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Preface 
 This thesis contains five chapters covering my dissertational studies on several bacterial 

biosynthetic cytochrome P450 monooxygenases, including PikC, TylI, and TylHI. Chapter 1 

encompasses a brief overall introduction to cytochrome P450 enzymes, which compromise my 

major research targets. Chapter 2 is focused on the collaborative bioengineering efforts 

conducted on an engineered chimeric P450, PikCD50N-RhFRED, in conjunction with Dr. Larissa 

Podust (Univeristy of California, San Francisco) and Dr. John Montgomery and Ms. Solymar 

Negretti (University of Michigan). This chapter was adapted from a submitted paper to the 

Journal of the American Chemical Society. Chapter 3 investigates the application of PikCD50N-

RhFRED for the production of novel bioactives based on FDA-approved drug scaffolds and 

chemoenzymatic preparation of in vivo metabolites of FDA-approved drugs. Chapter 4 is 

focused on the biochemical and kinetic characterization of two P450s derived from the tylosin 

biosynthetic pathway, TylI and TylHI, in collaboration with Dr. Ashootosh Tripathi (University 

of Michigan) and Dr. Shengying Li (previously at University of Michigan, currently at Qingdao 

Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences). Finally, in 

Chapter 5, I discuss potential future directions for P450 research based on the current 

dissertational research. 
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ABSTRACT  

 

Exploration of the Diverse Functions of Cytochrome P450  
Monooxygenases Towards the Development of Biocatalysts 

 
by 

Karoline C. Chiou 

 

Chair: David H. Sherman 

 

 The superfamily of cytochrome P450 monooxygenases is involved in diverse oxidative 

processes including xenobiotic detoxification, steroid synthesis, and biosynthetic tailoring of 

diverse secondary metabolites known as natural products. Members of this superfamily catalyze 

a vast range of reactions from hydroxylations and epoxidations to isomerizations and ring 

formations and expansions. Given the ease of cloning, protein overexpression, and purification, 

bacterial biosynthetic P450s have garnered special interest because of their catalytic efficiency 

and high regio- and stereoselectivity. Nevertheless, substantial barriers still exist to the 

application of P450s for biotechnology and synthetic means, which include inherent instability, 

dependence on redox partners, and a limited substrate scope. Current research efforts are on-

going to overcome those limitations, pushing this superfamily of enzymes towards their 

successful integration in the production of fine chemicals, pharmaceuticals, biofuels, and 

bioremediation tools. 

My dissertational work has focused on investigating P450s as potential biocatalysts for 

the production of high value pharmaceuticals through exploration of substrate binding and 

conversion. First, a substrate-engineering approach elaborated on a preexisting anchoring 

hypothesis revealing unprecedented flexibility of an engineered chimeric P450, PikCD50N-

RhFRED, previously developed from utilizing a reductase domain, RhFRED, from a 
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Rhodococcus species. Furthermore, we gained valuable insight into the fundamental, yet elusive, 

factors affecting P450-mediated oxidation, such as substrate binding, orientation, and product 

formation. The results culminated in the development of an optimized linear linker that 

efficiently replaced the natively used sugar anchor. These advancements eliminated labor-

intensive synthetic steps to acquire and attach the sugar to potential substrates, opening to the 

door to chemoenzymatic elaboration.  

To further expand upon PikCD50N-RhFRED research, the chimeric enzyme was employed 

to selectively oxidize structurally distinct scaffolds with pharmaceutical applications, including 

tamoxifen and tiamulin. A proportion of these compounds has already been approved by the 

Federal Drug Administration (FDA) and are currently used for human patients. These results 

underscored PikC’s flexibility and potential as a biocatalyst, as it can accept very different 

molecules for oxidation as long as a terminal N,N-dimethylamino linker is attached. 

Furthermore, the regioselective oxidation of these compounds in modest yields highlighted the 

potential use of this enzyme towards predictive production of in vivo metabolites and 

development of potential drug analogs. 

Finally, two P450s from the tylosin biosynthetic pathway, TylI and TylHI, were 

functionally characterized to confirm their identities as P450s and determine their biosynthetic 

order. The enzymes were utilized as chimeras with RhFRED, a reductase domain from a 

Rhodococcus species, to afford single component, self-sufficient P450s. Using substrates isolated 

from Streptomyces fradiae mutant fermentation, TylI-RhFRED and TylHI-RhFRED were 

confirmed to be P450 hydroxylases of tylosin intermediates and their sites of oxidation 

confirmed through rigorous structural elucidation. TylI-RhFRED was especially interesting 

given its ability to perform sequential oxidations to form an aldehyde crucial to tylosin’s 

bioactivity. However, this study also leaves a number of unanswered questions for future 

exploration of these unique P450s, mainly the method of substrate recognition employed by 

these two biosynthetic P450s and the source of the inherent flexibility of a P450 to perform 

sequential oxidations. 
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Chapter 1 

Introduction to Cytochrome Monooxygenase P450 Enzymes 
 

1.1 Background 

 Cytochrome P450 monooxygenases (P450s) have been coined “Nature’s most versatile 

biological catalyst” given their exquisite ability to catalyze an impressive range of regio- and 

stereoselective reactions that include hydroxylations, epoxidations, dealkylations, phenolic 

couplings, ring formations and expansions, dehydrations, and isomerizations.1,2 Furthermore, the 

presence of P450s is ubiquitous, having been found across all domains of life, including archaea, 

bacteria, plants, and mammals. These enzymes are commonly used in essential oxidative 

processes such as xenobiotic detoxification, steroid synthesis, and the biosynthetic tailoring of 

chemically diverse secondary metabolites.1,3 The P450-installed functionality often provides an 

important layer of structural variability in the mature natural products that significantly influence 

biological activity.4,5 From a chemical standpoint, P450s catalyze an eclectic variety of 

challenging, synthetically relevant reactions on physiologically and biotechnologically important 

molecules with a high degree of regio- and stereoselectivity under mild conditions, emphasizing 

their synthetic potential as biocatalysts.6-8 

 In spite of the number of P450s steadily increasing since their original discovery, 

powerful next-generation genome sequencing and bioinformatics technology has allowed for a 

unique and rapid boom in the number of identified P450 family members.9-11 To date, 57 human 

P450s (CYPs) have been identified through the human genome project; 58 P450s have been 

found in the genome of Glycine max (soybean) and 18 distinct P450s have been annotated in 

Streptomyces coelicolor.12-14 Furthermore, the Protein Data Bank (PDB) currently houses nearly 

500 P450 structures, including 30 mammalian P450s. To date, there are >18,000 P450 sequences 

available and the number is quickly growing.15 
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Despite the divergent evolution of P450 enzymes that has led to an exceedingly diverse 

enzyme superfamily characterized by rather low amino acid sequence identity (<20%), there are 

key features that facilitate a general catalytic mechanism of dioxygen activation, including the 

obligate heme cofactor with the iron protoporphyrin IX center coordinated to a thiolate ligand 

provided by the absolutely conserved cysteine residue. Furthermore, P450s share a highly similar 

three-dimensional structure originating from the equivalent arrangement of common structural 

elements comprising of well-conserved helices denoted A-L and a portion of helix I proximal to 

the heme-iron implicated in the proton delivery of the O-O bond cleavage to generate the highly 

reactive oxidant.2,16 

 

1.2 P450 History 

 P450s were initially reported in 1958 as a pigment found in rat liver microsomes but did 

not acquire their characteristic name until later.9 Following that report, Omura and Sato 

rediscovered the system and formally named it P450 where the “P” arose from the word pigment 

and 450 was derived from the characteristic spectral maximum at 450 nm upon binding of 

carbon monoxide (CO) to the ferrous heme iron.10,11 Early studies focused on P450 involvement 

in metabolism of carcinogens, drugs, pesticides, vitamins, and steroids using tissue samples or 

tissue-derived microsomes containing CYPs.16-20 It was not until 1970 that the first purified 

microsomal P450s were functionally analyzed. With the dawn of recombinant DNA technology 

and heterologous protein overexpression methods in the 1980s, an increased number of 

eukaryotic and prokaryotic P450s became widely accessible for scrutiny.21-25 Then in 1987, the 

currently used P450 nomenclature system rooted in sequence identity was developed by Nebert 

to facilitate unambiguous discussions of members of the enzyme family.26 Later the same year, 

the first crystal structure of a P450 was reported for P450cam from Pseudomonas putida after 

which a number of high-resolution crystal structures were solved for various P450s, including 

the first self-sufficient P450BM3 from Bacillus megaterium and 2 separate human P450s, 2D6 and 

3A4.27-30  

 In the past two decades, a considerable proportion of P450 research has concentrated on 

the major roles of human hepatic CYPs, given their substantial role in xenobiotic metabolism. 

Therefore, the pharmaceutical industry devoted a significant amount of resources to predicting 

bioavailability, drug-drug interactions, and toxicity.16 However, there was mounting interest in 
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more fully understanding P450s to make technological headway in areas such as plant breeding, 

bioremediation, insect control, and chemical carcinogenesis.3,31 Current discussion within the 

P450 research community targets mechanistic details of reactive species generation during the 

catalytic cycle, electron/proton transfer for dioxygen activation, structural elucidation of unique 

P450s with biomedical significance or application, discovery of P450 inhibitors, and functional 

characterization of novel P450s found through genome mining efforts.16,32,33 In particular, there 

is increasing interest in developing P450s for synthetic applications through overcoming major 

limitations such as intrinsic instability, reliance on separate redox partners, and narrow substrate 

specificity through directed evolution, use of native or engineered self-sufficient P450s, and the 

expansion of the substrate spectrum via protein and/or substrate engineering.6,34-40 P450s offer a 

exceptional and promising pool of enzymes with the potential to be developed as powerful 

biocatalysts able to produce industrial and fine chemicals, pharmaceutically relevant compounds, 

and participate in bioremediation.6,41 

 

 
Figure 1-1. Proposed general P450 catalytic cycle and the peroxide shunt pathway.  The catalytic 
cycle of a typical P450 is depicted to highlight the hypothesized oxidative intermediates that include 
Compound 0 (Cpd 0) and Compound I (Cpd I). 
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1.3 Catalytic Mechanism of P450s 

 Although the evolution of P450s is highly divergent, P450s share a common mechanism 

of reductively activating molecular oxygen through the generation of specific reactive 

intermediates. Although the exact nature of some of these reactive species is still hotly debated 

within the literature, observation of some intermediates using various spectroscopic techniques, 

radical clocks, simultaneous studies of synthetic metalloporphyrins, and theoretical studies have 

established a general paradigm for the catalytic mechanism of cytochrome P450s.16,32,42,43  

 In the resting state of the enzyme, a water molecule acts as the sixth ligand to the ferric 

heme-iron (Fe+3), resulting in a low spin of the heme-iron with a representative absorbance at 

420 nm. Upon substrate binding, the water molecule is displaced, inducing a change in the spin 

state of the heme-iron from low-spin to high-spin. This gives rise to the spectral change of the 

enzyme with an increase in absorbance at 390 nm and a simultaneous decrease in the absorbance 

at 420 nm. This difference spectrum is referred to as a “Type I” difference spectrum, which is 

easily measured by ultraviolet/visible (UV/VIS)-spectrometry and indicates the binding of a 

substrate.44 On the other hand, inhibitors and some other substrates coordinate directly to the 

heme to generate a “Type II” difference spectrum where the maximal absorbance occurs at 430 

nm and the minimum occurs at 390 nm.44 In addition to the change of the heme-iron to high-

spin, loss of the water ligand also induces subtle changes in the position of the iron relative to the 

plane of the porphyrin ring, allowing the heme to be a better electron sink and trigger the first 

electron to be transferred from NAD(P)H via redox partners. Upon this one electron reduction, 

the ferrous heme-iron (Fe+2) forms a relatively stable dioxygen adduct. The subsequent second 

electron transfer, often the rate-limiting step of the mechanism, is followed by a rapid 

protonation step to generate the first reactive species known as the ferric hydroperoxy (Fe+3-

OOH) intermediate also referred to as Compound 0. Following a second protonation and 

heterolytic cleavage of the O-O bond with concurrent production of a H2O molecule, the 

oxidative ferryl-oxo species (Fe+4=O), otherwise known as Compound I, is formed. This is a 

highly reactive cation radical believed to be directly responsible for oxygen insertion. A number 

of studies indicate that either Compound 0 or Compound I are able to act as the oxidative 

catalytic species.16,32,43 The choice between the two of them has been suggested to be substrate 

dependent and the rate of proton transfer steps relevant to the inherent nature of particular P450s. 
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In the final step, the oxidized product is released from the active site completing the catalytic 

cycle and restoring the enzyme to its resting state.  

 Other aspects of the catalytic mechanism include the peroxide shunt pathway and the 

oxygen rebound mechanism. The peroxide shunt pathway illustrated in Fig. 1-1 with the dotted 

lines utilizes hydrogen peroxide (H2O2) or alternative oxygen donors to directly generate 

Compound 0 (Cpd 0) from the ferric substrate-bound form. The oxygen rebound mechanism 

shown in Fig. 1-2 highlights hydrogen abstraction from the substrate by compound I to form 

compound II before rebound of the hydroxyl to the substrate radical to form the oxidized 

product.   

 
Figure 1-2. Oxygen rebound mechanism between Compound I and Compound II. This expands upon 
the region of the catalytic cycle between Cpd I and hydroxylated product formation and release to show 
the hydrogen abstraction from the substrate by Cpd I to form Cpd II, prior to rebound of the hydroxyl to 
the substrate radical to form the hydroxylated product. 

 

1.4 P450 Structure  
 The three-dimensional structure of P450s is generally conserved in spite of low sequence 

identity across this superfamily of enzymes.16,45 The P450 general structure exhibits a number of 

helices denoted A-L and five additional β sheets denoted β1-5; the sequence and structure of the 

helices and the sheets are more conserved with increased proximity to the heme-iron. Thus, 
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the absolutely conserved cysteine residue that coordinates to the iron protoporphyrin center. 
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responsible for oxygen activation. Of particular importance is a threonine residue, which 

produces local helical distortions and participates in a hydrogen bond network with several other 
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conserved as alanine is occasionally found in specific P450s.46 In those cases, a water molecule 
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often replaces the threonine side chain hydroxyl group and a hydroxyl group from the substrate 

also participates.46 This hydrogen bond network plays a crucial role in maintaining proper 

delivery of protons to the reactive center for O-O cleavage and generation of reactive oxidative 

species.  

 

1.5 Classification of P450s 

 There have been many systems developed to classify P450s based on a number of 

criteria. One of those systems relies on the identified enzymatic activity of a P450, which 

includes hydroxylases, epoxidases, desaturesas, and isomerases.2 Another system classifies them 

according to their sources, such as humans, fungus, bacteria, or plants. Alternatively, P450s can 

be classified based on their sequence similarity, with 40% protein sequence identity defining 

families and more than 55% identity found among subfamily members. Perhaps the most useful 

and important classification system for these P450s is based on the redox partners required for 

electron transfer in the catalytic cycle.  

 Traditionally, there were two major classes of redox systems (Fig. 1-3). Class I was a 

FAD-containing reductase with a small iron-sulfur redoxin for most bacterial and mitochondrial 

P450s. Class II was a FAD/FMN-containing flavoprotein-cytochrome P450 reductase (CPR) for 

eukaryotic microsomal P450s. However, when P450BM3 was discovered, it was clear that this 

P450 signified a new class because it was a naturally fused to a eukaryotic-like CPR.47 More 

recently, another self-sufficient P450 emerged in the form of P450RhF from Rhodococcus sp. 

NCIMB 9784 and found to be naturally fused to a novel FMN/Fe2S2-containing reductase 

domain similar to the phthalate family of dioxygenase reductases.48,49 The emergence of these 

naturally occurring self-sufficient P450s became the third class of P450s. These enzymes were 

unique given their independence from separate redox partners and exposed their potential as 

biocatalysts. In addition, these fusion P450s often demonstrated higher activity, most likely 

derived from a more efficient electron transport system given the covalent linkage between the 

redox partner and the P450.36,50 Finally, there exists a class of P450s that are independent of the 

activity of redox partners for catalysis (Class V) exemplified by the soluble P450nor from 

Fusarium oxysporum,51  
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Figure 1-3. Classification of P450s based upon redox partner structure. Fdr: Ferredoxin reductase; 
Fdx: Ferredoxin; CPR: Cytochrome P450 reductase. 

 
1.6 Biosynthetic P450s in Microbial Secondary Metabolism  

 The majority of P450s found from microbial sources are involved in the biosynthesis of 

secondary metabolites.16,52 Presently, the native role of many of these enzymes has yet to be 

elucidated. Therefore, functional analysis of soluble forms of the enzymes will most likely yield 

new chemistry, give additional insight into the biosynthesis of novel bioactive natural products, 

offer additional examples to build a consensus model of CYP structure and catalysis, and provide 

additional candidates for development into biocatalysts.  

 Actinomycetes, especially Streptomyces, are a rich source of secondary metabolites and 

account for more than two-thirds of microbially derived compounds. These compounds have 

important roles in signaling or chemical defense for the host organism and many of these 

compounds have demonstrated biological activity that include antibacterial (erythromycin, 

pikromycin, tirandamycin), antifungal (amphotericin, nystatin), antiparasitic (avermectin), 

immunosuppressive (FK506, rapamycin), growth promotion (tylosin), and anticancer 

(doxorubicin, mitomycin C) (Fig. 1-4).53-67 All of those compounds mentioned have P450s 

involved in their biosynthesis, underscoring the importance of these enzymes for producing 

naturally bioactive molecules. Therefore, elucidation of biosynthetic pathways as well as 

structural identification of P450 substrates, intermediates, and products, allows for functional 
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analysis of novel P450s towards the eventual production of crucial biologically active 

compounds.  

 
Figure 1-4. Examples of biologically active natural products that have P450s involved in their 
biosynthesis. 

 In addition to traditional methods of identifying new P450s, modern whole genome 

sequencing technology offers a decidedly more efficient process for accessing new gene 

products. Recent efforts have demonstrated that a large number of P450 genes can be identified. 

For example, the model actinomycete Streptomyces coelicolor A3(2) was found to have 18 
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distinct P450s, and Streptomyces avermitilis MA-4680 contained 33 P450s.14,65 Nevertheless, 

there still remains difficulty in confirming the physiological function of each of these P450s. 

 

1.7 The Pikromycin System 

 Pikromycin was originally isolated in 1951, representing the first discovered macrolide 

antibiotic.68 Two structurally related macrolides, neomethymycin and methymycin, were later 

discovered to be produced by Streptomyces venezuelae (Fig. 1-5).69,70 For more than a decade, 

the Sherman laboratory has investigated many aspects of pikromycin biosynthesis that spans 

pathway elucidation and comprehension of enzymatic mechanisms of a unique modular type I 

polyketide synthase (PKS) and tailoring enzymes. The knowledge acquired greatly advanced 

understanding of general macrolide biosynthesis, joining the erythromycin pathway as a model 

pathway in the field of natural product biosynthesis.71,72  

 
Figure 1-5. Structures of pikromycin, methymycin, and neomethymycin. 

 The first hurdle for the inquiries was sequencing and assembling the pikromycin 

pathway, which revealed a gene cluster encoding a five modular type I polyketide synthase 

(pikAI-V), a group of genes responsible for the synthesis of the 6-deoxysugar desosamine (desI-

VIII and desR), a P450 (pikC), and a number of regulatory (pikD) and self-resistant (pikR1 and 

pikR2) genes. Subsequent gene disruption studies unambiguously demonstrated that the PKS was 

unique from other established PKS systems given its ability to generate two distinct 

macrolactone scaffolds, 10-deoxymethynolide (10-dml) and narbonolide (Fig. 1-6).73,74  Other 

research groups have studied desosamine biosynthesis and functionally characterized all 

enzymes required for transformation of D-glucose-1-phosphate to thymidine diphosphate D-

desosamine (TDP-desosamine).71,75-78 Specifically, DesVII in conjunction with DesVIII 

demonstrated unprecedented substrate flexibility towards the aglycone and the sugar moiety, 

which was later exploited to generate novel unnatural substrates with improved biological 
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activity.79-82 In addition to the sugar genes, the thioesterase of module V and the 

glycosyltransferase DesVII have also demonstrated unusual enzymatic flexibility.73 

 
Figure 1-6. Biosynthetic cluster that produces pikromycin. The pikromycin polyketide synthase is 
comprised of a one loading module and six elongation modules that span four polypeptide chains (PikAI-
PikAIV). Chain elongation through PikAIII followed by thioesterase catalyzed termination results in the 
12-memebred ring macrolactone poroduct, 10-deoxymethynolide, while continued elongation of the 
polyketide chain produces the 14-membered ring macrolactone, narbonolide. Both products undergo 
further processing via a glycosyltransferase and P450 hydroxylase to yield methymycin and pikromycin. 
PikAV is a type II thioesterase that functions to remove pre-maturely decarboxylated extended units from 
ACP domains. 

 Of additional interest is the cytochrome P450 involved in the biosynthetic pathway of 
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macrolide YC-17 to yield methymycin and at the C12 position to generate neomethymycin (Fig. 
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substrate, narbomycin, at the C12 position leading to pikromycin and the C14 position leading to 

neopikromycin (Fig. 1-7a). Similarly, PikC can further hydroxylate pikromycin to yield 

novapikromycin (Fig. 1-7b).84 

A. 

 

B.  

Figure 1-7. PikC catalyzed reactions and products. (A) Endogenous reactions catalyzed by PikC to 
convert YC-17 to either methymycin or neomethymycin and narbomycin to pikromycin (B) Structures of 
novamethymycin and novapikromycin. 
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understand the structural basis of the substrate flexibility and oxidation variability of PikC in 
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than original observed, propelling PikC further towards being an efficient and cost-effective 

biocatalyst. To date, the results have demonstrated that firstly, PikC may serve as a model for 

studying fundamental properties of P450s and their catalytic abilities and secondly, PikC has 

enormous potential to be developed into an applicable catalyst for synthetic chemistry. During 

the investigations of PikC with synthetic substrates, PikC was also found to act on chemically 

distinct scaffolds found in several U.S. Food and Drug Administration (FDA)-approved drugs. 

Moreover, knowledge and experience gained during the PikC investigation was expanded to 

include two unique biosynthetic P450s from the tylosin biosynthetic pathway, one of which was 

hypothesized to be responsible for installation of the rarely observed aldehyde moiety of the 

mature natural product. 
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Chapter 2 

Regioselective C-H Bond Oxidation by an Engineered P450 

Monooxygenase Employing Simple Removable Directing Groups 
 

2.1 Introduction 
The regio- and stereoselective oxidation of unactivated C-H bonds under mild conditions 

remains a substantial barrier to the efficient synthesis of complex bioactive molecules.1-6 

Considerable efforts have focused on both directed and non-directed reactions. In the absence of 

a covalently installed directing functionality, the intrinsic influences of the substrate, including 

steric interactions, proximity to electron donating and withdrawing groups, and stereochemical 

orientation, play the major role in governing regioselectivity of oxidations.  In contrast, directed 

processes are highly effective at overcoming the inherent reactivity of specific C-H bonds by 

relying on entropic considerations.5,7,8 The regioselectivity of these processes is typically 

governed by selection of a C-H bond through a five- or six-membered transition state involving 

delivery of a reactive catalyst to a region of the molecule that is proximal to the directing group. 

The functionalization of regions of the molecular structure that are remote to directing groups, 

while overriding the inherent reactivity of specific bonds, is not possible by these well-studied 

approaches. Previous strategies that have begun to address this challenge included the utilization 

of supramolecular assemblies or specialized directing groups with extended linear functionality 

to reach remote parts of the substrate.9-16 This challenge has long been recognized beginning with 

the pioneering work by Breslow using specially-designed protecting groups for photochemically 

mediated oxidations and free radical reactions.12,13,16 Since then, enzymes have inspired 

identification of biological catalysts or simpler mimics that utilize a metal oxo-reactive site. 

Nevertheless, subsequent development of enzymes as alternative tools as synthetic reagents has 
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only seen a few examples of success for site-selective in organic chemistry.17  

Biological catalysts provide an attractive opportunity to selectively oxidize chemically 

similar bonds that are remote from directing influences. In particular, the heme-containing 

superfamily of cytochrome P450 monooyxgenases (P450s) involved in diverse oxidative 

processes that include xenobiotic catabolism, steroid synthesis, and late-stage biosynthetic 

tailoring of natural products offer a promising source of powerful biocatalysts given their 

capacity to perform oxidations in a regio- and stereoselective manner.19-23 Therefore, we were 

motivated to explore the potential of bacterial biosynthetic P450 monooxygenases as oxidizing 

agents by increasing substrate flexibility, and exploiting their relatively ready access through 

gene cloning, overexpression, and purification.24 Previous efforts have improved limitations 

through protein engineering, such as scanning chimeragenesis and directed evolution to produce 

mutant cytochrome P450s with desirable target oxidation activity.25-29  

Due to its innate flexibility and distinct substrate anchoring mode, PikC promised to be 

an excellent candidate for biocatalysis.30,31 The apparent requirement for the presence of a sugar 

moiety revealed by co-crystal structures with natural substrates YC-17 and narbomycin inspired 

a “substrate engineering” strategy to expand the substrate scope of catalysis (Fig. 2-2).32-35 Our 

initial hypothesis grew from observations that particular functional groups promoted exact 

enzyme-substrate interactions with this “anchor” enabling selective oxidation of modified 

substrates in vivo.32,33 The substrate tolerance of PikC was extended to unnatural substrates and 

employed as a biocatalyst for the moderately regioselective hydroxylation of a number of 

carbolides (desosamine-linked carbocyclic rings) and linear derivatives, confirming the crucial 

interaction between the aminosugar and enzyme active site residues.36  

Herein we report in vitro implementation of substrate engineering for selective C-H bond 

oxidation using an optimized chimera of the macrolide biosynthetic P450 monooxygenase PikC 

fused to the exogenous electron donor, PikCD50N-RhFRED.31,37 While desosamine proved to be 

an effective anchoring group for unnatural substrates in the PikC active site, the synthetic 

challenges in the attachment and removal of glycosidic bonds compromised the generality and 

utility of this biocatalytic hydroxylation methodology, limiting the substrate scope to molecules 

containing this sugar moiety.30 For this study, a series of carbocyclic rings were synthetically 

attached to several simplified linear linkers with a terminal N,N-dimethylamino moiety to 

achieve effective regioselective hydroxylation. This study culminated in a series of compounds 
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containing the natural macrolactone, 10-deoxymethynolide (10-dml), attached through a linear 

ester being oxidized in greater than 95% yield with high regioselectivity. Furthermore, 

substantial modulation of the observed regioselectivity was achieved through manipulation of the 

anchoring group linker length. Analysis of high-resolution enzyme-substrate co-crystal structures 

provided valuable insight into the function of the N,N-dimethylamino moiety of the linear and 

aminosugar-derived anchoring groups to control reaction site selectivity through formation of 

specific interactions between active site residues and the substrate. Finally, the ease of chemical 

installation and removal of an ester-containing linear linker highlighted the potential for 

anchoring group incorporation into the synthesis of elaborated macrocycles to create structurally 

diverse bioactive molecules. 

 
Figure 2-1. Major physiological reactions catalyzed by PikC. Endogenous reactions catalyzed by PikC 
include the oxidation of YC-17 and narbomycin to yield methymycin, neomethymycin, and pikromycin, 
respectively. 

 

2.2 Results and Discussion 
2.2.1 Regioselective Hydroxylation of Synthetic Cycloalkanes. 

PikC is the versatile cytochrome P450 monooxygenase involved in the final tailoring 

steps for macrolide antibiotic biosynthesis in Streptomyces venezuelae.31,38 The confirmed 

endogenous function of this enzyme involves hydroxylation of the 12-membered macrolide YC-

17 and the 14-membered macrolide narbomycin to produce methymycin/neomethymycin and 

pikromycin, respectively (Fig. 2-1). Previous analysis of X-ray co-crystal structures of PikC with 
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its natural substrates revealed largely non-specific hydrophobic interactions between the 

substrate macrolactone rings and active site residues. However, the aminosugar desosamine, 

present in both natural macrolide substrates, was located in two separate binding pockets 

utilizing several hydrogen bonds and ionic interactions for substrate positioning and stabilization 

in the active site.39,40 Specifically, the protonated dimethylamino moiety of desosamine and a 

glutamate residue in the B/C loop region of the protein participated in an electrostatic salt bridge 

to achieve specific substrate binding.40 In addition, desosamine has already been demonstrated to 

direct unfunctionalized carbocycles to the active site of PikC for regioselective oxidation, albeit 

at lower levels of selectivity compared to YC-17 and narbomycin.36 The necessity of harvesting 

and synthetic installation of desosamine motivated the exploration of alternative, simplified 

anchoring groups with an ability to mediate similar electrostatic and H-bonding interactions for 

effective PikC-catalyzed C-H bond activation.30,41  

 
Figure 2-2. Schematic of substrate engineering concept using simplified synthetic linkers. a) 
Targeted substrates for PikC oxidation were synthetically appended to linkers bearing a terminal N,N-
dimethylamino to assess directed C-H bond oxidation. Products were then submitted for linker removal to 
recover oidized materials. b) The terminal N,N-dimethylamino group made crucial contacts with enzyme 
active site residues bearing a carboxylic acid for substrate oxidation. 
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To gain insight into the factors involved in productive substrate binding, the activity of 

PikCD50N-RhFRED was screened against a panel of cycloalkane derivatives containing linear 

linkers bearing a terminal N,N-dimethylamino group (Table 2-1). A range of substrate 

conversions and varying degrees of regioselectivity were observed using ether- and ester-based 

linkers. Compared to the desosamine-fused cycloalkane (compound 1), we observed similar 

product yields that were affected through linker length (compounds 2 vs. 4), cycloalkane size 

(compounds 3 vs. 4) and the presence of a linker ester group, which notably increased yield 

while simultaneously decreased the number of products (compounds 3 vs. 5 and 4 vs. 6). 

Whereas seven products were observed in oxidations of 1, comparisons must consider that 

diastereotopic protons in 1 (due to desosamine chirality) become enantiotopic when achiral 

linkers are employed. Decreased conversion and regioselectivity of oxidations of the simple 

cycloalkane-derived substrates compared to the macrolactone system was likely attributed to 

suboptimal substrate binding affinity in the PikC active site due to a lack of functionality of the 

carbocyclic rings. The decreased chemical complexity potentially caused (i) an entropic penalty 

associated with the flexibility of the saturated ring systems; (ii) a lack of hydrophobic 

interactions between functional groups in the substrate macrolactone ring and PikC active site 

residues; and (iii) a loss of interactions between PikC active site and functional groups of 

macrolactone ring or desosamine (while retaining the salt-bridge between E94 and the 

dimethylamino group). 
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Table 2-1. Panel of initial ether and ester linker compounds screened against PikCD50N-RhFRED. 
The number of diastereomeric products, product ratios, and total conversion were determined by LC-MS 
Q-TOF. (*Note: Not all peaks in Fig. S2-2 corresponding to products for substrate 4 were completely 
separable on the LC-MS column; therefore, product ratio offered only an approximation of selectivity.) 

Binding orientation of cycloalkane derivative 6 within the PikC active site was assessed 

using authentic standards bearing a hydroxyl group at C6, C7, and C8 (Fig. 2-3). These 

compounds were synthesized as diastereomeric pairs with the cis/trans configurations of the ester 

and hydroxyl substituents. Identities for three of the four PikC-hydroxylated products were 

correlated using the synthetic standards, while the fourth product could not be determined 

because one of the C6/C8-hydroxylated diastereomers co-eluted with one of the C7-hydroxylated 

diastereomers (Fig. S2-2). 

 
Figure 2-3. Comparison of synthetic diastereomeric C6, C7, and C8 standards (6a-d) to the 
observed PikCD50N-RhFRED oxidation products of compound 6. Initial analysis for product 
distribution and yield were determined by LC-MS Q-TOF. Product identities were subsequently 
confirmed by use of authentic standards. 
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2.2.2 Altered Regioselectivity of 10-dml C-H Functionalization with Linear Desosamine 

Mimics 

Our studies on the carbocyclice substrates above demonstrated that the ester functionality 

offered an attractive alternative to labor-intensive desosamine attachment by providing a 

chemically labile anchoring group. Thus, we pursued ester-containing linkers to probe the effect 

of an additional hydrogen-bond acceptor on the regioselectivity of targeted C-H bond oxidation 

in the macrolactone system. To evaluate the impact of this functionality, 10-dml, the 

macrolactone core of YC-17 with a C-3 OH, was esterified by a series of linear anchors (Table 

2-2). In these reactions, 5 µM of enzyme was incubated overnight with NADPH and the glucose-

6-phosphate/glucose-6-phosphate dehydrogenase NADPH regeneration system.42,43 The terminal 

N,N-dimethylamino group was essential for catalytic conversion by PikCD50N-RhFRED as 

derivatives lacking this moiety were catalytically incompetent. Thus, 10-dml bearing the C-3 OH 

failed to generate products under identical reaction conditions (data not shown). Furthermore, 

10-dml attached to a linker bearing a terminal isopropyl group in place of dimethylamino 

(compounds 10 and 11) was not accepted as a substrate for PikCD50N-RhFRED, confirming the 

indispensability of the salt-bridge interaction in the enzyme active site for efficient regioselective 

hydroxylation (Table 2-2).39  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 
 

24 

 
Compound R No. of Prods. Product ratio Total yield Products 

YC-17 
 

2       1:1.2    >99 Methymycin, 
Neomethymycin 

7 
 

2       1:1.3      95 7a, 7b 

8 
 

2    1:2      98 8a, 8b 

9  2    2:1      68 9a, 9b 

10 
 

0    -      0 - 

11 
 

0    -      0 - 

12 
 

0    -      0 - 

13 

 

0    -      0 - 

Table 2-2. 10-dml analogs with desosaminyl mimics screened against PikCD50N-RhFRED. 

Activity of 3-(dimethylamino)propanoate (DMaP) derivative, compound 8, was 

comparable to YC-17 by total yield with altered C-10/C-12 hydroxylation product distribution 

profile: 1:2 versus 1:1.2 for YC-17 (Table 2-2).44 The products were determined to be 

methynolide and neomethynolide analogs 8a and 8b, with the hydroxylation occurring at the 

tertiary allylic position (C-10), and favored at the secondary exocyclic methylene (C-12) of the 

ethyl side-chain, respectively. Shortening the linker by one methylene unit in the N,N-

dimethylamino ethanoate (DMaE) derivative, compound 7, resulted in a 95% yield of the 

combined C-10/C-12 hydroxylated products 7a and 7b in a ratio of 1:1.3, slightly favoring the C-

12 hydroxylated analog. Extending the linker by one methylene unit in N,N-dimethylamino 

butanoate (DMaB) derivative, compound 9, resulted in 68% overall conversion by the 

engineered PikC biocatalyst, producing the C-10/C-12 analogs with a product ratio of 2:1, 
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favoring the allylic tertiary carbon atom (9a). These results demonstrated that linker length of the 

linear anchoring group mediated regioselective oxidation at distal C-H bonds through direct 

substrate engineering. 

In a survey of the various forms of the PikC biocatalyst, we observed that PikCWT, 

PikCWT-RhFRED, and PikCD50N-RhFRED generated similar product profiles with slightly 

different ratios, while PikCD50N-RhFRED provided a substantially higher overall efficiency (Fig. 

S2-3). Furthermore, substrate-binding assays of compounds 7 – 9 with the different forms of the 

biocatalyst revealed comparable dissociation constants (Table S2-1). These results confirmed 

that neither the D50N mutant form of PikC nor the RhFRED fusion had a significant impact on 

substrate orientation for compounds 7 – 9. 

 

2.2.3 Product Analysis 

Analysis of the PikC reactions was based on the ability to correlate hydrolysis products of 

7a,b, 8a,b and 9a,b to methynolide and neomethynolide.  These two macrolactones were 

employed in this study as authentic standards to determine sites of hydroxylation, and have been 

previously described as products of fermentation by mutant strains of S. venezuelae, through 

chemical degradation of methymycin and neomethymycin, and by total synthesis.45-51 Therefore, 

a sequential scheme involving substrate synthesis (7-13), enzymatic oxidation, ester hydrolysis, 

and LCMS analysis was followed for initial assessment of reaction products (Fig. S2-1), 

followed by enzymatic scale-up and isolation for rigorous structure elucidation and correlation 

(Table 2, Fig. 2-4). Preparative-scale PikC-mediated reactions afforded a sufficient quantity of 

the oxidation products for NMR analysis after hydrolysis, and the spectra were directly 

compared to the authentic standards of methynolide and neomethynolide.  Thus, hydrolysis of 

the ester linker in 8 demonstrated that the major product was neomethynolide and the minor 

compound was methynolide (Fig. 2-4). The 1H-NMR spectra stacked plot (Fig. 4, trace E) 

showed signals corresponding to alkene protons (C-8/C-9), while the characteristic doublet of 

doublets from C-9 disappeared following PikC catalyzed oxidation at the C-10 tertiary allylic 

position observed in the methynolide analog. In the neomethynolide analog, the C-9 signal 

remained as a doublet of doublets.  The C-8 signal corresponded to the C-H adjacent to the C-7 

carbonyl group and was split into a doublet in both methynolide and neomethynolide.  

Analogous hydrolysis experiments were performed for PikC oxidations of compounds 7 and 9 as 
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well. These signals were present both in the 1H-NMR spectra of hydrolyzed PikC reaction 

products from substrates 7, 8 and 9. Therefore, the 1H-NMR confirmed the sites of oxidation to 

be at C-10 and C-12 and that variations in regioselectivity observed in 7a,b, 8a,b and 9a,b result 

from changes in substrate orientation within the active site of PikC conveyed through linker 

length.  

 

 
Figure 2-4. Stacked plot of 1H-NMR of hydrolyzed reaction products from substrates 7-9. From top 
to bottom (A-F): (A) Neomethynolide, (B) Methynolide, (C) 10-deoxymethynolide, (D) Hydrolyzed 
PikCD50N-RhFRED reaction products from substrate 7, (E) Hydrolyzed PikCD50N-RhFRED reaction 
products from substrate 8, (F) Hydrolyzed PikCD50N-RhFRED reaction products from substrate 9. From 
left to right: C9-H signal, C8-H signal.  
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To gain further understanding into binding affinity and conversion of new 10-dml analogs 

bearing the DMaE, DMaP and DMaB synthetic linkers, we established the steady-state kinetic 

parameters of the oxidation of compounds 7 – 9 using PikCD50N-RhFRED (Table 2-3). Although 

the single-component enzyme system demonstrated good to excellent overall product yields and 

high regioselectivity for compounds 7 – 9, the kinetic data indicated that PikCD50N-RhFRED 

catalyzed hydroxylation of the semisynthetic compounds less efficiently compared to native 

macrolide substrate YC-17. Consistent with the reduced levels of oxidation of 9 by PikCD50N-

RhFRED, both Michaelis constant (Km) and enzyme efficiency (kcat) were significantly 

attenuated toward this substrate.  

 
Compound 

 

Product Ratio 
15:14 

Kinetic Parameters 

Km (µM) kcat (min-1) kcat/Km (µM-1 
min-1) 

 
YC-17 

 
1:1.2 33.3 ± 8.20 247.8 ± 20.4 7.5 ± 2.5 

 
7 
 

1:1.3 138.7 ± 50.5 17.9 ± 3.2 0.129 ± 0.063 

 
8 
 

1:2 245.2 ± 50.5 25.3 ± 3.3 0.103 ± 0.065 

 
9 
 

2:1 330.9 ± 124.8 27.6 ± 6.9 0.0834 ± 0.0554 

 
Table 2-3. Linker induced regioselectivity differences and Michaelis-Menten fitted steady-state 
kinetic parameters. 
 

2.2.4 Structural Basis for Regioselectivity of 12-Membered Ring Aglycones with Simplified 

Linker Anchors. 

To establish the substrate binding orientation within the active site, we determined the x-

ray structures of catalytically competent compounds 2, 7 and 8, bound within the active site of 

PikCWT and/or PikCD50N (Table S2-4). The crystallization propensity of the enzyme-substrate 

complexes often directly correlated with their catalytic potential as less active complexes failed 

to generate suitable quality crystals. The only structurally characterized carbocyclic derivative, 

compound 2, was represented by a 2.7 Å structure (PDB ID 4BF4) containing 16 molecules in 

the asymmetric unit with two monomers possessing interpretable electron density in the active 

site to allow fitting of the substrate (Fig. 2-5). Notably, a fragment of electron density was 
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present adjacent to E94 virtually in each monomer suggesting that the salt-bridge contact 

between the N,N-dimethylamino group of the linker and E94 was preserved in the complex. A 

fragment of the cyclododecane ring proximal to the heme Fe was also visible, whereas the 

remainder of the substrate molecule was considerably disordered. The orientation of 2 in the 

active site was consistent with hydroxylation of C-6, C-7 and C-8, and in agreement with the 

limited regioselectivity of this compound due to the inherent flexibility of the non-functionalized 

ring system. 

 
Figure 2-5. Cycloalkane derivative in the PikCD50N active site. Fragments of the 2Fo-Fc electron density 
map (blue mesh) countoured at 1.0 σ delineate position of the cyclododecane substrate mimic (yellow) in 
the PikCD50N (PDB ID 4BF4). Fragment of electron density next to E94 was present in the majority of the 
16 monomers constituting the asymmetric unit, providing strong evidence for a dominant role of the salt-
bridge interaction between E94 and the terminal dimethylaino group of the linear anchor. The heme co-
factor is shown in gray sticks. Distances to the heme Fe are in Angstroms. 

Unlike the carbocyclic compound 2, the macrocyclic derivatives 7 and 8 contained well-

defined electron density in the corresponding high-resolution x-ray structures (Fig. 2-6A-C). In 

addition to the preserved salt-bridge, a novel hydrogen-bonding interaction between H238 and 

the ester carbonyl group of the linker emerged in the active site. This engineered H-bond may 

account for relocating the macrolactone ring towards the heme by ~1.4 Å as compared to YC-17 

(Fig. 2-6D). In the PikCWT, both the C-10 and C-12 sites were significantly closer in 8 than in 

the native substrate YC-17.39 The distance between C-12 and the heme iron varied between 4.0 

and 5.3 Å for synthetic mimic 8 and YC-17, respectively, while the C-10 site varied between 5.1 

and 7.4 Å. This differences were consistent with the observed preference for oxidation of C-12 

over the allylic carbon (C-10). Furthermore, the allylic site was captured in a closer proximity to 
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the heme Fe than has been observed previously, increasing its accessibility for hydroxylation by 

the oxo-ferryl intermediate, Compound I.21 

In the PikCD50N mutant, the macrolactone core of 8 was located further away from the 

heme Fe (Fig. 2-6E), at distances comparable with YC-17 in the wild type enzyme. However, the 

salt-bridge contact between E94 and the tertiary N,N-dimethylamino group was maintained 

through adjusting the positioning of the linker moiety. In addition, this ionic interaction persisted 

after shortening the linker by one methylene unit in 7 (Fig. 2-6F), confirming the critical role of 

this interaction in the PikC active site. The H-bond between H238 and the linker carbonyl group 

of 7 was also preserved at the expense of straining H-bonding geometry and pulling the 

macrolactone ring away from the heme cofactor by 1.3 Å. These differences in substrate binding 

within the active sites of both PikCWT and PikCD50N were consistent with the yield and regio-

selectivity observed in the in vitro enzymatic reactions for both 7 and 8. Based on kinetic (Table 

3) and structural data (Fig. 2-6), perturbation of the substrate structure resulting in repositioning 

of reactive sites by ~1.5 Å with respect to the heme Fe led to catalytically competent and regio-

selective complexes, but attenuated both Km and kcat values by up to an order of magnitude 

compared to the natural macrolide substrates. 
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Figure 2-6. Structural insights into regioselectivity of macrocycle hydroxylation. A-C. Binding of 
compounds 7 and 8  (yellow sticks) in the PikC active site. 2Fo-Fc electron density map (blue mesh) is 
contoured a 1.0 σ. Amino acid residues are in pink sticks, fragments of protein structure are shown as 
green ribbons, distances are in Angstroms. D-F. Superimposition of substrates in the active sites that 
emphasize differences between (D) YC-17 (cyan) and compound 8 (yellow), (E) compound 8 in the wild 
type (pink) and PikCD50N mutant (yellow), and (F) compounds 8 (yellow) and 7 (green) in PikCD50N. 

The D50N substitution was empirically identified previously to enhance PikC catalysis 

perhaps by positively affecting the substrate binding kinetics.36,37 The difference in the Y295 

interactions observed in the wild-type (Fig. 2-7A) and the PikCD50N mutant, both co-crystallized 

with compound 8, suggested a destabilizing role for the D50N mutation (Fig. 2-7B). 

Conformational variability of the β1-strand between the wild type and mutant may be directly 
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affected by this mutation as the interactions of D50 with Y295 were lost in the mutant. 

Perturbation in the β1-interacting FG-loop was likely a secondary effect associated with the 

mutation. These perturbations may have destabilized the substrate access channel and facilitated 

substrate progression to a catalytically productive binding mode.40 

 
Figure 2-7. Effect of the D50N mutation on the overall PikC structure. A. Salt-bridge contact between 
D50 and Y295 stabilized the substrate entry channel in PikC (green ribbon). Compound 8 is in yellow 
sticks. B. Disruption of the D50-Y295 interaction by site-directed mutagenesis perturbed the channel 
structure, favorably affecting substrate progression deeper into the active site.38 Wild type Cα carbons are 
traced in pink, PikCD50N Cα carbons are traced in green. Conformational variability in the I-helix was due 
to variations of the G244 torsion angles causing violations in the α-helix H-bonding pattern. 

 

2.2.5 Antibacterial Activities of Synthetic Compounds Containing Desosaminyl Mimics.  

Macrolide antibiotics rely heavily on the presence of a deoxysugar to make several 

crucial ribonucleotide interactions in the peptidyl-transferase center of the 23S ribosomal RNA 

subunit (the major drug target of macrolides).52 Therefore, we sought to determine whether any 

of substrates with a linear desosamine anchor replacement would maintain measurable 
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bioactivity (Table S2-3). Of particular interest was the observed bioactivity of compounds 3 and 

5 against a variety of relevant human pathogenic bacterial strains compared to the activity of YC-

17 and erythromycin (Table S2-3). We surmised that the bioactivity was derived from the 

accumulation of the cyclic hydrocarbons within the cellular membranes affecting structural and 

functional properties that may have included inhibition of primary ion pumps and increasing 

proton permeability.53 However, minimal inhibitory concentration (MIC) assays of the other 

synthetic compounds revealed that most lacked activity, which was likely due to the absence of a 

functional group such as desosamine, capable of mediating ribosomal interactions resulting in 

antibiotic activity.52 It was also conceivable that the general lack of biological activity results 

from the abundant presence of microbial esterases that cleave the linker.  

 

2.3 Conclusion  

In the current study, the inherent substrate flexibility of PikC was exploited to expand 

substrate scope using desosamine mimics as anchoring groups. In contrast to typical synthetic C-

H bond activation strategies that leverage proximal groups or differing C-H bond strengths, our 

substrate-engineering approach involved simplifying the chemical functionality of the natural 

substrate to produce a removable linear anchor with a terminal N,N-dimethylamino group to 

achieve regioselective oxidation of remote sites on the target molecule. By this approach, regions 

of substrates were oxidized distal to the N,N-dimethylamino functionality, rendering the 

regioselectivity patterns orthogonal to that which can be achieved by either directed or non-

directed small molecule oxidation catalysts.1,4-6,8-11 Replacement of desosamine in semi-synthetic 

substrates with a simple and removable group eliminates a number of labor-intensive steps for 

harvesting and synthetic attachment of desosamine, and enables facile recovery of the oxidized 

product(s) for additional chemical or enzymatic elaboration.  

In this work, an ester linker attached to the 12-membered ring macrolactone 10-dml 

achieved high regioselectivity and substrate conversion by an engineered chimeric mutant form 

of PikC. Linker length variation produced meaningful changes in regioselectivity of C-H bond 

oxidation, substantiating the substrate-engineering strategy as an effective means of expanding 

the substrate scope of this P450. The alteration of regioselectivity and product yield achieved 

with semi-synthetic substrates contrasted significantly with a drop (up to 10-fold) in kcat and 

increase in Km compared to the natural substrate YC-17. Based on the x-ray structure analysis, 
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substrate orientation within the PikC active site was largely controlled by the electrostatic 

interaction of the N,N-dimethylamino moiety with the carboxylate group of E94. A novel H-bond 

between the ester carbonyl group of the linker and H238 compensated only partially for the loss 

of desosamine interactions in semi-synthetic substrates. Although we observed only poor to 

modest yields with some of the initial semisynthetic unnatural substrates using PikC, compounds 

like 6 offered significant insight into the rules governing substrate binding through its oxidation 

pattern and compound 2 through x-ray structural studies. 

There is a long-standing demand for enzymes with improved activity and substrate 

tolerance that can be applied toward chemoenzymatic synthesis, and the development of 

chemical probes, reagents and novel therapeutics. Bacterial biosynthetic P450s offer a unique 

source of potential biocatalysts given their propensity for expeditious cloning, over-expression in 

E. coli, and rapid purification. The substrate-engineering approach offers a foothold towards 

gaining valuable insight into the rules that govern productive substrate binding and conversion of 

potential P450 substrates, and also towards developing a general method for regio- and 

stereoselective oxidation of highly complex molecules, including secondary metabolites. This is 

possible because the products of the enzymatic reactions are readily recoverable and further 

chemically or enzymatically elaborated towards the development of novel compounds. Finally, 

these results underscore the potential of bacterial biosynthetic P450s, such as PikC, to be 

developed as biocatalysts for the selective oxidation of C-H bonds for diversification of natural 

products and creation of a broad range of bioactive synthetic molecules. The catalytic conversion 

rate, reaction specificity, and yield could be further maximized by directed evolution and rational 

or random protein mutagenesis methods. 

 

 

 

 

 

 

 

 

 



 
 

34 

2.4 Experimental Procedures  

Expression and purification of PikCD50N-RhFRED 

Protein expression and purification followed a previously described procedure.37  

 

PikCD50N-RhFRED Enzymatic Assay 

The standard assay contained 5 µM PikCD50N-RhFRED, 0.5 mM substrate, 2.5 mM NADPH, 

0.25 units of glucose-6-phosphate dehydrogenase, and 5 mM glucose-6-phosphate for NADPH 

regeneration in 100 µL of reaction buffer (50 mM NaH2PO4, pH 7.3, 1 mM EDTA, 0.2 mM 

dithoerythritol, and 10% glycerol). The reaction was carried out at 30°C overnight and quenched 

by extraction using 3 × 200 µL of CHCl3. The organic extracts were combined, dried under N2, 

and redissolved in 100 µL of acetonitrile. The subsequent liquid chromatography mass 

spectrometry (LC-MS) analysis was performed on an Agilent Q-TOF HPLC-MS (Department of 

Chemistry, University of Michigan) equipped with an high resolution electrospray mass 

spectrometry (ESI-MS) source and a Beckmann Coulter reverse-phase HPLC system using an 

Waters XBridge C18 3.5 µm, 2.1x150 mm under the following conditions: mobile phase (A = 

deionized water + 0.1% formic acid, B = acetonitrile + 0.1% formic acid), 20% B for 3 min, 20 

to 100% B over 25 min, 100% B for 5 min, 100 to 20% B over 1 min, 20% B for 10 min; flow 

rate, 0.21 mL/min. The substrate-binding assays were performed as previously described.37  

 

Steady-state kinetic assays 

The standard assays contained 0.1 µM PikCD50N-RhFRED and various concentrations of 

substrates (20-250 µM) in a total volume of 195 µl of P450 desalting buffer (50 mM NaH2PO4, 

pH 7.3, 1 mM EDTA, 0.2 mM dithioerythritol, 10% glycerol). After pre-incubation at 30°C for 5 

min, the reactions were initiated by adding 5 µl of 50mM NADPH. Reaction termination and 

analysis was carried out as follows: three aliquots (50 µl) were taken at three time points (0, 20, 

40s for concentrations below 100 µM or 0, 30, 60s for concentrations above 100 µM) within the 

linear range to thoroughly mix with 100 µl methanol. The protein was pelleted by centrifugation 

at 13,000g at 4°C for 15 min. The supernatant was subjected to HPLC analysis to monitor 

substrate consumption within the linear range to measure the initial velocity of the reactions. The 

HPLC conditions were: XBridge C18 3.5 µm, 2.1x150 mm under the following conditions: 

mobile phase (A = deionized water + 0.1% formic acid, B = acetonitrile + 0.1% formic acid), 
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10% B for 2 min, 10 to 100% B over 10 min, 100% B for 1 min, 100 to 10% B over 2 min; flow 

rate, 0.21 mL/min. The initial velocity of substrate consumption was deduced from decreased 

area uner the cure (AUC) of specific substrate peaks. All measurements were performed in 

duplicate, and velocities determined under different substrate concentrations were fit to the 

Michaelis-Menten equation to calculate kinetic parameters  
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2.5 Supplementary Information 

 

Hydroxylation product analysis and identification 

General Hydrolysis Procedure: The crude PikCD50N-RhFRED reaction mixture was dissolved in a 

4:1 mixture of MeOH:CHCl3 (0.015 M) and 2.5 equiv of potassium carbonate were added.  The 

reaction mixture was allowed to stir at rt for 72 hours or until all starting material was consumed.  

The reaction mixture was concentrated under reduced pressure, quenched by addition of 

saturated ammonium chloride and extracted thrice with portions of EtOAc.  The combined 

organic layers were dried over Na2SO4, and filtered through a plug of silica gel and concentrated 

under reduced pressure.  The products were analyzed by 1H-NMR and determined to be a 

mixture of methynolide and neomethynolide (comparison to previously reported spectra), the 

ratio of the two components depended on the length of the ester anchoring group in the substrate. 

 

Crystallization, data collection and structure determination 

Prior to crystallization, the PikC and PikCD50N protein stocks solutions stored at -80°C were 

diluted to 0.2 mM in 10 mM Tris-HCl, pH 7.5 buffer supplemented with 1 mM compound of 

interest. Crystallization conditions in each case were determined using commercial high-

throughput screening kits available in deep-well format (Hampton Research), a nanoliter drop-

setting Mosquito robot (TTP LabTech) operating with 96-well plates, and a hanging drop 

crystallization protocol. Crystals were further optimized in 96-well or 24-well plates for 

diffraction data collection. Prior to data collection, all crystals were cryo-protected by plunging 

them into a drop of reservoir solution supplemented with 20-25% ethylene glycol or glycerol, 

then flash frozen in liquid nitrogen. Diffraction data were collected at 100-110 K at beamline 

8.3.1, Advanced Light Source, Lawrence Berkeley National Laboratory, USA. Data indexing, 

integration, and scaling were conducted using MOSFLM and the programs implemented in the 

ELVES software suite.54 The crystal structures were initially determined by molecular 

replacement using the structures of PikC (PDB ID 2BVJ) as search models. The final structures 

were built using COOT and refined using REFMAC5 (Collaborative Computational Project, 

1994; software.55-57  
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Compound Enzyme Dissociation constant (µM) 

 

PikCWT 130 

PikCWT-RhFRED - a 

PikCD50N-RhFRED 135 

 

PikCWT 179 

PikCWT-RhFRED 322 

PikCD50N-RhFRED 273 

 

PikCWT 475 

PikCWT-RhFRED 342 

PikCD50N-RhFRED 87 
a Binding curve could not be fitted. 

Table S2-1. Binding affinities of PikCWT, PikCWT-RhFRED, and PikCD50N-RhFRED for compounds 
7 – 9 were deduced from a low to high spin iron spectral shift, known as type I binding.58  
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Figure S2-1. Representative LC-MS Q-TOF analyses of PikCD50N-RhFRED oxidations of (a) 
compound 3 (b) compound 8 (c) compound 9. 
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Figure S2-2. Structural determination of mono-hydroxylated products of 8 through LC-MS 
comparison of synthetic authentic standards regarding retention times. (A) Product profile of 
PikCD50N-RhFRED reaction using 8 as substrate; (B) Authentic standard containing a pair of C6/C8 
hydroxylated diastereomers; (C) Authentic standard containing the pair of C7 hydroxylated 
diastereomers; (D) Overlay of product profile from enzymatic reaction and authentic synthetic standards. 
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Compound Enzyme Product Ratio % Yield 
7 PikCWT 1:1.4 89 

PikCWT-RhFRED 1:1.3 92 
PikCD50N-RhFRED 1:1.3 95 

8 PikCWT 1:1.7 59 
PikCWT-RhFRED 1:1.7 75 

PikCD50N-RhFRED 1:2.0 98 
9 PikCWT 1.8:1 58 

PikCWT-RhFRED 1.9:1 64 
PikCD50N-RhFRED 2.0:1 68 

 
Table S2-2. Regioselectivity and product yield differences exhibited by PikCWT, PikCWT-RhFRED, 
and PikCD50N-RhFRED against compounds 7 – 9.  Product ratios were determined by LC-MS. 
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 Deinococcus 
radioduransa 

Bacillus subtilis 
DHS5333 

Staphylococcus 
aureus ATC6538P 

Kocuria 
rhizophila 

ATCC6538Pb 

E. coli TolCc Staphylococcus 
aureus NorAd 

Acinetobacter 
baumanni 

Multi-drug 
resistance 

Staphylococcus 
aureus 

Media Special mediae LB LB Nutrient broth Mueller Hinten Mueller Hinten Mueller Hinten Mueller Hinten 
Compound         

DMSO - - - - - - - - 
Erythromycin 6.2 <0.8 <0.8 <0.8 <0.8 <0.8 25 >100 

YC-17 400 100 100 100 100 100 >400 >400 
2 200 400 400 >400 200 100 >400 >400 
3 100 50 25 >400 25 12.5 400 50 
4 200 400 400 400 400 400 >400 >400 
5 12.5 25 >400 25 25 400 >400 400 
6 100 400 400 200 100 >400 >400 >400 
7 >400 >400 >400 >400 >400 >400 >400 >400 
8 400 >400 >400 >400 400 >400 >400 >400 
9 400 >400 >400 >400 400 >400 >400 >400 

10 >400 >400 >400 >400 >400 >400 >400 >400 
11 >400 >400 >400 >400 >400 >400 >400 >400 
12 >400 >400 >400 >400 >400 >400 >400 >400 

a A gift from Professor Ada E. Yonath (Structural Biology Department, Weizmann Institute of Science, Rehovot, Israel) 
b Previously known as Micrococcus luteus ATCC 9341, which is sensitive to macrolide antibiotics.  
c E. coli W3110 TolC disruption mutant is more sensitive to antibiotics. 
d S. aureus 8325 NorA disruption mutant is more sensitive to antibiotics. 
e Recipe: 10 g caseine peptide (tryptic digest), 5 g yeast extract, 5 g NaCl, and 5 g glucose (add following sterilization) in 1 L water at pH 7.2. 
* All MIC values are in µM. 
 
Table S2-3. Antibacterial activities of synthetic compounds containing desosaminyl mimics.  
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Chapter 3 

P450-Mediated Oxidation of FDA-Approved Drug Scaffolds 

 
3.1 Introduction  

Cytochrome P450 monooxygenases (P450s or CYPs) have been implicated in human 

metabolism and have therefore been a major research target for many decades. In humans, 57 

distinct P450s have been identified and we continue to learn more about each of those enzymes 

and their roles in human diseases.1 Most of the medically relevant P450s act on important 

endogenous substrates to control physiological levels, as well as exogenous compounds such as 

medications we ingest. Therefore, alteration in activity levels of these enzymes in the human 

body can result in serious diseases. Additionally, human CYPs play an integral role in the 

metabolism of xenobiotics and pharmaceuticals that include over 80% of the drugs routinely 

prescribed.2 During the body’s initial clearance, most drugs are metabolized in the liver by 

resident P450s.3,4 Some of the subsequent metabolites are biologically active themselves; 

therefore, understanding the bioactivity of in vivo metabolites is crucial in determining efficacy, 

toxicity, and pharmacokinetics.5 With respect to those goals, terfenadine, an antihistamine which 

was marketed by Hoeschst Marion Roussel (now Sanofi-Aventis), exemplified the importance of 

determining the active metabolites for identifying well-tolerated and safer therapies.6  

Synthesis of sufficient quantities of pure putative metabolites is labor-intensive and 

difficult, so exploitation of P450s to generate metabolites is quite attractive. Hepatic microsomes 

are a potential source of human CYPs, but their availability is limited and they often exhibit 

variable expression levels, complicating preparative-scale metabolite synthesis. Although some 

human enzymes have been successfully expressed in recombinant hosts such as Escherichia coli, 

most human membrane-bound, multi-protein systems commonly suffer from 
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misfolding and aggregation or do not express in an active form. Previous groups have 

demonstrated measurable metabolite preparation in E. coli and insect cells, but these systems  

were costly and demonstrate low productivities given limited stability and slow enzymatic 

reaction rates.7-10 

An alternative approach is employing engineered bacterial P450s in place of microsomal 

CYPs. For example, Otey et al. demonstrated that an engineered version of cytochrome P450 

BM3, a fatty acid hydroxylase from Bacillus megaterium, could be used in conjunction with 

hydrogen peroxide to prepare authentic human metabolites of propranolol, a multi-function beta-

adrenergic blocker used to treat hypertension, arrhythmia, angina, migraines, overactive thyroids, 

and anxiety.11,12 Of note is the use of BM3 for the study because this P450 is known to be self-

sufficient, opening the door to employing other bacterial P450s for the synthesis of human 

cytochrome P450 monooxygenase (CYP) metabolites of pharmaceuticals.  

Perhaps equally important to being able to predict in vivo metabolites of potential 

pharmaceuticals, growing antibiotic resistance among pathogenic bacterial strains represents a 

significant global health threat.13 A promising strategy to combat resistance is to introduce 

antibiotics possessing a unique mechanism of action. In particular, the ribosome is a common 

target of many antibacterials given the distinct differences between pathogenic bacterial and 

eukaryotic ribosomes. Specifically, position 2058 within the peptidyl transferase center (PTC) in 

the macrolide binding pocket (adenine in eubacteria, guanine in eukaryotes) offers an efficient 

target for antibiotic selectivity given the use of a different base in eubacteria compared to 

eukaryotes. The PTC is almost completely conserved across kingdoms of life, yet it also serves 

as a target for several families of antibiotics. One family is the pleuromutilins, which target the 

bacterial ribosome and still show with a slow development of resistance.14  

In the current study, we used a previously engineered self-sufficient P450, PikCD50N-

RhFRED, originally derived from the pikromycin pathway to produce oxidation products 

consistent with potential hydroxylated human and animal metabolites of tamoxifen, toremifene, 

and tiamulin in yields ranging from 16-35% (Fig. 3-1).15 In addition, we tested several synthetic 

undecorated hydrocarbons and macrocycles with terminal N,N-dimethylamino moieties to 

explore the ability of PikC to oxidize these unnatural substrates. We hypothesized that the 

terminal functionality of the linkers facilitated regioselective oxidation by PikC through a salt 
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bridge comparable to that observed with the endogenous PikC substrates, YC-17 and 

narbomycin, and other synthetic unnatural substrates previously tested (see Chapter 2).16  

 

 
Figure 3-1. Enzymatic scheme of PikC-mediated oxidation of unnatural substrates. Potential PikC 
substrate with a linker ending in a terminal N,N-dimethylamino to facilitate substrate binding and 
oxidation with NADPH and the NADPH regeneration system of glucose-6-phosphate and glucose-6-
phosphate dehydrogenase. 

 

3.2 Background  
3.2.1 Tiamulin and Other Pleuromutilins 

Tiamulin (Fig. 3-2) is a semisynthetic derivative of the natural product pleuromutilin 

discovered to be produced by Pleurotus mutilus (now known as Clitopilus scyphoides).17 The 

compound contains a tricyclic mutilin core of a cyclo-pentanone, cyclo-hexyl and cyclo-octane, a 

C21 keto group critical for bioactivity, and a (((2-diethylamino)ethyl)thio)-acetic acid side-chain 

on C14 of the octane ring.17,18  During the early 1980s, significant strides were made towards 

developing formulation methods for azamulin (Fig. 3-2), a related compound to tiamulin, to 

accelerate its entry into clinical use because it demonstrated activity against many clinical 

isolates of resistant bacteria, including erythromycin- and tetracycline-resistant strains. However, 

the compound strongly inhibited CYP activity, severely limiting its clinical use.19 Nevertheless, 

continued efforts to develop pleuromutilins yielded a number of semisynthetic derivatives, 

including retapamulin (SB-275833; SmithKline Beecham) (Fig. 3-2) which demonstrated potent 

activity against Gram-positive pathogens and a low propensity to develop resistance in all strains 

of Staphylococcus aureus and Streptococcus pyogenes with MICs ≤ 0.5 µg/ml.20-29 Tiamulin and 

the other pleuromutilins exhibit broad-spectrum activity against a variety of clinically relevant 

bacterial strains, but unlike retapamulin, many suffer from limited oral bioavailability, restricting 

the use of this class of compounds in humans.26,30,31 Nevertheless, with the increasing number of 

dangerous human pathogens resistant to currently used medications, there is increasing interest 

in developing new antibiotic scaffolds such as pleuromutilin for human therapy.32-36  

(H3C)2N (H3C)2N
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NADPH
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Figure 3-2. Structures of tiamulin, retapamulin (SB-275833), and azamulin. 

Specific interactions between pleuromutilin compounds and the ribosome, the predicted 

biological target, have been found using the 50S ribosomal subunit from Deinococcus 

radiodurans (D50S) in complex with tiamulin.37 The crystal structure unambiguously localized 

tiamulin in the large subunit through an extensive network of hydrophobic interactions with the 

23S rRNA.37 In addition, a number of related compounds were also crystallized in the D. 

radiodurans’ ribosome and all demonstrated that C14 extensions were localized to the PTC and 

held in place by a hydrogen-bond network between G2061 and the essential C21 keto of the 

bound compound.14 Furthermore, the C14 extensions were located between the acetylated and 

peptidylated tRNA CCA ends.14 However, this area of the ribosome contained only a few 

potential candidates for interaction so various chemical moieties of the inhibitor should be 

tolerated, explaining why all C14 extensions did not have extensive interactions with the PTC. 

Therefore, longer extensions may be tolerated and allow for substantial flexibility in drug design. 

 

3.2.2 Tamoxifen and Related Analogs 

Breast cancer affects over 1 million women and kills approximately 400,000 every year 

in the Western world.38 Breast cancer is often classified according to its estrogen (ER) or 

progesterone (PR) receptor status to divide the patients into appropriate treatment groups. As 

more than two thirds of breast cancers are positive in immunohistochemical staining to the ER, 

personalized hormonal therapies have become a large proportion of treatment options for these 

breast cancer patients. Additionally, differentiating breast cancer into these categories allows for 

substantial increases in treatment efficacy as it was found that ER-positive (ER+) tumors are 

highly dependent on estrogen signaling for growth and replication. These ER+ tumors can then 

be treated with aromatase inhibitors (AI), while PR-positive tumors are not estrogen dependent 

and tend to respond better to alternative treatments.39  
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Tamoxifen (Fig. 3-3), a selective estrogen receptor modulator (SERM) introduced to 

clinical use in 1977, has subsequently become the gold standard for treating ER+ early, 

metastatic, and adjuvant cancer situations to become the first form of molecular targeted therapy, 

allowing ER+ patients to derive the greatest benefit.39-42 However, tamoxifen’s indications have 

expanded to include advanced breast cancer in premenopausal women and men, as well as the 

adjuvant therapy for node-positive and –negative disease.39 Tamoxifen has prolonged disease-

free survival, significantly reduced mortality rates, and a 39% reduction in the risk for 

developing contralateral breast cancer.41 The therapeutic mechanism of action of tamoxifen is 

antagonistically binding to the ERα normally present in the mammary gland to block the ER 

from binding its endogenous ligands.40,43 Tamoxifen also acts agonistically in the bone in 

addition to its anticancer activity to increase bone density and prevent osteoporosis.40 The 

biological activity of tamoxifen and other selective ER modulators (SERMs) depends on the 

balance between co-activators and co-repressor proteins, differently represented in healthy tissue 

and breast cancer.44,45 

Toremifene, a tamoxifen analog (Fig. 3-3), received Food and Drug Administration 

approval in 1997 under the name Fareston for use in metastatic breast cancer in postmenopausal 

women.46 Toremifene’s pharmacologic profile is comparable to that of tamoxifen in terms of its 

ER binding, antitumor activity, and estrogenic activity, but it also demonstrates lower estrogenic 

activity than tamoxifen at low and moderate doses.47,48 The major difference between toremifene 

and tamoxifen is the hepatocarcinogenicity reported in animal studies, as high-dose tamoxifen 

was hepatocarcinogenic in rats while the same dose of toremifene was not.49 Furthermore, the 2 

major active metabolites of tamoxifen, 4-hydroxy-N-desmethyl-tamoxifen (endoxifen) and Z-4-

hydroxytamoxifen (4HT), are 100 times more potent than the parent drug.50-52 

 
Figure 3-3. Structures of tamoxifen and toremifene. 
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3.3 Results and Discussion 

PikC is a biosynthetic cytochrome P450 monooxygenase involved in the post-polyketide 

synthase tailoring steps of macrolide antibiotic biosynthesis in Streptomyces venezuelae.53,54 The 

endogenous activity of this enzyme is the hydroxylation of the 12-membered macrolide, YC-17, 

and the 14-membered macrolide, narbomycin, to produce methymycin/neomethymycin and 

pikromycin, respectively (Fig. 3-4). Previous analysis of X-ray co-crystal structures of PikC with 

its natural substrates highlighted largely non-specific hydrophobic interactions between the 

substrate macrolactone rings and active site residues. However, the aminosugar desosamine, 

present in both natural macrolide substrates, was notably localized in two distinct binding 

pockets participating in hydrogen bonding and ionic interactions for appropriate substrate 

positioning and stabilization in the active site.16,55 Specifically, the protonated dimethylamino 

moiety of desosamine and a glutamate residue in the B/C loop region of the protein participated 

in an electrostatic salt bridge to achieve specific substrate binding.55 In addition, desosamine has 

already been shown to direct unfunctionalized carbocycles to the active site of PikC for 

regioselective oxidation, albeit at lower levels of selectivity than YC-17 and narbomycin.15 The 

difficulty of harvesting and synthetically installing of desosamine motivated the exploration of 

simplified anchoring groups with an ability to mediate similar electrostatic and H-bonding 

interactions for effective PikC-catalyzed C-H bond activation.56,57  

 
Figure 3-4. Endogenous PikC-catalyzed reactions of YC-17 and narbomycin. Endogenous reactions 
catalyzed by PikC include the oxidation of YC-17 and narbomycin to yield methymycin, neomethymycin, 
and pikromycin, respectively.  
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3.3.1 PikC-Mediated Oxidation of Putative Semisynthetic Substrates 

To build upon earlier investigations into PikC’s ability to oxidize synthetic hydrocarbons 

and macrocyles with mimics of desosamine (see Chapter 2), we began our studies in 

collaboration with Dr. John Montgomery (University of Michigan) with small semisynthetic 

molecules bearing a series of various linkers all terminating in a N,N-dimethylamino group. We 

focused on linkers that we had previously confirmed to target other substrates into the PikC 

active site for efficient regioselective hydroxylation. We subsequently tested a number of 

compounds of varying size and degree of functionality and observed a range of conversions up to 

21% (Table 3-1) using the engineered chimeric enzyme, PikCD50N-RhFRED (to be referred to as 

PikC-RhFRED).  

From these results, we had several observations concerning substrate targeting for PikC 

oxidation. First, from the P450 oxidation of 1 and 2, we observed that the acyclic ester linker 

ending in a N,N-dimethylamino moiety successfully facilitated PikC oxidation albeit at lower 

levels than 1. These results were surprising given the degree of functionality present in these 

molecules as compared to previous work with an unfunctionalized hydrocarbon with the same 

linker.  In that case, a 34% conversion was observed across 4 products, an almost 3-fold increase 

in conversion. Nevertheless, the data suggested a threshold of functionality required for 

productive substrate binding and conversion. Second, the oxidation pattern and conversion of 3 

reconfirmed previously observed data that suggested that the terminal N,N-dimethylamino was 

crucial to directing the substrate to the enzyme active site. Compounds 5 and 6 revealed that the 

length of the linker was crucial to reaching the catalytic heme and achieve regioselective 

oxidation. Third, enzymatic conversion of 4 stood in contrast to previously obtained data of the 

observed oxidation of a similar compound that contained an ester in place of the amide of 4 (see 

Chapter 2). The decreased conversion with 4 suggested the critical role of the oxygen of the 

ester, perhaps as an acceptor in a hydrogen bond network. The presence of the nitrogen in the 

amide-containing compound would then clearly prohibit this interaction. Alternatively, the ester 

might allow for a more optimal compound configuration that was disallowed by the amide. 

Finally, increased functionality of the macrolactone facilitated oxidation by PikC as 

demonstrated by compound 7, a narbonolide derivative. This phenomenon was likely due to 

favorable enzyme-substrate interactions that may have mirrored the interactions observed with 

10-deoxymethynolide (10-dml) derivatives (previous data).  
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Table 3-1. Regioselectivity and conversion of PikC against semisynthetic compounds. The enzymatic 
reactions of semisynthetic compounds were analyzed by LC-MS Q-TOF after overnight incubation. 
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as substrates by PikC-RhFRED (SI). Approximately 100 compounds were tested from the 

library; of those compounds, approximately 20 compounds were regioselectively oxidized with 

conversions varying from less than 10% to 30% (data not shown). One of the compounds 

included in the screen was toremifene, which was confirmed to be oxidized by the biocatalyst in 

a modest yield (Table 3-2). Commercially available analogs to toremifene, tamoxifen and 

endoxifen, (Table 3-2) were tested against PikC-RhFRED for regioselectivity and total 

conversion. Tamoxifen was oxidized at a 34% yield across 4 products while toremifene was 

verified to be oxidized in a 16% yield across 2 products (Table 3-2). Interestingly, oxidation of 

endoxifen was not observed, further substantiating that the N,N-dimethylamino was crucial to 

achieving productive substrate binding.   

 
Table 3-2. PikC regioselectivity and conversion of tamoxifen derivatives. The enzymatic reactions of 
commercially available tamoxifen derivatives were analyzed by LC-MS Q-TOF after overnight reaction 
incubation. 
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yielded a 31% yield across 2 products while pleuromutilin, lacking the thioester with the 

terminal N,N-dimethylamino and instead ending in a carboxylic acid, resulted in only an 8% 

yield with 1 product. Furthermore, analogs 1 and 2 also demonstrated poor yields of 3% across 2 

products, while analog 3 showed a 35% yield across 6 products (Table 3-3). From these results, 

it was clear that the length of the thioester linker was crucial, leading to the hypothesis that the 

terminal moiety was participating in the same salt bridge previously observed. It appeared that 

the endocyclic double bond in conjunction with the absence of the hydroxyl group at C14 of the 

pleuromutilin derivatives facilitated hydroxylation while the exocyclic double bound and the 

presence of the hydroxyl group inhibited PikC-mediated oxidation. 
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Table 3-3. PikC regioselective oxidation of pleuromutilin derivatives. The enzymatic reactions of 
synthetic pleuromutilin derivatives were analyzed by LC-MS Q-TOF following an overnight reaction for 
the overall conversion. 

 

3.4 Conclusion  
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and their derivatives are FDA-approved for breast cancer and as a veterinary antibiotic, 

respectively. The driving hypothesis for the enzymatic conversion of drug scaffolds came from a 

substrate-engineering approach previously used that exploited PikC’s inherent substrate 

flexibility using linear desosamine replacements. Although additional work remains to 

characterize the location of oxidation through NMR, it is reasonable to conclude that the regions 

of the substrates that were oxidized were distal to the N,N-dimethylamino functionality based on 

previous results, rendering the oxidation pattern orthogonal to what has been achieved using 

directed or non-directed small molecule oxidation catalysts.58-65 In spite of the surprisingly 

diverse substrate scope demonstrated in this work, directed evolution or rational site-directed 

mutagenesis methods could be employed to further optimize both conversion and selectivity of 

the mutant chimera. 

 Although there has been long-standing interest in developing P450s as potential industrial 

catalysts, there have only been a select number of enzymes that have been integrated into 

commercial use. This scarcity is attributed to the limited chemical repertoire of natural enzymes. 

Thus, enzymes exhibiting improved activity and increased substrate tolerance offer improved 

different tools for chemoenzymatic synthesis, chemical probes, reagents, metabolite production, 

and novel therapeutics. Specifically, bacterial biosynthetic P450s are a unique pool of candidates 

given their ease of acquisition through traditional molecular biology and protein purification 

techniques. Therefore, our substrate-engineering approach not only offers an opportunity to gain 

insight into P450 substrate binding and conversion, but to also produce analogs of potent 

bioactives already approved through the FDA and confirm in vivo metabolites through in vitro 

methods. For example, the pleuromutilin class of antibiotics is under extensive investigation as a 

valuable pool of antibiotics with a novel mechanism of action that could be used to combat the 

growing problem of antibiotic resistance. As a practical chemoenzymatic tool, our engineering 

method can thus be integrated as a general method of regio- and stereoselective oxidation of 

highly complex molecules, including secondary metabolites. Finally, the results underscore the 

potential of bacterial biosynthetic P450s to be developed as biocatalysts for selective C-H bond 

oxidation towards chemical diversification.  
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3.5 Experimental Procedures 

Materials 

Unless otherwise specified, all chemical reagents were ordered from Sigma-Aldrich. Protein 

purification used QIAGEN (Valencia, CA) Ni-NTA resin, HiTrap Chelating columns from GE 

Healthcare (Piscataway, NJ), Millipore (Billerica, MA) Amicon Ultra centrifugal filter, and PD-

10 desalting columns from GE Healthcare (Piscataway, NJ). Luria broth and Terrific broth 

components were purchased from EMD Sciences (Gibbstown, NJ). Preparative-scale enzymatic 

reactions utilized SPE reservoirs, frits, and caps from Sigma-Aldrich.  

 

Expression and purification of PikCD50N-RhFRED 

Protein expression and purification followed a previously described procedure.66  

 

PikCD50N-RhFRED Enzymatic Assay 

The standard assay contained 5 µM PikCD50N-RhFRED, 0.5 mM substrate, 2.5 mM NADPH, 

0.25 units of glucose-6-phosphate dehydrogenase, and 5 mM glucose-6-phosphate for NADPH 

regeneration in 100 µL of reaction buffer (50 mM NaH2PO4, pH 7.3, 1 mM EDTA, 0.2 mM 

dithoerythritol, and 10% glycerol). The reaction was carried out at 30°C overnight and quenched 

by extraction using 3 × 200 µL of CHCl3. The organic extracts were combined, dried under N2, 

and redissolved in 100 µL of acetonitrile. The subsequent liquid chromatography mass 

spectrometry (LC-MS) analysis was performed on an Agilent Q-TOF HPLC-MS (Department of 

Chemistry, University of Michigan) equipped with a high resolution electrospray mass 

spectrometry (ESI-MS) source and a Beckmann Coulter reverse-phase HPLC system using an 

Waters XBridge C18 3.5 µm, 2.1x150 mm under the following conditions: mobile phase (A = 

deionized water + 0.1% formic acid, B = acetonitrile + 0.1% formic acid), 20% B for 3 min, 20 

to 100% B over 25 min, 100% B for 5 min, 100 to 20% B over 1 min, 20% B for 10 min; flow 

rate, 0.21 mL/min.  
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3.6 Supplementary Information  

 

 
Figure S3-1. Semisynthetic compounds not tolerated by PikCD50N-RhFRED as substrates. 

 

 
Figure S3-2. Commercially available FDA-approved compounds not tolerated by PikCD50N-
RhFRED as substrates. 
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Figure S3-3. LC-MS Q-TOF traces of PikC enzymatic reactions against semisynthetic compounds. 
(A) Compound 5, (B) 4, (C) 1, (D) 2, (E) 7, and (F) 6. Trace for compound 3 not shown given the 
minimal conversion.  
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Figure S3-4. LC-MS Q-TOF traces of PikC enzymatic reactions with (A) tamoxifen and (B) 
toremifene. Abbreviations: starting material (SM), product(s) (P). 
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Figure S3-5. LC-MS Q-TOF traces of PikC enzymatic reactions against pleuromutilin derivatives. 
(A) Pleuromutilin, (B) Tiamulin, (C) Pleur-1, (D) Pleur-2, and (E) Pleur-3. Abbreviations: starting 
material (SM), product(s) (P). 
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Synthesis of 3-(dimethylamino)propanoic acid 

 
A 0.25 M solution of methy 3-(dimethylamino)propionate (100 mg, 0.000762 mol) was added to 

a 3:1 mixture of tetrahydrofuran and water solution. Two hundred fourteen milligrams of 

potassium hydroxide (0.00381 mol) was then added and the reaction was stirred vigorously for 1 

h at room temperature. The reaction was subsequently quenched with 2N hydrochloric acid until 

the reaction was acidified. Then, the reaction was extracted twice with ethyl acetate. The 

combined organic layers were dried over sodium sulfate and evaporated to dryness in vacuo to 

afford 83 mg (83% yield) of 3-(dimethylamino)propanoic acid, a white flaky solid. 

 
Figure S3-6. 1H NMR of 3-(dimethylamino)propanoic acid. 1H NMR spectra taken at 500 MHz in 
CDCl3. 
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Synthesis of Compound 4 

 
Seventy five milligrams of 3-(dimethylamino)propanoic acid (0.000638 mmol) was resuspended 

in dichloromethane and treated with 245 mg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(0.00128 mmol) and 8 mg (0.0000638 mmol) 4-dimethylaminopyridine. Fresh 0.00191 mmol 

triethylamine and 0.000958 mmol cyclododecylamine were added and the mixture was stirred at 

room temperature for 18 h. The reaction was quenched with aqueous saturated ammonium 

chloride and diluted with 5 mL of dichloromethane and 5 mL of water. The aqueous layer was 

extracted with additional dichloromethane and the organic layers were combined and washed 

with brine. The organic layer was dried over sodium sulfate, concentrated, and purified through 

flash chromatography (silica gel, 10% methanol in dichloromethane with ammonium hydroxide) 

to afford 88 mg (50% yield) of 4, a white crystalline powder.  

 
Figure S3-7. 1H NMR of 4. 1H NMR spectra taken at 500 MHz in CDCl3. 
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Chapter 4 

Functional Analysis of Engineered P450s TylI-RhFRED  

and TylHI-RhFRED Involved in the Biosynthesis of Tylosin 
 

4.1 Introduction  

Cytochrome P450 monooxygenases (P450s or CYPs) are a family of hemeproteins that 

catalyze a wide range of oxidative transformations in all domains of life and are well-known for 

their roles in xenobiotic metabolism, human steroid metabolism, and the biosynthesis of 

antibiotics and signaling molecules.1,2 These remarkable enzymes are able to catalyze difficult 

synthetically relevant reactions on chemically distinct substrates with a high degree of regio- and 

stereoselectivity. Among the myriad reactions catalyzed by P450s are aliphatic and aromatic 

hydrocarbon hydroxylation; alkene and arene epoxidations; O-, N-, and S-dealkylation; oxidative 

amination, dehalogenation, and decarboxylation; dehydrogenation and dehydration; NO, N-

oxide, and epoxide reduction; reductive dehalogenation and denitration; and isomerization and 

ring formation, contraction, and expansion.3,4 Furthermore, recent bacterial genome sequencing 

efforts have revealed an unprecedented number of genes encoding for P450s. For example, the 

actinomycete Streptomyces coelicolor A3(2) that produces actinorhodin and undecylprodigiosin 

was found to have 18 distinct P450s genes, while Streptomyces avermitilis MA-4680, the 

avermectin producer, contains 33 P450s and Saccharopolyspora erythraea NRRL 23338, the 

erythromycin producer, encodes 36 P450s.5-7 
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Figure 4-1. Structures of erythromycin A and semisynthetic erythromycin analogs and the 
oxidation patterns of EryF (red) and EryK (blue). (A) Erythromycin A (B) Azithromycin and 
clarithromycin (C) Enzymatic oxidation catalyzed by EryF on 6-deoxyerythronolide B (D) Enzymatic 
oxidation catalyzed by EryK on erythromycin D.  

Many P450s have been implicated in secondary metabolic pathways to produce 

compounds such as macrolides, but only a relatively small number of them have been studied. 

These compounds are attractive secondary metabolites given their antibacterial, antifungal, anti-

inflammatory, antiparasitic, antitumor, and/or immunomodulatory activities. P450s catalyze late-

stage tailoring, often regio- and stereoselective oxidation that contributes to increased chemical 
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diversity and improved bioactivity. Erythromycin A, a macrolide antibiotic whose biosynthesis 

requires 2 P450s, EryK and EryF, is a commercially available bacteriostatic drug that selectively 

inhibits bacterial protein synthesis via reversible binding to the large ribosomal subunit (Fig. 4-

1A).8-10 Specifically, EryF hydroxylates the macrolactone precursor 6-deoxyerythronolide B 

whereas EryK is a macrolide hydroxylase resulting in the formation of erythromycin D (Fig. 4-

1C and Fig. 4-1D). As prototypic P450 hydroxylases, EryF and EryK exhibit strict substrate 

specificity, tolerating only minor changes in substrate structure.11 In contrast, the pikromycin 

P450, PikC, which is involved in the biosynthesis of methymycin/neomethymycin and 

pikromycin in Streptomyces venezuelae demonstrates broad substrate promiscuity (Fig. 4-2).12,13 

Related compounds to erythromycin are clarithromycin and azithromycin (Fig. 4-1B), which 

were developed as semisynthetic strategies to combat antibiotic resistance given their broad 

spectrum of efficacy and improved pharmacokinetic profiles. Nevertheless, given the difficulty 

of accessing similar macrolides, bacterial biosynthetic P450s represent another tool for the 

production of novel macrolides. 

 
Figure 4-2. Structures of pikromycin, methymycin, and neomethymycin with the sites of PikC 
hydroxylation highlighted in green. 

Tylosin is commercially produced by Streptomyces fradiae, but is also produced by 

Streptomyces rimosus and Streptomyces hygroscopicus.14-17 Tylosin is composed of a 16-

member branched lactone (tylonolide) and three sugars (mycarose, mycaminose, and mycinose) 

(Fig. 4-3) and that is related to a series of other natural products of juvenimicin and rosamicin.18-

23 Tylosin is currently used as a veterinary medication and as a feed supplement for farm animals 

due to its growth promoting qualities.24 The seminal studies that first located the tylosin-

biosynthetic gene cluster within the S. fradiae genome were conducted at Lilly Research 

Laboratories, Indianapolis and involved the purification and partial sequence analysis of the 

terminal enzyme of tylosin biosynthesis macrocin O-methyltransferase (MOMT) (data not 

published). Identification allowed for the synthesis of deoxyoligonucleotide probes designed to 

recognize the MOMT-encoding gene. The probes were used against a genomic S. fradiae DNA 
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library to identify the structural genes required for tylosin biosynthesis.25-27 Portions of the 

genome were subsequently sequenced by several research groups and gene functions were 

assigned through database comparisons, in vitro enzymatic analysis, complementation of 

mutants, and targeted gene disruptions.28-31 

 

 
Figure 4-3.The tylosin post-PKS biosynthetic pathway and organization of the tylosin biosynthetic 
gene cluster. Oxidation steps catalyzed by cytochrome P450 enzymes in the biosynthetic pathway are 
highlighted in red and blue. Color codes in the tyl gene cluster are as follows: red, cytochrome P450 
genes; purple, ferredoxin gene; blue, deoxysugar biosynthesis and incorporation genes; gray, polyketide 
synthetase genes; orange, polyketide editing gene; black, mixture of proposed reductases, oxidases, 
efflux, ancillary, transmethylation, regulatory, and unknown proteins.  
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Of particular medicinal interest is the C20 aldehyde moiety present in the mature natural 

product, tylosin. In spite of its rarity in natural products, the aldehyde functionality was 

demonstrated to be crucial to tylosin’s antibiotic activity. Crystallization studies revealed the 

presence of a definitive, but reversible covalent bond between the ethylaldehyde substituent at 

the C6 position of the macrolide and the target bacterial ribosome to form a carbinolamine.9 Loss 

of the aldehyde functionality resulted in 100-fold increased minimal inhibitory concentration 

(MIC) values over unmodified tylosin for a variety of Gram-positive bacteria.32-36 A related 16-

membered macrolide discovered in 1972 rosamicin also was discovered to contain an aldehyde, 

which is crucial to its bioactivity.37 Furthermore, the aldehyde functionality was predicted 

through fermentation of random Streptomyces fradiae mutants to be produced through the 

sequential action of a single bacterial P450.38,39 

Given the looming antibiotic crisis, there is an overwhelming need to identify new 

pathways towards developing novel macrolide antibiotics. With a thorough comprehension of the 

biosynthetic machinery that constructs antibiotics such as tylosin, we will be able to develop 

these enzymes as potential powerful biocatalysts for the production of novel macrolides. TylI and 

TylHI exemplify this idea as they are predicted to be oxidative enzymes in the tylosin 

biosynthetic pathway where tylI is predicted to act sequentially in the pathway to produce the 

final aldehyde functionality. TylI has a 71% sequence identity to a previously confirmed P450, 

RosC, from the rosamicin biosynthetic pathway that performed sequential oxidations to produce 

the aldehyde in the final natural product.29,37 Furthermore, TylHI has a 48% sequence identity to 

a P450 from the oleandomycin pathway, OleP, and a 55% identity with a P450 from the 

biosynthesis mycinamicin pathway, MycCI.40,41 In the current study, tylI and tylHI genes were 

overexpressed in Escherichia coli, and the functions of purified oxidative TylI and TylHI 

enzymes were determined through in vitro efforts. Putative substrates obtained from engineered 

strains of S. fradiae that accumulate key tylosin intermediates were employed to characterize the 

enzymes through biochemical and kinetic studies.  

 

4.2 Results and Discussion 

4.2.1 Protein Sequence Analysis of TylI and TylHI  

 Comparison of the deduced amino acid sequences of TylI and TylHI showed relatively 

low sequence identity (34%), suggesting separate evolutionary sources of the 2 P450s. 



 73 

Construction of a phylogenetic tree containing select bacterial macrolide P450s, TylI and TylHI 

were found in distinct branches, confirming the hypothesis that these 2 enzymes may have arisen 

from discrete ancestral genes as opposed to through divergent evolution from a single parental 

gene (Fig. 4-4). TylI clustered with EryK, responsible for hydroxylation of macrolactone 

erythromycin D, an intermediate of the erythromycin biosynthetic pathway, while TylHI 

clustered with MycCI and ChmHI, both reported to oxidize a methyl group on 16-membered 

macrolides. While the phylogenetic tree accurately predicted the functionality of the P450s 

(epoxidases vs. hydroxylases) and also correlated the correct substrate size with the acting P450, 

there was some inconsistency between the predicted site of action of TylI and the known site of 

EryK (methyl vs. macrolactone site). Nevertheless, the phylogenetic tree suggested that 

evolutionary selection of secondary metabolic P450s was largely based on product structure 

dictated by the upstream PKS biosynthetic machinery. 

 
Figure 4-4. Phylogenetic tree of select macrolide biosynthetic P450s. The particular P450s include 
MycCI and MycG (mycinamicin biosynthesis), ChmHI and ChmPI (chalcomycin biosynthesis), TylI and 
TylHI (tylosin biosynthesis), AmphN and AmphL (amphotericin biosynthesis), NysN and NysL (nystatin 
biosynthesis), PimG and PimD (pimaricin biosynthesis), OleP (oleandamycin biosynthesis), EryF and 
EryK (erythromycin biosynthesis), and PikC (pikromycin biosynthesis).  

 

4.2.2 Heterologous Expression of TylI- and TylHI-RhFRED 

The tylI-RhFRED and tylHI-RhFRED genes were overexpressed in E. coli BL21(DE3) 

and BL21(DE3) pRARE, respectively, and the resulting proteins were purified via affinity 

chromatography. After purification using Fast Protein Liquid Chromatography (FPLC) in 

conjunction with a nickel affinity chromatography column, the individual polypeptides showed 



 74 

molecular weights of approximately 80 kDa each, corresponding to the estimated masses of N-

terminal 6× His tagged TylI- and TylHI-RhFRED. Expression of both genes was placed under 

the control of a T7 promoter including a C-terminal His6 affinity tag. Both proteins were purified 

to homogeneity and CO-bound reduced difference spectra were obtained to confirm that both 

enzymes were P450s (Fig. S4-1). 

 

4.2.3 Functional Analysis of TylI-RhFRED In Vitro 

 
Figure 4-5. First tylI catalyzed reaction. In addition to TylI-RhFRED and the appropriate substrate, 
NADPH and the NADPH regeneration system of glucose-6-phosphate and glucose-6-phosphate 
dehydrogenase was used to oxidize 1 to its hydroxylated counterpart, 2. 

To establish the role of each tylosin P450, we exploited a previously used covalently 

attached redox partner derived from Rhodococcus sp. NCIMB 9784 found to be naturally fused 

to a novel FMN/Fe2S2 containing reductase partner (Fig. 4-5) attached to the P450, TylI.42-44 The 

N-terminal His6-tagged recombinant TylI-RhFRED was heterologously overexpressed and 

purified from E. coli to yield an orange-red enzyme solution that was characterized by 

ultraviolet-visible (UV-vis) spectroscopy using standard techniques.45 The enzyme solution 

displayed an absorbance peak at 420 nm, with a peak at 450 nm emerging after reduction using 

sodium dithionite and bubbling of gaseous CO through the solution.  

We first tested whether TylI was capable of hydroxylation the predicted substrate 1 at the 

C20 position. The recombinant enzyme, TylI-RhFRED, was co-incubated with the putative 

substrate 1 in reaction buffer, the NADPH regeneration system of glucose-6-phosphate and 

glucose-6-phosphate dehydrogenase, and NADPH overnight. Liquid chromatography-mass 

spectrometry quadrupole time-of-flight (LC-MS Q-TOF) analysis of the reaction supernatant 

demonstrated the successful conversion of 1 to a single monohydroxylated product in a greater 

than 90% yield. Through preparative-scale enzymatic reactions, 2 was enzymatically prepared 

and was subsequently purified via reverse-phase high-pressure liquid chromatography (RP-
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HPLC). Rigorous 1- and 2-dimensional nuclear magnetic resonance (NMR) spectroscopy 

confirmed the identity of 2 as the C20 hydroxylated counterpart of 1, confirming the 

hypothesized first reaction catalyzed by TylI (Fig. 4-5).  

Notably, TylI used in conjunction with the commercially available heterologous spinach 

ferredoxin and ferredoxin reductase system also demonstrated a comparable product profile as 

the chimeric TylI-RhFRED (data not shown). Nevertheless, the overall conversion was 

compromised when utilizing the spinach system presumably due to a lower effective 

concentration of P450 in relation to redox partner than the covalently attached P450-RhFRED 

system. Additionally, TylI-RhFRED was tested against the putative substrate of TylHI-RhFRED 

(4) to simultaneously elucidate the proposed biosynthetic order of TylI and TylHI and to 

simultaneously probe the enzyme’s inherent substrate promiscuity. However, analysis of the 

reaction mixture following extraction of an overnight reaction between the chimera and 4 

revealed unsuccessful oxidation of this compound and starting material was quantitatively 

recovered.  

 

 
Figure 4-6. Second tylI catalyzed reaction. In addition to TylI-RhFRED and the appropriate substrate, 
NADPH and the NADPH regeneration system of glucose-6-phosphate and glucose-6-phosphate 
dehydrogenase was used to oxidize 2 to its hydroxylated counterpart 3. 

As a preliminary experiment to determine whether the aldehyde found in 3 could be 

produced by TylI, a small-scale enzymatic reaction was prepared using 1 as the substrate. 

Following an overnight incubation using NADPH and the NADPH regeneration system, the 

reaction mixture was extracted to remove contaminating protein and salt, and the organic layer 

was dried under nitrogen to obtain a mixture of compounds 1 and 2. The mixture was then co-

incubated with fresh TylI-RhFRED enzyme to test if TylI could accept 2 to install the C20 

aldehyde moiety found in the fully matured natural product. After an overnight incubation, there 

was the emergence of a small additional peak according to the LC-MS Q-TOF data consistent 
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with production of the aldehyde-containing product 3 (data not shown) in a 2% yield.  Given the 

poor yield, structural elucidation of 3 and biochemical characterization could not be performed 

and substrate dissociation constants could not be determined.  

The poor yield of this second TylI reaction was attributed to the nonnative nature of 

compounds 1 and 2 as substrates for TylI as neither 1 nor 2 were proposed to be the endogenous 

substrates for TylI in the hypothesized biosynthetic pathway. Comparison of the structure of 1 to 

the proper initial biosynthetic intermediate that served to be TylI’s first substrate demonstrated 

that the endogenous substrate lacked the additional hydroxyl group at C23. The presence of this 

additional functionality could have exacerbated TylI’s preference against 2 through suboptimal 

substrate binding and orientation. Alternatively, the poor conversion could also have been 

attributed the presence of an undiscovered P450 that is responsible for the aldehyde installation.  

 

4.2.4 Functional Analysis of TylHI-RhFRED In Vitro 

 

 
Figure 4-7. Hypothesized reaction catalyzed by tylHI. In addition to TylHI-RhFRED and the 
appropriate substrate, NADPH and the NADPH regeneration system of glucose-6-phosphate and glucose-
6-phosphate dehydrogenase were used to oxidize 4 to its hydroxylated counterpart 5. 

As in the case of TylI, we utilized a previously used covalently attached redox partner 

derived from Rhodococcus sp. NCIMB 9784 (Fig. 4-7) attached to TylHI for in vitro reactions.42-

44 The N-terminal His6-tagged recombinant TylHI-RhFRED was heterologously overexpressed 

and purified from E. coli to yield an orange-red enzyme solution that was characterized by UV-

vis spectroscopy using standard techniques.45 The enzyme solution displayed an absorbance peak 

at 420 nm, with a peak at 450 nm emerging after reduction using sodium dithionite and bubbling 

gaseous CO through the solution.  

We first tested whether TylHI was capable of hydroxylating the predicted substrate 4. To 

confirm the oxidative capabilities of TylHI, the chimera TylHI-RhFRED was incubated with 4 in 
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the presence of NADPH in protein storage buffer and the NADPH regeneration system. After an 

overnight reaction at 30°C, a greater than 80% yield of a single monohydroxylated product was 

observed with a single dose of enzyme using LC-MS Q-TOF.  

Notably, TylHI-RhFRED was unsuccessful at oxidizing 1 and 2, allowing for the 

compounds to be recovered in quantitative yield. These results highlighted the ability of the P450 

to differentiate between potential substrates, which is extremely important given the potential 

substrate pool available in vivo.   

 

4.2.5 Measurement of Substrate Dissociation Constants  

 To understand how the tylosin P450 enzymes differentiated between potential substrates 

with subtle structural differences, we performed spectrophotometric substrate binding studies to 

determine dissociation constants (Kd) of the putative P450 substrates. As shown in Table __, 1 

bound to TylI-RhFRED with a Kd of 482 ± 88 µM , suggesting a modest binding ability of the 

substrate to the active site. This was unsurprising given the proposed biosynthetic pathway that 

hypothesized that the native TylI substrate was unoxidized at C23. Nevertheless, the binding and 

conversion observed underscored TylI’s impressive capabilities and suggested an underlying 

substrate promiscuity not often seen in similar bacterial biosynthetic P450s.  

Compound 4 bound to TylHI-RhFRED with a Kd  of 122 ± 15 µM, suggesting moderately 

tight binding of the substrate in the enzymatic chimera. This was in agreement with the relatively 

high conversion observed in an overnight incubation of the enzyme with the substrate. 

Simultaneously, substrate binding data for 4 with TylI-RhFRED could not be fitted to the 

Michaelis-Menten equation, suggesting negligible binding of the compound to the TylI-RhFRED 

active site. This was in agreement with no conversion being observed upon TylI-RhFRED 

incubation with the hypothesized substrate for TylHI.  

 

4.2.6 Steady-State Kinetic Analysis of TylI- and TylHI-RhFRED  

 Assuming a 1:1 stoichiometric relationship between NADPH consumption and substrate 

oxidation, the steady-state kinetic parameters for both TylI- and TylHI-RhFRED were 

determined using purified 1 and 4, respectively. In conjunction with the exogenous redox partner 

RhFRED, TylI demonstrated a Km of 37.8 ± 12.3 µM and kcat  of 20.9 ± 1.7 min-1 for C20 methyl 

group hydroxylation.  
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 Following the complete kinetic analyses of TylI-RhFRED with both compounds 1 and 2, 

the steady-state kinetic parameters were determined for TylHI-RhFRED using purified 

compound 4. Under the same stoichiometric relationship between NADPH consumption and 

substrate oxidation as previously used, the Km was determined to be 152 ± 87 µM and the kcat 

was found to be 5.55 ± 1.54 min-1 for the C23 hydroxylation of the methyl group. 

 

Enzyme Substrate Kd (µM) Km (µM) kcat (min-1) kcat/Km (µM-1 min-1) 
TylI-RhFRED 1 482 ± 88 37.8 ± 12.3 20.9 ± 1.7 0.553 ± 0.135 

TylHI-RhFRED 4 122 ± 15 152 ± 87 5.55 ± 1.54 0.0365 ± 0.0177 
 

Table 4-1. Binding and steady-state kinetic analyses of TylI- and TylHI-RhFRED.  

 

4.3 Conclusion 

 Tylosin is a veterinary 16-membered macrolide antibiotic isolated from fermentation of 

Streptomyces fradiae and sold by Eli Lilly and Company. The majority of structural diversity is 

derived from post-PKS tailoring modifications achieved through a series of glycosylation, 

oxidation, and methylation reactions. Therefore, this biosynthetic pathway offers an invaluable 

system to explore the mechanism and significance of secondary metabolite diversification.  

 In the current study, we provide a detailed study of 2 P450s derived from the tylosin 

pathway, TylI and TylHI, and their indispensible participation in late-stage tailoring 

modifications. Through gene cloning, protein expression, purification, and in vitro enzymatic 

reactions with a foreign covalently attached redox partner, we unambiguously determined their 

physiological roles as hydroxylases of the C20 and C23 positions of tylosin biosynthetic 

intermediates. The use of RhFRED, an exogenous reductase derived from a Rhodococcus 

species, served as a highly efficient redox partner for the electron transfer from NADPH required 

for enzymatic activity. Furthermore, the hypothesized biosynthetic order of two reactions 

catalyzed by TylI followed by a hydroxylation catalyzed by TylHI was confirmed through in 

vitro enzymatic reactions against putative substrates. Previous crystallographic data obtained 

from PikC and its natural substrates (YC-17 and narbomycin) highlighted the role of a sugar, 

desosamine, to act as a substrate anchor, responsible for facilitating productive binding and 

proper positioning of substrate within the enzyme active site. Therefore, we surmise that 

mycaminose plays a similar role to mediate hydroxylation by TylHI and TylI, respectively.  
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 The current study demonstrated that TylI is potentially a more flexible enzyme than 

TylHI, providing an example of a unique biosynthetic P450 able to catalyze sequential 

oxidations to ultimately install an aldehyde found in the mature natural product through a 

hydroxyl intermediate. This work also demonstrated that TylI activity depended on the presence 

of mycaminose given the lack of binding and subsequent oxidation of the macrolactone, 

tylactone. Although we cannot determine the precise interactions that take place between the 

TylI substrate and the active site residues without structural information from either through X-

ray crystallography or NMR, the high binding affinity of 1 with TylI indicated that there is a 

specific active site-binding pocket in the polypeptide to accommodate mycaminose to improve 

substrate affinity. Evidently, the second oxidation step seems to impart a pronounced effect upon 

the TylHI oxidation of 3, enabling it to be accepted by the second P450. 

 TylHI was confirmed to be a C23 hydroxylase that acted prior to attachment of 

mycaminose through the action of tylD and tylJ. From genomic sequencing work, there was a 

potential P450 redox partner identified as TylHI, which was found to have a highly similar 

sequence to an identified redox partner from the mycinamicin pathway, MycCII. Therefore, the 

activity observed using RhFRED could be substantially improved upon if the endogenous redox 

partner was utilized. However, while cloning of TylHII was successful, protein overexpression 

was subsequently unsuccessful and may require additional exploratory efforts. 

 Bacterial biosynthetic P450s such as TylI and TylHI offer a unique source of potential 

biocatalysts given the propensity for expeditious cloning, over-expression in E. coli, and rapid 

purification. With a thorough comprehension of the binding and catalytic properties of P450s, 

these enzymes have been pushed another step towards practical application. Given the unusual 

sequential reactions catalyzed by TylI, this enzyme is unique suited for further development 

through rational or random mutagenesis and directed evolution efforts to expand its substrate 

scope. Through understanding the rules that govern productive substrate binding and conversion 

of biosynthetic intermediates, we gain a foothold towards understanding P450-mediated selective 

C-H bond activation for the diversification of natural products that can be applied towards 

biocatalyst development for the production of pharmaceuticals and fine chemicals. 
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4.4 Experimental Procedures 
Materials 

Unless otherwise specified, all chemical reagents were ordered from Sigma-Aldrich. Protein 

purification used QIAGEN (Valencia, CA) Ni-NTA resin, HiTrap Chelating columns from GE 

Healthcare (Piscataway, NJ), Millipore (Billerica, MA) Amicon Ultra centrifugal filter, and PD-

10 desalting columns from GE Healthcare (Piscataway, NJ). LB broth and TB broth components 

were purchased from EMD Sciences (Gibbstown, NJ). Preparative-scale enzymatic reactions 

utilized SPE reservoirs, frits, and caps from Sigma-Aldrich. All tylosin-like compounds were 

obtained from the fermentation broth of S. fradiae GS-77 and GS-76 from Eli Lilly and 

Company (Indianopolis, IN).  

 

Protein Overexpression and Purification 

TylI- and TylHI-RhFRED overexpression and purification followed previous procedures with 

minor modifications.12,42 For TylI-RhFRED, E. coli BL21(DE3) transformants carrying pET28b-

tylI-RhFRED were grown at 37°C in 1L of TB broth containing thiamine (1 mM), 20% glycerol, 

50 µg/ml kanamycin, and a rare salt solution (6750 µg/L FeCl3, 500 µg/L ZnCl2, CoCl2, 

Na2MoO4, 250 µg/L CaCl2, 465 µg/L CuSO4, and 125 µg/L H3BO3) until OD600 reached 0.6-1.0. 

Then isopropyl β-D-thiogalactoside (IPTG, 0.1 mM) and δ-aminolevulinic acid (1 mM) were 

added, and the cells were cultured at 18°C overnight. For TylHI-RhFRED, E. coli BL21(DE3) 

pRARE transformants carrying pET28b-tylHI-RhFRED was grown at 37°C in 1L of TB broth 

containing thiamine (1 mM), 20% glycerol, 50 µg/ml kanamycin, and a rare salt solution (6750 

µg/L FeCl3, 500 µg/L ZnCl2, CoCl2, Na2MoO4, 250 µg/L CaCl2, 465 µg/L CuSO4, and 125 µg/L 

H3BO3) until OD600 reached 0.6-1.0. Then isopropyl β-D-thiogalactoside (IPTG, 0.1 mM) and δ-

aminolevulinic acid (1 mM) were added, and the cells were cultured at 15°C overnight.  After 

harvesting the cells by centrifugation, 35 mL of lysis buffer (50 mM NaH2PO4 pH 8.0, 300 mM 

NaCl, 10% glycerol, and 10 mM imidazole) was used to resuspend the cell pellet. Lysis was 

accomplished on a Model 500 Sonic Dismembrator (ThermoFischer Scientific). The insoluble 

cell debris was separated by centrifugation (35,000 × g, 30 min at 4°C). The soluble fraction was 

collected and flowed over a HiTrap Chelating HP column using a ÄKTAFPLC instrument from 

GE Healthcare Life Sciences. The protein was eluted over a linear gradient of 10 – 500 mM 

imidazole (50 mM NaH2PO4 pH 8.0, 300 mM NaCl, and 10% glycerol). The eluted protein 
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fractions were concentrated with an Amicon Ultra 4, Ultracel – 30K. Subsequent desalting was 

attained by buffer exchange using a PD-10 column into storage buffer (50 mM NaH2PO4 pH 7.3, 

1 mM EDTA, 0.2 mM dithioerythritol, and 10% glycerol). 

 

CO-Bound Reduced Difference Spectra 

The confirmation of TylI-RhFRED and TylHI-RhFRED as active P450 enzymes was performed 

through obtaining the CO-bound reduced difference spectra using a UV-visible 

spectrophotometer (SpectraMax M5, Molecular Devices). CO was bubbled through a solution of 

enzyme in storage buffer for approximately 30 sec. The spectra was recorded from 350 – 550 nm 

and compared to the spectra of the enzyme again in storage buffer reduced by adding several 

milligrams of sodium dithionite (Na2S2O4). The identical assay was used for functional P450 

concentration using the extinction coefficient of 91,000 M-1 cm-1.45 

 

Functional Analysis of In Vitro Activities of TylI- and TylHI-RHFRED 

The standard conversion was done by adding 5 µM of desalted protein, whose functional 

concentration was determined by the UV-visible absorption spectrum method, 0.5 mM putative 

substrate, 0.5 mM NADPH in a total volume of 100 µL of desalting buffer. The reaction lacking 

protein was used as a negative control. The reaction proceeded for 3 h at 30°C and was 

terminated by extraction using 3 × 200 µL of CHCl3. The organic layer was dried under nitrogen 

and redissolved in 100 µL methanol. The LC-MS analysis of reaction extract was performed on 

an Agilent Q-TOF HPLC-MS using an XBridgeTM C18 3.5 µm 150 mm reverse-phase HPLC 

column under the following conditions: mobile phase, 10-100% solvent B over 15 min (A = 

deionized water + 0.1% formic acid, B = acetonitrile + 0.1% formic acid); flow rate: 0.2 

mL/min; UV wavelength: 254 and 280 nm.  

 

Spectral Substrate Binding Assay 

Spectra substrate binding assays were performed on UV-visible spectrophotometer (SpectraMax 

M5, Molecular Devices) at room temperature by titrating a DMSO solution of the substrate into a 

total volume of 1 mL of 1 µM P450 solution in 0.5 µL aliquots. A DMSO only sample was used 

as a reference. The series of Type I difference spectra was used to deduce ΔA (ΔApeak - ΔAtrough). 
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Data from duplicated experiments were fit to the Michaelis-Menten or Hill equation to obtain the 

dissociation constant, Kd. 

 

Substrate Purification from Fermentation of S. fradiae GS-77 and GS-76 

Given the difficulty of synthesizing putative substrates for both TylI- and TylHI-RhFRED, 

proposed substrates were isolated from the fermentation broths of two S. fradiae mutants 

generously provided by Eli Lilly and Company.38 Glycerol stocks of GS-77 and GS-76 were 

streaked out on tryptic soy agar (TSA) to revive the organism and colonies were inoculated in 

tryptic soy broth (TSB) in preparation for fermentation. After five days of growth, 1L of 

fermentation media (2% dextrose, 1.5% corn meal, 0.9% fish meal, 0.9% corn gluten, 0.1% 

NaCl, 0.04% (NH4)2HPO4, 0.2% CaCO3, 3% crude soybean oil) was inoculated with the seed 

culture and allowed to proceed for an additional five days. The broth was harvested through 

centrifugation and extracted using ethyl acetate. The organic layers were combined and dried in 

vacuo. After resuspension in methanol, the crude extract was purified using reverse-phase high-

performance liquid chromatography (RP-HPLC) to obtain the proposed substrates. Consecutive 

XBridgeTM Prep C18 5 µm OBDTM 19×150 mm and XBridgeTM Prep C18 5 µm 10×250 mm 

columns were used under the following conditions: mobile phase, 10-100% solvent B over 15 

min (A = deionized water + 0.1% trifluoroacetic acid, B = acetonitrile + 0.1% trifluoroacetic 

acid); flow rate: 3.5 mL/min; UV wavelength: 254 and 280 nm. 

 

Steady-State Kinetics of TylI- and TylHI-RhFRED 

The standard reaction conditions contained 0.2 µM of TylI- or TylHI-RhFRED, 10-500 µM 

substrate, and 250 µM NADPH in storage buffer. After preincubation at 30°C for 5 min, the 

reactions with varying substrate concentrations were initiated by adding 5 µL of 50 mM NADPH 

and removing aliquots at 0, 1, 2, and 3 min for substrate concentrations below 100 µM; 0, 1, 2, 

and 5 min between 100-120 µM; 0, 1, 5, and 10 min for 200 µM; 0, 5, 10, and 20 min for 300 

µM; and 0, 5, 10, and 30 min for 500 µM. The rate of product formation was monitored via 

Agilent Q-TOF HPLC-MS. The initial velocities of product formation were deduced from the 

absorbance curves within the linear range. The results from duplicated experiments were fit to 

Michaelis-Menten equation to obtain steady-state kinetic parameters.  
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Preparative-scale Enzymatic Reactions 

Preparative-scale enzymatic reactions were conducted in SPE reservoirs with fitted frits and caps 

in a total volume of 5 mL of protein storage buffer with 5 µM enzyme, 250 µM NADPH, 500 

µM substrate, 5 mM glucose-6-phosphate, and 12.4 U glucose-6-phosphate dehydrogenase. After 

enzymatic oxidation, the reactions were quenched by adding approximately twice the volume of 

LC-MS grade ethyl acetate and extracted thrice. The organic layer was dried in vacuo and the 

oxidation product was purified by RP-HPLC using a XBridgeTM Prep C18 5 µm 10×250 mm 

column under the following conditions: mobile phase, 10-100% solvent B over 15 min (A = 

deionized water + 0.1% trifluoroacetic acid, B = acetonitrile + 0.1% trifluoroacetic acid); flow 

rate: 3.5 mL/min; UV wavelength: 254 and 280 nm. 
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4.5 Supplementary Information 
 

Culture maintenance and fermentation. Streptomyces fradiae GS-76 and GS-77 generously 

provided by Eli Lilly and Company were maintained on tryptic soy agar (TSA) plates and as 

glycerol stocks at -80°C. All culture incubations were at 30°C, and with shaking at 160 rpm for 

liquid cultures. Seed cultures were 50 mL of tryptic soy broth (TSB) inoculated with a loopful of 

vegetative cells from plate cultures. Fermentation cultures were shake flasks of 2% dextrose, 

1.5% corn meal, 0.9% fish meal, 0.15 sodium chloride, 0.04% ammonium phosphate, 0.2% 

calcium carbonate, and 3% crude soybean oil and seeded with a 1% inoculum of TSB culture 

and grown for 5 – 7 days. 

 

Cloning and preparation of recombinant enzymes. The tylI and tylHI genes were PCR 

amplified from Streptomyces fradiae C373.10 genomic DNA using primers that append NdeI 

and EcoRI sites at the 5’- and 3’-termini, respectively, with the stop codon removed. These PCR 

products were digested with NdeI/EcoRI and ligated into pET28b-pikC-RhFRED to replace the 

pikC gene previously reported.42  The identities of all constructs were verified by DNA Sanger 

sequencing (University of Michigan DNA Sequencing Core). The confirmed constructs were 

transformed into E. coli BL21(DE3) for pET28b-tylI-RhFRED and BL21(DE3) pRARE for 

pET28b-tylHI-RhFRED overexpression hosts and the resulting proteins were purified using 

nickel affinity chromatography as described below.  

 

Overexpression and purification of TylI-RhFRED and TylHI-RhFRED recombinant 

protein. The construct pET28b-tylI-RhFRED and pET28b-tylHI-RhFRED were used to 

transform E. coli BL21(DE3) and BL21(DE3) pRARE, respectively, for protein overexpression. 

The resulting transformant for pET28b-tylI-RhFRED was grown at 37°C in 1 L of TB broth 

containing thiamine (1 mM), 4% glycerol, and 50 µg/mL kanamycin until OD600 reached 0.6-1.0. 

Then isopropyl β-D-thiogalactoside (IPTG, 0.1 mM) and δ-aminolevulinic acid (1 mM) were 

added, and the cells were cultured at 18°C overnight. For pET28b-tylHI-RhFRED, the resulting 

transformant was grown at 37°C in 1 L of TB broth containing thiamine (1 mM), 4% glycerol, 

50 µg/mL spectinomycin, and 50 µg/mL kanamycin until OD600 reached 0.6-1.0. Then isopropyl 

β-D-thiogalactoside (IPTG, 0.1 mM) and δ-aminolevulinic acid (1 mM) were added, and the cells 
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were cultured at 15°C overnight. After harvesting the cells by centrifugation (5000 x g, 30 min), 

the cell pellets were thoroughly resuspended in 35 mL of lysis buffer (50 mM NaH2PO4, pH 8.0, 

300 mM NaCl, 10 mM imidazole, 10% glycerol). Lysis was achieved on a Model 500 Sonic 

Dismembrator (ThermoFisher Scientific). The cell lysate was clarified by centrifugation (37,000 

x g, 30 min at 4°C). The soluble fraction was collected and passed over a HiTrap Chelating 5 mL 

column pre-charged with 0.1 M NiSO4 (GE Healthcare). The column was washed with 50 mL of 

lysis buffer and the proteins were eluted over a linear imidazole gradient from 10 mM to 500 

mM over 50 mL. The eluted protein fractions were combined and concentrated with a Amicon 

Ultra 4, Ultracel – 50K. Desalting was achieved by buffer exchange into storage buffer (50 mM 

NaH2PO4, pH 7.3, 1 mM EDTA, 0.2 mM dithioerythritol, 10% glycerol) with a PD-10 column 

(GE Healthcare). 

A.       B.  

C.      D.  

Figure S4-1. Purification of TylI- and TylHI-RhFRED. (A) SDS-PAGE gel of purified TylI-RhFRED; 
(B) SDS-PAGE gel purified TylHI-RhFRED; (C) FPLC gel filtration trace confirming dimerization of 
TylI-RhFRED in solution; (D) FPLC gel filtration trace confirming dimerization of TylHI-RhFRED in 
solution. 
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CO-bound reduced difference spectra of TylI-RhFRED and TylHI-RhFRED. Both TylI-

RhFRED and TylHI-RhFRED were identified as functional P450s by obtaining the CO-bound 

reduced difference spectra using a UV-visible spectrophotometer. Both P450s were reduced by 

adding several milligrams of sodium dithionite (Na2S2O4) and recording the subsequent spectra 

from 350 to 550 nm. After CO bubbling of the solution for 30 s, the spectrum of CO-bound 

reduced P450 species was recorded using the previous reduced spectrum as reference. This assay 

was also utilized to determine the functional P450 concentration using the extinction coefficient 

of 91,000 M-1 cm-1.45  

 
Figure S4-2. CO-bound reduced difference spectra. (A) TylI-RhFRED (B) TylHI-RhFRED. 
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A.  

B.  

Figure S4-3. Representative LC-MS Q-TOF traces of TylI-RhFRED and TylHI-RhFRED 
enzymatic reactions. (A) TylI-RhFRED reaction with 1. LC-MS QTOF trace of an overnight TylI-
RhFRED reaction with 1 in the presence of NADPH and the NADPH regeneration system of glucose-6-
phosphate and glucose-6-phosphate dehydrogenase. (B) TylHI-RhFRED reaction with 4. LC-MS QTOF 
trace of an overnight TylHI-RhFRED reaction with 4 in the presence of NADPH and the NADPH 
regeneration system of glucose-6-phosphate and glucose-6-phosphate dehydrogenase. 
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Figure S4-4. Biochemical characterization of TylI-RhFRED. 5 µM TylI-RhFRED was incubated with 
500 µM 1 in the presence of NADPH with aliquots removed for analysis by LC-MS QTOF at 
predetermined time points.  

 
Figure S4-5. Biochemical characterization of TylHI-RhFRED. 5 µM TylHI-RhFRED was incubated 
with 500 µM 4 in the presence of NADPH with aliquots removed for analysis by LC-MS QTOF at 
predetermined time points. 
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 Predicted Observed 

Position 13C 1H 13C 1H 

1 172.8 - 173.5 - 

2 39.7 2.25, 2.50 (dd) 39.8 2.52 

3 70.1 4.03 (ddd) 70.5 4.26 (ddd) 

4 43.6 1.60 (m) 44.3 1.59 

5 85.6 2.90 (dd) 76.8 2.84 

6 41.4 1.40 (m) 46.6 1.43 

7 33.1 1.39, 1.14 31.7 1.40 

8 40.7 2.36 (m) 33.3 2.45 

9 201.8 - 205.6 - 

10 119.5 6.33 (d) 120.3 6.44 (dd) 

11 147.8 7.40 (d)  148.2 7.26 (dd) 

12 134.9 - 135.2 - 

13 142.5 5.44 (dd/m) 142.8 5.91 (dd) 

14 47.0 2.67 (m)  47.0 2.62 

15 75.2 4.50 (m) 74.9 4.94 (m) 

16 25.2 1.55 (m) 24.8 1.55 

17 10.4 0.89 (t)  11.1 0.89 

18 8.9 1.24 (d) 8.63 1.24 

19 25.5 1.55 (m) 29.3 1.57 

20 12.2 0.99 (m) 11.8 1.00 

21 15.7 1.09 (t) 15.9 1.09 

22 12.9 1.71 (s) 13.0 1.72 

23 62.3 3.38, 3.63 (dd) 61.1 3.39, 3.36 (dd) 

1’ 110.6 5.40 (d) 103.6 5.11 

2’ 71.1 3.77 (m) 71.0 3.75 

3’ 79.5 2.73 (dd) 79.0 2.59 

4’ 68.2 4.09 (dd) 70.1 3.66 

5’ 75.8 3.77 (m) 72.7 3.73 

6’ 16.7 1.26 (d) 16.6 1.27 

7’ 42.6 2.35 (s) 40.8 3.14 (s)  

8’ 42.6 2.35 (s) 40.8 3.16 (s) 

 

Table S4-1. 13C and 1H NMR chemical shift tabulation for compound 1. 
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 Predicted Observed 

Position 13C 1H 13C 1H 

1 173.01 - 162.7 - 

2 41.55 2.25, 2.50 (dd)   

3 66.17 4.03 (ddd) 64.33  

4 41.72 1.60 (m)  1.60 (m) 

5 84.8 2.90 (dd) 74.3 4.09 (dd) 

6 40.38 1.40 (m)  1.18  

7 30.38 1.39, 1.14 30.4 1.22 

8 40.06 2.36 (m) 33.0 2.66 

9 204.06 - 203.2 - 

10 124.57 6.33 (d) 119.1  

11 140.46 7.40 (d)  149.6  

12 137.62 - 128.5 - 

13 138.72 5.44 (dd/m) 120.7  

14 49.4 2.67 (m)   2.87 (m) 

15 78.25 4.50 (m) 73.8 3.85 (m) 

16 24.32 1.55 (m) 23.7 1.33 (m) 

17 10.17 0.99 (t)  9.58 0.90 (t) 

18 10.24 1.24 (d) 10.05 1.24 (d) 

19 36.38 1.40 (m) 33.01 1.74 (m) 

20 60.94 3.73 (m) 64.41  3.67 (m) 

21 15.70 1.09 (t)   

22 14.68 1.71 (s) 14.4 1.87 (s) 

23 60.82 3.38, 3.63 (dd) 64.39 3.47, 3.61 (dd) 

1’ 101.98 5.40 (d) 115.7  5.10  

2’ 68.69 3.77 (m) 67.01 3.74 (m) 

3’ 78.98 2.73 (dd) 74.5 2.56 (dd) 

4’ 71.15 4.09 (dd) 67.1 3.65 (m) 

5’ 71.15 3.77 (m) 67.1  3.55 (m) 

6’ 17.16 1.26 (d) 17.6 1.22 (d) 

7’ 41.91 2.35 (s) 41.8 3.01 (s) 

8’ 41.91 2.35 (s) 41.8  3.01 (s) 

 

Table S4-2. 13C and 1H NMR chemical shift tabulation for compound 2. 
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 Predicted Observed 

Position 13C 1H 13C 1H 

1 172.8 - 175.2 - 

2 39.7 2.25, 2.50 (dd) 37.8 2.26, 2.51 (dd) 

3 70.1 4.03 (ddd) 70.3 4.06 

4 43.3 1.60 (m) 44.9 1.59 (m) 

5 85.7 2.90 (dd) 77.0 2.83 

6 32.8 1.72 (m) 29.7 1.41 

7 32.9 1.39, 1.14 31.9 1.34 

8 40.4 2.36 (m) 39.4 2.61 

9 201.8 - 203.2 - 

10 119.5 6.33 (d) 120.3 6.60 (dd) 

11 147.8 7.40 (d)  148.2 7.62 (dd) 

12 134.9 - 133.4 - 

13 142.5 5.44 (dd/m) 146.0 5.99 (dd) 

14 42.3 2.77 (m)  43.8  

15 81.4 4.50 (m) 79.0 4.61 

16 24.9 1.55 (m) 24.8 1.56 

17 10.4 0.89 (t)  9.65 0.41 

18 8.90 0.88 (d) 8.91 1.27 (d)  

19 43.1 2.44, 2.19 (m) 38.8 1.48 

20 202.2 9.72 (m) 202.9 3.98 

21 15.7 1.09 (t) 14.1  

22 12.9 2.12 (s) 12.9 1.82 (s) 

23 16.2 0.86 16.2  

1’ 110.6 5.40 (d) 100.4 5.11 

2’ 71.1 3.77 (m) 70.8 3.74 (m) 

3’ 79.5 2.73 (dd) 78.9 2.51 (dd) 

4’ 68.2 4.09 (dd) 70.5 3.64 (m) 

5’ 76.8 3.77 (m) 77.0 3.38 

6’ 16.7 1.26 (d) 17.5 1.22 (d) 

7’ 42.6 2.35 (s) 41.7 2.97 (s) 

8’ 42.6 2.35 (s) 41.7 2.97 (s) 

 
Table S4-3. 13C and 1H NMR chemical shift tabulation for compound 4. 
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 Predicted Observed 

Position 13C 1H 13C 1H 

1 172.8 - 172.8 - 

2 39.7 2.25, 2.50 (dd) 34.8 2.17, 2.73 

3 70.1 4.03 (ddd) 64.0 3.54 

4 43.3 1.60 (m) 38.8 1.72 

5 85.7 2.90 (dd) 78.1 2.70 

6 32.8 1.72 (m) 30.4 1.65 

7 32.9 1.39, 1.14 28.1 1.21, 1.45 

8 40.4 2.36 (m) 34.6 2.15 

9 201.8 - 205.9 - 

10 119.5 6.33 (d) 128.3 6.08 

11 147.8 7.40 (d)  143.6 7.54 

12 134.9 - 130.8 - 

13 142.5 5.44 (dd/m) 139.1 5.37 

14 47.0 2.67 (m)  42.2 2.35 

15 75.2 4.50 (m) 73.5  

16 25.2 1.55 (m) 26.4 1.50 

17 10.4 0.89 (t)  14.4 0.95 

18 8.90 0.88 (d) 17.6 1.03 

19 43.1 2.44, 2.19 (m) 42.1 1.78, 2.11 

20 202.2 9.72 (m) 201.5 9.49 

21 15.7 1.09 (t) 19.1 1.52 

22 12.9 2.12 (s) 18.1 1.95 

23 62.3 2.36, 3.38 64.4 3.43, 3.81 

1’ 110.6 5.40 (d) 101.3 5.21 

2’ 71.1 3.85 (m) 66.7 3.56 

3’ 79.5 2.73 (dd) 73.8 2.75 

4’ 68.2 3.55 (dd) 71.1 4.05 

5’ 76.8 3.70 (m) 69.1 3.78 

6’ 16.7 1.11 (d) 23.2 1.26 

7’ 42.6 2.26 (s) 42.1 3.11 

8’ 42.6 2.26 (s) 42.1 3.11 

 
Table S4-4. 13C and 1H NMR chemical shift tabulation for compound 5. 
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Chapter 5 

Future Work  
 

 In this Ph.D. dissertational study, I have focused on the investigation of cytochrome P450 

monoooxygenases as potential biocatalysts for the production of high value pharmaceuticals. 

First in collaboration with Dr. Larissa M. Podust (University of California, San Francisco) and 

Dr. John Montgomery (University of Michigan), a substrate-engineering approach elaborated on 

a previously developed desosamine anchoring hypothesis with PikC, revealing unprecendented 

flexibility. This has driven PikC towards serving as a model for studying the fundamental factors 

that influence P450-mediated oxidation, such as substrate binding, orientation, and product 

formation using an engineered chimeric P450, PikCD50N-RhFRED. The results provided 

significant insight into the parameters that control P450 oxidation culminating in the 

development of an optimized linear acyclic linker that efficiently replaced the natively used 

sugar anchor. These advancements eliminated labor-intensive synthetic steps to acquire and 

attach the sugar to potential substrates, opening to the door to chemoenzymatic elaboration.  

To further expand PikCD50N-RhFRED research, the chimeric enzyme was employed to 

selectively oxidize several structurally distinct scaffolds with pharmaceutical implications. These 

compounds included the veterinary drug tiamulin and the anti-cancer agents tamoxifen and 

toremifene all known to undergo extensive P450-mediated metabolism in vivo. These results 

underscored PikC’s flexibility and potential as a biocatalyst, as it can accept very different 

molecules for oxidation as long as a terminal N,N-dimethylamino linker is attached. More 

importantly, however, was the tangible possibility of using bacterial biosynthetic enzymes such 

as PikC to increase the number of analogs of the scaffold.  

Finally, two P450s from the tylosin biosynthetic pathway were functionally characterized 

to confirm their identities and determine their biosynthetic order. TylI-RhFRED was especially 

interesting given its ability to perform sequential oxidations to form an aldehyde crucial to 
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tylosin’s bioactivity. However, this study also leaves a number of unanswered questions for 

future exploration of these unique P450s. 

First, the presence of desosamine or desosamine analogs in diverse secondary metabolite 

substrates of different biosynthetic P450s suggests that a general sugar anchoring mechanism 

may be extensively used in nature. MycCI, TylI, TylHI, and EryK are all P450s implicated in the 

tailoring of macrolides (i.e. mycinamicin, tylosin, and erythromycin) and all four enzymes 

hydroxylate a sugar-containing substrate (mycinamicin VIII, O-mycaminosyltylactone, 23-

deoxy-O-mycaminosyltylonolide, and erythromycin D, respectively) at positions distal from the 

sugar substituent. These observations indicate that the oxidative abilities of other bacterial P450s 

could be channeled through a similar approach as to the substrate-engineering idea pursued 

against PikC. This methodology could widen the significantly limited substrate scope of 

biosynthetic P450s and retool chemoenzymatic syntheses toolboxes towards chemical 

diversification of synthetic, semisynthetic, and natural product molecules of the utmost 

biological and chemical interest. 

 Second, although the engineered chimera utilized in the PikC experiments demonstrated 

regioselective hydroxylation in moderate to high yield of the unnatural substrates containing an 

optimized linear linker, significant work remains to increase regio- and stereoselectivity and 

achieve complete conversion. To achieve these goals, the additional enzyme-substrate interaction 

observed between the linker carbonyl and an active site Histidine reveal that other active site 

residues are underutilized for increasing substrate binding affinities and promoting selectivity. 

Rational protein engineering and directed evolution efforts will not only address those concerns, 

but also provide opportunities to further widen the substrate scope of this impressive enzyme. 

 Third, we still lack full comprehension of the regioselectivity that PikC exhibits with the 

natural substrates, YC-17 and narbomycin. Although previous work has solved co-crystal 

structures with both substrates, the basis of preference for C10 hydroxylation of YC-17 and C12 

hydroxylation of narbomycin remains elusive. Although substrate repositioning in the active 

state and the confirmation of the identity of the oxidative species in the catalytic cycle could 

offer possible answers, the static crystal structures do not offer satisfactory answers. Therefore, a 

more dynamic and full picture of protein movement and breathing is required, which may be 

provided through protein NMR. Through understanding protein movement between open and 

closed states that often accompany P450 substrate binding, oxidation, and product release, we 
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may be able to more directly understand P450-mediated oxidation and regio- and 

stereoselectivity. Other complementary approaches would include testing synthetic 

metalloporphyrins against endogenous or exogenous substrates and employing selenium-

containing versions of PikC to determine the identity of the oxidative species.  

 Fourth, building on information gained through protein engineering and NMR efforts, 

additional exploration of alternative linkers capable of targeting substrates to P450 active sites is 

crucial to further expand potential of P450s as biocatalysts. As studies with our optimized ester-

containing linker demonstrated, there are other active site residues available to increase substrate 

affinity not previously involved in substrate binding of exogenous substrates. Therefore, in 

conjunction with examination of protein structure and dynamics, functionally diverse linkers 

should be tested to explore the available space between portions of the substrates and active site 

residues. 

 Finally, the knowledge accumulated in the studies of PikC and those of the tylosin P450s 

are directly applicable to the functional analysis of numerous unexplored and currently 

unidentified bacterial biosynthetic P450s to understand new biochemistry, gain insight into the 

biosynthesis of natural products, accumulate new candidates for biotechnology applications, and 

build more facile models for understanding CYP structure and mechanism. Given the recent 

advancements in sequencing technology, an unprecedented number of gene products are 

currently available for study in conjunction with cost-effective and expeditious methods of 

cloning, protein expression, and protein purification. Therefore, the model P450s studied in this 

dissertation provide the foundation to exploring the potential of other P450s to participate in not 

only the production of biologically active pharmaceuticals, but also fine and industrial chemicals. 
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