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ABSTRACT 

 

This dissertation explores the heterogeneity of synthetic nanoparticles and 

systematically investigates factors that regulate the multivalent binding avidity of these 

particles. We aim to establish parameters for designing multivalent nanoparticles, and define 

the role the heterogeneity of nanoparticles plays in this process from both structural and 

kinetic perspectives. In these studies, the kinetic and thermodynamic binding parameters of 

heterogeneous nanoparticle populations are identified and evaluated. We assess the effect of 

varied design parameters on the function of multivalent nanoparticles to provide these design 

guidelines. In the end, we prove the binding avidity of nanoparticles can be optimized using 

this approach.  

We first developed a novel method for evaluating the avidity distribution of 

nanoparticles. This involved the design and synthesis of a model multivalent nanoparticle 

system and a unique kinetic analysis to quantify the avidity distribution. We used mono-

dispersed PAMAM dendrimers functionalized with ssDNA oligonucleotides as a platform, 

and used complementary oligonucleotides as targeted receptors to create this well-controlled 

model nanoparticle system and an SPR biosensor to evaluate their binding. We found the 

binding curves were characterized by heterogeneity, including fast- and slow-dissociation 

subpopulations. By using a parallel initial rate analysis and dual-Langmuir analysis, the 
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avidity distribution of nanoparticles were determined and compared to the chemical diversity 

of ligand distribution. 

Second, we probed the avidity distributions resulting from a variety of parameters, 

including the number and the affinity of functionalized ligands. Based on both experimental 

and simulation results, we showed that multivalent interactions were dependent on these 

design parameters and developed strategies to enhance the binding avidity of ligand-

functionalized nanoparticles and the frequency of high-avidity subpopulations in the 

heterogeneous nanoparticles.  

Finally, we tested the principles defined in our prior studies by synthesizing ligand-

functionalized nanoparticles that demonstrated homogeneous high-avidity interactions with 

SPR surfaces. This was accomplished by using copper-free click chemistry, which allowed 

us to synthesize uniform and densely ligand-functionalized nanoparticles. As hypothesized, 

these nanoparticles demonstrated uniform binding to the targeted surface with pM-level 

avidity. This avidity is comparable to the avidity of antigen-antibody interaction, suggesting 

that these guidelines can be used in the design of nanoparticles in targeting drugs in vivo. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Ligand-functionalized nanoparticle-based targeted delivery systems 

More than one hundred years ago, Paul Ehrlich postulated the idea of a “magic bullet” 

and depicted the vision of targeted drug therapy. 1 Over these decades, researchers have been 

dedicated to the concept of “side effect-free” therapy achieved by using specific molecular 

interactions to target biomarkers on cells associated with diseases.2-8 This “active” targeting 

has been extensively studied using both antibodies and ligand-functionalized nanoparticles as 

targeted delivery systems. In particular, nanoparticle-based targeting systems bring 

advantages that could not be achieved with antibodies. These advantages include 1) low 

immunogenicity, 2) high chemical stability, 3) prolonged circulation time, 4) high drug 

payload, and 5) multi-functionality. In particular, nanoparticles with multiple numbers of 

ligands have been developed as carriers for targeted therapeutics and diagnostics. Currently, 

ligand-functionalized nanoparticles have demonstrated promise in targeting drugs in 

preclinical development. Moreover, some targeted nanoparticles have even entered early 

phases of clinical studies, as listed in Table 1.1.9-14  

Given the tremendous therapeutic potential of ligand-functionalized nanoparticles, a 

wide variety of biological ligands have been coupled to nanoparticles for drug targeting. As 

listed in Table 1.2, peptides, nutrients, aptamers, and fragments to antibodies have all been 
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explored as targeting molecules to treat serious illnesses such as cancer and autoimmune 

diseases.15-21 The explosive growth of novel types of nanoparticles also expands the 

opportunities of nanoplatforms for targeted delivery. Researchers can select nanoparticles 

based on the size (1-100 nm), material (organic or inorganic), or other physical properties 

such as geometry and fluorescence sensitivity. 2-8 Examples include dendrimers, liposomes, 

nanoemulsions, micelles, quantum dots and non-spherical nanoparticles; in short, a wide 

variety of nanoparticles have demonstrated their potential to serve as platforms in targeted 

nanocarriers.  

PAMAM dendrimers were developed during the 1980’s, and this family of polymer 

nanoparticles has attracted attention due to its unique characteristics for biomedical 

applications, including 1) high water solubility, 2) well-defined chemical structure, and 3) 

excellent biocompatibility.22-24 Additionally, abundant surface amino groups on PAMAM 

dendrimers offer the potential for surface modification with biological molecules to create 

functionalized nanoparticles. Recently, a variety of natural and synthetic ligands have been 

coupled to the surface of PAMAM dendrimers to promote the ligand-mediated targeting. 

These molecules include folic acid, methotrexate, RGD peptides, and aptamers.25-28 PAMAM 

dendrimers can also be coupled to drug molecules, antisense RNA, fluorescent dyes, and 

inorganic contrast agents for use in targeted therapeutics or imaging agents.29-31 These 

macromolecules have the potential to form the basis for the next generation of therapeutics. 

  

1.2 Multivalency in ligand-functionalized nanoparticles 
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Multivalency is characterized by the simultaneous interaction of multiple ligand-

receptor pairs, which is believed to collectively result in stronger binding avidities than the 

interaction between a single ligand-receptor pair.32,33 (Fig. 1.1) Utilizing this mechanism, a 

variety of biological molecules and cells can effectively recognize their targets on 

multivalent surfaces. For instance, viruses use multivalent interactions to recognize 

membrane binding proteins or antigens presented on cells. Synthetic multivalent ligands with 

enhanced binding avidity based on this biological phenomenon have also been developed as 

a means to target nanoparticles. To evaluate this multivalent enhancement, the quotient of 

dissociation constant between the monovalent free ligand and the multivalent ligand, β = 

𝐾𝐾𝐷𝐷,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝐷𝐷,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

, is conventionally used as a quantitative indicator. According to reports, this 

synthetic multivalent enhancement can be as high as a million-fold improvement over the 

affinity of a single ligand-receptor pair.  

In addition, multivalency offers a unique advantage over other approaches of 

targeting, which is a better selectivity of recognition. Multivalent interactions are, in fact, 

highly sensitive to the density of counter interacting molecules or moieties. That is, 

multivalent targeting would only be effective on tissue expressing a sufficient density of 

receptors. When the surface density of a receptor is not sufficient, the possibility to form 

simultaneous interactions between ligand-receptor pairs would dramatically decrease, leading 

to the loss of a multivalent interaction. 34,35 The capability to determine receptor density 

would actually benefit targeted delivery by avoiding the undesired interaction on tissues 

expressing just a normal level of receptors. This concept was proved by a statistical 

thermodynamic simulation that demonstrated that multivalent interactions would undergo a 
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very sharp transition at the “cut-off” receptor density required to support enhanced binding 

avidity. Below that concentration, multivalent interactions essentially would just disappear. 

With assets from both bionanotechnology and multivalent architecture, synthetic 

multivalent nanoparticles promise to serve as an ideal targeting delivery system. In general 

scenarios, the key to successfully developing multivalent nanoparticles is to have an adequate 

process of fabrication. Particularly, the process to add multiple, stably coupled ligands onto 

the nanoparticle platforms is crucial to the ability to target. On the one hand, harsh chemical 

methods should be avoided to maintain the biological activity of the ligand. On the other 

hand, the chemistry should also be an efficient reaction in order to ensure multiple ligands 

can be “squeezed” onto the small surface of nanoparticles. A variety of conjugation 

chemistries have been applied to achieve this purpose, including amide bond and ester bond, 

thiourea bond, gold-sulfur bond, and cycloaddition chemistries.36-39 After the synthesis, the 

interaction of these nanoparticles could be examined with a variety of bioanalytical methods, 

such as SPR, ITC and ELISA.35,40,41 

 

1.3 Design strategies of ligand-functionalized multivalent nanoparticles 

The targeting avidity of synthetic, multivalent nanoparticles is the result of a variety 

of design factors, such as the number of attached ligands on the nanoparticles (valence), the 

length and flexibility of the ligated linkers, and the size of the nanoparticle platforms.42-44 

Due to the ease of varying the number of ligands, valence has become the most studied factor 

that alters the avidity of nanoparticles.45,46 Hong and co-workers utilized a series of folic 

acid-functionalized G5 PAMAM dendrimers with a variety of ligand numbers to evaluate the 
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effect of valence on the binding avidity of synthetic multivalent nanoparticles. Their results 

showed that multivalent enhancement, β, of the functionalized dendrimers reached its 

maximum and saturated when the nanoparticles had an average of 5 or more folic acids. This 

result suggests that when synthesizing folic acid-functionalized G5 dendrimers as targeted 

carriers, the ideal valence number of folic acids on the dendrimers would be 5. Similarly, 

Tassa and co-workers conducted an extensive survey on the binding avidity of a 

combinatorial library of ligand-functionalized iron oxide nanoparticles. They consistently 

found that nanoparticles functionalized with 4 or more ligands can show multivalent 

enhancement. Taken together, this work suggests that there is a threshold for the number of 

ligands required to obtain multivalent binding.  

However, other nanoparticle systems failed to reach a consensus on the ideal valence 

for synthetic multivalent systems. This is best exemplified with a series of carbohydrate-

functionalized dendrimers developed to target lectins.40,47,48 The results showed their 

interaction with the lectin hardly showed saturation due to increases in the number of 

carbohydrates on the nanoparticles. Additionally, the enhancement of binding avidity was 

also not as significant as that observed with folic acid-functionalized dendrimers. The 

discrepancy due to the effect of valence suggests the mechanism involved in multivalent 

interactions could be variable and dependent on the properties of functionalized ligands. 

Some of the additional results in Tassa’s studies likely confirmed this trend of ligand-

dependence. They found that β of nanoparticles functionalized with 4 different ligands can 

range from 10 to more than 1000. Interestingly, it was also found that the intensity of the 

avidity of synthetic multivalent nanoparticles is inversely proportional to the intrinsic affinity 
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of ligand, further highlighting the importance of physical properties in the synthetic 

multivalency.  

 

1.4 Heterogeneous ligand distribution on multivalent nanoparticles 

The number of functionalized ligands on nanoparticles is characterized by a variety of 

analytical techniques. These measurements provide the number of functionalized ligands, 

either based on the change of molecular weight that occurs during the ligand conjugation 

process as measured by MALDI MS and GPC or the change in the intensity of characteristic 

spectroscopic signals generated by the functionalized ligands using techniques such as NMR 

and UV-Vis.18,26,29  These measurements, however, in most cases provide simply an 

arithmetic mean of distributed numbers, and a single molecular population value derived 

from bulk analysis cannot comprehensively reflect the properties of the composition of single 

molecules in a population of synthetic multivalent nanoparticles. Thus, while most synthetic 

materials are heterogeneous, especially after modified or functionalized, the quantitative 

analysis of the heterogeneity is still insufficient. This prevents an understanding of whether 

the binding characteristics observed for nanoparticles are representative of all particles in a 

population or indicative of only subpopulations of molecules with higher affinity binding. 

Recently, our laboratory and others have attempted to address this problem by 

examining the distribution of ligands chemically coupled to nanoparticles. Statistical 

thermodynamic simulations predicted the distribution of functionalized ligand on 

nanoparticles would present not as a uniform population but as a Poisson-distributed 

pattern.49,50 An experimental assessment of the distribution of a series of ligand-
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functionalized dendrimers displayed as a Poisson distribution, thus confirming this prediction 

of the simulation. To further confirm this finding, the number of ligands was directly 

measured on HPLC fractionated populations of functionalized dendrimers, and the result of 

this analysis correlated to a Poissonian distribution. Together, these results convey two 

important messages that should guide the rational design of synthetic multivalent 

nanoparticles: 1) the distribution of functionalized ligands is broad and not at all uniform, 

varying widely from zero to more than double the mean, and 2) the portion of molecules in a 

nanoparticle distribution having the mean number of ligands is limited (less than 20% of the 

population). More remarkable, in a study of a dual ligand-nanoparticle system, where two 

separate materials were ligated to the dendrimer, the subpopulation that bears the mean 

number of each of the two ligands represented roughly only 5% of the population. (Figure 

1.2) These considerations need to be kept in mind whenever testing or evaluating populations 

of nanoparticles and make the assessment of the activities of these molecules difficult. 

Given the markedly heterogeneous distribution of multivalent ligands on 

nanoparticles, one must assume that there are marked heterogeneous ligand-receptor 

interactions that yield distributed binding avidities with target surfaces. In this scenario, only 

the small portion of nanoparticles with higher levels of ligand functionalization would 

demonstrate avidity and lead to strong binding. This would suggest that in applications such 

as drug delivery, only a portion of the nanoparticles would work and would thus require 

increasing the overall dose required for a desired therapeutic effect. Also, the weaker-avidity 

subpopulations would cause safety concerns because their carried drugs or imaging agents 

would not be efficiently targeted and could potentially lead to side effects. Clearly, the 

reduction or even the removal of weak-avidity nanoparticles would increase the binding 

7 
 



specificity of synthetic multivalent nanoparticles. While these concerns are real, there 

remains a poor understanding of the concept of multivalent nanoparticle binding and the role 

that different variables play in binding, such as the number of ligands, the intrinsic affinity of 

functionalized ligands, and the distributed binding avidity of synthetic multivalent 

nanoparticles. Therefore, it would be extremely important to establish methods to investigate 

the avidity distribution of nanoparticle binding. This is the focus of my thesis.  

 

1.5 Outline of Dissertation Organization 

This dissertation explores the heterogeneity of synthetic nanoparticles and 

systematically investigates factors that regulate the multivalent binding avidity distributions 

of these systems. In Chapter 2, a novel method that was developed for evaluating avidity 

distribution will be introduced. The procedures underlying this method will also be discussed. 

These methods involved the design, synthesis, and characterization of a model multivalent 

nanoparticle system, kinetic measurements of the binding in this system using a SPR 

biosensor, and a unique kinetic analysis to quantify the avidity distribution. In Chapter 3, we 

use this novel kinetic method to probe the dependence of an avidity distribution on a number 

of functionalized ligands. Based on both experimental and simulation results, we show the 

relationship of multivalent interactions to the valence number on the nanoparticle and 

develop a strategy using this factor to design high-avidity ligand-functionalized nanoparticles. 

In Chapter 4, the effect of physical factors that alter specific affinity of ligands, including 

temperature, was used to assess the effect of the intrinsic affinity of ligands on the binding 

heterogeneity of synthetic multivalent nanoparticles. After revealing the effect of a variety of 

factors on multivalent binding, in Chapter 5 we test principles learned from prior studies by 
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synthesizing homogeneous, ligand-functionalized nanoparticles showing homogeneously 

strong binding avidity. This is accomplished by using high-reaction-yield copper-free click 

chemistry, which allowed us to synthesize densely, ligand-functionalized nanoparticles 

which strongly and uniformly bound to the targeted surface. In this final chapter, the 

synthesis, purification, and characterization of the click-chemistry linker will also be reported. 
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Table 1.1 Ligand-functionalized nanoparticles that have been conducted with clinical 
trials. 

Platforms Ligands Indication Status References 
Cyclodextrin-
coating polymeric 
nanoparticles 

Transferrin Solid tumor Phase I 10 

Liposome Transferrin Gastric,esophageal, 
gastricophageal 
adenocarcinoma 

Phase Ib/II 11 

Liposome F(ab’)2 fragment Metastatic stomach 
cancer 

Phase I 12 

Liposome Transferrin 
receptor-specific-
scAb 

Solid tumor Phase I 13 

PLGA-PEG 
nanoparticles 

PSMA-specific 
peptide 

Solid tumor Phase I 14 
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Table 1.2 Classification of targeting ligands in ligand-nanoparticles. 

Targeting ligands Targeted receptors Indication References 
RGD αvβ3 intergrin Vascular endothelial cells in 

solid tumors 
15 

NGR Aminopeptidase N (CD13) Vascular endothelial cells in 
solid tumors 

16 

Transferrin Transferrin receptor Cancer cells overexpressing 
transferrin receptor 

17 

Folate Folate receptor Cancer cells overexpressing 
folate receptor 

18 

Galactosamine Galactosamine receptor in 
hepatocyte 

Hepatoma 19 

scFv Her-2 receptor Breast, ovarian cancer 20 
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Fig. 1.1 Illustration of multivalency.
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Fig. 1.2 Ligand-to-dendrimer distribution based on Poisson simulation (a) single-ligand 
model (b) dual-ligand model.    
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CHAPTER 2 

KINETIC ANALYSIS DEMONSTRATING DISTRIBUTED AVIDITIES OF 
LIGAND-FUNCTIONALIZED NANOPARTICLES 

 

2.1 Introduction 

One confounding factor associated with multivalent interactions involving ligand-

functionalized nanoparticles is the heterogeneity of the number of ligands on the particles.1,2 

It has been possible to characterize the number of ligands attached to nanoparticles by 

different analytical techniques, based on different aspects of their physiochemical properties. 

For instance, the NMR and UV-Vis utilize spectroscopic information to characterize the 

change in ligand chemical structure after conjugation. Mass spectrometry and GPC provide 

differences in carrier molecular weight before and after ligand functionalization.3-5 

Information from these measurements can readily be converted to the number of 

functionalized ligands. Although it seems these techniques can provide well-characterized 

information on the valence of the nanoparticles, the properties measured by these techniques 

in fact only represent the average ligand number of the tested nanoparticles.  

The extent of this heterogeneity was recently revealed by extensive analyses of a 

variety of functionalized nanoparticles. With both theoretical calculation and experimental 

results, this work demonstrated that, among an extensively distributed number of 

functionalized ligands per particle, the average number of ligands was only a portion, and 

often a small portion, of the entire population of macromolecules. This was first proved using 
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a statistical thermodynamic method to elucidate the mechanism of ligand conjugation and 

estimate the quantity of ligands attached to nanoparticles.6 The result showed that the 

distribution of attached ligands would display as a Poissonian distribution, meaning the 

ligands were completely randomly attached to the particle surface. Meanwhile, Mullen 

developed a method of HPLC separation to isolate nanoparticles and recover fractions of 

purified nanoparticles with a single defined number of ligand.1,2 This experimental work 

validated the concept of random distribution in a Poissonian simulation and proved the 

complexity and heterogeneity of multivalent nanoparticles. In this report, the number of 

ligands per dendrimer of the modular nanoparticles, which consisted of PAMAM dendrimers 

and alkyne ligands with the mean at 7, actually spread from 0 to 17. In the dual ligand-

nanoparticle system, the nanoparticles with exactly the mean of ligand per nanoparticle for 

both ligands were less than 5% of the entire population.  

This heterogeneous distribution of multivalent ligands on the nanoparticles is 

presumed to result in heterogeneous ligand-receptor interactions, potentially yielding 

distributed binding avidities with targeted surfaces. This avidity distribution also infers that, 

in synthetic ligand-functionalized nanoparticles, potentially only a portion of highly 

functionalized particles with stronger avidity would accomplish targeting, thus increasing the 

overall dose required for a desired therapeutic effect. In contrast, the weaker-avidity 

subpopulations would cause safety concerns because the drugs and imaging agents they carry 

would not be active in a site-specific manner and could potentially lead to side effects. While 

this is a concern, there is a poor understanding of this concept at this time. Therefore, it is 

important to develop model systems and analytical strategies that can assess avidities of 

distributed populations of ligand-bearing nanoparticles. 
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In the current studies, a well-controlled model system, composed of monodispersed 

PAMAM dendrimers and ssDNA oligonucleotides as nanoparticles and ligands, respectively, 

was established to clarify the complexity of ligand-receptor interactions of synthetic 

multivalent nanoparticles. Using an SPR biosensor, the kinetic behaviors of non-uniform 

synthetic multivalent nanoparticles were also recorded and evaluated. During the SPR kinetic 

analysis, we demonstrated the heterogeneous binding of the ligand-functionalized 

nanoparticles that show discreet binding affinities. More importantly, we developed a means 

to perform a kinetic analysis to quantify the subpopulations in the heterogeneous synthetic 

ligand-functionalized nanoparticles and evaluate the avidity distribution of our materials. We 

proved that only a small portion of ligand-functionalized nanoparticles really gain avidity 

enhancement due to their multivalent structure. 

 

2.2 Experimental Methods 

Chemicals and materials: Single-stranded DNA oligonucleotides (ssDNA oligos) 

were synthesized with 5’-end modifications and purified with a standard desalting process at 

Integrated DNA Technologies (Coralville, IA), including an 8-mer amino-terminated oligo, 

5’-NH2-C6-TGCTGAGG, and a 25-mer biotinylated oligo 5’-biotin-

TTTCTTCAGCATCTTATCCGAGTTTT. The generation 5 poly(amidoamine) (G5 

PAMAM) dendrimer was purchased from Dendritech Inc. (Midland, MI) and was purified as 

described in the synthesis section. All organic solvent, reagents and titration volumetric 

solutions (0.1M HCl and 0.1M NaOH) were purchased from Sigma Aldrich (St. Louis, MO) 

and used without further purification. Phosphate buffer saline (PBS) without calcium and 
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magnesium was purchased from Thermo Scientific (Logan, UT). 10K molecular weight 

cutoff (MWCO) centrifugal filters (Amicon Ultra-4) were purchased from Millipore 

(Billerica, MA). 10K MWCO dialysis membrane was purchased from Spectrum Laboratories 

(Rancho Dominquez, CA). SPR sensor chips SA and HBS-EP (pH 7.4) buffer were 

purchased from GE Healthcare (Piscataway, NJ). 

Synthesis of G5 PAMAM dendrimer-based multivalent nanoparticles: The 

purchased G5 PAMAM dendrimer was purified with 10K MWCO dialysis, as previously 

described, to remove lower molecular weight impurities.3 The purified G5 PAMAM 

dendrimer (G5-NH2) was then chemically modified for reducing nonspecific electrostatic 

interactions or providing functional groups in the subsequent coupling reaction of ligands. 

(Scheme 2.1) Briefly, the purified amine-terminated G5 PAMAM dendrimers (200.01 mg, 

7.41 µmole) were reacted with 85 equivalents of acetic anhydride (59.43 µL, 629.85 µmole) 

which was slowly added to amine-terminated dendrimers in anhydrous MeOH (20 ml) in the 

presence of triethylamine (105.43 µL, 755.82 µmole) for 16 hours at room temperature. The 

excessive solvent and reagents in the reaction were removed by rotary evaporation, followed 

by 10K MWCO dialysis against PBS and deionized water (DIW), respectively, for 3 cycles. 

The recovered partial acetylated dendrimer (G5-Ac-NH2) was lyophilized for 3 days to yield 

a white solid (193.40 mg, 87%). The G5-Ac-NH2 was subsequently modified to convert the 

residual primary amines to primary carboxylic groups, using glutaric anhydride. In brief, 50 

equivalents of glutaric anhydride (10.14 mg, 88.87 µmole) was added to G5-Ac-NH2 (53.32 

mg, 1.78 µmole) dissolved in anhydrous DMSO (5mL) in the presence of triethylamine 

(12.40 µL, 88.87 µmole) for 16 hours at room temperature. The mixture was purified with 

10K MWCO centrifugal filters and dissolved in PBS and DIW for 4 cycles each. The 
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recovered partially acetylated and carboxylated dendrimer (G5-Ac-NH2-COOH) was 

lyophilized for 3 days to yield a white solid (47.21 mg, 83%). The amide-coupling reaction 

of the ssDNA oligo to the dendrimers was slightly modified from the previous reaction. G5-

Ac-NH2-COOH ( 6.1 mg, 0.19 µmole) was dissolved in DMSO (0.6 mL) and activated using 

coupling reagents, 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) 

(1.05 mg, 5.56 µmole) and N-hydroxysuccinimide (NHS) (0.77 mg, 6.67 µmole), for 2 hours 

at room temperature to form intermediate NHS-ester activated dendrimer. The mixture was 

evenly divided into three aliquots and then reacted with amino-terminated ssDNA oligos. 20 

equivalent ssDNA oligos (1.28 µmole) were added into one aliquot with the NHS-ester 

activated dendrimer mixture in 0.4 mL pH 9 carbonate buffer for 16 hours at room 

temperature. The mixture of the coupling reaction was purified using 10K MWCO 

centrifugal filters in PBS and DIW for 4 cycles each. The recovered dendrimer-ssDNA 

conjugates were lyophilized for 3 days to yield a white solid with yield ~ 80%. 

Characterization of G5 PAMAM dendrimer-based multivalent nanoparticles: 

The mean number of primary amines of original and partially acetylated G5 PAMAM (G5-

NH2 and G5-Ac-NH2) was determined by potentiometric titration using a Mettler Toledo 

(MP) meter and an inlab®micro electrode at room temperature as previously described.1 

Briefly, 10 mg of dendrimer was dissolved in 1mL 0.1N NaCl solution. After adjustment to 

pH 2.5, the dendrimer solution was titrated with 0.1N NaOH and the number of primary 

amines was determined by the titration curve of acidification.  

The molecular weight of G5 PAMAM dendrimer-based ssDNA oligo nanoparticles 

was determined by MALDI-TOF MS using a Micromass TofSpec-2E with positive ion mode 

as previous described.7 The number of attached ssDNA oligonucleotides was determined by 
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UV-Vis spectra analysis that was performed using a 1-mL quartz cuvette with a Perkin Elmer 

Lamda 20 spectrophotometer. The equivalent concentration of ssDNA was calibrated using 

OD260 of the specific DNA sequence. The mean number of conjugated ssDNA oligo per G5 

PAMAM dendrimer was determined by using the quotient of an equivalent concentration of 

ssDNA that the oligonucleotide-functionalized dendrimer presented and the concentration of 

the nanoparticles that was calculated based on the MS-determined molecular weight of the 

functionalized nanoparticles. 

SPR measurements: The kinetic analysis was conducted using a BIAcore X 

(Pharmacia Biosensor AB, Uppsala, Sweden), equipped with sensor chip SA, which was pre-

coated with streptavidin on the surface, for the capture of biotinylated ssDNA oligos. Before 

the immobilization process, the SA surface was pre-conditioned with exposure to three 1-

minute injections containing 50mM NaOH. The 25-mer biotinylated ssDNA oligo solution (1 

mg/mL) in HBS-EP buffer was then injected only into flow channel 1 for 10 minutes, 

resulting in 1300 RU (1.3 ng/mm2) of immobilized ssDNA oligos. After the capturing 

process, a 1-minute injection of 10mM NaOH was used to reduce the non-specific binding 

that occurred during prior injections. A control flow channel without immobilization of 25-

mer oligonucleotides was used as a reference.   

During SPR measurement, the 8-mer ssDNA oligo and the oligo-functionalized 

dendrimer dissolved in HBS-EP buffer were injected into both flow channels of the sensor 

chip, including the ssDNA oligo-immobilized channel and the reference channel, at a flow 

rate of 10 µL/min. After each measurement, the chip surface was regenerated using 5µL 

injections of pH 2 HCl-glycine buffer or 5-10 µL pH 11 NaOH for the sample of 8-mer 

ssDNA oligo or the G5 ssDNA oligo-functionalized nanoparticles, respectively, to ensure 

23 
 



complete removal of bound molecules before the next measurement. The final SPR 

sensograms were obtained by using the measurement after subtraction of the signal on the 

reference channel from the signal on the oligo-immobilized channel.  After this process of 

referencing, the kinetic parameters, including, kon, koff and KD, of the free ssDNA oligo were 

determined using the Langmuir 1:1 kinetic model with default setting in BIAevaluation 

software. 

Evaluation of avidity distribution: The first step in determining the avidity 

distribution is to quantify the molar fraction of the two subpopulations presenting different 

binding avidities. The process to quantify this fraction involved a unique parallel initial rate 

kinetic analysis, including a directly measured initial rate analysis of the entire population 

and an extrapolated initial rate analysis just for the subpopulation with enhanced avidity. The 

acquisition of the directly measured initial rate from SPR sensograms was clearly described 

previously, and the equation of initial rate analysis was presented as Eqn. 1, where R 

represents the measured RU, Rmax is the maximum capacity of the RU of the immobilized 

receptor, and C stands for the concentration of the overall particles.8 By using BIAevaluation 

software, the initial dR
dt

  
was extracted by the first-order derivative at the initial point of the 

measured sensogram. In contrast, the equation of extrapolated initial rate analysis was 

presented as Eqn. 2 where Cs stands for the concentration of particles showing slow 

dissociation and the extrapolated initial rate, dRs
dt

, was extracted by using the average dR
dt

 after 

association time at 2 minutes. Based on Eqn. 1 and 2, the fraction of the enhanced-avidity 

subpopulation, Cs
C

, was extracted by using the ratio of  dRs
dt

 and  dR
dt

.  
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dR
dt

|0=Rmax*kon*C  Eqn.1 

dRs
dt

|0= Rmax*kon*Cs  Eqn. 2 

Kinetic parameters, including kon, koff and KD of the ssDNA oligo-functionalized 

nanoparticles, were determined using the dual Langmuir kinetic-binding model with 

BIAevaluation software. In the dual Langmuir analysis, the concentrations of the two tested 

ligands were defined as the product of the concentration of the total dissolved ssDNA oligo-

functionalized dendrimer and the molar fractions acquired by parallel initial rate analysis 

described above.  

 

2.3 Results and Discussions 

Design and Synthesis of PAMAM dendrimer-based multivalent nanoparticles: 

The goal of this study is to offer practical and comprehensive guidelines for designing 

ligand-functionalized multivalent-targeted nanoparticles. Therefore, it is crucial to develop 

these guidelines using materials that represent the binding properties of most ligands and 

nanoparticles. Also, it is important that these materials be well-defined and characterized, in 

order to alleviate difficulty in the analysis of their chemical structure and physical properties. 

In this report, we employed 8-mer ssDNA oligonucleotides as the ligands and G5 PAMAM 

dendrimers as the nanoparticles to meet our purposes. Given the feasibility of designing the 

sequences and being synthesized, ssDNA oligos are already one of the most-used biological 

molecules in developing novel biomedical platforms and devices.9-11 Additionally, the 8-mer 

ssDNA oligo used in this study is promising as the ideal model ligand for two reasons. First, 
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the sequence was designed for demonstrating a µM affinity (KD) which is comparable to the 

binding capacity that most biological ligands utilized in multivalent targeting. 12-15 Second, 

an 8-mer ssDNA oligo also approximates the median size among most targeting ligands 

implemented in multivalent nanoparticle systems. For instance, the molecular weight of 

targeting ligands can be as small as carbohydrate-based ligands or as large as aptmer-based 

ligands with more than 10 kD in size.16,17 We intend to take advantage of the median affinity 

and size of the ssDNA oligo as the ligand to enhance the applicable extent of the guidelines, 

derived experimentally and based on the observations made in our model system. In addition 

to the unique model ligand, the platform nanoparticle, G5 PAMAM dendrimer, also aids our 

purpose in developing broadly applicable guidelines. This nanoparticle has been proven to 

have extensive biomedical utilities and is characterized by superb monodispersity, 

biocompatibility, and water-solubility.18,19 More importantly, its abundant accessible terminal 

functional groups and its flexible structure further suggest that G5 PAMAM dendrimers are 

an ideal platform in multivalent nanoparticle systems. In fact, there are already a number of 

examples of the use of conjugates of oligo and dendrimer in developing drug delivery 

systems and detective devices.20-22 

The synthesis of ssDNA oligo-functionalized multivalent nanoparticles is shown in 

Scheme 2.1. The functionalization of amino-terminated G5 PAMAM dendrimers (G5-NH2) 

was carried out with serial reactions of partial acetylation and carboxylation, giving the G5 

dendrimer a bifunctional surface. This predominantly neutral surface was tailored to both 

reserve the yield of amide-bond coupling chemistry and reduce non-specific interactions 

attributed to the protonated primary amines. Subsequent to the surface modification, the 

coupling reaction between the carboxylic groups on dendrimers and the amino-terminated 
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ssDNA oligos was carried out using EDC and NHS catalyzed chemistry. With 80% 

acetylated and 20% carboxylic functional groups on the surface, the G5 PAMAM dendrimers 

were reacted with 20 equivalences of amino-terminated ssDNA oligos, resulting in 6, on 

average, covalently linked ssDNA oligos onto the dendrimers, based on the results of UV-

Vis spectroscopy at OD260. In other words, the reaction yield of this EDC/NHS coupling 

reaction was just 30%. We tried to improve the reaction yield by increasing the carboxylic 

groups on the dendrimer surface, but the reaction was actually inversely associated with the 

number of COOH, meaning an increase in the number of COOH would just decrease the 

reaction yield, rather than offering enhancement.  

SPR measurement of synthetic multivalent nanoparticles: The interactions of 

ssDNA oligo-functionalized multivalent nanoparticles, G5-(oligo)6, and free ssDNA oligos 

with the targeted surface were measured using an SPR biosensor in which the detection 

sensor chip was immobilized with 25–mer ssDNA oligos.  This 25-mer-oligo model receptor 

included a segment with 8 nucleotides complementary to the 8-mer ssDNA oligo on the 

dendrimer, while the rest of the nucleotides served as a linker. During SPR measurements, 

G5-(oligo)6 showed enhanced binding, which featured remarkably slow dissociation and 

significantly differed from the complete dissociation presented by free ssDNA oligo. (Fig. 

2.1) After 2 minutes of association and a 5-minute dissociation phase, more than 1/3 of the 

surface-bound nanoparticles were still stably adhered to the complimentary surface. In 

addition, we found an unusual phenomenon–that the SPR association binding curve of the 

multivalent nanoparticle did not reach equilibrium after 2 minutes of association but showed 

a trend of a gradual increase. To understand this unusual binding curve, we conducted a 

series of SPR tests with varied association times in order to observe equilibrated binding of 
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the nanoparticles. (Fig. 2.2) Surprisingly, none of these binding curves plateaued as expected, 

even if the association time was increased 5-fold and had reached the limit of the 

instrumental setting. This apparent non-equilibrated binding strongly suggests there were 

nearly “irreversible” interactions taking place in the synthetic multivalent nanoparticle 

system. 

By examining the series of binding curves with increasing association times, we 

observed these binding curves were consistently initiated by a sharp increase, were then 

presented with transitions showing a clear inflection point, and eventually were followed by a 

slower and linear increase. We also found that the time of transitions and the accumulation of 

bound nanoparticles until those transitions were all similar among tests with varied 

association times. In contrast, the final accumulation of bound nanoparticles after injections 

was highly positively associated with the duration of the association. Considering the time-

independent binding by synchronizing transition points and the time-dependent binding after 

the transition, it was clear that this synthetic multivalent nanoparticle is a binary system that 

demonstrated distinguishable binding behaviors. During association, the subpopulation 

presenting weaker avidity would reach equilibrium of binding at transition; another 

subpopulation with stronger avidity processed a nearly irreversible binding. 

In particular, the linear increase during the association phase is characteristic 

evidence supporting the existence of strong binding. Based on the simulation using the 

Langmuir kinetic model, the dissociation rate constant (koff) should be lower than 10-3 ML-1, 

which is significantly slower than the koff of the free ssDNA oligo, and the association curve 

can be apparently straight. (Fig. 2.3) To my knowledge, the linear binding curve is rarely 

observed and has not been examined in previous studies of multivalent nanoparticles. Most 
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of molecular interactions show association curves straying from the initial slope and bending 

toward the horizontal axis. Until the association-dissociation equilibrium is reached, the 

binding mass would not change and the binding curve would be flat and steady at the 

equilibrated number.  

In addition to the binding behavior seen during the association phase of the binding 

curve, binary binding behavior was also demonstrated by the synthetic multivalent 

nanoparticles during the dissociation phase. The dissociation curves that were preceded by 

varied association times displayed similar patterns that involved a leading fast dissociation 

and a following drastically slow dissociation. Within the fast dissociation phase, we found 

that the duration of these fast dissociations and the amount of nanoparticles dissociated from 

the surface during fast dissociation were identical among varied binding curves. (Fig 2.2) 

The association of fast dissociation and the identical amounts of fast-dissociation 

nanoparticles, again, strongly suggested the existence of a subpopulation with weaker 

binding avidity. In contrast, the net nanoparticles bound to the surface after fast dissociation 

increased approximately linearly with the association time of the sample injections, 

suggesting the nearly irreversible binding as previously described. Taken together, evidence 

on both the association and the dissociation phases indicated this synthetic multivalent 

nanoparticle system was composed of two classes of nanoparticles: one demonstrated strong 

interaction and nearly irreversible binding; another showed weak interactions with a rapid 

binding equilibrium and fast dissociation. 

Evaluating avidity distribution of multivalent nanoparticles: Based on the parallel 

initial rate analysis described in the Methods section, the binary composition of G5-(oligo)6 

was successfully evaluated using this graphic-orientated method. (Fig. 2.4) The directly 
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measured initial rate, dR
dt

|0, and the extrapolated initial rate, dRs
dt

|0, were extracted, and they 

were 2.18 and 0.217 (RU/s), respectively. With the ratio of these two rates, we demonstrated 

there was about 10% of the G5-(oligo)6 showing nearly irreversible binding. This result 

provides experimental evidence to prove the hypothesis that heterogeneous structures would 

lead to heterogeneous interactions. The low portion of enhanced-avidity nanoparticles also 

indicates that the current design of this multivalent particle is ineffective in promoting 

multivalent interactions and requires further improvement.  

The proposed parallel initial rate analysis would be valid with certain assumptions, 

including 1) that the variation of association rate constant, kon, within the nanoparticle system 

can be neglected and 2) that the slope of association during the linearly increasing region can 

be regarded as the initial rate of slow-dissociation nanoparticle, that is dRs
dt

|0 =  dRs
dt

, t > ti, where 

ti stands for the inflection point of the binding curve. In fact, the reliability of these 

assumptions has been either experimentally or theoretically proven. First, prior studies have 

already demonstrated that synthetic multivalent nanoparticles functionalized with identical 

ligands but with a varied number of ligands that showed significantly different KD would still 

show an insignificant variation of the association rate constant, kon. Additionally, the 

soundness of another assumption was also proven with a simulation method using Langmuir 

kinetic analysis to conduct a systematic survey of kinetic curves featuring a broad range of 

the association and dissociation rate constants kon and koff. (Fig. 2.3)  By using dR
dt

 of the 

linear segment in the association curve as the initial rate, the deviation between the 

extrapolated initial rate and the real initial rate was less than 5%. This assessment was based 

on the simulation result with koff at 10-3 ML-1. Additionally, this simulation also indicates the 
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deviation between two initial rates would decrease with the koff of the binding. Once the 

system presented with the high-avidity component, it would be accurate to use the 

extrapolated initial rate in a parallel initial rate analysis. Because G5-(oligo)6 showed a stable 

and linear increase during associations suggesting the koff is smaller than 10-3 ML-1, the 

method of parallel rate initial analysis would be valid in this system. 

Dual-Langmuir analysis of synthetic multivalent nanoparticles: With the 

quantified composition of varied subpopulations, the binary interaction of a synthetic 

multivalent nanoparticle system was able to be interpreted by a more analytical kinetic model. 

With this dual-Langmuir kinetic analysis, the kinetic parameters of interaction presented by 

the G5-(oligo)6 were determined. (Table 2.1) In particular, including kon, koff and KD, the 

kinetic parameters of both the fast- and slow-dissociation nanoparticles were individually 

evaluated. Based on the results of the kinetic analysis, we demonstrated an approximately 

two-order-of-magnitude enhancement of binding avidity was obtained by the slow-

dissociation G5-(oligo)6 and the avidity was about 10nM. In contrast, the fast-dissociation 

nanoparticles simply produced a weaker avidity at about 1µM, which is relatively similar to 

the affinity of the free ssDNA oligo.   

The exceptional fitting goodness also demonstrated that this two-component 

Langmuir kinetic model perfectly interpreted the binding process of the synthetic multivalent 

nanoparticle system. The excellent chi square value, χ2, was 10-fold less than the criterion of 

a solid fitting and mathematically proved that the nanoparticles interacted with the 

complementary surface as a binary system. In contrast, when using a simple 1:1 Langmuir 

kinetic model to analyze the interaction of this nanoparticle, the fitted curve was highly 

deviated from the measured reading and, moreover, the χ2 was larger than 300, which is 100-
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fold larger than the acceptable χ2 of a non-linear regression, also suggesting this synthetic 

nanoparticle system would not simply perform a single mode of interaction.   

This kinetic information offers a quantitative evaluation of the avidity distribution in 

synthetic multivalent nanoparticles, which is unachievable by using typical Langmuir kinetic 

analysis. We found that the “monovalent-level” interaction performed by fast-dissociation 

showed insignificant avidity enhancement and the “multivalent-level” interaction performed 

by slow-dissociation nanoparticles showed a 100-fold stronger avidity, compared to the 

majority in this nanoparticle system. Additionally, the discreet avidity distribution suggests 

that the multi-valent driven avidity enhancement may be a step-wise augmentation rather 

than a continuous increase. In the G5-(oligo)6 system, 90% of the nanoparticles stayed in a 

mode where they only perform interactions comparable to monovalent interactions. Another 

subpopulation, however, reached the “on” mode and actually gained stronger interactions due 

to multivalent interactions. This on-off mechanism also suggested that the energy gap to 

activate the multivalent interactions seems to be formidably high so that there were rarely in-

between interactions that existed in this system. Taken together, this heterogeneity of binding 

avidity enlightens that the multivalent structure on nanoparticles would not guarantee the 

multivalent interactions presented by the nanoparticles. 

Practical evaluation of multivalent nanoparticles as a targeted delivery system: 

In addition to providing comprehensive kinetic information about synthetic multivalent 

nanoparticles, our analyses are informative for the real-world biopharmaceutical 

development process. The key is that this technique can rapidly evaluate the targeting 

potential of ligand-functionalized nanoparticles by assessing the information of avidity 

distribution. As described previously, only ligands showing stable binding to the targeted 
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surface are able to achieve a targeting effect. Therefore, we believe the fractions of 

enhanced-avidity nanoparticles could be practical indicators reflecting the targeting potential 

of a synthetic multivalent nanoparticle system. The simulation results using the two-

component Langmuir kinetic model further support this concept. This simulation suggests 

that the fraction of slow-dissociation nanoparticles highly regulated the amount of ligand-

nanoparticles that attached to the receptor surface. The 2 to 3-fold increase in slow-

dissociation nanoparticles would lead to doubled and tripled specific binding. (Fig. 2.5) 

Additionally, this fraction is sufficient enough to assess the targeting potential, without the 

extraction of kinetic parameters.  

The parallel initial rate analysis also can provide the percentage of enhanced-avidity 

nanoparticles in real time with limited post-processing and without complex numerical or 

mathematical processing. Although the initial rate analysis is originated from solutions of 

ordinary differential equations, the acquisition of this fraction is basically just a graphic 

method involving two slopes of a kinetic binding curve in a series. Practical users can 

efficiently extract the fraction of slow-dissociation (targeting-potential) nanoparticles, just 

from apparent observation of the biosensor-measured kinetic curve without processing 

difficult math such as an accurate first-order derivative. Our results suggest this user-friendly 

indicator and technique would be valuable in future applications of high-throughput 

screening of synthetic multivalent targeting nanoparticles. 
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Table 2.1 Rate constants (kon / koff) and dissociation constant (KD) of free oligo and 
oligo-functionalized dendrimers determined by SPR kinetic analysis.  

Ligands kon (M-1s-1) koff (s-1) KD (M) 
Free oligo 5.36x104 4.34x10-2 8.11x10-7 
Fast-dissociation G5-
(oligo)6 

3.31x104 4.61x10-2 1.39x10-6 

Slow-dissociation 
G5-(oligo)6 

3.10x104 3.37x10-4 1.09x10-8 

 

The kinetic parameters of free oligo were determined by 1:1 Langmuir kinetic model. 

The kinetic parameters of G5-(oligo)6 were determined by dual Langmuir kinetic model. 
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Scheme 2.1 Synthesis of oligonucleotide-functionalized G5 PAMAM dendrimers with 
amide-bond ligation. Reagents and conditions: (i) acetic anhydride, triethylamine, MeOH, rt, 
16 hours; (ii) glutaric anhydride, triethylamine, DMSO, rt, 16 hours; (iii)  EDC, NHS, DMSO, 
rt, 2 hours; (iv) 8-mer amino-terminated oligonucleotide, pH 9 carbonate buffer, rt, 16 hours. 
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Fig 2.1 SPR binding curves of oligonucleotide-based ligands. (a) Free oligonucleotide with 
40, 80, 200 and 400 nM; (b) G5-(oligo)6 with 32.25, 62.5 and 125 nM. 

  

0

50

100

150

200

250

300

-100 100 300 500

R
U

sec

0

50

100

150

200

250

300

-100 100 300 500

R
U

sec

(a) 

(b) 

36 
 



 

Fig.2.2 SPR binding curves of G5-(oligo)6 with varied duration of association. The 
association times are 2, 5, 8 and 10 minutes, followed with 5 minutes of dissociation. The 
tested concentration of G5-(oligo)6 was 62.5 nM. 
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Fig. 2.3 Simulation binding curves of ligands with varied kinetic parameters determined by 
1:1 Langmuir kinetic model. The dissociation constants (koff) include 10-1(blue), 10-2 (red), 
10-3 (green), 10-4 (purple), and 10-5 (light blue) (s-1); (a) kon = 103, (b) kon = 104, and (c) kon = 
105 (M-1s-1). The concentration is 62.5 nM, the durations of association and dissociation are 5 
minutes, and RU, eq =RU/ RUmax. 
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Fig 2.4 Avidity distribution of G5-(oligo)6, determined by parallel initial rate analysis (a) and 
dual Langmuir kinetic analysis (b). (a) 1: initial rate of entire samples, 2: association rate of 
2nd phase of association, and 2’: extrapolated initial rate of the slow-dissociation 
subpopulation. (b) The non-linear regression resulted in χ2 = 0.76 and showed 2 distinct 
kinetic patterns, p and q. 
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Fig. 2.5 Simulation binding curves of ligands with varied avidity distribution determined by 
the dual Langmuir kinetic model. The concentration is 62.5 nM and kinetic parameters of 
G5-(oligo)6 served as koff and kon in this simulation. The percentages of slow-dissociation 
subpopulation are 1% (blue), 3% (red), 5% (green), 10% (purple), 20% (cyan), 30% (orange), 
50% (dark blue), 100% (dark red). The durations of association and dissociation are 10 and 5 
minutes, respectively. 
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2.4 Supplementary data 

S2.1 potentiometric titration of 80% acetylated G5 PAMAMA (G5-Ac80-NH2) dendrimers. 
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S2.2 MALDI TOF MS spectrometry of G5-(oligo)6, the nomial MW= 34500. 
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S2.3 UV-Vis spectrum of G5-(oligo)6, measured at 0.05 mg/mL. 
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S 2.4 Fitting binding curves of G5-(oligo)6 using 1:1 Langmuir model. The concentration of 
G5-(oligo)6 was 62.5 nM. (χ2 = 369). 

 

0

50

100

150

200

0 500 1000 1500 2000

R
U

Time (sec)

data

fit

44 
 



2.5 References 

 

1. Mullen, D.G., et al. A Quantitative Assessment of Nanoparticle-Ligand Distributions: 
Implications for Targeted Drug and Imaging Delivery in Dendrimer Conjugates. Acs 
Nano 4, 657-670 (2010). 

2. Mullen, D.G., et al. Isolation and Characterization of Dendrimers with Precise 
Numbers of Functional Groups. Chem-Eur J 16, 10675-10678 (2010). 

3. Li, M.H., et al. Dendrimer-based multivalent methotrexates as dual acting 
nanoconjugates for cancer cell targeting. Eur J Med Chem 47, 560-572 (2012). 

4. Huang, B., et al. The facile synthesis of multifunctional PAMAM dendrimer 
conjugates through copper-free click chemistry. Bioorg Med Chem Lett 22, 3152-
3156 (2012). 

5. Cline, E.N., et al. Paclitaxel-conjugated PAMAM dendrimers adversely affect 
microtubule structure through two independent modes of action. Biomacromolecules 
14, 654-664 (2013). 

6. Mullen, D.G., et al. The implications of stochastic synthesis for the conjugation of 
functional groups to nanoparticles. Bioconjugate Chem 19, 1748-1752 (2008). 

7. Goonewardena, S.N., et al. Design considerations for PAMAM dendrimer 
therapeutics. Bioorg Med Chem Lett 23, 2872-2875 (2013). 

8. Edwards, P.R. & Leatherbarrow, R.J. Determination of association rate constants by 
an optical biosensor using initial rate analysis. Anal Biochem 246, 1-6 (1997). 

9. Nishikawa, M., Rattanakiat, S. & Takakura, Y. DNA-based nano-sized systems for 
pharmaceutical and biomedical applications. Adv Drug Deliver Rev 62, 626-632 
(2010). 

10. McLaughlin, C.K., Hamblin, G.D. & Sleiman, H.F. Supramolecular DNA assembly. 
Chem Soc Rev 40, 5647-5656 (2011). 

11. Patwa, A., Gissot, A., Bestel, I. & Barthelemy, P. Hybrid lipid oligonucleotide 
conjugates: synthesis, self-assemblies and biomedical applications. Chem Soc Rev 40, 
5844-5854 (2011). 

12. Persson, B., et al. Analysis of oligonucleotide probe affinities using surface plasmon 
resonance: A means for mutational scanning. Anal Biochem 246, 34-44 (1997). 

13. Hong, S., et al. The binding avidity of a nanoparticle-based multivalent targeted drug 
delivery platform. Chem Biol 14, 107-115 (2007). 

45 
 



14. Tassa, C., et al. Binding affinity and kinetic analysis of targeted small molecule-
modified nanoparticles. Bioconjug Chem 21, 14-19 (2010). 

15. Choi, S.K., et al. Dendrimer-based multivalent vancomycin nanoplatform for 
targeting the drug-resistant bacterial surface. Acs Nano 7, 214-228 (2013). 

16. Farokhzad, O.C., et al. Targeted nanoparticle-aptamer bioconjugates for cancer 
chemotherapy in vivo. Proc Natl Acad Sci U S A 103, 6315-6320 (2006). 

17. Wolfenden, M.L. & Cloninger, M.J. Carbohydrate-functionalized dendrimers to 
investigate the predictable tunability of multivalent interactions. Bioconjugate Chem 
17, 958-966 (2006). 

18. Svenson, S. & Tomalia, D.A. Dendrimers in biomedical applications--reflections on 
the field. Adv Drug Deliv Rev 57, 2106-2129 (2005). 

19. Tomalia, D.A. Interview: An architectural journey: from trees, dendrons/dendrimers 
to nanomedicine. Interview by Hannah Stanwix. Nanomedicine (Lond) 7, 953-956 
(2012). 

20. Choi, Y.S., Mecke, A., Orr, B.G., Holl, M.M.B. & Baker, J.R. DNA-directed 
synthesis of generation 7 and 5 PAMAM dendrimer nanoclusters. Nano Lett 4, 391-
397 (2004). 

21. Choi, Y., Thomas, T., Kotlyar, A., Islam, M.T. & Baker, J.R. Synthesis and 
functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for 
cancer cell-specific targeting. Chemistry & Biology 12, 35-43 (2005). 

22. Caminade, A.M., Turrin, C.O. & Majoral, J.P. Dendrimers and DNA: Combinations 
of two special topologies for nanomaterials and biology. Chem-Eur J 14, 7422-7432 
(2008). 

  

46 
 



 

 

 

CHAPTER 3 

MODULATION OF MULTIVALENT INTERACTION: EFFECT OF VALENCE OF 
LIGAND-FUNCTIONALIZED NANOPARTICLES 

 
3.1 Introduction 

Multivalent ligand-receptor interaction is believed to be optimized when the binding 

moieties on synthetic multivalent ligands and multivalent receptors or surfaces have high 

affinity interactions.1,2 Therefore, a variety of multivalent oligonucleotide ligands were 

developed to test this hypothesis by altering the sequence of synthetic multivalent ligands 

and then examine the effect of these modifications on the alterations in interaction caused by 

the number of ligands and the length and flexibility of intermediate linkers.3-5 This work 

parallels prior work from other investigators.6-9 For instance, Kitov and co-workers 

demonstrated that a synthetic pentavalent carbohydrate ligand can achieve a more than 

million-fold enhancement of the inhibition activity in neutralizing a five-member bacterial 

toxin. They also found this activity of inhibition would decrease with the valence of the 

synthetic carbohydrate ligands. Meanwhile, Zhang and co-workers additionally proved 

multivalent interactions were strongly subject to the length of intermediate linkers with 

similar pentavalent carbohydrate ligands. When the length of linkers is not sufficient to 

crosslink the binding moieties, the multivalent effect would become negligible, compared to 

the original monovalent interaction.  

Given the ease of manipulation, the valence, the number of ligands, has been the most 

well-studied design factor of synthetic multivalent ligands that has been employed to enhance 
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binding avidities of multivalent nanoparticles.10,11 For instance, Hong and co-workers utilized 

a series of folic acid-functionalized G5 PAMAM dendrimers which were functionalized with 

a variety of number of ligands to evaluate the effect of valence on their binding avidity. Their 

results showed that the multivalent enhancement of their binding avidity saturated when the 

nanoparticles functionalized with 5 and more folic acids, suggesting this valence (5 folic 

acids per dendrimer) would be an ideal design parameter that considered both targeting 

potency and effective consumption of targeting agents. Another study seems to agree with 

this suggestion that oligovalent nanoparticles can already perform enhanced avidity. Tassa 

and co-workers conducted an extensive survey on the binding avidity with a combinatorial 

library of ligand-functionalized iron oxide nanoparticles. They consistently found 

nanoparticles functionalized with 4 ligands in this library can show multivalent enhancement 

as high as nanoparticles with 4-fold higher valences.  

However, a consensus on the ideal valence was not reached in studies examining 

different synthetic multivalent nanoparticle systems.12-14 A trend regarding the relation of 

valence to avidity was revealed with a series of carbohydrate-functionalized dendrimers that 

were developed to target lectins. The results showed their interaction with lectins would not 

saturate in the same way as the increase in the number of ligands did on nanoparticles. The 

binding avidity of carbohydrate-functionalized dendrimers is positively associated with the 

quantity of functionalized carbohydrates even if the dendrimers were fully capped with 

carbohydrates. This discrepancy on the effect of valence suggests the mechanism of the 

multivalent interaction could be highly differentiated and dependent on the properties of the 

functionalized ligands.  
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In this chapter, a series of PAMAM dendrimers with varied numbers of ssDNA 

oligonucleotides were synthesized for examining the effect of valence on the binding 

avidities of synthetic multivalent nanoparticles. As described in Chapter 2, the avidity 

distribution and kinetic parameters of these synthetic multivalent nanoparticles were 

evaluated. We demonstrated that the avidity distribution of synthetic multivalent 

nanoparticles was significantly regulated by the number of functionalized ligands. In 

particular, the proportion of nanoparticles showing enhanced avidities would decrease with 

the valence of the ligands or even vanish when the valence could not support multivalent 

interactions. Comparing the results of Poisson simulation and the avidity distribution, we 

further suggested a cut-off value that initiates the multivalent interactions and potentially a 

threshold valence for the design of multivalent nanoparticle systems.  

 

3.2 Experimental Methods 

Chemicals and materials: Single-stranded DNA oligonucleotides (ssDNA oligos) 

were synthesized with 5’-end modifications and purified with a standard desalting process at 

Integrated DNA Technologies (Coralville, IA), including an 8-mer amino-terminated oligo, 

5’-NH2-C6-TGCTGAGG, and a 25-mer biotinylated oligo 5’-biotin-

TTTCTTCAGCATCTTATCCGAGTTTT. The generation 5 polyamidoamine (G5 PAMAM) 

dendrimer was purchased from Dendritech Inc. (Midland, MI) and purified as described in 

the synthesis section. All organic solvent, reagents and titration volumetric solutions (0.1M 

HCl and 0.1M NaOH) were purchased from Sigma Aldrich (St. Louis, MO) and used without 

further purification. Phosphate buffer saline (PBS) without calcium and magnesium was 
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purchased from Thermo Scientific (Logan, UT). 10K molecular cutoff (MWCO) centrifugal 

filters (Amicon Ultra-4) were purchased from Millipore (Billerica, MA). 10K MWCO 

dialysis membrane was purchased from Spectrum Laboratories (Rancho Dominquez, CA). 

Sensor chips SA for SPR measurements and HBS-EP (pH 7.4) buffer were purchased from 

GE Healthcare (Piscataway, NJ). 

Synthesis and characterization of G5 PAMAM dendrimer-based multivalent 

nanoparticles: The synthesis and purification of functionalized G5 PAMAM dendrimer was 

identical to the procedures shown in Chapter 2, except for the method of ligand conjugation. 

In the conjugation process, the mixture of NHS-activated G5 PAMAM solution was evenly 

divided into three aliquots and then reacted with amino-terminated ssDNA oligos. Five and 

10 equivalent ssDNA oligos (0.32 and 0.64 µmole) were individually added into aliquots 

with the NHS-ester activated dendrimer mixture in 0.4 mL pH 9 carbonate buffer for 16 

hours at room temperature. After purification and recovery, the molecular weight of the G5 

PAMAM dendrimer-based ssDNA oligo nanoparticles was determined by MALDI-TOF MS 

using a Micromass TofSpec-2E with positive ion mode as previously described. The number 

of attached ssDNA oligos was determined by UV-Vis spectra which were conducted in a 1 

mL quartz cuvette using a Perkin Elmer Lamda 20 spectrophotometer. The equivalent 

concentration of ssDNA was calibrated using the OD260 of the specific DNA sequence. The 

mean number of conjugated ssDNA oligos per G5 PAMAM dendrimer was determined by 

using the quotient of the equivalent concentration of ssDNA that the oligonucleotide-

functionalized dendrimer presented and the concentration of the nanoparticles that was 

calculated based on the MS-determined molecular weight of the functionalized nanoparticle. 
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SPR measurements and evaluation of avidity distribution: The kinetic analysis of 

multivalent nanoparticles was conducted using a BIAcore biosensor with identical 

experimental conditions as described in Chapter 2. Briefly, the SA surface of the sensor chip 

was immobilized with the 25-mer biotinylated ssDNA oligo, resulting in 1300 RU 

(1.3ng/mm2) of immobilized ssDNA oligos. During SPR measurement, the 8-mer-ssDNA 

oligo-functionalized dendrimers dissolved in HBS-EP buffer were injected to both flow 

channels of the sensor chip, including the ssDNA oligo-immobilized channel and the 

reference channel, at a flow rate of 10 µL/min. After each measurement, the chip surface was 

regenerated using 5-10 µL pH 11 NaOH to ensure complete removal of the bound molecules 

before the next measurement. The final SPR sensograms were obtained by using the 

measurement after subtraction of the signal on the reference channel from the signal on the 

oligo-immobilized channel. 

The avidity distribution of the synthetic multivalent nanoparticles was quantified 

using a method composed of a parallel initial rate analysis and dual Langmuir analysis as 

described in Chapter 2. In brief, the initial rate required for the parallel initial rate kinetic 

analysis was extracted by the first-order derivative at the initial point of the measured 

sensogram and using the average slope of the sensogram after association time at 2 minutes 

of association. In addition, kinetic parameters, including, kon, koff and KD, of the ssDNA 

oligo-functionalized nanoparticles were determined using the dual Langmuir kinetic-binding 

model with BIAevaluation software. In this analysis, the concentrations of two tested ligands 

were defined as the product of the concentration of total dissolved ssDNA oligo-

functionalized dendrimer and the molar fractions acquired by the parallel initial rate analysis 

described above.  

51 
 



Simulation of distributed valence on nanoparticles: The statistical model assumed 

that ligand conjugation with the nanoparticle obeys the Poissonian stochastic mechanism.15,16 

In this Poisson simulation, the total number of available attached sites on the dendrimer 

surface and the mean ligand number per dendrimer characterized with UV-Vis and MALDI-

MS were used as factors to calculate the distribution. With this method, the ligand 

distribution was plotted, and the percentage of nanoparticles with specific valences was 

identified. 

3.3 Results and Discussion 

Synthesis of PAMAM dendrimer-based multivalent nanoparticles: For 

experimentally examining the effect of valence on binding avidity, two alternative ssDNA 

oligo-functionalized G5 PAMAM dendrimers with varied valences were synthesized. Based 

on results of MALDI MS and UV-Vis, the number of functionalized ssDNA oligos per 

dendrimer was characterized, which were 1.7 and 3.1, respectively. As described in Chapter 

2, the low reaction yield of EDC coupling chemistry still hampered the fabrication of high-

valence nanoparticles. Fortunately, taking the dendrimers with 6 ssDNA oligos together, 

these nanoparticles, in fact, can already be highly representative to demonstrate how 

multivalent effect is governed by the valence of the nanoparticle. Based on recent studies, the 

multivalent effect saturated as the valence was as low as 4 to 5 ligands per nanoparticle.10,11 

Therefore, the kinetic results obtained from nanoparticles functionalized with 2 to 6 ligands 

likely already cover most of the range in which the multivalent effect in the nanoparticles is 

significantly dependent on the valence of particles.  
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Evaluating avidity distribution of G5-(oligo)1.7 and G5-(oligo)3.1:. Researchers 

developing multivalent targeted nanoparticles have widely studied using the valence of a 

nanoparticle as a way to enhance their binding avidities. However, they examined the tested 

nanoparticle as a homogeneous system showing uniform binding avidity, which did not 

likely interpret the actual interacting behaviors of the complex ligand-nanoparticle systems 

appropriately. Therefore, we are strongly interested in examining the effect of valence on the 

interaction of nanoparticles from the aspect of avidity distribution by using our newly 

developed kinetic analysis as described in Chapter 2. First, we evaluated the interaction of 

G5-(oligo)1.7 and G5-(oligo)3.1 with their complementary surfaces, using an SPR biosensor. 

(Fig 3.1) The SPR sensograms depicted that, between these two multivalent nanoparticles, 

only G5-(oligo)3.1 performed biphasic binding as G5-(oligo)6, showing the slow dissociation 

that characterized the enhanced avidity. In contrast, G5-(oligo)1.7 reached the equilibrium of 

binding early in the association phase and then rapidly dissociated from the surface, 

suggesting this weak avidity is comparable to the affinity of the free ssDNA oligo. We found 

the multivalent effect deteriorated because of the insufficient valence on the nanoparticles. 

Based on parallel initial rate analysis and dual Langmuir analysis, the avidity 

distribution and kinetic parameters of G5-(oligo)3.1 were further quantitatively determined. 

(Table 3.1) There were fewer than 1% of slow-dissociation nanoparticles present in the G5-

(oligo)3.1, which is 10-fold fewer than this subpopulation existing in the G5-(oligo)6. This 

result of a two-fold less valence leading to a 10-fold decrease in percentage of slow-

dissociation nanoparticles revealed that avidity distribution of synthetic multivalent 

nanoparticles is highly sensitive to the valence. When the required valence is not attained, the 

avidity distribution is driven toward weak binding avidity. This infers that it would be 
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feasible to drive the avidity distribution of this system toward strong binding avidity if the 

valence can be effectively augmented. 

Although the mean valence significantly changed the avidity distribution of the 

nanoparticles, we observed that nanoparticles with varied mean numbers of ligands fell 

within comparable kinetic parameters, wherein the weak binding avidity is comparable to the 

affinity of monovalent interaction and the strong binding avidity gained a 2-order-of–

magnitude improvement. This coincident similarity of avidity enhancement appears to 

suggest that those nanoparticles with a different mean of ligand-to-nanoparticle ratio may 

perform multivalent interactions with similar strength and configuration of the 

complementary interactions. We believe that this kinetic similarity in fact resulted from 

similar structural properties of the multivalent nanoparticles, particularly the number of 

functionalized ligands on nanoparticles. Additionally, recent studies already showed the 

ligand-to-nanoparticle ratio in fact is heterogeneous and Poisson-distributed. Therefore, we 

hypothesize that the quantity of strong-avidity nanoparticles is associated with the percentage 

of densely functionalized nanoparticles that have a number of ligands higher than a required 

valence that initiates multivalent interactions. 

The above hypothesis could be validated by the correspondence between the avidity 

distribution and ligand distribution in these oligonucleotide-functionalized multivalent 

nanoparticles. Based on the assumption that the multivalent effect is positively associated 

with the valence, we correlated the Poisson ligand distribution and the avidity distribution of 

the G5-(oligo)6, and found that the 10% of the nanoparticles showing enhanced binding 

avidity are likely those particles presenting more than 9 ligands. (Fig. 3.2) If using this 

valence as a cut-off value, we also observed that in the G5-(oligo)3.1 and the G5-(oligo)1.7 
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there were just a few or no nanoparticles showing a valence higher than 9, suggesting the 

threshold valence in this multivalent nanoparticle system. This result offers quantitative 

evidence that the avidity distribution observed in our studies is mediated by the ligand 

distribution on the nanoparticles. Additionally, it provides a rational and quantitative 

approach to optimizing the binding avidity of multivalent nanoparticles. We could develop 

multivalent nanoparticles showing homogeneous strong binding avidity by increasing the 

ligand valence and controlling the entire ligand distribution to a level higher than the 

threshold valence required for the presence of a multivalent effect.   
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Table 3.1 Avidity distribution and kinetic parameters of oligonucleotide-
functionalized nanoparticles. 

Nanoparticles % kon (M-1s-1) koff (s-1) KD (M) 
G5-(oligo)6 10 3.10x104 3.37x10-4 1.09x10-8 
 90 3.31x104 4.61x10-2 1.39x10-6 
G5-(oligo)3.1 <1 3.71x103 3.44x10-4 9.26x10-8 
 >99 3.57x103 3.74x10-2 1.05x10-5 
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Fig. 3.1 SPR sensograms of oligonucleotide-functionalized nanoparticles. (i) G5-(oligo)6 at 
62.5 nM, (ii) G5-(oligo)3.1 at 1 µM, and (iii) G5-(oligo)1.7 at 1 µM. 
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Fig. 3.2 Poisson simulation of ligand distribution on oligonucleotide-functionalized 
nanoparticles. (a) G5-(oligo)1.7, (b) G5-(oligo)3.1,and (c) G5-(oligo)6. 
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3.4 Supplementary data 

S3.1 MALDI TOF MS spectrometries of (a) G5-(oligo)3.1 (MW= 32200) and (b) (G5-
oligo)1.7 (MW = 32400). 

(a) 

 

(b) 
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S3.2 UV-Vis spectra of (i) G5-(oligo)3.1 and (ii) (G5-oligo)1.7, measured at 0.05 mg/mL.  
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CHAPTER 4 

EVALUATING PHYSICAL FACTORS TO INTERACTIONS OF 
MULTIVALENT NANOPARTICLES: THE EFFECT OF 

THE INTRINSIC AFFINITY OF LIGANDS 
 

4.1 Introduction 

Multivalent ligand-receptor interaction is governed by a variety of factors, including 

thermodynamic and kinetic parameters.1-4 To improve the design of multivalent-targeted 

nanoparticles, these factors definitely need to be considered. The current approach to guide 

design has focused on studies that have used thermodynamic analyses to understand 

parameters as the entropy and enthalpy of multivalent interactions.4-6 For instance, Dam and 

co-workers evaluated the binding interactions of a series of synthetic multivalent 

carbohydrate ligands and assessed their thermodynamic parameters. Although their analysis 

led to an increase in their understanding of the thermodynamic mechanisms, it is still difficult 

to translate these thermodynamic parameters into practical design factors for the creation of 

multivalent ligands or nanoparticles.  

In contrast, kinetic factors, such as binding affinity, have a greater theoretical 

potential to aid in the practical design of multivalent nanoparticles. This argument is 

supported by facts which include 1) that most affinities of biological ligands have been 

evaluated once their biological activity has been identified, and 2) it is simple to correlate the 

final avidity of multivalent nanoparticles and the intrinsic affinity of the attached ligand and 

extract the effect of the intrinsic affinity without involving complicated thermodynamic 
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calculations.1,7-9 In fact, the advancement of synthetic chemical biology and proteomics has 

revealed an abundance of novel ligands with specific interactions with biological receptors 

suitable for targeting.10,11 To increase the value of these novel ligands in target therapy, it is 

important to enhance the ligand binding avidity by taking advantage of the multivalent effect. 

A systematic guideline for the effective combination of diverse ligands and nanoparticles that 

form strong-avidity nanoparticles would be very important. The affinity of a ligand could 

serve a single parameter that provides coherence to a targeting system and simplifies the 

expression of this guideline. 

Unfortunately, at this date there are still few studies that have addressed the affinity 

of ligands in designing multivalent targeted nanoparticles. One study used PAMAM 

dendrimers functionalized with mannose and glucose to examine the effect of intrinsic ligand 

affinity on the multivalent interactions presented by the nanoparticles, suggesting that a 

stronger intrinsic ligand affinity would lead to stronger multivalent interactions.12,13 However, 

another study with inorganic nanoparticle-based multivalent ligands showed the opposite 

trend: that the nanoparticles showed comparable binding avidity when functionalized with 

ligands with a variety of affinities.8  These studies provide certain clues to explaining how 

ligand affinity is associated with the binding avidity of multivalent ligands or nanoparticles. 

Nonetheless, the contradictory results and conclusions reached under uncontrolled 

experimental conditions and with poorly defined materials impede the utility of using ligand 

affinity as a design factor of multivalent nanoparticles. Therefore, to overcome this current 

dichotomy, the key is to generate rules of design from a well-controlled system with defined 

materials and principles.  
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In the current studies we explored the effects of ligand affinity on the binding avidity 

of multivalent nanoparticles, using oligonucleotide-functionalized PAMAM dendrimers as 

model nanoparticles and an SPR biosensor to evaluate the interactions. By examining the 

relation between the ligand affinity and the avidity distribution of the multivalent 

nanoparticles, we aimed to provide design guidelines that are applicable for a broad range of 

ligands with varied affinities. The first approach was to use identical nanoparticles but 

change the ambient binding temperature to alter the affinities of oligonucleotides. The 

purpose of this approach was to avoid any deviations of the multivalent structure due to 

synthesis and to isolate the effects of the ligand affinity. The second approach was to 

synthesize model nanoparticles with a ligand showing varied affinity. The oligonucleotide 

was re-designed and assigned with a lower binding affinity than the oligonucleotides 

described in preceding chapters. The avidity distribution and kinetic parameters were then 

extracted and examined. Based on these studies, the results suggested that the lower affinity 

seems to promote multivalent interactions presented by the nanoparticles in these two 

approaches. In contrast, the avidity distribution only shifted significantly while nanoparticles 

functionalized with lower-affinity ligands, which showed a lower threshold valence for 

performing multivalent interactions. 

 

4.2 Experimental Methods 

Chemicals and materials: Single-stranded DNA oligonucleotides (ssDNA oligos) 

were synthesized with 5’-end modifications and purified with a standard desalting process at 

Integrated DNA Technologies (Coralville, IA), including an 8-mer amino-terminated oligo, 
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5’-NH2-C6-TGCTGAGG (Oligo1), 5’-NH2-C6-TAAGATGC (Oligo2) and a 25-mer 

biotinylated oligo 5’-biotin-TTTCTTCAGCATCTTATCCGAGTTTT. The generation 5 

poly(amidoamine) (G5 PAMAM) dendrimer was purchased from Dendritech Inc. (Midland, 

MI) and purified as described in the synthesis section. Phosphate buffer saline (PBS) without 

calcium and magnesium was purchased from Thermo Scientific (Logan, UT). 10K molecular 

cutoff (MWCO) centrifugal filters (Amicon Ultra-4) were purchased from Millipore 

(Billerica, MA). 10K MWCO dialysis membrane was purchased from Spectrum Laboratories 

(Rancho Dominquez, CA). Sensor chips SA and HBS-EP (pH 7.4) buffer used in SPR 

measurements were purchased from GE Healthcare (Piscataway, NJ). 

Synthesis and characterization of oligonucleotide-functionalized dendrimers: 

The synthesis and purification of the oligonucleotide-functionalized G5 PAMAM dendrimer 

were identical to the procedures shown in Chapter 2. In the conjugation process, the mixture 

of NHS-activated G5 PAMAM solution was evenly divided into three aliquots and then 

reacted with amino-terminated ssDNA oligos. 20 equivalent ssDNA oligos 1 and 2 (1.28 

µmole) were individually added into aliquots with the NHS-ester activated dendrimer 

mixture in 0.4 mL pH 9 carbonate buffer for 16 hours at room temperature. After purification 

and recovery, the molecular weight of the G5 PAMAM dendrimer-based ssDNA oligo 

nanoparticles was determined by MALDI-TOF MS using a Micromass TofSpec-2E with 

positive ion mode, as previously described. The number of attached ssDNA oligos was 

determined by UV-Vis spectra which were conducted in a 1 mL quartz cuvette using a Perkin 

Elmer Lamda 20 spectrophotometer. The equivalent concentration of ssDNA was calibrated 

using the OD260 of the specific DNA sequence. The mean number of conjugated ssDNA 

oligos per G5 PAMAM dendrimer was determined by using the quotient of the equivalent 
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concentration of ssDNA that the oligonucleotide-functionalized dendrimer presented and the 

concentration of the nanoparticles that was calculated based on the MS-determined molecular 

weight of the functionalized nanoparticle. 

SPR measurements and kinetic analysis: The kinetic analysis of oligonucleotides 

and multivalent nanoparticles was conducted using a BIAcore biosensor with identical 

experimental conditions as described in Chapter 2. Briefly, the SA surface on the flow 

channel 1 of the sensor chip was immobilized with the 25-mer biotinylated ssDNA oligo, 

resulting in 1300 RU (1.3 ng/mm2) of immobilized ssDNA oligos. Meanwhile, the 

immobilization process would bypass the other flow channel, 2, for preparing a reference 

channel in the binding tests. During SPR measurement, the 8-mer-ssDNA oligo-

functionalized dendrimers dissolved in HBS-EP buffer were injected into both flow channels 

of the sensor chip, including the ssDNA oligo-immobilized channel and the reference 

channel. After each measurement, the chip surface was regenerated using 5-10 µL pH 11 

NaOH to ensure complete removal of the bound molecules before the next measurement. The 

final SPR sensograms were obtained by using the signal from the oligo-immobilized channel 

subtracted by the signal from the flow channel 2.  

The avidity distribution of the synthetic multivalent nanoparticles was quantified 

using a method composed of a parallel initial rate analysis and dual Langmuir analysis as 

described in Chapter 2. In brief, the initial rate required for the parallel initial rate kinetic 

analysis was extracted by the first-order derivative at the initial point of the measured 

sensogram and using the average slope of the sensogram after association time at 2 minutes 

of association. In addition, the kinetic parameters, including, kon, koff and KD, of the ssDNA 

oligo-functionalized nanoparticles, were determined using the dual Langmuir kinetic-binding 
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model with BIAevaluation software. In this analysis, the concentrations of two tested ligands 

were defined as the product of the concentration of the total dissolved ssDNA oligo-

functionalized dendrimer and the molar fractions acquired by the parallel initial rate analysis 

described above. The kinetic parameters of the free oligos were determined with a 1:1 

Langmuir kinetic model with BIAevaluation software. 

Thermodynamic analysis: The thermodynamic binding parameters of the 

oligonucleotides and oligonucleotide-functionalized dendrimers were extracted based on the 

Gibbs free energy equation ∆G = ∆H - T∆S, where G, H, T, and S represented binding free 

energy, enthalpy, temperature and entropy, respectively. ∆G was converted by a dissociation 

constant, KD, measured via Biacore, based on the integration form of the Arrehnius equation 

∆G = RT*ln(KD), where R represents the gas constant (1.986 calK-1mol-1).14 These 

parameters were extracted based on the result of the linear regression with R2 = 0.98 

Poissonian simulation of ligand distribution: The statistical model assumed that 

ligand conjugation with the nanoparticles obeys the Poissonian stochastic mechanism.15 In 

this Poisson simulation, the total number of available attached sites on the dendrimer surface 

and the mean ligand number per dendrimer characterized with UV-Vis and MALDI-MS were 

used as factors to calculate the distribution. With this method, the ligand distribution was 

plotted, and the percentage of nanoparticles with specific valences was identified. 

 

4.3 Results and Discussion 
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The effect of intrinsic ligand affinity, examined by changing ambient 

temperature: The binding of free oligonucleotides and multivalent nanoparticles was 

evaluated by BIAcore at a series of precisely-controlled temperatures with error less than 

0.1oC. The intrinsic affinities of oligo 1 were determined with 1:1 Langmuir kinetics and 

listed in Table 4.1. Nonetheless, the biphasic association was reproducibly present in this 

series of tests with gradually increasing temperature, documenting that the binary binding 

mechanism observed in room temperature in Chapter 2 was reproducible. (Fig. 4.1) 

Therefore the avidity distribution and the detailed kinetic parameters can be extracted using 

parallel initial rate analysis and a dual Langmuir kinetic model, as previously described and 

listed in Table 4.2. The excellent χ2 indicates these models accurately interpreted the kinetic 

information measured by the biosensor. We found the avidity distribution was insignificantly 

altered due to the change of the intrinsic affinity of the functionalized ligand. All of the 

observed changes were less than 50% of the avidity distribution measured in room 

temperature. However, the effect of the intrinsic affinity of the ligand did play an important 

role in multivalency. The binding avidity of the subpopulation composed with slow-

dissociation nanoparticles was significantly modified by the intrinsic affinity of the ligand. 

The multivalent enhancement β was inversely associated with the intrinsic affinity with more 

than a 10-fold difference in avidity. We believe this intrinsic affinity-avidity enhancement 

compensation can be explained by the fundamental principle of multivalent interaction, 

during which the initial singlet-bound ligand should have sufficient flexibility and mobility 

that it allows the unbound ligand on the substance to reach second receptors to form 

alternative affinitive bonds. 
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The binding kinetics of fast-dissociation nanoparticles also offers important 

information for the design of ligand-functionalized nanoparticles. This subpopulation 

performed binding comparable to its corresponding monovalent ligand. The difference 

between the affinity and this “monovalent-like” avidity is not as significant as this factor in 

slow-dissociation nanoparticles, and the ratio of these two parameters was presented with a 

4-fold deviation. (Fig 4.2) Interestingly, we found this deviation is inversely associated with 

the intrinsic affinity of the functionalized ligand. We hypothesized this increase of the 

binding potential results from the transient formation of alternative affinitive bonding. The 

time of bonding is too short to prolong the time of the adherence and support a multivalent 

interaction. Based on our results, this formation of transient bonds is inversely associated 

with the intrinsic affinity of the ligand, which is in concert with the previous statement that 

the formation of alternative bonding can be promoted by the flexibility and mobility of the 

initially bound nanoparticle ligands. This type of transient binding is often observed in 

chemistry; for instance the time-averaged hybridized bond can be stated in non-integer 

numbers.16 Our results suggest that this transient bonding might also happen in mesoscale 

interactions. The subpopulation of nanoparticles with valences below the threshold that 

promotes a multivalent effect would possibly form transient bonds, leading to partially 

enhanced binding avidity. 

 Thermodynamic binding parameters of heterogeneous multivalent 

nanoparticles: The temperature-dependent binding tests rendered the opportunity to 

understand the binding of synthetic multivalent nanoparticles from thermodynamic 

perspectives. The Gibbs binding energies were converted from the binding constant (KD) 

measured by Biacore and the relation against temperature was plotted and shown as Fig. 4.3. 
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Additionally, the thermodynamic binding parameters were extracted from the result of a 

linear regression based on the Gibbs free energy equation ∆G = ∆H - T∆S and listed in Table 

4.3. The most obvious features that distinguish the three binding phenomena involving free 

oligo1 and fast- and slow-dissociation G5-(oligo1)6 are the slopes in the Gibbs-energy plot, 

which reflect the binding entropies of these ligands. Interestingly, the fast-dissociation G5-

(oligo1)6 presented an intermediate entropy penalty between that of the free oligo1s and the 

multivalent-like G5-(oligo1)6. This discovery of an intermediate entropy may provide 

evidence from a thermodynamic perspective that agrees with the result obtained through 

kinetic analysis that suggests that the “monovalent-like” nanoparticles might perform a type 

of interaction that is hybridized with monovalent and multivalent interactions. 

The observation that the entropy of the multivalent interaction is less than this 

thermodynamic parameter of monovalent interaction seems to disagree with the recent 

experimental results attained in the study of synthetic multivalent carbohydrate ligands and 

multivalent carbohydrate-functionalized nanoparticles.12,13 These results indicate that the 

trend of entropy-enthalpy compensation would be magnified with multivalent interactions. 

We believe the difference between both statements may actually infer the different 

mechanism of interactions. 1) In our system, the nanoparticles performing multivalent 

interaction were evaluated without consideration of those monovalent-like nanoparticles; in 

contrast, other experiments analyzed the interactions as uniform systems. 2) In these studies 

the interaction was measured on a surface, but in other experiments the interaction was 

measured within the solution system. 3) The interaction in our approach was measured in a 

flow (open) system that is different from the closed system others have used. The 

measurement time with a flow system is significantly different from this parameter with a 

71 
 



closed system. For example, in a Biacore system, the time that a ligand flows through the 

detection area would be in seconds, but the measurement in ITC would be typically more 

than 10 minutes. Clearly, the measurement in flow systems and on the surface would be more 

relevant to the physiological environment of targeted cellular surfaces in the circulatory 

system. Therefore, we believe our results can, accordingly, correctly elucidate the 

mechanism of multivalent interactions that happen within biological systems.  

Synthesis and characterization of multivalent oligonucleotide-functionalized G5 

PAMAM dendrimers: The synthesis scheme is identical to that which was used for 

synthesizing G5-(oligo1)6, including the chemistry (EDC/NHS coupling), the reaction 

conditions (concentrations, times, temperatures) and materials (G5-NH2-COOH and amino 8-

mer oligonucleotides). The only difference is that the sequence of the oligo was redesigned.17 

We controlled variables that affect the conjugation with the intention of minimizing the inter-

batch variations. The results of the characterization showed that the mean of conjugated 

oligos per G5 dendrimers was still about 6, suggesting that the process of amide bond 

conjugation was conducted in a way that is reproducible and the ligand distribution would 

possibly be similarly displayed.  

The effect of intrinsic ligand affinity, examined by changing the sequence of the 

oligonucleotides: The biphasic association was shown in the binding process of G5-(oligo2)6, 

suggesting that the binary binding mechanism was still valid in this system. (Fig. 4.4) 

Obviously, the transition between two phases of association was not as sharp as the changes 

in the previous binding sensograms. Based on the apparent observation of the slopes before 

and after this transition, as described in Chapter 2, we can postulate that the percentage of 

slow-dissociation nanoparticles in G5-(oligo2)6 would be significantly higher than is in G5-
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(oligo1)6. The avidity distribution and kinetic parameters of G5-(oligo2)6 was extracted by 

parallel initial rate analysis and the dual Langmuir kinetic model because biphasic binding 

subsequently supports this postulation. (Table 4.4) The result indicated that 40% of the 

nanoparticles in the G5-(oligo2)6 performed multivalently enhanced interactions with 500-

fold and 200-fold enhancement of binding avidity of the free oligos and the monovalent-like 

nanoparticles, respectively. The β was more than a 3-fold larger enhancement, compared to 

the avidity enhancement when using oligo1, which presented a 20-fold higher affinity. This 

observation confirms the results of binding performed by G5-(oligo1)6 with temperature-

adjusted low affinity and also suggests that the multivalent effect may be promoted by 

ligands with lower affinity.  

 Despite the similarity in terms of avidity enhancement, the significant difference of 

avidity distribution was found between G5-(oligo1)6 at 35 oC and G5-(oligo2)6 at 25 oC. The 

40% multivalent-like nanoparticles in G5-(oligo2)6 at 25 oC was 7-fold more than this 

subpopulation in G5-(oligo1)6 at 35 oC. Compared to the avidity distribution and the Poisson 

distribution of functionalized ligand on the nanoparticles of G5-(oligo2)6, the threshold 

valence to initiate the multivalent interactions was extracted and left-shifted to about 7. (Fig. 

4.5) The decrease of threshold valence suggests that the requirement of ligand density is not 

as critical as when using oligo1, even if the binding affinity is similar. We believe that the 

different dissociation rate constant, koff, in fact led to the remarkably distinct avidity 

distribution between two ligands with comparable affinity. The 3-fold smaller koff of the free 

oligo2 suggests that the timeframe within which oligo2 dissociates from the hybridizing 

complex would be more extended than that of oligo1 at 35oC. While multiple oligo2s were 

functionalized on dendrimers, the bound oligo2 would potentially provide more time to allow 
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additional nanoparticle oligo2 to approach collateral receptors, forming alternative affinitive 

bonds. Therefore, it would be possible for nanoparticles with less ligand density to perform 

multivalent interactions, just as the highly functionalized nanoparticles did.  
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Table 4.1 Kinetic parameters of oligo1 determined by a SPR biosensor, at varied 
temperatures. 

Temperature  kon (M-1s-1) koff (s-1) KD (M) 
15 oC 4.16x104 1.05x10-3 4.68x10-8 
20 oC 6.29x104 1.10x10-2 1.76x10-7 
25 oC 5.36x104 4.34x10-2 8.11x10-7 
30 oC 6.39x104 1.05x10-1 2.86x10-6 
35 oC 2.71x104 7.56x10-1 2.79x10-5 
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Table 4.2 Avidity distribution and kinetic parameters of G5-(oligo1)6, measured at 
varied temperatures. 

Temperature % kon (M-1s-1) koff (s-1) KD (M) 
15 oC 94.7 3.76x104 7.49x10-3 1.99x10-7 
 5.3 2.51x104 9.13x10-4 3.64x10-9 
20 oC 91.3 3.21x104 1.26x10-2 3.94x10-7 
 8.7 3.49x104 1.91x10-4 5.46x10-9 
25 oC 90 3.31x104 4.61x10-2 1.39x10-6 
 10 3.10x104 3.37x10-4 1.09x10-8 
30 oC 90.6 8.05x103 2.81x10-2 3.48x10-6 
 9.4 4.77x104 8.12x10-4 1.70x10-8 
35 oC 93.8 6.67x103 4.34x10-2 3.48x10-6 
 6.2 9.96x103 1.64x10-4 1.65x10-8 
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Table 4.3 Thermodynamic binding parameters of G5-(oligo1)6. 

Ligand ∆H (kcal mol-1) ∆S (kcal mol-1K-1) 
oligo2 -55.0 -0.157 
Fast-dissociation G5-
(oligo2)6 

-32.2 -0.081 

Slow-dissociation 
G5-(oligo2)6 

N.A. N.A. 
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Table 4.4 Rate constants (kon and koff) and dissociation constant (KD) of free oligo2 
and G5-(oligo2)6 determined by SPR kinetic analysis.  

Ligands kon (M-1s-1) koff (s-1) KD (M) 
oligo2 1.93x104 2.64x10-1 1.4x10-5 
Fast-dissociation G5-
(oligo2)6 

1.62x104 1.82x10-2 1.13x10-6 

Slow-dissociation 
G5-(oligo2)6 

1.57x104 4.55x10-4 2.9x10-8 

 

The kinetic parameters of free oligo were determined by 1:1 Langmuir kinetic model. 
The kinetic parameters of G5-(oligo2)6 were determined by dual Langmuir kinetic model. 
χ2 of these regressions were less than 1.  
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Fig. 4.1 SPR binding curves of G5-(oligo1)6 with 62.5 nM at 15 oC, 20 oC, 30 oC and 35 oC. 
The durations of association include 2, 5, 8 and 10 minutes. 
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Fig. 4.2 Ratios of avidities of fast- and slow-dissociation nanoparticles in G5-(oligo1)6 to 
affinities of oligo1. KD0: the affinity of oligo1; KD1: the avidity of fast-dissociation G5-
(oligo1)6; KD2: the avidity of slow-dissociation G5-(oligo1)6. 
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Fig. 4.3 The temperature dependence of Gibbs binding energies of fast- and slow-
dissociation nanoparticles in G5-(oligo1)6 and free oligo1. G5-(oligo1)6-1 and G5-(oligo1)6-2 
represent fast- and slow-dissociation nanoparticles, respectively. 
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Fig. 4.4 SPR binding curves of G5-(oligo2)6 with 62.5 nM at room temperature with 
durations of association at 2, 5, 8 and 10 minutes. 
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Fig. 4.5 Poisson simulation of ligand distribution on oligonucleotide-functionalized 
nanoparticles, G5-(oligo2)6. 
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4.4 Supplementary data 

 

S4.1 MALDI TOF MS spectrometry of G5-(oligo2)6 (MW= 32300).   
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S4.2 UV-Vis spectra of G5-(oligo2)6, measured at 0.1 mg/mL.   
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CHAPTER 5 

DEVELOPING HIGH-AVIDITY MULTIVALENT NANOPARTICLES 
WITH UNIFORM AVIDITY DISTRIBUTION 

 

5.1 Introduction 

Over several decades, many attempts have been made to develop synthetic 

multivalent nanoparticles as targeted delivery systems.1-6 These efforts were based, in some 

part, on the presumption that using multiple targeting ligands to achieve an avidity 

interaction with target cells could enhance the binding of drug- carrying nanoparticles. This 

type of avidity interaction, which is responsible for events such as virus binding to cells, 

underlies many important processes in biology.7 However, it became clear that only 

multivalent nanoparticles with certain specific factors, involving the valence and 

type/orientation of linkers, could generate a significant avidity enhancement.8-10 Even when a 

multivalent effect is achieved, the improvements in avidity observed with synthetic 

nanoparticles are often substantially lower than the million-fold improvements in binding 

observed in natural systems.11-15 The gap between the avidity in synthetic multivalent 

systems and that in natural interactions suggests there are design characteristics that must be 

determined to enhance nanoparticle systems for drug delivery.   

Our results described in preceding chapters suggest there is a threshold valence that 

determines the occurrence of a multivalent effect. When the valence number is below this 

threshold, the nanoparticles cannot cause a multivalent interaction to occur. Additionally, 

nanoparticles with these low numbers of ligands could result in the creation of a weak-
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binding subpopulation presented by multivalent nanoparticles. Conversely, this implies that, 

once all particles in a distribution have a valence that surpasses the threshold required for 

multivalency, the resulting population of nanoparticles should demonstrate uniformly strong 

binding avidity. Therefore, we hypothesize that uniformly high populations of multivalent-

binding nanoparticles could be synthesized by increasing the average number of 

functionalized ligands to a number that ensures the entire population has high enough 

numbers of ligands to exceed the threshold valence required for avidity interactions, as 

illustrated in Figure 4.5.  

This has been a synthesis that is difficult to accomplish with traditional coupling 

chemistry. Therefore, we needed to take advantage of newer chemistry approaches that can 

generate more efficient ligand conjugation. Click chemistry is a promising approach to 

improving the efficiency of ligand conjugation.16,17 The term “click chemistry” generally 

describes conjugation chemistries with a variety of advantages, such as high reaction yield, 

low byproducts, stable ligation, and simple reaction conditions.18 Initially, Cu (I)-catalyzed 

alkyne azide 1.3-dipolar cycloaddition (CuAAC) was the most widely used form of click 

chemistry, but there are already numerous successful examples of unique conjugation 

methods to functionalize ligands onto surfaces, such as of gold, silica, magnetic metal oxide, 

and polymer nanoparticles. 19-22 

Click chemistry has been extensively employed in the conjugation of ligands to 

dendritic polymers. Using CuAAC, small organic molecules, including chemotherapeutics, 

fluorescent dyes, nucleoside antagonists, and targeting ligands, were coupled to 

monofunctional or multifunctional dendrimer-based nanoparticles.23-26 Larger molecules, 

oligomer-peptides, and PEG have also been effectively clicked to dendrimers.27,28 However, 
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the copper catalyst can be retained in the polymer core and cause cytotoxicity in subsequent 

biological studies.29 Fortunately, this concern can be resolved by using copper-free click 

chemistry that employs a cyclo-addition involving a selective reaction between the 

cyclooctyne and azide groups.30,31 (Fig 5.1) Huang et. al. from our laboratory employed 

copper-free, strain-promoted alkyne-azide cycloaddition (SPAAC) chemistry to enhance the 

valence of dual-functional methotrexate (MTX)-functionalized PAMAM dendrimers. These 

clicked nanoparticles have consistently high numbers of attached MTX, which could not be 

accomplished by typical amide or ester couplings. In addition, these dendrimers also retained 

high water solubility, which is important for subsequent biological studies.  

In the current studies, we employ the copper-free SPAAC conjugation method to 

enhance the number and consistency of oligonucleotides conjugated to PAMAM dendrimers. 

We first prepared G5 PAMAM dendrimers that were functionalized with multiple 

cyclooctyne linkers. Then, azide-oligonucleotides were synthesized, purified, and recovered. 

These molecules were then coupled to the dendrimer using the click process. The binding 

activity of the resulting population of multivalent nanoparticles was then examined using an 

SPR biosensor with kinetic parameters and avidity distribution being analyzed. Our results 

indicated that the copper-free click chemistry accomplished a nearly complete conjugation 

reaction and attached, on average, 13 oligonucleotides onto each dendrimer. The kinetic 

analyses demonstrated the degree to which a consistently high valence promotes multivalent 

interactions, illustrated by a 50,000-fold avidity enhancement and uniform avidity 

distribution.  
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5.2 Experimental Methods 

Chemicals and materials: Single-stranded DNA oligonucleotides (ssDNA oligos) 

were synthesized with 5’-end modifications and purified with a standard desalting process at 

Integrated DNA Technologies (Coralville, IA), including an 8-mer amino-terminated oligo, 

5’-NH2-C6-TGCTGAGG, an azido-8-mer oligo, and a 25-mer biotinylated oligo, 5’-biotin-

TTTCTTCAGCATCTTATCCGAGTTTT. Generation 5 poly(amidoamine) (G5 PAMAM) 

dendrimers were purchased from Dendritech Inc. (Midland, MI) and purified as described in 

the Synthesis section. All organic solvents and reagents were purchased from Sigma Aldrich 

(St. Louis, MO) and used without further purification or modification. Phosphate buffer 

saline (PBS) without calcium and magnesium was purchased from Thermo Scientific (Logan, 

UT). 10K molecular cutoff (MWCO) centrifugal filters (Amicon Ultra-4) were purchased 

from Millipore (Billerica, MA). 10K MWCO dialysis membrane was purchased from 

Spectrum Laboratories (Rancho Dominquez, CA). Sensor chips SA and HBS-EP (pH 7.4) 

buffer were purchased from GE Healthcare (Piscataway, NJ). 

 Synthesis of azido-ssDNA oligonucleotide conjugates: 5-azidopentonoic acid (110 

mg, 769 µmole) was dissolved in 2 mL DMSO and reacted with N-N’-

dicyclohexylcarbodiimide (DCC) (206 mg, 1 mmole) and NHS (115 mg, 1 mmole) pre-

dissolved in 0.5 mL in DMSO for 4 hours at room temperature. The mixture of the reaction 

solution was then filtered to remove any undissolved solid. The clear filtrate was collected 

and reacted with the amino-8-mer oligo (13  mg, 5 µmole) pre-dissolved in 800 µL pH 9 

buffer (0.2 M NaHCO3) for 16 hours at room temperature. 
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Purification of azido-ssDNA oligonucleotide conjugates: The azido-oligo 

conjugate was purified by RP-HPLC on a Waters Delta 600 HPLC system with a photodiode 

array detector. The reaction mixture was injected into a C18 silica-based Waters Atlantis T3 

column (250 x 4.6 mm) with a gradient of acetonitrile in ammonium acetate (5 to 50% buffer 

B over 32 minutes, flow rate 1 mL/minute) in which buffer A was 0.1 M ammonium acetate 

at pH 7 and buffer B was 0.1 M ammonium acetate at pH 7, with 50% acetonitrile. Elution 

was monitored by UV absorption at 260 nm. After HPLC purification, the conjugate was 

desalted using a MidiTrap Sephadex G10 column (GE healthcare) and lyophilized for 3 days. 

Synthesis of cyclooctyne-functionalized G5 PAMAM dendrimers: Partially 

acetylated G5 PAMAM dendrimer was synthesized according to the literature. Briefly, G5-

NH2 (233.0 mg, 8.85 µmole) and triethylamine (76.0 mg, 752 µmole) were dissolved in 

anhydrous MeOH (50 mL). The solution was kept in an ice-water batch for 0.5 hours. Acetic 

anhydride (76.8 mg, 752 µmole) in Methanol (50 ml) was added slowly (2-hour expansion). 

The mixture was further stirred at room temperature for 16 hours. Organic solvents were 

removed by rotary evaporation and the residue was re-dissolved in water. The sample was 

purified using 10,000 MWCO centrifugal filtration devices. Purification consisted of ten 

cycles (20 minutes at 4800 rpm) using PBS (5 cycles) and DI water (5 cycles). The purified 

dendrimer samples were lyophilized to yield as white solids (245 mg, 89%). The 1H NMR 

integration determined that the mean number of acetyl groups per dendrimer was 80.1.   

Partially acetylated G5 dendrimer G5-NHAc-NH2 (125.0 mg, 4.2 µmole) and N,N-

Diisopropylethylamine (DIPEA) (16.2 mg, 126 µmole) were dissolved in anhydrous DMSO 

(0.5 mL). Cyclooctyne-NHS (23.9 mg, 62.8 µmole) purchased from Berry & Associates 

(Dexter, MI) in DMSO (0.5 mL) was added slowly with stirring. The mixture was then 

92 
 



stirred at room temperature for 24 hours. The sample was purified using 10,000 MWCO 

centrifugal filtration devices. Purification consisted of ten cycles (20 minutes at 4800 rpm) 

using PBS (5 cycles) and DI water (5 cycles). The purified dendrimer samples were 

lyophilized to yield as white solids (121 mg, 85%). The number of cyclooctynes on the 

dendrimers was determined with 1H NMR spectra measured on a 500 MHz Varian vnmrs 

NMR system equipped with a multinuclear 5-mm probe. 1H chemical shifts are reported in 

parts per million from TMS.   

Synthesis of oligonucleotide-clicked G5 PAMAM dendrimers: The cyclooctyne-

functionalized dendrimer (2.7 mg. 0.075 µmole) dissolved in DIW (0.5 mL) was reacted with 

azido oligonucleotides (3.5 mg, 1.25 µmole) synthesized as described above for 16 hours at 

room temperature. The mixture of the reaction solution was purified using 10K MWCO 

centrifugal filters in PBS and DIW for 4 cycles each. The recovered dendrimer-ssDNA 

conjugates were lyophilized for 3 days to yield a white solid (5.54 mg) with yield ~ 80%. 

Characterization of oligonucleotide-clicked G5 PAMAM dendrimers: The 

molecular weight of G5 PAMAM dendrimer-based ssDNA oligo nanoparticles was 

determined by MALDI-TOF MS using a Micromass TofSpec-2E with positive ion mode as 

previously described. The number of attached ssDNA oligos was determined by UV-Vis 

spectra, which were conducted in a 1-mL quartz cuvette, using a Perkin Elmer Lamda 20 

spectrophotometer. The equivalent concentration of ssDNA was calibrated using OD260 of 

the specific DNA sequence. The mean number of conjugated ssDNA oligos per G5 PAMAM 

dendrimer was determined by using the quotient of an equivalent concentration of ssDNA 

that the oligonucleotide-functionalized dendrimer presented and the concentration of the 
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nanoparticles that was calculated based on the MS-determined molecular weight of the 

functionalized nanoparticles. 

SPR measurements and kinetic analysis: The kinetic analysis was conducted using 

a BIAcore X (Pharmacia Biosensor AB, Uppsala, Sweden) equipped with a sensor chip SA, 

which was pre-coated with streptavidin on the surface, for the capture of biotinylated ssDNA 

oligos. Before the immobilization process, the SA surface was pre-conditioned with exposure 

to three 1-minute injections containing 50 mM NaOH. The 25-mer biotinylated ssDNA oligo 

solution (1 mg/mL) in HBS-EP buffer was then injected only into flow channel 1 for 10 

minutes, resulting in 1300 RU (1.3 ng/mm2) of immobilized ssDNA oligos. After the 

capturing process, a 1-minute injection of 10 mM NaOH was used to reduce the non-specific 

binding that occurred during prior injections.  

During SPR measurement, the 8-mer ssDNA oligo and the oligo-functionalized 

dendrimer dissolved in HBS-EP buffer were injected into both flow channels of the sensor 

chip, including the ssDNA oligo-immobilized channel described above and another channel 

without immobilization of the oligonucleotides as the reference channel, at a flow rate of 10 

µL/min. After each measurement, the chip surface was regenerated using 5 µL injections of 

pH 2 HCl-glycine buffer or 5-10 µL pH 11 NaOH for the sample of 8-mer ssDNA oligos or 

the G5 ssDNA oligo-functionalized nanoparticles, respectively, to ensure complete removal 

of bound molecules before the next measurement. The final SPR sensograms were obtained 

by using the measurement after subtraction of the signal on the reference channel from the 

signal on the oligo-immobilized channel. After this process of referencing, the kinetic 

parameters, including the kon, koff and KD, of the free ssDNA oligo, were determined using 

the Langmuir 1:1 kinetic model with default setting in BIAevaluation software. 
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Poissonian statistical simulation: The statistical model assumed that ligand 

conjugation with the nanoparticles obeys the Poissonian stochastic mechanism.32 In this 

Poisson simulation, the total number of available attached sites on the dendrimer surface and 

the mean ligand number per dendrimer characterized with UV-Vis and MALDI-MS were 

used as factors to calculate the distribution. With this method, the ligand distribution was 

plotted, and the percentage of nanoparticles with specific valences was identified. 

 

5.3 Results and Discussion 

Synthesis and characterization of azido-ssDNA oligonucleotide conjugates: After 

the DCC-catalyzed conjugation, the reaction mixture was purified using C18 RP-HPLC. 

Given the increasing hydrophobicity of the conjugate, due to the attached azide-segment, we 

were able to completely resolve the conjugated from the non-conjugated ssDNA oligo, as the 

two molecules showed a difference of 28 minutes in retention time. (Fig. 5.1) After 

appropriate fractions were collected, the conjugate composed of an azide functional group, an 

8-mer ssDNA oligonucleotide and a C11 intermediate linker was recovered. Comparing this 

to the chromatograph of a commercial azido oligonucleotide with similar structure (except 

for an extra carbon atom in the linker), the retention time was nearly identical, suggesting a 

comparable structure with complete conjugation of the azido linker. Subsequently, the 

synthesized conjugates were desalted using Sephadex G-10, and this process yielded a 60% 

recovery of the oligo conjugate.  

Synthesis and characterization of cyclooctyne-functionalized G5 PAMAM 

dendrimers: The synthesis of cyclooctyne-functionalized G5 PAMAM dendrimer (G5-Oct) 
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is shown in Fig 5.2. In brief, G5-(NH)2 was partially acetylated with acetic anhydride to 

neutralize 75% of the surface primary amines. This step reduced undesired electrostatic 

interactions in subsequent assays and also enhanced the solubility of the dendrimer in organic 

solvent. The partially acetylated G5 PAMAM dendrimer was coupled with a 15-molar 

equivalence of cyclooctyne-NHS ester linker in DMSO in the presence of DIEPA. The 

average number of conjugated cyclooctynes was determined by 1H NMR using a method 

developed by our laboratory. By referencing the internal standard peak representing 

acetamide (1.84 ppm), the alkyl proton signal (3.10 and 3.41 ppm) in the cyclooctyne linker 

was used to determine the number of cyclooctynes. (Fig. 5. 3) This analysis showed that the 

coupling reaction resulted in a mean of 13 conjugated cyclooctynes per dendrimer. The G5-

Oct13 left sufficient active sites for further ligand coupling reactions and also retained high 

water solubility, which was crucial to the conjugation process with oligonucleotides. 

Synthesis and characterization of oligonucleotide-clicked G5 PAMAM 

dendrimers: The non-copper click chemistry process was conducted in DIW, without pH 

adjustment, metal catalyst, heating or cooling. After 10K MWCO ultrafiltration, 80% of the 

oligo-functionalized G5 dendrimer was recovered. Based on MW and the concentration of 

oligo, as determined by MALDI MS and UV-Vis, the mean oligo per G5 dendrimer was 13. 

Given the molar ratios of the reactants, this suggested that all of the oligos were clicked to 

the dendrimer, indicating the efficiency of the click chemistry conjugation. Moreover, despite 

having 13 attached ligands via a hydrophobic linker, the functionalized G5 PAMAM 

dendrimer still maintained superior water solubility. This was demonstrated by the 

lyophilized solid dendrimer’s ability to be rapidly dissolved in water, preparing a 

concentrated aqueous stock at 10 mg/mL.  
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Fortunately, from these results we were successful using the approach of high-

reaction yield click chemistry to achieve our goal of creating high-valency, ligand-

functionalized nanoparticles. Additionally, there are two major reasons that lead us to select 

the use of copper-free click chemistry over copper-catalyzed protocols. First, using copper-

free click chemistry can resolve the concern of cytotoxicity that is caused by residual copper 

ions retained in the polymer conjugate.29 Second, this type of chemistry holds no possibility 

of nucleic acid hydrolysis and crosslinking of oligonucleotides due to multivalent ions.33 

Thus, this synthesis should be most likely to yield active, conjugated oligos with sufficient 

valence on the dendrimer to achieve a multivalent effect.   

Evaluation of binding avidity of oligonucleotide-clicked G5 PAMAM 

dendrimers: In the binding curves of G5-Oct-(oligo)13, we can clearly observe a variety of 

features that revealed marked improvements in avidity with this particular functionalized 

nanoparticle. (Fig. 5.4) The features of this binding include: 1) a straight association curve 

that showed a continuous increase without decrease in the apparent binding rate, even after 

10 minutes of injection, 2) the bound nanoparticles rarely dissociated from the surface, even 

after a high-speed flush and 5 minutes of dissociation, and 3) the SPR binding signal can be 

detected, even with sub-nM sample concentrations. None of these characteristics were 

observed in the binding measurement of synthetic multivalent nanoparticles made with 

traditional conjugation chemistry and suggest unusual strong binding avidity for the G5-Oct-

(oligo)13 nanoparticles. 

Based on 1:1 Langmuir kinetic analysis, the binding parameters of the G5-Oct-

(oligo)13 nanoparticles were determined and are listed in Table 5.1. These kinetic parameters 

provide quantitative support for the extraordinary strength of the binding activity apparent 
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from our observations. The pM-level KD identified in these calculations is the strongest 

binding avidity we believe has been reported for synthetic multivalent nanoparticles.14,15,34 

Based on our survey containing a variety of ligand-functionalized nanoparticles with the 

number of ligands as high as 20 per particle, the strongest avidity reached just 0.25 nM. The 

only exception was a dendrimer coupled with 5 cell adhesion molecules (CAMs) that on 

average showed 0.58 pM in avidity.35 However, examining the SPR sensograms of this 

engineered dendrimer, we found that in order to obtain a comparable measured response unit 

as G5-Oct-(oligo)13, it is necessary to increase the concentration by 20-fold, suggesting that 

the G5-Oct-(oligo)13 in fact performed a stronger binding. Additionally, the results of the 

binding sensograms of the CAM-functionalized dendrimers repeatedly showed spikes in the 

fitted curves in the beginning of dissociation. This feature suggests that these fitted curves 

did not match the experimental data well and may overlook the dissociation during this 

duration, thus leading to overestimating the strength of the binding avidity.   

While our studies are unique, the use of highly valent nanoparticles to enhance 

binding avidity is not a new concept. Researchers have functionalized hundreds of ligands 

onto nanoparticles in an attempt to generate an increase in the targeting potential for 

nanoparticle systems. For example, PAMAM dendrimers functionalized with 10 folates or 

hundreds of carbohydrates were synthesized to target their folate receptors and lectins, 

respectively. However, the avidities of these highly-functionalized dendrimers were not as 

high as expected.35 We believe that the superior binding avidity enhancement of G5-Oct-

(oligo)13 over these other systems may result from the following factors: 1) G5-Oct-(oligo)13 

nanoparticles have sufficient long linkers (~20 atoms) to extend the hydrophilic oligos 

beyond the surface of the molecule into the liquid phase, which prevents the oligos from 
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attaching to or being embedded into the dendrimer surface, and 2) oligos are negatively-

charged molecules that would demonstrate repulsive forces against each other, preventing 

undesired ligand-ligand or nanoparticle-nanoparticle aggregation.36-38 The above features 

ensure that the functionalized oligos on dendrimers are freely available and therefore almost 

all of the surface bound ligands can effectively interact with complimentary molecules. In 

our specific example, there would be an average of 13, 8-mer oligos on dendrimers that can 

effectively hybridize with 25-mer oligos on the SPR surface. In contrast, those carbohydrate- 

or folate-functionalized dendrimers either lack proper linkers or tend to form aggregations 

due to the hydrophobicity of the ligand.30,39 Therefore, increases in the numerical valence did 

not improve the multivalent effects. 

A Correlation of ligand distribution with the binding avidity of oligonucleotide-

clicked G5 PAMAM dendrimers: G5-Oct-(oligo)13 still contains a heterogeneous 

population of oligonucleotide functionalized dendrimers even though the click-chemistry 

conjugation was highly efficient. This distribution resulted from the initial step of the click 

chemistry, the amide-bond conjugation of the cyclooctynes to the dendrimer surface. Based 

on a Poissonian simulation, the ligand distribution of G5-Oct13 can be assessed and plotted as 

in Fig. 5.5. This Poisson distribution suggests that more than 99% of the dendrimers bear 7 to 

21 oligos. Unlike prior work with dendrimers functionalized with traditional conjugation 

chemistry (which demonstrated heterogeneous binding), G5-Oct-(oligo)13 showed a 

continuous, linear increase in association with the complementary oligo-covered SPR surface. 

This suggests that multivalent interactions occurred in the entire population of nanoparticles 

in this system. This implies that the entire population of dendrimers existing in G5-Oct-

(oligo)13 surpassed the threshold valence required for multivalent interaction. Therefore, 
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referring to the Poissonian ligand distribution of G5-Oct-(oligo)13, the threshold valence 

would be equal to the minimal valence of dendrimer in the population, which is about 6 to 7.  

Interestingly, we also found that the threshold valences for G5-(oligo)6 and G5-Oct-

(oligo)13 are not identical. The threshold valence of G5-Oct-(oligo)13 is lower than the value 

determined from studies with G5-(oligo)6. We believe that this lower threshold valence 

suggests that the longer linkers in G5-Oct-(oligo)13 may also promote more efficient 

multivalent effects. The 500-fold avidity enhancement in G5-Oct-(oligo)13 also may support 

an important role of linker length in promoting multivalent effects. This phenomenon has 

been reported in an oligo-nanogold system, where a 20-mer-oligonucleotide linker 

significantly promotes stronger binding avidity to the nanoparticles than did the 10-mer-

oligonucleotide linker, despite a similar-length complementary sequence.36 
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Table 5.1 Kinetic parameters of G5-Oct-(oligo)13, determined by 1:1 Langmuir 
kinetic analysis using a SPR biosensor. 

Ligands kon (M-1s-1) koff (s-1) KD (M) 
oligo 5.36x104 4.34x10-2 8.11x10-7 
G5-Oct-(oligo)13 1.43x104 1.93x10-9 1.35x10-11 
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Fig. 5.1 The synthesis and purification of the azido-oligonulceotide conjugate. 
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Fig. 5.2 The synthesis of G5-Oct-(oligo)13: (i) acetic anhydride, triethylamine; (ii) 
cyclooctyne-NHS, DIPEA, DMSO; (iii) azido-oligonucleotide, pH 9 carbonate buffer. 
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Fig. 5.3 1H NMR spectrum of G5-Oct13. (a) δ=1.84 ppm; (b) δ=3.42 ppm; (c) δ=3.10 ppm. 
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Fig. 5.4 SPR sensograms of G5-Oct-(oligo)13. (i) 1 nM; (ii) 500 pM; (iii) 250 pM; (iv) 125 
pM. 
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Fig. 5.5 Poisson simulation of ligand distribution on oligonucleotide-functionalized 
nanoparticles, G5-Oct-(oligo)13. 
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5.4 Supplementary data 

 

S5.1 HPLC chromatograph of the commercial azido-oligonucleotide conjugate. 
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S5.2 SEC desalting process with 100 uL azido-oligonucleotide conjugate at 1 mg/mL.  
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S5.3 MALDI TOF MS spectrometry of (a) G5-Oct-(oligo)13 (MW= 49900). 
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S5.4 UV-Vis spectrum of G5-Oct-(oligo)13. 
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CHAPTER 6 

CONLCUSIONS AND OUTLOOK 

 

This dissertation has systematically investigated factors that regulate the multivalent 

binding of nanoparticles and in particular explored how the heterogeneity of nanoparticle 

populations alter binding distributions of these particles. These studies have resulted in a 

comprehensive analysis of the structure-function relationship that underlies binding and can 

inform the design of targeted drug delivery carriers. The binding avidity of nanoparticles 

could be specifically and greatly optimized by using a combination of these design 

parameters, depending on the properties of the targeting ligands on the nanoparticle. 

In Chapter 2, the kinetic behavior of heterogeneous binding synthetic multivalent 

nanoparticles was evaluated. We developed the means to perform kinetic analyses to identify 

the binding subpopulations in ligand-functionalized nanoparticles and to evaluate the avidity 

distribution of our materials. We documented that only a small portion of ligand-

functionalized nanoparticles actually gain avidity enhancement due to their multivalent 

structure. Based on a kinetic simulation for this heterogeneous binding, we realized that the 

percentage of strong binding nanoparticles existing in the population is really the key that 

determines the quantity of nanoparticles that are attached and retained on a targeted surface 

as a result of targeted delivery. Our approach toward modeling this activity can offer binding 

information in a real-time fashion and would be valuable in future applications of high-
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throughput screening of different targeting systems on synthetic multivalent targeting 

nanoparticles. 

In Chapter 3, a series of PAMAM dendrimers with varied numbers of ssDNA 

oligonucleotides were synthesized as a test system to examine the effect of valence on the 

binding avidity of synthetic multivalent nanoparticles. We demonstrated that the avidity 

distribution of the multivalent nanoparticles was related to the number of functionalized 

ligands per nanoparticle. In particular, the proportion of nanoparticles showing enhanced 

binding avidity would decrease as the valence of the ligands on the nanoparticle decreased, 

and avidity increases would vanish when the valence became lower than three. Comparing 

the results of Poisson simulation of ligand distribution and the experimentally derived avidity 

distribution, we validated the threshold valence that initiates the multivalent interactions and 

showed its potential to provide a rational and quantitative approach to optimize the binding 

avidity of multivalent nanoparticles. It became apparent that as compared to the 

heterogeneous binding observed with most nanoparticle systems, one could develop 

multivalent nanoparticles with homogeneous, strong binding avidity by increasing the ligand 

valence and making sure that every particle had a ligand number higher than the threshold 

valence required for the presence of multivalent binding.  

In Chapter 4, we explored the effects of intrinsic ligand affinity on the binding avidity 

of multivalent nanoparticles, using oligonucleotide-functionalized PAMAM dendrimers as 

model nanoparticles. The first approach was to use identical oligonucleotides on the 

nanoparticles but to change the ambient binding temperature to alter the affinity. The second 

approach was to synthesize model nanoparticles with different sequence oligonucleotide 

ligands to vary affinity. Both results suggested that lower affinity ligands seemed more 
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effective in promoting multivalent interactions. Therefore when selecting targeting ligands to 

build multivalent nanoparticles to a targeted receptor, one could use lower-affinity ligands 

and yield higher targeted binding of the nanoparticles. However, the second approach, 

characterized with ligands with a slower dissociation rate, showed an avidity distribution 

present with a higher percentage of “multivalent-avidity” nanoparticles and a lower threshold 

valence for performing multivalent interactions. This result further suggests that, compared 

to the affinity of ligand, the dissociation rate may play a more important role in promoting 

multivalent interactions.  

In Chapter 5, we employed copper-free SPAAC “click chemistry” conjugation to 

enhance the number and consistency of oligonucleotides that we conjugated to PAMAM 

dendrimers.  The purpose of this was to assure that the vast majority of the particles in the 

nanoparticle population surpassed the threshold valence required for multivalent interactions. 

Our results indicated that the copper-free click chemistry accomplished a nearly complete 

conjugation reaction of free ligands to dendrimers and attached sufficient oligonucleotides 

onto each dendrimer to support uniform multivalent interactions. This eliminated the 

subpopulation showing the “monovalent-like” binding avidity due to inadequate numbers of 

ligands. The kinetic analyses demonstrated the superior binding resulting from a consistently 

high valence, illustrated by a 50,000-fold avidity enhancement and 14-pM KD. In addition to 

design valence, based on this successful approach, we can also suggest guidelines to design 

synthetic multivalent nanoparticles, including: 1) proper linkers would promote multivalent 

interactions, resulting in enhancing the binding avidity or decreasing the threshold valence of 

multivalent interactions, and 2) the well-dispersed ligands on nanoparticles such as 

116 
 



oligonucleotides may promote higher multivalent interactions due to less opportunity to 

cause ligand-ligand or ligand-nanoparticle aggregation.  

In this dissertation, I have demonstrated that multivalent interactions of ligand-

functionalized nanoparticles are significantly regulated by a variety of design parameters, 

including the number of ligands (valence), the length of the linkers, and the affinity of the 

ligands. However, when examining the effect of these design parameters using single-factor 

analyses one cannot probe the cooperative effect of multiple design parameters. To approach 

the actual optimized design of synthetic multivalent nanoparticles, it is necessary to conduct 

a multivariate analysis that considers multiple design parameters simultaneously, which will 

be a future goal of our work.  

One of the future goal of our studies is to employ the “design of experiment (DOE)” 

method to facilitate the optimization process. In fact, DOE methods have been used in 

optimizing drug delivery systems and targeted-delivery carries.1-4 The requirement of the 

amount of nanoparticles with varied combinations of design parameters can be significantly 

reduced. For instance, if we intend to optimize the design of multivalent nanoparticles 

considering valence, the length of linker, the affinity of ligand and the size of dendrimer as 

design parameters, by using the most popular DOE method, the Taguchi design, we only 

need to prepare a library of synthetic multivalent nanoparticles with 9 combinations of 

variables (three levels of each parameter). (Table 6.1) If using a traditional optimizing 

method, this library would need to contain full combinations with all design parameters, 

involving 34 (81) species of nanoparticles.  
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Another goal of this work is to design and synthesize the optimized multivalent 

nanoparticles with other types of biological targeting ligands, such as small molecule 

vitamins (folic acid). It is obvious that there will be a number of challenges that will need to 

be addressed in this process. First, one must retain the binding affinity of the targeting ligand, 

and thus one should retain the intact structure of the binding moiety. To accomplish this, the 

coupling chemistry for the attachment of the linkers should not change the structure. Second, 

ligand-ligand aggregation for enhancing needs to be avoided to maximize the number of 

ligands that maintain their original affinity. Using hydrophilic linkers attached to the ligands 

may help separate each targeting ligand, but only if solubility of the nanoparticle is 

maintained. Additionally, we aim to create a receptor-immobilized surface with uniform 

density and orientation for the evaluation of binding avidities. This improvement of our 

model system will prevent aberrant measurements from heterogeneity in the sensor surface 

so that the effects of heterogeneity of the nanoparticles can be isolated and identified.   
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Table 6.1 Design of experiment using Taguchi method. 

 Size of 
nanoparticle 

Length of 
linker 

Affinity of 
ligand 

Valence of 
nanoparticle 

L1 1 1 1 1 
L2 1 2 2 2 
L3 1 3 3 3 
L4 2 1 2 3 
L5 2 2 3 1 
L6 2 3 1 2 
L7 3 1 3 2 
L8 3 2 1 3 
L9 3 3 2 1 

 

1: level 1 (highest); 2: level 2 (medium); 3: level 3 (lowest) 
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