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CHAPTER I 
INTRODUCTION 

Rhyolites (lavas with ≥70 wt% SiO2 on the dry basis hereafter) are the most 

differentiated lavas on earth, and known for their voluminous, explosive eruptions (e.g., 

Bishop Tuff, 600 km3; Hildreth and Wilson, 2007). Rhyolites commonly occur in 

continental settings where basalts (~50 wt% SiO2) are erupting coevally and are 

emplaced in the upper crust, like regions undergoing extension (e.g., Long Valley 

Caldera; Bailey, 2004) or regions undergoing intraplate volcanism (e.g., Yellowstone 

Caldera; Christiansen, 2001).  Rhyolites, however, are not restricted to these settings, as 

they also erupt in low frequency with large volumes of intermediate lavas (e.g., andesites 

and dacites; 58-70 wt% SiO2) from volcanic arcs above subduction zones (e.g., Toba, 

Sumatra; Chesner, 1998).   

Rhyolite lavas that erupt bimodally with basalts have significant compositional 

differences from rhyolites that erupt from volcanic arcs.  Moreover, the rhyolite lavas can 

be divided into two groups: highly evolved and less evolved.  The highly evolved 

rhyolites have slightly higher concentrations of SiO2 (>73 wt%), low concentrations of 

CaO (<0.6 wt%), MgO (<0.3 wt%), Sr (<50 ppm) and Ba (<400 ppm).  The less evolved 

rhyolites have lower concentrations of SiO2 and greater concentrations of CaO, MgO, Sr 

and Ba than the highly evolved rhyolites.  The difference in the compositions of the less 

evolved and the highly evolved rhyolites is reflected in the mineralogy of each rhyolite.  

Quartz and sanidine are often observed in the highly evolved rhyolites, but are rarely 
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observed in the less evolved rhyolites.  Rhyolites that erupt bimodally with basalts are 

typically highly evolved, where as rhyolites that erupt with andesites and dacites tend to 

be less evolved. 

The highly evolved rhyolites are paradoxical as they frequently erupt with basalt 

(the least differentiated lavas) in the absence of large volumes of intermediate volcanics 

(e.g., Long Valley Caldera; Bailey, 2004).  Thus the mechanism of differentiation by 

which rhyolite magmas are produced should account for their large volumes, patterns of 

major and trace elements, diversity of phenocryst phases, and geologic record of the 

volcanic fields that feature the eruptions of rhyolites.  Additionally, the evolution of 

rhyolite magmas is of particular interest as their formation must fundamentally re-

constitute and differentiate continental crust. 

A commonly accepted mechanism of differentiation in igneous systems is the 

theory of crystal fractionation, which was demonstrated by Bowen (1928) in a series of 

anhydrous phase-diagrams and crystal settling experiments. Bowen (1928) hypothesized 

that silica-enriched, evolved liquids (>53 wt% SiO2) are the residual liquids that result 

from the crystallization and removal of silica-poor phenocrysts from a parental liquid 

(e.g., basalt).  As part of the theory of crystal fractionation, Bowen (1928) also suggested 

that the most evolved liquids (e.g., rhyolites) form at slower cooling rates that allow the 

parental material to reach a greater degree of crystallinity and crystal settling, which 

causes the interstitial, residual liquid to become more silica-rich. The hypothesis that 

differentiation occurs by crystal fractionation was hailed by a majority of the scientific 

community as the most satisfactory mechanism to explain the formation of intermediate 

magmas and rhyolites. While crystal fractionation provides an excellent explanation for 



 3 

compositional trends observed in large volumes of mafic magmas (e.g., Skarrgard, 

Greenland), it fails to explain trends observed in the geologic record.  Crystal 

fractionation cannot account for why regions that erupt volumes of lavas that are 

overwhelmingly basaltic in composition (e.g., Hawaii) fail to produce voluminous 

rhyolites, and it cannot explain why basalt and rhyolite occur together, in the absence 

intermediate volcanics, in regions of extension (e.g., Long Valley Caldera; Bailey, 2004). 

While the theory of crystal fractionation explains how silica enriched liquids are 

produced during crystallization of large volumes of basalt, the experiments on which the 

theory was based were anhydrous, and crystal fractionation as presented by Bowen 

(1928) does not account for any affect of the H2O component. 

Since the publication of Bowen (1928), water has been identified as a critical 

component in generating basaltic melts in mantle in subduction zone systems (Gaetani 

and Grove, 1998, 2003), shifting the equilibrium compositions of minerals (Sisson and 

Grove, 1993), and as a driving mechanism for explosive eruptions (Sparks, 1978; 

Gardner et al., 1996; Papale et al., 1999).  Water is incorporated into differentiation 

models by altering the compositions of phenocrysts that are growing from parental 

liquids so that compositions of phenocrysts reflect water-saturated conditions. While the 

H2O component is accounted for in the phenocryst composition, the proposed mechanism 

of differentiation is still the separation of crystals from melt by cooling and crystal 

settling (e.g., Grove et al., 2005). 

It has also been proposed that intermediate to silicic magmas (>58 wt% SiO2) may 

be formed during partial melting of preexisting continental (granitoid) crust by 

underplating of high temperature, hydrous basaltic liquids (Smith and Leeman, 1987; 



 4 

Huppert and Sparks, 1988; Atherton and Petford, 1993; Rapp and Watson, 1995; 

Chappell and White, 2001; Petford and Gallagher, 2001; Annen et al., 2006; Ownby and 

Lange, 2012).  In an experimental test of the origins of granite, Tuttle and Bowen (1958) 

demonstrated that partial melts of haplogranites (quartz-albite-orthoclase system) in the 

presence of a hydrous vapor (e.g., H2O saturated melting) have rhyolitic compositions.  

Extending the conclusions of Tuttle and Bowen (1958) to natural systems implies that 

partial melts plutonic rocks that are saturated with quartz, albite, and orthoclase (e.g., 

granitoids: granite, grannodiorite, and tonalite) will have a eutectic, rhyolitic 

compositions.   

There is no consensus on which mechanism is more likely in the creation of 

voluminous rhyolites and different mechanisms are favored based on geochemical and 

isotopic evidence unique to the individual volcanic field.  For example, Halliday et al. 

(1991) suggested that crystal fractionation is the only way to account for Sr and Rb 

concentrations in the Bishop Tuff, and Davies and Halliday (1998) support the 

conclusions of Halliday et al. (1991) with evidence from the Sr isotope system (Sr-Rb) 

that demonstrates the Bishop Tuff can be derived from crystal fractionation of mantle 

derived basalt.  In contrast, Bindeman and Valley (2000, 2001) propose that nearly entire 

partial melting of the upper crust beneath Yellowstone is the only way to account for the 

oxygen isotopes in the Lava Creek Tuff.  Regardless of the mechanism of differentiation, 

it is conceivable that water plays an essential role in formation of rhyolite liquids and the 

differentiation process, as earth is the only planet with both liquid water and granitoid 

crust.  To determine the role of H2O in the differentiation process, the concentrations of 
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H2O in rhyolites and effects of H2O on the phenocryst assemblage and intensive variables 

must be documented. 

Direct measurement of H2O contents is only possible in rapidly quenched 

groundmass glasses if H2O concentration is low (e.g. Wysoczanski et al., 2005; Saal et 

al., 2008) or quenched glasses in melt inclusions (e.g., Anderson et al., 1989; 

Lowenstern, 1994; Wallace et al., 1999; Métrich and Wallace, 2008).  Groundmass 

glasses that retain their dissolved volatiles, however, are unusual and form under very 

specific conditions (e.g., subaqueous eruption and low H2O concentration).  Quartz-

hosted melt inclusions, however, have been used to determine pre-eruptive water contents 

of 3.5-6.5 wt% for the Bishop Tuff (Anderson et al., 1989; Skirius et al., 1990; Dunbar 

and Hervig, 1992; Wallace et al., 1994, 1999), 4.3-5.9 wt% for the Taupo Tuffs (Dunbar 

et al., 1989; Chesner, 2010), and 6-8 wt% for the Pine Grove Tuff (Lowenstern, 1994).  

While quartz hosted melt inclusions are useful in determining water contents for 

rhyolites, as discussed above not all rhyolites contain quartz phenocrysts. 

H2O concentrations can also be calculated with hygrometers and phenocryst 

phases.  The mineral plagioclase, a solid solution between anorthite (CaAl2Si2O8) and 

albite (NaAlSi3O8), is often a basis for hygrometers (e.g., Housh and Luhr, 1991; Putirka, 

2005; Lange et al., 2009) as its composition is dependent on melt composition, 

temperature and pressure.  H2O is dissolved in the melt as molecular H2O (H2Om) and 

OH- groups (Stolper 1982a, b), and there is evidence in the JANAF thermodynamic tables 

that OH– groups preferentially bond with Na+, and bond to a lesser extent to Ca2+.  

Experiments have shown that plagioclase becomes enriched in anorthite component at 

high temperatures and high melt water contents for a given melt composition (e.g., basalt 
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or rhyolite) (Sisson and Grove, 1993).  An effect of melt composition on plagioclase 

composition is observed, where by calcium-rich plagioclase is observed in calcium rich 

melts, silica poor melts (e.g., basalts), and sodium-rich plagioclase is observed in 

calcium-poor, silica rich melts (e.g., rhyolites).  In general, to apply a hygrometer to 

plagioclase crystals in a magma, the pre-eruptive temperature must also be known (e.g. 

Lange et al., 2009).  Rhyolites are often saturated in multiple phenocryst phases, which 

allow for the calculation of pre-‐eruptive	  intensive	  variables	  (e.g.,	  temperature). For 

example, even the most crystal poor (<2%) units of the Bishop Tuff are saturated in nine 

phenocrysts phases (Hildreth and Wilson, 2007).  Rhyolites are often minimally saturated 

in two iron oxides, ilmenite and titanomagnetite (Carmichael, 1967), which can be used 

with geo-thermometers/oxygen barometers (e.g., Buddington and Lindsley, 1964; 

Ghiorso and Evans, 2008) to calculate pre-eruptive temperatures and oxidation states.  

Because rhyolites cooled rapidly, these pre-eruptive temperatures apply to all minerals, 

including plagioclase.  Hence, application of the hygrometer of Lange et al. (2009) to 

rhyolites to determine melt water contents should be relatively straightforward, as they 

are often saturated in ilmenite, titanomagnetite and plagioclase.  

In this study, the effects of H2O on the phenocryst assemblages, intrinsic 

variables, and melt viscosity are evaluated in phenocryst-poor rhyolite obsidians from 

western Mexico and Medicine Lake Volcano, CA.  The origin of the phenocryst 

assemblage was evaluated with a detailed electron microprobe study, the plagioclase 

liquid hygrometer of Lange et al. (2009), the water solubility model of Liu et al., (2005), 

the viscosity model of Hui and Zhang (2007), crystal nucleation and growth studies 

(Couch et al., 2003a, b; Martel and Schmidt, 2003; Brugger and Hammer, 2010), and 
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phase diagrams from the literature (Tomiya et al., 2010), as well as a phase diagrams 

produced from a series of phase equilibrium experiments conducted in cold seal pressure 

vessels at the National Museum of Natural History, Smithsonian Institute, Washington, 

D.C.  

 In Chapter II of this study, the hygrometer of Lange et al. (2009) is applied to the 

plagioclase phenocrysts found in six crystal-poor rhyolite obsidians, where the 

temperatures used with the hygrometer are those calculated with the geo-thermometer of 

Ghiorso and Evans (2008).  Surprisingly, plagioclase and orthopyroxene compositions in 

all six obsidians spanned a wide range composition.  For example, plagioclase and 

orthopyroxene in MLV-45 spanned a range of 30-68 mol% An and 50-65 mol% En, 

respectively, despite low phenocryst abundances (<4.5%). To further investigate the wide 

range of plagioclase and orthopyroxene compositions, back-scatter electron (BSE) 

images of plagioclase and orthopyroxene textures were collected and compared with the 

compositions of individual crystals and the range of compositions observed in each 

sample.  In general, textures of plagioclase and orthopyroxene grains ranged from 

euhedral, to lobate and rounded, to vermiform, suggesting a diffusion-limited growth 

regime. When the hygrometer of Lange et al. (2009) was applied to the range of 

plagioclase compositions, the result was a range higher than most H2O contents recorded 

by most melt inclusions from quartz >6 wt% H2O (e.g., Wallace et al., 1999).  It was 

found that the calibration of Lange et al. (2009) does not adequately cover the entire 

range of rhyolite liquids, even though ~10% of the calibration is composed of phase 

equilibrium experiments on low-silica (≤73 wt% SiO2) rhyolite liquids, and application of 

the hygrometer to highly differentiated magmas is an extrapolation in terms of the liquid 
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composition (discussed in Chapter IV).  To address this issue in Chapter II, a version of 

the plagioclase liquid hygrometer, with more plagioclase rhyolite liquid pairs in the 

dataset used for calibration, was applied to the obsidians calibrated on the dataset of 

Lange et al. (2009) as well as new phase-equilibrium experiments on rhyolite liquid that 

were published since 2009 (Lange et al., 2012).  Maximum water contents determined 

with the modified calibration of the Lange et al. (2009) hygrometer and the plagioclase 

from the six rhyolites range from 2.3 to 6.8 wt% H2O, and minimum water contents range 

from 2.1 to 4.0 wt% H2O.  These results require that the rhyolites were water saturated at 

upper crustal pressures (100-300 MPa).  

 When phenocrysts with wide ranges in composition and complex textures are 

observed in melts of intermediate compositions they are often attributed to magma 

mixing or mingling (Murphy et al., 2000; Tepley et al., 2000; Kent et al., 2010).  

However, because the six rhyolites are an end-member composition and there is no 

obvious evidence of mixing, it is likely that the phenocrysts grew due to degassing 

induced crystallization, owing to loss of melt water upon eruption.  As H2O is 

continuously lost from the melt, the activities of melt components (e.g., SiO2, Al2O3) 

change, which causes a change in phenocrysts compositions to reflect lower melt water 

contents.  That is, the phenocrysts record decreasing melt water contents.  Because both 

plagioclase and orthopyroxene from Chapter II span a range in compositions with 

complex textures, with little crystallization and no trend of cooling recorded by the iron-

oxides in the six rhyolites, it is likely that the phenocryst assemblages grew as a result of 

degassing induced crystallization.  This work was recently published in Contributions to 

Mineralogy and Petrology (Waters and Lange, 2013). 
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Chapter III investigates the effect of the dissolved H2O on the activities of Fe2+ 

and Fe3+ in the rhyolite melts.  Testing the effect of degassing of H2O on rhyolite liquids 

is ideal as they have the lowest total iron concentrations, which makes them the most 

sensitive indicators of any changes to the ferric-ferrous ratio.  The effect of H2O on the 

activities of ferrous and ferric iron is the subject of much debate in the literature, and it is 

postulated that dissolved H2O affects the ferric-ferrous ratio in two ways: (1) by altering 

the activities of ferrous and/or ferric iron (Baker & Rutherford, 1996; Gaillard et al., 

2001; Wilke et al., 2002; Gaillard et al., 2003), and (2) or by the loss of Fe2+ and Fe3+ to 

the fluid phases during degassing (Sisson and Grove, 2003). Baker & Rutherford (1996), 

Gaillard et al. (2001), Wilke et al. (2002) and Gaillard et al. (2003) experimentally 

demonstrate that water does exert some effect on the activities of ferric and ferrous iron 

at conditions more reducing than the Ni-NiO buffer where fO2 is low, however, the 

experimental study of Moore et al. (1995) shows that H2O does not exert control over the 

ferric-ferrous ratio (i.e., the activity of Fe2+ and Fe3+) at fO2 conditions ~Ni-NiO buffer.  

To resolve the discrepancy surrounding the debate in the literature, the pre-

eruptive (H2O-saturated conditions) wt% FeO is compared with the post-eruptive 

(degassed) wt% FeO in the rhyolites from Chapter II.  The water contents of the rhyolites 

are known from Chapter II and the rhyolites must have been water saturated at upper 

crustal pressures (100-300 MPa).  Nearly complete degassing of the rhyolites occurred 

based on low loss on ignition (LOI) values (<0.7 wt%).   Pre-eruptive wt% FeO was 

calculated by incorporating the temperatures and oxygen fugacities calculated with the 

two iron oxide geo-thermometer and oxygen barometer of Ghiorso and Evans (2008) into 

the empirically calibrated model of Kress and Carmichael (1991).  Crabtree and Lange 
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(2012) demonstrate that even though the model of Kress and Carmichael (1991) is 

calibrated on anhydrous glasses it accurately predicts ferric-ferrous ratios in H2O-

saturated liquids.  The post-eruptive wt% FeO is measured by back titration using the 

Wilson method (1960). It was found that H2O exerts no measurable effect on the ferric-

ferrous ratio in rhyolites.  These results suggest that the degassing of H2O from rhyolite 

liquids at fO2 conditions ranging from ∆NNO -0.4 to ∆NNO 1.4 has no resolvable effect 

on the ferric-ferrous ratio of rhyolites with low total iron concentrations.  This work will 

be submitted to Science. 

 The effect of H2O on mineral-liquid equilibrium is a common theme in the 

literature, and phase equilibrium experiments provide significant benchmarks to evaluate 

the effect of melt water contents on phenocrysts in natural liquids (Gardner et al., 1995; 

Couch et al., 2003; Martel and Schmidt, 2003; Tomiya et al. 2010).  The exsolution of 

volatiles from melt has also been proposed to be the driving mechanism for 

crystallization of phenocrysts in Chapter II and is supported by melt inclusions (e.g., 

Métrich and Wallace, 2008) and observations from crystal-poor andesites and dacites 

from western Mexico (Crabtree and Lange, 2011).  The vast majority of phase 

equilibrium studies target the pressure and temperature conditions at which all the phases 

documented in natural samples coexist, which are often equated to a depth of pre-eruptive 

storage conditions (i.e., magma chamber).  In this study, phenocryst growth at pre-

eruptive storage conditions is challenged with an evaluation of the effect of changing 

melt water concentrations on phenocryst compositions and nucleation and growth rates 

during decompression and ascent.   

 In Chapter IV, phase equilibrium experiments are conducted on one less 
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differentiated rhyolite from Chapter II, a highly differentiated rhyolite from Medicine 

Lake Volcano, and a rhyodacite from western Mexico, to test the effect of dissolved 

water on the phenocryst phases and to provide experimental data to extend the calibration 

of the Lange et al. (2009) hygrometer (Chapter V).  The phase equilibrium experiments 

were conducted in Ni-rich (Waspaloy) cold-seal pressure vessels at the Department of 

Mineral Sciences, National Museum of Natural History, Smithsonian Institute in 

Washington D.C. in collaboration with Benjamin Andrews.  Phase diagrams were 

produced for each of the three obsidians, and decompression experiments were conducted 

on the less differentiated rhyolite to document whether or not it is possible for 

crystallization of phenocrysts to occur during decompression.  Decompression 

experiments on the low silica rhyolite were conducted at continuous rates of 2.9 MPa/hr 

and 0.8 MPa/hr. Experiments that were decompressed at 2.9 MPa/hr did not nucleate or 

grow any phenocryst phase.  The 0.8 MPa/hr decompression experiments crystallized 

phenocrysts with compositions that are consistent with the phase equilibrium experiments 

and match the natural sample, which suggest that degassing induced crystallization of 

phenocrysts is a plausible hypothesis to explain the compositional variability in 

plagioclase in phenocryst-poor obsidians. 

 From comparison of the range of plagioclase compositions observed in the natural 

sample with the plagioclase compositions grown at the eruptive temperature in the phase 

equilibrium experiments, it was determined that plagioclase nucleation and growth in the 

natural sample ceases after ~20 MPa of decompression, even though plagioclase is stable 

at increasingly lower pressures.  Additionally, plagioclase nucleation and growth in the 

natural sample ceases before nucleation and growth rates reach their reported maximums 
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based on comparison with Couch et al. (2003b) and Hammer and Rutherford (2002).  The 

decompression experiments of Martel and Schmidt (2003) demonstrate that as 

decompression rate increases, the pressure at which plagioclase nucleation and growth 

ceases becomes increasingly higher.  The decompression rates of the experiments of 

Martel and Schmidt (2003) were investigated with respect to the rate of loss of H2O and 

the rate of change of viscosity. Based on the results of Martel and Schmidt (2003), it 

appears that rapidly changing melt viscosity, due to degassing upon ascent, is the most 

plausible mechanism to suppress of plagioclase nucleation and growth, by effectively 

retarding the diffusivity of plagioclase forming components.  This work will be submitted 

to Journal of Petrology. 

 By comparing the water contents derived for the rhyolites in Chapter II from the 

hygrometer of Lange et al. (2009) with the results of the phase equilibrium experiments 

in Chapter IV, it was observed that the hygrometer of Lange et al. (2009) over predicted 

melt H2O contents for rhyolite liquids.  Further investigation of the calibration of the 

model of Lange et al. (2009) revealed that application of the hygrometer to a majority of 

rhyolites is an extrapolation in terms of the liquid composition.  The calibration of Lange 

et al. (2009) was limited to melt compositions ≤73 wt% SiO2, due to a lack of high 

quality H2O saturated rhyolite phase equilibrium experiments (e.g., glass totals >97% 

including the H2O component).  Since 2009, several phase equilibrium studies on rhyolite 

liquid have been published in the literature (Tomiya et al., 2010; Martel et al., 2012; 

Castro et al., 2013) and those data, combined with the 22 plagioclase-liquid equilibrium 

pairs presented in Chapter IV, and phase equilibrium experiments from Larsen (2005, 

2006) and Martel (2006) were used in a new calibration for the model of Lange et al. 
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(2009) to calculate melt water contents for rhyolite liquids in Chapter V. In total the 

dataset for the calibration of the rhyolite hygrometer consists of 73 experiments that span 

a range of liquid compositions (68.9-79.7 wt% SiO2), plagioclase compositions (17-64 

mol% An), temperatures (750-1040°C), pressures (30-300 MPa), and water contents (0.9-

7.3 wt%).  The backwards stepwise multiple linear regression of the dataset for 

calibration for the rhyolite hygrometer yields eight significant terms, five of which are 

fitted terms for the mole fraction of melt components: SiO2, Al2O3, FeOT, Na2O, K2O.  

The regression has a standard error estimate of ± 0.38 wt% H2O and an adjusted R2 value 

of 0.92.  The maximum residual from the regression is 0.84 wt% H2O. 

 The rhyolite hygrometer is applied to the oldest eruptive unit of the Toba Tuff, the 

three Tuffs erupted from Yellowstone Caldera (Huckleberry Ridge, Mesa Falls and Lava 

Creek), and the Bishop Tuff where available whole rock compositions, corresponding 

plagioclase compositions, and pre-eruptive temperatures and H2O contents in melt 

inclusions can be found in the literature (Hildreth, 1977; Gansecki, 1998; Chesner, 1998; 

Wallace et al., 1999; Anderson et al., 2000; Chesner and Luhr, 2010). The rhyolite 

hygrometer predicts a dissolved melt water content that is consistent with the phase 

diagram for the Toba Tuff present in Gardner et al. (2002) and ~1wt% H2O greater than 

H2O contents recorded by melt inclusions.  The discrepancy between the H2O contents 

from the rhyolite hygrometer and the melt inclusions can be accounted for by the 

saturation of plagioclase at higher PH2O, at upper crustal pressures (100-300 MPa at 

~725°C) and H2O fluid saturated conditions.  The H2O contents derived from the 

plagioclase hygrometer for the Yellowstone and Bishop Tuffs match those measured in 

melt inclusions.  This work will be submitted to American Mineralogist. 
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 A final assessment of the origin of rhyolites and phenocryst assemblages in rhyolite 

is made in Chapter VI.  Because degassing induced crystallization can account for the 

variability in phenocryst compositions, the rhyolites in this study must have existed as 

aphyric, water-saturated liquids at depth, which then ascended, degassed, crystallized and 

erupted.  Possible sources of the rhyolites, implications of degassing induced 

crystallization, and the possible applications of plagioclase speedometry are discussed. 
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CHAPTER II 

CRYSTAL-POOR, MULTIPLY SATURATED RHYOLITES (OBSIDIANS) 
FROM THE CASCADE AND MEXICAN ARCS: EVIDENCE OF DEGASSING-

INDUCED CRYSTALLIZATION OF PHENOCRYSTS1 
 

2.1 ABSTRACT 
  

A detailed petrological study is presented for six phenocryst-poor obsidian 

samples (73-75 wt% SiO2) erupted as small-volume, monogenetic domes in the Mexican 

and Cascade arcs.  Despite low phenocryst (+ microphenocryst) abundances (2-6%), 

these rhyolites are each multiply-saturated with five to eight mineral phases (plagioclase 

+ orthopyroxene + titanomagnetite + ilmenite + apatite ± zircon ± hornblende ± 

clinopyroxene ± sanidine ± pyrrhotite).  Plagioclase and orthopyroxene phenocrysts 

(identified using phase-equilibrium constraints) span ≤ 30 mol% An and ≤ 15% Mg#, 

respectively.  Eruptive temperatures (±1σ), on the basis of Fe-Ti two oxide thermometry, 

range from 779 (±25) to 940 (±18)°C.  Oxygen fugacities (±1σ) range from -0.4 to 1.4  (± 

0.1) log units relative to those along the Ni-NiO buffer.  With temperature known, the 

plagioclase-liquid hygrometer was applied; maximum water concentrations calculated for 

the most calcic plagioclase phenocryst in each sample range from 2.6-6.5 wt%.  This 

requires that the rhyolites were fluid-saturated at depths ≥ 2-7 km.  It is proposed that the 

wide compositional range in plagioclase and orthopyroxene phenocrysts, despite their 

low abundance, can be attributed to changing melt water concentrations owing to 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Citation: Waters, LE. And Lange, R.A. (2013) Crystal-poor, multiply saturated rhyolite (obsidians) from 

the Cascade and Mexican arcs: Evidence of degassing-induced crystallization of phenocrysts. 
Contributions to Mineralogy and Petrology 166, 731-754 
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degassing during magma ascent.  Phase-equilibrium experiments from the literature show 

that higher dissolved water concentrations lead to more Fe-rich orthopyroxene, as well as 

more calcic plagioclase.  Loss of dissolved water leads to a progressive increase in melt 

viscosity, and phenocrysts often display diffusion-limited growth textures (e.g. dendritic 

and vermiform), consistent with large undercoolings caused by degassing.  A kinetic 

barrier to microlite crystallization occurred at viscosities from 4.5 to 5.0 log10 Pa s for 

these rhyolites, presumably because the rate at which melt viscosity changed was high 

owing to rapid loss of dissolved water during magma ascent.   

 
2.2 INTRODUCTION 

Fresh obsidian samples of rhyolite composition (73-75 wt% SiO2) with sparse 

crystals (2-6 vol%) provide a unique opportunity to resolve the effects of degassing-

induced crystallization vs. magma mixing in producing compositional and textural 

complexity in phenocrysts, particularly plagioclase and orthopyroxene.  It has long been 

recognized that the effects of magma mixing and/or the incorporation of xenocrysts can 

lead to a broad compositional spread in crystal populations and a variety of 

disequilibrium textures, notably in intermediate magmas (e.g., Sakuyima 1978; 

Eichelberger 1981; Pallister et al. 1992; Wallace and Carmichael 1994; Tepley et al. 

1999; Watts et al. 1999; Salisbury et al. 2008; Smith et al. 2009; Ruprecht et al. 2012).   

However, it is also understood that degassing-induced crystallization can also produce a 

range of compositions and textures during phenocryst growth (e.g., Lofgren 1974; 

Anderson 1984; Moore and Carmichael 1998; Brophy et al. 1999; Cashman and Blundy 

2000; McCanta et al. 2007; Crabtree and Lange 2011; Frey and Lange 2011). 
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For example, the loss of dissolved water during ascent of fluid-saturated magma 

is expected to change the equilibrium plagioclase to more sodic compositions (e.g., 

Sisson and Grove 1993; Putirka, 2005) and cause a large undercooling as the liquidus 

temperature increases, which in turn can promote diffusion-limited crystal growth 

mechanisms and complex textures (e.g., Lofgren 1974; Kirkpatrick 1975; Roeder et al. 

2001; Hammer and Rutherford 2002; Couch et al. 2003; Martel and Schmidt 2003; 

Szramek et al. 2006; Suzuki et al. 2007).  Similarly, there is evidence from phase-

equilibrium experiments in the literature and thermodynamic data reported in the JANAF 

tables that changes in melt water concentration also affect orthopyroxene compositions, 

with higher water contents favoring Fe-rich compositions (Crabtree and Lange 2011; 

Frey and Lange 2011).  Thus reverse zoning of orthopyroxene (i.e., Mg-rich rims) can 

sometimes occur because of degassing and is not always a sign of magma mixing. 

It is not only intermediate magmas that display a broad range of plagioclase and 

orthopyroxene compositions and textures, but also rhyolites with 72-76 wt% SiO2 and 

with > 1 wt % CaO (i.e., not highly evolved), which have been documented at several 

locations, including New Zealand, Japan, Indonesia, and Mexico (e.g., Harris 1986; 

Chesner 1998; Smith et al. 2010; Tomiya et al. 2010).  For example, the ~530 km3 

caldera-forming Oruanui eruption of zoned rhyolite (dominantly 74-76 wt% SiO2; 1.5-2.0 

wt% CaO) from Taupo Volcano, New Zealand contains plagioclase and orthopyroxene 

crystals that range continuously from ~An50 to An30 and ~En55 to En45, respectively, 

regardless of silica content (Wilson et al. 2006).   An outstanding question is whether 

such a wide range of crystal compositions in rhyolite requires open-system processes, or 

whether degassing-induced crystallization of phenocrysts also plays a role. 
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In this study, the role of degassing-induced crystallization of plagioclase and 

orthopyroxene phenocrysts in rhyolites is evaluated through a detailed petrological study 

of six obsidian samples from the Mexican and Cascades volcanic arcs.  The rhyolite 

samples contain sparse crystals (2-6 vol%) of five to eight different mineral phases in a 

glassy groundmass and were erupted from small, monogenetic vents.  The occurrence of 

both titanomagnetite and ilmenite permits magmatic temperatures to be calculated 

(Ghiorso and Evans 2008), and the occurrence of sparse plagioclase allows application of 

the plagioclase-liquid hygrometer (Lange et al. 2009), with a calibration extended to 

rhyolite liquids (Lange et al. 2012; Waters et al. 2012), to obtain pre-eruptive water 

concentrations.  The goal of this study is to examine the compositional and textural 

features of the crystalline assemblage, along with information on pre-eruptive 

temperatures and water concentrations, as well as comparisons with phase-equilibrium 

results from the literature, to evaluate the relative contributions of magma mixing, the 

incorporation of xenocrysts, and degassing-induced crystallization. 

 
2.3 GEOLOGIC SETTING 

The six obsidian samples featured in this study are from the southern Cascades 

arc and western Mexican Volcanic Belt, two areas where rifting is superimposed upon 

subduction.  A location map for all six samples is provided in the Appendix (Figure A1).  

Each of the samples erupted from a monogenetic vent.  Three samples are from western 

Mexico; COMP-3 and JAL-10 are both from the volcanic field surrounding Volcán 

Tepitiltic (Frey et al. 2004; 2013). TEQ-21 is peripheral to Volcán Tequila (Lewis-

Kenedi et al. 2005).  An overview of the tectonic setting of the western Trans-Mexican 

Volcanic Belt is given in Frey et al. (2007).  The other three samples (MLV-36, MLV-37, 
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and MLV-45) are from the Medicine Lake volcanic complex, in the southern Cascades.  

Medicine Lake features coeval eruptions of basalt through rhyolite and is located in a 

geologically complex area where Basin and Range extension overprints the southern 

Cascades Arc (Grove et al. 1997; Donnelly-Nolan et al. 2008).  An extensive eruptive 

history of Medicine Lake volcanic complex is presented in Donnelly-Nolan et al. (2008). 

 
2.4 WHOLE ROCK GEOCHEMISTRY AND PETROGRAPHY 

Six samples were crushed in a steel jaw crusher and powdered in a porcelain 

shatter box and then analyzed for a suite of major and trace elements at Activation 

Laboratories, Ltd. in Ancaster, Ontario.  The ferrous iron concentration in five samples 

and two standards (SY-4 and QLO-1) was measured by the Wilson (1960) titration 

method; the titrated values of wt% FeO for SY-4 (3.03 ± 0.07) and QLO-1 (2.98 ± 0.08) 

are close to certified values (2.86 ± 0.09, and 2.97 ± 0.05, respectively).  The whole-rock 

major elements are presented in Table 2.1, along with Ba and Sr concentrations.  

Analyses of all trace elements are presented in the Appendix (Table A1).  In Table 2.1, 

the compositional difference between the highly-evolved rhyolite (TEQ-21) and the five 

less-evolved rhyolites is apparent, with much lower concentrations of CaO, MgO, Ba and 

Sr in TEQ-21, despite an overlap in concentration of SiO2. 

All six rhyolites share five mineral phases (plagioclase + orthopyroxene + 

titanomagnetite + ilmenite + apatite).  The five less-evolved rhyolites contain up to three 

additional mineral phases (±hornblende ± zircon ± pyrrhotite), whereas the highly- 

evolved rhyolite (TEQ-21) also contains zircon along with two additional phenocrysts 

(sanidine + clinopyroxene).  Quartz was not found in any of the six obsidian samples.  

Phenocryst (>200 µm) and microphenocryst (>50 µm) abundances were determined by 
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point counts of 2000 to 3000 points across a standard petrographic slide, in triplicate.  For 

this study, no distinction between phenocryst and microphenocryst is made due to the low 

total crystallinity, and the term phenocryst refers to all grains > 50 µm.  

Table 2.1: Whole-rock major element compositions and point counts 
 Sample TEQ-21 COMP-3 JAL-10 MLV36 MLV37 MLV45 

Lat. (N): 20⁰51.26’ 21⁰09.79’ 21°16.68’ 41⁰36.97’ 41⁰34.28’ 41⁰32.20’ 
Long. (W): 103⁰51.86’ 104⁰42.39’ 104°41.03’  121⁰38.48’ 121⁰41.96’  121⁰43.51’  
SiO2 74.1 75.2 74.3 73.8 74.5 73.4 
TiO2 0.15 0.20 0.26 0.27 0.28 0.23 
Al2O3 13.3 13.5 14.2 13.2 13.6 14.5 
FeOT 1.62 1.13 1.50 2.08 2.12 1.75 
MnO 0.06 0.05 0.06 0.04 0.04 0.04 
MgO 0.11 0.30 0.38 0.27 0.28 0.38 
CaO 0.51 1.30 1.40 1.23 1.25 1.76 
Na2O 4.61 4.55 4.86 3.99 4.00 3.87 
K2O 4.83 3.36 3.04 4.18 4.21 3.58 
P2O5 0.03 0.06 0.07 0.06 0.05 0.04 
LOI 0.00 0.70 0.00 0.31 0.40 0.51 
Total 99.4 99.7 100.1 99.4 100.7 100.0 
Sr (ppm) 24 253 256 105 107 241 
Ba (ppm) 132 1141 1134 838 841 851 
An-noliq 3.2 7.7 8.3 7.9 8.0 11.6 
Mg-noliq 13.0 36.7 40.6 23.3 24.0 35.3 
FeOFeTi 1.31 0.95 0.99 1.58 1.58 1.24 
FeOTitr 1.30 0.94 0.99 1.55 1.57 - 
Plag ph(%) 2.0 1.7 5.4 1.9 2.5 2.4 
Opx ph(%) <0.1 0.3 0.4 0.6 0.8 0.3 
Cpx ph (%) 0.1 0.0 0.0 <0.1 0.0 <0.1 
Hbl (%) 0.0 0.2 0.2 0.0 0.1 1.3 
Fe-Ti Ox (%) 0.6 0.5 0.5 0.3 0.3 0.5 
gdms (%) 97.1 97.1 93.6 97.1 96.3 93.8 
An-numberliq=[XAn/(XAn+XAb)] x100, where XAn=64.0(Xliq

CaO)(Xliq
Al2O3)(Xliq

SiO2)2 and 
XAb=18.963(Xliq

Na2O).5(Xliq
Al2O3).5(Xliq

SiO2)3 (Lange et al., 2009). 
 Mg-numberliq=Mg/(Mg+Fe2+)molar. 

     1FeO calculated on basis of ΔNNO value obtained from two Fe-Ti oxides.  
  2FeO obtained by titration. 

ph, phenocrysts (>50µm); plag, plagioclase; opx, orthopyroxene; cpx, clinopyroxene; hbl, hornblende; 
Fe-Ti Ox, oxides; gdms, groundmass 

      

Overall, phenocryst abundances are low, ranging from 1.4-6.4%.  In all samples, 

plagioclase is the dominant phase, making up 61-81% of the total phenocryst assemblage.  

Orthopyroxene is the next most abundant phase in all samples, making up 4-27% of the 

phenocryst assemblage.  Titanomagnetite and ilmenite are ubiquitous and tabulated as 
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“iron-oxides” without considering size; they occur as mineral inclusions in plagioclase 

and orthopyroxene (Appendix Fig. A2).  Apatite is also ubiquitous and a common 

mineral inclusion; it is consistently <50µm.  Hornblende and zircon were each identified 

in four rhyolites (Table 2.1). Pyrrhotite (<50µm in size) is a trace mineral in COMP-3. 

To illustrate the glassy nature of the obsidian samples, with minor amounts of 

microlites, photomicrographs of three obsidian samples are featured in Fig. 2.1.  Next to 

each photomicrograph is an aluminum element map of an area of groundmass (600 µm x 

600 µm) within each sample.  The Al-element maps show the extent of plagioclase 

microlite crystallization.  JAL-10 has the most microlites, whereas TEQ-21 and MLV-36 

have the least. 
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Figure 2.1: Crossed polar photomicrographs (shown on the left) and corresponding aluminum element 
maps of groundmass (shown on the right) for JAL-10, TEQ-21 and COMP-3.  The area of the aluminum 
element map is shown in the photomicrograph as a white box. 

 
2.5 MINERAL COMPOSITIONS 

Analytical Methods 

Plagioclase, pyroxene, ilmenite and magnetite were analyzed in each sample with 

the Cameca SX-100 Electron Microprobe at the University of Michigan.  An accelerating 

voltage of 15 kV was used in all analyses, along with a beam current of 4 nA for 
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plagioclase and 15 nA for pyroxene, ilmenite, and titanomagnetite.  The small size of the 

ilmenite and titanomagnetite crystals generally limited their analyses to a single point.  

Rim to rim transects were taken along the long axis of each plagioclase and 

orthopyroxene phenocryst and microphenocryst.  The spacing interval between each 

analysis along the transects ranged from 5 to 30 µm, depending on the observed zoning 

and size of each grain.  Plagioclase crystals were also analyzed for concentrations of Ba 

and Sr, using laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) 

at Oregon State University.  For analyses of Sr and Ba, plagioclase crystals were 

analyzed with a beam spot size of 50 µm and calibrated using 43Ca, while monitoring 

standards BHVO-2G and two separate standards of BCR-2G.  

 
Analytical Results 

Within each sample, the ilmenite and titanomagnetite analyses have a small range 

in composition (Table 2.2). Analyses of individual crystals of titanomagnetite and 

ilmenite for each sample are reported in the Appendix (Tables A2 and A3, respectively).  

A plot of log (XMg/XMn)magnetite vs log (XMg/XMn)ilmenite for all possible magnetite-ilmenite 

pairs in each sample is included in the Appendix (Fig. A3); no pairs deviate strongly from 

the test of equilibrium proposed by Bacon and Hirshmann (1988). 
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Table 2.2: Average Compositions of Fe-Ti Oxides 
Sample:	   TEQ-‐21	   COMP-‐3	   JAL-‐10	   MLV-‐36	   MLV-‐37	   MLV-‐45	  
Phase:	   IL	   IL	   IL	   IL	   IL	   IL	  
No.	  of	  	  
Analyses	  

17	   8	   11	   21	   15	   14	  

SiO2	   0.02	   0.06	   0.04	   0.04	   0.10	   0.03	  

TiO2	   47.29	   37.78	   40.13	   45.82	   45.57	   42.7	  

Al2O3	   0.17	   0.32	   0.41	   0.25	   0.16	   0.40	  

Fe2O3	   11.83	   31.06	   27.01	   16.19	   15.43	   22.7	  

V2O3	   0.36	   0.09	   0.06	   0.47	   0.47	   0.34	  

Cr2O3	   0.01	   0.02	   0.02	   0.06	   0.05	   0.03	  

FeO	   37.10	   27.24	   29.24	   33.93	   35.18	   31.0	  

MnO	   0.85	   0.74	   0.78	   0.58	   0.63	   0.59	  

MgO	   1.54	   2.47	   2.35	   2.41	   1.82	   2.22	  

CaO	   0.06	   0.05	   0.02	   0.03	   0.02	   0.14	  

Total	   99.24	   99.83	   100.05	   99.79	   99.43	   100.2	  

XIlmenite	   81.1	   59.7	   64.1	   74.5	   77.2	   69.1	  
±1σ	  
XIlmenite	  

2.3	   2.0	   1.1	   1.1	   0.1	   0.1	  

	  	   	  	   	  	   	  	   	  	   	  	   	  	  
Phase:	   MT	   MT	   MT	   MT	   MT	   MT	  

No.	  of	  	  
Analyses	  

7	   10	   4	   8	   4	   8	  

SiO2	   0.07	   0.07	   0.12	   0.9	   0.17	   0.12	  

TiO2	   17.6	   5.67	   5.68	   10.7	   9.41	   7.41	  

Al2O3	   1.74	   2.23	   2.36	   2.19	   1.98	   2.55	  

Fe2O3	   32.9	   56.2	   56.0	   44.8	   47.6	   52.1	  

V2O3	   0.30	   0.28	   0.19	   1.07	   0.32	   0.44	  

Cr2O3	   0.02	   0.03	   0.02	   0.13	   0.15	   0.18	  

FeO	   45.3	   33.9	   34.4	   38.9	   37.3	   36.4	  

MnO	   0.71	   0.64	   0.66	   0.47	   0.49	   0.39	  

MgO	   1.07	   1.58	   1.30	   1.42	   1.17	   1.27	  

CaO	   0.02	   0.01	   0.02	   0.03	   0.10	   0..02	  

Total	   99.7	   100.6	   100.5	   99.9	   98.7	   100.5	  

Xulvospinel	   49.3	   15.9	   15.9	   30.4	   26.8	   20.6	  
±1σ	  
Xulvospinel	  

1.8	   1.1	   1.8	   0.3	   3.3	   2.0	  

T(⁰C)	   940	  ±	  18	   801	  ±	  8	   779	  ±	  25	   852	  ±	  12	   813	  ±	  10	   837	  ±	  20	  

ΔNNO	   -‐0.4	  ±	  0.1	   1.4	  ±	  0.1	   1.4	  ±	  0.1	   0.3	  ±	  0.1	   0.4	  ±	  0.1	   0.9	  ±	  0.1	  

Temperature	  and	  ΔNNO	  are	  average	  (±1σ)	  from	  all	  possible	  
pairings	  of	  ilmenite	  and	  titanomagnetite	  analyses	  using	  model	  
of	  Ghiorso	  &	  Evans	  (2008).	  

	   	   	   	  
 

A compositional traverse was taken along the long axis of each plagioclase grain 

within a thin section for each sample.  Analyses from the plagioclase traverses are 

available in the Appendix (Table A4) and a subset is shown in Table 2.3.  In Fig. 2.2, the 
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range in mol% An in a single crystal is shown as a function of length.  No correlation is 

observed with phenocryst length and An content.  The entire set of compositional 

traverses of plagioclase from sample MLV-36 illustrate that normal, reverse and no 

zoning all coexist (Appendix Fig. A4).  The data in Figs. 2.2 and Fig. A4 show the 

compositional range for all plagioclase analyses in an entire sample is larger than that 

observed in a single crystal.   

 

Table 2.3: Analyses of Minimum and Maximum % An Plagioclase	   

Sample:	  
TEQ	  
21	  

TEQ
21	  

COMP
3	  

COMP
3	  

JAL	  
10	  

JAL	  
10	  

MLV
36	  

MLV	  
36	  

MLV	  
37	  

MLV	  
37	  

MLV	  
45	  

MLV	  
45	  

ph:	   ph	   ph	   ph	   ph	   ph	   ph	   ph	   ph	   ph	   ph	   ph	   ph	  

SiO2	   64.5	   69.0	   54.9	   57.8	   55.5	   66.8	   56.1	   60.6	   53.2	   62.6	   50.6	   59.7	  
Al2O3	   22.4	   17.6	   28.9	   26.5	   28.1	   20.8	   28.0	   24.7	   29.4	   23.0	   31.4	   25.1	  
Fe2O3	   0.13	   0.76	   0.24	   0.21	   0.42	   0.28	   0.26	   0.31	   0.54	   0.26	   0.63	   0.60	  
CaO	   3.47	   1.09	   10.9	   7.04	   10.7	   4.64	   10.4	   6.65	   12.3	   5.16	   14.3	   7.14	  
Na2O	   8.56	   6.92	   5.34	   7.05	   4.93	   6.33	   5.12	   7.22	   4.40	   7.67	   4.56	   7.33	  
K2O	   1.62	   4.08	   0.22	   0.43	   0.22	   0.98	   0.31	   0.73	   0.26	   1.02	   0.11	   0.56	  
Sum	   100.2	   99.7	   100.3	   99.3	   100.3	   100.1	   99.1	   100.3	   100.1	   100.0	   100.5	   100.5	  

Anion	  normalization	  
	   	   	   	   	   	   	   	   	   	   	  Si	   2.84	   3.05	   2.47	   2.60	   2.50	   3.03	   2.52	   2.69	   2.41	   2.80	   2.29	   2.66	  

Al	   1.16	   0.92	   1.53	   1.41	   1.49	   1.11	   1.48	   1.30	   1.57	   1.21	   1.68	   1.32	  
Fe3+	   0.00	   0.03	   0.01	   0.01	   0.01	   0.01	   0.01	   0.01	   0.02	   0.01	   0.02	   0.03	  
Ca	   0.16	   0.05	   0.51	   0.34	   0.52	   0.23	   0.52	   0.32	   0.60	   0.25	   0.70	   0.34	  
Na	   0.73	   0.59	   0.47	   0.62	   0.43	   0.63	   0.44	   0.62	   0.40	   0.67	   0.30	   0.63	  
K	   0.09	   0.23	   0.01	   0.03	   0.01	   0.06	   0.02	   0.04	   0.00	   0.06	   0.01	   0.03	  
No.	  of	  
Cations	   4.99	   4.89	   5.01	   5.01	   4.97	   4.82	   4.98	   4.98	   4.99	   4.97	   5.01	   5.00	  
XAn	   0.17	   0.06	   0.51	   0.34	   0.54	   0.27	   0.53	   0.32	   0.60	   0.25	   0.70	   0.34	  
XAb	   0.74	   0.68	   0.48	   0.62	   0.45	   0.66	   0.45	   0.63	   0.39	   0.66	   0.30	   0.63	  
XOr	   0.09	   0.26	   0.01	   0.03	   0.01	   0.07	   0.02	   0.04	   0.01	   0.06	   0.01	   0.03	  

	   	   	   	   	   	   	   	   	   	   	   	   	  An%	   16.6	   5.9	   51.9	   34.6	   53.8	   26.8	   52.7	   32.3	   60.0	   24.6	   69.1	   33.9	  
wt%	  H2O	   2.6	   2.2	   5.9	   5.3	   6.5	   5.5	   4.5	   3.8	   5.6	   4.3	   5.8	   4.4	  
Ph,	  phenocrysts;	  Water	  concentrations	  are	  calculated	  with	  the	  hygrometer	  of	  Lange	  et	  al.	  (2009)	  and	  the	  
calibration	  of	  Lange	  et	  al.	  2012	  and	  Waters	  et	  al.	  2012	  (See	  text	  for	  more	  details).	  
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Figure 2.2: Plots of plagioclase length (long axis) by range in mol% An for all measured grains in each 
rhyolite.  Maximum mol% An observed in a phenocryst is shown with a black square and connected to the 
minimum mol% An, a grey square, with a black line.  Phenocryst length is not correlated with the range in 
mol% An observed (i.e. the largest range in mol% An is not found in the largest phenocryst).  The entire 
data set spans a greater range in mol% An than is observed in a single grain. 

 

Histograms of plagioclase compositions for phenocrysts (grey) and microlites (black) are 

shown as a function of mol% anorthite (An) for each sample (Fig. 2.3).  Microlites make 

up all analyzable crystals less than 50 µm.  In each sample, the microlite population, 

where present, is consistently more sodic than the phenocryst population.   The 

plagioclase phenocrysts in the highly evolved rhyolite (TEQ-21) are sodic, An17-An6, 

with a peak at 9 mol% An.  For the less-evolved rhyolites, the majority of the plagioclase 

phenocrysts range between ~An55-An30, with a peak in the mid-range.  In some rhyolites, 

a population of calcic plagioclase (up to An89) was observed, separated by a gap from the 

most abundant compositional range (Fig. 2.3).  
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Figure 2.3: Histograms of plagioclase phenocrysts (in grey), microlites (in black), and possible xenocrysts 
(in hatched pattern) as a function of mol% An.  Microlites (absent in TEQ-21 and MLV-36) are 
consistently more sodic than phenorysts.  Possible xenocrysts, determined by comparison with phase-
equilibrium experiments (see text), were found in all samples except in TEQ-21.  Also shown are melt wt% 
H2O values calculated with the plagioclase-liquid hygrometer model of Lange et al. (2009) recalibrated for 
rhyolites (Lange et al. 2012; Waters et al. 2012). The errors shown next to the peak water contents are 
calculated by applying the one-sigma errors on the pre-eruptive temperatures (derived from the two iron 
oxide geothermometer) to the temperatures used in the plagioclase-liquid hygrometer. 

Orthopyroxene crystals, like plagioclase, span a wide range of composition in 

each sample.  Compositional traverses were taken along the long axis of each 

orthopyroxene grain and are presented in the Appendix (Table 5A) and a subset is shown 
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in Table 2.4.  Often, the entire range of orthopyroxene compositions in a sample, as a 

function of Mg#, is much greater than the range of compositions observed in a single 

crystal (Appendix Fig. A4).  The Mg# of orthopyroxene is calculated using the 

concentrations of MgO and FeOT from the microprobe analyses, where all FeO is 

considered to be ferrous.  The change in Mg# that results when considering small 

amounts of Fe3+ that may be present in the orthopyroxene structure is addressed in the 

following section on Fe-MgKD.  Histograms of orthopyroxene composition as a function of 

Mg# are presented for each sample in Fig. 2.4.  The orthopyroxene crystals in the highly 

evolved rhyolite (TEQ-21) have a narrow range in Mg# (45-46), whereas those in the less 

evolved rhyolites span a wide range in Mg# (51-76). 

Table2.4: Analyses of minimum and maximum Mg-number orthopyroxene	  
Sample 

TEQ
21 

TEQ
21 

COMP
3 

COMP
3 

JAL 
10 

JAL 
10 

MLV
36 

MLV
36 

MLV
37 

MLV
37 

MLV
45 

MLV
45 

ph/mph mph mph mph ph ph ph ph mph ph ph ph ph 
SiO2 49.4 49.8 53.7 51.9 51.5 57.4 50.0 52.1 50.2 51.8 51.3 52.0 
TiO2 0.11 0.11 0.13 0.12 0.07 0.10 0.16 0.09 0.14 0.15 0.08 0.21 
Al2O3 0.30 0.34 1.74 1.55 0.55 3.22 0.41 0.54 0.50 3.62 0.28 1.71 
FeO 31.4 30.9 19.2 18.9 22.2 15.9 29.4 23.5 29.2 15.7 26.5 18.0 
MnO 2.36 2.24 1.23 1.27 1.98 1.12 0.88 0.81 0.90 0.25 1.17 0.87 
MgO 14.2 14.6 22.5 25.3 22.4 20.9 17.2 21.6 17.5 26.2 19.5 25.0 
CaO 1.40 1.37 0.59 0.54 0.52 0.60 1.01 0.87 0.93 1.17 0.70 1.15 
Sum 99.3 99.5 99.1 99.7 100.7 99.3 99.5 98.9 99.1 99.5 99.3 99.3 

             Cation sum=4, O=6 
          Si 1.95 1.97 2.00 1.90 1.93 2.10 1.95 1.96 1.95 1.88 1.96 1.92 

Al (IV) 0.05 0.03 0.00 0.10 0.07 0.00 0.05 0.04 0.05 0.12 0.04 0.08 
Al (VI) 0.00 0.00 0.08 0.00 0.00 0.14 0.00 0.00 0.00 0.03 0.00 0.00 
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
Fe3+ 
(VI) 0.08 0.05 0.00 0.13 0.11 0.00 0.08 0.05 0.08 0.07 0.06 0.08 
Fe2+ 0.95 0.97 0.60 0.45 0.59 0.49 0.88 0.69 0.87 0.41 0.78 0.47 
Mn 0.08 0.07 0.04 0.04 0.06 0.03 0.03 0.03 0.03 0.01 0.04 0.03 
Mg 0.84 0.86 1.25 1.38 1.26 1.14 1.00 1.21 1.01 1.42 1.11 1.37 
Ca 0.06 0.06 0.02 0.02 0.02 0.02 0.04 0.03 0.04 0.05 0.03 0.05 

Fe2+/FeT 0.92 0.95 1.00 0.88 0.85 1.00 0.91 0.94 0.92 0.85 0.93 0.85 
Mg-no. 46.7 47.0 67.6 75.3 68.0 70.1 53.3 63.7 53.8 77.7 58.6 74.4 
KD 0.17 0.17 0.27 0.21 0.32 0.29 0.27 0.17 0.27 0.09 0.39 0.19 
             All Fe2+ 

            Mg-no. 44.6 45.7 67.6 70.5 64.3 70.1 51.1 62.2 51.7 74.8 56.7 71.2 
KD 0.19 0.18 0.27 0.23 0.38 0.29 0.29 0.18 0.30 0.11 0.42 0.22 
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Figure 2.4: Histograms of orthopyroxene phenocryst (grey) compositions, as a function of Mg# with 
corresponding Fe-MgKD values between orthopyroxene and liquid.  The liquid Fe2+ concentration (wt% FeO) 
is derived from ΔNNO values obtained from two Fe-Ti oxide oxygen barometry and closely matches 
measurements by titration (Table 2.1) (see text for discussion). 

Analyzed Ba and Sr concentrations in plagioclase and the Ba and Sr partition 
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3 and JAL-10) are presented in Table 2.5.  Partition coefficients for barium and strontium 

were calculated using the following equations: 

   DBa =
Ba(ppm)plagioclase

Ba(ppm)liquid
    ,  DSr =

Sr(ppm)plagioclase

Sr(ppm)liquid
 (Equation 2.1) 

 The partition coefficients were calculated by taking into account the changing Ba and Sr 

liquid concentrations due to the sparse phenocryst growth of plagioclase (Table 2.5).  

Equilibrium crystallization and fractional crystallization were modeled, beginning with 

the most calcic plagioclase, and the results of both calculations are presented in the 

Appendix (Table A6).  Because the most calcic plagioclase in each sample is the near-

liquidus phase, whole-rock concentrations for Ba and Sr can be used for the liquid 

concentrations at the beginning of this calculation. The abundance (percent crystals) of 

plagioclase used at each step of the calculation was determined by multiplying total 

plagioclase abundance (Table 2.1) by the percent of plagioclase crystallized at a given 

mol% An from in the histogram in Fig. 2.3.  The changing  Ba and Sr concentrations in 

the liquid, driven by removal of the relatively more calcic plagioclase,  were used to 

calculate DBa and DSr for the progressively more sodic plagioclase.  The model results for 

both equilibrium and fractional crystallization are presented in the Appendix (Table A6).  

At the low phenocryst abundances in these samples, there is little difference between the 

two end-member crystallization models.  However, because diffusive re-equilibration of 

plagioclase is slow, the fractional crystallization model is used to calculate the Ba and Sr 

liquid concentrations for the partition coefficients listed in Table 2.5.  All analyzed trace 

element concentrations are provided in the Appendix (Table A7). 

 



 
 

Table 2.5: Sr and Ba analyses in plagioclase 

TEQ-‐21	  
	   	   	   	   	   	  

COMP-‐3	  
	   	   	   	   	   	  

JAL-‐10	  
	   	   	   	   	   	  XAn	  

%	  
xtl	  

Baplag	  
(ppm)	  

Srplag	  
(ppm)	  

Baliq	  
(ppm)	   DBa	  

Srliq	  
(ppm)	   DSr	   XAn	   %	  xtl	   Baplag	  

(ppm)	  
Srplag	  
(ppm)	  

Baliq	  
(ppm)	   DBa	  

Srliq	  
(ppm)	   DSr	   XAn	  

%	  
xtl	  

Baplag	  
(ppm)	  

Srplag	  
(ppm)	  

Baliq	  
(ppm)	   DBa	  

Srliq	  
(ppm)	   DSr	  

12.7	   0.07	   2777	   520	   130	   21.3	   24	   22.0	   57.4	  
0.00

1	   187	   1814	   1141	   0.16	   253	   7.17	   50.7	   0.09	   300	   1724	   1135	   0.26	   255	   6.77	  
12.5	   0.07	   3248	   578	   130	   24.9	   24	   24.4	   41.4	   0.41	   371	   1638	   1145	   0.32	   247	   6.64	   50.3	   0.09	   245	   1686	   1136	   0.22	   253	   6.65	  
11.9	   0.05	   1486	   341	   129	   11.5	   23	   14.6	   40.6	   0.41	   398	   1441	   1148	   0.35	   241	   5.98	   49.9	   0.09	   270	   1727	   1136	   0.24	   253	   6.82	  
11.5	   0.05	   1983	   393	   129	   15.4	   23	   16.8	   40.6	   0.41	   545	   1670	   1148	   0.47	   241	   6.93	   49.4	   0.09	   295	   1773	   1136	   0.26	   252	   7.03	  
10.5	   0.15	   1431	   332	   126	   11.4	   23	   14.5	   40.6	   0.41	   350	   1589	   1148	   0.30	   241	   6.59	   45.4	   0.08	   277	   1677	   1137	   0.24	   251	   6.69	  
9.6	   0.54	   2337	   335	   119	   19.6	   21	   15.8	   40.4	   0.53	   366	   1654	   1152	   0.32	   234	   7.07	   44.7	   0.08	   279	   1498	   1137	   0.25	   251	   5.97	  
9.6	   0.54	   2645	   388	   119	   22.2	   21	   18.3	   40.4	   0.53	   384	   1519	   1152	   0.33	   234	   6.49	   44.7	   0.08	   285	   1606	   1137	   0.25	   251	   6.40	  
9.5	   0.54	   3528	   371	   119	   29.6	   21	   17.5	   40.1	   0.53	   367	   1448	   1152	   0.32	   234	   6.19	   42.1	   0.29	   785	   1628	   1139	   0.69	   247	   6.59	  
9.5	   0.54	   3429	   460	   119	   28.8	   21	   21.7	   39.7	   0.53	   412	   1539	   1152	   0.36	   234	   6.58	   40.8	   0.43	   394	   1482	   1141	   0.35	   241	   6.15	  
9.4	   0.62	   2817	   343	   100	   28.1	   19	   18.4	   39.7	   0.53	   429	   1539	   1152	   0.37	   234	   6.58	   40.7	   0.43	   363	   1427	   1141	   0.32	   241	   5.92	  
9.2	   0.62	   3054	   362	   100	   30.5	   19	   19.4	   39.7	   0.53	   402	   1531	   1152	   0.35	   234	   6.54	   40.6	   0.43	   434	   1493	   1141	   0.38	   241	   6.19	  
9.1	   0.62	   2621	   345	   100	   26.2	   19	   18.5	   39.6	   0.53	   377	   1476	   1152	   0.33	   234	   6.31	   40.5	   0.43	   415	   1442	   1141	   0.36	   241	   5.98	  
9.1	   0.62	   4005	   379	   100	   40.0	   19	   20.3	   39.5	   0.53	   387	   1500	   1152	   0.34	   234	   6.41	   39	   0.55	   724	   1565	   1145	   0.63	   235	   6.67	  
9	   0.62	   1929	   365	   100	   19.2	   19	   19.5	   39.4	   0.22	   641	   1819	   1154	   0.56	   231	   7.87	   38.8	   0.55	   554	   1485	   1145	   0.48	   235	   6.33	  

8.9	   0.62	   3773	   378	   100	   37.7	   19	   20.2	   39.3	   0.22	   382	   1513	   1154	   0.33	   231	   6.54	   38.4	   0.37	   348	   1366	   1147	   0.30	   230	   5.94	  
8.9	   0.62	   2099	   286	   100	   20.9	   19	   15.3	   39.3	   0.22	   471	   1720	   1154	   0.41	   231	   7.44	   36.7	   0.5	   508	   1334	   1151	   0.44	   224	   5.95	  
8.8	   0.62	   2162	   284	   100	   21.6	   19	   15.2	   38.8	   0.22	   325	   1655	   1154	   0.28	   231	   7.16	   36.5	   0.57	   401	   1309	   1151	   0.35	   224	   5.84	  
8.8	   0.62	   3674	   342	   100	   36.7	   19	   18.3	   38.6	   0.22	   384	   1489	   1154	   0.33	   231	   6.44	   36.3	   0.57	   662	   1386	   1155	   0.57	   218	   6.35	  
8.8	   0.62	   2314	   291	   100	   23.1	   19	   15.6	   38.6	   0.22	   383	   1491	   1154	   0.33	   231	   6.45	   36.3	   0.57	   610	   1432	   1155	   0.53	   218	   6.56	  
8.6	   0.62	   3801	   363	   100	   37.9	   19	   19.4	   38.4	   0.08	   394	   1461	   1155	   0.34	   230	   6.35	   36	   0.57	   568	   1298	   1155	   0.49	   218	   5.95	  
8.6	   0.62	   1481	   283	   100	   14.8	   19	   15.1	   38.3	   0.08	   380	   1424	   1155	   0.33	   230	   6.19	   36	   0.57	   483	   1339	   1155	   0.42	   218	   6.14	  
8.2	   0.43	   2753	   307	   94	   29.2	   18	   17.5	   37.6	   0.08	   303	   1744	   1155	   0.26	   230	   7.58	   35.8	   0.57	   492	   1298	   1155	   0.43	   218	   5.95	  
8.1	   0.43	   2315	   294	   94	   24.5	   18	   16.7	   36.4	   0.03	   441	   1504	   1155	   0.38	   230	   6.55	   35.8	   0.57	   505	   1340	   1155	   0.44	   218	   6.14	  
7.7	   0.43	   2429	   271	   94	   25.7	   18	   15.4	  

	   	   	   	     	   	  
35.7	   0.57	   591	   1399	   1155	   0.51	   218	   6.41	  

7.4	   0.08	   2489	   296	   93	   26.9	   17	   17.0	  
	   	   	   	     	   	  

35.4	   0.48	   483	   1360	   1158	   0.42	   213	   6.40	  
6.1	   0.02	   1363	   220	   92	   14.8	   17	   12.7	  

	   	   	   	     	   	  
35.2	   0.48	   517	   1364	   1158	   0.45	   213	   6.42	  

	   	   	   	   	   	    	   	   	   	   	     	   	  
34.6	   0.48	   517	   1328	   1158	   0.45	   213	   6.25	  

	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	       	  	   	  	   33.3	   0.22	   420	   1219	   1160	   0.36	   210	   5.80	  
XAn=mol	  fraction	  anorthite	  in	  plagioclase;	  %xtal=	  percentage	  of	  plagioclase	  crystallized	  from	  the	  melt;	  Baplag	  (ppm)	  and	  Srplag	  (ppm)	  are	  the	  concentrations	  in	  plagioclase	  measured	  by	  LA-‐ICPMS.	  	  
	  DBa	  and	  DSr	  are	  the	  Ba	  and	  Sr	  partition	  coefficients	  modeled	  with	  Rayleigh	  crystal	  fractionation	  using	  the	  liquid	  compositions	  (Baliq	  and	  Srliq).	  	  See	  text	  for	  more	  detail.	  
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Temperature and Oxygen Fugacity 

Temperature and oxygen fugacity (reported as ΔNNO: log10fO2 relative to the 

log10fO2 of the Ni-NiO buffer at a given temperature) were obtained by applying the two 

Fe-Ti oxide geothermometer and oxybarometer model of Ghiorso and Evans (2008) to all 

possible pairs of titanomagnetite and ilmenite analyses in each sample.  The results of all 

possible pairings are shown as plots of ΔNNO vs. temperature for each sample in the 

Appendix (Fig. A5).  Temperatures (± 1σ) range from 779 ± 25 (JAL-10) to 940 ± 18 ⁰C 

(TEQ-21) and ΔNNO values (± 1σ) range from -0.4 ± 0.1 (TEQ-21) to 1.4 ± 0.1 (COMP-

3; JAL-10)(Table 2.2).  The four samples that contain hornblende have the lowest 

temperatures (≤ 837 ⁰C).  Values of wt% FeO were calculated using the temperature and 

ΔNNO from the Fe-Ti oxides into the equation of Kress and Carmichael (1991); the 

calculated values match those measured by titration (Table 2.1). 

 
Calculation of KD values for orthopyroxene and liquid 

The orthopyroxene and liquid (whole-rock) compositions can be used to calculate 

Fe-MgKD values between orthopyroxene and liquid, using the following equation: 

    Fe−MgKDopx−liq
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  (Equation 2.2) 

The concentration of ferrous iron in each liquid (XFeO), based on the calculated 

∆NNO value derived from the two Fe-Ti oxybarometer (Table 2.1), , was used for all 

calculations of Fe-MgKD.  The concentrations of FeO and MgO in orthopyroxene were 

those obtained from the electron microprobe analyses.  The Fe3+ concentration in the 

orthopyroxenes was calculated based on stoichiometry, and the Fe-MgKD values that result 

(0.09-0.39) are presented in Table 2.4.  Because the majority of the Fe-MgKD values 
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reported in the literature for orthopyroxene are based without considering concentrations 

of Fe3+ (i.e. total iron as Fe2+) in the mineral phase, these values are also reported  in this 

study (0.11-0.42; Table 2.4 and Fig. 2.4).   

2.6 TESTS TO DISTINGUISH PHENOCRYSTS VS. XENOCRYSTS 

Comparison with Phase-Equilibrium Experiments 

The wide ranges of plagioclase and orthopyroxene compositions in each sample 

were compared to mineral compositions found in phase-equilibrium experiments in the 

literature to evaluate whether some of the plagioclase and/or orthopyroxene in each 

sample are xenocrystic. 

   
Plagioclase 

Three fluid-saturated experimental studies on natural rhyolites at upper crustal 

conditions were used to evaluate a possible xenocryst origin for some of the plagioclase 

crystals in each sample.  Coombs and Gardner (2001), Couch et al. (2003), and Tomiya et 

al. (2010) conducted experiments on rhyolite liquids with An#s (defined in Table 2.1) of 

5, 27 and 10, respectively.  The results of the phase-equilibrium experiments are shown 

in a plot of plagioclase composition (mol% An) vs. the An# of the experimental liquid 

(Fig. 2.5).  Also shown are the experimental data used to calibrate the plagioclase-liquid 

hygrometer of Lange et al. (2009), but only for liquids with An#s ≤ 30 (felsic 

compositions).  The phase-equilibrium data show that a wide range of plagioclase 

compositions (spanning ~20 mol% An) can form in each liquid at a given An#, with more 

calcic plagioclase forming at higher temperatures and/or higher melt water 

concentrations.  Additionally, the An# of the rhyolite liquid controls the range of 
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equilibrium plagioclase that can form, with more calcic plagioclase forming in liquids 

with higher An#s. 

	  

Figure 2.5: A plot of analyzed plagioclase compositions (mol% An) in the six obsidian samples as a 
function of the An# of the liquid (defined in Table 2.1) with a range of possible xenocrysts shown as a 
dashed grey line (see text for criteria for distinguishing xenocrysts).  Also shown are plagioclase 
compositions (mol% An) crystallized in the phase-equilibrium experiments of Coombs and Gardner (2001) 
(open diamonds), Couch et al. (2003) (open triangles) and Tomiya et al. (2010) (open squares). Grey 
crosses show a subset of the experimental data, liquids with An#s <30, used to calibrate the plagioclase-
liquid hygrometer of Lange et al. (2009). The experiments show that a range of equilibrium plagioclase 
compositions spanning 20 mol% An can crystallize out of a single liquid, with the more calcic plagioclase 
forming at higher temperatures and/or water contents.  Liquids with higher An#s crystallize more calcic 
plagioclase than liquids with lower An#s. 

Four of the six rhyolites in this study have liquid An#s that cluster around eight 

and overlap the An#s of the experimental glasses in the study of Tomiya et al. (2010) 

(Fig. 2.5).  The most calcic plagioclase in the experiments of Tomiya et al. (2010) is 

An51, which is the minimum cut-off for plagioclase compositions that are plausible 

phenocrysts in the four rhyolites with An#s of eight.   The observed distribution of 

plagioclase compositions is also used as a guide, and the cut-off between phenocryts and 

xenocrysts is taken at the first compositional gap in the analyzed plagioclase 

compositions (~An55-An60).  Plagioclase crystals that are probable xenocrysts are shown 
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as a hatch pattern in the histograms in Fig. 2.3 and are removed in Fig. 2.5.  Sample 

MLV-45 has a relatively high An# of 12, and therefore the range of plausible phenocrysts 

for this sample extends to ≤An70.  The more calcic plagioclase crystals in this sample 

(ranging up to An89) are considered possible xenocrysts and are shown with a hatched 

pattern in Fig. 2.3.  

 
Orthopyroxene 

In order to compare the range of orthopyroxene compositions with the results of 

phase-equilibrium experiments, only those studies where oxygen fugacity was buffered 

and/or monitored can be used, so that the ferric-ferrous ratio in the liquid is known.  All 

three of the fluid-saturated phase-equilibrium experiments on natural rhyolites were 

buffered at or near ~Ni-NiO, but only Coombs and Gardner (2001) and Tomiya et al. 

(2010) report orthopyroxene compositions; the resultant Fe-MgKD values between 

orthopyroxene and liquid range from 0.16-0.17 and 0.31-0.71, respectively.  These 

experimentally obtained Fe-MgKD values are plotted as a function of liquid Mg# in Fig. 

2.6, along with those obtained for orthopyroxene in dacite and andesite liquids from 

various fluid-saturated phase-equilibrium experiments in the literature (Gardner et al. 

1995; Blatter and Carmichael 1998, 2001; Moore and Carmichael 1998; Martel et al. 

1999; Scaillet and Evans 1999; Pichavant et al. 2002; Grove et al. 2003; Costa et al. 

2004; Holtz et al. 2005).  
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Figure 2.6: A plot of the range of Fe-MgKD values between orthopyroxene and liquid for the six obsidian 
samples.  The Fe-MgKD values between orthopyroxene and liquid from the experiments of Coombs and 
Gardner (2001) (open diamonds) and Tomiya et al. (2010) (open squares) are also shown.  Grey crosses 
show Fe-MgKD values obtained from orthopyroxene crystallized in water-saturated andesite and dacite 
liquids from experiments in the literature, where oxygen fugacity was rigorously controlled or monitored 
(see text). 

For all six rhyolites, the range of Fe-MgKD values between orthopyroxene and 

liquid broadly overlap the experimental values shown in Fig. 2.6, consistent with a 

phenocryst origin for the full range of orthopyroxene compositions in each sample.  The 

one exception is seen in MLV-37, for which the most Mg-rich orthopyroxenes (Mg#s = 

70-76) have unusually low Fe-MgKD values of 0.13-0.11, given the bulk liquid Mg# of 24.  

These magnesian orthopyroxenes are therefore plausible xenocrysts and are shown with a 

hatched pattern in Fig. 2.4.  

   
Ba and Sr Partitioning 

Another test of a phenocryst vs. xenocryst origin for plagioclase can be made with 

Ba and Sr partition coefficients between plagioclase and liquid.  Blundy and Wood 
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(1991), Bindeman et al. (1988), and Bindeman and Davis (2000) present model 

equations, based on natural and experimental data, for determining RTln(DBa) and 

RTln(DSr) as a function of mol% An in plagioclase.  Measured partition coefficients for 

Ba and Sr between plagioclase and liquid for three samples from this study (TEQ-21, 

COMP-3, and JAL-10) are shown in Table 2.5.  These data are combined with 

temperatures obtained with from the Fe-Ti oxides (Table 2.2) to plot values of RTln(DBa) 

and RTln(DSr) as a function of mol% An in Fig. 2.7. 

The results for JAL-10 and COMP-3 on phenocrystic plagioclase crystals 

(according to the data in Figs. 2.3 and 2.5) overlap the data set used to calibrate the model 

of Blundy and Wood (1991), which further supports a phenocryst origin for this 

compositional range of plagioclase.  However, the results on the more calcic plagioclase 

crystals (An70- An57) in COMP-3 are offset from the data set used by Blundy and Wood 

(1991), consistent with a xenocryst origin for this calcic population.  Interestingly, these 

same calcic crystals show correspondence with the data set used to calibrate the Blundy 

and Wood (1991) model for the partitioning of Ba, which suggests that Ba is less useful 

than Sr as a diagnostic tool for identifying xenocrysts.  The sodic plagioclase crystals 

(An6-An13) in the highly-evolved rhyolite (TEQ-21) have corresponding RTlnDSr and 

RTlnDBa values that are broadly consistent with the model equations of Blundy and 

Wood (1991), although there are few experimental data for sodic plagioclase (<An30).   
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Figure 2.7: (A) Plot of RTlnDBa vs An (mol%) and (B) Plot of RTlnDSr vs An (mol%), where temperatures 
are those obtained from Fe-Ti oxides (Fig.2.7, Table 2.2) and DBa and DSr values are those calculated using 
the ppm Ba and Sr in plagioclase with the changing liquid Ba and Sr concentrations modeled by 
fractionational crystallization (see text).  Open symbols are samples from this study; grey circles the data 
used by Blundy and Wood (1991) to calibrate their model equation; grey squares and grey diamonds are the 
experimental data of Bindeman et al. (1998) and Bindeman and Davis (2000), respectively. 

An additional feature of the data in Fig. 2.7b is that within each sample there is a 

trend of decreasing or unchanging RTln(DSr) with decreasing mol% An, whereas the 

trend predicted by the equation of Blundy and Wood (1991) is increasing values of 
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RTln(DSr) with decreasing mol% An.  The results in Fig. 2.7b suggest that melt 

composition may also influence the partitioning of Sr between plagioclase and liquid. 

 
Summary: Evidence for “Mafic” Xenocrysts at Trace Levels 

On the basis of phase-equilibrium experiments and Sr partitioning data, 

xenocrysts of calcic plagioclase have been identified in five of six rhyolites.  Based on 

the number of analyses plotted in Fig. 2.3, the proportion of phenocrysts (>50 microns) in 

each sample that is possibly xenocrystic ranges from 0-13%.  Given the low overall 

abundances of phenocrysts in each sample, this leads to a maximum abundance of 

xenocrystic plagioclase in each sample of 0-0.17%.  In addition, one of these rhyolites 

(MLV-37) appears to contain xenocrystic orthopyroxene (0.02% of sample) that is more 

Mg-rich than the phenocryst population.  In all cases, the xenocrysts are more “mafic” 

than the phenocrysts and only occur in trace quantities (<0.2%).  An outstanding question 

is whether these xenocrysts show diagnostic disequilibrium textures compared to 

phenocrysts, which can be evaluated with back-scattered electron (BSE) images. 

 
2.7 BSE IMAGES OF XENOCRYSTS VS PHENOCRYSTS 

 BSE images of representative plagioclase and orthopyroxene crystals are 

presented for three samples (MLV-37 and MLV-45) in Figs. 2.8-9 to identify textures 

that may reflect their origin (phenocryst v. xenocryst). 

 
Plagioclase 

 Examples of plagioclase xenocrysts are shown alongside examples of phenocrysts 

in Figs. 2.8-9, for samples MLV-37 and MLV-45, respectively.  Plagioclase xenocrysts 

and phenocrysts from COMP-3 are provided in the Appendix (Fig. A6).  In each sample, 
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the calcic xenocryst (~An70-An85) occurs as a core with a sharp interfacial boundary with 

the surrounding sodic plagioclase (~An40) of variable thickness (Figs. 2.8a, 2.9a).  In Fig. 

2.8a (MLV-37), the calcic xenocryst is only partially enclosed by the more sodic 

phenocryst, and part of it remains in direct contact with the matrix liquid, without 

reaction.  This lack of reaction is expected from the plagioclase phase diagram (Fig. 

2.10), which shows that calcic xenocrysts will not melt, resorb or re-crystallize in a 

magma for which the equilibrium plagioclase is more sodic.  The only reaction 

mechanism available to calcic xenocrysts is solid-state diffusion (NaSi-CaAl), which is 

slow.  This is confirmed by experiments (e.g., Tsuchiyama 1985; Larsen 2005) where 

calcic plagioclase was placed into melts where the equilibrium plagioclase was more 

sodic; given sufficient time (53-480 hours), sodic plagioclase rims formed along the flat 

(unreacted) boundary with the calcic xenocrysts.   In contrast, sodic xenocyrsts (where 

the equilibrium plagioclase is more calcic) are expected to melt, resorb and recrystallize 

(Fig. 2.10), producing “dusty” rims, which is confirmed by experiments (e.g., 

Tsuchiyama 1985; Johannes et al. 1994; Nakamura and Shimakita 1998).  Therefore, the 

textures of the calcic plagioclase crystals observed in this study are consistent with a 

xenocryst origin, but are not diagnostic.  The only reason the calcic cores in the samples 

from this study are identified as xenocrysts is by comparison with the results of phase-

equilibrium experiments and Sr partitioning (Fig. 2.5 and 2.7), and not because of their 

textural features. 

 In contrast, the plagioclase phenocrysts (inferred from phase-equilibrium 

experiments; Figs. 2.5 and 2.7) in these samples show a range of textures.  In COMP-3, 

the phenocrysts (~An40) are euhedral and faceted (Appendix Fig. A6), which is consistent 
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with equilibrium growth.  However, in MLV-37 the phenocrysts (~An45) are often 

anhedral, and crystal C displays a highly irregular shape (Fig. 2.8).  Because crystal C is 

identical in composition to the rim of crystal A and crystal E in MLV-37, and it has the 

expected equilibrium plagioclase composition (Fig. 2.5), the possibility that its irregular 

shape is a growth texture rather than a resorption feature must be considered.  The 

plagioclase phenocryst textures in MLV-45 (Fig. 2.9) support this hypothesis, with 

crystal C displaying incipient “swallow-tails”, a dendritic, diffusion-limited growth 

texture (e.g. Kirkpatrick et al. 1981).   

 
Orthopyroxene 

 Evidence of diffusion-limited growth is particularly abundant among the 

orthopyroxene crystals, as seen in the BSE images for MLV-37 and MLV-45 (Figs. 2.8 

and 2.9).  Several of these orthopyroxene crystals display a vermiform-like texture, which 

Roeder et al. (2001) demonstrate is formed during diffusion-limited crystal growth (in 

chromites) from their cooling experiments on basalts (Appendix Fig. A7).   

For example, at first glance, in MLV-37 (Fig. 2.8), crystals B, D and F appear to 

have resorption textures, given their irregular, rounded shapes and numerous melt 

inclusions.  However, these crystals also display euhedral margins (at least on some 

sides).  The Mg-rich core in crystal B (interpreted as a xenocryst on the basis of phase-

equilibrium experiments; Fig. 2.6) is undergoing diffusive Fe-Mg exchange with the 

enclosing more Fe-rich orthopyroxene as seen from the microprobe analytical traverse for 

this crystal (Fig. 2.8).  This is the expected reaction for an orthopyroxene xenocryst, 

namely to undergo Fe-Mg diffusive exchange rather than to resorb, if orthopyroxene is 

otherwise stable.  
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In sample MLV-45 (Fig. 2.9), crystals B and D (interpreted to be phenocrysts on 

the basis of phase-equilibrium experiments; Fig. 2.6) have highly irregular shapes, with 

abundant nubby protrusions along their margins.  This texture is strikingly similar to the 

vermiform chromites produced in the cooling experiments of Roeder et al. (2001), where 

supercooling lead to cellular growth and the formation of multiple protuberances along 

the crystal margin (Appendix Fig. A7).  As pointed out in that study, the metallurgical, 

material science and petrological literature contain several papers that discuss the change 

from planar to cellular to dendritic growth as the degree of undercooling increases (e.g., 

O’Hara et al. 1968; Lofgren 1974; Kirkpatrick 1975; Sekerka 1993; Hammer 2006).  The 

faceted vermiform or cellular-growth texture seen along the margins of the 

orthopyroxenes in MLV-45 strongly suggest diffusion-limited rapid growth conditions 

and not resorption.  Moreover, the abundant mineral inclusions (ilmenite, 

titanomagnetite, zircon and apatite) in these orthopyroxene crystals are consistent with 

their growth from an evolved SiO2-rich liquid, as all of these mineral phases are stable in 

rhyolite melts.  
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Figure 2.8: BSE images of plagioclase and orthopyroxene crystals (A-F) in MLV-37.  A possible 
xenocrystic core (A) (An80) is featured alongside two grains of plausible phenocrysts (An34-50) (C and E), 
which display rounded margins that may reflect growth textures (see text). BSE images of orthopyroxene 
crystals are shown in B, D and F.  A possible Mg-rich (>70 Mg#) xenocryst core is shown in (B).  All other 
crystals have Mg#s that range from 53-62, and corresponding Fe-MgKD values that range from 0.28-0.19, 
respectively (B, D, and F).  The orthopyroxene textures are complex with textures that are rounded, nubby, 
and with multiple melt inclusions (B, D, F), along side euhedral margins. 
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Figure 2.9 BSE images of plagioclase crystals (A and C) in MLV-45.  A possible xenocrystic core (A) 
(An85) is featured alongside a plausible phenocryst (An35-55) (C). Crystal C displays swallow-tail texture, 
indicative of diffusion-limited growth.  BSE images possible orthopyroxene phenocyrsts are shown with 
Mg#s ranging from 55-70, and corresponding Fe-MgKD values that range from 0.45-0.22, respectively (B and 
D). Orthopyroxene crystals (B and D) are variably zoned and unzoned and all exhibit vermiform growth 
texture, which is characteristic of rapid, diffusion-limited growth (see text). 
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Figure 2.10: Schematic plot of the plagioclase binary loop projected from a magmatic liquid.  An80 and 
An40 are equilibrium plagioclase on the solidus. CX is a calcic xenocryst, which is always in the crystalline 
stability field and re-equilibration occurs by solid-state diffusion. SX is a sodic xenocryst, which is always 
in the liquid stability field and re-equilibration occurs by melting and recrystallization of a more calcic 
plagioclase.  For this phase diagram, the effect of an abrupt decrease in fH2O, or degassing, is equivalent to 
an abrupt decrease in temperature. 

	  

 
2.8 DEGASSING-INDUCED CRYSTALLIZATION OF PHENOCRYSTS? 

The diffusion-limited growth textures seen in several of the plagioclase and 

orthopyroxene phenocrysts in the samples from this study (Figs. 2.8-9), combined with 

the small variation in temperature obtained for each sample from the Fe-Ti oxides (Table 

2.2), raises the question of whether phenocryst growth was driven by degassing rather 

than cooling.   Rapid ascent of the host magma along fractures under fluid-saturated 

conditions could lead to the development of large undercoolings and thus diffusion-
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limited growth of phenocrysts.  Degassing-induced crystallization may also explain the 

relatively wide compositional range of plagioclase and orthopyroxene phenocrysts in 

these samples, given that variations in melt water concentration are known to affect the 

composition of plagioclase (e.g., Sisson and Grove 1993) and possibly orthopyroxene 

(Crabtree and Lange 2011; Frey et al. 2011).  Otherwise, the wide ranges in the 

plagioclase and orthopyroxene phenocryst compositions (excluding xenocrysts) are 

puzzling in these rhyolitic liquids given the low overall abundance of phenocrysts (2-6%) 

in these six samples.  To test the hypothesis of degassing-induced crystallization of 

phenocrysts, the first step is to determine pre-eruptive water concentrations at the time of 

phenocryst growth. 

   
Calculation of melt water concentrations 

Water contents are readily calculated in the phenocryst-poor obsidian samples in 

this study using the plagioclase-liquid hygrometer of Lange et al. (2009), which has been 

recently recalibrated for rhyolites (Lange et al. 2012; Waters et al. 2012).  Application of 

the plagioclase-liquid hygrometer requires an independent assessment of temperature, 

which is obtained from the two Fe-Ti oxides (Table 2.2).  The plagioclase-liquid 

hygrometer of Lange et al. (2009) is calibrated on an experimental data set that spans a 

wide range of liquid silica concentration (46-74 wt% SiO2), plagioclase compositions 

(An37-93), temperature (825-1230°C), and pressure (0-300 MPa), but does not cover the 

entire range of conditions appropriate to rhyolites.  Waters et al. (2012) conducted a 

series of water-saturated phase equilibrium experiments from 300-100 MPa and 750-

900°C on three rhyolite and rhyodacite samples.  Their experimental results, along with 

those from the literature on similar melts (e.g., Larsen, 2006; Coombs and Gardner, 2002; 
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Tomiya et al., 2010), have been used to re-calibrate the plagioclase-liquid hygrometer 

(Lange et al., 2012).  The new calibration (Appendix Table A8) extends the range of 

plagioclase down to An19 and the melt composition up to 78 wt% SiO2. The effect of 

pressure on the hygrometer is small (±100 MPa = ±0.1 wt% H2O) and therefore a 

constant pressure of 100 MPa can be used in all calculations.   

The results of the melt water calculations are shown in the plagioclase histograms 

in Fig. 2.3.  Due to the glassy, crystal-poor nature of each sample (Table 2.1), the bulk 

rock composition was used as the liquid composition in all hygrometer calculations.  By 

using the bulk composition, the change in liquid composition due to crystallization of 

sparse phenocrysts was not taken into account, leading to a small underestimate (≤ 0.1 

wt%) of the melt water concentrations, which ranges from 2.4-5.9 wt%, at the time of 

peak crystallization of plagioclase.  

Although the dissolved water concentrations (2.4-5.9 wt%) calculated with the 

plagioclase-liquid hygrometer for the rhyolites from this study overlap those (3-8 wt%) 

reported from quartz-hosted melt inclusions in rhyolites (e.g., Dunbar et al. 1989; 

Westrich et al. 1991; Lowenstern 1993, 1994; Wallace et al. 1999; Liu et al. 2006; Allen 

et al. 2010; Smith et al. 2010; Johnson et al. 2011), no quartz was found in any of the 

rhyolite samples from this study.  This may be explained by the phenocryst-poor 

character of the obsidian samples in this study, combined with the observation that the 

plagioclase-in curve is located at higher temperatures/pressures than that for the quartz-in 

curve in experiments on natural rhyolites at ≤ 200 MPa (Coombs and Gardner 2001; 

Couch et al., 2003a; Tomiya et al. 2010).  This reflects the fact that the stability of quartz 

decreases with decreasing pressure during ascent in rhyolite melts (including 
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eutectic/minimum melts that segregate from a quartz-bearing assemblage) (Tuttle and 

Bowen, 1958), such that the plagioclase-in curve will be located at a higher pressure than 

that for quartz at shallow depths.   

 
Comparison to experimental phase diagram for rhyolite 

In Fig. 2.11, the plagioclase and quartz-in curves from the experiments of Tomiya 

et al. (2010) are shown in a H2O fluid-saturated phase diagram, along with isopleths of 

dissolved wt% H2O calculated from the water solubility model of Liu et al. (2005) for 

rhyolite melts.  The calculated melt water concentrations for MLV-45 during plagioclase 

crystallization are plotted in this diagram, along with the temperature obtained for this 

sample (837 ± 20 °C) from the Fe-Ti oxides.  The most calcic plagioclase phenocryst 

(An70) leads to a calculated melt water concentration of 5.8 wt% H2O, which crosses the 

plagioclase-in curve in Fig. 2.11 at 837°C. Collectively, the plagioclase phenocrysts in 

MLV-45 lead to calculated water concentrations that are plotted on the adiabatic ascent 

path in Figure 2.11, consistent with degassing-induced crystallization of a fluid-saturated 

magma as it ascended rapidly along a fracture.  Although the phase diagram in Fig. 2.11 

is for pure H2O fluid-saturated conditions, the only effect of adding CO2 to the system is 

to increase the absolute value of total pressure on the y-axis in Fig. 2.11, which will 

steepen the slope of the plagioclase-in curve.  Importantly, the negative slope of the 

plagioclase-in curve is preserved as long as the magma is saturated in H2O-CO2 fluid 
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Figure 2.11: Phase diagram for H2O fluid-saturated, low-K rhyolite from the experiments of Tomiya et al. 
(2010).  Dashed lines show isopleths of water solubility in the melt when saturated with pure H2O fluid 
from the model of Liu et al. (2005).  Superimposed is an ascent path for rhyolite MLV-45 at the 
temperature obtained by two Fe-Ti oxide thermometry.  The ascent path is modeled as adiabatic (rapid 
transport along a fracture), (dT/dP)S = TVa/Cp, where T is temperature in Kelvin, V is molar volume, a is 
the coefficient of thermal expansion (calculated from Lange, 1997 and Ochs and Lange, 1999) and Cp is the 
molar heat capacity (calculated from Lange and Navrotsky, 1993, with partial molar Cp of the H2O 
component from Spera, 2000).  For dissolved water concentrations of 2-6 wt%, the adiabat varies from 3-5 
degrees per 100 MPa, respectively, and closely approximates an isothermal path.  Open and grey circles 
correspond to water concentrations calculated with the plagioclase-liquid hygrometer applied to 
phenocrysts and microlites, respectively (Fig. 2.5).  

The question arises as to why plagioclase crystals in MLV-45 do not record water 

concentrations < 4.0 wt%, consistent with continued degassing of the magma as it 

ascended to the surface.  It appears that crystallization ceased in this rhyolite at a melt 

water concentration of ~4.0 wt% H2O, before the magma crossed the quartz-in curve 

(Fig. 2.11), possibly because of a kinetic barrier to nucleation (discussed more fully 

below).  The results of the hygrometer also indicate that the transition from growth-

dominated to nucleation-dominated crystallization (i.e., phenocrysts to microlites; 

Hammer et al. 1999; Couch et al. 2003a; Blundy and Cashman 2008) occurred at a 
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relatively high melt water concentration (~4.5 wt% H2O; Fig. 2.3) in MLV-45, and 

therefore at relatively deep conditions (≥ 130 MPa; ≥ 4 km).  The relationship between 

degree of undercooling and the transition from growth-dominated to nucleation-

dominated crystallization, in the context of a rapidly ascending magma undergoing 

degassing-induced crystallization, is discussed more fully below. 

Crystal growth rates vs. nucleation rates with undercooling 

 The evidence outlined in Fig. 2.11 supports the hypothesis that the wide range in 

plagioclase phenocryst compositions in MLV-45 can be explained by adiabatic ascent 

under fluid-saturated conditions.  A degassing scenario is also consistent with the pattern 

observed in its plagioclase histogram in Fig. 2.3, namely a phenocryst population that 

peaks in the mid-compositional range and a microlite population that overlaps the sodic 

end of the phenocryst population.  The connection between degassing-induced 

crystallization and the histograms in Fig. 2.3 is illustrated with a schematic plot (Fig. 

2.12; modified from the experimental results of Meiling and Uhlmann, 1967) of how 

crystal growth rate and nucleation rate vary as a function of undercooling (∆T = T of 

plagioclase liquidus – T of magma).  Similar diagrams have been constructed from the 

results of decompression experiments under fluid-saturated conditions (e.g., Hammer and 

Rutherford, 2002; Couch et al., 2003b).  

 For example, when a fluid-saturated rhyolite liquid, such as MLV-45, ascends 

adiabatically and crosses the plagioclase-in curve (Fig. 2.12a), the magnitude of the 

undercooling (∆T = T of plagioclase liquidus – T of magma) will increase as the melt 

water concentration decreases.  The most calcic plagioclase phenocryst is expected to 
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form at low ∆T (zone 1 in Fig. 2.12b), which corresponds to relatively low crystal growth 

rates and low nucleation rates.  Therefore, for a rapidly ascending magma that does not  

	  

Figure 2.12: Schematic fluid-saturated plagioclase liquidus curve on a pressure v. temperature plot.  After 
an ascending magma crosses the plagioclase-in curve, it passes through three zones, where 
ΔT(=temperature of plagioclase liquidus- temperature of magma) progressively increases. (B) Schematic 
plot of crystal growth rate and nucleation rate with degree of under cooling (ΔT); modified from the 
experiments of Meiling and Uhlmann (1967).  Three zones are indicated, which correspond to those in (A).  
In zone 1, the most calcic plagioclase grows, owing to relatively high melt water concentrations; nucleation 
rates are low, and crystal growth rates are increasing.  In zone 2, plagioclase of intermediate composition 
grows as nucleation rates increase and crystal growth rates peak; this composition is expected to be the 
most abundant.  In zone 3, the most sodic plagioclase grows, owing to relatively low melt water, and marks 
the transition from growth-controlled crystallization (i.e. phenocrysts) to nucleation-controlled 
crystallization (i.e. microlites). 
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stall, the most calcic plagioclase phenocrysts are expected to form in relatively low 

abundance, which is consistent with the plagioclase histogram for MLV-45 in Fig. 2.3. 

As the magma continues to ascend and degas, both the crystal growth rate and nucleation 

rates increase (zone 2 in Fig. 2.12b) and the plagioclase becomes more sodic.  Plagioclase 

growth during zone 2 corresponds to the mid-range An peak in the histogram.  Further 

ascent and degassing will increase undercooling to the point where the crystal growth rate 

declines and the nucleation rate reaches a maximum (zone 3 in the Fig. 2.12b).  In this 

interval, microlite crystallization occurs, in conjunction with dwindling phenocryst 

growth.  At this stage, both the microlites and the phenocrysts are more sodic due to 

declining melt water concentrations during ascent, as well as changing melt composition 

(lower CaO/Na2O ratios) due to sparse plagioclase crystallization.  Therefore, the 

histogram pattern in Fig. 2.3 for MLV-45, as well as those for the other five rhyolites, is 

fully consistent with degassing-induced crystallization, which in turn has been 

documented in decompression experiments (e.g. Couch et al., 2003b). 

The schematic diagram in Fig. 2.12 additionally explains all the zoning patterns 

found in the plagioclase crystals in the obsidian samples from this study (Appendix Fig. 

A4), which includes normal, reverse and no zoning at all.  During stage 2, the rates of 

both crystal growth and nucleation increase, although crystal growth is dominant.  This 

leads to different possible zoning patterns, including the classic case of normal zoning 

where sodic rims grow on calcic cores that previously grew during stage 1.  However, 

because of rapid, diffusion-limited crystal growth, it is additionally possible for initial 

crystallization of calcic plagioclase during stage 1 to be skeletal and/or hopper, with large 

liquid interior regions in communication with the matrix liquid.  Subsequent growth of 
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more sodic plagioclase during stage 2 can occur in these large melt hollows, leading to 

reverse zoning.  Finally, because the nucleation rate is increasing during stage 2, it is 

additionally possible for nucleation of relatively sodic plagioclase to occur from the 

liquid, without it always having to grow on pre-existing calcic plagioclase, forming 

relatively sodic plagioclase crystals with little to weak zoning.   Although nucleation of 

plagioclase from the liquid becomes dominant in stage 3, it is expected to occur during 

stage 2, albeit at a lower rate. 

Couch et al. (2003b) explore how undercooling driven by degassing affects 

plagioclase growth rates and nucleation rates in a rhyolite melt during isothermal 

decompression experiments under pure H2O-fluid saturated conditions.  For example, one 

of their runs (#236) was a multistep (MD) decompression experiment at 875°C, where 

the sample was initially held at 160 MPa for a period of 16 hours, and then the pressure 

was dropped to 50 MPa in eight steps, with a dwell time of one hour per step (Fig. 2.13).  

The calculated water solubility (Liu et al., 2005), melt viscosity (Hui and Zhang, 2007) 

and equilibrium plagioclase composition (Couch et al., 2003a,b) at each pressure step in 

this MD experiment is shown in Figure 2.13a.  Despite an undercooling of 132 degrees at 

50 MPa, the abundance of plagioclase in the final run product is only 15.7 wt% (6.4 

vol%), whereas the equilibrium abundance is ~28.1 wt% (Couch et al., 2003a).   The 

reported plagioclase composition (± 1σ) in the run product is 50.1 ± 3.0 mol% An.  

Although the full range of observed plagioclase composition is not reported, it must be 

larger than the 1σ standard deviation (± 3 mol% An) and may have extended to An55-

An45.  From Figure 13b, it is clear that most of the plagioclase crystallization in the MD 

decompression experiment occurred during steps 4 through 7, at the peak of the  
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crystallization growth curve, as determined in their various experiments on this rhyolite.  

This is exactly the pattern predicted in Fig. 2.12 and observed in the histograms in Fig. 

2.3. 

	  

	  

Figure 2.13: (A) A multistep (MD) decompression path for experiment 236 of Couch et al. (2003b) is 
shown as a dashed line at a constant temperature of 875°C.  Melt viscosities (log10 Pa s) are shown beneath 
the decompression path in italicized font and are calculated with the water solubility model of Liu et al. 
(2005) and the viscosity model of Zhang and Hui (2007) and the equilibrium plagioclase composition 
reported by Couch et al. (2003a, b).  The mean plagioclase composition grown in experiment 236 is shown 
above the decompression path with a hollow circle, along with a 1σ (solid black line) and ~2σ (dashed line) 
standard deviation.  Experiment 236 ceased nucleation and growth at ~An44-An47, which corresponds to 
melt viscosities of 4.88-5.35 log10 Pa s. (B) A schematic plot of nucleation and growth curves as a function 
of undercooling (ΔT) is drawn based on rates observed in the experiments of Couch et al. (2003b) (and 
shown as Figure 2.15 in Couch et al., 2003b). Decompression steps 3-7 are shown on the growth curve at 
their approximate undercooling (ΔT) with corresponding plagioclase compositions (from A).  The average 
plagioclase composition measured by Couch et al. (2003) in experiment 236 and the 1σ distribution 
corresponds to the maximum growth rates in B. 
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Rapid degassing during ascent as a kinetic barrier to nucleation 

What is perhaps most surprising from the data presented thus far is the relatively 

high concentrations of water in each of the six rhyolite samples at the time nucleation 

ceased (Fig. 2.3), thus facilitating the eruption of crystal-poor rhyolite glasses 

(obsidians).  In one sample, MLV-36, no microlites formed (Figs. 2.1 and 2.3), clearly 

indicating that nucleation ceased at melt water concentrations of ~3.8 wt% H2O (Fig. 2.3) 

and therefore pressures ≥ 100 MPa (depths ≥ 3.8 km).  It is well understood that the rate 

of undercooling is an important control on whether or not a liquid will quench to a glass 

and that melt viscosity also plays a role; the higher the rate of undercooling, the lower the 

melt viscosity when nucleation ceases.  High melt viscosity contributes to a kinetic lag in 

nucleation owing to low melt component diffusivity (e.g., Loomis 1981), and it is 

therefore of interest to calculate the melt viscosity for each obsidian sample when 

plagioclase crystallization ceased.   

Because both temperature and melt water concentration are known for each 

sample (obtained from the Fe-Ti oxides and plagioclase-liquid hygrometer, respectively; 

Fig. 2.3), the viscosity of the melt phase during plagioclase crystallization can be 

calculated using the model of Hui and Zhang (2007).  In Fig. 2.14, the melt viscosity 

corresponding to growth of the most calcic plagioclase phenocrysts (i.e., at the highest 

calculated melt water concentration) is marked by a black square, whereas the melt 

viscosity corresponding to the onset of microlite crystallization is marked by a black 

diamond.  Also shown is the maximum melt viscosity at the end of plagioclase 

crystallization.  The sample that ceased crystallization at the lowest melt viscosity (~4.7 

log10 Pa-s) is MLV-36; therefore, it experienced the highest rate of undercooling.  The 
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mechanism to induce this rapid rate of undercooling must have been degassing (through 

ascent and decompression) and not actual cooling, because at depths ≥ 3.8 km, such rapid 

rates of undercooling (to prevent microlite growth) cannot be achieved by conductive 

cooling in the upper crust. 

	  

Figure 2.14: A plot of melt viscosity during plagioclase growth for each sample as a function of wt% SiO2.  
Melt viscosity is calculated from the model of Hui and Zhang (2007), using the bulk liquid compositions 
(Table 2.1), temperatures from the Fe-Ti oxides (Table 2.2), and the melt water concentrations from the 
plagioclase-liquid hygrometer (Fig. 2.5). Black squares mark the onset of phenocryst crystallization; open 
diamonds mark the onset of extensive microlite crystallization; black bars mark the cessation of 
crystallization. 

A broad constraint on the ascent rate for MLV-36 can be drawn from the 

experimental results for run #236 from Couch et al. (2003b), shown in Figure 2.13.  In 

that experiment, decompression from 160 to 50 MPa occurred in eight hours and the 

authors report that the plagioclase composition expected for the final pressure (50 MPa) 

did not grow in that experiment.  From Figure 2.13b, it is seen that a cessation of 

plagioclase nucleation and growth occurred once the melt viscosity reached ~5.2 log10 Pa 

s (between steps 7 and 8).  This result suggests that MLV-36, which contains no 

microlites and ceased nucleation at a melt viscosity of ~4.7 log10 Pa-s, had a faster 
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decompression path, and probably transited from ≥ 4.7 km (depth of its plagioclase 

liquidus) to the surface in less than eight hours. 

 
Degassing to explain the variable orthopyroxene compositions? 

 Given that the wide range in plagioclase composition in each sample (Fig. 2.3) is 

plausibly explained by degassing-induced crystallization during magma ascent (Fig. 

2.11), the question arises as to whether this process can also explain the wide 

compositional range in the orthopyroxenes (Fig. 2.4).  Their variation in Mg# (Fig. 2.4) 

cannot be explained by oxidation caused by degassing (e.g., Luhr, 2000; Burgisser and 

Scaillet, 2007) because the post-eruptive Fe2+ concentrations (wt% FeO), as measured by 

titration (Table 2.1), are within analytical error of the pre-eruptive Fe2+ concentration 

during phenocryst growth prior to extensive degassing, as obtained from the two Fe-Ti 

oxides (Table 2.1).  In other words, there is no analytical evidence that degassing had any 

measurable effect on the ferric-ferrous ratio in these rhyolites, which is consistent with 

the results of Crabtree and Lange (2012) for phenocryst-poor andesites and dacites.   

 There is evidence, however, that an increase in melt water concentration (i.e., 

dissolved hydroxyl groups) favors a more Fe-rich orthopyroxene.  For example, this 

result is found in the phase-equilibrium experiments of Grove et al. (2003) on a Mt. 

Shasta Mg-andesite (Fig. 2.15a) and from experiments of Gardner et al. (1995) on Mount 

St. Helens dacite (Fig. 2.15b); in both studies, values of Fe-MgKD increase with melt water 

concentration. A positive correlation between Fe-MgKD and dissolved water in the melt 

phase is additionally found in the combined phase-equilibrium experiments of Coombs 

and Gardner (2001) and Tomiya et al. (2010) on rhyolites.  Those data show that Fe-MgKD 

between orthopyroxene and liquid increases from ~0.2-0.3 at ~4 wt% H2O to ~0.4-0.5 at 
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~6 wt% H2O (Fig. 2.15c).  Although there are undoubtedly other compositional 

components in the melt phase, in addition to H2O, that affect the Fe-MgKD value between 

orthopyroxene and liquid, the available evidence strongly suggests that a loss of water 

during degassing can induce the observed change in the Mg# of orthopyroxenes. 

	  

Figure 2.15: A plot of wt% H2O and Fe-MgKD values between orthopyroxene and liquid for water-saturated 
phase equilibrium experiments on Mg-rich andesite (a) (Grove et al. 2003), (b) dacite (Gardner et al. 1995), 
(c) rhyolite (Tomiya et al. 2010 and Coombs and Gardner 2001) and (d) high-Mg basalt (Gaetani and 
Grove 1998).  The effect of dissolved water on the Fe-MgKD values is greater in more evolved liquids (i.e., 
lower MgO). 

 

 As discussed previously by Crabtree and Lange (2011) and Frey and Lange 

(2011), the mechanism by which dissolved water might reduce the activity of MgO 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 2 4 6 8 10
wt% H2O

2 4 6 8 10

Grove et al. (2003)
Mt. Shasta Mg-Andesite
slope=0.02
R2=0.88

Gardner et al. (1995)
Mt. St. Helens Dacite
slope=0.08
R2=0.94

wt% H2O
2 4 6 8 10

Gaetani & Grove (1998)
High-Mg Basalt
slope=0.005
R2=0.07

wt% H2O

A B

C D

Fe
-M

g K D
op

x-
liq

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

Fe
-M

g K D
op

x-
liq

Tomiya et al. (2010)
Coombs & Gardner
      (2001)
Rhyolites
slope= 0.11
R2=0.72

wt% H2O



 
 

63 

relative to FeO in the melt phase, and therefore the Mg# of orthopyroxene, is through the 

following reaction: 

Fe(OH)2 + MgO = Mg(OH)2 + FeO   (Equation 2.3) 

At 298 K and one bar, the free energy of the reaction for the solids in Eq. 3, using the 

JANAF thermochemical tables (4th edition; Chase 1998) is -24.2 kJ/mole, which indicates 

that hydroxl groups preferentially complex with Mg2+ rather than Fe2+ and suggests that 

dissolved hydroxyl groups may reduce the activity of MgO relative to FeO in the melt 

phase.  A similar reaction can be written involving the CaO and Na2O components: 

          Ca(OH)2 + Na2O = 2Na(OH) + CaO   (Equation 2.4) 

At 298 K and one bar, the free energy of the reaction for the solids in Eq. 2.4 is -85.5 

kJ/mole (Chase 1998), which shows that hydroxyl groups strongly favor complexing with 

Na+ compared to Ca2+.  Lange et al. (2009) present evidence that the reaction in Eq. 2.4 

provides the basis of the plagioclase-liquid hygrometer.  If correct, Eq. 3 predicts that an 

increase in dissolved water in magmatic liquids will favor a more Fe-rich pyroxene in the 

same way that it favors a more Ca-rich plagioclase.  

 Another question that arises from the experimental data in Fig. 2.15 is why is 

there a progression in the magnitude of how dissolved water affects the composition 

(Mg#) of orthopyroxenes as a function of melt composition (rhyolite > dacite > andesite 

> basalt).  In fact, the evidence from the experiments of Gaetani and Grove (1998) is that 

dissolved water has no effect on the Fe-MgKD between orthopyroxene and basalt liquid 

(Fig. 2.15d).  The main reason may be that the effect of dissolved water in reducing the 

activity of MgO relative to FeO is more discernible when MgO concentrations are 

relatively low.  In other words, for a given amount of dissolved hydroxyl groups, there 
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will be a greater relative effect on the activity of MgO in rhyolite liquids with < 0.4 wt % 

MgO (Tomiya et al. 2010) compared to basalt liquids with 11-13 wt% MgO (Gaetani and 

Grove 1998).  For a fixed concentration of dissolved H2O, melts with relatively low MgO 

concentrations are expected to have a greater proportion of their Mg2+ cations speciated 

to hydroxyl groups compared to melts with much higher MgO concentrations. 

 In summary, the experimental evidence summarized in Fig. 2.15 is fully 

consistent with the hypothesis that degassing-induced crystallization not only led to the 

diffusion-limited growth textures of the orthopyroxenes in the samples from this study 

(Fig. 2.8 and 2.9), but also explains the wide compositional variation observed for the 

orthopyroxene population in each sample (≤ 14% Mg#), despite their low abundance (< 

1%). 

 
2.9 CONCLUSIONS 

One of the most important observations from this study is that rhyolites with only 

2-6 % phenocrysts (+ microphenocrysts) are multiply saturated with five to eight 

different mineral phases (plagioclase + orthopyroxene + titanomagnetite + ilmenite + 

apatite ± zircon ± hornblende ± clinopyroxene ± sanidine).  This permits temperatures to 

be obtained from Fe-Ti oxide thermometry (~780 to 940°C), which in turn allows pre-

eruptive water concentrations to be calculated with the plagioclase-liquid hygrometer 

(~1.5-5.7 wt% during peak crystallization of plagioclase).  The results indicate that these 

magmas were fluid-saturated in the upper crust, and therefore degassing-induced 

crystallization was inevitable during magma ascent.  That the rhyolites were each 

multiply saturated with five to eight mineral phases at such low crystallinities (2-6%) 
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suggests that they segregated as an interstitial liquid from a source (crystal-rich magma or 

partially-melted pluton) that contained all of these mineral phases.  

Comparison with phase-equilibrium experiments from the literature permit 

phenocrysts vs. xenocrysts to be identified in the obsidian samples; in all cases the 

xenocrysts only occur in trace (< 0.2%) quantities and are “mafic” (calcic plagioclase and 

a rare case of Mg-rich orthopyroxene).  The evidence from this study indicates that the 

wide compositional range of plagioclase phenocrysts (typically An50-An30 in the five 

less-evolved rhyolites) formed because of a progressive loss of water (< 1.5 wt%) during 

magma ascent.  It also appears that the wide compositional range in the orthopyroxene 

populations (≤ 14 mol% Mg#) formed by the same process, with higher melt water 

concentrations leading to more Fe-rich pyroxenes.   

Finally, there is clear evidence that these phenocryst-poor, fluid-saturated rhyolite 

magmas were transported rapidly to the surface, in most cases from depths ≥ 2-7 km.  

The loss of water during magma ascent, owing to degassing, caused a large undercooling 

and an increase in melt viscosity, which together contributed to diffusion-limited crystal 

growth (e.g., vermiform texture in orthopyroxenes) and led a kinetic barrier to nucleation.  

For example, sample MLV-36 ascended so rapidly that no microlites formed and 

crystallization ceased at a melt viscosity as low as 4.7 log10 Pa-s.  
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CHAPTER III 

NO EFFECT OF DEGASSING OF H2O ON THE FE3+/FE2+ OF RHYOLITE 
OBSIDIANS 

 

3.1 ABSTRACT 

In this study a comparison is made between the pre-eruptive (pre-degassing) and 

post-eruptive (post-degassing) Fe2+ concentrations in six phenocryst-poor (<5%) glassy 

obsidians. Pre-eruptive Fe2+ concentrations were determined by incorporating 

temperatures and ∆NNO values for each sample, obtained by ilmenite-titanomagnetite 

geo-thermometry, into the experimentally calibrated equation of Kress & Carmichael 

(1991).  Pre-eruptive dissolved H2O contents were calculated by incorporating the pre-

eruptive temperatures, the most calcic plagioclase phenocrysts found in each sample, and 

the whole rock compositions into a modified version of the plagioclase-liquid hygrometer 

of Lange et al. (2009).  Maximum calculated pre-eruptive H2O contents range from 2.4 to 

5.1 wt%; therefore, both the oxidation state and dissolved H2O concentrations are known 

prior to eruption at the time of phenocryst growth.  After eruption, the rhyolites lost 

nearly all of their volatiles as indicated by low loss on ignition values (LOI< 0.7 wt%).  

In order to test how much oxidation of ferrous iron occurred as a consequence of 

degassing, the ferrous iron concentration in the bulk samples was measured by titration.  

The results of this study indicate that no detectable change within analytical error, 

between pre-and post-eruptive FeO concentrations, which range from 0.95-1.58 wt% 
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FeO, with an average deviation of 0.09 wt% and a maximum deviation of 0.15 wt%, 

suggesting that H2O degassing has no effect on the redox state of these systems. 

 

3.2 INTRODUCTION 

The oxidation state of a magma is determined by the oxygen fugacity (fO2), which 

also controls the valence state of heterovalent ions (e.g., Fe, S, Mn, Sn, V, Ti).  An 

example of the effect of fO2 on ferrous iron in the melt is shown in Equation 3.1: 

2FeO (melt) + 1/2O2 (melt) = Fe2O3 (melt)            (Equation 3.1) 

And hence the ratio of ferric to ferrous iron reflects the oxidation state of the magma.   

It has been proposed that open- or closed- system degassing of mixed H-C-S-O-Cl 

fluids may induce either oxidation or reduction of a magma, and thus change its ferric-

ferrous ratio (e.g., Maclean 1969; Whitney et al., 1985; Koder et al. 1998; Maretti and 

Papale, 2004; Evans 2006; Dolejis and Wagner 2008; Jugo 2009; Jugo et al. 2010; 

Webster et al. 2011; Bell and Simon, 2011).  Observations of magnetite in fluid 

inclusions in plutons (Whitney et al., 1985), sulfides and sulfate occurring in melt 

inclusions and groundmass, respectively (e.g., Pinatubo), have lead to hypotheses that 

explain apparent changes in redox state of a melt/magma by the exsolution of a volatile 

phase during decompression (e.g., Burgisser and Scalliet, 2007).  

Experimental studies and theoretical models (e.g., Dolejis and Wagner, 2007; Bell 

and Simon, 2011) provide evidence that a Cl-rich volatile phase exsolved from a melt is 

capable of removing ferrous iron from the melt to the fluid phase, resulting in an 

oxidizing effect on the melt phase (via increases in Fe3+/Fe2+).  In contrast, degassing of 

S2 from a melt to a fluid phase can result in the reduction of ferric iron into ferrous iron 
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(Carmichael, 1991).  Partitioning behavior of sulfur between melt and fluid phases is 

complex as it is dependent on speciation of sulfur in the melt, which is also dependent on 

the fO2 of the system (Scaillet et al., 1998). A third commonly invoked mechanism that 

may alter the redox state of a magma/melt is by increasing the fO2 of the melt by the 

disassociation of H2O, shown in the homogenous reaction in Equation 3.2. 

H2O (melt) = H2 (melt) + 1/2O2 (melt)     (Equation 3.2) 

The effect of degassing of H2O on the ferric-ferrous ratio of the melt is investigated in a 

theoretical study by Candela (1986) based on the heterogeneous reaction shown in 

Equation 3.3. 

H2O (melt) + 2FeO (melt) = H2 (fluid) + Fe2O3 (melt)            (Equation 3.3) 

The dissociation of H2O to form H2 in the fluid phase and Fe2O3 in the melt phase is 

dependent on the initial fO2 of the melt (Equations 3.1 and 3.2), thus the ability of 

dissolved H2O to oxidize ferrous iron in the melt is dependent on the initial fO2 of the 

system.  Additionally, if H2 in equation 3.3 remained in the melt phase, no increased 

oxidation of the melt would occur.  If closed-system degassing of H2 from the melt to a 

vapor phase occurred, where the melt and vapor phase is in equilibrium with the melt, 

there will be no increase in oxidation state.  In contrast, an increase in the oxidation state 

(an increase in the ratio of ferric-ferrous iron) of a melt is required if H2 is preferentially 

lost from both the fluid and melt phases.   

Experimental studies from the literature that investigated the effect dissolved melt 

H2O on the ferric-ferrous ratio (Sisson and Grove, 1993; Moore et al., 1995; Gaillard et 

al., 2001; Wilke et al., 2002; Gaillard et al., 2003; Botcharnikov et al., 2005) have 

conflicting results. In phase equilibrium experiments where oxygen fugacity was buffered 
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or monitored, Gaillard et al. (2001, 2003) demonstrate that H2O increases the activity of 

FeO and decreases the activity of Fe2O3, where the fO2 of the system is ≤∆NNO -0.8. In a 

Mössbauer spectral study, Wilke et al. (2002) demonstrate that dissolved H2O increases 

activity of Fe2O3 relative to FeO in hydrous tonalite melts under fO2 conditions ranging 

from air, Cu-Cu2O, hematite-magnetite, and C-O-H buffers.  These results contrast with 

the experimental studies of Moore et al. (1995) and Botcharnikov et al. (2005).  In a 

series of H2O-saturated experiments, where log(fO2) ranges from -0.68 to -10.4, Moore et 

al. (1995) compared the ferric-ferrous ratios measured in the hydrous rhyolite and basalt 

glasses, respectively, to ferric-ferrous ratios calculated with the anhydrous equation of 

Kress and Carmichael (1991).  Botcharnikov et al. (2005) demonstrated that H2O has no 

effect on the ferric-ferrous ratio in a series of experiments where fO2 range from less than 

the QFM to as great as the Mn-MnO buffers.  Both studies demonstrate that Kress and 

Carmichael (1991) accurately predicted ferric-ferrous ratios in H2O-saturated liquids, 

which supports the hypothesis that dissolved melt H2O has no chemical effect on the 

homogeneous ferric-ferrous equilibrium.  The conclusions of Moore et al. (1995) and 

Botcharnikov et al. (2005) are supported by the JANAF tables (Chase et al. 1998), which 

report small positive and negative Gibbs free energies for the exchange of OH- groups 

and Fe3+ and Fe2, respectively. 

A true test of the effect of degassing of H2O on the oxidation state requires a 

measurement of a pre- and post-eruptive indicator of redox state (e.g., ferrous iron), and 

the results will reveal whether or not the oxidation states of magmas are altered during 

degassing or if they are reflective of the source region.  In a micro-XANES study of 

Fe3+/Fe2+ in olivine hosted melt inclusion from arc basalts, Kelly and Cottrell (2009) 
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demonstrates that degassing of dissolved melt H2O does not impose a change on fO2, but 

rather that the oxidation states of magmas are reflective of the source region, as proposed 

by Carmichael (1991).  The results of Kelly and Cottrell (2009) are supported by the 

results of Crabtree and Lange (2012), which demonstrated that degassing of H2O exerts 

no change in the pre-eruptive and post-eruptive concentrations of FeO in andesites and 

dacites. In this study, the pre-eruptive ferrous iron concentrations of six rhyolite obsidians 

are determined with the temperatures and fO2 recorded by iron oxides, which crystallized 

during water saturated conditions, and are compared to the post-eruptive ferrous iron 

concentrations measured directly by titration. 

3.3 SAMPLE DESCRIPTION 

Samples used in this study are rhyolite obsidians from Western Mexico and 

Medicine Lake Volcano, CA that were the subjects of a detailed electron microprobe 

study (Waters and Lange, 2013), where pre-eruptive temperatures, fO2, and water 

contents were calculated for each sample.  The obsidians have a glassy matrix with sparse 

phenocryst (grains >50 μm) mode totals that are low (1.6-6.4%).  The obsidians are 

minimally saturated with five phases: plagioclase, orthopyroxene, titanomagnetite, 

ilmenite, apatite. All samples are fresh and show no sign of secondary alteration 

(Appendix B Figure B1).  

 

3.4 METHODOLOGY 

Samples were powdered and analyzed for major element chemistry by inductively 

coupled plasma analysis at Activation Laboratories in Ancaster, Ontario.  Analyses for 

the obsidian samples from this study are included in Table 3.1. 
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A two-fold strategy is employed to determine pre-eruptive FeO concentration.  (1) 

Pre-eruptive oxygen fugacity and temperature are calculated using the compositions of  

Table 3.1 Whole-rock major element compositions  
Sample MLV-37 MLV-36 CAM-49 TEQ-21 JAL-10 COMP-3 

Lat. (N) 41° 34.28' 41° 36.97' 	  	   20° 51.26' 21°16.68' 21° 09.79' 
Long. (W) 121° 41.96' 121° 38.48'   103° 51.86’ 104° 41.86’ 104° 42.39' 
SiO2 74.5 73.8 72.9 74.1 74.3 75.2 
TiO2 0.28 0.27 0.28 0.15 0.26 0.2 
Al2O3 13.6 13.2 13.2 13.3 14.2 13.5 
FeOT 2.12 2.08 2.01 1.62 1.5 1.13 
MnO 0.04 0.04 0.04 0.06 0.06 0.05 
MgO 0.28 0.27 0.29 0.11 0.38 0.3 
CaO 1.25 1.23 1.29 0.51 1.4 1.3 
Na2O 4 3.99 4.02 4.61 4.86 4.55 
K2O 4.21 4.18 4.18 4.83 3.04 3.36 
P2O5 0.05 0.06 0.04 0.03 0.07 0.06 
LOI 0.4 0.31 0.3 0 0 0.7 
Total 100.7 99.41 98.62 99.36 100.07 99.65 
Plag ph 1.80% 1.80% 1.50% 0.70% 3.50% 1.40% 

mph 0.70% 0.10% 1.00% 1.30% 1.90% 0.30% 
Opx ph 0.40% 0.40% 0.10% - 0.20% 0.10% 

mph 0.40% 0.20% 0.70% <0.1% 0.20% 0.20% 
Cpx ph - - - - - - 

mph - - 0.10% 0.10% - - 
Hbl 0.10% - - - 0.20% 0.20% 
Fe-Ti Ox 0.30% 0.30% 0.20% 0.60% 0.50% 0.50% 
Gdms 96.30% 97.10% 96.20% 97.10% 93.60% 97.10% 
Max XAn 53 50.2 53.3 16.6 44.3 50.9 

Max 
wt%H2O 7.5 5.8 6.6 4.2 7.3 7.4 

LOI = Loss on ignition 
	   	  Abundances determined with point counts of 2000 points in triplicate. Abbreviations: Plag, 

plagioclase; Opx, orthopyroxene; Cpx, clinopyroxene; Hbl, hornblende; Fe-Ti oxides, ilmenite and 
titanomagnetite; Gdms, groundmass; ph = phenocrysts, crystals with long axis > 200 microns; mph 
= microphenocrysts, crystals with long axis > 50 microns and < 200 microns; gdms = groundmass; 
Max XAn from Waters and Lange (in review) Max wt% H2O calculated from the plagioclase-liquid 
hygrometer of Lange et al. (2009) 

 

co-precipitated iron-titanium oxides and the oxygen barometer and thermometer of 

Ghiorso and Evans (2008).  Crystals of titanomagnetite and ilmenite were analyzed using 

the CAMECA SX-100 electron microprobe at the University of Michigan, with an 

accelerating voltage of 15 kV and 15 nA.  All possible pairings of ilmenite and 

titanomagnetite were incorporated into the geo-thermometer/oxy-barometer of Ghiorso 

and Evans (2008) to determine temperature and fO2.  The temperature, oxygen fugacity, 
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and liquid compositions (bulk compositions are used for liquid compositions due to low 

crystallinities) are then incorporated into the empirically calibrated equation of Kress and 

Carmichael (1991), which calculates Fe3+/Fe2+:  

ln !!"!!!
!!"#

= 𝑎 ln 𝑓𝑂! + !
!
+ 𝑐 + 𝑑!𝑋!!           (Equation 3.4) 

(2) Post-eruptive FeO content is measured by direct titration of whole rock using V4+ as 

an indicator of FeO (Wilson 1960).  The Fe2+ concentrations of Canadian Survey 

standard, SY-4, and USGS standards, BIR-1a, W-2 and QLO-1, were also measured by 

back titration (Wilson 1960) to evaluate accuracy, and closely recover the certified values 

of 2.97 (±0.05), 8.34 (±0.10), 8.34 (±0.09) and 2.86 (±0.09) wt% FeO, respectively.  

Crabtree and Lange (2012) demonstrate that titrations following the Wilson (1960) 

method recover consistent analyses of ferrous iron with a maximum deviation of ± 0.22 

wt% FeO.  In a comparison of direct titration of wt% FeO (Reichen and Fahey, 1962) and 

the back titration method (Wilson, 1960), Crabtree and Lange (2012) propose that the 

Wilson (1960) titration method more accurately recovers the wt% FeO because it does 

not require normalization to a standard, as in the method described by Reichen and Fahey 

(1962).  Because the calibration of Kress and Carmichael (1991) was measured by 

colorimetry, Crabtree and Lange (2012) also tested the titration and the colorimetric 

techniques and demonstrated that both were comparable analytical methods. Lastly, the S 

content of the groundmass was measured with the electron microprobe to determine if 

interference with the V4+ indicator solution used in the titration was likely to occur 

(Appendix B Table B1).  In all obsidians except MLV-37, the S content of the 

groundmasses were below detection limit (14 ppm), and in the case of MLV-37, S 

content was on average 28 ppm and its effect on titrated FeO is negligible. 
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Determination of Pre-eruptive H2O, S and Cl Contents 

Pre-eruptive H2O contents were determined in each sample by using the 

plagioclase-liquid hygrometer model of Lange et al. (2009), and the new calibration for 

rhyolites (Lange et al., 2012; Waters et al., 2012) (Appendix B Table B2).  To apply the 

plagioclase-liquid hygrometer to each sample, the temperature, liquid composition and 

plagioclase compositions must be known.  The temperatures used in the plagioclase 

hygrometer are the averages obtained from all possible pairings of ilmenite and 

titanomagnetite (Table 3.2).  The bulk composition (Table 3.1) is used as the liquid 

composition in the hygrometer due to the low overall crystallinity (<6%) and the glassy 

nature of the obsidians.  Plagioclase compositions used in the hygrometer are reported in 

Table 3.1 and obtained from Waters and Lange (2013), where a detailed description of 

the range of plagioclase compositions and accompanying textures in each sample is 

provided.  Sulfur was measured using the CAMECA SX-100 electron microprobe at the 

University of Michigan, with a defocused 5μm bean and accelerating voltage of 15 kV 

and 40 nA.  Chlorine contents of apatites (1-3 wt%) in each sample suggest the melts 

contained Cl during phenocryst growth.  The partition coefficients for Cl between apatite-

melt and apatite-fluid are determined by Webster et al. (2009) for rhyolite liquids with ≤3 

wt% H2O at temperatures between 900-924°C and are therefore only directly applicable 

to one of the six samples, TEQ-21, which has a dissolved melt water content of <3 wt% 

and temperature of 939°C.  The pre-eruptive Cl contents for each rhyolite were estimated 

by using the bulk composition of each obsidian and the Cl solubility model of Webster 

and De’ Vivo (2002). The Cl contents in apatite and groundmasses of the rhyolites were 

analyzed using the CAMECA SX-100 electron microprobe at the University of Michigan 
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with a defocused 10μm beam and accelerating voltage of 15 kV and 10 nA.  Apatites 

were analzyed following the recommended calibration and beam settings of Henderson 

(2012), which are optimized to eliminate any compositional effects of axial orientation of 

the apatites and to minimize any interference of fluorine with the beam during analysis 

(Stormer et al. 1993; Pyle et al., 2002).  

3.5 RESULTS 

Pre-eruptive Fe2+ determinations 

The compositions of all analyzed titanomagnetite and ilmenite grains are 

presented as plots of log (XMg/XMn) magnetite versus log (XMg/XMn) ilmenite for all 

possible pairs for each sample in supplementary material (Appendix B Fig. B2).  None of 

the pairs deviate strongly from the proposed test of equilibrium by Bacon & Hirschmann 

(1988).  Temperature and ΔNNO values, calculated from all possible pairings 

titanomagnetite and ilmenite analyses in each sample using the geothermometer and 

oxybarometer of Ghiorso & Evans (2008), are presented in Table 3.2.  Plots of 

temperature and ΔNNO values for all possible pairs of ilmenite and titanomagnetite are 

presented in the supplementary material (Appendix B Fig. B3).  For the six rhyolites, the 

maximum one standard deviation for temperatures is 25°C.  The calculated oxygen 

fugacity for each sample relative to the Ni-NiO buffer (O’Neill & Pownceby, 1993) is 

presented in Tables 2 and 3.  Pre-eruptive ΔNNO values range from -0.9 ± 0.1 to +1.4 ± 

0.05 (±1σ). Histograms of the ΔNNO values and corresponding wt% FeO concentrations 

are presented in the supplementary material (Appendix B Fig. B4).  The range of 

temperatures and ΔNNO values derived from the equation of Ghiorso & Evans (2008) 

results in a small variation in wt% FeO (≤0.05%) in the rhyolites when incorporated into 
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the empirical equation of Kress & Carmichael (1991).  The uncertainty in the total iron 

concentration (± 0.17 wt% FeOT) is a potential source of error in this calculation and can 

be evaluated by propagating maximum and minimum possible total iron concentrations 

through the equation of Kress & Carmichael (1991).  Propagating the possible total iron 

concentration through the equation of Kress & Carmichael results in a maximum error of 

± 0.13 wt% on the concentration of ferrous iron. 

Table 3.2 Average Fe-Ti oxide compositions 	  
Sample TEQ21   COMP3   JAL10   MLV36   MLV37   CAM49 	  	  
Phase Ilm  Ilm  Ilm  Ilm  Ilm  Ilm 

	  # 14 ±2σ 8 ±2σ 11 ±2σ 21 ±2σ 15 ±2σ 16 ±2σ 
SiO2 0.02 0.04 0.06 0.07 0.04 0.06 0.04 0.06 0.1 0.29 0.02 0.04 
TiO2 47.3 1.33 37.8 2.91 40.1 1.02 45.8 1.25 45.6 0.81 46.3 0.69 
Al2O3 0.17 0.07 0.32 0.07 0.41 0.49 0.25 0.33 0.16 0.08 0.15 0.04 
Fe2O3 11.8 2.06 31.1 5.29 27.0 2.08 16.2 2.30 15.4 1.11 13.1 0.98 
V2O3 0.36 0.08 0.09 0.08 0.06 0.06 0.47 0.10 0.47 0.06 0.14 0.11 
Cr2O3 0.01 0.05 0.02 0.04 0.02 0.06 0.06 0.06 0.05 0.04 0.06 0.03 
FeO 37.1 0.90 27.2 2.24 29.2 2.23 33.9 1.79 35.2 0.85 36.8 0.89 
MnO 0.85 0.08 0.74 0.13 0.78 0.09 0.58 0.06 0.63 0.06 0.61 0.06 
MgO 1.54 0.14 2.47 0.37 2.35 0.26 2.41 0.33 1.82 0.12 1.98 0.53 
CaO 0.06 0.10 0.05 0.08 0.02 0.08 0.03 0.06 0.02 0.05 0.03 0.03 
Total 99.2 0.60 99.8 0.67 100.1 1.44 99.8 0.92 99.4 1.06 99.0 0.55 
Mol% 

ilm 81.1 1.51 59.7 4.15 64.1 2.22 74.5 2.22 77.2 1.26 79 0.02 

Phase Mte   Mte   Mte   Mte   Mte   Mte 	  	  
# 7 ±2σ 8 ±2σ 4 ±2σ 9 ±2σ 4 ±2σ 11 ±2σ 
SiO2 0.07 0.09 0.07 0.03 0.12 0.02 0.09 0.06 0.17 0.01 0.11 0.08 
TiO2 17.6 1.51 5.67 0.48 5.68 1.58 10.9 0.21 9.41 1.17 11.5 2.92 
Al2O3 1.74 0.21 2.23 0.08 2.36 0.16 2.19 0.22 1.98 0.63 1.87 0.20 
Fe2O3 32.9 2.50 56.2 0.77 56.0 2.80 44.8 0.54 47.6 0.64 44.0 4.95 
V2O3 0.3 0.06 0.28 0.05 0.19 0.25 1.07 0.09 0.32 0.20 0.42 0.10 
Cr2O3 0.02 0.04 0.03 0.05 0.02 0.03 0.13 0.12 0.15 0.37 0.01 0.03 
FeO 45.3 1.50 33.9 0.65 34.4 1.27 38.9 0.24 37.3 1.08 39.5 1.30 
MnO 0.71 0.07 0.64 0.04 0.66 0.07 0.47 0.05 0.49 0.13 0.45 0.06 
MgO 1.07 0.11 1.58 0.12 1.3 0.42 1.42 0.08 1.17 0.44 1.21 0.29 
CaO 0.02 0.05 0.01 0.02 0.02 0.06 0.03 0.02 0.1 0.14 0.02 0.07 
Total 99.7 1.07 100.6 0.69 100.5 0.54 99.9 0.81 98.7 0.24 99.1 1.13 
Mol% 
ulv 49.3 4.00 15.9 5.04 15.9 4.27 30.3 0.64 26.8 4.91 32.5 7.95 

T (°C) 940 36 801 16 779 50 852 24 813 20 849 50 
∆NNO -0.40 0.4 1.41 0.14 1.35 0.38 0.28 0.5 0.36 0.28 0.19 0.36 
Ilm = Ilmenite; Mte = titanomagnetite  
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Wet chemistry determinations of post-eruptive Fe2+ 

 Results of the titrations of the rhyolites and standards are presented in Table 3.3.  

FeO concentrations range from 0.95-1.57wt% with 2σ errors <0.15.  All standards were 

recovered within a 2σ error of their reported values, with the exception of USGS standard 

SY-4.  The titrated wt% FeO value for SY-4 from this study is 2.91 ± 0.1, and the wt% 

FeO values for SY-4 reported by the USGS are 2.97 ± 0.05. 

 

H2O, S and Cl Concentrations 

Estimated maximum melt water concentrations at the time of phenocryst growth 

are based on the most calcic plagioclase phenocryst in each rhyolite and range from 2.6-

6.5 wt% H2O (Table 3.1). According to the detailed experiments of Clemente et al. 

(2004), sulfide and sulfate solubility in rhyolite magmas is low (<20 ppm) over the range 

of temperatures and ΔNNO values observed in this study (Table 3.2), which means that if 

sulfide or sulfate were present in these magmas, it would have been in very low 

Table 3.3 Measurements of wt% FeO and ∆NNO by different techniques  

 

Total Iron1 
wt% FeOT 

Fe-Ti Oxides            
(Pre-eruptive)                  
wt% FeO ±2σ 

Fe-Ti Oxides            
(Pre-eruptive)                  
∆NNO ±2σ 

Back-Titration  
(Wilson, 1960)  
(Post-eruptive) 
wt% FeO ±2σ 

Back-Titration 
(Pre-eruptive)  
∆NNO ±2σ 

Δ wt% 
FeO2 

TEQ-21 1.62 1.31 ± 0.02 -0.39 ± 0.20 1.27 ± 0.06 -0.04 ± 0.49 0.04 
COMP-3 1.13 0.95 ± 0.03 1.41 ± 0.07 0.95 ± 0.15 1.44 ± 1.00 0.00 
JAL-10 1.50 0.98 ± 0.03 1.35 ± 0.19 1.00 ± 0.08 1.25 ± 0.53 -0.01 

MLV-36 2.08 1.58 ± 0.04 0.27 ± 0.26 1.54 ± 0.02 0.52 ± 0.11 0.04 
MLV-37 2.12 1.58 ± 0.03 0.36 ± 0.14 1.57 ± 0.09 0.48 ± 0.49 0.01 
CAM-49 2.01 1.54 ± 0.03 0.19 ± 0.18 1.52 ± 0.15 0.3 ± 0.92 0.02 

Standards  Certified wt% 
FeO  

Back-Titration 
wt% FeO  

Δ wt% 
FeO3 

BIR-1a  8.34 ± 0.10  8.33 ± 0.07  -0.01 
QLO-1  2.86 ± 0.09  3.03 ± 0.20  0.06 
SY-4  2.97 ± 0.05  2.91 ± 0.10  0.05 
W-2a  8.34 ± 0.09  8.32 ± 0.21  -0.02 

Recommended wt% FeO results are bolded (see text).  All analyses performed in duplicate.  
 ∆NNO = logfO2(sample) - logfO2(Ni-NiO buffer) at temperature reported in Table 3.2  

   1: wt% FeO (FeTi oxides) - wt% FeO (back titration); pre- vs. post-eruptive wt% FeO  
  2: wt% FeO (back titration - certified value)  
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concentrations.  An additional line of evidence supporting low sulfide and sulfate 

concentrations is the absence of pyrrhotite as an accessory phase in five of the six 

samples.  Modeled Cl contents are calculated incorporating the whole rock compositions 

(Table 3.1) into the Cl solubility model of Webster and De’vivo (2002) and range from 

3600-6000 ppm (Appendix B Table B3).  Measured Cl contents in groundmass glasses 

range from 580-900 ppm Cl (Appendix B Table B3). 

 

3.6 DISCUSSION: PRE-ERUPTIVE AND POST-ERUPTIVE FE2+ 

Pre-eruptive and post-eruptive Fe2+ compositions (as wt% FeO) are compared in 

Figure 3.1, along with a 1:1 correspondence line. The six obsidians fall on the 1:1 

correspondence line, and the average deviation between the pre- and post- eruptive 

oxidation states is ±0.02 wt% FeO.  This small error can be attributed to the presence of 

both ilmenite and titanomagnetite as liquidus phases (Carmichael, 1967; Carmichael, 

1991), which yields precise temperatures and ΔNNO values from the model of Ghiorso 

& Evans (2008).   

The absence of change in the oxidation states of the rhyolites, after degassing of 

<6.5 wt% H2O, illustrates that the equation of Kress & Carmichael (1991) can be used in 

conjunction with the temperature and ΔNNO values derived from the geothermometer 

and oxybarometer of Ghiorso & Evans (2008), to produce valid and precise 

measurements of the ferric-ferrous ratios in magmatic liquids.  Even though the 

measurements of post-eruptive FeO for the rhyolites are in good agreement with the wt% 

FeO determined from the equation of Kress & Carmichael (1991), the standard deviations 



 85 

of results of multiple titrations (≤0.15 wt% FeO) are large enough to produce significant 

error in back-calculated values of ΔNNO (±1 ΔNNO), which are determined by  

	  

Figure 3.1: A plot of pre-eruptive wt% FeO (derived from Fe-Ti oxides and the geothermometer/ 
barometer of Ghiorso & Evans 2008) and post-eruptive wt% FeO (from titrations (Wilson 1960)) 
with a 1:1 correspondence line.  Solid circles are samples presented in Crabtree & Lange (2011), 
and white circles are the rhyolites and basaltic andesite presented in this study.  The error bars 
presented for the post-eruptive wt% FeO represent the maximum error on the titrations (±0.2 wt% 
FeO).  The error bars presented for the pre-eruptive wt% FeO represent the maximum error from 
the results of all possible pairings of the iron-oxides combined with the uncertainty in total iron 
(see text; Crabtree & Lange 2011) (±0.14 wt% FeO). 

 

incorporating the wt% FeO result from the titration into the model equation of Kress & 

Carmichael (1991).  For example, COMP-3 has a pre-eruptive ΔNNO value recorded by 

the ilmenite and titanomagnetite of +1.4 ± 0.2 (two-S.D.), whereas the back-calculated 

ΔNNO value is +1.44 ± 1.0 (two-S.D.) and the large error of ±1 log unit ΔNNO is the 

result, when considering the range of ferrous iron concentrations possible given the two 
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standard deviations in wt% FeO (± 0.15) from titrations.  The titrations of the rhyolite 

obsidians have 2σ standard deviations for the titrations ranging from ± 0.02 to 0.15 wt% 

FeO, which result in back calculated values of ΔNNO values with errors that range from 

± 0.11 to ± 1.0. 

Based on the results of the hygrometer (Table 3.1), all samples presented in this 

study were water saturated prior to eruption and low LOI values (0.0-0.7) indicate that 

nearly complete degassing occurred during eruption. Fig. 3.1 provides evidence that 

nearly complete degassing of ~2.6-6.5 wt% H2O produces no resolvable change in the 

pre-eruptive and post-eruptive Fe2+ concentrations in rhyolites with total iron 

concentrations that range from 1.13-2.12 wt%. 

Waters & Lange (2013) proposed that all crystallization in the six obsidians 

presented in this study was due to degassing induced crystallization, which implies that 

the iron oxides also crystallized over a range of melt water concentrations.  All possible 

pairings of ilmenite and titanomagnetite yield relatively small ranges in temperatures and 

ΔNNO values, which results in a small range in wt% FeO when incorporated into the 

model equation of Kress & Carmichael (1991); thus, it is likely that the iron oxides are 

unaffected by the degassing of water from the melt.  An absence of an effect of dissolved 

melt water on the iron oxides is explained by competing hydration reactions between 

hydroxyl groups and various dissolved cations in melt.  The addition of hydroxyl groups 

into melt affects the activities of cations, and based on the free energies there is clear, 

preferential pairing between hydroxyl groups and cations in the order Na > Ca > Mg > 

Fe2+ >Fe3+ (Table 3.4).  Hydroxyl groups are, therefore, unlikely to form complexes with 

Fe2+ and Fe3+, which should result in little to no impact on the ferrous-ferric ratio in 
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magmas.  Waters & Lange (2013) demonstrated the potential for dissolved melt H2O to 

affect the Fe-MgKD between orthopyroxene and liquid, by reducing the activity of MgO in 

melts with low MgO contents (e.g., rhyolites).  This effect of dissolved H2O on the 

activity of MgO in the melt may result in variability in the Mg-rich spinel end member in 

titanomagnetite, MgAl2O4.  Thus, degassing of H2O from a melt will not affect the 

activities of Fe2+ and Fe3+ but will affect the activity of MgO, and may cause the observed 

ranges of composition in titanomagnetite and ilmenite.  These changes then translate to 

small ranges in NNO and temperature that convert into a small variation in wt% FeO.  

The small observed difference between pre-and post-eruptive NNO values supports the 

conclusion that degassing of water had a negligible effect on the oxidation state of 

magmas (Fig. 3.1).  

Table 3.4 Free energy of hydration reactions 
 Reaction G(298 K) kJ/mol 

Na2O + H2O = 2NaOH -143.3 
CaO + H2O = Ca(OH)2 -57.8 

MgO + H2O = Mg(OH)2 -27.6 
FeO + H2O = Fe2+(OH)2 -3.4 

1/3 Fe2O3 + H2O = 2/3 Fe(OH)3 14.7 
Na (gas) + Cl (gas) = NaCl (solid) -566.5 

1/2Ca (gas) + Cl (gas) =1/2CaCl2 (solid) -534.8 
1/2Mg (gas) + Cl (gas) = 1/2MgCl2 (solid) -457.5 
1/2Fe (gas) + Cl (gas) = 1/2FeCl2 (solid) -441.8 
1/3Fe (gas) + Cl (gas) = 1/3FeCl3 (solid) -340.2 

From JANAF tables (Chase, 1998) 
! 

The Cl contents in apatites and the maximum Cl content that can be dissolved in 

the melt estimated from Webster and De’vivo (2002) demonstrate that chlorine was 

present during crystallization of apatite and phenocryst growth.  The solubility model of 

Webster and De’ Vivo (2002) incorporates the temperature and whole rock composition 

to estimate the maximum amount of Cl that can be dissolved in each rhyolite melt.  The 
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solubility model estimates that pre-degassed Cl contents for all six samples may range 

from ~3600 to 6000 ppm, and post-degassed Cl contents measured in the groundmass 

glasses with electron microprobe range from ~580-900 ppm.  A loss of >1000 ppm Cl in 

each sample produces no detectable change in the pre- and post-eruptive Fe2+ 

concentrations. One possible explanation to account for an absence of an effect of Cl on 

the pre- and post-eruptive concentration of ferrous iron, is that Cl degassed prior to the 

crystallization of oxides, therefore any scavenging of Fe2+ from the melt into the fluid 

phase (e.g., Bell and Simon, 2011) would not be recorded.  A second explanation can be 

found in the chlorine solubility model of Webster and De’ Vivo (2002) and the Gibbs 

free energy of exchange between Cl and melt components (Table 3.4), which both 

demonstrate that Cl will preferentially bond with K, Na, Ca, Mg, relative to Fe2+ and Fe3+.  

Based on the Gibbs free energy of exchange in Table 3.4, Cl is unlikely to bond with 

ferric or ferrous iron in liquids with elevated concentrations Na and K (e.g., rhyolites). 

 

3.7 CONCLUSIONS 

Degassing fluids consisting of mostly H2O from a rhyolite melt has no observable 

effect on the pre-eruptive and post-eruptive ferric-ferrous ratio.  It is likely that degassing 

of dissolved H2O has no effect on the activities of Fe2+ and Fe3+ in the melt, which is 

consistent with the studies of Sisson and Grove (1993), Moore et al. (1995) and 

Botcharnikov et al. (2005). It would be expected that loss of a fluid rich Cl, F, and/or S 

from a rhyolite melt would cause a significant change in the pre- and post-eruptive 

ferrous iron contents.  
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CHAPTER IV 

DEGASSING INDUCED CRYSTALLIZATION OF PLAGIOCLASE IN 
RHYOLITE AND RHYODACITE OBSIDIANS: PHASE EQUILIBRIUM AND  

 

4.1 ABSTRACT 

A series of phase-equilibrium experiments under pure H2O fluid-saturated 

conditions were performed on three crystal-poor (<3%) obsidians (one dacite, 67 wt% 

SiO2; two rhyolites, 73 and 75 wt% SiO2) in a cold-seal pressure vessel between 30-300 

MPa and 750-950°C.  The results show that the remarkably wide ranges of plagioclase 

compositions ( 38 mol% An) observed in the natural samples are all plausible 

phenocrysts.  A single xenocryst, a plagioclase core (An60-63) that comprises < 0.1% of the 

sample, was identified in one of the rhyolite obsidians.  In addition, a series of isothermal 

(850°C) decompression experiments under pure H2O fluid-saturated conditions were 

performed on one of the samples (73 wt% SiO2).  Decompressions were conducted at two 

continuous rates (2.9 and 0.8 MPa/hr), beginning above the liquidus at PH2O =150 MPa 

and quenched at two pressures (PH2O = 89 and 58 MPa) below the plagioclase-in curve.   

For the experiments decompressed at 2.9 MPa/hr, the run products were 100% glass, 

whereas for those decompressed at 0.8 MPa/hr, the run products contained a mineral 

assemblage similar to that found in the phase-equilibrium experiments.  A comparison 

between the decompression and phase-equilibrium experiments show that plagioclase 

began to crystallize immediately after the plagioclase-in curve was crossed during 

decompression at 0.8 MPa/hr and that a continuum of changing equilibrium plagioclase 

DECOMPRESSION EXPERIMENTS



 94 

compositions crystallized from the melt as degassing progressed.  The plagioclase crystals 

in these decompression experiments often display textures (skeletal, large interior melt 

hollows, swallowtails) consistent with diffusion-limited crystal growth, which is expected 

to occur owing to the large undercoolings that develop during degassing-induced 

crystallization, especially as melt viscosity increases with the loss of dissolved water.  The 

suppression of plagioclase nucleation and crystal growth in rhyolites that undergo rapid 

degassing explains the overall low abundance of plagioclase phenocrysts and scarcity of 

microlites in the three natural obsidian samples, and it is used to develop a plagioclase 

speedometer for rhyolites from the decompression experiments in this study as well as 

those from the literature. 

 

4.2 INTRODUCTION 

Plagioclase crystals in intermediate lavas (e.g., andesites and dacites) often span a 

wide range in composition (≤40 mol% An) and often display complex textures and zoning 

patterns (Tepley et al., 1999, 2000; Zellmer et al., 2003; Humphreys et al., 2006; 

Ruprecht & Wörner, 2007; Crabtree & Lange, 2011; Frey & Lange, 2011).  The 

mechanism most commonly invoked to explain these complex plagioclase populations 

found in intermediate lavas is mixing/mingling between relatively mafic (e.g., basalt or 

basaltic andesite) and relatively felsic end members (e.g., dacite or rhyolite) magmas 

(Izbeckov et al., 2002; Couch et al., 2003a; Gerbe & Thouret, 2004; Humphreys et al., 

2006; Ruprecht & Wörner, 2007; Andrews et al., 2008; Reubi & Blundy, 2008, 2009; 

Kent et al., 2010).  A second independent process that may introduce complexity to the 

observed plagioclase compositions and textures in intermediate magmas is degassing-
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induced crystallization during ascent of fluid-saturated magma (e.g., Crabtree & Lange, 

2011; Frey & Lange, 2011; Waters & Lange, 2013).  Because the concentration of 

dissolved water in the melt strongly affects the composition of plagioclase (e.g., Sisson 

and Grove, 1993; Housh & Luhr, 1991; Putirka, 2005; Lange et al., 2009), degassing-

induced crystallization can produce a wide range of plagioclase compositions (e.g., Couch 

et al., 2003b; Martel & Schmidt, 2003; Brugger & Hammer, 2010).  Degassing-induced 

crystallization can also produce complex, diffusion-limited growth textures (e.g., skeletal, 

melt hollows, swallow tail, vermiform) owing to the rapid development of large 

undercoolings during fluid-saturated decompression (e.g., Blundy & Cashman, 2005; 

Hammer & Rutherford, 2002; Shea & Hammer, 2013). 

Importantly, populations of plagioclase crystals that span a wide range of 

composition and display complex zoning patterns are not exclusively found in 

intermediate magmas but are also observed in rhyolites.  For example, in a detailed 

petrologic study of crystal-poor (<6 %) obsidian samples (73-75 wt% SiO2), Waters & 

Lange (2013) document that plagioclase crystals in these obsidians often span a 

remarkably wide range of composition (≤30 mol% An) and display complex zoning 

patterns (normal, reverse, and unzoned).  Mixing of magmas of distinctly different bulk 

compositions (felsic and mafic) can be ruled out for the origin of these glassy, crystal-poor 

rhyolites, as these lavas are end-member compositions, however, it is possible that 

plagioclase xenocrysts were incorporated into them.  An outstanding question, therefore, 

is whether the wide compositional range of plagioclase phenocrysts observed in the 

obsidian samples can be attributed to degassing-induced crystallization, or if the 

incorporation of plagioclase xenocrysts is required to explain the full range observed. 
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To address this question, a series of fluid-saturated phase-equilibrium and 

decompression experiments were conducted on three obsidian samples (67, 73 and 75 

wt% SiO2) that contain < 3 % phenocrysts + microphenocrysts and are largely free of 

microlites. Fluid-saturated phase-equilibrium experiments were first performed to 

determine equilibrium plagioclase compositions in each sample as a function of 

temperature and PH2O.  Next, a series of fluid-saturated isothermal decompression 

experiments, initiated above the liquidus, were then conducted to test whether the wide 

range of plagioclase compositions and complex textures and zoning patterns observed in 

the natural obsidian samples could be reproduced.  

  
Sample Background 

The three obsidian samples used in this study range from dacite (67 wt% SiO2, 

TEQ-34) to rhyolite (73 and 75wt% SiO2; MLV-36 and -44, respectively).  The dacite was 

erupted from a monogenetic vent in the western Mexican arc and was the focus of a 

detailed petrologic study in Crabtree & Lange (2011).  The two rhyolites were erupted 

from monogenetic vents at the Medicine Lake volcanic field in the Cascades.  The 

petrologic details of MLV-36 are presented in Waters & Lange (2013), whereas those for 

MLV-44 are given in this study.  Each sample contains four to six mineral phases (Table 

4.1) with plagioclase, titanomagnetite and ilmenite common to all.  Additional phases 

include orthopyroxene, clinopyroxene, biotite and apatite.  Phenocryst + microphenocryst 

abundances are < 3%, and microlites are sparse in all three obsidian samples (Table 4.1; 

Fig. 4.1). 
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Figure 4.1: Photomicrographs of the three obsidians illustrate the phenocryst-poor glassy nature of the obsidians with 
little to no microlite crystallization. Images were collected in cross polarized light.  Plagioclase crystals are labeled as 
“plag.” 

Table 4.1: Bulk Compositions 
Sample MLV44 MLV36 TEQ34 

SiO2 75.45 73.8 67.1 
TiO2 0.22 0.27 0.6 
Al2O3 13.22 13.2 15.7 
FeOT 1.42 2.08 3.38 
MnO 0.04 0.04 0.11 
MgO 0.21 0.27 0.65 
CaO 0.81 1.23 1.66 
Na2O 3.91 3.99 5.53 
K2O 4.73 4.18 4.25 
P2O5 <0.01 0.06 0.16 
LOI 0.43 0.31 0.30 
Total 100.4 99.4 99.5 

% plag <0.1 1.9 1.8 
% opx <0.1 0.6 0.1 
% cpx <0.1 <0.1 0.1 
% bte - - <0.1 
% ox <0.1 0.3 0.2 

% gdms 99.7 97.1 97.7 
LOI, loss on ignition; plag, plagioclase; opx, 
orthopyroxene; cpx, clinopyroxene; bte, biotite; 
ox, oxides; gdms, groundmass. 
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Microprobe analyses of titanomagnetite, ilmenite and plagioclase in MLV-44 were 

performed at the University of Michigan with a Cameca SX electron microprobe, 

following the same procedures outlined in Waters & Lange (2013).  Analyses of Fe-Ti 

oxide phases in MLV-44 are provided in Table C1 (Appendix C).  A plot of log(XMg/XMn) 

(Appendix C Fig. C1A) shows that all possible pairs of analyzed ilmenite and 

titanomagnetite crystals do not deviate strongly from the equilibrium test proposed by 

Bacon & Hirschman (1988).  The two Fe-Ti oxide thermometer and oxybarometer of 

Ghiorso & Evans (2008) applied to all pairs of ilmenite and titanomagnetite in MLV-44 

lead to a narrow range of temperature (932 ± 15°C) and ∆NNO (0.7 ± 0.1) values (Fig. 

C1B).  Analyses of plagioclase phenocrysts + microphenocrysts in MLV-44 are reported 

in Table C2 (Appendix C); they span a narrow range of composition (An29-An20), which is 

illustrated in a histogram of all analyses in Fig 4.2. 

Also shown in Fig. 4.2 are histograms of analyzed plagioclase phenocryst + 

microphenocryst compositions in MLV-36 and TEQ-34, as well the temperature and 

∆NNO values obtained from two Fe-Ti oxides in those samples, previously reported in 

Waters & Lange (2013) and Crabtree & Lange (2011), respectively.  The information on 

the pre-eruptive temperatures of these three samples, along with the range of plagioclase 

compositions, will be used later in this paper in a comparison to the phase-equilibrium 

experiments described below. 



 99 

	  

Figure 4.2: The range of plagioclase observed in the natural samples as a function of mol% An v. number of analyses 
from microprobe analyses for MLV44 (a), MLV36 (b), and TEQ34 (c).  The analyses for plagioclase in MLV44 are 
sparse due to very low plagioclase crystallization and are reported in the Appendix C Table C1.  Plagioclase analyses for 
MLV36 and TEQ34 are taken from Waters & Lange (2013) and Crabtree & Lange (2011).  The temperature and fO2 (as 
a function of the NNO buffer) results of the oxide geo-thermometer of Ghiorso and Evans (2008) are shown for all 
possible pairings of ilmenite and titanomagnetite for MLV44 (a), MLV36 (b), and TEQ34 (c).  Ilmenite and 
titanomagnetite analyses for MLV44 are reported in Appendix C Table C2. 
 

   
4.3 EXPERIMENTAL METHODS 

Phase-Equilibrium Experiments 

Starting Material Preparation 

Pieces of black obsidian from each sample were crushed in a porcelain shatter box 

to a fine powder.  Aliquots of ~10 g of each powder were then placed in a platinum 
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crucible in air, heated to 1450°C and held for one hour, and then quenched to a glass, 

which were determined to be aphyric and anhydrous.  These aphyric glasses were crushed 

a second time and used as starting material for the phase-equilibrium experiments. 

 
Experimental Conditions and Apparatuses 

All experiments were conducted in cold-seal pressure vessels with water as the 

pressurizing medium at the National Museum of Natural History in Washington, D.C., at 

pressures and temperatures ranging from 30-300 MPa and 750-950°C (Table 4.2).  For 

each experiment, 10-30 mg of starting material was placed inside 3 mm OD gold tubing, 

to which ~10% of the sample weight in DI water was added to ensure that all runs would 

be saturated with 100% H2O fluid.  The gold capsules were sealed using a PUK-3 welding 

system.   

During the quenching procedure, the temperature in the hot spot of the pressure 

vessel cooled to below 500°C (~the glass transition temperature) in less than 30 seconds 

by blowing compressed air on the charge (the temperature change with time was recorded 

with a thermocouple placed in a retrofitted pressure head); the vessels were then plunged 

into a cold-water bath.  Charges that contained excess water after quenching were 

considered successful.  The system of waspaloy (nickel alloy) pressure vessels and nickel 

filler rods used in the phase equilibrium experiments has an intrinsic oxygen fugacity of 

ΔNNO +1 ± 0.5 (Geschwind & Rutherford, 1992).  Venesky & Rutherford (1999) show 

that the fO2 imposed by the waspaloy pressure vessels and nickel filler rods may vary 

significantly and is dependent on the age and degree of oxidation of the nickel filler rod.  

Based on the observation that the Ni-filler rod showed more signs of oxidation under these 

conditions, It is likely that the intrinsic fO2 generated by the nickel filler rod and  
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Table 4.2: Phase equilibrium experiments: Run conditions 
                and products	  

  
Temperature 

(˚C) 
Pressure 
(MPa) 

Duration 
(h) 

Run 
Products                              

MLV44 750 300 120 g, bte, mt 

 
750 250 120 g, bte, mt 

 
750 250 48 g, bte, mt 

 
750 200 96 g, pl, bte, mt 

 
750 200 48 g, pl, bte, mt 

 
750 100 72 g, pl, opx, cpx, mt 

 
800 250 48 g, bte, mt 

 
800 150 48 g, bte, mt 

 
800 100 48 g, pl, mt 

 
850 200 48 g 

 
850 150 48 g 

 
850 100 48 g, mt 

 
900 150 48 g 

 
900 100 48 g 

 
950 50 48 g 

  950 30 48 g, pl, opx, mt 
MLV36 750 300 120 g, bte, mt 

 
750 250 120 g, bte, mt 

 
750 250 48 g, bte, mt 

 
750 220 48 g, pl, bte, mt 

 
750 200 120 g, pl, bte, mt 

 
750 200 48 g, pl, bte, mt 

 
750 100 72 g, pl, opx, cpx, mt 

 
800 300 48 g, bte, mt 

 
800 160 48 g bte, mt 

 
800 150 48 g, pl, opx, mt 

 
800 100 48 g, pl, opx, cpx, mt 

 
850 250 48 g 

 
850 200 48 g 

 
850 150 48 g 

 
850 125 48 g, opx, mt 

 
850 100 48 g, pl, opx, mt 

 
850 80 48 g, pl, opx, mt, il 

 850 60 48 g, pl, opx, cpx, mt, il 

 
875 200 48 g 

 
900 100 48 g 

 
900 75 48 g, mt 

 
900 50 48 g, pl, opx, mt 

  950 50 48 g 
TEQ34 750 300 48 g, pl, bte, mt 

 
750 250 120 g, pl, bte, cpx, mt 

 
750 250 48 g, pl, bte, cpx, mt 

 
750 200 144 g, pl, bte, cpx, mt 

 
750 200 120 g, pl, bte, cpx, mt 

 
750 200 48 g, pl, bte, cpx, mt 

 
800 300 48 g, bte, mt 

 
800 250 48 g, pl, bte, cpx, mt 

 
800 200 48 g, pl, bte, cpx, mt 

 
800 150 48 g, pl, bte, cpx, mt 

 
800 110 48 g, pl, bte, cpx, mt 

 
850 250 48 g, bte, mt 

 
850 200 48 g, bte, mt 

 
850 150 48 g, pl, bte, mt 

 
850 100 48 g, pl, bte, mt 

 
875 200 48 g, bte, mt 

 
900 150 48 g, bte, mt 

 900 100 48 g, mt 

 
900 50 48 g, cpx, mt 

  950 50 48 g, mt 
Abbreviations: g, glass; pl, plag; bte, biotite; opx, orthopyroxene; cpx, clinopyroxene; mt, magnetite; 
il, ilmenite. 
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Waspaloy pressure vessel system increases with PH2O in these experiments, possibly 

because the water used as the pressure medium is initially in equilibrium with air.  

Therefore, the only constraint on fO2 in these experiments is that it is greater than that of 

the Ni-NiO buffer.  Because fO2 is only broadly constrained in each experiment, only 

plagioclase-liquid equilibrium results are used in this study.  Fe-bearing mineral stability 

curves are recorded but not used. 

 
Equilibrium Tests 

 To evaluate whether plagioclase-liquid equilibrium was attained, experiments 

conducted at the lowest temperature and highest melt viscosity for each sample were 

replicated three times, but for different run durations of  48, 96, and 120 hours.  No 

significant change was observed in either the liquid (wt% SiO2) or plagioclase (mol%An) 

compositions with time, as illustrated in Fig. 4.3.   A similar result was obtained in Couch 

et al. (2003b), where it was argued that experiments conducted on an H2O-saturated 

rhyolite liquid at 860°C reached plagioclase-liquid equilibrium after ~48 hours over a 

range of pressures (125, 75 and 50 MPa). 

	  

Figure 4.3: Plot of experiment duration (hours) v. the liquid composition as a function of the anorthite number of the 
liquid (liquid An#).  No siginificant change in liquid composition is observed. (b) Plot of experiment duration (hours) v. 
the composition of the plagioclase grown in that experiment (as mol% An).  No significant changein composition is 
observed. 
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Decompression Experiments 

In order to accurately reproduce the scenario of an ascending, fluid-saturated 

liquid, decompression experiments were started above the liquidus (crystal free, H2O-

saturated conditions) and decompressed to pressures below the plagioclase-in curve.  

Decompression experiments were attempted on all three samples, but were only 

successful for MLV-36.  For MLV-44, the plagioclase-in curve at the pre-eruptive 

temperature (932 ± 15°C) is located at a relatively low pressure (<40 MPa), which led to 

capsule rupture owing to the large molar volume of H2O fluid at this T-P condition.   For 

TEQ-34, the plagioclase-in curve at the pre-eruptive temperature (760 ± 16°C) was 

located at a pressure higher than could be accessed with the cold-seal vessel (300 MPa).  

For MLV-36, the plagioclase-in curve at the pre-eruptive temperature (852 ± 12°C) was 

located at a pressure readily accessed by the cold-seal pressure apparatus (150 MPa).   

Starting Material 

Starting material for each MLV-36 decompression experiment was H2O-saturated 

glass.  Approximately 70 mg of anhydrous glass was placed in a 3mm OD gold capsule 

with ~7 mg of H2O.  The capsule was held at 850°C and 150 MPa (super-liquidus 

conditions) for 48 hours and then quenched.  Aliquots of these quenched, hydrous glasses 

were sealed in 3mm OD gold tubing with 1-2 mg deionized water to ensure H2O fluid 

saturation.   

Experimental Conditions 

Isothermal decompression experiments were conducted in the same cold-seal 

pressure vessels used for the phase-equilibrium experiments.  Samples were taken up to an 

initial pressure (150 MPa) and temperature (850°C), which is above the liquidus, and held 
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for over two hours.  Samples were then decompressed isothermally at two different rates 

of 2.9 and 0.8 MPa/hr and were quenched at two different final pressures of 89 and 58 

MPa.  The decompression rate was controlled by slowly cooling an extra empty pressure 

vessel at a specific rate to produce a nearly constant rate of pressure change.  

Decompression paths were recorded by a computer and reported in this paper for each 

experiment (Appendix C Fig. C2).  The pressure monitoring system also picked up diurnal 

fluctuations in pressure (≤20 bars superimposed on the decompression path), likely due to 

both the building heating system and direct sunlight on the pressure line.  Decompression 

rates, starting pressures, and quench pressures are reported in Table 4.3. 

Table 4.3: MLV36 Decompression Experiments: Run Conditions and Products 
Temperature 

(˚C) 

Initial 
Pressure 
(MPa) 

Final 
Pressure 
(MPa) 

Duration 
(h) 

Rate 
(MPa/hr) Run Products 

850 150 89 20.5 2.9     g 
850 150 58 30.3 2.9     g 
850 150 89 76 0.8     g, plg, opx, mt, il 
850 150 58 120 0.8     g, plg, opx, cpx, mt, il 

Abbreviations: g, glass; pl, plag; opx, orthopyroxene; cpx, clinopyroxene; mt, magnetite; il, ilmenite 
 
 

Analyses of Phases in Run Products 

Phase-Equilibrium Experiments 

The charges quenched from the phase-equilibrium experiments were peeled open 

and chips of the run products were mounted in epoxy and polished for microprobe 

analyses. Glasses and minerals in the run products were analyzed with the Cameca SX-

100 electron microprobe at the University of Michigan and with the JEOL 8900 

superprobe at the National Museum of Natural History in Washington, DC. An 

accelerating voltage of 15 kV with a focused beam was used in all analyses of run 

products. A beam current of 4 nA was used for analyses of plagioclase and 15 nA for 
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orthopyroxene and clinopyroxene.   For matrix glasses, a defocused 5µm beam was used 

with a beam current of 5 nA.  Count times for each element ranged between 20-30s.  Na in 

glasses was measured on-peak for 30 seconds with six sub-counting intervals of five 

seconds to assess and correct for Na loss. 

Melt H2O Contents 

Melt H2O contents were calculated using the glass composition of each experiment 

and the H2O solubility model of Liu et al. (2005). Ten experimental glasses with H2O 

contents ranging from 1.5-7.5 wt% (using the model of Liu et al., 2005) were analyzed 

using Fourier transform infrared (FTIR) spectroscopy to ensure that the H2O solubility 

model was recording accurate values.  The FTIR results are shown in Table C3 and are 

shown to be consistent with the H2O results from Liu et al. (2005) in Fig. C3. All analyses 

of experimental glasses and modeled H2O concentrations are shown in Table C4. 

Decompression Experiments 

Microprobe analyses of plagioclase in the decompression run products were made 

using the same procedures as those employed for the phase-equilibrium experiments.   

However, the shape of the plagioclase crystals (ranging from long and tabular with melt 

hollows to irregular) in the run products of the decompression experiments generally 

limited microprobe analyses to a few select points.  To ensure that the full range of 

plagioclase compositions was accurately documented, several high-definition Energy 

Dispersive X-Ray Spectrometry (EDX) element maps (Si, Ti, Al, Fe, Mg, Ca, Na, K) were 

measured on all run products using the FEI Nova NanoSEM 600 (scanning electron 

microscope) at the National Museum of National History, Mineral Sciences Department.  

The element maps and BSE image of the mapped area were processed with MatLab to 



 106 

create maps of anorthite content in the plagioclase crystals.  The groundmass was filtered 

out using counts of Si, K and Fe, epoxy was filtered out with the grey scale map image, 

and anorthite content maps were made using the Ca, Na, K, Si and Al maps.  To test and 

validate this mapping technique, a mapping standard was created by fusing chips of 

labradorite and oligoclase from the Smithsonian collection in a hydrated rhyolite glass.  

The labradorite (53 ± 4 mol% An) and oligoclase (22 ± 2 mol% An) were measured with 

the microprobe and shown to each span a small range in composition (±2σ).  The code 

used to process the element maps of the decompression run products was tested on 

element maps of the labradorite-oligoclase-rhyolite glass standard in an attempt to recover 

the compositions of oligoclase and labradorite.  The code recovers both the labradorite 

and oligoclase compositions (53 ± 4 mol% An and 24 ± 4 mol% An and, respectively) in 

good agreement with the electron microprobe analyses.  

 
4.4 RESULTS 

Phase equilibrium Experiments 

Run products of the phase equilibrium experiments are summarized in Table 4.2 

and illustrated in Figs. 4.4-4.6.  Compositions of matrix glasses and measurable 

plagioclase crystals are presented in Tables 4.4 and 4.5, respectively.   The calculated H2O 

concentrations for each of the samples using Liu et al. (2005) are listed in Table 4.4.  All 

analyses of matrix glasses, plagioclase, orthopyroxene and clinopyroxene crystals are 

presented in Appendix C (Tables C4-C7).



 
Table 4.4: Glass Compositions                  

  T 
 (˚C) 

Pressure 
(MPa) 

Duration 
(h) n SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total liquidAn#1 wt% 

H2O2 
Viscosity3 

(log10 Pa s)
 

XAn XAb % 
xtal4 

MLV44 750 200 96 5 76.9 0.12 13.8 1.14 0.04 0.12 0.92 3.54 4.88 0.02 92.3 6.24 6.05 4.83 27.5 65.9 2.1 

    ±1  0.2 0.06 0.2 0.18 0.07 0.06 0.03 0.37 0.21 0.05 0.4 0.34 0.04 0.07 0.8 1  

!
750 200 48 11 75.9 0.14 13.5 0.80 0.02 0.08 0.88 3.83 4.82 0.02 93.6 5.79 6.09 4.82 27.3 66.1 2 

    ±1  0.3 0.04 0.1 0.09 0.03 0.02 0.03 0.27 0.12 0.06 0.5 0.31 0.03 0.05 0.6 1  

!
750 100 72 11 77.0 0.11 13.0 0.96 0.06 0.12 0.64 3.12 5.01 0.03 95.0 4.53 4.22 5.58 19.9 67.2 6.6 

    ±1  1.2 0.04 0.2 0.20 0.13 0.07 0.12 0.32 0.17 0.09 1.0 0.84 0.02 0.1 0.6 0.5  

!
800 100 72 8 75.7 0.17 13.1 1.14 0.03 0.15 0.85 4.05 4.80 0.00 95.2 5.4 4.11 5.03 24.5 65 1.5 

    ±1  0.2 0.04 0.1 0.11 0.05 0.05 0.02 0.24 0.15 0.06 0.3 0.24 0.02 0.06 0.8 0.8  
 950 30 48 8 75.0 0.25 12.9 1.36 0.04 0.19 0.82 3.12 6.24 0.03 97.8 5.88 1.87 5.2 22.2 61.4 16.9 
        ±1  0.9 0.06 0.3 0.11 0.06 0.04 0.02 0.46 0.23 0.03 0.5 0.24 0.01 0.13 0.4 1.3   
MLV36 750 220 48 19 76.9 0.14 14.1 0.80 0.03 0.12 1.18 3.02 3.76 0.01 92.9 8.54 6.2 4.98 42.4 54.2 2.4 

     0.4 0.03 0.1 0.07 0.02 0.03 0.06 0.21 0.22 0.04 0.7 0.53 0.04 0.06 1.4 1.5  

!
750 200 120 6 74.4 0.18 13.9 1.32 0.03 0.21 1.25 4.09 4.60 0.01 93.5 7.97 6.08 4.72 29.9 65.4 2.7 

     0.9 0.09 0.1 0.35 0.04 0.11 0.08 0.18 0.16 0.08 0.7 0.35 0.03 0.06 1.2 1.1  

!
750 200 48 8 74.5 0.18 13.9 1.31 0.05 0.15 1.18 4.12 4.51 0.01 93.5 7.6 6.07 4.74 30.3 67.1 2.7 

     0.8 0.11 0.1 0.38 0.04 0.08 0.04 0.33 0.19 0.07 0.5 0.63 0.02 0.06 0.8 1.5  

!
750 100 72 9 75.9 0.10 13.4 1.12 0.05 0.14 0.75 3.16 5.21 0.10 95.0 5.43 4.21 5.56 19 68.3 6.8 

     1.0 0.05 0.2 0.35 0.05 0.11 0.07 0.16 0.17 0.11 0.9 0.56 0.01 0.08 0.9 0.8  

!
800 150 48 7 73.9 0.25 14.0 1.50 0.03 0.30 1.22 4.16 4.52 0.03 96.3 7.86 5.08 4.59 39.9 55 0.6 

     0.5 0.04 0.2 0.14 0.02 0.02 0.07 0.27 0.14 0.02 0.3 0.3 0.03 0.07 3 3.1  

!
800 100 72 7 75.4 0.17 13.5 1.06 0.03 0.17 0.86 3.98 4.78 0.03 95.8 5.6 4.09 5.07 28.9 62.2 2.1 

     0.9 0.02 0.3 0.11 0.03 0.03 0.07 0.16 0.16 0.03 1.3 0.42 0.01 0.03 1.6 0.9  

!
850 100 48 9 74.1 0.25 13.7 1.54 0.04 0.21 1.19 4.35 4.60 0.00 96.1 7.42 3.96 4.56 49.6 45.3 0.8 

     0.2 0.02 0.1 0.08 0.06 0.07 0.02 0.24 0.10 0.06 0.3 0.34 0.01 0.05 0.9 1.3  

!
850 80 48 5 74.4 0.27 13.3 1.49 0.02 0.20 0.92 2.97 6.32 0.04 95.8 6.99 3.51 4.79 35.6 61 10.4 

     0.5 0.05 0.1 0.04 0.03 0.02 0.02 0.06 0.08 0.03 0.5 0.56 0.01 0.07 1.8 1.4  

!
850 60 48 5 75.3 0.27 12.9 1.44 0.10 0.14 0.73 2.90 6.17 0.00 97.7 5.49 2.99 5.19 25.3 68.5 16.4 

     1.2 0.04 0.6 0.27 0.13 0.03 0.07 0.56 0.21 0.00 1.2 0.33 0.02 0.09 0.7 0.7  
 900 50 48 11 73.8 0.25 13.8 1.68 0.02 0.24 1.25 4.26 4.59 0.10 97.8 7.91 2.59 4.94 33.7 54.4 2.6 
          0.5 0.05 0.1 0.06 0.05 0.07 0.02 0.19 0.14 0.09 0.6 0.22 0 0.07 2.3 1.2   
TEQ34 750 300 120 5 71.8 0.24 16.2 1.45 0.03 0.19 1.24 4.15 4.58 0.14 93.2 8.83 7.33 4.5 34.6 62.8 4.7 

     1.6 0.23 0.2 0.64 0.07 0.22 0.12 0.75 0.48 0.05 0.4 0.68 0.11 0.13 1.6 2.2  

!
750 250 120 7 71.9 0.36 15.2 1.41 0.04 0.23 0.65 5.62 4.64 0.15 93.5 4.65 6.94 4.45 22.3 72.9 13.5 

!
    0.9 0.20 0.4 0.38 0.06 0.21 0.08 0.38 0.35 0.09 0.4 0.64 0.06 0.13 1.6 2.5  

!
750 250 48  70.9 0.44 15.4 1.79 0.09 0.17 0.95 5.17 4.92 0.12 92.6 5.29 6.9 4.45 23 73.8 12.4 

!     1.3 0.65 0.3 0.94 0.04 0.19 0.11 0.27 0.17 0.10 0.7 0.83 0.08 0.11 0.2 1.5  

!
750 200 120 4 70.1 0.73 15.5 2.76 0.07 0.07 0.61 4.89 5.23 0.05 93.7 4.16 6.1 4.67 17 71.4 19.4 

!     1.4 0.43 0.3 2.02 0.03 0.08 0.15 0.92 0.48 0.04 0.9 0.96 0.05 0.16 1.1 1.3  
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Table 4.4: Glass Compositions (cont.) 

  T 
 (˚C) 

Pressure 
(MPa) 

Duration 
(h) n SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total liquidAn#1 wt% 

H2O2 
Viscosity3 
(log10 Pa s)

 

XAn XAb % 
xtal4 

!
800 250 48 7 69.5 0.31 16.3 1.94 0.08 0.24 1.42 5.46 4.59 0.10 93.5 9.04 6.73 3.98 29.5 68.3 0.8 

!     0.9 0.13 0.4 0.85 0.02 0.15 0.13 0.35 0.10 0.05 0.8 0.76 0.04 0.09 0.9 2.2  

!
800 200 48 6 68.9 0.39 16.6 2.44 0.06 0.20 1.19 5.55 4.61 0.08 93.0 7.76 5.93 4.14 27.3 67.9 1.6 

!
    0.9 0.27 0.7 1.73 0.04 0.09 0.08 0.32 0.18 0.08 1.3 0.62 0.08 0.13 0.7 0.8  

!
800 150 48 8 70.1 0.29 15.7 1.85 0.09 0.29 1.15 5.36 5.02 0.11 94.0 7.37 5.11 4.39 20.6 67.3 10.3 

!
    0.5 0.03 0.2 0.17 0.03 0.03 0.10 0.22 0.19 0.05 0.6 0.5 0.02 0.05 1.4 2.3  

 900 50 48 8 70.6 0.40 15.1 2.00 0.07 0.24 0.89 4.98 5.54 0.12 97.4 5.84 2.6 4.73 18.9 65.7 1.4 
          0.8 0.03 0.4 0.22 0.04 0.07 0.15 0.31 0.18 0.07 0.3 0.12 0.0 0.02 2 2.3   

 
 
 
Table 4.5: Plagioclase Compositions 

  T 
(˚C) 

Pressure 
(MPa) 

Duration 
(h) n SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO BaO Na2O K2O Total XAn XAb XOr  

MLV44 750 200 96 6 62.5 0.05 23.7 0.27 0.01 0.05 5.31 0.15 7.04 1.08 100.2 27.5 65.9 6.6 

    ±1  1.3 0.05 0.5 0.16 0.02 0.04 0.23 0.06 0.23 0.10 0.9 0.8 1.0 0.6 

 
750 200 48 5 62.2 0.06 23.9 0.29 0.01 0.05 5.34 0.13 7.13 1.08 100.1 27.3 66.1 6.6 

 
   ±1  1.1 0.06 0.3 0.17 0.02 0.04 0.18 0.04 0.18 0.11 0.9 0.6 1.0 0.7 

 
750 100 72 4 65.9 0.10 20.0 0.69 -0.01 0.12 3.52 0.28 6.65 2.05 99.9 19.9 67.2 12.6 

    ±1  0.1 0.07 0.4 0.24 0.04 0.10 0.19 0.06 0.14 0.30 0.6 0.6 0.5 1.2 

 
800 100 72 4 64.9 0.05 21.6 0.66 0.03 0.09 4.40 0.28 6.46 1.59 100.1 24.5 65.0 10.6 

 
   ±1  1.0 0.03 0.4 0.06 0.04 0.03 0.41 0.09 0.27 0.15 0.8 0.8 0.8 1.1 

 950 30 48 3 65.2 0.16 18.3 0.61 0.01 0.12 4.62 - 7.06 2.85 98.9 22.2 61.4 16.4 
        ±1  0.7 0.05 0.2 0.12 0.02 0.03 0.19  - 0.31 0.24 0.4 0.4 1.3 1.7 
MLV36 750 220 48 4 58.0 0.01 26.6 0.35 0.02 0.03 8.77 - 6.19 0.60 100.6 42.4 54.2 3.5 

    ±1  0.6 0.01 0.3 0.03 0.02 0.01 0.20 - 0.38 0.08 0.4 1.4 1.5 0.5 

 
750 200 120 9 60.5 0.03 24.2 0.34 0.00 0.03 6.12 0.14 7.39 0.79 99.5 29.9 65.4 4.6 

 
   ±1  1.3 0.04 0.7 0.08 0.04 0.03 0.33 0.08 0.32 0.15 0.8 1.2 1.1 1.0 

 
750 200 48 8 60.2 0.11 24.9 0.58 0.06 0.19 5.91 0.12 7.24 0.43 99.7 30.3 67.1 2.6 

 
   ±1  0.7 0.08 0.3 0.25 0.08 0.18 0.28 0.09 0.31 0.18 0.6 0.8 1.5 1.0 

 
750 100 72 4 63.7 0.13 21.5 0.74 0.03 0.17 3.60 0.27 7.14 2.03 99.8 19.0 68.3 12.8 

 
   ±1  0.3 0.09 0.4 0.21 0.04 0.11 0.20 0.12 0.10 0.03 0.2 0.9 0.8 0.2 

 
800 150 48 6 62.0 0.02 25.0 0.26 0.01 0.04 7.06 0.03 5.43 0.76 100.2 39.9 55.0 5.1 

 
   ±1  1.6 0.01 0.4 0.06 0.02 0.03 0.42 - 0.85 0.12 0.9 3.0 3.1 0.5 

 
800 100 72 5 62.8 0.16 23.0 0.67 -0.01 0.08 5.62 0.14 6.67 1.44 100.6 28.9 62.2 8.8 

    ±1  0.6 0.17 0.3 0.23 0.02 0.04 0.39 0.12 0.10 0.20 0.3 1.6 0.9 1.3 
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Table 4.5: Plagioclase Compositions (cont.) 
  T 

(˚C) 
Pressure 
(MPa) 

Duration 
(h) n SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO BaO Na2O K2O Total XAn XAb XOr  

 
850 100 48 5 59.5 0.04 25.0 0.66 -0.01 0.09 8.76 0.11 4.26 0.80 99.3 49.6 45.3 5.3 

 
   ±1  1.2 0.03 0.4 0.07 0.01 0.02 0.26 0.09 0.62 0.13 0.7 0.9 1.3 1.0 

 
850 80 48 6 59.4 0.13 23.5 0.35 0.09 0.05 7.74 - 7.33 0.63 99.3 35.6 61.0 3.4 

    ±1  1.3 0.03 0.4 0.07 0.12 0.03 0.53 - 0.38 0.29 0.4 1.8 1.4 1.4 

 
850 60 48 5 63.1 0.22 21.2 0.62 0.04 0.14 5.04 - 7.53 1.03 98.9 25.3 68.5 6.2 

 
   ±1  1.2 0.29 0.4 0.20 0.08 0.16 0.25 - 0.40 0.02 0.9 0.7 0.7 0.3 

 900 50 48 4 63.8 0.10 21.8 0.66 0.01 0.12 6.20 - 5.52 1.81 100.0 33.7 54.4 11.9 
        ±1  1.0 0.03 1.5 0.18 0.01 0.01 0.78 - 0.41 0.41 1.2 2.3 1.2 3.3 
TEQ34 750 300 120 7 59.1 0.09 24.4 0.54 0.01 0.12 7.22 0.35 7.23 0.44 99.5 34.6 62.8 2.6 

    ±1  1.0 0.12 0.8 0.43 0.02 0.27 0.77 0.11 0.64 0.15 0.7 1.6 2.2 1.0 

 
750 250 120 9 62.4 0.25 21.9 0.67 -0.01 0.08 4.55 0.10 8.26 0.82 99.0 22.3 72.9 4.8 

 
   ±1  1.2 0.48 0.8 0.65 0.10 0.05 0.20 0.12 0.51 0.41 1.5 1.6 2.5 2.4 

 
750 250 48 5 62.4 0.24 23.6 0.46 -0.01 0.20 4.29 0.18 7.59 0.50 99.5 23.0 73.8 3.2 

 
   ±1  0.4 0.14 0.4 0.27 0.07 0.09 0.10 0.10 0.26 0.23 0.5 0.2 1.5 1.5 

 
750 200 120 8 63.8 0.23 20.6 1.26 -0.01 0.24 3.15 0.17 7.29 1.80 98.6 17.0 71.4 11.6 

 
   ±1  1.1 0.12 0.8 0.86 0.09 0.16 0.25 0.06 0.35 0.35 1.2 1.1 1.3 2.2 

 
800 250 48 8 61.3 0.11 23.4 0.50 0.06 0.25 5.82 0.27 7.46 0.36 99.5 29.5 68.3 2.2 

 
   ±1  0.6 0.07 0.7 0.20 0.11 0.17 0.07 0.11 0.44 0.31 0.8 0.9 2.2 1.9 

 
800 200 48 5 61.9 0.05 23.5 0.49 0.01 0.03 5.53 0.11 7.60 0.82 99.7 27.3 67.9 4.8 

 
   ±1  0.7 0.09 1.2 0.10 0.01 0.02 0.16 0.11 0.29 0.05 1.0 0.7 0.8 0.3 

 
800 150 48 5 64.3 0.19 21.9 0.94 0.02 0.07 3.42 0.43 6.17 1.69 99.4 20.6 67.3 12.2 

 
   ±1  0.6 0.07 0.3 0.37 0.04 0.05 0.23 0.15 0.57 0.11 0.4 1.4 2.3 1.1 

 900 50 48 6 63.5 0.22 20.9 1.35 0.00 0.07 3.51 0.51 6.74 2.38 99.3 18.9 65.7 15.4 
        ±1  1.0 0.07 0.4 0.57 0.05 0.03 0.44 0.12 0.53 0.24 0.3 2.0 2.3 2.2 
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TEQ-34 (67 wt% SiO2 dacite) 

 The results of the phase-equilibrium experiments for TEQ-34 are summarized in a 

phase diagram in Fig. 4.4.  At the estimated pre-eruptive temperature (760 ± 16 °C) 

obtained from the two Fe-Ti oxide thermometer in the natural sample, the experimental 

phase diagram predicts that the plagioclase-in curve is located at PH2O > 300 MPa and, 

therefore, at melt water concentrations >7.3 wt%.  Thus, the most calcic plagioclase 

composition at the pre-eruptive temperature is not recorded by the experiments in this 

study.  The phase equilibrium experiments further predicts that the equilibrium 

composition of plagioclase at 760 (± 16) °C varies from ~An35 to ~An17 as the PH2O varies 

from 300 to 200 MPa, which leads to a variation in melt water concentration from ~7.3 to 

~6.0 wt%.  This range in plagioclase composition overlaps with the range observed in the 

natural sample (Fig. 4.2).  The phase diagram additionally shows that biotite is stable at 

temperatures <900°C, which is consistent with the occurrence of biotite in the natural 

sample (Crabtree and Lange, 2011).  The only discrepancy between the experimental 

phase diagram and the natural sample is the absence of orthopyroxene in the experimental 

run products, which can be attributed to the much higher fO2 of the experiments (∆NNO > 

1) relative to the natural sample (∆NNO = -0.9; Fig. 4.2), a difference of two orders of 

magnitude or more in fO2. 
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Figure 4.4: Phase equilibrium diagram for TEQ34.  The analyses of experimental glasses and plagioclase 
are reported in tables 4.4 and 4.5, and clinopyroxene are reported in Appendix C Tables C7.  In some 
experiments, plagioclase was identified using EDS spectra but was not able to be measured due to small 
sizes (<5µm).  Isopleths of dissolved melt water are also shown, calculated with water solubility model of 
Liu et al. (2005). Abbreviations are: plag, plagioclase; cpx, clinopyroxene; bte, biotite; tmte, 
titanomagnetite. The plagioclase that was present and too small to be measured is noted on the phase 
equilibrium diagram with the abbreviation “t.s.” 
 
MLV-36 (73 wt% SiO2 rhyolite) 

 The results of the phase equilibrium experiments for MLV-36 are summarized 

with a phase diagram in Fig. 4.5.  At the estimated pre-eruptive temperature (852 ± 12 °C) 

obtained from the two Fe-Ti oxide thermometry in the natural sample, the phase 

equilibrium experiments predict that the plagioclase-in curve is located at PH2O = 100 MPa 

and, therefore, a calculated melt water concentration of ~4.0 wt%.  The phase diagram 

shows that the equilibrium composition of plagioclase at 852 (± 12) °C varies from ~An50 
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to ~An25 as PH2O varies from 100 to 50 MPa (~4.0 to ~3.0 wt% H2O, respectively).  This 

range in plagioclase composition overlaps with the range observed in the natural sample 

(Fig. 4.2), although the most sodic plagioclase in the natural sample is An32.  The phase 

diagram additionally shows that biotite is only stable at temperatures ≤ 825 °C, which is 

consistent with the absence of biotite in the natural sample (Waters and Lange, 2013).   

All other experimentally observed phases (orthopyroxene, titanomagentite, ilmenite; 

Table 4.2) are found in the natural sample, with the exception of clinopyroxene, which is 

absent as a phenocryst phase in the natural sample (Waters and Lange, 2013). 

	  
Figure 4.5: Phase equilibrium diagram for MLV36.  The analyses of experimental glasses and plagioclase 
are reported in Tables 4.4 and 4.5, and orthopyroxene and clinopyroxene are reported in Appendix C Tables 
C6-C7.  Isopleths of dissolved melt water are also shown, calculated with water solubility model of Liu et 
al. (2005). Abbreviations are: plag, plagioclase; opx, orthopyroxene; cpx, clinopyroxene; bte, biotite; tmte, 
titanomagnetite. .  Isopleths of dissolved melt water are also shown, calculated with water solubility model 
of Liu et al. (2005).   
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MLV-44 (75 wt% SiO2 rhyolite) 

The results of the phase-equilibrium experiments for MLV-44 are summarized in a 

phase diagram in Fig. 4.6.  At the estimated pre-eruptive temperature (932 ± 15 °C) 

obtained from two Fe-Ti oxide thermometry in the natural sample, the experimental phase 

diagram predicts that the plagioclase-in curve is located at PH2O = 40 MPa and, therefore, 

at a melt water concentration of ~2.1 wt%. Isopleths of anorthite content (An22, An24, 

An26) are shown as light grey dashed lines.  The phase diagram illustrates that the 

equilibrium composition of plagioclase at 932 (± 12) °C varies from ~An28 to ~An22 as 

PH2O varies from 38 to 25 MPa, which leads to a variation in melt water concentration 

from ~2.1 to ~1.7 wt%.  This range in plagioclase composition overlaps with the range 

observed in the natural sample (Fig. 4.2).  The phase diagram additionally shows that 

biotite is only stable at temperatures ≤ 825 °C, which is consistent with the absence of 

biotite in the natural sample.  All other experimentally observed phases (clinopyroxene, 

orthopyroxene, titanomagentite; Table 4.2) were found in the natural sample, whereas 

ilmenite was too sparse to identify in the experimental run products. 
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Figure 4.6: Phase equilibrium diagram for MLV44.  The analyses of experimental glasses, plagioclase are 
reported in Tables 4 and 5, and orthopyroxene, and clinopyroxene are reported in Appendix C Tables C6-
C7.  Also shown are isopleths of anorthite content (An22, An24, and An26).  Isopleths of dissolved melt water 
are also shown, calculated with water solubility model of Liu et al. (2005). Abbreviations are: plag, 
plagioclase; opx, orthopyroxene; bte, biotite; tmte, titanomagnetite 

Isothermal Decompression Experiments on MLV-36  

Isothermal (850°C) decompression experiments that were conducted at a rate of 

2.9 MPa/hr, whether quenched at 89 MPa or 58 MPa, led to run products that were devoid 

of crystals.   In contrast, isothermal (850°C) decompression experiments performed at the 

slower rate of 0.8 MPa/hr, whether quenched to 89 or 58 MPa, resulted in run products 

that contained plagioclase, orthopyroxene, ilmenite and titanomagnetite, all of which are 

found in the natural sample.  Notably, clinopyroxene was only observed in the 

decompression experiments (0.8 MPa/hr) quenched to 58 MPa.  This is fully consistent 

with the phase-equilibrium diagram in Fig. 4.5, which shows that the clinopyroxene-in 
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curve (at 850°C) occurs at a PH2O of ~70 MPa, lower than that for all other mineral-in 

curves.  Compositions of the plagioclase crystals and matrix glass in each of the 

decompression run products are presented in Table 4.6; other mineral phases were too 

small for quantitative microprobe analyses. 

The experimental charge from the decompression experiment quenched at PH2O = 

89 MPa contains a population of plagioclase crystals that span a relatively wide range of 

composition (An50-An30).  For those crystals large enough for microprobe analyses, the 

compositions range from An47 to An37. The results of the An map and the BSE standard 

(discussed in the methods section) are shown in Fig. 4.7A, as a BSE image of the standard 

(Fig. 4.7A1), an An-map (Fig. 4.7A2), and a histogram of microprobe analyses from the 

standard, along with a histogram of pixels v. mol% An recorded by the An-map (Fig. 

4.7A3).  The range of plagioclase compositions and their relative abundances determined 

by the element maps (see Methods Section) are shown in Fig. 4.7B and C for one region 

of the decompression quenched at 89 MPa (Fig. 4.7B) and one region of the 

decompression quenched at 58 MPa.  The results approximate a Gaussian distribution 

with a peak at ~An40, which is shifted to more sodic compositions by ~5 mol% An, 

compared to the natural sample. 



 

Table 4.6: Glass and Plagioclase Compositions from Decompression Experiments 
! ! !Pf 

(MPa) 
Duration 

(h) Phase n SiO2 TiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O Total wt% 
H2O XAn XAb XOr  

89 76 glass 5 73.3 0.23 13.9 1.77 0.21 0.90 3.28 6.51 96.7 3.7 6.62 
  89 76 plag 

 
59.6 0.06 25.2 0.19 0.03 7.68 6.31 0.78 99.8 

 
38.3 57.0 4.6 

!89 76 plag 
 

58.4 0.00 24.9 0.38 0.04 7.93 6.58 0.74 99.0 
 

38.3 57.5 4.3 
!89 76 plag 

 
58.0 0.10 25.1 0.40 0.05 8.80 6.64 0.88 100.2 

 
40.2 55.0 4.8 

!89 76 plag 
 

59.3 0.08 25.6 0.29 0.06 7.60 6.25 0.84 100.1 
 

38.1 56.8 5.0 
!89 76 plag 

 
58.4 0.03 25.7 0.29 0.08 7.98 6.36 0.83 99.7 

 
39.0 56.2 4.8 

!89 76 plag 
 

58.3 0.15 24.9 0.21 0.00 8.45 6.79 0.79 99.7 
 

39.0 56.7 4.4 
!89 76 plag 

 
58.9 0.03 25.8 0.21 0.00 7.45 6.76 0.66 99.8 

 
36.4 59.8 3.8 

!89 76 plag 
 

58.0 0.16 25.0 0.19 0.00 8.58 7.24 0.78 100.0 
 

37.9 57.9 4.1 
!89 76 plag 

 
58.1 0.07 25.3 0.38 0.14 8.40 7.17 0.87 100.4 

 
37.5 57.9 4.6 

!89 76 plag 
 

57.9 0.07 25.9 0.48 0.00 7.98 7.14 0.14 99.6 
 

37.9 61.3 0.8 
!89 76 plag 

 
58.0 0.12 26.2 0.80 0.06 7.56 5.31 1.52 99.6 

 
39.8 50.6 9.5 

!89 76 plag 
 

57.9 0.07 27.0 0.82 0.02 7.45 5.05 0.35 98.7 
 

43.8 53.8 2.4 
!89 76 plag 

 
56.3 0.04 26.8 0.29 0.04 9.18 5.57 0.47 98.7 

 
46.3 50.9 2.8 

!89 76 plag 
 

57.1 0.10 26.2 0.40 0.47 7.98 6.26 0.77 99.3 
 

39.5 56.0 4.5 
!89 76 plag 

 
57.4 0.15 24.9 0.46 0.32 7.94 6.13 0.85 98.1 

 
39.6 55.4 5.0 

!89 76 plag 
 

58.5 0.01 26.4 0.40 0.04 7.81 6.66 0.72 100.7 
 

37.7 58.2 4.1 
!89 76 plag 

 
55.1 0.10 27.8 0.69 0.10 9.91 5.60 1.20 100.4 

 
46.2 47.2 6.7 

!89 76 plag 
 

57.4 0.13 24.6 0.84 0.23 7.68 6.51 0.84 98.3 
 

37.5 57.6 4.9 
!89 76 plag 

 
57.4 0.08 26.1 0.48 0.03 8.24 7.02 0.58 100.0 

 
38.1 58.7 3.2 

!89 76 plag 
 

58.7 0.00 25.5 0.36 0.11 8.04 6.10 0.90 99.9 
 

39.9 54.8 5.3 
!89 76 plag 

 
57.7 0.00 26.5 0.21 0.00 8.29 6.58 0.57 99.9 

 
39.7 57.0 3.2 

!89 76 plag 
 

58.9 0.04 25.1 0.08 0.04 7.70 6.25 0.79 98.2 
 

38.6 56.7 4.7 
!89 76 plag 

 
58.8 0.06 25.0 0.50 0.08 7.92 5.55 0.80 98.8 

 
41.9 53.1 5.1 

!89 76 plag 
 

58.6 0.09 24.8 0.15 0.06 7.41 6.05 0.62 98.1 
 

38.8 57.4 3.9 
!89 76 plag 

 
58.9 0.09 26.6 0.25 0.05 7.82 6.78 0.55 101.0 

 
37.7 59.2 3.1 

!89 76 plag 
 

57.6 0.10 24.9 0.42 0.13 8.05 6.05 0.66 98.0 
 

40.7 55.4 4.0 
!89 76 plag 

 
58.3 0.13 26.6 0.50 0.08 7.38 6.15 0.14 99.3 

 
39.5 59.6 0.9 

!89 76 plag 
 

56.3 0.12 26.4 0.44 0.02 8.61 7.21 0.99 100.1 
 

37.7 57.1 5.2 
!89 76 plag 

 
56.4 0.01 26.7 0.36 0.00 8.37 7.14 0.57 99.8 

 
38.1 58.8 3.1 

!89 76 plag 
 

55.5 0.05 26.7 0.06 0.00 10.3 6.93 0.79 100.7 
 

43.4 52.7 4.0 
!58 120 glass 7 74.7 0.25 13.5 1.68 0.24 0.85 3.82 6.45 97.2 2.9 5.69 

  58 120 plag 
 

57.5 0.06 25.0 0.21 0.04 7.98 7.33 0.74 98.9 
 

36.1 60.0 4.0 
!58 120 plag 

 
58.6 0.03 25.0 0.15 0.02 6.72 6.53 0.99 98.1 

 
34.1 59.9 6.0 

!58 120 plag 
 

58.8 0.02 24.4 0.25 0.00 8.32 7.16 0.62 99.7 
 

37.8 58.9 3.4 
!58 120 plag 

 
59.1 0.10 25.1 0.36 0.08 6.43 6.64 0.90 98.7 

 
33.0 61.6 5.5 

!58 120 plag 
 

59.3 0.09 24.6 0.42 0.08 6.80 7.25 0.86 99.6 
 

32.5 62.7 4.9 
!58 120 plag 

 
59.0 0.11 24.1 0.15 0.04 6.66 7.64 0.88 98.6 

 
30.9 64.2 4.8 

!58 120 plag 
 

58.7 0.02 24.8 0.21 0.00 7.70 7.38 0.86 99.6 
 

34.9 60.5 4.6 
!58 120 plag 

 
59.3 0.00 23.6 0.31 0.03 7.39 7.75 0.88 99.2 

 
32.9 62.4 4.7 

!58 120 plag 
 

61.4 0.06 24.7 0.25 0.00 6.18 7.61 0.73 101.1 
 

29.7 66.2 4.2 
!58 120 plag 

 
63.8 0.00 23.1 0.15 0.08 6.02 7.40 0.70 101.4 

 
29.7 66.2 4.1 

!58 120 plag 
 

58.3 0.08 24.2 0.25 0.02 7.57 8.34 0.84 99.6 
 

32.0 63.8 4.2 
!58 120 plag 

 
59.2 0.19 25.0 0.36 0.00 6.57 7.24 0.74 99.3 

 
32.0 63.8 4.3 

!58 120 plag 
 

60.1 0.05 24.2 0.33 0.05 6.70 7.84 1.33 100.8 
 

29.8 63.2 7.0 
!
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Table 4.6: Glass and Plagioclase Compositions from Decompression Experiments (cont.)
Pf 
(MPa) 

Duration 
(h) Phase n SiO2 TiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O Total wt% 

H2O 
XAn XAb XOr  

58 120 Plag 
 

58.3 0.09 24.9 0.34 0.05 7.16 6.86 0.69 98.4 
 

35.1 60.9 4.0 
!58 120 plag 

 
57.9 0.03 25.0 0.04 0.02 8.51 8.26 0.74 100.6 

 
34.9 61.4 3.6 

!58 120 plag 
 

57.3 0.06 25.9 0.44 0.03 7.72 6.78 0.68 99.1 
 

37.1 59.0 3.9 
!58 120 plag 

 
57.2 0.04 26.1 0.38 0.06 7.88 6.59 0.61 99.1 

 
38.4 58.1 3.5 

!58 120 plag 
 

57.0 0.04 25.1 0.19 0.07 8.09 7.97 0.87 99.3 
 

34.3 61.2 4.4 
!58 120 plag 

 
57.0 0.01 27.7 0.36 0.03 7.86 7.40 0.68 101.2 

 
35.6 60.7 3.7 

!58 120 plag 
 

56.9 0.06 25.8 0.36 0.00 8.02 6.82 0.65 98.6 
 

37.9 58.4 3.7 
!58 120 plag 

 
56.7 0.04 25.1 0.36 0.00 8.73 7.52 0.60 99.0 

 
37.9 59.0 3.1 

!58 120 plag 
 

56.2 0.00 25.9 0.23 0.05 7.97 7.44 0.50 98.4 
 

36.2 61.1 2.7 
!58 120 plag 

 
58.1 0.00 24.9 0.44 0.06 8.28 7.39 0.74 99.9 

 
36.8 59.3 3.9 

!58 120 plag 
 

56.6 0.23 25.4 0.42 0.07 8.60 7.65 0.61 99.7 
 

37.1 59.7 3.1 
!58 120 plag 

 
59.7 0.04 24.1 0.50 0.01 7.12 6.61 0.78 98.8 

 
35.6 59.8 4.7 

!58 120 plag 
 

57.6 0.00 25.8 0.27 0.02 7.36 7.20 0.66 98.9 
 

34.7 61.5 3.7 
!58 120 plag 

 
62.2 0.00 24.8 0.57 0.07 6.68 6.26 0.89 100.5 

 
35.0 59.4 5.6 

!58 120 plag 
 

59.3 0.03 23.1 0.31 0.07 6.88 7.62 1.20 98.5 
 

31.1 62.4 6.5 
!58 120 plag 

 
61.3 0.02 22.7 0.48 0.00 5.48 7.55 1.29 98.9 

 
26.5 66.1 7.4 

!58 120 plag 
 

60.0 0.03 25.1 0.31 0.00 6.62 7.00 0.86 99.9 
 

32.6 62.4 5.1 
!58 120 plag   58.6 0.15 22.9 0.17 0.11 6.96 9.31 0.83 99.0   28.1 68.0 4.0 
!Where XAn of liquid compositions refers to the liquid An-number, and % Xtal refers to the crystallinity calculated with linear regression and the most calcic 

and most sodic plagioclase compositions, the experimental glass compositions and the bulk composition reported in Table 4.1 

%
xtal
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Figure 4.7: (a) Scanning electron microscope (SEM) (1) and Anorthite (An) maps (2) for the BSE Standard, (b) the 
isothermal (850°C) decompression experiment from 150 to 89 MPa at 0.8 MPa/hr, and (c) the isothermal (850°C) 
decompression experiment from 150 to 58 MPa at 0.8 MPa/hr. Images ending in 1 correspond to the SEM image, 
images ending in (2) are the An-maps processed using element maps and MatLab (see text), and those ending in C are 
the analyses of plagioclase from the electron microprobe, element maps, and those reported for the natural sample (Fig. 
4.2b). 

The experimental charge from the decompression experiment quenched at PH2O = 

58 MPa contain a population of plagioclase crystals that span a similar range of 

composition as those quenched at PH2O = 89 MPa, except that they extend to more sodic 

compositions (An50-An25).  The composition of crystals large enough to be quantitatively 
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analyzed with the microprobe range from An40-An27, whereas the element maps of the 

experimental charge capture plagioclase with compositions >An45, as illustrated in Fig. 

4.7B and C.  The variation in the relative abundance of plagioclase compositions in each 

map reflects the small size of each map region relative to the size of the experimental 

charge overall.  The observation that plagioclase in Fig. 4.7C closely follows the natural 

distribution of plagioclase compositions in MLV-36 demonstrates that isothermal 

decompression under H2O fluid-saturated conditions at 850°C is capable of producing the 

observed range of plagioclase in the natural sample. 

 

4.5 DISCUSSION 

Two central questions motivated this experimental study.   First, does the entire 

compositional range of plagioclase in each of the natural obsidians reflect phenocryst 

crystallization, or do some xenocrysts occur?  Second, for those plagioclase crystals that 

are determined to be phenocrysts, did crystallization occur because of cooling and/or 

degassing during magma ascent?  The phase-equilibrium experiments can be used to 

evaluate both questions, whereas the decompression experiments, along with textural 

evidence from the natural samples, provide additional insights into the second question. 

 
What Proportion of the Plagioclase Crystals in the Natural Samples are Phenocrysts 

vs. Xenocrysts? 

TEQ-34 

 TEQ-34 is the natural specimen with the widest compositional range of 

plagioclase phenocrysts, An45-An7, and all possible pairings of coexisting ilmenite and 

titanomagnetite give a temperature of 760 ± 16°C.  The most calcic plagioclase grown in 
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the phase-equilibrium experiments is An35 at 750°C and PH2O=300 MPa (7.1 wt% H2O; 

Fig. 4.4).   It is clear from Fig. 4.4 that the plagioclase-in curve occurs at PH2O > 300 MPa 

at 750°C, which requires that the near-liquidus plagioclase composition is more calcic 

than An35 owing to the effect of increasing melt water concentration with PH2O.  Also, 

Fig. 4.4 shows that a difference in PH2O of only 50 MPa at 750°C, from 300 to 250 MPa, 

leads to a relatively large change in the equilibrium plagioclase composition of >10 

mol% An (An35 to An22).  Therefore, it is fully expected that at PH2O = 350 MPa, which 

should be close to the plagioclase-in curve at 760°C, the equilibrium plagioclase is 

another 5-10 mol% An more calcic than An35.   The majority of the plagioclase 

phenocrysts observed in TEQ-34 (Fig. 4.2) have compositions ≤An35, with only a small 

proportion with more calcic compositions (An45-35).  It is expected that these calcic 

compositions crystallize close to the plagioclase-in curve (PH2O >300 MPa) at 760°C and 

that they are present in the natural sample in low abundance because at small 

undercoolings (Tplagioclase-in curve – Tmelt), both crystal growth rates and nucleation rates are 

low (Hammer & Rutherford, 2002; Couch et al., 2003), a point that is explored in more 

detail below.  Therefore, the evidence shows that all of the plagioclase crystals in TEQ-

34 are plausible phenocrysts. 

 
MLV-36 

Plagioclase crystals that occur in the natural sample MLV-36 span a continuous 

range in composition, An53-33, with a single core in one crystal that is ≥ An60 and makes 

up <0.01% of the total sample (Fig. 4.2).  All possible pairs of titanomagnetite and 

ilmenite give a temperature of 852 ± 12°C.   The most calcic plagioclase grown in the 

phase-equilibrium experiments (Fig. 4.5) at 850°C is An50 at PH2O = 100 MPa (4.1 wt% 
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H2O), which is close to the most calcic plagioclase crystal observed in the continuous 

spread of compositions (An53; Fig. 4.2).  It is expected that plagioclase compositions 

slightly more calcic than An50 (i.e., An51-53) can crystallize from the melt at slightly 

higher PH2O and/or temperature.  Therefore, based on the results of the phase equilibrium 

experiments (Fig. 4.5), the continuous spread of plagioclase compositions from An53-33 

could have crystallized from the liquid.  In contrast, the An60-63 composition found in a 

single core is inferred to be a xenocryst.  

 
MLV-44 

Plagioclase in MLV-44 spans a small range in composition, An27-21, and all 

possible pairings of coexisting ilmenite and titanomagnetite from this sample give a 

temperature of 932 ± 15 °C (Fig. 4.2).  Plagioclase crystals that grew in the phase 

equilibrium experiments span a similar range of composition (An28-20) as those seen in 

the natural sample (Fig. 4.6).  Therefore, the plagioclase crystals observed in MLV-44 are 

plausible phenocrysts. 

 
Summary of phase-equilibrium experiments 

The results of the phase-equilibrium experiments clearly demonstrate that nearly 

all the plagioclase crystals observed in the three natural obsidian samples could have 

grown from the liquid, with the exception of a single An63-60 core in MLV-36 (< 0.01% 

of  the sample), which is interpreted to be a xenocryst.  The phase-equilibrium diagrams 

also show that remarkably small changes in PH2O (≤ 50 MPa) and/or temperature (≤ 50 

°C) can lead to relatively large changes in plagioclase composition (>10 mol% An), 

suggesting that both degassing and cooling can produce a wide compositional range of 



	  

 122 

plagioclase phenocrysts.  Before evaluating the relative importance of cooling and/or 

degassing in the three obsidian samples, the question of whether rapid degassing can lead 

to crystallization of equilibrium plagioclase compositions must first be addressed.  

 
Degassing-Induced Crystallization of Equilibrium Plagioclase Compositions?  

A comparison of the phase-equilibrium and decompression experiments 

performed on MLV-36 allows a test of whether equilibrium plagioclase compositions can 

crystallize during degassing, or whether there is a kinetic effect on the composition of 

plagioclase that is grown.  From the phase-equilibrium diagram for MLV-36 (Fig. 4.5), it 

is seen that during decompression (0.8 MPa/hr) at 850°C, the equilibrium plagioclase 

composition expected to grow immediately after the plagioclase-in curve is crossed (at 

PH2O = 105 MPa) ~ An50.  It is further expected that as PH2O decreases during 

decompression, the composition of equilibrium plagioclase becomes increasingly sodic.   

Morever, it anticipated that in the quenched run products the most calcic plagioclase 

crystals that grew early in the decompression experiments will be preserved because of 

sluggish kinetics related to the CaAl-NaSi exchange reaction between calcic plagioclase 

and rhyolite melt (e.g., Morse & Nolan, 1984).   From the SEM maps of the run products 

(Fig. 4.7), it is seen that plagioclase as calcic as An50 (red color) formed in both 

decompression experiments, albeit in low abundance and too small for microprobe 

analysis. 

In the decompression experiment that quenched at PH2O = 89 MPa, it is expected 

from the phase-equilibrium results that only plagioclase more calcic than An36 

(equilibrium composition at PH2O = 80 MPa; Fig. 4.5) should have crystallized.  This is 

the case, as seen both in the SEM map and in microprobe analyses of plagioclase crystals 
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large enough to analyze (An47-37).  It is further expected that in the decompression 

experiment that quenched at PH2O = 58 MPa, plagioclase crystals more sodic than those 

observed in the experiment quenched to PH2O = 89 MPa should have grown.  Again, this 

is the case, as seen from the microprobe analyses of plagioclase that range from An40-27, 

extending into the compositional range predicted to form at PH2O <80 MPa (<An36).    

Therefore, during the two decompression experiments performed at 0.8 MPa/hr, 

degassing-induced crystallization produced a range of equilibrium plagioclase 

compositions, in response to a progressive loss of dissolved water in the melt. 

The evidence for equilibrium crystallization of plagioclase shows that equilibrium 

degassing of water from the melt must also have occurred, which is consistent with the 

experiments of Gardner et al. (1999).  In that study, it was shown that equilibrium 

degassing of H2O from high-silica (77 wt%) rhyolite melts occurs at decompression rates 

as high as 90 MPa/hr, which is an order of magnitude more rapid than that those 

employed in this study (2.9 and 0.8 MPa/hr).   

 
Diffusion Limited Growth Textures 

 Despite the demonstration that a range of equilibrium plagioclase compositions 

crystallized in the 0.8 MPa/hr decompression experiments (as a result of degassing), 

some of the plagioclase crystals in the run products display complex textures (Fig. 4.7).   

BSE images in Fig. 4.7 show that some plagioclase crystals are skeletal with melt 

interiors, others have faceted euhedral margins on one side and rounded margins on the 

other, whereas still other crystals display swallowtails.  These complex textures are 

indicative of diffusion-limited crystal growth (Lofgren, 1974; Kirkpatrick, 1975; Roedder 
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et al., 2001; Shea & Hammer, 2013) and are expected to form when large undercoolings 

(∆T = Tplagioclase-in curve – Tmelt; Fig. 4.8a) develop as a consequence of degassing.  

The decompression experiment that ran from PH2O of 150 to 89 MPa at a rate of 

0.8 MPa/hour lasted 76 hours in total, of which approximately 18 hours was spent below 

the plagioclase-in curve (at PH2O = ~105 MPa).  Immediately prior to quench, the 

magnitude of the undercooling is estimated to have been ~15 degrees (Fig. 4.5).  

Similarly, the decompression experiment that quenched at PH2O = 58 MPa, lasted 115 

hours in total, of which approximately 57 hours were spent below the plagioclase-in 

curve.  However, immediately prior to quench, the magnitude of undercooling is 

estimated to have been larger, namely ~50 degrees (Fig 4.5).  In both decompression 

experiments, the plagioclase crystals that show the most pronounced diffusion limited 

growth textures are the most sodic compositions (An40-30; Fig. 4.7; Fig. 4.8a), namely 

those that grew at the largest undercooling immediately prior to quench.   

Theoretical and experimental studies of diffusion-limited growth of crystals (e.g., 

Lofgren, 1974; Kirkpatrick, 1975; Roedder et al., 2001; Couch et al., 2003a,b; Shea & 

Hammer, 2013) demonstrate that skeletal and swallowtail textures develop in response to 

the depletion of mineral components in the melt phase immediately adjacent to a rapidly 

crystallizing mineral phase.  Thus, it appears that it is the development of complex, rapid 

growth textures  (e.g., skeletal and swallowtail), where crystal growth extends into melt 

regions where the plagioclase components are available, that allows nearly equilibrium 

plagioclase compositions to crystallize at large undercoolings.  

 
Relative abundances and plagioclase zoning patterns 
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Another useful set of observations obtained from the decompression experiments 

is the relative abundance of calcic vs. sodic plagioclase in each run product, as well as the 

compositional zoning patterns seen among the plagioclase crystals.  For example, in the 

two 0.8 MPa/hour decompression experiments, the most calcic plagioclase composition 

(~An50) occurs in relatively low abundance compared to more sodic compositions 

(~An40).  This result is fully consistent with the well-established correlation between the 

degree of undercooling and both nucleation and crystal growth rates (e.g., Hammer & 

Rutherford, 2002; Couch et al., 2003a).  

In Fig. 4.8a, the degree of undercooling and the equilibrium plagioclase 

composition is shown for three PH2O values for the decompression experiments at 850°C.  

At PH2O = 100, 80 and 60 MPa, the equilibrium plagioclase composition is An50, An36 and 

An25, respectively, and the degree of undercooling is ~5, ~25 and ~50 degrees, 

respectively. The observation that plagioclase with compositions more calcic than An50 

occurs in low abundances, both in the decompression experiments and in the MLV-36 

natural sample (Fig. 4.8b), is consistent with the relationship between low degrees of 

undercooling and low nucleation and crystal growth rates (e.g., Hammer & Rutherford, 

2002; Couch et al., 2003).  However, as the degree of undercooling increases, both 

nucleation rates and crystal growth rates increase, which causes the more sodic 

plagioclase compositions (e.g., ~An40) to occur in greater abundance, both in the 

decompression experimental run products and the natural sample (Fig. 4.8b).   
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Figure 4.8: Panels a-d show the effects of degassing on crystal nucleation and growth.  (a) The MLV36 plagioclase-in 
curve is shown with the experiments at 100, 80, and 60 MPa, along with plagioclase compositions that grew in phase 
equilibrium experiments (An50, An36, An25, respectively) and ∆T values (T-in curve-Texperiment).  (b) Plagioclase grown 
in experiments and corresponding pressures and ∆T values are compared with the histogram of plagioclase found in the 
natural sample (Fig. 2b).  Note that the natural samples have a smaller distribution than indicated by phase equilibria 
experiments. (c) The plagioclase compositions and undercoolings (∆T values) are compared with the nucleation and 
growth rate curves presented by Couch et al. (2003b).  (d) The relevant ∆T values from Couch et al. (2003b), a subset 
of Fig. 8c, are presented together the schematic nucleation and growth rate curves for the natural sample of MLV36.  
Curves are drawn based on the histogram of natural compositions; crystallization begins at ~An50 (∆T=5°C) and 
plagioclase growth and nucleation ceases at ~An36 (∆T=25°C). 
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Because it is not just crystal growth rate that increases with degree of 

undercooling, but also the nucleation rate (Fig. 4.8c), it is predicted that sodic plagioclase 

will not grow exclusively as rims on calcic cores, but will additionally nucleate directly 

from the melt when the equilibrium plagioclase is relatively more sodic (e.g., An40).  

Thus, it is predicted that relatively unzoned plagioclase crystals of ~An40 composition 

should form alongside other crystals that show compositional zoning from An50-40.  This 

variation is observed in the decompression experimental run products (Figs. 7) as well as 

in the natural sample of MLV-36 (Waters and Lange, 2013). 

Overall plagioclase abundances: phase-equilibrium vs. decompression experiments 

A final observation is that the overall abundance of plagioclase in the run 

products from the decompression experiments is consistently lower than the overall 

abundance of plagioclase found in the phase-equilibrium experiments quenched at similar 

PH2O-T conditions.  For example, at 850°C and PH2O = 60 MPa, approximately 16% 

plagioclase crystallized in the phase-equilibrium experiment, whereas in the two 

decompression experiments quenched at PH2O = 58 MPa, approximately 11% plagioclase 

crystallized when the decompression rate was 0.8 MPa/hr and no plagioclase crystallized 

when the rate was 2.9 MPa/hr.  This difference in overall abundance of crystallized 

plagioclase between phase-equilibrium experiments and decompression (degassing) 

experiments is also seen in the results from Couch et al. (2003a).  In that study, the 

effects of undercooling driven by degassing are evaluated on plagioclase nucleation and 

growth rates during isothermal decompressions.  Experiments of Couch et al. (2003b) 

were decompressed in eight nearly instantaneous drops in pressure from 160 MPa to four 

different final pressures (125, 100, 75 and 50 MPa).  The difference between the 



	  

 128 

abundance of plagioclase grown during equilibrium experiments and decompression 

experiments is highlighted by the experiments quenched at 50 MPa.  Plagioclase growth 

in equilibrium experiments at 50 MPa from Couch et al. (2003a) reaches 28 wt%, where 

as plagioclase growth in the decompression experiment to 50 MPa is only 15 wt% 

(Couch et al., 2003b), which is consistent with the observations from this study. 

 Another striking difference between the MLV-36 natural sample and the 

decompression experiment (0.8 MPa/hr) quenched at PH2O = 58 MPa is that plagioclase 

more sodic than An30 is not found in the natural sample, either as a phenocryst or 

microlite.  In contrast, in the decompression run product, the abundance of sodic 

plagioclase (An40-27) is relatively high, consistent with continued increases in crystal 

growth and nucleation rates as the degree of undercooling increases.  A possible 

explanation for these differences in overall plagioclase abundances between the natural 

sample, the run products of the decompression experiments, and those from the phase-

equilibrium experiments is the role that the rate of degassing plays in suppressing 

plagioclase nucleation. 

 
Suppression of Plagioclase Nucleation and Crystal Growth with Rapid Degassing 

From the decompression experiments performed at a rate of 2.9 MPa/hr, it is clear 

that plagioclase nucleation and crystal growth can be suppressed if degassing occurs at a 

sufficiently rapid rate.  In these rapid decompression experiments, quenched at PH2O = 89 

and 58 MPa, no crystals formed and only glass was found in the experimental charges.  In 

the experiment that ran from PH2O = 150 to 89 MPa, at a rate of 2.9 MPa/hour, it is 

estimated that the sample spent around 4 hours below the plagioclase-in curve (at PH2O = 

~105 MPa), which was apparently insufficiently long to allow nucleation and growth of 
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plagioclase.  Similarly, in the experiment that ran from PH2O = 150 to 58 MPa, it is 

estimated that the sample spent an additional 11 hours traversing from PH2O = 89 to 58 

MPa, which was also insufficient in duration to allow nucleation and growth of 

plagioclase.  Since the decompression experiments that were performed at the slower rate 

of 0.8 MPa/hour did result in plagioclase crystallization, it is clear that the rate of 

decompression, which controls the rate of H2O degassing from the melt, controls the 

suppression of plagioclase.  

It is well known that crystal nucleation can be suppressed when a melt is cooled 

rapidly because of the corresponding rapid increase in melt viscosity, which correlates 

with an decrease in chemical diffusivity (e.g., Loomis, 1981; Brandeis & Jaupart, 1987).  

Similar to the effects of rapid cooling, rapid loss of dissolved water (during 

decompression of fluid-saturated melt) also causes a rapid increase in melt viscosity and 

decrease in chemical diffusivity, because of the strong effect that dissolved water has on 

melt viscosity (Zhang et al., 2003; Hui and Zhang, 2007).  Therefore, rapid degassing 

during decompression of fluid-saturated melt has the potential to suppress plagioclase 

nucleation and crystal growth rates, similar to the effects of rapid cooling, and may be the 

reason why the three natural obsidian samples in this study contain such sparse 

phenocrysts and hardly any microlites.  The sparse abundance of phenocrysts in the 

natural samples provides the evidence that supports degassing as a mechanism to 

produced the observed phenocryst assemblages.  Cooling of a magma at depth is largely 

due to conduction which is a slow process and may potentially take days to months, and 

the expected abundances of phenocrysts would be much greater than what is actually 

observed in the natural samples. 
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On a final note, it is not just the rate of degassing, or rate at which melt viscosity 

changes with time, that leads to the suppression of nucleation and growth of crystals in a 

magmatic liquid.  Another critical factor is the initial value of melt viscosity when 

degassing (or cooling) begins.  For example, it is well known that if two melts with 

different initial viscosity values (e.g., rhyolite and basalt) are both cooled over a range of 

rates, the melt with a higher initial melt viscosity will quench to a glass at a slower 

cooling rate than the melt with the lower melt viscosity.  Therefore, in order to fully 

explore the effect of degassing rate on the suppression of plagioclase crystallization, it is 

necessary to monitor melt viscosity throughout the decompression experiments.  

 
How increasing melt viscosity during rapid degassing leads to plagioclase suppression 

The melt viscosities of the phase equilibrium experiments are shown in Table 4.4 

and calculated from the viscosity model of Hui & Zhang (2007).  The change in melt 

water concentration with decreasing PH2O is calculated from the water solubility model of 

Liu et al. (2005).  In MLV-36, plagioclase spans a range in composition from An33-An53 

(Fig. 4.2b), which approximately corresponds to a drop in pressure (at 850°C) from ~100 

MPa (An50) to ~80 MPa (An36), a change in dissolved melt H2O content from 4.0 wt% to 

3.5 wt%, and a change in melt viscosity from 4.55 to 4.85 log10 Pa s, respectively.  There 

is abundant evidence that crystal growth may occur at viscosities >4.85 log10 Pa s, such 

as the low pressure experiments from this study on MLV-44 between 30-100 MPa or the 

low pressure experiments of Brugger & Hammer (2010), which crystallize plagioclase in 

an H2O-saturated rhyolite liquid at viscosities as high as 7.34 log10 Pa s (at 860°C and 5 

MPa).  Therefore, decompression rate must exert control over plagioclase nucleation and 

growth, by rapidly increasing melt viscosity and reducing melt component diffusivity. To 
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establish the role of decompression rate, or the rate of change in viscosity, on plagioclase 

nucleation and growth, the results of Martel & Schmidt (2003) are utilized in addition to 

results presented here. 

The range of plagioclase in MLV-36 (Fig. 4.2) was grown over a range of melt 

H2O contents (4.0-3.5 wt%) and viscosities (4.55-4.85 log10 Pa s) and is readily compared 

to the high-pressure, multistep decompression experiments of Martel & Schmidt (2003).  

The isothermal (860°C) decompression experiments (shown in Fig. 4.9) are conducted 

over a fixed range of pressure (150-50 MPa), which corresponds to a range of H2O 

contents (4.8-2.6 wt%), a range of plagioclase compositions (An53-An37) and a range of 

melt viscosities (4.20-5.28 log10 Pa s), with rates ranging from 0.12-27,000 MPa/hr.  The 

unusually rapid decompression rates correspond to experiments of Martel and Schmidt 

(2003) where pressures of experiments were dropped in steps of >100 MPa in time 

intervals of seconds.  In multistep decompressions, pressure is dropped from an initial 

pressure (Pi) to a final pressure (Pf) in a series of effectively instantaneous pressure steps 

at regular time intervals, which results in an integrated decompression rate (Fig. 4.9).  To 

adjust the decompression rate, the time between pressure step is varied.  The 

decompression experiments of Martel & Schmidt (2003) have accompanying phase 

equilibrium experiments that provide the equilibrium plagioclase compositions at various 

pressures at the decompression run temperature.  The data in Martel & Schmidt (2003) 

can be used to evaluate the effect of viscosity on crystal growth and nucleation rate 

because they report run temperatures, Pi, Pf, experiment duration, pressure step interval, 

melt composition, and the range of plagioclase compositions grown during 

decompression.  By comparing the range of plagioclase compositions grown during a 
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decompression experiment to the range of plagioclase compositions predicted to grow 

based on phase equilibrium experiments over the same interval of pressure, any possible 

suppression of plagioclase growth can be identified.   

The decompression experiments of Martel & Schmidt (2003) are evaluated with 

respect to their decompression rates (MPa/hr) and as a function of change in viscosity 

with time (log10 Pa s/hr) (Fig. 4.9).  Pressure steps where plagioclase crystallized (shown 

in light grey) are identified by comparing the range of plagioclase compositions grown in 

the decompression experiments with the plagioclase composition grown in phase 

equilibrium experiments.  The pressure step that corresponds to the most sodic 

plagioclase reported is shown in grey with a black outline.  Pressure steps where 

plagioclase is predicted to grow but is not observed based on the reported compositions 

are shown in black.  In Fig. 4.9, experiments that crystallized the widest range of 

plagioclase compositions (mostly grey) are decompressed at slower rates.  A second 

observation from Fig. 4.9 is that as decompression rate increases, or as rate of change of 

viscosity increases, plagioclase growth stops at higher pressures and lower viscosities.  

 Ideally, the decompression experiments of Martel & Schmidt (2003) could be 

used to estimate decompression rates of natural samples using the viscosity at which 

plagioclase nucleation and growth ceased. For example, two decompression experiments 

at 0.72 (experiment #D4) and 0.12 MPa/hr (experiment #D3) feature suppression of 

plagioclase crystallization at viscosities of 4.65 and 4.90 log10 Pa s, respectively, which 

bound the viscosity at which plagioclase crystallization ceased in MLV-36 (the natural 

sample) (4.85 log10 Pa s; Table 4.4).  However, it is known from the decompression 

experiments that plagioclase in MLV-36 ceases at rates between 2.9 and 0.8 MPa/hr.  The 
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discrepancy between the rates from the decompression experiments on MLV-36 and 

those bracketed by experiments D3 and D4 from Fig. 4.9 is likely due to the evaluation of 

the experiments of Martel & Schmidt (2003) in the context of decompression rate 

(MPa/hr) instead of the change in melt viscosity (log10 Pa s/hr). 

 

	  

Figure 4.9: The high pressure decompression experiments of Martel & Schmidt (2003) are shown as a 
function of pressure (MPa) v. time (hours) and viscosity (log10 Pa s) v. time (hours).  Time is shown as a 
log scale so that experiments can easily be distinguished from each other.  The experiment names (e.g. 
D12) as Martel & Schmidt (2003) report them are listed above each decompression path along with the 
corresponding rate. The pressure steps in the experiments that grew plagioclase, as indicated by the 
reported range of plagioclase compositions, are shown in grey.  The pressure step corresponding to the 
most sodic plagioclase measured in the experiments is shown as a grey square with a bold black outline.  
Pressures steps that did not grow plagioclase are shown in black.  As rate increases, plagioclase stops 
growing at higher pressures. 

In Fig. 4.10, the pressures of the different experiments (i.e., D3, D4, etc; Fig. 4.9) 

that correspond to the suppression of plagioclase nucleation and growth (outlined in 

black) are shown as a function of their experimental viscosity (log10 Pa s) and the rate of 

change of viscosity (log10 Pa s/hr).  There is an exponential relationship between the rate 
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of change of viscosity and the melt viscosity at which plagioclase nucleation and growth 

ceases.  As the rate of change of viscosity increases (i.e., as decompression rate increases) 

in Fig. 4.10, the viscosity corresponding to the suppression of plagioclase crystallization 

decreases (i.e., lower viscosities, higher PH2O).  The relationship between decompression 

rate, as a function of rate of change of viscosity, and the viscosity at which plagioclase 

crystallization ceases provide a basis for a speedometer. 

 
Plagioclase Speedometry 

In Fig. 4.10, the viscosity at which plagioclase growth ceases decreases as the rate 

of change of viscosity increases.  The curve shown in Fig. 4.10 can be used to calculate 

the rate of change of viscosity that corresponds to the cessation of plagioclase growth.  In 

the case of MLV-36, plagioclase stopped crystalizing at a viscosity of 4.85 log10 Pa s, 

which corresponds to a rate of change of viscosity (∆η/∆t) of 0.03 log10 Pa s/hr, based on 

the equation in Fig. 4.10.  Once ∆η/∆t is obtained, a time may be calculated 

corresponding to the range of viscosity (∆η) over which plagioclase crystallized in the 

sample.  For example, plagioclase began crystallizing in MLV-36 at an initial viscosity of 

4.55 log10 Pa s and ceased at a final viscosity 4.85 log10 Pa s, which corresponds to a ∆η 

value of 0.3 log10 Pa s.  The change in viscosity corresponding to plagioclase 

crystallization (∆η) and the rate of change in viscosity (∆η/∆t) can be used to calculate a 

time scale (∆t) over which plagioclase crystallized.  Returning to MLV-36, the ∆η value 

of 0.3 log10 Pa s and the ∆η/∆t value of 0.03 log10 Pa s/hr result in a time of 11.25 hours 

over which plagioclase in MLV-36 crystallized.  Plagioclase in MLV-36 crystallized over 

a change in PH2O from ~100 to ~80 MPa.  With a known time of 11.25 hours, the average 

decompression rate for the duration of plagioclase crystallization in MLV-36 can be 
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calculated (20 MPa/11.25 hours) and is 1.80 MPa/hr, under pure H2O fluid saturated 

conditions, which is in good agreement with the decompression experiments conducted in 

this study at 2.9 MPa/hr and 0.8 MPa/hr.  These decompression rates, however, are based 

on pure H2O fluid saturation, and it is expected that at least some CO2 was present in 

these magmas, which would indicate a mixed H2O-CO2 fluid phase during degassing.  

The addition of CO2 to the system shifts all mineral-liquid equilibria to higher total 

pressures and therefore the decompression rates inferred for the natural samples are faster 

than those calculated here. 

	  

Figure 4.10: The experiments of Martel & Schmidt (2003) that correspond to the suppression of 
plagioclase nucleation and growth (outlined in black in Fig. 10) are shown as a function of their 
experimental viscosity (log10 Pa s) and the rate of change of viscosity (log10 Pa s/hr).  There is an 
exponential correlation between the rate of change of viscosity and the viscosity at which plagioclase 
growth ceases. 

	  
	  
	  
	  

Viscosity Corresponding to
Plagioclase Cessation 

 (log10 Pa s) 

y = 2.2502*1036*exp(-18.006*X) 
R  = 0.80

0 

5 

10 

15 

20 

25 

30 

4.4 4.5 4.6 4.7 4.8 4.9 5 

Ch
an

ge
 o

f V
is

co
si

ty
 w

ith
 T

im
e 

 (l
og

10
 P

a 
s 

/ h
r) 

H.P. Decompressions (860ºC)
Martel and Schmidt (2003)

(from Fig. 10)



	  

 136 

5.6 CONCLUSIONS 

Several key conclusions can be drawn from the experiments on three obsidian 

samples (67, 73 and 75 wt% SiO2) performed in this study.  First and foremost, the 

phase-equilibrium results clearly demonstrate that the wide compositional range (≤38 

mol% An) of plagioclase crystals in the three crystal-poor (<3%) obsidian samples are all 

plausible phenocrysts.  These experimental data further demonstrate that remarkably 

small variations in temperature (≤50 °C) and/or PH2O (≤ 50 MPa) can lead to large 

changes in plagioclase compositions (>10 mol%).  Second, the decompression 

experiments under fluid-saturated conditions show that at a decompression rate of 0.8 

MPa(PH2O)/hr, a continuum of changing equilibrium plagioclase compositions 

crystallized from the melt as degassing progressed.  Moreover, these plagioclase crystals 

often display diffusion-limited, rapid growth textures (swallowtail and skeletal), owing to 

the large undercooling that develops during degassing.   The occurrence of diffusion-

limited growth textures on plagioclase crystals with equilibrium compositions implies 

that crystals with these rapid-growth textures in natural samples cannot be assumed to 

represent disequilibrium compositions.  Third, the degassing experiments performed at 

the rapid rate of 2.9 MPa(PH2O)/hr, led to experimental run products with 100% glass.  It 

is inferred that it is the rapid increase in melt viscosity (and decrease in chemical 

diffusivity) that accompanies rapid loss of dissolved water during degassing that leads to 

the suppression of plagioclase nucleation and growth, similar to the effects of rapid 

cooling.  By comparing the data from this experimental study with those from the 

literature, the degassing rate at which plagioclase nucleation is suppressed is found to be 

a function of the initial viscosity of the melt phase.  Melts with higher initial viscosities 
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require lower degassing rates in order to quench to a glass, which is probably why most 

obsidian samples are rhyolitic in composition.  The relationship between melt viscosity 

and degassing rate is used to develop a plagioclase speedometer that is applicable to 

rhyolite.  Finally, it is concluded that a wide compositional range (≤38 mol% An) of 

plagioclase in obsidian samples that contain fewer than 3% plagioclase overall can only 

have formed by degassing-induced crystallization.  Conductive cooling of magma in a 

crustal chamber is far too slow to explain such a wide compositional range, combined 

with such a low overall plagioclase abundance. 
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