
Dynamically Registering C++ Exception Handlers:
Centralized Handling of C++ Exceptions in

Application Framework Libraries

by

 Nathaniel H. Daly

A thesis submitted in partial fulfillment
of the requirements for the degree of

Bachelor of Science
(Honors Computer Science)

in the University of Michigan
2013

Thesis Committee:

	

 Professor David Kieras, Advisor
	

 Professor David Paoletti, Second Reader



Abstract

The C++ exceptions mechanism enables modularized programs to separate the 
reporting of exceptional conditions from the handling of those exceptional condi-
tions into the locations where those actions can best be performed. It is often the 
case in such modular applications that the module capable of detecting an excep-
tional situation cannot know how it should be handled, and so C++ exceptions 
allow the module that invoked the operation to react to the condition. Libraries 
developed separately from the applications using them are a perfect example of 
modularized code, and thus a perfect candidate for using C++ exceptions, how-
ever many of the application framework library paradigms that have become 
commonplace do not provide adequate exception support to allow for good pro-
gramming style with regard to catching and handling exceptions. In these librar-
ies, there often exist multiple callback-style entry points that invoke application-
specific operations, all of which require exactly identical exception handling, yet 
there is no way to collect this code together. Instead, the exception handling code 
must be duplicated across each entry point. In this paper, I will explore the best 
solutions to this problem currently provided by such frameworks; I will propose 
an additional solution to this problem: a method for allowing a program to regis-
ter exception-handler operations templated by exception type; and finally, I will 
identify any impacts that the newly released C++11 standard and the currently 
evolving C++14 standard have on the problem.

ii



Contents
1. Introduction	

 1

1.1. ...........................................................Motivation for Using Exceptions	

 1
1.2. ........................................................................Application Frameworks	

 2
1.3. ...............................The Problem: Repeated Exception Handling Code	

 5

2. Background	

 9
2.1. ......................................Current C++ GUI Toolkits Exception Support	

 9
2.2. ...................................................................Current “Good Solutions” 	

 11

3. Solutions	

 13
3.1. .............................................................................High Level Solution	

 13
3.2. .............................................Dynamically Deducing Exception Types	

 17
3.3. .......................................Associating Handlers with Exception Types	

 21
3.4. ................................Approach 1 - wxApp::OnExceptionInMainLoop	

 21
3.5. ............................................Approach 2 - register_exception_handler	

 25
3.6. .......Implementation of Dynamically Registered Exception Handlers	

 28
3.7. .......................................................................Comparison of Methods	

 35

4. Changes in the C++11 and C++14 Standards	

 37
4.1. ...................................................................C++11 Exception Changes	

 37

5. Further Work	

 40
5.1. ......................................................................................Benchmarking	

 40
5.2. ...................................................................C++11 Variadic Templates	

 41
5.3. ...............................................................................TnFox GUI Toolkit	

 41

6. Conclusions	

 41

7. Discussions	

 43

8. Appendices	

 48
8.1. ..........................Appendix 1 — The GUIExceptionHandling Module	

 48
8.2. ...................................Appendix 2 — The GUIApp Example Module	

 51

9. Bibliography	

 54

iii



1. Introduction

1.1. Motivation for Using Exceptions

This paper focuses on exceptions and exception handling in the context of 
application framework libraries; I will begin by first providing a high-level over-

view of the C++ exception handling mechanism. 
The exception mechanism was designed to provide an alternative approach 

to handling errors that arise during the execution of a program, or, more specifi-
cally, to handling exceptional conditions [34 (p.45)]. Exceptional conditions are 

situations encountered during a program’s execution in which an operation detects 
an error, and the following conditions are true [19 (p.684), 32 (p.344-345)]: 

1. The operation doesn’t know how to handle the error,
2. The invoker of the operation wasn’t able to detect the error before invok-

ing it, and 
3. Some invoker higher up in the chain of invokers might know how the er-

ror should be handled. 
These conditions are necessary to consider a condition exceptional, and without 
any of them, exceptions are not required. (Consider: if 1. is false, the operation 
can simply handle the error itself; if 2. is false, the operation never should have 
been invoked; if 3. is known to be false, the application may simply terminate.) 
Before exceptions were introduced to mainstream programming languages, there 
were (and still exist today) many disparate ways of handling exceptional condi-
tions. The most common strategy still widely used in C and C++  is to use a status 
variable to indicate an operation’s success or failure. This could either be a pa-
rameter passed in to the function or a return value returned from the function [19 
(p.684), 34 (p.45)]. C++ exceptions are significantly safer from programming 
mistakes (an exception cannot be ignored like a status variable can), they separate 

1



error code from “normal”  execution code, and they often achieve all of this with 
the same amount of or even less error-handling code and runtime costs than the 
status variable method [13 (p.34)]. C++ exceptions are a very useful and well-
established tool that is almost always the correct choice for handling exceptional 
conditions.

1.2. Application Frameworks

Exception handling is only really effective if the set of all possible types of 

exceptions that may be thrown is known. Without that information, it is difficult 

to correctly respond to a thrown exception. The organization of one increasingly 

common type of library, an application framework, results in exactly this undesir-

able situation.

While exceptions can be very effective in small applications, they are even 

more useful in large, modular applications -- most notably if the modules are de-

veloped separately. Modular applications with many separately designed pieces, 

often separately designed small libraries, have been a major motivator for the de-

sign of C++ exceptions: “exceptions were considered essential for error handling 

in programs composed out of separately designed libraries”  [34 (p.45)].  With 

smaller libraries, it is most often the case that the application maintains control of 

execution at the top level and calls into the libraries to perform certain tasks. In 

these situations, libraries excel at C++ exception support. If a library function en-

counters an exceptional condition, it can easily throw a detailed, library-specific 

exception that has information about the error, allowing the application to handle 

the exceptional condition. 

For example, an application might be making use of the Boost.Regex library 

[28], which implements regular expressions in C++. The application could con-

struct an instance of Boost::basic_regex from an input string. If this string is not a 

2



valid regular expression, Boost::basic_regex::basic_regex() will throw a 

Boost::regex_error exception [28].

 int main() {
 string s;
 try {

 cin >> s;
 basic_regex reg(s.c_str()); // May throw regex_error if invalid
 // ... use reg to do pattern searching ...

 }
 catch (Boost::regex_error &err) { // basic_regex() threw an error

 cout << “Error: ‘” << s << “’ is not a valid regex. Try again.\n”;
 }

 }
Here, the application’s main() is the invoker, and the Boost::basic_regex construc-

tor is the operation being invoked. This is a textbook scenario for using excep-

tions: 1. the invoker, main(), cannot know if the inputted string is a valid regex -- 

that is a hard task, which is why the task is delegated to a library in the first place; 

2. the Boost.Regex library cannot know how a bad input string should be handled 

-- should it ask the user?, should it terminate?, etc; 3.  the application module does 

know how to handle the error -- it will ask the user for another string. Given that 

all three conditions are satisfied, the Boost.Regex library makes use of C++  ex-

ceptions and throws Boost::regex_error1 when the exceptional condition occurs.

As seen above, exceptions are very straightforward when a library is used as 

module in a broader application. However, this is often not the case with many 

larger libraries. Larger libraries that are used to build an application often contain 

the main body of the application, and the application-specific code then becomes 

the small modules that the library calls into, instead of the other way around. 

These libraries are commonly referred to as application frameworks. This paper 

will define an application framework to be any large library that utilizes the above 

structure, i.e., a library that is organized as the main structure of an application 

3

1Boost::regex_error is a type defined by boost intended to be thrown as exceptions.



and calls short pieces of application-specific code only following certain events. 

The application framework makes up the majority of an application built with it, 

and it interacts with the application by making calls into supplied application-

specific code when certain events occur. A good, though neither necessary nor 

sufficient, indicator that a library is an application framework is that it cannot be 

used in conjunction with another application framework. In this situation, it now 

becomes the library developers who must be concerned with what exceptions the 

application-specific code may throw, instead of the application developer2 han-

dling any exceptions the library functions may throw. This is a much harder task. 

The exception types thrown by a library do not change and can be found listed in 

a manual. At the other extreme, the exception types thrown by an application de-

pend on its function, and will change from application to application -- or even 

during its execution. This is what makes exception handling in application 

frameworks an interesting topic for study.

There are some number of different examples of application-framework-

style libraries, but GUI toolkits3  are the most important that exist today, simply 

because they are common and relevant. As desktop and mobile software devel-

opment shifts its focus towards Apps, and users continue to expect cohesiveness 

with other Apps on their devices, GUI toolkits are becoming common and neces-

sary to learn. Figure 1 on the following page presents a common layout of appli-

cations built with a GUI toolkit. The lighter-colored boxes are application-specific 

code. It is easy to see how the application framework calls down into the 

application-specific code, instead of the other way around. The problem and solu-

4

2 I distinguish an application from the library it uses and an application developer from the devel-
opers of the library. An application developer does not have access to the code in the library, and 
the library developer cannot know what sorts of applications will use the library.
3 A GUI toolkit is simply an application framework that provides an Application Programming 
Interface (API) to access a set of widgets, or small units of an application’s Graphical User Inter-
face (GUI). For a good high-level overview, see https://en.wikipedia.org/wiki/Widget_toolkit

https://en.wikipedia.org/wiki/Widget_toolkit
https://en.wikipedia.org/wiki/Widget_toolkit


tions addressed in this paper apply to exception handling in all application frame-

works, but in order to narrow its scope, this paper will focus specifically on ex-

ception handling in a GUI toolkit. Other application frameworks around which 

one could frame this discussion include network server frameworks, daemon 

frameworks, and game engine frameworks; GUI toolkits were chosen mainly due 

to my familiarity.

1.3. The Problem: Repeated Exception Handling Code

Recall that an application framework remains at the top-level of an applica-

tion’s call stack throughout an application’s execution. Application-specific code 

is run only from specific entry-points, usually implemented as either callbacks or 

overridden virtual functions. These application-specific entry-points may throw 

an exception, but the application framework cannot know what types may be 

thrown (see §1.2 above). This makes traditional exception handling in the applica-

tion framework’s code impossible. Therefore, in order to prevent an exception 

from terminating the program, if code called from within an application’s entry-

point throws an exception, that exception must be caught before propagating into 

application framework code. A typical GUI application may have many such 

5

App-
Specific 
Code1

App-
Specific 
Code2

App-
Specific 
Code3

GUI event 
handler1

GUI event 
handler2

GUI event 
handler3

GUI toolkit run-loop

int main()
(Never Returns)

Figure 1. A GUI toolkit Application Framework’s Call Graph.
Application-specific code is only reached through calls from the top-layer GUI toolkit. On a GUI 
event, the toolkit calls the appropriate event handler, which calls into application-specific code. 



entry-points, and so the application developer will be forced to repeat the 

exception-handling code across each of them. The exception handling code will 

likely be identical, and must be repeated once for every application-specific entry-

point. This is clearly undesirable: code duplication is almost always a problem [29 

(p.23-25)]. Yet this is presently the state of things in the majority of C++ GUI 

toolkits.

To illustrate this problem, let us look at an example application, MyNet-

workApplication, being developed with a GUI toolkit. Our GUI toolkit uses virtual 

functions to provide application-specific entry points, and it is these functions that 

we are concerned with. For example, the GUI toolkit might present the following 

simple class interface for a button. To help maintain clarity, this paper will adopt 

the convention that code examples which are part of a library will have a solid bar 

to their left, whereas application-specific code will not. All of the ideas presented 

in this paper will work with C++03, but C++11 functionality has been used 

throughout this paper where it can increase readability.

❚ class GUIButton : public GUIViewController {
❚ public:
❚ virtual void OnButtonPressed()
❚ { /* Derived classes should override this behavior */ }
❚ // ...
❚ };

This class expects an application to derive its own button classes that per-

form application-specific code when the button is pressed. For example, the appli-

cation developer might write the following button:
 
 class HelloButton : public GUIButton {
 public:

 virtual void OnButtonPressed() override {
 GUIWriteTextToScreen(“Hello World\n”);

 }
 };

6



which, when pressed, writes the text “Hello World\n” to the screen using some 

other GUI library function. Less trivially, an application’s button might start some 

process or modify some application data. If operations invoked from within On-

ButtonPressed() could throw an error, however, the implementation of the over-

ridden function becomes complicated. One situation in which exceptions are 

likely to be thrown is if the application is developed using the Model-View-

Controller (MVC) design pattern [18], in which the GUI toolkit is used to imple-

ment the View and Controller portions. With MVC, one reasonable button class 

might call into the Model to set up Model data or start a Model process. If the pa-

rameters to the Model’s function call are invalid, the Model may throw an excep-

tion. Left unhandled, this would terminate the program. LogInButton, below, is an 

example illustrating this problem:
 
 class LogInButton : public GUIButton {
 public:

 virtual void OnButtonPressed() override {
 // Get user name and password from text boxes
 //  and attempt to log-in through the Model.
 model->log_in(username_text_box.text(),

 	 	 	 	 	 password_text_box.text());
 }

 
 // ...

 
 private:
		 Model &model;		 // pointer to Model; must be set in constructor

 std::weak_ptr<const GUITextBox> username_text_box; // read only
 std::weak_ptr<const GUITextBox> password_text_box; // read only

 };
 

Here, LogInButton acts as the connection between the application’s View-

and-Controller (which are implemented by the GUI toolkit) and the application’s  

Model. MVC is a perfect example of the correct conditions for using exceptions. 

In our example application, the Model’s functions do not know what sort of GUI 

toolkit -- if any -- is being used, and therefore cannot know how to handle input 

7



errors. The button entry-point function OnButtonPressed() similarly cannot know if 

the input is valid, or it would not have to call into Model code in the first place 

(for example, the LogInButton cannot know which username/password pairs are 

stored in the Model, because that is private data encapsulated by the Model). It 

does, however know how exceptions should be handled, and so it can wrap the 

call to Model::log_in() call in a try-catch, and handle the exceptions here. Of 

course, there might be many more such entry-points in the application, all of 

which take information from the Controllers and pass it to the Model, and/or take 

information from the Model and display it in the Views. Adding an entry-point 

requires duplicating the exception-handling code. This is an obvious problem.

Coming back to the example: the application developer knows the Model 

might throw an exception, and so any calls to Model:: functions must be wrapped 

in a try-catch-block.
 
 void LogInButton::OnButtonPressed() {

 try {
 	 model->log_in(username_text_box.text(),

		 	 	 	 	 	 password_text_box.text());
 	 } catch(ApplicationError &e) {

 	 // handle error... (probably notify user of the error)
 }

 }

Every application-code entry point that could throw an exception (which is 

potentially all of them) must similarly be wrapped with a try-catch like the LogIn-

Button above. This code repetition problem could become even worse if the entry-

points may throw multiple exception-types, each requiring a different response. 

This is what the virtual function looks like if a call to model could throw three 

different exception classes, not just ApplicationError:

 
 void LogInButton::OnButtonPressed() {

 try {

8



 // ... Attempt to log in to the Model ...
 }
 catch(UserInputError &e) {

 notifyUserOfInputError(e); // display error message
 }
 catch(NetworkError &e) {

 attemptToReconnectToNetwork(e); // try again or terminate
 }
 catch(std::exception &e) {

 gracefullyEndProgram(e); // likely a programming error, so terminate
 }

 }
 

All 11 of the error-handling lines above will have to be repeated for every 

such application-specific entry-point that the application developer derives. Any 

changes to what exception types need to be caught  and/or how they ought to be 

handled will require changing every place in the code that this is done. It would be 

desirable from the application developer’s perspective to have all of the 

exception-handling code together in one centralized location. Unfortunately, the 

nature of the application framework makes this impossible, because the only 

application-specific code that can be called is accessed through the virtual func-

tion entry points. It would be desirable, then, if the application framework could 

provide a mechanism to enable the application developer to accumulate all the 

exception-handling code in one place, and this is the problem that is addressed by 

this paper.

2. Background

2.1. Current C++ GUI Toolkits Exception Support

9



Besides the the importance and frequency of GUI toolkits in the industry, 

this paper chooses to focus on GUI toolkits for another reason: current support for 

C++  exceptions is very poor. Section §6, Discussions, includes a discussion of 

possible reasons for this lack of support. Here, I will outline at a very high level 

the varying exceptions support across the major C++ GUI toolkits. A large part of 

the problem with exceptions support among GUI toolkits is that it is often very 

poorly documented. Since exception handling is rarely considered an important 

component of the library, it is often difficult to find complete information on its 

implementation. Therefore, it is possible that I have mischaracterized some of the 

toolkits below.

Figure 2 on the previous page provides a list of the major C++ GUI toolkits 

in use today. With the exception of Microsoft Foundation Classes (MFC), all are 

cross-platform GUI toolkits. I divide the major C++  GUI toolkits into three 

groups: those with no explicit support for C++ exceptions, those which support 

any exceptions derived from a supplied base class, and those with what I deem 

“good support” for exceptions.

10

No Explicit 
Support

Base Class 
Exceptions Only

Good Support

Juce [8] VCF [14] FLTK [31]

QT [11] MFC [7 , 10] wxWidgets [1]

Gtkmm [9] CEGUI [35] TnFox [17]

Ultimate++ [26]

YAAF [36]

GLUI [15]

Figure 2. GUI Toolkits Listed by Exception Support.



By “good support”, I mean that -- albeit usually with a bit of finesse from 

the application developer -- the toolkit can be configured to catch any exception 

types that are thrown and can can be made to handle them in any way. These two 

requirements are also the requirements for the solution I present in this paper; the 

difference being that the solution in this paper requires the least amount of work 

from an application developer.

A toolkit that provides support for “base class exceptions only,”  is one that 

does catch and handle exceptions, but only exceptions derived from a supplied 

base class. For example, MFC provides a base exception class, CException. When 

a CException is caught in the main run-loop, MFC will call the virtual function 

CWinApp::ProcessWndProcException with the exception object as a parameter. If the 

application developer chooses to override this function, the application can handle 

exceptions of a type derived from CException as well.

Finally, a toolkit that provides “no explicit support”  is one that either simply 

ignores exceptions, or that catches and handles exceptions defined by the toolkit 

in a built-in way that an application cannot change. Unfortunately, this is a com-

mon situation in GUI toolkits: QT is compiled with exceptions completely turned 

off by default [16]; Gtk will terminate if exceptions escape application specific 

code [9]; Juce is the same [8]; and so on.

2.2. Current “Good Solutions”

As outlined in the previous section, FLTK, wxWidgets, and TnFox all pro-

vide “good support”  for C++ exceptions. In this section I will describe the solu-

tions presented by wxWidgets and FLTK. Unfortunately, time did not permit ex-

ploring TnFox’s solution; see Section §5 Further Work for more information.

11



The wxWidgets toolkit provides a good solution to prevent repeated 

exception-handling code. wxWidgets, like MFC described above, provides a vir-

tual function that is called whenever an exception is caught in the main run-loop. 

Unlike MFC, however, this function, wxApp::OnExceptionInMainLoop(), is called 

when any exception is caught. It can then be overridden by the application devel-

oper to handle exceptions. The wxWidgets’ documentation explains that this func-

tion will be called “if you decide to let (at least some) exceptions escape from the 

event handler in which they occurred. [...] This allows you to decide in a single 

place what to do about such exceptions.”  Following the example from wxWid-

get’s documentation, an application can determine the type of exception that was 

thrown and how to handle it. In section §3.3.1 we discuss the implementation of 

this solution, as well as its benefits and drawbacks.

The FLTK library also provides a complete solution. FLTK allows an appli-

cation to register an event dispatch, which is a function that wraps FLTK’s built-in 

event handling functionality. By default, in FTLK an input event event that occurs 

in a window window is handled with a call to Fl::handle_(int event, Fl_Window 

*window). However, if an application has registered an event dispatch function, it 

will pass event and window to the event dispatch instead. As directed by the docu-

mentation, if an application developer wishes to handle exceptions that are thrown 

out of application-specific code, he or she may provide an event dispatch function 

that wraps a call to Fl::handle_(event,window) with the appropriate try-catch 

blocks. The documentation provides the following example:
 
 int myHandler(int e, Fl_Window *w) {

 try {
 return Fl::handle_(e,w);

 } catch(/* [(sic.) ...) {
 // ...

 }
 }
 

12



 main() {
 Fl::event_dispatch(myHandler);
 // ...
 Fl:run();

 }
 

Through this bit of code, an application can dynamically register which exception 

types it would like to handle, and how it would like to handle them, thus freeing 

the application developer from repeating the exception handling code across each 

of the application’s entry-points.

3. Solutions

3.1. High Level Solution

Recall the goal described in §1.3: it would be beneficial to application de-

velopers if an application framework library provided a way to write exception 
handling code only once, rather than having to repeat it for each application-

specific entry-point. To see how this might be accomplished, we must look at an 
application framework’s structure. Again, we will be using the example of a GUI 

toolkit to provide concreteness, though this discussion should apply to the major-
ity of application frameworks. 

As described in Figure 1 from §1.3, the main control structure for a GUI 
toolkit is the run-loop. Throughout an application’s execution, the top-level of the 

function call-stack is always the run-loop, which calls down into application-
specific code. A common format for GUI toolkits is to organize the run-loop as a 

polling style event handler [30]. A simplified version of this type of run-loop 
would look like this:

13



❚ void GUIApp::run() {
❚ while (true) { // loop forever until the program exits
❚
❚ Event input_event = // ...Check for input events...
❚
❚ if (/* ...mouse was clicked... */) {
❚
❚ // ...Find the widget that was clicked on...
❚
❚ widget->handleMouseClick(input_event);
❚ }
❚ else if (/* ... */) { 
❚ // ...
❚ }
❚
❚ // ...
❚ }
❚ }

 
Every iteration through the loop is a frame in the application. In each frame, any 

input event to the application is handled based on its type. If the input was a 

mouse-click, then the widget that was clicked on handles that input event. If the 

widget’s derived type is an application-specific class, then the widget calls into 

application-specific code.

Returning to our earlier example of the LogInButton widget (defined in 

§1.3), let us assume that the widget which was clicked on is an instance of GUIBut-

ton. The GUIButton would handle the mouse click by calling its virtual function, 

OnButtonPressed(), which acts as an entry-point into application-specific code.

❚ void GUIButton::handleMouseClick(click_event) {
❚ if (click_event.mouse_button == GUI_MOUSE_LEFT) { // if left-click
❚ OnButtonPressed(); // press the button; run app-specific code.
❚ }
❚ }

If the derived type of GUIButton is a LogInButton, the call to OnButtonPressed() 

would polymorphically call LogInButton::OnButtonPressed(), which finally would 

call Model::log_in() (from §1.3).

14



Now, it is clear how an exception that escapes from OnButtonPressed() would 

be a problem. GUIAPP::run() has no exception handling, so the exception would 

crash through the while loop and terminate the program. In order for the GUI 

toolkit to be able to handle an exception and continue execution, the while loop 

needs to contain a try-catch block.4 But which exception types should this try-

catch catch? Remember, the motivation for adding this exception code is to group 

an application’s exception handling code in a central location. Therefore, from the 

application developer’s perspective, the most useful GUI toolkit run-loop would 

catch exactly those exceptions an application might throw, and would handle them 

in exactly the right way. For MyNetworkApplication, it would need to catch UserIn-

putError, NetworkError, and std::exception.

❚ void GUIApp::run() {
❚ while (true) { // loop forever until the program exits
❚ try {
❚ // ...Check for input events...
❚
❚ if (/* ...mouse was clicked... */) {
❚
❚ // ...Find the widget that was clicked on...
❚
❚ widget->handleMouseClick(click_event);
❚ }
❚
❚ // ...
❚ }
❚ catch(UserInputError &e) {     // <--------- *Problem*
❚ notifyUserOfInputError(e); 
❚ }
❚ catch(NetworkError &e) {
❚ attemptToReconnectToNetwork(e);
❚ }
❚ catch(std::exception &e) {
❚ gracefullyEndProgram(e); 
❚ }

15

4 The try-catch must be within the while loop. If it were outside it, an exception could be handled, 
but there would be no way to continue execution, since we would have exited the run-loop.



❚
❚ }
❚ }

Of course, as indicated by the *Problem* comment above, this will not actually 

work: the GUI toolkit was developed separately from the application, and may not 

even be aware of the exception types the application wants to catch, let alone how 

to handle them. For example, both UserInputError and NetworkError are classes 

defined by MyNetworkApplication. Since the GUI toolkit was developed separately 

from the application, these classes could neither be defined nor declared at the 

toolkit’s compile-time. Therefore, the toolkit cannot explicitly catch the exact 

types an application might throw. But it does still want these exceptions to be 

caught -- lest it terminate when they are thrown, so it should instead use a 

catch(...){} block. catch(...) will catch any exception type that is thrown, but 

the block does not have a variable through which to access to the caught excep-

tion.

	

 However, we can use the catch(...) block to simulate catching all the 

types an application might throw. From within this catch-block we want to per-

form the same sort of exception handling that the application is currently perform-

ing in each of its entry-points. To achieve this, the application needs to be able to 

specify which exceptions it wants caught, and how it wants them to be handled. 

Then in order to handle these exceptions at runtime, the catch(...){} block needs 

to be able to (1) deduce the type of the exception that was thrown, (2) handle the 

exception appropriately based on its type, and (3) terminate if the exception 

wasn’t handled.

❚ void GUIApp::run() {
❚ while (true) { // loop forever until the program exits
❚ try {
❚ // ...Take in input...
❚

16



❚ if (/* ...mouse was clicked... */) {
❚
❚ // ...Find the widget that was clicked on...
❚
❚ widget->handleMouseClick(click_event);
❚ }
❚
❚ // ...
❚ }
❚ catch(...) {
❚ // 1) Deduce exception type
❚ // 2) Call any handlers that the application has associated 
❚ //     with that type.
❚ // 3) If no handlers are associated, terminate.
❚ }
❚ }
❚ }

The remainder of Section §3 describes how a library could implement (1), (2), 

and (3).

3.2. Dynamically Deducing Exception Types

This section will introduce a largely unknown bit of C++ behavior that can 

be used to determine the type of a caught exception. In short, from inside a 

catch(...){} block, the type of the currently active exception can be deduced by 

entering a new try{} block, re-throwing the exception, and then re-catching the 

exception with a more specifically-typed catch block. In this paper I will refer to 

this behavior as the catch-try-rethrow trick.

As described above, a catch(...) statement will catch any kind of exception 

that is thrown. Unfortunately, the catch block will not have access to the excep-

tion as a variable. However, by re-throwing the exception and catching it again, 

we can enter a new catch block where the exception is referenced by a variable. In 

order for the new catch block to catch the exception, it must catch exactly the type 

of the thrown exception (or a reference to one of the exception’s base-types). Be-

17



low is an example illustrating this behavior, with numbered comments providing 

an explanation.
 
 try {

 throw /* ...Something... */;  // 0. exception object is allocated here.
 }
 catch(...) { 

 // 1. From here, the exception type is unknown.
 
 try {  // 2. so we enter a new try-block to try again.

 throw;  // 3. rethrow the exception
 }
 catch(A &e) { 

 // 4. the original exception was of type A.
 }
 catch(B &e) { 

 // 5. the original exception was of type B.
 }
 catch(...) {

 // 6. we still do not know the type of the exception.
 }

 }  // 7. the exception object is deallocated here.
 

The above code looks a bit outlandish, but it will deduce the type of the 

thrown exception. If the /* something */ at comment (0) is replaced with an in-

stance of type A, for example throw A();, then the exception will be caught again 

by catch(A &e), and the block starting at comment (4) will be executed. If an in-

stance of type B is thrown, the block containing comment (5) will be executed. If 

the exception thrown is of neither type, say throw C();, then the last block con-

taining comment (6) will be executed, and the type of the exception would still be 

unknown. This trick, therefore, allows a function to check if a caught exception’s 

type is any of a set of known exception-types. That is, the trick cannot be used de-

duce an unknown type. This is of course because C++ is a statically typed lan-

guage, and so one can never refer to an object of an unknown type.

18



We can look to the ISO C++ Standard5 to find a description of this behavior. 

First, we need to prove that the exception is still valid when we enter into the new 

try-block at comment (2). Section §15.1.4 of the standard [4 (p.396)] verifies this 

fact (emphasis added by me): 

The memory for the exception object is allocated in an un-
specified way, except as noted in 3.7.4.1. If a handler exits by re-
throwing, control is passed to another handler for the same excep-
tion. The exception object is destroyed after either the last re-
maining active handler for the exception exits by any means 
other than rethrowing, or the last object of type std::exception_ptr 
(18.8.5) that refers to the exception object is destroyed, whichever 
is later. 

The exception object is allocated and valid at comment (0), and remains so until 

comment (7), when its last active handler is exited. For a definition of what it 

means to be active, we look to section §15.3.7 [4 (p.398)]:

A handler is considered active when initialization is complete 
for the formal parameter (if any) of the catch clause. [...] A handler 
is no longer considered active when the catch clause exits or when 
std::unexpected() exits after being entered due to a throw.

Following this definition, the exception allocated at comment (0) enters its 

first active handler at comment (1), and is only destroyed after this handler exits, 

at comment (7).  This should be enough to convince the skeptical reader that the 

exception object stays active inside the second try-block. The other half to this 

behavior is the throw; statement. Section §15.1.8 [4 (p.397)]:

A throw-expression with no operand rethrows the currently 
handled exception. The exception is reactivated with the existing 
temporary; no new temporary exception object is created.

This verifies that the exception rethrown at comment (3) will be exactly the ex-

ception originally thrown at comment (0). Therefore, any catch statement that 

19

5 I am using the C++11 standard here only because it is the most recent, but very similar language 
exists in the C++03 standard [3 (p.299-302)], and the same conclusions can be drawn.



could have caught the original exception will successfully catch it after it is re-

thrown.

Of course, written as above, this trick seems useless: if the types A and B are 

known to be possible exception types, they should have been included as possible 

catch blocks before the final catch(...){}. There doesn’t appear to be any reason 

to nest the type deduction inside of the catch block. However, it becomes signifi-

cantly less trivial if the contents of the catch(...) block above are moved into a 

function which is defined in a different module. Then, by recompiling one mod-

ule, we can change what exceptions are caught by the other. For example:

 // will try-rethrow-catch the currently active exception and handle
 extern void deduceExceptionTypeAndHandle();
 
 
 void do_something() {

 try {
 // ... possibly throw something ...

 }
 catch(...) {

 // 1. From here, the exception type is unknown.
 // So allow deduceTypeAndHandle() to figure it out and handle it.
 deduceExceptionTypeAndHandle();

 }
 }
 
 
 // IN SOME OTHER MODULE:
 void deduceExceptionTypeAndHandle() {

 try {  // 2. so we enter a new try-block to try again.
 throw;  // 3. rethrow the exception

 }
 catch(A &e) { 

 // 4. the original exception was of type A.
 }
 catch(B &e) { 

 // 5. the original exception was of type B.
 }
 catch(...) {

 // 6. we really don’t know the type of the exception.
 }

 }

20



 
Here, just as before, if the original exception was either of type A or B, it will 

be successfully handled. However, now that deduceTypeAndHandle() is compiled 

separately from do_something(), we can dynamically change which types of ex-

ceptions do_something() catches and how they are handled, without having to re-

compile the original try-catch block. If the two modules are developed separately, 

the developer of do_something() promises to catch and handle exceptions in a way 

specified by the developer of deduceTypeAndHandle().

3.3. Associating Handlers with Exception Types

The catch-try-rethrow trick described above can be used in a GUI toolkit’s 

run-loop, allowing it to dynamically determine an exception’s type and handle it. 

Doing so will allow the GUI toolkit to meet the desired behavior outlined in the 

“high-level solution”  described in Section §3.1. There are at least two different 

approaches that could be taken to implement the behavior: one of them is simpler, 

but puts much more burden on the application developer; the other is more com-

plex to implement, but it frees the application developer from any responsibility 

to reinvent the somewhat esoteric technique used above. I will begin by discuss-

ing the simpler approach simply to solidify the concept, and then will move on to 

the more complex solution, which is the solution that this paper recommends 

should be implemented by GUI toolkits.

3.3.1. Approach 1 - wxApp::OnExceptionInMainLoop

The first approach is taken from a real-world GUI toolkit, wxWidgets. To 

understand this solution, we start with the separated do_something() and deduceEx-

21



ceptionTypeAndHandle() functions from the previous section, and augment our GUI 

toolkit’s exception handling until it resembles the wxWidgets solution.

 Recall that by separating do_something() and deduceExceptionTypeAndHan-

dle() into different modules, we allowed one module to define how the other 

module would handle exceptions. This same pattern can be used in the GUI 

toolkit’s run-loop. Let us redesign GUIApp to utilize the separated functions, by 

making deduceExceptionTypeAndHandle() a virtual function. Then, an application-

specific derived version of GUIApp can specify exactly how to handle exceptions. 

❚ class GUIApp {
❚ public:
❚ void run() {
❚ while (true) { // loop forever until the program exits
❚ try {
❚ // ... might throw something ...
❚ }
❚ catch(...) {
❚
❚ // Call virtual function to deduce the type of and
❚ //  handle the exception.
❚ deduceExceptionTypeAndHandle();
❚ }
❚ }
❚ }
❚ // ...
❚
❚ private:
❚ // ...
❚
❚ // This function should be overridden in a derived class to specify 
❚ //  exception handling behavior.
❚ // Overridden, it should like:      try{ throw; } catch(Type e){...}
❚ // Note: default behavior is to terminate on any exception.
❚ // REQUIRES: must be called from within a catch(...){ } block.
❚ virtual void deduceExceptionTypeAndHandle() 
❚ { /* derived class should specify behavior */ }
❚ };

Now, the application developer can provide his or her own exception handling 

code inside an overridden deduceExceptionTypeAndHandle(). Here, the code 

22



would look very similar to the exception handling code from any of the 

application-specific entry points. For the MyNetworkApplication example from ear-

lier sections, this would catch UserInputError, NetworkError, and std::exception.

 
 class MyNetworkApplication : public GUIApp {

 // ...
 private:

 // ...
 
 virtual void deduceExceptionTypeAndHandle() override { 

 try {
 throw;

 }
 catch(UserInputError &e) {

 notifyUserOfInputError(e); // display error message
 }
 catch(NetworkError &e) {

 attemptToReconnectToNetwork(e); // try again or exit
 }
 catch(std::exception &e) {

 gracefullyEndProgram(e); // likely a programming error so exit
 }

		 	 // If we made it here, we don’t know the type, so let it terminate.
 }

 };
 

Here, the author of MyNetworkApplication is specifying that the GUI toolkit should 

catch UserInputError, NetworkError, and std::exception, and handle them in differ-

ent ways. If an exception of any of these types is thrown from application-specific 

code and reaches the GUI toolkit, it will be caught by the call to this applicatio-

specific deduceExceptionTypeAndHandle(). 

This now matches the exception handling support in the wxWidgets GUI 

toolkit. There, deduceExceptionTypeAndHandle is named  OnExceptionInMainLoop. 

wxWidgets’ wxApp class has a virtual function wxApp::OnExceptionInMainLoop(), 

which is called exactly like GUIApp::deduceExceptionTypeAndHandle() above. An 

application can override this function in exactly the same way as the example 

above. When wxApp’s run-loop catches an exception, it will call the derived class’s 

23



OnExceptionInMainLoop(). wxWidget’s documentation provides a sample applica-

tion that implements this behavior. One of the files, except.cpp, shows how to im-

plement custom exception behavior:

bool MyApp::OnExceptionInMainLoop()
{
    try
    {
        throw;
    }
    catch ( int i )
    {
        wxLogWarning(wxT("Caught an int %d in MyApp."), i);
    }
    catch ( MyException& e )
    {
        wxLogWarning(wxT("Caught MyException(%s) in MyApp."), e.what());
    }
    catch ( ... )
    {
        throw;
    }

    return true;
}

This finally frees the application developer from catching and handling ex-

ceptions in each of the application specific entry-points. Even though the GUI 

toolkit code is precompiled and cannot be changed, by overriding the behavior of 

the supplied function, an application developer can specify which exceptions his 

or her application should catch, and how they are to be handled. This solves the 

problem of code repetition, as now all of the application developer’s exception 

handling code is together in one location.

I would argue, however, that this is not an ideal solution. The crux of this 

idea relies on the application developer making use of the catch-try-rethrow trick, 

but that piece of C++  behavior is virtually unknown. None of the C++ standards 

documents, Stroustrup’s “The C++ Programming Language”, nor ISO C++  con-

ference papers makes explicit reference to this behavior at all. As described 

above, indirect evidence to support it can be found in the ISO standard, but it is 

24



not obvious. Expecting every user of a GUI toolkit to be able to define the above 

function, even if provided with an example, is an unreasonable expectation.

In this paper, I argue that GUI toolkits should adopt a more involved solu-

tion, which I detail more thoroughly in the next section, but if the attitudes about 

exceptions do not change, and toolkits continue to have only mediocre support for 

exceptions, at least this paper would have made wxWidgets’ solution better-

known. Applications that require good exception support can be developed with 

wxWidgets and make use of wxApp::OnExceptionInMainLoop() to put all of their 

exception handling together in one central location.

3.3.2. Approach 2 - register_exception_handler

As described in the previous section, the main problem with the solution 

therein is it relies on every application developer to write non-obvious code. 

Moreover, every application developer who implements this behavior will write 

exactly the same block of non-obvious code. All developers’ implementations of 

deduceExceptionTypeAndHandle() or wxApp::OnExceptionInMainLoop() will look the 

same: try, throw;, and then catch all of the exception types their application will 

catch and specify their handling. It is the job of a library to manage non-obvious, 

common code so that users of the library are free from the chore6, and this case is 

no different.

The deduceExceptionTypeAndHandle() approach boils down to a very simple 

action: an application developer associating exception types with how they are 

handled. Through specifying catch-blocks in the overridden function, the applica-

25

6 From Stroustrup: “For high-level applications programming to be effective and convenient, we 
need libraries. Using just the bare language features makes almost all programming quite painful.”  
That is certainly true of deduceExceptionTypeAndHandle().



tion is describing how to handle each exception type. Recall the example from the 

previous section, 
 
 void GUIApp::deduceExceptionTypeAndHandle() { 

 try {
 throw;

 }
 catch(UserInputError &e) {

 notifyUserOfInputError(e); // display error message
 }
 catch(NetworkError &e) {

 attemptToReconnectToNetwork(e); // try again or exit
 }
 catch(std::exception &e) {

 gracefullyEndProgram(e); // likely a programming error so exit
 }

		 // If we made it here, we don’t know the type, so let it terminate.
 }
 

The intent of the above code could be described in three simple lines:

On UserInputError: notifyUserOfInputError(e)
On NetworkError: attemptToReconnectToNetwork(e)
On std::exception: gracefullyEndProgram(e)

Each of these three lines describes what function should be called when an excep-

tion of a certain type is caught. If UserInputError is caught, call notifyUserOfIn-

putError(); if NetworkError, call attemptToReconnectToNetwork(); and so on. 

These lines describe the intended behavior, and ideally the code used to express it 

would reflect that.

To achieve that, I propose an application framework method whose use ex-

plicitly mirrors the lines above that describe intent. The application framework 

should provide an additional function to register exception handlers, 

register_exception_handler. This function will be called by the application-

specific code to establish how the framework will handle exceptions. We will use 

a C++  template to denote the exception type we want handled. We will also use a 

template to denote the type of the handler, allowing both functions and function 

26



objects to be passed as the handler.7  This is the declaration of 

register_exception_handler:

❚ class GUIApp {
❚ public:
❚ // ...
❚
❚ template<typename Exception_t, typename Handler_t>
❚ void register_exception_handler(Handler_t handle) {
❚ // ...register handle to be a handler for Exception_t exceptions...
❚ }
❚ };

The function is called in application-specific code to set up the application 

framework’s exception handling. Its use matches the three succinct lines from 

above:
 
 int main() {
 register_exception_handler<UserInputError> (&notifyUserOfInputError);
 register_exception_handler<NetworkError> (&attemptToReconnectToNetwork);
 register_exception_handler<std::exception> (&gracefullyEndProgram);
 // ...

 }
 

In each of the above three lines, the application developer specifies an exception 

type that the application should catch (the type is specified as the template pa-

rameter within the <> angle brackets) and the handler that should be called when 

an exception is caught (the parameter in parentheses; this can be a function object, 

pointer to function or pointer to member). Then, on an exception, the application 

framework will deduce the exception’s type and call the appropriate handler. We 

have already discussed how to dynamically deduce an exception’s type; what re-

mains to be shown is how it can be done with dynamically registered types and 

27

7 Templating the handler operation matches the style of the functions from the STL’s <algorithm> 
header, in which predicates and operations are always supplied as templated types. Like these 
functions, Handler_t can be a unary function, a function object, or in C++11, a lambda function.



handlers. For that, we need to introduce some new types and functions to our GUI 

library.

3.4. Implementation of Dynamically Registered Exception Handlers

When an application registers an exception type to be handled by a certain 

handler, the application framework needs to store that (exception-type, handler) 

pair. Then, when an exception occurs, it needs to check the type of the thrown ex-

ception against the types of all the registered (exception-type, handler) pairs. For 

any exception-type matches, the corresponding handler should be called.

In order to represent these (exception-type, handler) pairs, we create a new 

type, ExceptionHandler. This class, like register_exception_handler(), will be 

templated on Exception_t in order to keep track of the exception-type. It will also 

store a copy of the handler, and so will be templated on Handler_t as well. The  

Exception_t template stores the exception-type from the (exception-type, handler) 

pair, and the handler member variable stores the handler from the pair.

❚ template <typename Exception_t, typename Handler_t>
❚ class ExceptionHandler {
❚ public:
❚ ExceptionHandler(const Handler_t &h) : handler(h) { }
❚
❚ private:
❚
❚ // a copy of the handler to be called if Exception_t is caught
❚ Handler_t handler;  
❚ };

ExceptionHandler is templated on the Exception_t, so any member functions we 

add to it next will be able to reference the exception-type of the pair. The copy of 

the handler from the pair can be called when an exception of type exception-type 

is caught. 

28



Next, we make use of the catch-try-rethrow trick from section §3.2 by add-

ing a member function that will deduce the type and handle any exception whose 

type matches ExceptionHandler’s exception-type. This function, 

ExceptionHandler::try_rethrow_catch(), when called from within a catch() block, 

will attempt to determine the active exception’s type, and will handle the excep-

tion if its type matches the type on which the particular instance of ExceptionHan-

dler is templated. This function looks almost exactly like the overridden 

deduceExceptionTypeAndHandle() function defined in previous sections: it uses the 

catch-try-rethrow trick to check if the active exception is of a certain type. The 

difference being that the exception type being checked is a templated type which 

was defined when the instance object was instantiated.

❚ template <typename Exception_t, typename Handler_t>
❚ class ExceptionHandler {
❚ public:
❚ ExceptionHandler(const Handler_t &h) : handler(h) { }
❚
❚ // Requires: Must be called from within a catch-block.
❚ // Effects: If the thrown exception was of type Exception_t,
❚ //            then call the handler on the caught exception.
❚ // Returns: true if the exception was handled, else false.
❚ bool try_rethrow_catch() {
❚ try {
❚ throw;
❚ }
❚ catch(const Exception_t &e) { // If active exception is Exception_t
❚ handler(e);               //   handle it.
❚ return true;
❚ }
❚ catch(...) { // don’t let the exception escape if wrong type.
❚ return false;
❚ }
❚ }
❚
❚ private:
❚ // a copy of the handler to be called if Exception_t is caught
❚ Handler_t handler;  
❚ };

 

29



It should be clear that an ExceptionHandler<A, A_Handler>::try_rethrow_catch() 

will handle the active exception if and only if the exception is of type A. This 

matches the desired behavior exactly. Before we look at an example of its use, let 

us also define a helper function for creating ExceptionHandlers. This way only the 

exception-type needs to be typed explicitly when instantiating ExceptionHandlers.

 
❚ // A helper function to create ExceptionHandlers. This is useful because 
❚ //  it can use the handler parameter to deduce Handler_t. 
❚ template <typename Exception_t, typename Handler_t>
❚ ExceptionHandler<Exception_t, Handler_t>
❚ create_exception_handler(const Handler_t &handler) {
❚ return ExceptionHandler<Exception_t, Handler_t>(handler);
❚ }

As an example of ExceptionHandler’s use, let eh_NE be an instance of Exception-

Handler that is templated on NetworkError from MyNetworkApplication.  

eh_NE.try_rethrow_catch() would only call attemptToReconnectToNetwork() if there 

was an active exception of type NetworkError. In the following example, just such 

an ExceptionHandler is constructed, and it only calls attemptToReconnectToNetwork 

when a NetworkError is thrown:
 

 // Handle a NetworkError exception by attempting to reconnect to network.
 void attemptToReconnectToNetwork(const NetworkError &e) {

 cout << “Network Error: ” << e.error_num << “. ”;
 cout <<  “Attempting to reconnect...” << endl;
 // ...

 }
 
 int main() {

 // Create an exception handler that handles NetworkError exceptions
 //  by calling attemptToReconnectToNetwork..
 
 auto eh_NE = create_exception_handler<NetworkError>(

                &attemptToReconnectToNetwork);
 

 try {
 NetworkError ne(NETWORK_DISCONNECT_ERROR); // (error 10)
 throw ne;             // Throw a Network Disconnect Error.

 }

30



 catch(...) {
 // This calls attemptToReconnectToNetwork(ne).
 bool result = eh_NE.try_rethrow_catch(); 
 cout << “try-rethrow-catch 1: ” << result << endl;

 }
 
 try {

 std::runtime_error re(“test error”);
 throw re;

 }
 catch(...) {

 // This will do nothing.  
 // (Because eh_NE::Exception_t doesn’t match std::runtime_error)
 bool result = eh_NE.try_rethrow_catch();     
 cout << “try-rethrow-catch 2: ” << result << endl;

 }
 }
 

This will result in the following output:
 Network Error: 10. Attempting to reconnect...
 try-rethrow-catch 1: 1
 try-rethrow-catch 2: 0

As the output describes, the first call to eh_NE.try_rethrow_catch() does handle the 

thrown exception, because eh_NE was templated on NetworkError, and it does not 

handle the second exception. This turns out to be an extremely useful class. A sin-

gle call to this class’s try_rethrow_catch() can deduce the type of and handle an 

active exception.

To handle a thrown exception, the GUI toolkit will maintain a list these Ex-

ceptionHandlers to keep track of the registered (exception-type, handler) pairs. On 

an exception in the run-loop, it will iterate through this list, calling each Excep-

tionHandler’s try_rethrow_catch(). Any ExceptionHandlers templated to the correct 

type will handle the exception.

With this in mind, we can finally implement the desired behavior of the reg-

ister_exception_handler function described earlier. This function will create an 

ExceptionHandler that is templated according to the desired (exception-type, han-

31



dler) pair, and then add it to a list of ExceptionHandlers. Ideally, this would look 

like the following function:

❚ template <typename Exception_t, typename Handler_t>
❚ void GUIApp::register_exception_handler(const Handler_t &handler) {
❚
❚ // This is the right idea, but this won’t compile...
❚     eh_pairs.push_back(create_exception_handler<Exception_t>(handler));
❚ }

Of course, C++ doesn’t allow heterogenous container elements, so eh_pairs is 

impossible (two instances of a templated class, each with two different template 

specifications, do indeed have two distinct types). The solution is to make 

eh_pairs a list of pointers to a base class from which our ExceptionHandlers will 

be derived. This is a common solution for a list of templated types. We rename 

ExceptionHandler to ExceptionHandler_Impl, and define a new base class, Excep-

tionHandler, which is simply an abstract interface. 

❚ // Abstract Base Class
❚ class ExceptionHandler {
❚ public:
❚ virtual void try_rethrow_catch() = 0; // pure virtual function
❚ };

❚ // Implementation class
❚ template <typename Exception_t, typename Handler_t>
❚ class ExceptionHandler_Impl : public ExceptionHandler {
❚ // ... (this is the same as ExceptionHandler was previously) ...
❚ };

❚ // A helper function to create new ExceptionHandlers.
❚ template <typename Exception_t, typename Handler_t>
❚ ExceptionHandler<Exception_t, Handler_t>*
❚ create_exception_handler(const Handler_t &handler) {
❚ return new ExceptionHandler_Impl<Exception_t, Handler_t>(handler);
❚ }

The contents of ExceptionHandler have been moved to ExceptionHan-

dler_Impl, and ExceptionHandler is now empty. Most importantly, ExceptionHandler 

32



is not templated, so that it can be used as the pointer-type for a homogenous list. 

create_exception_handler now returns a pointer-to-base for a dynamically allo-

cated ExceptionHandler_Impl in order to make use of the polymorphic behavior.

Now, eh_pairs holds base class pointers to ExceptionHandlers, which actually 

point to differently templated ExceptionHandler_Impls. This finally allows GUIApp 

to both hold a list representing all the (exception-type, handler) pairs that have 

been registered, as well as to be able to iterate through that list and handle any 

exceptions. To do so, it simply calls the virtual try_rethrow_catch() function for 

each templated ExceptionHandler_Impl. The redefined GUIApp will look like this:

❚ class GUIApp {
❚ // ...
❚ std::list<ExceptionHandler*> eh_pairs;
❚
❚ public:
❚ template <typename Exception_t, typename Handler_t>
❚ void register_exception_handler(const Handler_t &handler) {
❚   
❚   eh_pairs.push_back(create_exception_handler<Exception_t>(handler));
❚ }
❚
❚ // Begin the application. run() never returns.
❚ void run();
❚
❚ // ...
❚ };

The GUI toolkit will use eh_pairs to determine the type of any caught ex-

ceptions. Recall the GUI toolkit run-loop, which includes a try block and a 

catch(...) block. Inside this catch(...) block, the toolkit will loop through each 

of the ExceptionHandlers in eh_pairs, and call try_rethrow_catch(). If any of the 

ExceptionHandler_Impls were templated on the active exception’s type, the regis-

tered handler will be called. GUIApp::run() now looks like this: 

33



❚ void GUIApp::run() {
❚    while (true) {
❚   try {
❚  // ... may throw something ...
❚   }
❚   catch(...) {
❚  bool handled = false; // do any of the eh_pairs match it?
❚
❚  for(ExceptionHandler *eh : eh_pairs) {
❚ handled = handled || eh->try_rethrow_catch();
❚  }
❚
❚  if (!handled) { // if the exception is never succesfully caught,
❚ throw;      //  that means there aren’t any registered handlers,
❚  //  so terminate the program.
❚  }
❚   }
❚    }
❚ }

In the above for-loop, every registered (exception-type, handler) pair is 

tested for a matching exception-type. If found, the correct handler is called. If no 

handlers match, the program is terminated. These are the three requirements out-

lined at the beginning of section §3: 1. deduce the type of the exception; 2. handle 

the exception; 3. terminate if no handlers are registered.

Thus, the application framework has solved the problem of allowing an ap-

plication to accumulate all of its exception-handling code in one place. The appli-

cation only needs to make calls to register_exception_handler and afterwards any 

exceptions thrown from application-specific code will be caught and handled ap-

propriately. The application no longer needs to wrap each of its entry-points with 

repeated exception-handling code.

 In this last example, we revisit MyNetworkApplication using the regis-

ter_exception_handler structure we’ve defined. Before the application begins its 

execution, it makes three simple calls to register_exception_handler, each one 

specifying the handling for a different exception type.
 

34



 // Define exception handler functions
 void notifyUserofInputError(const UserInputError &e)      { /* ... */ }
 void attemptToReconnectToNetwork(const NetworkError &e)   { /* ... */ }
 void gracefullyEndProgram(const std::exception &e)        { /* ... */ }
 
 int main() {

 
 GUIApp app;
 
 app.register_exception_handler<UserInputError>(&notifyUserOfInputError);
 app.register_exception_handler<NetworkError>(&attemptToReconnectToNetwork);
 app.register_exception_handler<std::exception>(&gracefullyEndProgram);
 
 // ... any further GUIApp setup ... 
 
 app.run(); // start the application.

 }

Now, if any of the above exception types (i.e. UserInputError, NetworkError, or 

std::exception) are thrown during app.run()’s run-loop, they will be handled in 

the respective handler functions (notifyUserOfInputError, attemptToReconnect-

ToNetwork, and gracefullyEndProgram).

This concludes the presentation of the register_exception_handler solution. 

For a complete implementation that can be directly used in a real application 

framework, see Appendix 1. For an example of a complete GUI toolkit’s run-loop 

utilizing this solution, see Appendix 2.

3.5. Comparison of Methods

This completes the presentation of the solution advocated for in this paper. 

This section will compare the relative merits of this solution with the other meth-

ods presented above.

The solution described in section §3.3.1, the solution provided by wxWid-

gets, achieves the goals set out in the Introduction. However, it requires the appli-

35



cation developer to implement the solution completely, without support from the 

application framework. Every application developer who is able to produce the 

correct solution will produce almost identical exception handling code. Even 

worse, in order to produce the correct solution, every developer will have to un-

derstand the example code provided by wxWidgets and understand how to modify 

it for their application. In this regard, register_exception_handler is superior, as it 

frees the application developer both from understanding and from implementing 

the solution.

The FLTK solution presented in section §2.2 has the same problem: it must 

be fully implemented by the user. It requires the application developer to copy 

code directly from the documentation and adapt it to his or her application. The 

example code was somewhat buried in the documentation, and took almost an 

hour to find. The solution presented in this paper, on the other hand, allows an ap-

plication to dynamically register exception handlers with only one simple line, 

freeing every the application developer from finding, understanding, and imple-

menting the exact same solution. But, like the wxWidgets solution above, FLTK’s 

solution is much simpler to implement than the register_exception_handler solu-

tion.

On the other hand, most likely the register_exception_handler solution has 

slightly worse performance than the other two solutions. The performance hit will 

only be when an exception is caught, and probably won’t be significant, but it will 

probably be worse than the other two solutions. For a more complete discussion 

of register_exception_handler’s efficiency, see Section §5.1 in Further Work.

36



4. Changes in the C++11 and C++148 Standards
The recently released ISO C++ 2011 standard [4] introduced many changes 

with regards to C++ exceptions, and mainstream compilers are finally completing 

their C++11 support.9 Despite a number of additions to the C++  standard library 
that address exception handling, it does not appear that the exception-related 

changes in C++11 have a major impact on solving the problem addressed by this 
paper. Development is currently underway on the next standard, provisionally be-

ing called the C++14 standard, but so far there do not seem to be any changes in-
troduced regarding C++  exceptions [5]. There are, however some changes in the 

C++11 standard that are not explicitly related to exceptions, but might be benefi-
cial in this solution, notably C++ variadic templates. This is described in more 

detail in section §5.2 of Further Work.

4.1. C++11 Exception Changes

The changes to C++  exceptions introduced by the C++11 standard were 

mainly focused on throwing and catching exceptions in a mutli-threaded applica-
tion [4 , 33]. C++11 introduces the exception_ptr class, as well as the functions 

current_exception(), rethrow_exception(), and make_exception_ptr(). All four of 

these additions address the needs of transferring an exception between threads: 

“In particular, an exception_ptr can be used to implement a re-throw of an excep-

tion in a different thread from the one in which the exception was caught”  [32 
(p.871)].  These tools do not aid us in dynamically deducing an exception’s type 

or in allowing a user to dynamically specify how to handle an exception, the two 

37

8 Also known provisionally as C++1y
9 Both GCC and LLVM have implemented all of the “major features” in the C++11 standard [2 , 6 
, 12].



actions necessary for a GUI toolkit to handle application-specific exceptions in a 

central location; therefore, they do not affect possible solutions to the problem. 

The other exception-related concept introduced by C++11 is nested_excep-

tion, which can be used to tack-on information to an exception as it moves up the 

call tree. Although it may appear to be at first, this feature is also not useful for 

our problem. From Stroustrup [32 (p.872-873)]: 

The intended use of nested_exception is as a base class for a 
class used by an exception handler to pass some information about 
the local context of an error together with a [sic.] exception_ptr to 
the exception that caused it to be called. [...] Further up the chain, 
we might want to look at the nested exception.

The nested_exception concept allows a try-block further up the list of invokers to 

catch an exception with a known type, even though the actual type of the origi-

nally thrown exception may be unknown at that point. The further-up try-block 

can then rethrow the nested_exception’s nested exception to access the original 

exception object.

	

 To achieve this, the standard introduces the following functions along with 

the nested_exception class: ne.rethrow_exception(), ne.nested_ptr(), 

throw_with_nested(e), and rethrow_if_nested(e). Stroustrup provides this example 

in his book:
 struct My_error : runtime_error {

 My_error(const string&);
 // ...

 };
 
 void my_code()
 {

 try {
 // ...

 }
 catch(...) {

 My_error err {“something went wrong in my_code()”};
 // ...
 throw_with_nested(err);

 }
 }

38



Now My_error information is passed along (rethrown) together 
with a nested_exception holding an exception_ptr to the exception 
caught.

Further up the call chain, we might want to look at the nested ex-
ception:

 void user()
 {

 try {
 my_code();

 }
 catch(My_error &err) {

 
 // ... clear up My_error problems ...

 
 try { // NOTE: See ✝ below

 rethrow_if_nested(err); // re-throw the nested exception, if any
 }
 catch(Some_error& err2) {

 // ... clear up Some_error problems ...
 }

 }
 }

This assumes that we know that some_error might be nested with 
My_error.

 ✝  At first this may look like an application of using the catch-try-rethrow trick to deduce a caught 
exception’s type, but closer inspection reveals that it is not. rethrow_if_nested throws a new ex-
ception -- the exception pointed to by its nested exception_ptr. So this is not using the catch-try-
rethrow trick, and is not deducing the type of the exception; it is simply throwing a new exception, 
one that happened to have been thrown earlier and is now stored in an std::exception.

In this example, my_code  is able to add additional information to the the original 

Some_error that was thrown (in this case, the information added is that the excep-

tion was thrown from within a call to my_code). Of course, user() could simply 

catch Some_error directly, but without tacking on the My_error class, the catch 

statement in user() would be unable to tell which part of its try-block the exception 

was thrown from.

	

 Unfortunately, however, this doesn’t make our job any easier. In order to 

determine the type of the original exception, we still need to rethrow the nested 

exception, and we still need to know what types to catch. In other words, the 

39



catch-try-rethrow trick is still necessary and the templated classes to represent 

(exception-type, handler) are still necessary, so we have gained nothing from this 

method.

The new C++11 exception functionality is interesting, but not relevant to 

this problem. The currently proposed C++14 standard does not make any changes 

to exception handling. Therefore, as far as we have found, the results of this paper 

are still current and relevant after the recent changes to the C++ language. For 

more information on C++11 variadic templates, see Section §5.2 of Further Work 

below.

5. Further Work

5.1. Benchmarking

Due to time constraints, there was no formal study performed on the effi-
ciency of the solutions described herein. Presumably the ExceptionHandlers solu-

tion presented in Section §3.3.2 will be less runtime-efficient than either of the 

wxWidgets-style solution or the FLTK solution, but only when an exception is 
thrown. Otherwise there should be no impact on performance. This is probably an 

acceptable performance drop for the benefits achieved because the efficiency con-
cerns are only present during exception handling, which is a rare event.10 Still, it 

would be beneficial to formally measure the performance differences between all 
of the methods presented here.

40

10 According to Lippman [27 (p.170)], the Modula-3 Report recommends "that 10,000 instructions 
may be spent in the exceptional case to save one instruction in the normal case."



5.2. C++11 Variadic Templates

While C++11 did not provide any new exception handling mechanisms 

relevant to this paper (see Section §4 above),  it did introduce the concept of vari-

adic templates [32 (p.809)]. It remains to be seen, but it is possible that variadic 

templates would be beneficial for the solutions discussed in this paper. Using 

variadic templates, an application may be able to build a try-catch clause similar 

to the one described in Section §3.2 entirely using metaprogramming techniques 

[32 (p.780)].

5.3. TnFox GUI Toolkit

Unfortunately, a lack of time prevented further research into the TnFox GUI 

toolkit, which claims to be an “exception aware” GUI toolkit. The homepage ex-

plains that “every single error is detected and reported with additional support for 

handling nested C++  exception throws as well as C++ rollback transactions which 

allow interruptions to gracefully unwind partially completed operations.”  Clearly, 

this is a toolkit that has emphasized good exception handling in its design, and as 

such it certainly merits additional study.

6. Conclusions
It is the responsibility of a good library to free its users from the chore of 

writing complex, convoluted, obscure, or repetitive code. Yet all of the common 
GUI toolkits in use today require their users to do just that when it comes to writ-

ing exception handling code. In the worst case, the toolkits provide no support at 
all, and the application developer is forced to write repetitive try-catch exception 

41



handlers, duplicating them across each of his or her application-specific entry 

points. In the toolkits with slightly better support, the exception-handling doesn’t 

need to be repeated -- a great achievement, but becomes instead complex, convo-

luted, and obscure. The user must either imitate the documentation exactly and 

carefully copy a convoluted, fragile solution (as in the case of the FLTK solution), 

or independently invent or discover the complex, obscure solution that utilizes 

catch-try-rethrow all on their own (as with the wxWidgets solution). With this 

situation as the status quo, there is clearly room for improvement. Application de-

velopers using a GUI toolkit should not need to reinvent the wheel; they should 

instead have this complex task solved and prepackaged for them. 

  And we managed to do just that. To solve this problem, we started by de-

signing our desired behavior. The goal was to allow an application to easily spec-

ify its exception-handling requirements in one central location. To do this, we de-

scribed the one-line function, register_exception_handler<Exception_t>(handler). 

In this function, the user would dynamically register an exception type to be 

caught and then handled in a certain, or possibly multiple way(s). With this one 

line, an application developer can specify all the information necessary to cor-

rectly handle exceptional conditions that arise during calls to application-specific 

code. As we saw above, we managed to implement this behavior utilizing a tem-

plated class to represent an (exception-type, handler) pair.

This implementation made use of a little-known C++ trick, which through-

out this paper I have been referring to as the catch-try-rethrow trick. We have 

shown with reasonable certainty that the catch-try-rethrow trick is standard C++ 

behavior. A function within an active catch-block can enter into a new try-block, 

rethrow the active exception, and re-catch the exception with a new catch-block. 

In addition, it has been experimentally verified in some major compilers: g++  4.2 

and 4.7, Visual Studio 2012, and Clang 3.2. We showed that this trick can be used 

42



within a catch(...) block to dynamically determine an exception’s type. We 

showed that an application framework could use this trick to provide a central lo-

cation for application-specific exception handling. (As an aside, we used this 

knowledge to implement a solution using the wxWidgets GUI toolkit.) Finally, we 

showed how to use templated classes to keep a list of (exception-type, handler) 

pairs. With all of this information together: the list of (exception-type, handler) 

pairs, the ability to dynamically check an exception’s type against an exception-

type from a pair, and the ability to dynamically add to and remove pairs from the 

list, we are able to implement the one-line 

register_exception_handler<Exception_t>(handler) function.

  While the presence of an application framework certainly makes exception 

handling more complicated, it does not inherently preclude good program design. 

The problem of copy-pasted exception-handling code, though difficult, is solv-

able, and I have presented a complete solution in this paper, as well as descrip-

tions of the best solutions available to application designers today. Ideally C++ 

GUI toolkits will improve their exception support, possibly utilizing the regis-

ter_exception_handler solution presented here, but if not, an application developer 

can implement his or her own C++  exception handling solutions through wxWid-

gets or FLTK.

7. Discussions
I was surprised to find that this problem had not already been satisfactorily 

solved. In fact, much of what I discovered in this thesis project surprised me: I 
was surprised most C++  GUI toolkits have relatively poor support for exceptions; 

I was surprised it was so difficult to uncover the documentation about their sup-

43



port; and I was surprised that the catch-try-rethrow trick appears to be relatively 

undocumented, and even relatively unknown.

I cannot say with certainty exactly why C++ exception support hasn’t been 

more fleshed out in the prominent GUI toolkits, but it would seem that timing is 

largely to blame. The main C++  GUI toolkits are all very old; most of them were 

first introduced before exceptions had been added to the C++  language, or only 

just after they were first implemented. The first implementations of C++ excep-

tions made executables both significantly larger and noticeably slower, and many 

developers formed a distrust of the exceptions mechanism entirely [13 (p.35)]. 

Likely, it is a fear of executable bloat and runtime performance costs that has dis-

suaded many toolkit developers from spending the time and manpower on re-

searching better methods for handle exceptions, or has even prevented them from 

supporting exceptions at all. For example, wxWidgets is the GUI toolkit whose 

solution was presented in section 3.3.1 as an example of a good solution to excep-

tion handling. However, this solution is new as of wxWidgets v3.0, and until 2011 

their official stance was that exceptions should be avoided entirely. The toolkit’s 

programming style guide [37] explicitly advised against using exceptions at all:

Don't use C++ exceptions

The C++ exception system is an error-reporting mechanism. 
Another reasons(sic) not to use it, besides portability, are the per-
formance penalty it imposes (small, but, at least for current compil-
ers, non-zero), and subtle problems with memory/resource dealloca-
tion it may create (the place where you'd like to use C++ exceptions 
most of all are the constructors, but you need to be very careful in 
order to be able to do it).  

Today, however, almost all implementations of C++ exceptions have no runtime 

overhead whatsoever, and the executable bloat is considerably smaller [13 (p.40)], 

so there is no reason that they should continue to be avoided.

Another possible reason it has been avoided is that the GUI toolkits use a C 

middle-layer somewhere in their implementation. This layer could be a different 

44



library used to implement the toolkit, or it could possibly be an operating system’s 

C API. Some GUI toolkits do in fact use a C middle-layer, though not all of them 

do, and perhaps these toolkits have influenced the development of the others as 

well. A C middle-layer makes it more difficult to handle C++ exceptions, because 

the exception will not be propagated safely through a C function.

The second major surprise to me was how difficult it was to obtain informa-

tion on exception support in many of the GUI toolkits. This paper provides a con-

venient summary of the exception handling techniques implemented by the major 

C++ GUI toolkits.

The final surprise was just how undocumented the catch-try-rethrow trick 

turned out to be. Other than showing up in a wxWidgets sample application, the 

only sources I have managed to find that explicitly describe the trick are three an-

swers to three questions from StackOverflow.com, and the two of them that claim 

evidence of its validity cite the same sections of the standard that I cited here to 

justify my claims. In one question [23], the user asks for a way to obtain an “ex-

ception object address [...] from inside of [a] catch(...) block,”  and is answered 

with two answers stating, effectively, “no.”  In the third (and accepted) answer, 

Simon Richter11 answers correctly, though, and describes the catch-try-rethrow 

trick almost exactly as I have described it [25]:

If you know at least something about the type, then yes.
The catch(...) syntax does not give a name to the exception ob-
ject, but it is possible to rethrow the object and use a more specific 
catch clause:
 try {

 throw 0;
 }
 catch(...)
 {

45

11 http://stackoverflow.com/users/613064/simon-richter

http://stackoverflow.com/users/613064/simon-richter
http://stackoverflow.com/users/613064/simon-richter


 try {
 throw;

 }
 catch(int &i)
 {

 std::cout << &i << std::endl;
 }

 }

Clearly, Simon Richter is aware that this is valid C++. He is confident enough to 

present it as an answer to this question, but I still have not seen it explicitly docu-

mented anywhere. Another answer goes even further: in his question [21],  John12 

asks almost exactly the same thing as above, and, as above, receives two answers 

claiming it is impossible. But, Fred Nurk13’s answer [24] not only shows how to 

use the catch-try-rethrow trick, it goes on to propose a handler-chain that is re-

markably similar to the one proposed in this paper:

Because C++ is statically typed, you must catch a known type. 
However, you can call an external function (or set of functions) 
which handle exception types unknown at the point you call them. 
If these handlers all have known types, you can register them to be 
dynamically tried.

He then describes a handler chain that is one step away from what I have de-

scribed. His chain is a list of functions that return std::string, which can be used to 

extract an error description from any exception type. Each function enters a new 

try-block, rethrows the current exception, and then attempts to catch it with a 

known type (and finally extracts the string from it, which is returned). This is one 

of his example functions:
 std::string extract_from_unknown_external_exception() {
   try { throw; }
   catch (myStupidCustomString &e) {
     return e.what;
   }

46

12 http://stackoverflow.com/users/197229/john
13 http://stackoverflow.com/users/511601/fred-nurk

http://stackoverflow.com/users/197229/john
http://stackoverflow.com/users/197229/john
http://stackoverflow.com/users/511601/fred-nurk
http://stackoverflow.com/users/511601/fred-nurk


   catch (...) {
     throw;  // Rethrow original exception.
   }
 }

The user would write one of these for each type that could be caught, and would 

add them to a list. While this method still requires a lot of duplication of some-

what convoluted code, it is still a hair’s breadth away from the solution described 

in this paper.

Finally, in his answer to a question [22] asking explicitly about the legality 

of the catch-try-rethrow trick, GManNickG14 points out a section in the C++03 

standard that seems to identify it as standard behavior [20]. This section is the 

same section I’ve identified, section §15.1/4:

    The memory for the temporary copy of the exception being 
thrown is allocated in an unspecified way, except as noted in 
3.7.4.1. The temporary persists as long as there is a handler being 
executed for that exception.

A wxWidgets example application, these few StackOverflow.com answers, 

and the scraps of the standard they cite, are the only sources I’ve found that de-

scribe this functionality, but it seems to be supported by the C++  standard as legal 

behavior. Hopefully this paper has convinced the reader of the usefulness of the 

try-rethrow-catch trick, and will help to make this seemingly under-documented 

trick more commonly known.

47

14 http://stackoverflow.com/users/87234/gmannickg

http://stackoverflow.com/users/87234/gmannickg
http://stackoverflow.com/users/87234/gmannickg


8. Appendices
8.1. Appendix 1 — The GUIExceptionHandling Module

The GUIExceptionHandling module contains an implementation of the catch-
try-rethrow trick. It is intended to be a standalone, headers-only module that could 
be included in any application framework. It is comprised of two files: 
GUIExceptionHandling.h, which contains the interface for using ExceptionHan-
dlers, and GUIExceptionHandling_Impl.h, which contains the template class im-
plementation.

GUIExceptionHandling.h
//
//  ExceptionHandling.h
//
//  Definitions for the Exception Handling functions:
//    ExceptionHandler* create_exception_handler(const Handler_t &handler);
//    void call_exception_handlers(InputIterator begin, InputIterator end);
//

#ifndef GUI_Exception_Handling_h
#define GUI_Exception_Handling_h

#include "GUIExceptionHandling_Impl.h" // Contains details irrelevant to clients

namespace GUIExceptionHandling {

// Exception_t : The type of the exceptions that will be caught by handler
// Handler_t : a function or object that overrides operator()(Exception_t);
// NOTE: handler will be copied.
template <typename Exception_t, typename Handler_t>
ExceptionHandler* create_exception_handler(const Handler_t &handler) {
    return new ExceptionHandler_Impl<Exception_t, Handler_t>(handler);
}

// Loop through error handlers and handle any errors. If no handler matches
//  the error, it will be rethrown out of the function.
// REQUIRES: This function MUST be called from within a catch(){} block!
template <typename InputIterator>
void call_exception_handlers(InputIterator begin, InputIterator end) {
    
    bool handled = false;
    
    try {
        // Create a vector of handlers
        // (Since try_rethrow_catch is virtual, it cannot be templated,
        //                                             so it requires a vector.)
        std::vector<ExceptionHandler*> handlers(begin, end);
        

48



        // loop through all the handlers and handle if possible.
        // This will end with a rethrow.
        handlers.front()->try_rethrow_catch(++handlers.begin(),
                                            handlers.end(), handled);
    }
    catch (...) { // Will always enter this catch statement.
        if (!handled) { // Only rethrow if none of the Handlers caught the 
error.
            throw;
        }
    }
}

} // namespace GUIExceptionHandling

#endif /* GUI_Exception_Handling_h */

GUIExceptionHandling_Impl.h
//
//  ExceptionHandling_Impl.h
//
//  Implementation for the ExceptionHandler class.
//

#ifndef GUI_Exception_Handling_Impl_h
#define GUI_Exception_Handling_Impl_h

#include <vector>

namespace GUIExceptionHandling {

// Forward Declaration for friending
template <typename Exception_t, typename Handler_t>
class ExceptionHandler_Impl;

// Abstract ExceptionHandler Base Class.
// Derived class will be templated for Exception type and Handler type.
class ExceptionHandler {
private:    // Everything is private so that this can only be used as a base
            //  class for the ExceptionHandler_Impl class.
    
    
    // A virtual function cannot be templated, so we require that try_catch,
    //  below, use a vector::iterator.
    typedef std::vector<ExceptionHandler*>::iterator ExceptionHandlerIter_t;
    
    // Recursive function call to iterate through list and try-rethrow-catch on
    //  currently thrown exception.
    // REQUIRES: this must be called from inside a catch{} block.

49



    virtual void try_rethrow_catch(ExceptionHandlerIter_t begin,
                                   ExceptionHandlerIter_t end, bool &handled)=0;
    
    
    // This is the public interface for interacting with ExceptionHandlers.
    template <typename InputIterator>
    friend void call_exception_handlers(InputIterator begin,
                                        InputIterator end);
    
    // The only actual derived class that will use this class's functions.
    template <typename Exception_t, typename Handler_t>
    friend class ExceptionHandler_Impl;
};

// Implementation of ExceptionHandler. Nests try statements for all
// ExceptionHandlers passed in, and rethrows the current exception.
// Then each ExceptionHandler attempts to catch during the unravelling.
//
// Exception_t : The type of errors that will be caught by handler
// Handler_t : a function or object that overrides operator()(Exception_t);
template <typename Exception_t, typename Handler_t>
class ExceptionHandler_Impl : public ExceptionHandler {
private:    // Everything is private, so that ExceptionHandler_Impl isn't
            //  created anywhere but from create_exception_handler().
    
    
    // handler_ should be a callable entity s.t. handler_(Exception_t) is valid.
    // NOTE: handler_ will be copied.
    ExceptionHandler_Impl(const Handler_t &handler_) : handler(handler_) { }
    
    // For each ExceptionHandler in [begin:end), try to handle the error.
    // RESULT: handled will be set to true if any ExceptionHandler successfully
    // handled the current exception.
    // REQUIRES: this must be called from inside a catch{} block.
    virtual void try_rethrow_catch(ExceptionHandlerIter_t begin,
                                   ExceptionHandlerIter_t end, bool &handled) {
        
        // nest a try block for each ExceptionHandler
        try {
            if (begin == end) { // base case
                throw;
            }
            ExceptionHandler *next = *begin;
            next->try_rethrow_catch(++begin, end, handled); // unravel until end
        }
        // Each ExceptionHandler gets a chance to try to catch the exception.
        catch(const Exception_t &e) { // Will only catch if e is of Exception_t
            
            handler(e);     // handler() is only called if Exception_t matches.
            handled = true;
            throw;          // continue up the chain.

50



        }
    }
    
    // Friend this because of the private constructor
    template <typename Exc_t, typename Han_t>
    friend ExceptionHandler* create_exception_handler(const Han_t &handler);
    
private: // Private member data:
    Handler_t handler;
};

} // namespace GUIExceptionHandling

#endif /* GUI_Exception_Handling_Impl_h */

8.2. Appendix 2 — The GUIApp Example Module

The GUIApp module is an example of how an application framework would 
utilize the GUIExceptionHandling module. This module defines the framework’s 
main application class, which would be instantiated once in an application. The 
App class provides functions that allow the application to register and unregister 
exception handlers. The class maintains a vector of ExceptionHandlers which it 
provides to the GUIExceptionHandling module’s call_exception_handlers function.

GUIApp.h
//
//  GUIApp.h
//  GUI Widget Library
//
//  Created by Nathan Daly on 11/27/12.
//

#ifndef GUIApp_h
#define GUIApp_h

#include "GUIExceptionHandling.h"

#include <vector>

namespace GUI {
    using namespace GUIExceptionHandling;
  
class Window;

    
class App {

51



public:
    
    void run(Window* window);
    
    // When any code executed within the run() loop throws an instance of
    // Exception_t, any Handler_t's that have been registered for that
    // Exception_t will be called, with the exception passed as the argument.
    // RETURNS: an ID for this exception-handler pair. Use ID to un-register the
    //    exception-handler pair.
    template <typename Exception_t, typename Handler_t>
    int register_exception_handler(const Handler_t &handler);

    // Removes the exception-handler pair from the app.
    void unregister_exception_handler(int exception_handler_id);
        
private:
    
    // vector because it's fast to iterate through!
    typedef std::vector<ExceptionHandler*> error_handler_list_t;
    error_handler_list_t handler_list;
    
};

template <typename Exception_t, typename Handler_t>
int App::register_exception_handler(const Handler_t &handler) {
    handler_list.push_back(create_exception_handler<Exception_t>(handler));
    return (int)handler_list.size();
}

} // namespace GUI

#endif

GUIApp.cpp
//
//  GUIApp.cpp
//  GUI Widget Library
//
//  Created by Nathan Daly on 11/27/12.
//

#include "GUIApp.h"

#include "SDL/SDL.h" // For event polling
#include <iostream>
using std::vector;

using namespace GUIExceptionHandling;

52



namespace GUI {

void App::run(Window* window_) {
    

    bool running = true;

    
    while(running) {
        SDL_Event event;
        
        try {
            
            SDL_PollEvent(&event);
            
            
            switch (event.type) {
                    
                case SDL_MOUSEBUTTONDOWN: {
                    
                    // Send mouse event to correct view.
                    break;
                }
                case SDL_KEYDOWN: {
                    // handle keydown.
                    break;
                }
                default:
                    break;
                    
            }
        }
        catch(...) {
            
            call_exception_handlers(handler_list.begin(), handler_list.end());
            
        }
    }
}

} // namespace GUI

53



Bibliography
[1] About the wxWidgets Project, Retrieved, from wxWidgets:                                              

http://wxwidgets.org/

[2] C++0xCompilerSupport, Retrieved, from:                                              
https://wiki.apache.org/stdcxx/C%2B%2B0xCompilerSupport?action=recall&rev=11
9

[3] INCITS/ISO/IEC 14882-2003. Programming Languages— C++, Second Edition, 
2003.

[4] INCITS/ISO/IEC 3242-2011. Programming Languages— C++, Working Draft, 2011.

[5] INCITS/ISO/IEC 3797-2014. Programming Languages— C++, Working Draft, 2013.

[6] C++98, C++11, and C++14 Support in Clang, Retrieved, from:                                              
http://clang.llvm.org/cxx_status.html

[7] CWinApp::ProcessWndProcException 2013), Retrieved, from Microsoft:                                              
http://msdn.microsoft.com/en-us/library/93k07whb%28v=vs.100%29.aspx

[8] Documentation. JUCE 2013), Retrieved, from Raw Material Software Ltd:                                              
http://fox-toolkit.org/

[9] Documentation Overview. gtkmm C++ Interfaces for GTK+ and GNOME, Retrieved, 
from:                                              http://www.gtkmm.org/en/documentation.html

[10] Exception Handling in MFC 2013), Retrieved, from Microsoft:                                              
http://msdn.microsoft.com/en-us/library/t078xe4f%28v=vs.110%29.aspx#_core_mfc
_exception_support

[11] Exception Safety. Qt Project 2013), Retrieved, from Qt Project Hosting:                                              
http://qt-project.org/doc/qt-5.0/qtdoc/exceptionsafety.html

[12] Status of Experimental C++11 Support in GCC 4.8, Retrieved, from:                                              
http://gcc.gnu.org/gcc-4.8/cxx0x_status.html

[13] Working Group WG 21 of Subcommittee SC 22. Technical Report on C++ Perform-
ance. ISO/IEC TR 18015:2006(E)

[14] The Visual Component Framework (October 31 2013), Retrieved, from:                                              
http://vcf-online.org/

54



[15] What is GLUI? GLUI User Interface Library, Retrieved, from:                                              
http://glui.sourceforge.net/

[16] dcbasso [Resolved] Compilation problem: “Exception Handling disabled, use -fex-
ceptions to enable”. Programming Style Guide (November 9 2012), Retrieved, from 
wxwidgets.org:                                              
https://qt-project.org/forums/viewthread/21771/

[17] Douglas, N. Welcome to the TnFOX homepage (March 18 2013), Retrieved, from:                                              
http://www.nedprod.com/TnFOX/

[18] Gamma, E., Helm, R., Johnson, R., Vlissides, J.  Design Patterns. Addison-Wesley 
Reading, 1995.

[19] Goodenough, J. B. Exception Handling: Issues and a Proposed Notion. Communica-
tions of the ACM, 18, 12 (December 1975).

[20] http://stackoverflow.com/users/87234/gmannickg Answer to "Is re-throwing an ex-
ception legal in a nested 'try'?" (Mar 19 2010), Retrieved, from StackOverflow.com:                                              
http://stackoverflow.com/revisions/2466156/4

[21] http://stackoverflow.com/users/197229/john C++ - finding the type of a caught de-
fault exception (Mar 1 2011), Retrieved, from StackOverflow.com:                                              
http://stackoverflow.com/revisions/4885334/1

[22] http://stackoverflow.com/users/234053/alexander-gessler Is re-throwing an exception 
legal in a nested 'try'? (Mar 17 2010), Retrieved, from StackOverflow.com:                                              
http://stackoverflow.com/revisions/2466131/1

[23] http://stackoverflow.com/users/369639/romeno Getting exception object address 
from catch (…) c++ (Mar 1 2011), Retrieved, from StackOverflow.com:                                              
http://stackoverflow.com/revisions/5157169/2

[24] http://stackoverflow.com/users/511601/fred-nurk Answer to "C++ - finding the type 
of a caught default exception" (Feb 3 2011), Retrieved, from StackOverflow.com:                                              
http://stackoverflow.com/revisions/4885632/5

[25] http://stackoverflow.com/users/613064/simon-richter Answer to "Getting exception 
object address from catch (…) c++" (Feb 3 2011), Retrieved, from 
StackOverflow.com:                                              
http://stackoverflow.com/revisions/5157315/1

55



[26] koldo Ultimate++ is a C++ cross-platform rapid application development framework 
(October 31 2013), Retrieved, from:                                              
http://ultimatepp.org/

[27] Lippman, S. B. Inside The C++ Object Model. Addison Wesley, 1996.

[28] Maddock, J. basic_regex. Boost.Regex 1998-2010), Retrieved, from boost.org:                                              
http://www.boost.org/doc/libs/1_55_0/libs/regex/doc/html/boost_regex/ref/basic_rege
x.html

[29] Meyers, S. Effective C++ (Third ed.). Pearson Education, 2005.

[30] Myers, B., Hudson, S. E. and Pausch, R. Past, present, and future of user interface 
software tools. ACM Transactions on Computer-Human Interaction (TOCHI), 7, 1 
2000), 3-28.

[31] Spitzak, B. Documentation. Fast Light Toolkit 2012), Retrieved, from:                                              
http://www.fltk.org/documentation.php

[32] Stroustrup, B. The C++ Programming Language (Fourth ed.). Addison-Wesley, 
2013.

[33] Stroustrup, B. Copying and rethrowing exceptions. C++11 - the new ISO C++ stan-
dard, Retrieved, from:                                              
http://www.stroustrup.com/C++11FAQ.html#rethrow

[34] Stroustrup, B. A History of C++: 1979-1991. AT&T Bell Laboratories, 1995. 

[35] Turner, P. D. Welcome. Crazy Eddie's GUI System (2004 - 2013), Retrieved, from:                                              
http://cegui.org.uk/

[36] Woody, B. Yet Another Application Framework, Retrieved, from:                                              
http://www.yaaf.org/index.html

[37] Zeitlin, V. Don't use C++ exceptions. Programming Style Guide, Retrieved, from 
wxwidgets.org:                                              
http://www.wxwidgets.org/develop/standard.htm#no_exceptions

56


