implications on the sta-

bility of the associated hybrid zero dynamics (HZD) were analyzed. Due to the robot’s

3D nature and the use of series elastic actuation, the state space dimension of its dynamic

model was essentially double that of prior HZD-based studies, [70, 113]. The increased

dimension was a considerable challenge in designing an HZD optimization algorithm for

MARLO . While prior works [113] employed Bézier polynomials in their HZD optimiza-
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tion algorithms, a novel NURB-based family of virtual constraints is proposed in this work.

A simulation study of optimal walking gaits for a range of walking velocities revealed ener-

getic efficiency improvements when NURB curves are employed in comparison to Bézier

curves. In particular, a NURB-based optimal walking gait with a cost of mechanical trans-

port (i.e., cmt ) of 0.05 at a nominal walking speed of 0.7[m
s

] was obtained, which is com-

parable to the energetic efficiency of human-beings (cmt 0.05 for nominal walking speed

of 1.0[m
s

]).

An HZD walking controller was designed for the tether-free model of the robot using

a nominal choice of virtual constraints and the controller yielded unstable walking gaits.

A virtual constraint proposed in [105] led to unstable walking gaits as well, proving that

regulating the position of the CoM with respect to the swing foot will not guarantee the

stability of a walking gait. Consequently, a dual-level event-based controller composed of

a continuous loop and a discrete loop was developed that guaranteed stability of walking

and the stability was checked using the method of Poincaré sections.

The HZD walking controller was implemented on the planarized version of MARLO at

Oregon State University and a stable walking gait was demonstrated, similar to prior works

by [113, 70]. The same controller also yielded stable walking gaits on the planarized copy

of MARLO at the University of Michigan. During these experiments, the applicability

of on-board power supplies was demonstrated when MARLO finished four laps using on-

board batteries.

As noted in the literature review, several authors have demonstrated the suitability of

HZD-based controllers in simulations. For example, Shih et al. [124] achieved asymptot-

ically stable walking using HZD-based walking controller for a 3D-bipedal robot with 6

DoF and 2 DoU while [105, 125] showed asymptotically stable walking for a 3D-bipedal

robot with 8 DoF and 2 DoU. In yet another work, Shih et al. [126] showed asymptotically

stable walking for a 3D-bipedal robot with 9 DoF and 3 DoU. Nevertheless, these studies

are simulation driven and the pioneering HZD-based experimental studies conducted by
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[70] and [113] were on planar robots Rabbit (5 DoF and 1 DoU) and MABEL (7 DoF and

3 DoU), respectively. However, for the first time, in this study, an HZD-based controller

was implemented experimentally on a 3D-bipedal robot with 13 DoF and 7 DoU. The con-

troller yielded six human-like steps with walking speed of 0.3[m
s

] in a 3D environment

where an IMU was employed to measure the roll, pitch and yaw angles of the robot.

To begin the walking experiments, a gait initiation control strategy was designed and

deployed. The strategy is composed of: (1) a quiet standing controller, which regulates the

distance between CoM and CoP in order to balance the robot in a standing pose; and (2) a

transition step controller, which takes the robot from a standing position to a posture and

velocity “near” the fixed-point of a periodic walking gait. Two types of transitory steps,

time-dependent and time-independent, were designed and tested. It was found that the

time-dependent transition step may lead to premature impacts and scuffing of the swing leg.

These problems were not observed in the time-independent transition step, and therefore it

was mostly used in the experiments. The controller yielded a transitory step from a stand-

still configuration to the fixed-point of periodic walking gait for both the planar and tether-

free instantiations of MARLO. In the case of planar MARLO, the gait initiation control

algorithm yielded asymptotically stable walking motions with a walking velocity 0.3[m
s

]

after the transitory step. The control policy completely removed any intervention of an

operator during experiments. In the tether-free case, a maximum of 7 steps was achieved.

Raibert’s famous hopper robots demonstrated tether-free underactuated running in the

1980’s. In the intervening years, perhaps only Petman has demonstrated walking with

partially actuated ankles, yielding two degrees of underactuation. The current work used

totally passive ankles and compliant elements for energy efficiency. The analytical and

experimental work demonstrate the feasibility of walking in a 3D environment using a high

number of degrees of underactuation, namely seven. In addition, the work underlines the

ability of HZD-based feedback designs to realize walking for robots with a wide range

of morphologies, expanding from underactuated planar robots to underactuated 3D robots
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with compliant elements.

9.2 Perspective on Future Work

Attempts at embedding the controller with modified virtual constraints resulted in ex-

cessive vibrations in the hip actuator mechanism when the distance between the CoM and

swing leg-end position was regulated by the controller. Experiments with the event-based

controller yielded rapid unpredicted leg movements at the end of steps. Inverse kinematics

is employed to compute the distance between CoM and swing leg-end after solving a series

of symbolically defined equations during the controller run time. These computations are

affected by the accuracy of the tether-free model and may not represent the actual distance

between the CoM of the robot and the swing leg-end. An interesting first step to implement

the controller with the modified virtual constraints would be to employ an electronic sys-

tem capable of measuring the actual distance between the CoM of the robot and the swing

leg-end, such as a “Vicon motion system”. In fact, the principal masses of the robot and

the swing leg-end could be marked with reflectors; the associated Cartesian positions can

be computed and sent to the controller to regulate the distance between the CoM and the

swing leg-end.

The experimentally-demonstrated robustness of planar walking under HZD-based con-

trollers for bipedal robots with various physiologies suggests that tether-free instability oc-

curs in the frontal plane of walking. Current HZD-based control design considers a single

gait-timing variable defined in the sagittal plane of walking and employed as a self-clocking

mechanism to generate walking motions. In order to robustly compensate for perturbations

in the frontal plane, explicit adjustment of the frontal hip angles is required. This can be

done by introducing an independent frontal gait-timing variable associated to the frontal

plane of walking where the hip joint motions are generated by enforcing virtual constraints

which are driven by the frontal gait-timing variable.

Swing foot positioning with the current controller takes place through enforcement of
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the virtual constraints, which define a pre-computed ground clearance and angle of attack

dependent on the value of the gait-timing variable. In various experiments, premature

impact with improper angle of attack took place mainly because the foot positioning occurs

with no knowledge of the configuration of the robot in the frontal plane. Embedding a

ground clearance sensor in the feet may enable the controller to avoid premature impacts

caused by frontal plane perturbations.

The dynamic model developed in this study captures the overall dynamic response of

the robot. Nevertheless, the dynamics of the harmonic drives and the hip actuator mecha-

nism, which reflect properties such as internal friction, and viscosity were not considered.

Their consideration may lead to a more realistic model of the robot for gait design.

The energetic cost of mechanical transport used in this work represents the energetic

efficiency associated with periodic walking on flat ground when there are no disturbances

acting on the robot. In actual experiments, disturbances, such as unevenness in the terrain,

act on the robot and perhaps, by incorporating the effects of such disturbances in HZD

optimization, more realistic gaits would be obtained.
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APPENDIX A

NURB C Code

Following source codes1 are used in HZD optimization using NURB curves.

1 /∗

2 S u b r o u t i n e t o g e n e r a t e a B−s p l i n e open k n o t v e c t o r w i t h m u l t i p l i c i t y

3 e q u a l t o t h e o r d e r a t t h e ends .

4

5 c = o r d e r o f t h e b a s i s f u n c t i o n

6 n = t h e number o f d e f i n i n g po lygon v e r t i c e s

7 n p l u s 2 = i n d e x o f x ( ) f o r t h e f i r s t o c c u r e n c e o f t h e maximum

k n o t v e c t o r v a l u e

8 n p l u s c = maximum v a l u e o f t h e k n o t v e c t o r −− $n + c$

9 x ( ) = a r r a y c o n t a i n i n g t h e k n o t v e c t o r

10 ∗ /

11

12 kno t ( n , c , x )

13

14 i n t n , c ;

15 i n t ∗x ;

16

17 {

1Courtesy of David Rogers [116].
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18 i n t np lusc , np lus2 , i ;

19

20 n p l u s c = n + c ;

21 n p l u s 2 = n + 2 ;

22

23 x [ 1 ] = 0 ;

24 f o r ( i = 2 ; i <= n p l u s c ; i ++){

25 i f ( ( i > c ) && ( i < n p l u s 2 ) )

26 x [ i ] = x [ i −1] + 1 ;

27 e l s e

28 x [ i ] = x [ i −1];

29 }

30 }

1 /∗ S u b r o u t i n e t o g e n e r a t e a B−s p l i n e u n i f o r m ( p e r i o d i c ) k n o t v e c t o r .

2

3 c = o r d e r o f t h e b a s i s f u n c t i o n

4 n = t h e number o f d e f i n i n g po lygon v e r t i c e s

5 n p l u s 2 = i n d e x o f x ( ) f o r t h e f i r s t o c c u r e n c e o f t h e maximum

k n o t v e c t o r v a l u e

6 n p l u s c = maximum v a l u e o f t h e k n o t v e c t o r −− $n + c$

7 x [ ] = a r r a y c o n t a i n i n g t h e k n o t v e c t o r

8 ∗ /

9

10 # i n c l u d e <s t d i o . h>

11

12 kno tu ( n , c , x )

13

14 i n t n , c ;

15 i n t ∗x ;

16

17 {

18 i n t np lusc , np lus2 , i ;
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19

20 n p l u s c = n + c ;

21 n p l u s 2 = n + 2 ;

22

23 x [ 1 ] = 0 ;

24 f o r ( i = 2 ; i <= n p l u s c ; i ++){

25 x [ i ] = i −1;

26 }

27 }

1 /∗ S u b r o u t i n e t o g e n e r a t e r a t i o n a l B−s p l i n e b a s i s f u n c t i o n s−−open k n o t

v e c t o r

2

3 C code f o r An I n t r o d u c t i o n t o NURBS

4 by David F . Rogers . C o p y r i g h t (C) 2000 David F . Rogers ,

5 A l l r i g h t s r e s e r v e d .

6

7 Name : r b a i s

8 Language : C

9 S u b r o u t i n e s c a l l e d : none

10 Book r e f e r e n c e : Chapter 4 , Sec . 4 . , p 296

11

12 c = o r d e r o f t h e B−s p l i n e b a s i s f u n c t i o n

13 d = f i r s t t erm o f t h e b a s i s f u n c t i o n r e c u r s i o n r e l a t i o n

14 e = second term o f t h e b a s i s f u n c t i o n r e c u r s i o n r e l a t i o n

15 h [ ] = a r r a y c o n t a i n i n g t h e homogeneous w e i g h t s

16 n p t s = number o f d e f i n i n g po lygon v e r t i c e s

17 n p l u s c = c o n s t a n t −− n p t s + c −− maximum number o f k n o t v a l u e s

18 r [ ] = a r r a y c o n t a i n i n g t h e r a t i o n a l b a s i s f u n c t i o n s

19 r [ 1 ] c o n t a i n s t h e b a s i s f u n c t i o n a s s o c i a t e d w i t h B1 e t c .

20 t = parame te r v a l u e

21 temp [ ] = temporary a r r a y

22 x [ ] = k n o t v e c t o r

172



23 ∗ /

24

25 # i n c l u d e <s t d i o . h>

26

27 r b a s i s ( c , t , np t s , x , h , r )

28

29 i n t c , n p t s ;

30 f l o a t t ;

31 i n t ∗x ;

32 f l o a t ∗h ;

33 f l o a t ∗ r ;

34

35 {

36 i n t n p l u s c ;

37 i n t i , j , k ;

38 f l o a t d , e ;

39 f l o a t sum ;

40 f l o a t temp [ 3 6 ] ;

41

42 n p l u s c = n p t s + c ;

43

44 /∗ p r i n t f (” k n o t v e c t o r i s \n ”) ;

45 f o r ( i = 1; i <= n p l u s c ; i ++){

46 p r i n t f (” %d %d \n ” , i , x [ i ] ) ;

47 }

48 p r i n t f (” t i s %f \n ” , t ) ;

49 ∗ /

50

51 /∗ c a l c u l a t e t h e f i r s t o r d e r n o n r a t i o n a l b a s i s f u n c t i o n s n [ i ] ∗ /

52

53 f o r ( i = 1 ; i<= np lusc −1; i ++){

54 i f ( ( t >= x [ i ] ) && ( t < x [ i + 1 ] ) )

55 temp [ i ] = 1 ;
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56 e l s e

57 temp [ i ] = 0 ;

58 }

59

60 /∗ c a l c u l a t e t h e h i g h e r o r d e r n o n r a t i o n a l b a s i s f u n c t i o n s ∗ /

61

62 f o r ( k = 2 ; k <= c ; k ++){

63 f o r ( i = 1 ; i <= np lusc−k ; i ++){

64 i f ( temp [ i ] != 0 ) /∗ i f t h e lower o r d e r b a s i s f u n c t i o n i s

z e r o s k i p t h e c a l c u l a t i o n ∗ /

65 d = ( ( t−x [ i ] ) ∗ temp [ i ] ) / ( x [ i +k−1]−x [ i ] ) ;

66 e l s e

67 d = 0 ;

68

69 i f ( temp [ i +1] != 0) /∗ i f t h e lower o r d e r b a s i s f u n c t i o n

i s z e r o s k i p t h e c a l c u l a t i o n ∗ /

70 e = ( ( x [ i +k]− t ) ∗ temp [ i + 1 ] ) / ( x [ i +k]−x [ i + 1 ] ) ;

71 e l s e

72 e = 0 ;

73

74 temp [ i ] = d + e ;

75 }

76 }

77

78 i f ( t == ( f l o a t ) x [ n p l u s c ] ) { /∗ p i c k up l a s t p o i n t ∗ /

79 temp [ n p t s ] = 1 ;

80 }

81 /∗

82 p r i n t f (” N o n r a t i o n a l b a s i s f u n c t i o n s are \n ”) ;

83 f o r ( i =1; i<= n p t s ; i ++){

84 p r i n t f (”% f ” , temp [ i ] ) ;

85 }

86 p r i n t f (”\ n ”) ;
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87 ∗ /

88 /∗ c a l c u l a t e sum f o r denomina tor o f r a t i o n a l b a s i s f u n c t i o n s ∗ /

89

90 sum = 0 . ;

91 f o r ( i = 1 ; i <= n p t s ; i ++){

92 sum = sum + temp [ i ]∗ h [ i ] ;

93 }

94

95 /∗ form r a t i o n a l b a s i s f u n c t i o n s and p u t i n r v e c t o r ∗ /

96

97 f o r ( i = 1 ; i <= n p t s ; i ++){

98 i f ( sum != 0) {

99 r [ i ] = ( temp [ i ]∗ h [ i ] ) / ( sum ) ;}

100 e l s e

101 r [ i ] = 0 ;

102 }

103 }

1 /∗

2 T e s t program f o r C code from An I n t r o d u c t i o n t o NURBS

3 by David F . Rogers . C o p y r i g h t (C) 2000 David F . Rogers ,

4 A l l r i g h t s r e s e r v e d .

5

6 Name : t r b a s i s . c

7 Purpose : t e s t t h e r a t i o n a l b a s i s f u n c t i o n r o u t i n e

8 Language : C

9 S u b r o u t i n e s c a l l e d : k n o t . c

10 Book r e f e r e n c e : Chapter 4 , Ex . 4 . 1 , Alg . p 296

11 ∗ /

12

13 # i n c l u d e <s t d i o . h>

14

15 main ( )
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16 {

17 i n t i , i n d e x ;

18 i n t c , np t s , n p l u s c ;

19 i n t x [ 2 2 ] ;

20 f l o a t t ;

21 f l o a t h [ 2 0 ] ;

22 f l o a t r [ 2 0 ] ;

23 f l o a t sum ;

24 f l o a t hnew ;

25

26 t = 0 . ;

27

28 p r i n t f ( ” I n p u t number o f po lygon p o i n t s and o r d e r s e p a r a t e d by a s p a c e

n p t s c ” ) ;

29 s c a n f ( ”%d %d ” ,& np t s ,& c ) ;

30

31 n p l u s c = n p t s + c ;

32

33 f o r ( i =1 ; i <= n p t s ; i ++){

34 h [ i ] = 1 . 0 ;

35 }

36

37 p r i n t f ( ” I f any homogeneous w e i g h t i n g f a c t o r i s n o t 1 . 0 , t h e n \n ” ) ;

38 p r i n t f ( ” i n p u t number i n d e x and v a l u e s e p a r a t e d by a space , i . e . , i n d e x

h [ i n d e x ] \n ” ) ;

39 p r i n t f ( ” E n t e r 0 0 t o s k i p ” ) ;

40 s c a n f ( ”%d %f ” ,& index ,&hnew ) ;

41

42 i f ( ( i n d e x > 0) && ( i n d e x <= n p t s ) ) h [ i n d e x ]= hnew ;

43

44 kno t ( np t s , c , x ) ;

45 p r i n t f ( ” kno t v e c t o r i s \n ” ) ;

46 f o r ( i = 1 ; i <= n p l u s c ; i ++){
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47 p r i n t f ( ” %d ” , x [ i ] ) ;

48 }

49 p r i n t f ( ”\n ” ) ;

50

51 p r i n t f ( ” Homogeneous w e i g h t i n g v e c t o r i s \n ” ) ;

52 f o r ( i = 1 ; i <= n p t s ; i ++){

53 p r i n t f ( ” %f ” , h [ i ] ) ;

54 }

55 p r i n t f ( ”\n ” ) ;

56

57 whi le ( ( t >= 0 . ) && ( t <= ( f l o a t ) x [ n p l u s c ] ) ) {

58 p r i n t f ( ” I n p u t t h e p a r a m e t e r v a l u e t ( C o n t r o l C t o end ) ” ) ;

59 s c a n f ( ”%f ” , &t ) ;

60 p r i n t f ( ” The p a r a m e t e r v a l u e t i s %f \n ” , t ) ;

61 r b a s i s ( c , t , np t s , x , h , r ) ;

62 p r i n t f ( ” R a t i o n a l b a s i s f u n c t i o n s a r e \n ” ) ;

63 sum = 0 ;

64 f o r ( i = 1 ; i <= n p t s ; i ++){

65 sum = sum + r [ i ] ;

66 }

67 f o r ( i = 1 ; i <= n p t s ; i ++){

68 p r i n t f ( ”%f ” , r [ i ] ) ;

69 }

70 p r i n t f ( ”\n ” ) ;

71 p r i n t f ( ”Sum of t h e R a t i o n a l B a s i s f u n c t i o n s i s %f \n ” , sum ) ;

72 }

73 }

1 /∗ S u b r o u t i n e t o g e n e r a t e B−s p l i n e b a s i s f u n c t i o n s and t h e i r d e r i v a t i v e s

f o r u n i f o r m open k n o t v e c t o r s .

2 C code f o r An I n t r o d u c t i o n t o NURBS

3 by David F . Rogers . C o p y r i g h t (C) 2000 David F . Rogers ,

4 A l l r i g h t s r e s e r v e d .
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5

6 Name : d b a s i s . c

7 Language : C

8 S u b r o u t i n e s c a l l e d : none

9 Book r e f e r e n c e : S e c t i o n 3 . 1 0 , Ex . 3 . 1 8 , Alg . p . 283

10

11

12 b1 = f i r s t t erm o f t h e b a s i s f u n c t i o n r e c u r s i o n r e l a t i o n

13 b2 = second term o f t h e b a s i s f u n c t i o n r e c u r s i o n r e l a t i o n

14 c = o r d e r o f t h e B−s p l i n e b a s i s f u n c t i o n

15 d1 [ ] = a r r a y c o n t a i n i n g t h e d e r i v a t i v e o f t h e b a s i s f u n c t i o n s

16 d1 [ 1 ] ) c o n t a i n s t h e d e r i v a t i v e o f t h e b a s i s f u n c t i o n

a s s o c i a t e d w i t h B1 e t c .

17 d2 [ ] = a r r a y c o n t a i n i n g t h e d e r i v a t i v e o f t h e b a s i s f u n c t i o n s

18 d2 [ 1 ] c o n t a i n s t h e d e r i v a t i v e o f t h e b a s i s f u n c t i o n

a s s o c i a t e d w i t h B1 e t c .

19 f 1 = f i r s t t erm o f t h e f i r s t d e r i v a t i v e o f t h e b a s i s f u n c t i o n

r e c u r s i o n r e l a t i o n

20 f 2 = second term o f t h e f i r s t d e r i v a t i v e o f t h e b a s i s

f u n c t i o n r e c u r s i o n r e l a t i o n

21 f 3 = t h i r d term o f t h e f i r s t d e r i v a t i v e o f t h e b a s i s f u n c t i o n

r e c u r s i o n r e l a t i o n

22 f 4 = f o u r t h term o f t h e f i r s t d e r i v a t i v e o f t h e b a s i s

f u n c t i o n r e c u r s i o n r e l a t i o n

23 n p t s = number o f d e f i n i n g po lygon v e r t i c e s

24 n [ ] = a r r a y c o n t a i n i n g t h e b a s i s f u n c t i o n s

25 n [ 1 ] ) c o n t a i n s t h e b a s i s f u n c t i o n a s s o c i a t e d w i t h B1 e t c

.

26 n p l u s c = c o n s t a n t −− n p t s + c −− maximum k n o t v a l u e

27 s1 = f i r s t t erm o f t h e second d e r i v a t i v e o f t h e b a s i s

f u n c t i o n r e c u r s i o n r e l a t i o n

28 s2 = second term o f t h e second d e r i v a t i v e o f t h e b a s i s

f u n c t i o n r e c u r s i o n r e l a t i o n
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29 s3 = t h i r d term o f t h e second d e r i v a t i v e o f t h e b a s i s

f u n c t i o n r e c u r s i o n r e l a t i o n

30 s4 = f o u r t h term o f t h e second d e r i v a t i v e o f t h e b a s i s

f u n c t i o n r e c u r s i o n r e l a t i o n

31 t = parame te r v a l u e

32 temp [ ] = temporary a r r a y

33 x [ ] = k n o t v e c t o r

34 ∗ /

35

36 # i n c l u d e <s t d i o . h>

37 # i n c l u d e <math . h>

38

39 d b a s i s ( c , t , np t s , x , n , d1 , d2 )

40

41 i n t c , n p t s ;

42 i n t ∗x ;

43 f l o a t t ;

44 f l o a t ∗n ,∗ d1 ,∗ d2 ;

45

46 {

47

48 i n t n p l u s c ;

49 i n t i , k ;

50 f l o a t b1 , b2 ;

51 f l o a t f1 , f2 , f3 , f4 ;

52 f l o a t s1 , s2 , s3 , s4 ;

53 f l o a t temp [ 2 0 0 ] ; /∗ a l l o w s f o r 35 d e f i n i n g po lygon v e r t i c e s ∗ /

54 f l o a t temp1 [ 2 0 0 ] ;

55 f l o a t temp2 [ 2 0 0 ] ;

56

57 n p l u s c = n p t s + c ;

58

59 /∗ z e r o t h e t emporary a r r a y s ∗ /
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60

61 f o r ( i = 1 ; i <= n p l u s c ; i ++){

62 temp [ i ] = 0 . ;

63 temp1 [ i ] = 0 . ;

64 temp2 [ i ] = 0 . ;

65 }

66

67 /∗ c a l c u l a t e t h e f i r s t o r d e r b a s i s f u n c t i o n s n [ i ] ∗ /

68

69 f o r ( i = 1 ; i<= np lusc −1; i ++){

70 i f ( ( t >= x [ i ] ) && ( t < x [ i + 1 ] ) )

71 temp [ i ] = 1 ;

72 e l s e

73 temp [ i ] = 0 ;

74 }

75

76 i f ( t == ( f l o a t ) x [ n p l u s c ] ) { /∗ p i c k up l a s t p o i n t ∗ /

77 temp [ n p t s ] = 1 ;

78 }

79

80 /∗ c a l c u l a t e t h e h i g h e r o r d e r b a s i s f u n c t i o n s ∗ /

81

82 f o r ( k = 2 ; k <= c ; k ++){

83 f o r ( i = 1 ; i <= np lusc−k ; i ++){

84 i f ( temp [ i ] != 0 ) /∗ i f t h e lower o r d e r b a s i s f u n c t i o n i s

z e r o s k i p t h e c a l c u l a t i o n ∗ /

85 b1 = ( ( t−x [ i ] ) ∗ temp [ i ] ) / ( x [ i +k−1]−x [ i ] ) ;

86 e l s e

87 b1 = 0 ;

88

89 i f ( temp [ i +1] != 0) /∗ i f t h e lower o r d e r b a s i s f u n c t i o n

i s z e r o s k i p t h e c a l c u l a t i o n ∗ /

90 b2 = ( ( x [ i +k]− t ) ∗ temp [ i + 1 ] ) / ( x [ i +k]−x [ i + 1 ] ) ;
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91 e l s e

92 b2 = 0 ;

93

94 /∗ c a l c u l a t e f i r s t d e r i v a t i v e ∗ /

95

96 i f ( temp [ i ] != 0 ) /∗ i f t h e lower o r d e r b a s i s f u n c t i o n

i s z e r o s k i p t h e c a l c u l a t i o n ∗ /

97 f1 = temp [ i ] / ( x [ i +k−1]−x [ i ] ) ;

98 e l s e

99 f1 = 0 ;

100

101 i f ( temp [ i +1] != 0) /∗ i f t h e lower o r d e r b a s i s f u n c t i o n

i s z e r o s k i p t h e c a l c u l a t i o n ∗ /

102 f2 = −temp [ i + 1 ] / ( x [ i +k]−x [ i + 1 ] ) ;

103 e l s e

104 f2 = 0 ;

105

106 i f ( temp1 [ i ] != 0 ) /∗ i f t h e lower o r d e r b a s i s f u n c t i o n

i s z e r o s k i p t h e c a l c u l a t i o n ∗ /

107 f3 = ( ( t−x [ i ] ) ∗ temp1 [ i ] ) / ( x [ i +k−1]−x [ i ] ) ;

108 e l s e

109 f3 = 0 ;

110

111 i f ( temp1 [ i +1] != 0) /∗ i f t h e lower o r d e r b a s i s f u n c t i o n

i s z e r o s k i p t h e c a l c u l a t i o n ∗ /

112 f4 = ( ( x [ i +k]− t ) ∗ temp1 [ i + 1 ] ) / ( x [ i +k]−x [ i + 1 ] ) ;

113 e l s e

114 f4 = 0 ;

115

116 /∗ c a l c u l a t e second d e r i v a t i v e ∗ /

117

118 i f ( temp1 [ i ] != 0 ) /∗ i f t h e lower o r d e r b a s i s f u n c t i o n

i s z e r o s k i p t h e c a l c u l a t i o n ∗ /
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119 s1 = (2∗ temp1 [ i ] ) / ( x [ i +k−1]−x [ i ] ) ;

120 e l s e

121 s1 = 0 ;

122

123 i f ( temp1 [ i +1] != 0) /∗ i f t h e lower o r d e r b a s i s f u n c t i o n

i s z e r o s k i p t h e c a l c u l a t i o n ∗ /

124 s2 = (−2∗ temp1 [ i + 1 ] ) / ( x [ i +k]−x [ i + 1 ] ) ;

125 e l s e

126 s2 = 0 ;

127

128 i f ( temp2 [ i ] != 0 ) /∗ i f t h e lower o r d e r b a s i s f u n c t i o n

i s z e r o s k i p t h e c a l c u l a t i o n ∗ /

129 s3 = ( ( t−x [ i ] ) ∗ temp2 [ i ] ) / ( x [ i +k−1]−x [ i ] ) ;

130 e l s e

131 s3 = 0 ;

132

133 i f ( temp2 [ i +1] != 0) /∗ i f t h e lower o r d e r b a s i s f u n c t i o n

i s z e r o s k i p t h e c a l c u l a t i o n ∗ /

134 s4 = ( ( x [ i +k]− t ) ∗ temp2 [ i + 1 ] ) / ( x [ i +k]−x [ i + 1 ] ) ;

135 e l s e

136 s4 = 0 ;

137

138 temp [ i ] = b1 + b2 ;

139 temp1 [ i ] = f1 + f2 + f3 + f4 ;

140 temp2 [ i ] = s1 + s2 + s3 + s4 ;

141 }

142 }

143

144 /∗ p u t i n n a r r a y ∗ /

145

146 f o r ( i = 1 ; i <= n p t s ; i ++) {

147 n [ i ] = temp [ i ] ;

148 d1 [ i ] = temp1 [ i ] ;
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149 d2 [ i ] = temp2 [ i ] ;

150 }

151 }

1 /∗ S u b r o u t i n e t o g e n e r a t e a r a t i o n a l B−s p l i n e c u r v e u s i n g an u n i f o r m

open k n o t v e c t o r

2

3 C code f o r An I n t r o d u c t i o n t o NURBS

4 by David F . Rogers . C o p y r i g h t (C) 2000 David F . Rogers ,

5 A l l r i g h t s r e s e r v e d .

6

7 Name : r b s p l i n e . c

8 Language : C

9 S u b r o u t i n e s c a l l e d : k n o t . c , r b a s i s . c , fmtmul . c

10 Book r e f e r e n c e : Chapter 4 , Alg . p . 297

11

12 b [ ] = a r r a y c o n t a i n i n g t h e d e f i n i n g po lygon v e r t i c e s

13 b [ 1 ] c o n t a i n s t h e x−component o f t h e v e r t e x

14 b [ 2 ] c o n t a i n s t h e y−component o f t h e v e r t e x

15 b [ 3 ] c o n t a i n s t h e z−component o f t h e v e r t e x

16 h [ ] = a r r a y c o n t a i n i n g t h e homogeneous w e i g h t i n g f a c t o r s

17 k = o r d e r o f t h e B−s p l i n e b a s i s f u n c t i o n

18 n b a s i s = a r r a y c o n t a i n i n g t h e b a s i s f u n c t i o n s f o r a s i n g l e

v a l u e o f t

19 n p l u s c = number o f k n o t v a l u e s

20 n p t s = number o f d e f i n i n g po lygon v e r t i c e s

21 p [ , ] = a r r a y c o n t a i n i n g t h e c u r v e p o i n t s

22 p [ 1 ] c o n t a i n s t h e x−component o f t h e p o i n t

23 p [ 2 ] c o n t a i n s t h e y−component o f t h e p o i n t

24 p [ 3 ] c o n t a i n s t h e z−component o f t h e p o i n t

25 p1 = number o f p o i n t s t o be c a l c u l a t e d on t h e c u r v e

26 t = parame te r v a l u e 0 <= t <= n p t s − k + 1

27 x [ ] = a r r a y c o n t a i n i n g t h e k n o t v e c t o r
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28 ∗ /

29

30 r b s p l i n e ( np t s , k , p1 , b , h , p )

31

32 i n t np t s , k , p1 ;

33

34 f l o a t ∗b ;

35 f l o a t ∗h ;

36 f l o a t ∗p ;

37

38 {

39 i n t i , j , i c o u n t , j c o u n t ;

40 i n t i 1 ;

41 i n t x [ 3 0 ] ; /∗ a l l o w s f o r 20 da ta p o i n t s w i t h b a s i s f u n c t i o n o f

o r d e r 5 ∗ /

42 i n t n p l u s c ;

43

44 f l o a t s t e p ;

45 f l o a t t ;

46 f l o a t n b a s i s [ 2 0 ] ;

47 f l o a t temp ;

48

49

50 n p l u s c = n p t s + k ;

51

52 /∗ z e r o and r e d i m e n s i o n t h e k n o t v e c t o r and t h e b a s i s a r r a y ∗ /

53

54 f o r ( i = 0 ; i <= n p t s ; i ++){

55 n b a s i s [ i ] = 0 . ;

56 }

57

58 f o r ( i = 0 ; i <= n p l u s c ; i ++){

59 x [ i ] = 0 . ;
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60 }

61

62 /∗ g e n e r a t e t h e u n i f o r m open k n o t v e c t o r ∗ /

63

64 kno t ( np t s , k , x ) ;

65

66 /∗

67 p r i n t f (” The k n o t v e c t o r i s ”) ;

68 f o r ( i = 1; i <= n p l u s c ; i ++){

69 p r i n t f (” %d ” , x [ i ] ) ;

70 }

71 p r i n t f (”\ n ”) ;

72 ∗ /

73

74 i c o u n t = 0 ;

75

76 /∗ c a l c u l a t e t h e p o i n t s on t h e r a t i o n a l B−s p l i n e c u r v e ∗ /

77

78 t = 0 ;

79 s t e p = ( ( f l o a t ) x [ n p l u s c ] ) / ( ( f l o a t ) ( p1−1) ) ;

80

81 f o r ( i 1 = 1 ; i1<= p1 ; i 1 ++){

82

83 i f ( ( f l o a t ) x [ n p l u s c ] − t < 5e−6){

84 t = ( f l o a t ) x [ n p l u s c ] ;

85 }

86

87 r b a s i s ( k , t , np t s , x , h , n b a s i s ) ; /∗ g e n e r a t e t h e b a s i s f u n c t i o n

f o r t h i s v a l u e o f t ∗ /

88 /∗

89 p r i n t f (” t = %f \n ” , t ) ;

90 p r i n t f (” n b a s i s = ”) ;

91 f o r ( i = 1; i <= n p t s ; i ++){
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92 p r i n t f (”% f ” , n b a s i s [ i ] ) ;

93 }

94 p r i n t f (”\ n ”) ;

95 ∗ /

96 f o r ( j = 1 ; j <= 3 ; j ++){ /∗ g e n e r a t e a p o i n t on t h e c u r v e ∗ /

97 j c o u n t = j ;

98 p [ i c o u n t + j ] = 0 . ;

99

100 f o r ( i = 1 ; i <= n p t s ; i ++){ /∗ Do l o c a l m a t r i x m u l t i p l i c a t i o n ∗ /

101 temp = n b a s i s [ i ]∗ b [ j c o u n t ] ;

102 p [ i c o u n t + j ] = p [ i c o u n t + j ] + temp ;

103 /∗

104 p r i n t f (” j c o u n t , n b a s i s , b , n b a s i s ∗b , p = %d %f %f %f %f \n ” , j c o u n t ,

n b a s i s [ i ] , b [ j c o u n t ] , temp , p [ i c o u n t+ j ] ) ;

105 ∗ /

106 j c o u n t = j c o u n t + 3 ;

107 }

108 }

109 /∗

110 p r i n t f (” i c o u n t , p %d %f %f %f \n ” , i c o u n t , p [ i c o u n t +1] , p [ i c o u n t +2] , p [

i c o u n t +3]) ;

111 ∗ /

112 i c o u n t = i c o u n t + 3 ;

113 t = t + s t e p ;

114 }

115 }

1 /∗ S u b r o u t i n e t o g e n e r a t e a r a t i o n a l B−s p l i n e c u r v e u s i n g an u n i f o r m

p e r i o d i c k n o t v e c t o r

2

3 C code f o r An I n t r o d u c t i o n t o NURBS

4 by David F . Rogers . C o p y r i g h t (C) 2000 David F . Rogers ,

5 A l l r i g h t s r e s e r v e d .
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6

7 Name : r b s p l i n u . c

8 Language : C

9 S u b r o u t i n e s c a l l e d : k n o t u . c , r b a s i s . c , fmtmul . c

10 Book r e f e r e n c e : Chapter 4 , Alg . p . 298

11

12 b [ ] = a r r a y c o n t a i n i n g t h e d e f i n i n g po lygon v e r t i c e s

13 b [ 1 ] c o n t a i n s t h e x−component o f t h e v e r t e x

14 b [ 2 ] c o n t a i n s t h e y−component o f t h e v e r t e x

15 b [ 3 ] c o n t a i n s t h e z−component o f t h e v e r t e x

16 h [ ] = a r r a y c o n t a i n i n g t h e homogeneous w e i g h t i n g f a c t o r s

17 k = o r d e r o f t h e B−s p l i n e b a s i s f u n c t i o n

18 n b a s i s = a r r a y c o n t a i n i n g t h e b a s i s f u n c t i o n s f o r a s i n g l e

v a l u e o f t

19 n p l u s c = number o f k n o t v a l u e s

20 n p t s = number o f d e f i n i n g po lygon v e r t i c e s

21 p [ , ] = a r r a y c o n t a i n i n g t h e c u r v e p o i n t s

22 p [ 1 ] c o n t a i n s t h e x−component o f t h e p o i n t

23 p [ 2 ] c o n t a i n s t h e y−component o f t h e p o i n t

24 p [ 3 ] c o n t a i n s t h e z−component o f t h e p o i n t

25 p1 = number o f p o i n t s t o be c a l c u l a t e d on t h e c u r v e

26 t = parame te r v a l u e 0 <= t <= n p t s − k + 1

27 x [ ] = a r r a y c o n t a i n i n g t h e k n o t v e c t o r

28 ∗ /

29

30 r b s p l i n u ( np t s , k , p1 , b , h , p )

31

32 i n t np t s , k , p1 ;

33

34 f l o a t ∗b ;

35 f l o a t ∗h ;

36 f l o a t ∗p ;

37
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38 {

39 i n t i , j , i c o u n t , j c o u n t ;

40 i n t i 1 ;

41 i n t x [ 3 0 ] ; /∗ a l l o w s f o r 20 da ta p o i n t s w i t h b a s i s f u n c t i o n o f

o r d e r 5 ∗ /

42 i n t n p l u s c ;

43

44 f l o a t s t e p ;

45 f l o a t t ;

46 f l o a t n b a s i s [ 2 0 ] ;

47 f l o a t temp ;

48

49

50 n p l u s c = n p t s + k ;

51

52 /∗ z e r o and r e d i m e n s i o n t h e k n o t v e c t o r and t h e b a s i s a r r a y ∗ /

53

54 f o r ( i = 0 ; i <= n p t s ; i ++){

55 n b a s i s [ i ] = 0 . ;

56 }

57

58 f o r ( i = 0 ; i <= n p l u s c ; i ++){

59 x [ i ] = 0 . ;

60 }

61

62 /∗ g e n e r a t e t h e u n i f o r m p e r i o d i c k n o t v e c t o r ∗ /

63

64 kno tu ( np t s , k , x ) ;

65

66 /∗

67 p r i n t f (” The k n o t v e c t o r i s ”) ;

68 f o r ( i = 1; i <= n p l u s c ; i ++){

69 p r i n t f (” %d ” , x [ i ] ) ;
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70 }

71 p r i n t f (”\ n ”) ;

72

73 p r i n t f (” The u s a b l e parame te r range i s ”) ;

74 f o r ( i = k ; i <= n p t s +1; i ++){

75 p r i n t f (” %d ” , x [ i ] ) ;

76 }

77 p r i n t f (”\ n ”) ;

78 ∗ /

79

80 i c o u n t = 0 ;

81

82 /∗ c a l c u l a t e t h e p o i n t s on t h e r a t i o n a l B−s p l i n e c u r v e ∗ /

83

84 t = k−1;

85 s t e p = ( ( f l o a t ) ( ( n p t s )−(k−1) ) ) / ( ( f l o a t ) ( p1−1) ) ;

86

87 f o r ( i 1 = 1 ; i1<= p1 ; i 1 ++){

88

89 i f ( ( f l o a t ) x [ n p l u s c ] − t < 5e−6){

90 t = ( f l o a t ) x [ n p l u s c ] ;

91 }

92

93 r b a s i s ( k , t , np t s , x , h , n b a s i s ) ; /∗ g e n e r a t e t h e b a s i s f u n c t i o n

f o r t h i s v a l u e o f t ∗ /

94 /∗

95 p r i n t f (” t = %f \n ” , t ) ;

96 p r i n t f (” n b a s i s = ”) ;

97 f o r ( i = 1; i <= n p t s ; i ++){

98 p r i n t f (”% f ” , n b a s i s [ i ] ) ;

99 }

100 p r i n t f (”\ n ”) ;

101 ∗ /

189



102 f o r ( j = 1 ; j <= 3 ; j ++){ /∗ g e n e r a t e a p o i n t on t h e c u r v e ∗ /

103 j c o u n t = j ;

104 p [ i c o u n t + j ] = 0 . ;

105

106 f o r ( i = 1 ; i <= n p t s ; i ++){ /∗ Do l o c a l m a t r i x m u l t i p l i c a t i o n ∗ /

107 temp = n b a s i s [ i ]∗ b [ j c o u n t ] ;

108 p [ i c o u n t + j ] = p [ i c o u n t + j ] + temp ;

109 /∗

110 p r i n t f (” j c o u n t , n b a s i s , b , n b a s i s ∗b , p = %d %f %f %f %f \n ” , j c o u n t ,

n b a s i s [ i ] , b [ j c o u n t ] , temp , p [ i c o u n t+ j ] ) ;

111 ∗ /

112 j c o u n t = j c o u n t + 3 ;

113 }

114 }

115 /∗

116 p r i n t f (” i c o u n t , p %d %f %f %f \n ” , i c o u n t , p [ i c o u n t +1] , p [ i c o u n t +2] , p [

i c o u n t +3]) ;

117 ∗ /

118 i c o u n t = i c o u n t + 3 ;

119 t = t + s t e p ;

120 }

121 }

1 /∗

2 T e s t program f o r C code from An I n t r o d u c t i o n t o NURBS

3 by David F . Rogers . C o p y r i g h t (C) 2000 David F . Rogers ,

4 A l l r i g h t s r e s e r v e d .

5

6 Name : t r b s p l i n . c

7 Purpose : T e s t r a t i o n a l B−s p l i n e c u r v e g e n e r a t o r Chapter 4

8 Language : C

9 S u b r o u t i n e s c a l l e d : r b s p l i n e . c

10 Book r e f e r e n c e : Chapter 4 , Ex . 4 . 1 , Alg . p 297
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11 ∗ /

12 main ( ) {

13

14 i n t i ;

15 i n t np t s , k , p1 ;

16

17 f l o a t b [ 3 1 ] ; /∗ a l l o w s f o r up t o 10 c o n t r o l v e r t i c e s ∗ /

18 f l o a t h [ 1 1 ] ; /∗ a l l o w s f o r up t o 10 c o n t r o l v e r t i c e s ∗ /

19 f l o a t p [ 1 0 3 ] ; /∗ a l l o w s f o r up t o 100 p o i n t s on c u r v e ∗ /

20

21 n p t s = 5 ;

22 k = 3 ; /∗ t h i r d order , change f o r o t h e r o r d e r s ∗ /

23 p1 = 1 1 ; /∗ e l e v e n p o i n t s on c u r v e ∗ /

24

25 f o r ( i = 1 ; i <= 3∗ n p t s ; i ++){

26 b [ i ] = 0 . ;

27 }

28

29 /∗ s e t a l l homogeneous w e i g h t i n g f a c t r o s t o 1 . 0 ∗ /

30

31 f o r ( i =1 ; i <= n p t s ; i ++){

32 h [ i ] = 1 . 0 ;

33 }

34

35 /∗ vary t h e homogeneous w e i g h t i n g f a c t o r 0 , 0 . 2 5 , 1 . 0 , 5 . 0 ∗ /

36

37 h [ 3 ] = 1 ;

38

39 f o r ( i = 1 ; i <= 3∗p1 ; i ++){

40 p [ i ] = 0 . ;

41 }

42

43 /∗
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44 D e f i n e t h e c o n t r o l polygon , Ex . 4 . 1 , p . 140 i n t h e z=1 p l a n e because

45 t h i s i s t h r e e d i m e n s i o n a l r o u t i n e . x=b [ 1 ] , y=b [ 2 ] , z=b [ 3 ] , e t c .

46 ∗ /

47 b [ 1 ] = 0 ;

48 b [ 2 ] = 0 ;

49 b [ 3 ] = 1 ;

50 b [ 4 ] = 1 ;

51 b [ 5 ] = 2 ;

52 b [ 6 ] = 1 ;

53 b [ 7 ] = 2 . 5 ;

54 b [ 8 ] = 0 ;

55 b [ 9 ] = 1 ;

56 b [ 1 0 ] = 4 ;

57 b [ 1 1 ] = 2 ;

58 b [ 1 2 ] = 1 ;

59 b [ 1 3 ] = 5 ;

60 b [ 1 4 ] = 0 ;

61 b [ 1 5 ] = 1 ;

62

63 r b s p l i n e ( np t s , k , p1 , b , h , p ) ;

64

65 p r i n t f ( ”\ nPolygon p o i n t s \n ” ) ;

66

67 f o r ( i = 1 ; i <= 3∗ n p t s ; i = i +3) {

68 p r i n t f ( ” %f %f %f \n ” , b [ i ] , b [ i +1 ] , b [ i + 2 ] ) ;

69 }

70

71 p r i n t f ( ”\nHomogeneous w e i g h t i n g v e c t o r i s \n ” ) ;

72 f o r ( i = 1 ; i <= n p t s ; i ++){

73 p r i n t f ( ” %f ” , h [ i ] ) ;

74 }

75 p r i n t f ( ”\n ” ) ;

76
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77

78 p r i n t f ( ”\nCurve p o i n t s \n ” ) ;

79

80 f o r ( i = 1 ; i <= 3∗p1 ; i = i +3) {

81 p r i n t f ( ” %f %f %f \n ” , p [ i ] , p [ i +1 ] , p [ i + 2 ] ) ;

82 }

83 }

1 /∗

2 T e s t program f o r C code from An I n t r o d u c t i o n t o NURBS

3 by David F . Rogers . C o p y r i g h t (C) 2000 David F . Rogers ,

4 A l l r i g h t s r e s e r v e d .

5

6 Name : t r b s p l i u . c

7 Purpose : T e s t p e r i o d i c r a t i o n a l B−s p l i n e c u r v e g e n e r a t o r Chapter 4

8 Language : C

9 S u b r o u t i n e s c a l l e d : r b s p l i n e . c

10 Book r e f e r e n c e : Chapter 4 , Sec . 4 . 2 , Fig . 4 . 6 , Alg . p 298

11 ∗ /

12 main ( ) {

13

14 i n t i ;

15 i n t np t s , k , p1 ;

16

17 f l o a t b [ 3 1 ] ; /∗ a l l o w s f o r up t o 10 c o n t r o l v e r t i c e s ∗ /

18 f l o a t h [ 1 1 ] ; /∗ a l l o w s f o r up t o 10 c o n t r o l v e r t i c e s ∗ /

19 f l o a t p [ 1 0 3 ] ; /∗ a l l o w s f o r up t o 100 p o i n t s on c u r v e ∗ /

20

21 n p t s = 5 ;

22 k = 3 ; /∗ t h i r d order , change f o r o t h e r o r d e r s ∗ /

23 p1 = 1 1 ; /∗ e l e v e n p o i n t s on c u r v e ∗ /

24

25 f o r ( i = 1 ; i <= 3∗ n p t s ; i ++){
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26 b [ i ] = 0 . ;

27 }

28

29 /∗ s e t a l l homogeneous w e i g h t i n g f a c t r o s t o 1 . 0 ∗ /

30

31 f o r ( i =1 ; i <= n p t s ; i ++){

32 h [ i ] = 1 . 0 ;

33 }

34

35 /∗ vary t h e homogeneous w e i g h t i n g f a c t o r 0 , 0 . 2 5 , 1 . 0 , 5 . 0 ∗ /

36

37 h [ 3 ] = 1 ;

38

39 f o r ( i = 1 ; i <= 3∗p1 ; i ++){

40 p [ i ] = 0 . ;

41 }

42

43 /∗

44 D e f i n e t h e c o n t r o l polygon , Ex . 4 . 1 , p . 140 i n t h e z=1 p l a n e because

45 t h i s i s t h r e e d i m e n s i o n a l r o u t i n e . x=b [ 1 ] , y=b [ 2 ] , z=b [ 3 ] , e t c .

46 ∗ /

47 b [ 1 ] = 0 ;

48 b [ 2 ] = 0 ;

49 b [ 3 ] = 1 ;

50 b [ 4 ] = 1 ;

51 b [ 5 ] = 2 ;

52 b [ 6 ] = 1 ;

53 b [ 7 ] = 2 . 5 ;

54 b [ 8 ] = 0 ;

55 b [ 9 ] = 1 ;

56 b [ 1 0 ] = 4 ;

57 b [ 1 1 ] = 2 ;

58 b [ 1 2 ] = 1 ;
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59 b [ 1 3 ] = 5 ;

60 b [ 1 4 ] = 0 ;

61 b [ 1 5 ] = 1 ;

62

63 r b s p l i n u ( np t s , k , p1 , b , h , p ) ;

64

65 p r i n t f ( ”\ nPolygon p o i n t s \n ” ) ;

66

67 f o r ( i = 1 ; i <= 3∗ n p t s ; i = i +3) {

68 p r i n t f ( ” %f %f %f \n ” , b [ i ] , b [ i +1 ] , b [ i + 2 ] ) ;

69 }

70

71 p r i n t f ( ”\nHomogeneous w e i g h t i n g v e c t o r i s \n ” ) ;

72 f o r ( i = 1 ; i <= n p t s ; i ++){

73 p r i n t f ( ” %f ” , h [ i ] ) ;

74 }

75 p r i n t f ( ”\n ” ) ;

76

77

78 p r i n t f ( ”\nCurve p o i n t s \n ” ) ;

79

80 f o r ( i = 1 ; i <= 3∗p1 ; i = i +3) {

81 p r i n t f ( ” %f %f %f \n ” , p [ i ] , p [ i +1 ] , p [ i + 2 ] ) ;

82 }

83 }

1 # d e f i n e S FUNCTION NAME BEZIER

2 # d e f i n e S FUNCTION LEVEL 2

3 # i n c l u d e ” s i m s t r u c . h ”

4

5 # i n c l u d e ” b e z i e r . h ”

6

7 e x t er n r e a l T my alg ( r e a l T u ) ; /∗ Dec lare my alg as e x t e r n ∗ /
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8

9 /∗

10 ∗ m d l I n i t i a l i z e S i z e s − i n i t i a l i z e t h e s i z e s a r r a y

11 ∗ /

12 s t a t i c vo id m d l I n i t i a l i z e S i z e s ( S i m S t r u c t ∗S )

13 {

14 s s S e t O p t i o n s ( S , ( SS OPTION USE TLC WITH ACCELERATOR |

SS OPTION WORKS WITH CODE REUSE ) ) ;

15 ssSetNumSFcnParams ( S , 0 ) ; /∗ number o f i n p u t argument s ∗ /

16

17 i f ( ! s s S e t N u m I n p u t P o r t s ( S , 2 ) ) re turn ;

18 s s S e t I n p u t P o r t W i d t h ( S , 0 , 36) ;

19 s s S e t I n p u t P o r t D i r e c t F e e d T h r o u g h ( S , 0 , 1 ) ;

20

21 s s S e t I n p u t P o r t W i d t h ( S , 1 , 1 ) ;

22 s s S e t I n p u t P o r t D i r e c t F e e d T h r o u g h ( S , 1 , 1 ) ;

23

24 i f ( ! s s Se tN um Ou tp u t Po r t s ( S , 1 ) ) re turn ;

25 s s S e t O u t p u t P o r t W i d t h ( S , 0 , 6 ) ;

26

27

28

29

30

31 ssSetNumSampleTimes ( S , 1 ) ;

32 }

33

34 /∗

35 ∗ m d l I n i t i a l i z e S a m p l e T i m e s − i n d i c a t e t h a t t h i s S−f u n c t i o n runs

36 ∗ a t t h e r a t e o f t h e s o u r c e ( d r i v i n g b l o c k )

37 ∗ /

38 s t a t i c vo id m d l I n i t i a l i z e S a m p l e T i m e s ( S i m S t r u c t ∗S )

39 {

196



40 ssSe tSampleTime ( S , 0 , INHERITED SAMPLE TIME ) ;

41 s s S e t O f f s e t T i m e ( S , 0 , 0 . 0 ) ;

42 }

43

44

45 /∗

46 ∗ mdlOutpu t s − compute t h e o u t p u t s by c a l l i n g my alg , which

47 ∗ r e s i d e s i n a n o t h e r module , my alg . c

48 ∗ /

49 s t a t i c vo id mdlOutpu t s ( S i m S t r u c t ∗S , i n t T t i d )

50 {

51 / / I n p u t s / o u t p u t s t o t h e b l o c k

52 i n t i ;

53 I n p u t R e a l P t r s T y p e u P t r s = s s G e t I n p u t P o r t R e a l S i g n a l P t r s ( S , 0 ) ;

54 I n p u t R e a l P t r s T y p e wPt r s = s s G e t I n p u t P o r t R e a l S i g n a l P t r s ( S , 1 ) ;

55

56

57 r e a l T ∗ o P t r s = s s G e t O u t p u t P o r t R e a l S i g n a l ( S , 0 ) ;

58

59

60 / / I n p u t s / o u t p u t s t o t h e f u n c t i o n

61 r e a l T a f r a [ 3 6 ] ;

62 r e a l T s ;

63

64

65 f o r ( i =0 ; i <36; i ++){

66 a f r a [ i ] = ∗ ( u P t r s [ i ] ) ;

67 }

68

69 s = ∗ ( wPt r s [ 0 ] ) ;

70

71 b e z i e r ( a f r a , s , o P t r s ) ;

72
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73 }

74 /∗

75 ∗ mdlTermina te − c a l l e d when t h e s i m u l a t i o n i s t e r m i n a t e d .

76 ∗ /

77 s t a t i c vo id mdlTermina te ( S i m S t r u c t ∗S )

78 {

79 }

80

81 # i f d e f MATLAB MEX FILE /∗ I s t h i s f i l e b e i n g c o m p i l e d as a MEX− f i l e ? ∗ /

82 # i n c l u d e ” s i m u l i n k . c ” /∗ MEX− f i l e i n t e r f a c e mechanism ∗ /

83 # e l s e

84 # i n c l u d e ” c g s f u n . h ” /∗ Code g e n e r a t i o n r e g i s t r a t i o n f u n c t i o n ∗ /

85 # e n d i f

1 # d e f i n e S FUNCTION NAME BEZIERD

2 # d e f i n e S FUNCTION LEVEL 2

3 # i n c l u d e ” s i m s t r u c . h ”

4

5 # i n c l u d e ” b e z i e r d . h ”

6

7 /∗

8 ∗ m d l I n i t i a l i z e S i z e s − i n i t i a l i z e t h e s i z e s a r r a y

9 ∗ /

10 s t a t i c vo id m d l I n i t i a l i z e S i z e s ( S i m S t r u c t ∗S )

11 {

12

13 ssSetNumSFcnParams ( S , 0 ) ; /∗ number o f i n p u t argument s ∗ /

14

15 i f ( ! s s S e t N u m I n p u t P o r t s ( S , 2 ) ) re turn ;

16 s s S e t I n p u t P o r t W i d t h ( S , 0 , 36) ;

17 s s S e t I n p u t P o r t D i r e c t F e e d T h r o u g h ( S , 0 , 1 ) ;

18

19 s s S e t I n p u t P o r t W i d t h ( S , 1 , 1 ) ;
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20 s s S e t I n p u t P o r t D i r e c t F e e d T h r o u g h ( S , 1 , 1 ) ;

21

22 i f ( ! s s Se tN um Ou tp u t Po r t s ( S , 1 ) ) re turn ;

23 s s S e t O u t p u t P o r t W i d t h ( S , 0 , 6 ) ;

24

25

26

27

28

29 ssSetNumSampleTimes ( S , 1 ) ;

30 }

31

32 /∗

33 ∗ m d l I n i t i a l i z e S a m p l e T i m e s − i n d i c a t e t h a t t h i s S−f u n c t i o n runs

34 ∗ a t t h e r a t e o f t h e s o u r c e ( d r i v i n g b l o c k )

35 ∗ /

36 s t a t i c vo id m d l I n i t i a l i z e S a m p l e T i m e s ( S i m S t r u c t ∗S )

37 {

38 ssSe tSampleTime ( S , 0 , INHERITED SAMPLE TIME ) ;

39 s s S e t O f f s e t T i m e ( S , 0 , 0 . 0 ) ;

40 }

41

42

43 /∗

44 ∗ mdlOutpu t s − compute t h e o u t p u t s by c a l l i n g my alg , which

45 ∗ r e s i d e s i n a n o t h e r module , my alg . c

46 ∗ /

47 s t a t i c vo id mdlOutpu t s ( S i m S t r u c t ∗S , i n t T t i d )

48 {

49 / / I n p u t s / o u t p u t s t o t h e b l o c k

50 i n t i ;

51 I n p u t R e a l P t r s T y p e u P t r s = s s G e t I n p u t P o r t R e a l S i g n a l P t r s ( S , 0 ) ;

52 I n p u t R e a l P t r s T y p e wPt r s = s s G e t I n p u t P o r t R e a l S i g n a l P t r s ( S , 1 ) ;
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53

54

55 r e a l T ∗ o P t r s = s s G e t O u t p u t P o r t R e a l S i g n a l ( S , 0 ) ;

56

57

58 / / I n p u t s / o u t p u t s t o t h e f u n c t i o n

59 r e a l T a f r a [ 3 6 ] ;

60 r e a l T s ;

61

62

63 f o r ( i =0 ; i <36; i ++){

64 a f r a [ i ] = ∗ ( u P t r s [ i ] ) ;

65 }

66

67 s = ∗ ( wPt r s [ 0 ] ) ;

68

69 b e z i e r d ( a f r a , s , o P t r s ) ;

70

71 }

72 /∗

73 ∗ mdlTermina te − c a l l e d when t h e s i m u l a t i o n i s t e r m i n a t e d .

74 ∗ /

75 s t a t i c vo id mdlTermina te ( S i m S t r u c t ∗S )

76 {

77 }

78

79 # i f d e f MATLAB MEX FILE /∗ I s t h i s f i l e b e i n g c o m p i l e d as a MEX− f i l e ? ∗ /

80 # i n c l u d e ” s i m u l i n k . c ” /∗ MEX− f i l e i n t e r f a c e mechanism ∗ /

81 # e l s e

82 # i n c l u d e ” c g s f u n . h ” /∗ Code g e n e r a t i o n r e g i s t r a t i o n f u n c t i o n ∗ /

83 # e n d i f

1 # d e f i n e S FUNCTION NAME BEZIERA
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2 # d e f i n e S FUNCTION LEVEL 2

3 # i n c l u d e ” s i m s t r u c . h ”

4

5 # i n c l u d e ” b e z i e r a . h ”

6

7

8 /∗

9 ∗ m d l I n i t i a l i z e S i z e s − i n i t i a l i z e t h e s i z e s a r r a y

10 ∗ /

11 s t a t i c vo id m d l I n i t i a l i z e S i z e s ( S i m S t r u c t ∗S )

12 {

13

14 ssSetNumSFcnParams ( S , 0 ) ; /∗ number o f i n p u t argument s ∗ /

15

16 i f ( ! s s S e t N u m I n p u t P o r t s ( S , 2 ) ) re turn ;

17 s s S e t I n p u t P o r t W i d t h ( S , 0 , 36) ;

18 s s S e t I n p u t P o r t D i r e c t F e e d T h r o u g h ( S , 0 , 1 ) ;

19

20 s s S e t I n p u t P o r t W i d t h ( S , 1 , 1 ) ;

21 s s S e t I n p u t P o r t D i r e c t F e e d T h r o u g h ( S , 1 , 1 ) ;

22

23 i f ( ! s s Se tN um Ou tp u t Po r t s ( S , 1 ) ) re turn ;

24 s s S e t O u t p u t P o r t W i d t h ( S , 0 , 6 ) ;

25

26

27

28

29

30 ssSetNumSampleTimes ( S , 1 ) ;

31 }

32

33 /∗

34 ∗ m d l I n i t i a l i z e S a m p l e T i m e s − i n d i c a t e t h a t t h i s S−f u n c t i o n runs
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35 ∗ a t t h e r a t e o f t h e s o u r c e ( d r i v i n g b l o c k )

36 ∗ /

37 s t a t i c vo id m d l I n i t i a l i z e S a m p l e T i m e s ( S i m S t r u c t ∗S )

38 {

39 ssSe tSampleTime ( S , 0 , INHERITED SAMPLE TIME ) ;

40 s s S e t O f f s e t T i m e ( S , 0 , 0 . 0 ) ;

41 }

42

43

44 /∗

45 ∗ mdlOutpu t s − compute t h e o u t p u t s by c a l l i n g my alg , which

46 ∗ r e s i d e s i n a n o t h e r module , my alg . c

47 ∗ /

48 s t a t i c vo id mdlOutpu t s ( S i m S t r u c t ∗S , i n t T t i d )

49 {

50 / / I n p u t s / o u t p u t s t o t h e b l o c k

51 i n t i ;

52 I n p u t R e a l P t r s T y p e u P t r s = s s G e t I n p u t P o r t R e a l S i g n a l P t r s ( S , 0 ) ;

53 I n p u t R e a l P t r s T y p e wPt r s = s s G e t I n p u t P o r t R e a l S i g n a l P t r s ( S , 1 ) ;

54

55

56 r e a l T ∗ o P t r s = s s G e t O u t p u t P o r t R e a l S i g n a l ( S , 0 ) ;

57

58

59 / / I n p u t s / o u t p u t s t o t h e f u n c t i o n

60 r e a l T a f r a [ 3 6 ] ;

61 r e a l T s ;

62

63

64 f o r ( i =0 ; i <36; i ++){

65 a f r a [ i ] = ∗ ( u P t r s [ i ] ) ;

66 }

67
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68 s = ∗ ( wPt r s [ 0 ] ) ;

69

70 b e z i e r a ( a f r a , s , o P t r s ) ;

71

72 }

73 /∗

74 ∗ mdlTermina te − c a l l e d when t h e s i m u l a t i o n i s t e r m i n a t e d .

75 ∗ /

76 s t a t i c vo id mdlTermina te ( S i m S t r u c t ∗S )

77 {

78 }

79

80 # i f d e f MATLAB MEX FILE /∗ I s t h i s f i l e b e i n g c o m p i l e d as a MEX− f i l e ? ∗ /

81 # i n c l u d e ” s i m u l i n k . c ” /∗ MEX− f i l e i n t e r f a c e mechanism ∗ /

82 # e l s e

83 # i n c l u d e ” c g s f u n . h ” /∗ Code g e n e r a t i o n r e g i s t r a t i o n f u n c t i o n ∗ /

84 # e n d i f

1 # d e f i n e S FUNCTION NAME NURB

2 # d e f i n e S FUNCTION LEVEL 2

3 # i n c l u d e ” s i m s t r u c . h ”

4

5 # d e f i n e NPTS 20 / / Num o f c o n t r o l p o i n t s , problem w i t h dynamic a l o c a t i o n

. .

6

7 /∗

8 ∗ m d l I n i t i a l i z e S i z e s − i n i t i a l i z e t h e s i z e s a r r a y

9 ∗ /

10 s t a t i c vo id m d l I n i t i a l i z e S i z e s ( S i m S t r u c t ∗S )

11 {

12 s s S e t O p t i o n s ( S , ( SS OPTION USE TLC WITH ACCELERATOR |

SS OPTION WORKS WITH CODE REUSE ) ) ;

13 ssSetNumSFcnParams ( S , 0 ) ; /∗ number o f i n p u t argument s ∗ /
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14

15 i f ( ! s s S e t N u m I n p u t P o r t s ( S , 5 ) ) re turn ;

16 s s S e t I n p u t P o r t W i d t h ( S , 0 , 1 ) ;

17 s s S e t I n p u t P o r t D i r e c t F e e d T h r o u g h ( S , 0 , 1 ) ;

18

19 s s S e t I n p u t P o r t W i d t h ( S , 1 , 1 ) ;

20 s s S e t I n p u t P o r t D i r e c t F e e d T h r o u g h ( S , 1 , 1 ) ;

21

22 s s S e t I n p u t P o r t W i d t h ( S , 2 , 1 ) ;

23 s s S e t I n p u t P o r t D i r e c t F e e d T h r o u g h ( S , 2 , 1 ) ;

24

25 / / f o r 25 n p t s

26 s s S e t I n p u t P o r t W i d t h ( S , 3 , 3∗NPTS+1) ;

27 s s S e t I n p u t P o r t D i r e c t F e e d T h r o u g h ( S , 3 , 1 ) ;

28

29 s s S e t I n p u t P o r t W i d t h ( S , 4 , 1 ) ;

30 s s S e t I n p u t P o r t D i r e c t F e e d T h r o u g h ( S , 4 , 1 ) ;

31

32

33 i f ( ! s s Se tN um Ou tp u t Po r t s ( S , 3 ) ) re turn ;

34 s s S e t O u t p u t P o r t W i d t h ( S , 0 , 4 ) ;

35 s s S e t O u t p u t P o r t W i d t h ( S , 1 , 4 ) ;

36 s s S e t O u t p u t P o r t W i d t h ( S , 2 , 4 ) ;

37

38

39

40 ssSetNumSampleTimes ( S , 1 ) ;

41 }

42

43 /∗

44 ∗ m d l I n i t i a l i z e S a m p l e T i m e s − i n d i c a t e t h a t t h i s S−f u n c t i o n runs

45 ∗ a t t h e r a t e o f t h e s o u r c e ( d r i v i n g b l o c k )

46 ∗ /
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47 s t a t i c vo id m d l I n i t i a l i z e S a m p l e T i m e s ( S i m S t r u c t ∗S )

48 {

49 ssSe tSampleTime ( S , 0 , INHERITED SAMPLE TIME ) ;

50 s s S e t O f f s e t T i m e ( S , 0 , 0 . 0 ) ;

51 }

52

53

54 /∗

55 ∗ mdlOutpu t s − compute t h e o u t p u t s by c a l l i n g my alg , which

56 ∗ r e s i d e s i n a n o t h e r module , my alg . c

57 ∗ /

58 s t a t i c vo id mdlOutpu t s ( S i m S t r u c t ∗S , i n t T t i d )

59 {

60 / / I n p u t s / o u t p u t s t o t h e b l o c k

61 i n t i ;

62 I n p u t R e a l P t r s T y p e u P t r s = s s G e t I n p u t P o r t R e a l S i g n a l P t r s ( S , 0 ) ;

63 I n p u t R e a l P t r s T y p e wPt r s = s s G e t I n p u t P o r t R e a l S i g n a l P t r s ( S , 1 ) ;

64 I n p u t R e a l P t r s T y p e x P t r s = s s G e t I n p u t P o r t R e a l S i g n a l P t r s ( S , 2 ) ;

65 I n p u t R e a l P t r s T y p e y P t r s = s s G e t I n p u t P o r t R e a l S i g n a l P t r s ( S , 3 ) ;

66 I n p u t R e a l P t r s T y p e z P t r s = s s G e t I n p u t P o r t R e a l S i g n a l P t r s ( S , 4 ) ;

67

68

69

70 r e a l T ∗ o P t r s = s s G e t O u t p u t P o r t R e a l S i g n a l ( S , 0 ) ;

71 r e a l T ∗ p P t r s = s s G e t O u t p u t P o r t R e a l S i g n a l ( S , 1 ) ;

72 r e a l T ∗ q P t r s = s s G e t O u t p u t P o r t R e a l S i g n a l ( S , 2 ) ;

73

74

75 / / I n p u t s / o u t p u t s t o t h e f u n c t i o n

76 i n t np t s , k , p1 ;

77 f l o a t t ;

78 f l o a t b [3∗NPTS + 1 ] ;

79 f l o a t p [ 4 ] ;
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80 f l o a t d [ 4 ] ;

81 f l o a t dd [ 4 ] ;

82

83 n p t s = ∗ ( u P t r s [ 0 ] ) ;

84 k = ∗ ( wPt r s [ 0 ] ) ;

85 p1 = ∗ ( x P t r s [ 0 ] ) ;

86

87 f o r ( i =0 ; i <(3∗NPTS+1) ; i ++){

88 b [ i ] = ∗ ( y P t r s [ i ] ) ;

89 }

90

91 t = ∗ ( z P t r s [ 0 ] ) ;

92

93

94 f c n b s p l i n e ( np t s , k , p1 , b , t , p , d , dd ) ;

95

96 f o r ( i =0 ; i <4; i ++){

97 o P t r s [ i ] = p [ i ] ;

98 p P t r s [ i ] = d [ i ] ;

99 q P t r s [ i ] = dd [ i ] ;

100 }

101

102

103 }

104 /∗

105 ∗ mdlTermina te − c a l l e d when t h e s i m u l a t i o n i s t e r m i n a t e d .

106 ∗ /

107 s t a t i c vo id mdlTermina te ( S i m S t r u c t ∗S )

108 {

109 }

110

111 # i f d e f MATLAB MEX FILE /∗ I s t h i s f i l e b e i n g c o m p i l e d as a MEX− f i l e ? ∗ /

112 # i n c l u d e ” s i m u l i n k . c ” /∗ MEX− f i l e i n t e r f a c e mechanism ∗ /
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113 # e l s e

114 # i n c l u d e ” c g s f u n . h ” /∗ Code g e n e r a t i o n r e g i s t r a t i o n f u n c t i o n ∗ /

115 # e n d i f

1 # i n c l u d e ”mex . h ”

2 void mexFunct ion ( i n t n lhs , mxArray ∗ p l h s [ ] ,

3 i n t nrhs , c o n s t mxArray ∗ p r h s [ ] ) {

4

5 i n t n , c ;

6 i n t ∗x ;

7

8

9 i f ( n r h s ! = 2 )

10 mexErrMsgTxt ( ” Must have two i n p u t a rgument ” ) ;

11 i f ( n l h s ! = 1 )

12 mexErrMsgTxt ( ” Must have one o u t p u t a rgument ” ) ;

13

14

15

16 n= mxGetSca la r ( p r h s [ 0 ] ) ;

17 c = mxGetSca la r ( p r h s [ 1 ] ) ;

18

19 /∗ Cr ea t e an mxArray f o r t h e o u t p u t da ta ∗ /

20 p l h s [ 0 ] = mxCrea teDoubleMat r ix ( n+c , 1 , mxREAL) ;

21 x = mxGetPr ( p l h s [ 0 ] ) ;

22

23

24 kno t ( n , c , x ) ;

25

26

27 }

1 # i n c l u d e ”mex . h ”
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2 void mexFunct ion ( i n t n lhs , mxArray ∗ p l h s [ ] ,

3 i n t nrhs , c o n s t mxArray ∗ p r h s [ ] ) {

4

5 i n t n , c ;

6 i n t ∗x ;

7

8

9 i f ( n r h s ! = 2 )

10 mexErrMsgTxt ( ” Must have two i n p u t a rgument ” ) ;

11 i f ( n l h s ! = 1 )

12 mexErrMsgTxt ( ” Must have one o u t p u t a rgument ” ) ;

13

14

15

16 n= mxGetSca la r ( p r h s [ 0 ] ) ;

17 c = mxGetSca la r ( p r h s [ 1 ] ) ;

18

19 /∗ Cr ea t e an mxArray f o r t h e o u t p u t da ta ∗ /

20 p l h s [ 0 ] = mxCrea teDoubleMat r ix ( n+c , 1 , mxREAL) ;

21 x = mxGetPr ( p l h s [ 0 ] ) ;

22

23

24 kno tu ( n , c , x )

25

26

27 }

1 # i n c l u d e ”mex . h ”

2 # d e f i n e min ( a , b ) ( ( ( a ) < ( b ) ) ? ( a ) : ( b ) )

3 # d e f i n e max ( a , b ) ( ( ( a ) > ( b ) ) ? ( a ) : ( b ) )

4

5

6 void mexFunct ion ( i n t n lhs , mxArray ∗ p l h s [ ] ,
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7 i n t nrhs , c o n s t mxArray ∗ p r h s [ ] ) {

8 i n t c , np t s , i ;

9 i n t ∗x ;

10 f l o a t ∗n ,∗ h ;

11 f l o a t t ;

12 mwSignedIndex m, q ;

13

14 i f ( n r h s ! = 5 )

15 mexErrMsgTxt ( ” Must have t h r e e f o u r a rgument ” ) ;

16 i f ( n l h s ! = 1 )

17 mexErrMsgTxt ( ” Must have one o u t p u t a rgument ” ) ;

18

19

20

21 c = mxGetSca la r ( p r h s [ 0 ] ) ;

22 t = mxGetSca la r ( p r h s [ 1 ] ) ;

23 n p t s = mxGetSca la r ( p r h s [ 2 ] ) ;

24 x = mxGetPr ( p r h s [ 3 ] ) ;

25 h = mxGetPr ( p r h s [ 4 ] ) ;

26

27

28 /∗ Check t h e d i m e n s i o n s ∗ /

29 m = ( mwSignedIndex ) mxGetM ( p r h s [ 3 ] ) ;

30 q = ( mwSignedIndex ) mxGetN ( p r h s [ 3 ] ) ;

31 i f ( mxIsComplex ( p r h s [ 3 ] ) | |

32 ( max (m, q ) != n p t s +c +1) | | ( min (m, q ) != 1) ) {

33 m e x P r i n t f ( ”\n a r g [ 4 ] r e q u i r e s t h a t i n p u t be a %d x 1 v e c t o r . ” ,

n p t s +c +1) ;

34 mexErrMsgTxt ( ”ERROR ! ! ! ! ! ! ! ! ! ! ! ! ” ) ;

35 }

36

37 m = ( mwSignedIndex ) mxGetM ( p r h s [ 4 ] ) ;

38 q = ( mwSignedIndex ) mxGetN ( p r h s [ 4 ] ) ;
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39 i f ( mxIsComplex ( p r h s [ 4 ] ) | |

40 ( max (m, q ) != n p t s +1) | | ( min (m, q ) != 1) ) {

41 m e x P r i n t f ( ”\n a r g [ 4 ] r e q u i r e s t h a t i n p u t be a %d x 1 v e c t o r . ” ,

n p t s +1) ;

42 mexErrMsgTxt ( ”ERROR ! ! ! ! ! ! ! ! ! ! ! ! ” ) ;

43 }

44

45

46 /∗ Cr ea t e an mxArray f o r t h e o u t p u t da ta ∗ /

47 p l h s [ 0 ] = mxCrea teNumer icMat r ix ( n p t s +1 ,1 ,mxSINGLE CLASS , mxREAL) ;

48 n = mxGetData ( p l h s [ 0 ] ) ;

49 r b a s i s ( c , t , np t s , x , h , n ) ;

50

51

52

53 }

1 # i n c l u d e ”mex . h ”

2 # d e f i n e min ( a , b ) ( ( ( a ) < ( b ) ) ? ( a ) : ( b ) )

3 # d e f i n e max ( a , b ) ( ( ( a ) > ( b ) ) ? ( a ) : ( b ) )

4

5 void mexFunct ion ( i n t n lhs , mxArray ∗ p l h s [ ] ,

6 i n t nrhs , c o n s t mxArray ∗ p r h s [ ] ) {

7

8 i n t np t s , k , p1 ;

9 f l o a t ∗b ;

10 f l o a t ∗h ;

11 f l o a t ∗p ;

12 mwSignedIndex m, n ;

13 i n t i ;

14

15 i f ( n r h s ! = 5 )

16 mexErrMsgTxt ( ” Must have f i v e i n p u t a rgument ” ) ;
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17 i f ( n l h s ! = 1 )

18 mexErrMsgTxt ( ” Must have one o u t p u t a rgument ” ) ;

19

20 n p t s = mxGetSca la r ( p r h s [ 0 ] ) ;

21 k = mxGetSca la r ( p r h s [ 1 ] ) ;

22 p1 = mxGetSca la r ( p r h s [ 2 ] ) ;

23 b = mxGetPr ( p r h s [ 3 ] ) ;

24 h = mxGetPr ( p r h s [ 4 ] ) ;

25

26

27

28 /∗ Check t h e d i m e n s i o n s ∗ /

29 m = ( mwSignedIndex ) mxGetM ( p r h s [ 3 ] ) ;

30 n = ( mwSignedIndex ) mxGetN ( p r h s [ 3 ] ) ;

31 i f ( mxIsComplex ( p r h s [ 3 ] ) | |

32 ( max (m, n ) != 3∗ n p t s +1) | | ( min (m, n ) != 1) ) {

33 m e x P r i n t f ( ”\n a r g [ 4 ] r e q u i r e s t h a t i n p u t be a %d x 1 v e c t o r . ” ,3∗

n p t s +1) ;

34 mexErrMsgTxt ( ”ERROR ! ! ! ! ! ! ! ! ! ! ! ! ” ) ;

35 }

36

37 m = ( mwSignedIndex ) mxGetM ( p r h s [ 4 ] ) ;

38 n = ( mwSignedIndex ) mxGetN ( p r h s [ 4 ] ) ;

39 i f ( mxIsComplex ( p r h s [ 4 ] ) | |

40 ( max (m, n ) != n p t s +1) | | ( min (m, n ) != 1) ) {

41 m e x P r i n t f ( ”\n a r g [ 5 ] r e q u i r e s t h a t i n p u t be a %d x 1 v e c t o r . ” ,

n p t s +1) ;

42 mexErrMsgTxt ( ”ERROR ! ! ! ! ! ! ! ! ! ! ! ! ” ) ;

43 }

44

45

46 /∗ Cr ea t e an mxArray f o r t h e o u t p u t da ta ∗ /

47 p l h s [ 0 ] = mxCrea teNumer icMat r ix (3∗ p1 +1 , 1 ,mxSINGLE CLASS , mxREAL) ;
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48 p = mxGetData ( p l h s [ 0 ] ) ;

49

50

51

52 r b s p l i n e ( np t s , k , p1 , b , h , p ) ;

53

54

55

56

57

58 }

1 # i n c l u d e ”mex . h ”

2 # d e f i n e min ( a , b ) ( ( ( a ) < ( b ) ) ? ( a ) : ( b ) )

3 # d e f i n e max ( a , b ) ( ( ( a ) > ( b ) ) ? ( a ) : ( b ) )

4

5 void mexFunct ion ( i n t n lhs , mxArray ∗ p l h s [ ] ,

6 i n t nrhs , c o n s t mxArray ∗ p r h s [ ] ) {

7

8 i n t np t s , k , p1 ;

9 f l o a t ∗b ;

10 f l o a t ∗h ;

11 f l o a t ∗p ;

12 mwSignedIndex m, n ;

13 i n t i ;

14

15 i f ( n r h s ! = 5 )

16 mexErrMsgTxt ( ” Must have f i v e i n p u t a rgument ” ) ;

17 i f ( n l h s ! = 1 )

18 mexErrMsgTxt ( ” Must have one o u t p u t a rgument ” ) ;

19

20 n p t s = mxGetSca la r ( p r h s [ 0 ] ) ;

21 k = mxGetSca la r ( p r h s [ 1 ] ) ;
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22 p1 = mxGetSca la r ( p r h s [ 2 ] ) ;

23 b = mxGetPr ( p r h s [ 3 ] ) ;

24 h = mxGetPr ( p r h s [ 4 ] ) ;

25

26

27

28 /∗ Check t h e d i m e n s i o n s ∗ /

29 m = ( mwSignedIndex ) mxGetM ( p r h s [ 3 ] ) ;

30 n = ( mwSignedIndex ) mxGetN ( p r h s [ 3 ] ) ;

31 i f ( mxIsComplex ( p r h s [ 3 ] ) | |

32 ( max (m, n ) != 3∗ n p t s +1) | | ( min (m, n ) != 1) ) {

33 m e x P r i n t f ( ”\n a r g [ 4 ] r e q u i r e s t h a t i n p u t be a %d x 1 v e c t o r . ” ,3∗

n p t s +1) ;

34 mexErrMsgTxt ( ”ERROR ! ! ! ! ! ! ! ! ! ! ! ! ” ) ;

35 }

36

37 m = ( mwSignedIndex ) mxGetM ( p r h s [ 4 ] ) ;

38 n = ( mwSignedIndex ) mxGetN ( p r h s [ 4 ] ) ;

39 i f ( mxIsComplex ( p r h s [ 4 ] ) | |

40 ( max (m, n ) != n p t s +1) | | ( min (m, n ) != 1) ) {

41 m e x P r i n t f ( ”\n a r g [ 5 ] r e q u i r e s t h a t i n p u t be a %d x 1 v e c t o r . ” ,

n p t s +1) ;

42 mexErrMsgTxt ( ”ERROR ! ! ! ! ! ! ! ! ! ! ! ! ” ) ;

43 }

44

45

46 /∗ Cr ea t e an mxArray f o r t h e o u t p u t da ta ∗ /

47 p l h s [ 0 ] = mxCrea teNumer icMat r ix (3∗ p1 +1 , 1 ,mxSINGLE CLASS , mxREAL) ;

48 p = mxGetData ( p l h s [ 0 ] ) ;

49

50

51

52
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53 r b s p l i n u ( np t s , k , p1 , b , h , p ) ;

54

55

56

57

58 }
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APPENDIX B

Passive Foot

The following passive feet are designed to replace prosthetic feet. The current pros-

thetic feet are large and not in agreement with the assumptions of point-foot gait design.

Hence, the following design, which is significantly smaller than the current passive feet,

was produced. The passive feet have a “roll-pitch-yaw” adjustable connector and these an-

gles can be adjusted with respect to the shin link. They have shock absorbing springs on

heel and toe. As such, smooth impacts are predicted.

(a) (b) (c)

Figure B.1: Passive foot with small support surface, shock absorbing springs and roll-pitch-
yaw adjustable connector.
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APPENDIX C

Toe Switch, Sharp Sensor Support

Estimating the moment of impact is important for the controllers developed during

the course of this study. Using the following mechanism, a Sharp distance sensor, which

measures the height of the swing foot with respect to the ground, and a switch, which

detects the moment of the impact, are mounted on the prosthetic feet. The components of

the mount are designed such that the toe switch position is adjustable with respect to the

prosthetic feet.

(a) Sharp sensor (b) toe switch

Figure C.1: a) shows a Sharp distance sensor mounted on the prosthetic foot. b) shows a
toe switch mounted on the prosthetic foot.
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