SAVITARIUM FKCTURE, AgF11 16,1800.
That is the Natural Pood of Nant

$$
\begin{aligned}
& \text { J.ト.Kellog5, :) } \\
& \text {--0000-- }
\end{aligned}
$$

GOOD evening, Ladies and Centlemen: The subject ve are to talk about to-night.is, What is the Hatural liet of Man ? Ve are not going to discuss this guestion so much from a vegetarian atandpoint as from a Meger and broader standpoint : If we road the firs: Chater of Genesis and understand the purport and intent of that chapter, we shall not nneed to inquire further as to what is the natural diet for man, for we read that the diet which Gud gave to Adam, as the representa:ive of the whole human family, consisted of eruits and nerbs,--every herb bearing seed and every tree bearing fruit, in wilich is the seed thereof, --every one of t hese fuits and seeds were wholesome foods for man. On the other hand, the animals were given the herbs to eat. Ve call leerbs or vegetables, herbaceous or vegetable foods: the seed-bearing part s distinguished from what is called the vegetable substances by the fate that it has neither tertg nor root nor leaf nor bad nor flower. Those parts of plents which are composed of twigs or roots or buds or flowers are called vegetables, and the other parts are the seed-bearing parts--in other words Pruits nuts and grains,--those were the original diet for man. It is a very interesting fact that this opifinal diet which the Bible prescribes for man as his natural diet--that this oricinal diet which we Ind described in the first chapter of the Bible ad the diet which God gave to Adam--it is a wonderfully interesting thing that we and that very diet to-day constituting the bill of fare of those animals which are nearest to man in their structure: The anthropoid epes-the
gorilla, the chimpanzee and the ourang outang--the so-called higher apes whose anatomy to 30 closely resembles tho anatomy of man that It is difficult to distinguish the skull of a young monkey from the skull of an infant. Buffon, Guvier, Sir Evpurd Home and other eminent comparative anatomiste long ago pointed out the fact of this resemblance, and the lact that the teeth of man, his digestive pparatus, his hands his mouth, his feet, and his whole anatomy and the functions of nutrition in man vere absolutely identical with the same stpuctures and Punctions of those animals which subsisted entirely upon fruitsigrains a ald nuts. I might enter into this subject at length and spend several hours in discussing the queation asto whether men should eat this, that or the other kind of pood, but the suestion that 1 want to discuss to-night is, whothor we should out rew atarch or gateh-sod not. Many people have the idea that because we discard the use of fleah-foods that we must live on turnegs, cabbages, carrots and other vegetables. People have the idea that a vegetarian is a vegetable-oater; it does mean that in a certain sense, but it does not mean that in the market sense, - it is not true in the market-sense, but it is true in tho botanical sense.

Now if we study the structured and functions of the digestive apparatus of man, we find that it differs from that of ame other animale: Fe Ind that his stomach is very simple in structure; that instead of having Iourteen stomacha like the woodchick, he has but one. The whale has from five to seven stomachs, the cow has four stomachi, and the sume is true of the sheop and all the rrazing animals or cud-chewing animals. But in man we have a very simple digestive apparaqus, so that we know that his food must be of cathopa simple character, for it is a univeral lew in the animal kingiom,--that a complicated digestive aparatus means
a complicated diet. The reverse is also true,--that vherever you find an animal living upon complicated diet, you will find that thet animal has a complicated digestive a:paratus to deal with that diet. So in animals that live on vegetation ve ind complicated atamech and a long alimeatary canal, --for instance, the sheop has an alimentary canal thirty times as lonf as his body, whereas a monkey has an alimentary canal only ten or twelve imes as long as his body, and the same thing is trie of human beinge also. On the other hand, the lion, a flesheating animal has an alimentary canal only four to alx times the length of his body: and there are some carnivorous animals whose alimentary canals are ahorter still,--not because the food wich the carnivorous inimal eats is easier of digetion than any other food, but because it is aimple-1 ndit is thls one thing. Now the flesh of allanimals is practically the same thing: the flesh of birds and the flesh of beasts is also practically the same thing. Sut when you core to sea-animalsit is a different thing. Fith land animala, the skin of another animal is nover eaten,--the alin and fur is always rejected: they picts the bones bare and leave the tones and the skin,--with the exception of the boa constrictor and a few other reptiles. But one fish swallows another, vhole, for it has no claws with which to select the digestible and the indigestible parts; sc when a whale swailows a fish, he swallows it whole, Just as a man swallows on oyster. On the land the carnivorous animala have a very aimple digestive apyaratus, while tie reverse is true of fish-eating sea -animald, because there is such a great variety of pishes, ,some having horns and ins, and same with scales, and with such a vast number of bones inside of the tish. But the vegetable-eating animuls of the sea have a simple digestive apparatus, because the sea-vegetables are
very fow and simple. But on the land, we have a great variety of vegetables of all aorta--woody vegetablea, succulens vegotables, ofly regetablea, stema, blossoms, otc. But in the sea there are but fov vegetables and these are of a gelatinous character, so the vegetable -atIng animal of the sea requires a very aimple apparatus for digestion. I have aome very interesting experiments which 1 am goins $t 5$ show you. In man, ve have a very aimple stomach, and that means a very simple diet,--there ianto dodging that -- a aimple stomach requires a simple fletary.

Now auppose we notice what are the principle food-elements which we require: The principle food-elements are, fats, albunien, atarch, dextrine, and sugar'. These are the principal food-olements. Now where do we Ind these food-elementa? ve find them in the vegetable singdom. Fe are going to discard the flesh of animals for the prosent and consider it a foregone conclusion that man does not need to aubsist upon animals. Nearly ninety-nine hundredths of the human race subsist upon the producta of the vegetable kingiom and have nothing to do with fleshfuod. Now the question 1s, Which one of these foods should constitute the principal and the most acceptable dietary of mant Pats and albumen are found in nuts,--ve find abundance of fats and albumen in nuta-these are the two principal elements in nuts. In fruits we find dextrins and sugar,--imults consist almost ontirely of dextrins and sugar dissolved in water. Nats are hard and firm,consisting of fass and albumen, and contain very little water when they are presh. Grains are composed of albumen and starch. So we sec that in griains, ve are fats lacking. In fruits, we have fats and albu en lacking.

Suppose we study these substances a little, in the form in wbich we find these substancea here,--the principal ones and those upon which
ve most depend, are Pats and albumen. Starch, dextrin and sugar all belong together. Te are all farillar with fats: The fat is taken into in body and converted into force and energy and residual tissue, and acbehind evaniates in the akin and peds upathe eyes, and makes li:tle oushions and pats for the bones so ve will be better looking, and so as to keep us warm in cold weather. So fats are very usoful. Albumen goes to form the substance of the nerves and muacles, braing, and glanas,--the livinf, acting structures aro chicily formed from the albumen and fat. staroh, dextrin and augar belong to the same family, --there is another member Eleckent-cellulose, or wood; tho woody structure is made up of cellulose; so there are four members of the carbo-hyirate farily--starci, dextrin, sugar and cellulose--which are different forms of the very sume thing. These elements, when taken into the body, are usefol for force vodustion, and for heat -production, and for making fiat,--but will consider that further on. All these elementa aro found in the animal kincdom; and they are quite closely related--the starch, dextrin, suar and cellulose beine practically the same thing, as l have said. Ve find them in the plant in different forms, the starch and the cellulose being the stable forms, the insoluble or permanent forms-- while the dextrin and sugar are the soluble forms. Now the carbo-hydrates, Which must be removed from one place to another, are in solution and can be carried off, but when retained, this substance appears in the form of atarch or mod. So we find, for example, late in the pall the maple tree appropriatea the dextrin which is alvays found in the sap; 1t is carrita down in the sap of the tree, as cold weuther begins to come on, and it is converted into starch in the roots of the trec. In the Spring this atarch is largely convorted into sugar and is carricd up into the tof of the tree and converted into wood, in the form of laans etc. While it is in transitu and on its way up, the farmer comes and bores a hole in the tree and puts in a spount and steals a part of the
engar in the form of sap which hefoonverts into sugar after evaporatIng the watep.. In the Pall there is plenty of time for the sap to go down into the roots of the tree wiere it is converted into sexpeh. But in the Spring-time the tree or plant is in a hurey, and the sun's rays penctrate the earth and the warmith causes the roots to start up, and it gets a wonderful waring up, and the starch is converted into augar. Whiol in the form of sap is circulated in the troe and goes into the twigs and they pit out leaves and buds. In a littio while after the sap begins to circulate in the topt of the tree it beging to be bitter and to have the flavor of the tree, and the sugar has no longer its aweet taste, as it gets old ; its taste is spoiled, and there is no sugar taste at all. There are many trees beside the maple which heve the property of making sugar,--for inatance, the hickory, tho boch, the box and the elder; these and various other trees are making doxtrine all the time. The same thing la true of the sorgum. The a orisum is cut when there is the most sugar in the stem; the stalks are then emiahed, the water evaporated and the surar made. The sorgum is like other trees in regard to the makini of starch, only it is made at the other end, and then converted into sap and circulated the other way. The same thing ls true of the ear of corn: The sugar is circulated in the form of sap, and is brought into the ear and in the kernels. There is a stage in which the corn is said to be in the mills-stage, and then there is a great deal of sugar and dextrin which h not been converted into staroh, and the corn is then in the milk-stage and in the aoluble form-it has not yet been reduced to the permanent form, as it 1s then very aweoty. We used to have what we called "sweet-corn" but that corn didn't seen to be much aweeter than other corn when in the milk stage: the is about fiftcen per cent. of a ugar in the corn when 1 . is in the green stage...the stage when the ears were called "r asting
ears. ? Now the point that I want to eall attention to, 13 that ve don't have much starch in corn until it is pipe; but the dextrin and in the kernel sugar are converted into starch and deposited skane for future use.. The same thing is true of wheat: When ste wheat is in the milk,there is some starch present as the wheat matures, but by-and-by the dextrin and augar are all used up and converted into starch, and then there is but iftele awoetness in the kernel. Now, for what purpose is the atarch deposited in the grain? Por what purpose is it deposited in the kernel of corn and the kernel of wheat ? is it for man to eat? That is the queation! we are going to consider: but we will now consider what use It is for the vegetable. In making every little kernel of wheat or corn, nature does a most wonderful thing. Every seed or kernel is a legacy passed down to the next generation, --it is a last will and testament, if you please weil done up--the property is all done up and beautifully and closely sealed up in a little horny or glass case case. Nature always cans overything to be eaten in this manner, so the outside of the little kernel of wheat is glass; that 13 what makes the kernel 30 amooth. There must be some sand in the kernels in ordor to get a cood crop of wheat, otherwise the wheat wouldn't have sand enough to enable it to stand up/; there must be acme calcareous matter in the kernel to keep the water out and to protect $\not \subset$ th. So, in this manner, nature makes her last $\mathbf{1 l l}$ and testament and seals it up. This property thus sealed up in the kernel is starch, and it is all the capital with which the little wheat-plant is going to atart in life, and nature puts In everytifing necessary, the same as a mother puts up a basket of lunch for her boy or girl who goes to school: She puts in a pioce of bread and butter and a plece of pie, and possibly a plece of Bologna sauage , and a lot of other things, and nowsdays, to be really up to date, the mother ought to put in a dose of some digestive agent --pepsin or
somethine of that kind --so that the indigeatible things can be digested. But nature puts in the pepsin along with the atarch, --1t puts in a littile juice so digeat the stareh, and thls fuice is called "diastase," and a little of this is put in every kernel of wheat,corn, b brley or rye , and the purpose of it is, to digeat or transform the atarch. Then you take the kernel of wheat or corn f:om the stalk and pit it into the ground: The old fathor or mother is now dead and gone itas and the litele youncister lies beside 1 ta bundle--the gr pre wheat of corn lies right by the side of the bundle of provisions which is attached to $h \mathrm{hm}$; that bundle contains Mla breakfast,dinner and aupper,--1t is his whole property, --1t is his learacy with which to start out in ilfe, and while buried in the ground, the sunlight and warmeh reaches it and starts this diastase to work, and it digests sone of the starch in this little bundle and converts it into augar. The sawo thing happens in the roots the maple tree in the Springtime --scne of the starch is converted into sugar, and this sugar begins to feed the little plant -this is the "nuraing-bottie" if you please: it begins to build up the stem: for the atem must bs fed in this manner until it gets up into the sunlight, because it is under the marvellous influence of the sunlight that the marvellous transformation takes place through the influence of the carbonic acid gst, the air, the vater and the soll, and all the various substances which are are brought together by the sunldght to fall upon the plant --they are all combined into what we call 3 tarch, --and this is done by the sunlight, and it cannot be done until the stem reachstarch es up to the light. So nature puts enough nowflement into the little bumde to enable the plant to reach the 11 ght . If you bury it $t c o$ deep it won't come up, becanse there is not materail enough in the seed to enable the plant to reach the light; 1 ts captial is used up before
the time comes when the stem can use its apfaratus. If a bofy's father hus put money erough in the bank for him so stapt offa wion he comes of age, and build amili; but if he bullds his mill on too lerce a scale, te will not have money enugh leit so build the machinory Fith which to man his will, and if he has no machinery he must fail in businesa. Hoy if this listle kernel of wheat or cornis buried in she ground two or three inches $\$ 00$ deep, it grows the stem es high is it can untilits store of nourishment is gone, and then it is a goner" bacause it can't get up into the sunlight where it can receive help to manufacture dextrin and sugar upon which the stem lives and grows. The wod in our furnaces is always made of augar and dextrin, - it is the very same thing .. The chomist has learned a great many of these thergex intemestinf thinEs, and he inds that it pays him. so do.so. Dextrin is made out of starch by the Godernment: The manufacture of the mucilaje of postage-stampa take a little stareh and adds same acid, and the aclit and the starch aro bolled sogether, and as the result, we have a gummy substance which 13 put onto our postage-stamps. The cheintst converts the starch into sugar by boiling with an acid. Take some shavings and put in amonact a little sulphuric acid with it and and boil it, and you will convert it into surapi you ean convert sawdust into sugar in that way, n So we \bar{h} ave this family of starch, dextrin sugar and celiulose,--all children of the same father. The dextrin and the slagar are the travelling members of the fumily, if you please, while the 3 tarch and the cellulose are the 3 tationary members, --they 3 tay at home.

I: is very reasonable that nature should make atarch for the glant becallse that is something which cannot be dissolved and carried away: If nature should atore away a little sugar instead of starch, it would be dissolved by water or carried off by a rain-storm, and rainwater would
spoil the seed; but starch isinsoluble. But there is another thing about it : Starch is noniy insoluble, but it is unfermentable,--1t cannot forment; pure starch is absolutely unfermentable. I have a me starch here, --thla is pure starch. Thls is corn-ctarch; now if you take this atarch and add some yeast to it,will it Pcment? Not at all. You can': ferment cornstárch with yeast. Can you make raisec bread of cornstarch with yeast? ("No.") And you can't make light biscuits of cornstarch and yeast, becallas there is nothing in the cornstarch that -III fement. In opder to ferment, ths starch must first be trans-formed,--and the brower knowe that, so he puta it into a varm room and puta it in a pile, and it gets marm of itaelf,because there is life and heat in it , and it begins to hont uy, and then the bever shovels it over again and piles it over again and moistens it, and the grain of barley don't know but what it is in the ground, and it begins to grow ; $1:$ don't depend upon the soil for frowth, for, as I have said it has a littie legacy which it received from tho old plant. About ten per cent.of the bariey grain is converted into sugar, and the brewer dries the barley so it cannot grow any more, because that is as much sugar as he expects to get, and he dries tho it and makes a decoction of it, and then he tukes the decootion out and puts yeast into it,and then he reta a fermentation; he must put yeast in it before he gets fermentation,--he takes the decoction and puts yeast into it, and then he separates the solution, or "wort," as it is called, and then puts in yeast,and there is digestion, --he must have digestion before he has fermentation.

Now let us sce about the digestion of starch in our owi bodies: Whon you take starch into the mouth (I mean rav 3tarch, and I have no rew starch here), the saliva would have no action upon it at all.: it wouldn't affect it any more than so much water, and then it coes
down until it comes in contact qith the pancreatic julce below the atomach, and thss liuid will soak through the woody sholl which contains the granule of atarch, dissolving it and digesting the atarch; and this work the other digestive fluids would not do, any more than vater,-and you might pour on these granules of starch pailful after pailful of watdr, and it would not diasolye them; it would diasolve sugar very quickly, but it would net dissolvo abaeoho rav starch. Te have often made experiments in giving patients piw starch,--raw plour or raw starch in other forms, or corn-starch--in a test-meal, and at the ond of the hour, after examining the test-meal, und found that there was no sugar romed at all. Sut if we nöe cooked starch in a aimilar manner, wo i find a different result; for instance, if we use cooked starch in the form of oatmeal mash, bolled pice, bread, browned pice or granose biscuit or any other cooked food--we find then, thet sugar is formed, and we find it in a propurtion, sumotimes, as high as ten or fifteen percent.of sugar fored in the atomach ?lutd, --that is, in a hundred graina of stomach fluid there would be ten to fifteen grains of sugar which is formed by the action of the sellya upon the starch.

I will make a li:tle experiment here, that will help us to understand this, using the se li tle tubes: Here is a bit of raisin, -we zedil add a littio water to this raisin in this tube,--now i will shake it up and $\chi_{\text {tiurn }}$ it out; I have dissolved out a il tle sugar from the ralain, and I will heat this orer this alcohol flame a moment: now it begins to boil, and I will add a little of this blue solution; at first it aakes it blue, $--y 0 u$ can see the change take place --it is no longer blue; it has becone yellow; that is the test for sugar-this blue solution has become red,--that is the ttest for sugar; so we know there is sugar in the raisin. In like manner 1 might test dates,figs,
and any other aweet prult that we snow of, and it would produce the same result. Cane sugar, however, will not produce that pesult, ,--1f ve test starch in the same ranner, it $\quad 111$ not produce this result, and the same 1s trie of cane-augar i it would behave just as atarch does. Here la a little corn-starch and we will try the experiment vithit, -0 Nov it is biling vell; now 1 wil pu: in a little blue,--there is no change--it remains blue; so we will set the aside. I have acme flouratarch here, and I will take a little in my mouth and chew it a moment, and then 1 will take a little water and pinse my mouth out, end svalLow this etarch thet 1 h ave chewed into this test-tubo,instead of swallowing it into my stomsch, for I don't belicve in eating between meala Abraham Inscoin was once challenged to lift a barrel of whiskey and drink ont of the bung-hole, and he didd so, although he was a semperance man, and then so e one comnenced berating him for drinking whiskey, and he spit the I!guor that he had dinged out upon the floor, to convinve othera thet he wan still true to his tomperance principles.--Now we will heat this for a moment, - here we have evidence of sugar, when we apply the test,-1t is a derk red color; 1 will hold it up in front of this nepkin so that you can all see it --there is sugar here. A moment aco ve tried the starch, and there Tas no sugar--just simply starch-there was not a particle of sugar the re. Then I put it in my mouth a moment and bring it in contact with the saliva, and there is an abunciance of 3 ucar, --ilust the same as we had in the raisin that was aweet. Here we have evidence that the saliva des sanething to the augar which has been cooked; b when the starch is rae, the saliva cioes nothing at all to it; the selive carnot digest raw starch, but it digesta cooied starch, it is by no means a simple process to convert starch into sugar--ve
might say, it is a "Par ery," as some of the litterateurs would say-Prom starch to augar: it is a long way off. Sometimes it is not a far cry,but a loud ery, when the baby gets the cholic when the raw starch Which it has eaten was not converted into sugar, as it ought to have been. Pirat, we have at the bottom hore, starch, and it goes all the Way up to sugar in tho process of this change--it traveis in an uyward scale.

There are some thipty or Porty different stopa Prom stareh to sugar,--3tarch ia convertcd into one aubstance, and then anotger and then another, and so on until it comes to the stage called erythrodextrin, and thn it goes on for several stepe or stages more, and by -andty it comes to achrobdextrin; then it goes on a number of stages more until it cones to maltose, and thon it eltmbs us eavoral stepa more and becomes lemiose, the sweetest of sugar, and inla is several stegs above malt ose. So from starch to amylodextrin there are aeverul steps; from amylodextrin to erythrodextrin there are several stepa, and from achröp there dextrin to maltose tit ase several stopa more, and then there are several sters more to levulose; so it is a longladder to climb in pasing from starch to levulose which ia the last stage of the digestion of atearch; sostarch, in the process of complete digestion, is convertad into levulose which is sweeter than honey.- so raw starch is converted in sugar by the process of digestion, of by cooking: If you chow a dry cruat for a long time, it gets sweot; that sweetness is due to tho formation of maltose $--t h e$ epust $1 s$ chewed until it becomes maltose. Sut no matter how long you may chow tar starch, it will never become aweat; but after it has become anylodeatrin, erythrodeatrin or achroúdextrin, 1t will become aweot by chewini, and the length of time it must be chewed vill depend $u_{\text {on }}$ which of thesa stages it has reachod: if it is anylo.
dextrin, it will take a long time for it to become sweet, because there s:111
isala long porcess before complete digestion is reached ; if the stage of erythrodextrin has been reached, it will not take so long: if the stage of achroodextrin has been reached, it will become sweet in alros: no imethat was the condition of browned ataren that I tested a momen: ago, 1t aimply passed into my mouth, and cispecty we had same sugar,--ve will try it again: Fere ts some of the atarch thet 1 have already 3 hom you, and 1 will take me of it in my mouth, and I get it out again just as quick as I can,--It was so diry that it wasn't easy $; 0$ get it out-1 will take some water to pinse it down into this tube, --thit is the way a pood many people oat their bread--they rinse it cown, and 1 have rinsed this down into this tube; now we will test it end see whether we have any augar here or not; when it boils a moment we will apriy the test to it-now it is boiling; nov I think you can set this recidish color. Now here is sone raw atarch,--sume starch that has not been cook-ed,--now here is the blue and hore is the red-here is sugar here--1

Juat pass that into my mouth and take it out as quickly as possible and here is sugar. Now if, instead of being browned, it had been cooked only a little, we would not have had this result --1t would have taken a long time for the change to have taken place,because the starch wald have had to pass through all the diff rent staces up to orythrodextrin and then from erythrodextrin to maltose, and from maltose to levilose it takes but an instant to pass, the change taking place as the maltose is passing throuch the mucous membrane and $A^{1 s}$ beine absorbed into the blood. The sweetness of the shigar is beyond our comprehension since the levulase 1 s formici at the other end of the digestive process. Youmight wonder why all this gustatory pleasure is wasted on the "desert air" of the intestines, but ve find, when we cone to look into the matter, that it 13 not wasted, as I will 3how you later.

Now the food never pomains a long time in the mouth long onough for the saliva to convert it into augar: it remains in the mouth only 1onc enougit to be chowed and awallowed, and a amall cart of it only is transformed. In order that the whole of the starch shell be transformed, the aaliva must have an oportunity to act upon it for a little time, and so nature allows the saliva a little time to act uyon the starch in the stomech--1t allow it about thirty or Sorty minutes, and then the acti on of pertic digestion bogins. The saliva is an alkaline medium and refulres that the contents of the stomach upon which it acts shall be alkaline. But the gastric juice is acid and shis acidity paraljzes the sailva and renders it impossible for the aaliva so act upon the stareh; this is tie case at the ond of thirty or forty minutes aftor the atarch has been taken into the stomich, when the eastric fuice accumilates so the the conversion of starch into sugar by the action of the saliva can no longer tale place; so thet procesi must take place during that time. That is is large business for the saliva, when we considicr how mach starch we eat; for a day's rationa on the average, of starch, is about sixtecn ounces or one pound of starch--that is the average daily ration. I went you to get this point, if I can, --that the saliva 1s acting on sixtoen cunces, or a pound of atarch, on the avarage, every day, and mast convert that sterch into algar, --in the stomach it is converted into maltoae, - a portion of $1 t-$ and then it passes into the intestInes, where it is actea upon by the intestinal juice and some more of it 13 converted into maltose, and then it la acted upon by the pancreatic juice, and the belance converted into maltose, and the maltose passes through the macous membrane to be absorbed into the blood, and while passIng through the nucous membrane, it is converted into levalose.

Now you can readily see that if the starch is taken in auch form that the atarch has ifficulty in converting it, thst there might no: se time enough for its work in this thirtyminutes; if the starch is eaton raw, tho suliva will not ect upon it at all; and if it is only slighty cooked, of in the atate of arylodextrin, then the sallva will act upon it but little . See thet would happen if acme of this partially cooked atarch, --a little of this pice-- wien this is mixed up it makea a beautirul paste for ractening paper on the wall,--1t will make it stick first rate, and if any of you ahould take hold of it would be hard rork for you to let go; if we shoule put this paste between the leaves of a book it would atick then togotber leaves together. Now 1 put this paste on this class but 1 can hardiy get rid of it $;$ it sticks, and it $1 s$ in chunka, you see. Supiose 1 put these chunks into a pail of water and stir the water,--it would not dissalve them. Here is sore outmeal which is in about the same situation,--1t is aplendid paste--capital paste for puting paper on the wall, --but how an 1 going to get rid of 1:? (washing.) I can't get rid of it--it sticks. I will turn a littis water on--l can't rinse it off, becanse the water don't dissolve it. I must consinue pouring a strean of water on it for a long time before I can get it off,--it won't come off yet--it is capital paste, but it is very poor diet. Now when starch goes into the stamach in this con dition , these chunks stick to the stomach walls just as they did to my hends; and do you wonder that you fecl a heavy load on your stomach,-and, I suspect, a load on your conscience sometimes, for this food hange back in the atomach till the stomach gets sour. Now, although this starch mon't digest easily, it wili readily ferment, - how long does it take to it to ferment if put in a varm place? ("About an hour.")

I have be n washing my hands for ame time, and 1 would like to have same one oxamine them and see if they are not atieky yet. (A lady:"They are very sticky. ${ }^{\circ}$) It is no wonder that wo have slow digestion, when wo put into our stomachs auch abom!nable things as mishes, oatmeal-mushea, cracked what, half-ccoked rice--or quarter-ceoked rice--that is , paisy pice--oatrieal grue - and that act of stuff whileh wis never intended to ge into the stuach, and wich are bound to make $-1 \operatorname{seh} i \mathrm{e}$? in the stomech. I think the aiseries of mush and pice are eyond almos: any other kinds of foods which cailse dyspepsia. Peuple never suffer someh storach misery from the use of meat as they do from the use of mushes and other aimilarly prepared farinaceous foods--kettle -cooked starchea, as we might call them, for they are in the same conditionf as starchseods which have been cooked in a ke:tle. The reason of this suffering f-om the use of partially cooked stareh 13, that it has boen coolece into paste, and the paste forms into lumps in the stomach. The same thinj is true of bread shat is imperfectiy cooked, --\%e will test this bread and ace What is ita condition. The grod breadmaker anys the bread must bo baked so that when you rub it up, it will crumb. Aht that is not the cese with this bread: this is not crumb when I rub it up,--1t is a bit-let--Look out over yonder! It will hurt you if it strikes you, hecause it is reaily a bullet, and such bullets as the se, shot down into the stom ach at the dinner-table are responsible for the pains and sufferinge that have kept many people in bed for years and years and years. They might have recovered from the effocts of Spanish or Philipino when
leta, but this sort of bullets andernest are rain into the 3 tomach In a sort of Gatiln-gun discharges at the dinner-table, no wonder there is trouble. Now 1 will toss this over there among you, and you can see What sort of bullet it is--(throwing it.) It bounded clear back nere.
nov I muldn't eall that very good bread ,--why? Because when you eat such bread, it romains in the stamach in the form of bullets or chunks; I hye a garbage - box at home, and I toss such bread as that into the earbage-box where it belongs. I will examine this again and see what is is like, - I Will throw it in thts basin of water; now 1 am waiting to soe if it is disaolved, --they don't seom to disaolve the loast bit: I will leave these four builets here in the basin a little time and sce what dis position the water will make of them, --this bread makes aplendid bullets. The brodmaker says "If the bread makea a dry crumb,then it is good bread." So shis bread is not good bread; it should have bean baked until you couldin't make bullets of it $:$ but it is imposaible :o make emmb of this bread, - It is bound to be bulleta, -- and so it is no: good bread. Now take these builets into the atomach and aee how they are digested : The sallva can ilszolve a little of the outside of this partially cooked starch or amy doxtrin, but the gastric juice cannot digest it, because it cannot act upon starch. Here are these billets that have been in this water all this time : I Will shrov one of thom againat the window pane: (throwing it.) It bounded back,-here it is; it is just as good a b:ilet as over,--nov I wiol throw it against the window pane as hard as I can--(throwing it.) Here is the bullet, --it didn't phase it at all--I will shrow it again as hard as I can--(throwing 1:.) Here is the bulict,just as f cod as ever. Now I will pass this bullet round on a plate, and 1 would like to have you all examine $1 t, \ldots$ 1t is a bullet that I nade from this bread--and you may nov havo some bullets in your stomacha just like it --and it would be no wonder if you should dream of war and bloodised with these bullets in your atomachs. (Laughter.)

Now ate what happens shen the se bread bulleta get in the atomach; they lie in the atomach in wads and heapa all over the stomach, $3: 1 \mathrm{ck}$ ans on the walls of the atomach just as they would etick on the pingers; they anylodentrin to the cennot digeat, because the atach is a lone way from the stage of \wedge matranax atage of maltcae;it has got to iravel that whole road over in the short space of thirty minates,biat although that is a sho:t space of time for she conversion of starch into sugar,yet it is time onouith for the starch to ferment . Now I will show you a eonteast : Here is sone atarch that has been thoronghly cooked. I have ciroped a moistened bit 6 of granose biscuit into this glasa, and 1 will show you the difference in armoment; now you can see it awolling out,--here 13 some granola; I will put some into this glase and luill add a little water-now it ds all soft. Now 1 W121 turn this from one glass to another. I will seo if this is sticky, and I will ser if I can make some more paste ,--I will Will do just as 1 did with the cauan-I will mib it in ay hands and tey do my best to make paste, and I vill spend more time with it than I did with the oatieal, and see if l can matse some good sticky adhesive paste. Now watch this a monent and sce what happens: (Vashing the hands.) My hande are aboclutely clean, --will some one come up and see 1f thereis any sticliness on my hand? ("None at all.") You didn't have to use a napkin to wash your hand off after examining mins, as you did before? ("No,sir.") It required just a dip, and the pasto was all fune. ("How is it with zweibacis?") It is fust the same with zweiback: I rub ame of it in my hand and jas: one dit of water washes it clean; I heve only dipped my hand in water and it is perfectly clean,--will this lady kindiy examing and soe how it is ? ("Perfectly clean.") Now you see the difference betweon this paste in the stomach and the granola or the zwieback. Man this well-oooked starch gets into the
strinaeh, and cories in contaet with the dizestive pluid of the stoasch it is codveed into small particles which ere readily passed along into the intestines and the stomach becomes clean right away; the contents of the storach are then homogeneous, and the flulda come in oratact with every liftle particle, so that the food is easily digestod. here is sorie granola, and 1 will rub it in my hend as hard as 1 can, and then dip my hand in water,--it is clean as before. The same thing is true of gran nut, and similar peparations the starch has boen cooked until it is brown,--1t has gone through thege different stages of digestion, and it is no longer paste--it has pasced begond the pasty stace. Paste is the efrst stage ; in the next stage the starch is soluble; the next stage is achroddextrin, in which the starch is in the condition in which 1t eannot stick any more than augar--1t washes off just as quicir eas suEar will, and you know augar does not stick.

Now I mant to show you the difference clearly, that can be recofnized between these different sabstances: For instance, I will put a
 water-l will fill this about half fubi of water. Now heve is same granola, - 1 wij. put aome water in also. Now 1 have some rice hore, and I W111 put asme rice in this glass--some paste, if you please. And hore 1 have some outmeal-our alimy friend--I confess 1 hate to touch it --I feel as though l had get hold of an oyster or amething of thet kind It is hard to get it off,--it aticks like a life insurance agent, and I cant fet rid of it. Here is a bullet which has been soaking for filteen or twenty minutes--and 1 will pelt the window with it prithrowing 1: .) Here it is, - it is still a good hard bullet. I believe it would k!11 a man if it was fired richt at him at cloas range . Nov wo will throw it against the floor--(throwing it.) It has escaped from us,but we
have soue more, which are just as good. It 1a aztonishime how adhesive these builets are, - I will thr ow this builet ugon : 0 floor as hard as 1 can--(throwing it.) It bounds up two or three feet from the floor: 1 thint with a ifttle practice that it would bound uy three feet. Now ve have these various forms of starch soaking, in urder to get rid of the solution. And hery is the grancla and hare is the gran nut;here is soma cranola and here is aume rice. Now we have tests by which we can peconize starch in its difforent forms: 1 vill :urt off a litile of this atarch-rater. Here ve have a sabstance which is a test fur starch and when it is appitied// to a substance, if thera is stareh present it will produce a blue color. Now 1 wlll hold up the napsin hore--do you see this biue color--it is blue like indizo. ("Yos,sir.") Now we will put that down. Here is some oatmeal ater, --ve vill put some of that In here and see what it is like, --it is as biue as indigo, you see. Nor 1 will put that down. Hore 13 zome granoza-water, --the bluenes: has disappeared--1t la a littio blue--I vill put in some more-that has disappeared: I pat in three ties as much hopa,--there is just a faint blue color that remains; it takes a large gantity of it. Sow we will have some of this sointion-this is gran-mut. Now please notice, -there is no blue at all; nor it is rurple instead of blue--it disap-
 if I can--this is better; 1 wish you wepe near enough to se this beautiful purple color: 1 will put this side by sido, und 1 think you can see: I 3 till keep adding to the quantity here. How I think if I hold the napkin u_{p}, you can see the difforonce between the two colurs-one is bluc and tha other is purple. You can't fet tis blue color Wth this proparation of gran-nut,because there is no arylodextrin there; it has reached protty nearly the sop,--1 will put in a large quantity--
more than I put in either of the others, --now I have a faintly purple color--slighty purple--I will put in a little more, and see if 1 can't get a $2 i t t i e$ more purple. Now 1 think we have made this point elear onough, --ean you see this rosy tint in this, and the purple in the otherp ("Yes,sif.") That is because we have here, starch carried further in the process of digestion--1t is nearly maltose; a large portion of this is a maltose, and a large proportion of it ready to become maltose, and it requires only a short operation of the digestive pluid to convert it. Now if I put soce of this solution in a teat-tube and boil it for a :ooment, and then apply the test to $1 t, 1$ vould find a large quantity of sugar present, - just as,in testing the raisin, fe found a large amount of sugar. This has almost reached the boiling point: it makes a blue color at first: in armoment you will see this blue color change; the blueness *ill entirely disappear-now it is a recidish orange; this is because there is a large proportion of sugar present; chamical analysis shows ab about twenty-five percent 8 sugar in gran-nut,the conversion beine 30 complete -

Now if we take this paste into the stomach in the form of oatmeal mush, it digesta slowly, not only be cause it forma in an adheaive mass, adming to the walls of the stomach and everything in reach, but because it has only been very silghtly converted, and th saliva has so much work to do to convert this slightly cooked starch into nalfose; whereas, if we have starch that has ben cooked until it is browned, --achrobdextrin--we have, itstead of the diffuculty we have been complain ing about, we have the starch quickly digested, and the sugar quickiy formed, and the starch passing along for absorption in the lower part of the alimentary canal. The very same thing is true in reference to swioback that is true of granola and granose. Here we have a little solution, a iftie water and a crust of zaleback, , -and the same thing is
t mie of a erust of bread. Ve aro: in a drop and shake it uy and it disaycears : drop in another drop and shake it up and it produces a sl!ghtly putplioh color: shake it up acain and it disappears,--just as In the case of granola and gran-nut, whereas, in the caze of tho oatmeal and the starch, yon remomber it did not disappear. I will try it acialn, t. © show you the difference,--here 13 a solution--now 1 will put in a drop or two,-jast, a little--thare it is--a parmanent blue color; it romaina blue all the inme,because of the amylodextrin o- imperfectly cooked starch.

So mach fir grains. But when you come to conaider fruits, it is a very different thing: Here is an apple,--I will cut it open and apply some of this stareh-test to the apple,--1t does not bec me blue ; you mould see a 11t:ic murple towari the top, but thore is no blueness o to the aprle , becanse there is no ztarch tas in it worth talking about. New we vilil try this banana, and sce whet result we will zot, --ve will cut it open endwi se so as to have a little more space; now we don't 300 eny blue in the banane, -we see only a alcht tinge of purple,--that is because there is cextrin there; there is no starch in the ripe banama and none in the aplie. Fere is a banane which is ereol on one end here $/$. Now if so me of you are near enough by so you cen compare the two endsthe end cut and the end not cut--do you see this little blue color in the center? There fa starch in this banana,--this is a green banana; we rould have the same result with a green ap le. The ifreen apple has no elmes:
flevor: the green apple landigestitle and will rive children chulic; ihis is not the most digestible of foods, bet still it is dicestible. Fe will anply the test to this cocoanut,--we find no starch in it, but ve find a little dextrin; here is a li:tle purple color, stowinis that there is a listle dextrin in the cocoante but there is no atarch there.. The same is true of all kinds of nuts except the chestnut and
welnut. Pruits don't contain starch. Nuts e ntain oils adn albumens, while frite contain sugar and dextrin.

Now 1 will call your attention to a form interesting facta, and 1 will put down a fow food-clementa,--Iirst, fats, albumen and starch--what was the atarch convorted into ? ('Dextrin.") and whit else? ("Sugar.") Now there are really a!l the food olements--Eats, starch, albumen, sugar, and, of course, salt, but that is in all foods, 30 ve will leave that out. Fo have fats and albumen in what P ("In nuts.") And we have dextrin and sugar in what P (Fruits.) Dextrin ant augar is the same as starth. Then are all the food-elements in nuta and fruits ? ("Yes, aif.") In other words, nuts and fruits put together make an absolutely perfect diet. Whereabouts do we Ind the starch and albument ("In grains.") Suppose then, we have grains, and fadd nuts and Pruits to them,--that would make a perfect diet,ppovided the starch was digested. If we had only fruits and grains, would make a perfect diet ((*No,sir.") I will write "graing" here,--grains, albumen and starch. If we put iruits and geains together, we have albumen and starct in the form of dextrin and sugar in fruits, and albumen and starch in grains,--would that be a perfect diet? ("No, al r.") That would be lacking? ("Pats.") Pruits and grains would not make a perfect diet, but fruits and nuta mould make a porfect diet,--could we live on a diet c fruits and nutsp ("Yes,at r.") When can we cat grains in such shape as to produce dextrin and sugar p ("In the milk stace.") Yes, we then have dextrin and sugar present,instead of having 30 much starch. $S o$ we maF take fruits,grains and nuts and find in them ail the olements we need for the body, and in a state prepered for prompt and easy digeati n--especially in grains in the mill state and starch in the form of dextrin
and sucar in fruita; here we have everything that is required for the nuteriti on of the body.

Now what 13 the otjection to the use of starches in the first place te may bay that it Tas not designed for from the first that we 3hould oat starch so syy considerable extent, beeause our teath are not constructed so as to chew it in the dry brain, but thoy are adalted to chet the aralns in theip unpipo stata, juat as they are adapted to chem nuts and prusts. In the aeconci place, stareh in the res state is not digestible in the stonach,--and thit is the reason, by the way, that "cold-slan" makes lesa troutio in the at mach than cooled cabbage. The old-fashioned New England "biled aimmer" 13 pretty likely to make a row In tho stomach; but the "cold-siav" males no troublo in the stomach, because it asses on through the stomach 11 ke so mich alaving or swdust, because the staren is rav and cannot digest in the storach, -ard the atomach says, It's no uso trying to d anyt:irit with that." It 13 like a store-ienopor who has a customer cone in , who is dene and cimo-he knova tho火e is no use in tryias to do business pith himbocauso he can't talk with him and can't comanicate ith him, so he strply zasces him by. So, whan the athact finds the "euld-slaw" coning ciom,it a.s no attention to it, but shay lota it pasa rigit along. But if the cabbage is cooked, it wil stay in the stolach a livtle while but the atonach cannot direst it roadily, and so the starch fermenta and sours in the stomach, the same as does particily cuoted ont:neah-it souts in
a few hours. I do not any that we ahould not eat starch, but if we are EOing to eat starch we shat bring it first into the form of ticxtrin,-and when we have done that, we have brought it into a stite in which ra-
 no: saying that we should not oct starch,--it is raw starch that we should
not eat it unless it is in the stace of achroodextrin, and then it is In the stace of fruits and nuts; it is then fit for human consumption. and other unwholesome fcod 3 , When we come to the reason for the use of so much starch, it may be accounted for by the barren condition of the earth, the disappearance of so many fmit and nut troes from the earth, and because so many people live in countries unfarorable to the production of fruits and nuts . Some one recently azked ne what the Eaquimaux would do, if it ware not for the fats or "blubber" that he eats? "y answer to all such questions 13 , and has been, "I should advise him to move sough where he can find wholesome foods. Man's home is in a srop leal country where there is an abundance of fruits and nuts. You -111 Pind an abundance of auch fruits in \%exico,--for instance, the "sapote blanca", which is as aweet as honey; and the "chere amoya;" a fruit Whioh is like honey in the beehive; then there us the "agua cata" the flesh of which is like the ifnest dairy bu!ter witout the sayor of cov or the presence of germe; then there is the "melone sapote," pine apples, a
etc- $\boldsymbol{\lambda}^{\text {frdit as luscious as peaches ; they are a dollar apiece in Boston, }}$ and you can get thom for ten cents in hexico. In these tropical climates you cen find abundance of luscious fruita in which are found starch in the form of dextrin and sugar-all digested. Nature intended us to take our starch almost completely digested, and never intended that we should take it in a raw, refractory state.

The evils which grow ou of imperfectly cooked starch are almost innumerable. Starch eaten in shat condition remains in the stomach for a long time and ferments and sours,and the acids formed icritate the mucous membrane and set up catarph of the stomach and these sour contents pass down into the intestines, and $s e t$ up irritation there,
so we have gastric catarph as the result, and we have gas in the stomach, and that results in the distension and dilatation of the stomach, and re have gastritis and other troubles from the absorption of acetic acid, and acetic acid is orse than alcohol in the production of a "ön Liver;" ve have also eirrhosts of the liver and the fomation of butyric acid and formic acid, and so the whole body is doranged. This trouble leada to the worse hablt of neat-eating, for, in order to avoid these troubles, many people get in the hablt of meat-eating. Many porsons have aequire the habit of eating oatmeal and similar foods, and have become dyspeptic, and so they commence eating meat with their oatmeal and the difflculty is increased, the acidity ot the stomach is increased, and they fistiple
 oatmeal because it gives him such heaviness and distension of the stomach, he thinks the cereals don': agree with him--(and some doctors say they cause rheumatiam) and 30 they cornenee eating mats, and these dovelop poisons, --he says, I must eat becfsteak because it aits easily in my stomach--" and so it does, because it does not bloat and aour the stomach, and is digested by the gastric juice without much difficulty. If he eata a combination of beefsteak and catmeal, he is worse fef than before, because without the meat the fastric fuice kills the germs which provent the oatmeal fro digesting; but when he comes to eat beefsteak alone with the oatmeal, the beefstak absorbs the gastric juice so that it can no longer act as an antiseptic, and then the outmeal becins to ferment, and soa combination of becisteak with these imperfectly cooked cereals peanlts in the worst kind of disorders, and so, little by little, the man dropa off the oatmeal and aimilar foods,for the stomach gots so bad from the uae of such foods as the inside of the luf of bread, as it is the custom in some hotels to cut off the outside of the loaf, leaving a sort of whited sepulcher. Now the crust is the only part of that
$\underset{\text { bread }}{\text { bren }}$
that it is possible to dicest ; the central portion contains millions of 1ive germs, and when awellowed with beefsteak it is indigestille because there is yeast in it, and hence it rises in the stomach just as it rises in the bread-srourh, and there are germa in there that sour it, Just as it would have done in the teough bread-trough; so the dough is going to remein in the stomach for a long time-and the beefsteak requires several hours for digestion, and so fermentation is certain to take place, and the man finally eats nothing but beefsteak, with the other evil thing furniahed at the averace hotel.

And so we have become a meat-cating poople --Americans as rell as English, and the Australians who are the groatest meat eaters; and ve have come to the point where the Anerican people have come to be recognized as a nation of dyspoptics,bceause of our excesiivo meat-eating, and our excessive use of uncooked cereals,--and it is uncooked cereals, in my opint on that are targely responsible for the oxtensive use of meata, --thls and the manufacture of the a-ceilled "breakfast-foods"with the advertisement thut they are "ready for use whon cooked fifteen minutes." Now it is imposible to prepare cereala for eating by kettle-cookinf; for any length of time, -or by steaminc or bolling. They must be cooked dry, at a temperature of ahout 300 . There are thee kinds of cooking of cereais,--kettle-cooking, oven-cooking and roasting. Kettle-cooking simply makes paste; oven-cooking is a great deal better,--the only proper cooking is the oven-cooking or roasting, in which the starch is cooked while it is dry, exposing it to a temperature of 300°--and that gives complete cooking. I am satisfied that the human race was never intended to eat dry starch. Vonkeys cannot ea! it because they have no cookstove. But we are in a situation in which we must accomodato ourselves to our difficulties--
or the czergency in which we Ind ourselves--born in a void in vilicis there 1a comparatively very little thet la wholesome; and ve mua: make the best of it, --and in order to do that with $3 t a r$ h, ve mus: cook it until it is brown, and then it is in a min in wich it is if: to eat.

DRESS-REPORA TALK, June 6,1900 .
I. H. Kelloged
--- 00
Fe are to take up this subject of Sresis-Reform and conalder it a 1i:tle fartherthink it is important to llave juat this kind of a convention, and I wiah we were getting more out of it. We are not geting much out of it, be cause 1 think the weather is too warm. Ne talk about these principlea,--they are all plain and aimple and easy to be under-stued--and yet, when some one asks you about this subject, there is a great blankness in your mind, --there is a general vacuity in the mind-a creat vacancy there, or a a rt of vacum. Now I am anxious thet we shall get these things down in black and white, so that we may have a schedule or outline, so that the young man or woman who is lecturing on this subject will find a lot of hooks on which his ideas are hung ao that he will not have to talk an hour or two befcre he comes to essential things. The purpose of this convention is, to sort of thresh the ground over and get at the facts pertaining to this aubject in this way. If you are going out as a lecturer and can use and explain this Inatrument (the pneumograph), it will be worth a great deal, because it 13 the hardest thing in the world to make people belleve the truth in regard to waist constriction. There were only two or three women here yestedidy who were really convinced of the truth concerning the influence of the belt. Bost of you came here with tight dresses,and you couldn't take a deep breath. I don't believe there were more than two women here je sterday who would have dared to stand up and take a deep breath. Dr. \#inegar and Dr. Geisel passed the teat, but I don't think there was any one else who would.

There are many lades who are proposing to make a reform in dreas Who are themselves suffering from constriction of the waist,--and they
have a right to breathe- a woman has just as much right to oreathe as a man. If you put a etring around the lower part of the chest,it reatricts the action of the entire chest; that fact appeared so plainly yeste eday that I am anxious to impress it upon your minds. I see thore are sev ral here today who were not present yestedday, and so I will illustrate this principle again: I will put this string round here (Skeletin of the daest); you see it is very loose and ready to fall off, and yet you see the chest cannot expand. Now I will drop it off, and you see there is expansion there. Misc....... , will you come up here a moment; put your hands down and see how little preasure will reat rain tho expansion of the chest where the string is tied. Now appose a woman saysp, "I don't wear a tight drese, -. I have no tight dress--l don't believe in tight dresses; my dress is simply as large as my body. Mrs. Singer says it is impossible for one to breathe freely in anything but a nifhtdress.) Now put your hand down here, -now try your own chest, and you will see that it does the same thing.
Q. Do you mean to say that our dress should be so we shall breathe in this way all the time ?
A. No; that is voluntary mentatige respiration; but the chest has that degree of mobility, because, when a person lies down, he breathes a certain quantity of air, and when he is rumning, he breathes seven times as much, and in order for the lungs to take in that much, the chest must be able to expand that much, and the clothing must be adapted to the necessity for expansion. ("The dress cannot hang on the abdomen.") No, it must hanc oncthe shoulders, ,-I am glad to see that you are getting some $11 g h t, M r s$. Singer, for the fact is, we get such vacue ideas upon this subject. Now Dr. Winegar, show us how to breathe nomally. (Dr. Winegar comes forward.) She can breathe perfectly well, -what is the objection to this sash?? ("None; but the clothes should be made of
light material,--people wear too heavy material.) Yes. ("But we can F past having anything round thispart of the body.") Can't they wear a sask? (Dr. Vinegar: Yes,--but I don't think that is perfect, although the sash is as comfortable as anything that will co round you; you can breathe freely.) Anything will do thet is not tight,--2 woman has no more ght to be tight than a man has. (Dr. Ninegar: So far, every successful reform dress has been constructed so as to imitate the ordinary man's dress as far as possible, but that is a mistake: the only proper way would be to have the dress made in one piece, like the Grecian gown, the weight hanging from the shouldersithe difficulty is, that the skipt is buttoned onto the waist.) A man buttons his vest. (Dr. Winegar: I don't think man's dress is an ideal one either.) No, because the suspenders are a terrible nuisance: When a man wants to work hard he ties his suspenders round him. ("Coal-stokers never wear suspenders.") It seems to be impossible to wear clothes and be perfectly healthy,any way. Clothes are simply an evil: In the first place, it is a very dirty thing to wear clothex,--wearing clothes is a dirty habit: it accumulates the dirt that should be thrown off from the body at once; this dirt accumulates by means of the clothing, and is held in contact with the body, and the body absobs it into the tissues, and it should be thrown out. In the second place, the clothing has no nerves, and cannot be regulated so as to sult changefs of atmosphere and temperature. The temperature,for instance, changes five degrees, and the ofin would adapt itself to it, but the clothing cannot do that. Ne perspire freely and there are more accumulations,--the clothing retains the molsture, there is excessive persplration and evaporation, and we thus become chilled, and the result is, colds,sore throats, catarphs, pneumonias, and gencral sickness and debllity. Nearing clothes is one of the most unhealthy habitsof civilization that we are compel-
led to subinft to.
Q. (Japanese lady:) 1 hear that in your country it is not the custom to go without shoes, and that it is not considered nice to do so,--but itis, in our country. Do you consider it unhealthy to vear clothing on the feet? and if so, why?
A. Yes, because we get debilitated, and our brains fe twak, because the soles of the feet are great vasomotor centers connecting with the internal organs and the brain, so that the feet have an important relation to the internal organs. Here is a man whose pulse is paralyzed, we apply cold water to the feet in order to contract the bloodvessels of the brain; we apply hot or cold to the soles of the feet and thet will affect the bloodvessels of the brain and frequently relleve the difficulty. Nearing clothing on our feet causes ill health. In the Kneipp Institute at Würzhaven (?) even lords and ladies go about the streets barefooted and bareheaded. (Dr. Kress: I have noticed, while in Europe that some of the people go barefooted.) I think we nust have a bic pen constructed where we can turn patients loose in bathins-suits,and so barefooted in the sun, and have exercise. I believe that exercise in the open air woald do more for them than lots of treatment. I believe there is room for such a place of exercise on of our big lots.
Q. What do you think of linen mesh for underwear?

AL I think so much of it that I weat it summor and winter; it is called "The Diamond Mesh;" then the body is aerated all the time; In the winter you must wear wool on the outside for warmth; but it should not be put next to the body to absorb secretions, and the clothin $\bar{\sigma}$ aould be frequently changed, -..I can't bear to wear the same suit of underclothing two days in saccession; it is bad enough to wear it one day. It seems absurd to say that wearing clothing is a very dirty and unhealthy practice, but it is such a habit that you have got to do works
of supererofation in order to maintain a healthy condition,--such works, for instance, as taking a cold-bath every morning upon rising, and taking a. Warm-bath every night befove going to bed--this woula be a wonderful means of proloncing life, I think. I would like to be in tonolulu or sonewhere else where I could go in and have a awim twice a day,-- I don't see how any one could get along without a bath-tub.

You sh uld be able to describe this instrument, and show how it works, --who will come un and be testedi Dr. Pomara come over here and take a deep breath for us,--you have been wearing clothes se lonf thet I -suppose you have become thoroughly civilized. (Connecting Dr.P.with the pneumozraph Now breathe tranquilly and naturally,--this is abdaminal or lower-chest respitation; and this is the upper-chest respiration: This is the man, and that is the civilized wosan, --thisia the abdominal, and that is the uper-cheat (peferring to tracing.) This is the civilized woman--thoroughiy civ11ized,sephlaticated women--this is the abdominal and this iz the chest ; this is the upper chest, and this is the lower-chest in man, - and it is just the reverse in wuman. This instrunent i ives a little too fast. We are going to take up the matter of breathing and its relation to other functions. I think that genorally the value and importance of breathing normally is not recogized as it should be. Breathing is some thing more than simply a re spiratory function, --it is also a eirculatory function. To have large bloodvessels going up into the smak chost from the cavity of the trunk, and branches running into the different orrane. Here is the cavity of the chest: When the cheat is made larger of expanaion, it has tho effect to draw air in, and to draw blood in, and to draw lymph in. The thorax expand s when the chest expands, and here are bloodvessels running upvard and downard; and by inspiration the blood-pressure is diminished half an inch in the weins--we see it is a half an inch below zero; it is a
negative presaure, and it results from the inflow of the blood into the chest: it is down-hili from the abduminal cavity inte the chest, and the b] ood rans into the chest as water runs down hili. By the expansi on a the chest tie blood is sucked into the chest just as water is sucked into a cylincer pump when the piston is raised. Nuw there are two things which combine to producs that efect:tne diapuragm gues downward, and that enlarge stio size of the cnest cavity, che sides of the chest enlarging also; the aic comes in here, and the bluod canes in below-othe bluod comes in to hely fili the chest, the same as the air comes in to help fili the chest. At the same time, another thing happenajat the aare tme: When the diaphragm ccmes down and onlargea the chest and so creates a suction in the chest-cayity, and while contracting outwardly, the diaphragm conpresses the audominal viscura. Suppose here is a rubber bag, and it is fixth, --suppose all the space here is filied up; tien a ppose there are other rubber-bags-one here, anotiner here, and anotier here--and so on, ac that the whole cavity is completely filled: Here is a rubber-bag till of fluid: The diaphragm contracta down here and compresies this mbber-bag-- now the blood in there must go aomewhere, and of necessity it must overflow inte the chest. Wher the diaphragm contracts,it makes a vacuum in the chest and there is a pressure in the abdomen: it ia duwn-hill from the abdomen inte the chest, and you migit say that the capmeity of tho ohoot is regulated by the diaphrarm, onced Which rises at one of the teeter and lumers at the other end., --It creates a sressure in the abdomen and lowers the prossure in the thorax; so it creates a condition which is in the highest degree advantageous for the flow of the blood toward the heart from the adomen. Now wat is true of the blood is equally trie of the lymph-an increased presisare In the badomen and a diminishod. ressure in the chest. The imph is forced out of the abdonen into the chest, the pressure taking the air out, --it is like the action of a pump. When we raise the cheat we di -
minish the pressure. I once had an exporience in vineh this principlo Was illustrated, - It was a case of axillary tumor wich I operated upon, - the axillary yein would collapse, and the blood was sucked in from the cheat, - could see that each time the chest-walla expanded, the iugular veina contracted.

The inf?uence of this system of circulation is immenso: We have, For the portal circulation, two sets of capiliariea. Illiustrating by diagram.) Suppose ther is the heart, and hore is the blood geing out from the hoart. here is the division into capiliaries: and this represents the lungs. Here is the left heart, and here it the right heart; here iz the bluod distributed too the genceal capiliaries; it is then gethered up in lare veins and carpied to the cifint heart: from the right heart it is carriod to the Iungs, and from the lungis it is carried to the Iert heart. Some of the bluod guea to the other organs-athe spleen stomach, pancreas, intestines, Ejall-biacder and lympnatic giands-all these strmetures receive blood from the general circulation, also the mesenteric, splenic, and other vessels. This blod is gathered un and portal
carrid by the reprexte vein to the liver, and by the hepatic vein it gets
ta Earretex into the general cirol Iation. Ail these urgans are in the abdomen. Here ist he set of caplilaries that the blood has to as s thrulfh, to get to theorgans; and in the Itver there is another set of capillaries, and the blood passes throum them before it gets into the feneral circulation. But the liver and all these organs are included in the abdominal viscera, and tie diaphrarm squeezes the blood through and ala makes a sliction to draw the blood in. So there are two causes at work assiatinc the eirculation of the abdominal viscera. I have been using this diagram for twenty-five years, and have found it decidediy useful. To 1IIustrate the wiole thing perectiy, we would ave to draw a diagram representing s 111 another system,--thoe is stili another circulatory
syatem wich might be represented, --(iagram.) Here are the kidneys; and there is the special ciroulation,--the bloud goes into the kid:yeythe blood in these reins is much purer blood than the kidney receives, so that must be made very pire: arterial, rather than venous bl od geta into the kidney. This vein emptiea into the adominal aorta. So se may draw this line acrosa here, and say that everythinis bolow that point is Influenced by the efrculation, -everyth! n_{i} below that point is influenced by the diaplirajm: The diaphrazm compresses tese organs and soaks the blood out, and a vacuum is produced in the chest. Fere is the liver, more liable to be conge sted than any other orizn of the body;it is congeated at every meal,--about half an inch thicke than it was before the meal. Every inspiration and expiration aqueezea the liver betwen the abdominal wails in front and the diaphragm above. The sodominal muscles contract and the diaphracm is forced dow and forced acainat the abcominal muscies which are contracted--the liver is squeezed between te two and thes emptied of its blood--and the same is true or the ridneys,paneens and all the other int rnal organe.

Now, if respiration is interfored with, see that hapens: if rosPIration is interfered with, sc that tre diaphracm does not excecise its contracting power, the liver and all the other organs would suffer in their functions. Here is the diaphragm a ached to the lower border of the ribs, and plaing away up into the chest. Now suppose the lower portion of the chest is held, so that it cannot expand, --can the diaphragm contract properly? Can it deacend properly? ("No.") It is impossible. (Diagram.) Suppose thia ta the chest of the avorage wom: Now in breathing, the chost is drawn out like this. Here is the disphragm, - it rises up 11 ke this. Now in breathing, by the separating of the chest, the diaphrerm is flattened,--1t is flattened by its own trac-
tion and by the separation of the sides of the chest, -I have an outIIne here which illustratea that: (Diacrame) Here is the diaphragn at this point, and you can see, when the chest is orpty, --here is the diephraim when the chest is PuIl. The checkered portiond ropresenta texpansion and enlargerent of the chest. Fere is the sae thing in the cheat when the waiet iz comprassed, --t e daphragm cannot deacend that much,-it camot bo stratghten i, because tomadea of the cheat:- the sided of the chest are not separated, so the diaphrarmatic movement is very wak. We can se then, how it is that wen a waist is confi ned so that there is no chance for the full and complete empt ing of the abdorinal vessels of the portal circulation,--the iver cannot be completely omptied, and the stamac cannot be completely emfied-as thet we have portal confestion,--there is not the proper movement of hlood and the food will not be prorerly absorbed; the digestion is intertored with; the livar -action is interfored with, and all the functions are intorerod With. Ve mast remember that there is no such thing as an abcioninct cayty and a separate pelvic cavity-at is all one, and watevor harpens to the etumach and liver will happen to all the pelvic oroans; and whatever happens to theae larger organs will happen to tho 3raller organs, to the mezenterie glands and all the other glands.

Noy this is a mattor, it seems to re, of far freat r irpontance rgan a mert distortion of $\pm 1_{\text {Bu }} 0,--a n$ interforence with resuiration or the rroper amount of air-supply. Thdie a woman has rosy checls and plenty of blood and does not feel any necesaity for air,you can't make ier believe that there is anytinng about her clothing that interteres fith her breathing,--" Why," she saya, "If my breathing is interfered with hy don't I feel it? thy don't I get black in the face? thy don't I eel the need of air,if 1 am not breathing enouch?" It is becanse, orinarily, we raquire only about 24 or 25 cubic inches of air-abcut
two-thirds of a pint of alp at a breath by ordinary respiration. Now the woman tho is tightly laced, has room for opdinary respiration; but Whon the gets into a church or other crowded place, ahe must have more oxygen, and hence she must breathe more, --but die can't : so she faints away, and some one whispers "Cut her corset-strings." No one ever heard of any one's saying, "Rip open his vest," when a man had fainted." This means that women are committing a crime againat themselves, also, that the is a fact which is generally understood and appreciated,--every one knows it , and that is the reason they say, when a woman fainta, rearkximes "Loosen her corset-strings." It is a confe sision, and even the small boy knows that when his mother or sister faints, that there is something the matter with their dress. A amall boy in achool once wrote in his composition"If I was a boy girl I would rather be a boy, so I could run and hollar and have a big diagram." His idea was, that girla are in a very unfortunate state physically, and all the men know it, and all the womer know it, --and yet they are all the time trying to make believe that they don't. . Now isn't strange that there is such a bondage and a alavery to conventi onalism.

It is difficult to make women believe that they don't breathe enough, be cause they are unconscious of any lack of air,--but here are thinge takinf place in the syatem which they are conscious of,-- the indigestion, the bad liver shown by the bad complexion, the dingy sclerotica, the dingy shin, the great need of coare tics and the depression of spirwomen 1+8,--the hypopepaia which is so common in wemen--it it hypo in men and "hyper" in men . Many women have hypopppaia, but: few women heve hyperpepsia. Now hypopepsia is due to this constant strangulation and ane athetization and suffocation of be stomach so that it cannot make ac od healthy gastric juice. For this reason women suffer from lack of appe-tite,--and they are all the time dcing something for it -and how can
they do that, when their stomach is IuIl of venous blood, and wh the stomach and liver are acarcely eve r well empti ed of this atagnant bl ood. There are other mischiefs nich arise from indige stion--for inst ance, women have callatenes four times as ofton as men. Nasial catarrh is much more commin in wemen than in men,--alac gastric catarrh. I believe you meet do nat meet with many cases of gestric catarrh in men. (Dr. Kress: Very few.) Te have cases of gastric catarrh very frequentiy in men women and very rarely in meme ments same catarrh is found in the Ifver and also in the duodenum,--we have many cases of inte atinal catarrh. Conge ation causes an inablifty to combat the © rms present and always in ocntact with the mucous membrane, --vast numbers of grats cires are always in contact with the mucous membrane of the stomach and the intestines, and the alimentary canal.

Fe have bsen making experiments in the Laboratory by widch we find that the moulds are not all killed by ordinary gatric juice. Two-tenths of one per cent. of hydrodioric acid, which is the meximum in hydroaloric acid, will not kill the mates apores of the moulds, so that many germs pass thr ough the stomach and get into the inteatines. Bables are born whout germs in the alimentery canal and the fecal matters which are passed from a young infant,--say twenty-four hours old--are entirely free from rma, be cause there is no decomposition taking plae, ad and there is nothing offensi ve abcut it. It is a very curious thing,-and I wil mention it as a zoological fact (althougt I could not mention it In a public audience , and that is, that the cat keeps her iftile family of kittens clean by swallowing all their fecal matters; the mother is not alckened by it,because it is not a mass of filth and decomposing exereta.; it is free from grme and decomposition, ao that there is nothing actually poisonous and destructive, -1 it is simply refuse, and nothing more than that.

Now the child exposed to contact with the air, and having impropor food ac on gets an infected almentary canal. The only protection we have and the bile.
againet germs is the mucous membrane The colon-bacilius also gets into the alimentary canal, -and it is a deadly gem-it is capable of E1lling at any time, if it only gets loose in the body. Now take that germ, and the millions and millions of E rms in fecal matters-and Dr. Bouchard found in certain cases, that onembll of the fecial matters was composed of living ferm. Now in this 5 eat quantity of rma rigyt In contact with the mucous membran of the alimentary canal, why den't We die? Simply because the mucous membrane has power to defond $1 t s e l f$ against rasy and because the bile has po wer to auppress their growth, ato they don't manufacture toxins in alficient quantities to overwhe im us.

How we have deficiency of bile, gestric juice, etc., to do the work of antisepsis for the alimentery canal, and the mucous membrane becomes congested by the holding back of the ve nous blood, and then it loses its parer. of resistance.

Now let us see why the cells of a conge sted part lose their resistance: A cell is a sort of entity by itaelf: If you put a dor or cat under the influence of carbonic acid gas, and it dies very son. Put a fith into a glass charged with carbonic acid gas, and bly will quicker than if fit were out of water; a fish wil die very quickiy In water charged with carbonic acid gas. Some four years ago I put some Ifity per cent. fish into proof-spirits, and I found that they lived 00 me IIttIe time : I put seme fish in water containing about five per cent alcohol, and they died very quickly, - in the fifty percent.alcohol they required a longer time to die. The reason of this was, that in putting them into pe pure alcohol, the vessels were all shut up, and the process of absorption ceased, so that the poison was not taken in; but under the influence of the five-per cent.alcohol, the circulation continued, and
thoy poidened by alcohol. Animals die quidily when exposed to distilled water charged with carbenic acid gas, or carbonic acid -gas Water, because they cannot E t aufficient oxygen. Every one of the cells is just like a fidy, fly or bird: It dopends upon oxyge n for lifo, and Without oxygen it dies. Now if the portal circulation is allowed to 1111 up with venous blood, so thet the gland-cells and the tisure-cells, the phg phacreytes and other ger cells which defend the body against germs,-When these cells become saturated with carbonic acid gas, they are simply paralyzed by $1 t$; their activity is gane , and their natural functiona are deatroged or temporarily suspended, so that the germe get the start of them. In oedematous easea, I have sometimes found, in doing a ligament operation, that if I happen to cut the veins,there is suppuration and swelling, so I take the greatest pains not to cut the veina, because if I don't cut the veina, 1 don't interfere with the circulation, the carbonic acid will be carried off and the oxye n brought in, and then the cells will have power to resist the action of germs, --and this is true of all the internal organs.

But when these organs become unable to resiat the action of germs, we have catarrh, the mucous membrinelpses its power of resistance and s the E rms alake the ir habitat there. That is the reason we have sores in the mouth, or eczema, or decajed teeth,--it is because the cells have lost their power to resist the action of germs. So have lowered resietance, - and nothing lowers the resistance of the celis than a state of venous congestion resulting from deficient activity in breathing.

Then, excess of blood in certain parts results from deficient breathirg, and this excess of blood causes an enlargement of the spleen and liver, as well as a host of other disturbances in the abdominal rogion. It is important to have these facta in mind so as to be able to let people see what an arfil thing it is to interfere with the netural functions of the chest. The chest is the central engine of the body $;$
-14-
Its movements circulate the blood, introduces the air, and helps distribute it after it has been introduced. I think it would be well to at t down and formulate some of these things. I think at some time, we will take up the study of enteroptosis and tho displacement of the abdominal viscera.

DRESS-REFGRU TALK, July 7,1900. Ј. H. Kelloge, М.D.

(Explaining Chest-Skeleton.) Some years ago, I made some studies, In which I devised a little instrument for measuring the movements of inspiration and expiration. Here (referring to Chest-Skeleton) we have a diaphracm above and a diaphragm below the perineum. Here is the diaPhragm above, which separates the lower trunk of the cavity from the chest. When the diaphragm falls, there is an abdominal bulging of the perineum. When a patient is wearing a plaster jacket emclosing the lower trunk, the perineum moves up and down fully an inch, in respiration, because there is no opportunity for outward bulging. I observed, in a case which I studied, thet there was this movement of fully an inch of the perineum moving up up and down with each inspiration. When a woman has on a corset, it produces the same effect,-- it increases the movement of the perineum.

Now what part do the abdominal muscles play in respiration? They are simply a reservoi of enery. They play the part of a rubberband: Stretch a rubber band and then loosen it, and it returns to its former position. The rubber band does not voluntarily contract; it only contracts because it has been stretched. The abdominal muscles are not active, --there is the ordinary tone of the muscles but there is no contraction; they are simply sretched by the intra-abdominal pressure, and then the natural elasticity of the abdominal muscles causes them to come back, and forces the diaphragm up epring expiration; it is purely automatic, and does not tax the muscles; they stretch and princ back, as the force is released which operates the diaphracm. So e one has suE-
geated that in anesthesia, the abdominal muscles contract wit great yogor; but this cannot interfere with the automatic mechantsm of respiration; we don't have this contraction in ordinary respiration: When the muscles contract with great vigor, this is an abnomal state of thingis; it is a Condition in wich nature is aubstituting this movenent of the abdoninal muscles for the purpose of helpin\tilde{E} out the condition, - it is because of acme interference wit the automatic rechania of the capiliaries.

In ordina respiration thore ia aimply a retching, or the pazcing of a strain upon the abdozinal muscies, and withdrawing that strain. abriominal The muscles don't contract except as a piece of rubber contracts when it is st ratched. So the abdominal muscles are only pasisively employed in respiration,--like a spring.

The idea is held by a good many, that respiration must be abdominal to be lealthy. This idea appears absudd when we considor the organs f reapration, --that man has a chest containing Iungs, and muscics attached to the pibs, and arranged in such a way afto have a ley rage upon the ribs, with cartilages elastic and flexible, so that the ee may be work and change in the chest,--and yet, that all the work must be done by the abdomen : In respiration there is no active work done by the abdeminal muscles at all. A number of yeara ago, l had this akeleton chest articulated: These ribs are connected by wire; and here is a wire attached to the fourth rib, by which it can be raised. This represents tie scalenus muscles. Here are the muscles attached to the ribs. When I pull this wire, notice what happens in the chest. (lilustrating.) Vou can see that that will happen in the chest. Take a young persen whose shest is flexible, and in taking a doep breath you can see that very ihirg. Now that is the thing that must happen, because the ribs are all atteched togethor,--this is artificial, but you can see that it is a natural movement. Now see what actually occurs here,--there is a spreaing out at the sides--see how the sides expand here; there is where the
greatest movement is--the greateat movement is at the al des --at the lower sides-and why Because the greatest freedom is there. Here the cartilages are sort, and here they are $10:$ g, so that the flexibility is हreatedt here, as they are not attached here. This skeleton teaches a leason. The chest is the thing that is really active in respiration, -not the abdumen, but the chest is the active thing. We have another evidence of this fact, than the anatanical evidence--the relation of the riba to the chest, the flexibility of the cartilage and the movemerta of the chest,as illustrated by this artificial preparation--ve have an otor evidence, and that is, that won yind a person breathing auto ateeally, you will find this movement. When a person is breathing tranguilly, this movement is slight, but wen a person tale s seven times the a ount of air into his lungs that he does when he is lying still, thon there must be this greater action.

Me have another evidence that the chest works, in respiration, -and that is, when we set a person actively to work, st that he needs air-seven times the ordinary anount of air-hisiuncomove with vicorous play,--they work like the handles of a pair of bellows,--I have found that a very good illustration. When 1 want to lllustrate that princi ple in a lecture, I ask some one to go out and run up and down stairs and then core in and ahow ha how to breathe. Nurse, won't you be good enough to ico out and run up and down stairs two or three ties? if there were Ifttle boys and girls here, we could set them to running races and they would get 0.11 out of breath, and then we could use them for 11lustration. At one time we had a certain brothor here who was fron Callfornia, and some one had taught $h \leq m$ to breatho abdominally,-- I thint 1t was Eld. Scoles,--he told him it would do him good to breathe abdominally, and while I was lecturing on this subjoct, and taling the position that it was the chest and not the abdomen that does the work in breathing, he insisted that I was wrong, and that abdominal breathing is the propor
method. I then asked him te go out and run up and dow stairs two or three times, and then come in and show us how to breathe abdominally. He did so, and when he came in, he was breathing hard, and naturaliy. I seid to $h i m$, "Now ahow us how to breathe abdominally,quick." He tried it once or twice without success, and seid, "Please wait a mo ent,:ill I can get a breath." That told the wole story, --he had to wait till he could get a breath, in abdorinal breathing-that is, diaphragmatic breathing; the diephragm doers the work, and the abdominal wall moves paszively out and in. But wen the tem "abdominal breathing" was used twenty years acco, it meant what wo now understand by full respiration, when we expand the zower chest.

We now recognize three kinds of breathing,--costel breathing, abdominal breathing, and full, or nomal respiration. Full respiration has been confounded with diaphragmatic breathing, and some use it in the same way now. Sr. White speaks of abdowinal breathing, but she means full breatring, --I know that, because 1 know how ate breathes; she uacs her ribs and chest freely in reathing. I have had occasion to exarine her chest and lungs several times, and that is the way she breathes, as I know . She never weare corsets, and so she breathes naturally. In sleep, you $w 111$ see the rising and falling of the abdoren, and no movements of the chost, in children,--but that is all that is needed during leep. But when one must exercise, x as to require a large amount of airs then there is a play of the ribs and chest, but it is automatic, --it goos rieht on.

You must get this idea of npormal breathing: In normal broathing there is a swelling out at the abdomen, the ribs begin to play and move out muking the trunk as large as possiole at the waist. Now if you want to θ^{+}a full breath when you are singint and want to sound a high note, or want to retain a tone for a long time, or prepare for high speaking, or
for the purpose of sending your yoice a long distance,--you not only f111 the lower part of the luncs but the chest, and then you raiso your cheat, holdiñ the diarhragn down tightly, then raise the upper art of the chest and there is a little more room for air by the enlarging of the chest, and you fill that; that is nomal full respiration; full respi-
 can,--In the lover part, the uppepart, and all around.

In regard tit the different tyes of resifration. The old Physialoiites used to teach that men brathe in one way and women breathe in another, --that a moman breathed with costal reapiration, naturally, and that men breathe with abdominal respiration naturally. Some dozen years ago,l made a critical study of this question, and made many pneumocraphic tracings: I s.ent weeks and months in thiswork. In China-tum, San Prandaco, Cal. I meastrod took tracinga of twenty or thirty Chinese womentho never wear tight cluthing. I examined a number of Indian women in the Hrat Yuma tribe where the women wear no clothing except a 1Ittle bark skirt at the chest above the hips, so they vere in a porfoctly normal state so far as physical development ta concerned, --and I found that the men and women broathed just alike. I applied the same test to dogs. This is the sort of movement you get (dagram) this merk indicates the movement of the chost in inspiration, and this, in oxpiretion. When the instrument was applied to the upper part of the chest of a man, it made this sort of movement; and when it is applied to the waict it makes this sort of movement, making these excursions; when applied to the chest of a woman, it made this sort of movements, and when applied to a man, this sort of movements,--I vill show you the method of taking a tracing in a moment--in other words, I found that the Indian women breathed fust like the Indian mer, and the civilized women who had never worn a curset breathed like the Indian men and women--they all
breathed fust allke. And I found that masculine and feminine degs breathe Juat alike: The abdominal or lower respiration was marked, and in the costel respiration the movenents were slight. I also found that a man in a corset breathes iust like a woman in a corset. I made an apilication to a women who had worn a corset and had reformed, and 1 sound they breathed fust like a man, only there was rather strong costal respirc.tions,aa well as strong abdominal respiration; cartilages were flex1ble allowinc of large excursions of the chest in breathing. some doctors and mucie teachors teach that only the upper part of the lungs is to be used in breathing, but that is an error. (Diagram.) This is the costal breathingi in a ma, and this is the abdominal breathing, --that is, with the lower part of the chest. This isthe breathing of a woman In a corset, and this is the breating of a civilized woman who never wore a corset. The breathing of a woman in a corset tis the reverse of that of a man. The breathing of a man in a corset is just like that of a woman in a corset,--and why aould it not be ? This is the civilized woman who haa wern a corset but has reformed; here the coste.l breathing is rather too pronounced. This is a tracing of Mris. Annie dennesse " 11 ler, the great dress refomer,--this is a tracinc I made of her breathing; I told her the use that we were geing to make of it, and she was willing that I arould take the tracing .

Now you can see the influence, not of corset-wearing but or conatriction of the waist. Now I think I have show clearly enough that woman naturally breathe just as mon do.

Now see how the chest moves in hreathing (111ustrating by skel -
eton.) Now suppose a band is placed across the waist, just below the Lover border of the ribs,--this is the way an ordinamy woman breat es-she can't breathe, beceuse the handles of the bellows are tied up, so its is imposibible, --the $r i b s$ and muscles are all connect and cannot act Indepencently; they are all connected with the sternum, and if there is
not rom fer the lover points of the chest so separate, the sternum cannot rise. Now I will IEt go of this, and you will see what haprens-I see several of you are taking a deep breath when you see this if ing up. Now the poor woman who his bands around hor body,--even though she says," They are not tight--my clothes are only akin-tight; 1 an not constricted a bit: my clothes are only just comfortably tight,--just comfortably anug; they will aip u_{p} and down easily." Now wo will have a "comfortable" band hore, which will slip right up and dom. (l'al:in, aplication te skeleton-chest; I will just put on a little ratbor bard, and that has not much power in it ; this ruber band causes fust a aimple restriction, - now see what a difference it makes. Now I will take tie rubber band off,--now see the differerce: Now I am going te apply it abou: four inches below the end of tho sternum, --1s that about teright paace for the band? ("Lower than that.") Here; ("A littie luvor.")

It comes just below the floating ribs--just below the cartilams-right over the floating ribs,--that is about the right pace; now 1 am going to tie this up,--1 am not going to make it tight--see how loose it 1s . A lady would say,"I can put my hand right under my belt,--there is plenty of room." They can always put their hands under their belts, beceuse at that point the ribs yield readily, and the universal cxpression, it is difficult to maze the dress stay on, serey I must have ame hooks to make mynemi stay on--1t cirops right offo well, there it is. Now there is no constriction; it isforfectly loose; but the whole chest is tied up when this band is comfurtably adjustaf; it is just as big as the body is, but it restrains these hand los; it Le fuat like tying together the handes of a pair of bellows, and it is impossible to expand the chest,-you can't raise the stermum unless you
cen atretch the ribs. Now 1 will fust drop this off,--there it goes. Now I cen prove that by examina:ion right away, --who will cane up and let me put this strap on them? (Dr. Thomason comes up.) Expand the chest ae Iar as you can, --once more--once more, take a doep breath,--three holes; that is just aboit three inches. Now 1 am going to put tiis away down at the waist--there is no waiat - line, nomally-it is purely an ar ifleicl thinc, isit not ? ("Yes.") tet's have sone one who has ann established waist-line. (A lody comes up.) Here ia the vory point that I have been talking about,--there is the corner where the cartiluge tur nis up--íust about opposi te this point. Now let's see how weal the ductor can breathe,--tare a deep breath,--we will ark it with a pencil. ow breathe all out,--now breathe in--thot was a pretty good breath,-that is the distance--that is the respiratory movenent. Now I wlll have the doctor put this belt on, --just put it on so that it will be confortably smug-not too tisht. No woman would call that tieht. You soe It does not chanife the fice of the waste: The nomal shape fr the whist iselliptical. This is not tight, --you can take it up sevorul inches;it woild fall right off; 1 am sure no wonan would admit that that was tight. How let us see how much that will influence the breathing-paweok, --take a deep breath (Breathing out and In.) It is a little less than two holes. Now breathe in all you can,--it lacks a little of two holes. ,--it falls glort three quarters of an inch; that ts the chest measurement above-not below but above; now for the waist-neasurenent below (Breating out and in.) It is a scant three-quartors of an inch. You will find these facts more interesting than a whole lot of talk, - 23 inches. (Breathing In and out.) The waist expansion is just half an inch. We will take this belt off and make another measurement in the same place --four and a half inches; and only half an inch with a loose belt. Will this lady let me measure her waist, -28 inches, (Braathing.) fialf an inch.

Now suppose we have that belt off: (Breathing.) Two Inches. You see you can scarcely wear a belt at all without constfriction. (Dr...... 5 years ago,
"When I came here, I had aiways worn "union" germents, but Dr. Kelloge seid a band was as bad as a corset, so 1 was put on "reat-cure" Without bands or a belt, and I wore a chamber robe three weeks, and increased my wa!st-measure for inches in three weeks, and took nothing but "mnalal" massace and bath-room treatment..")

It is next to impossible to make a reformer of a woman: Here is an apostic of dresa-reform convicted of tight lacing,--one can be "tight" in drosing as well as in other ways--and I don't know but it is juat about as bad in dress as in drink. I shall never forget the time I convicted Dr. IIndsay of tight lacing: She had been lecturing on Dresi-Reform for many years, and one day I had her come down to my office. I applied the pneumocraph, and I said, "Dr. Lindsay, you are certainly wearinc a tight dress." "I , MEARING A TIGHT DRESS ${ }^{\prime \prime}$ " she falrly thunde red out at me,for making the suggestion,--" never were a tight dress in my life." I said, "You are wearing a tight dress this minute. I applied the tape-line, and she was only able to exfand about half an inch in her ordinary chones, and when she loosened her clothing she expanded her waist three inches. I remember a young lady who came here some fifteen or sixteen years ago, and I found that her waist didn't expand any with her tight dress on. After exchanging her very tight clothing for loose clothes, she was,in a few days , able to expand seven inches. The capacity for expansion here, is tremendous. Here is Dr........Let us see whether he is guilty of ticht lacig-34 inches. (Breathing.) Two and a half. I don't thinis there is any tight lacing here; this is a pretty fair expansion.

Now is there some one who wants to come up here and show us a mode dress, -I want to see if you can expand your waists properly. Here is an audience of dress-reformers in a dress-reform institution, and I want to find a model dress here.. I was talking wi th a dress-reform
lady the other day; her dress looked snug, and I said, "I am afrald you vear tight elothes." She said, "Yes; but 1 have gained ten paunds since I came here, and my clothes are too tight." A dress fitting a person weighing ninety pounds wen't fit a person, wedghing 100 pounds. - If you have a dress which fits you when weighing 140 pounds, 1t Will be too tight when you weigh 150 pounde,-- and a dress that fitted you before breaktast may not fit you after breakfast. Dr......... do you feel more comfortable in your lapanese dress? puxprevesjestex (Dr......:"Yes,siribut in our costume for women, women of fourtcen and fiftsen wear an oxtra strinf by which the dresis is made short or long, and over it we wear a very wide strap,which is not very tight, but I would like to ask you whether, in your opinion, it would not interfere with reapiration.") No, it woulan't interfere, because it is sc low down,--because it comes over the top of the bone. The Yexican worlen wear a very tight string round the body, falling between the atomach and the colon, se you never find the stomach prolapsed among them, but the colon 1s badly prolapsed. Dr. Winegar, will you cone up and be me asured--you are a great dress-reform apostle. (Dr. Vinegir comes up.) Take a deep breath,--breathe out,--one-quarter of an inch. ("That is perfectly stiff,--it won't give a particle;neasurc just above that .") I will measure just above that. (Breathing.) Twe inches,--that is better: so l don't think the doctor is very wicked--but a half an inch 1s pretty serious.
Q. What can be done about a belt? If the belt is large enough to expand your chest fully,it will fall off out of place, and a floxible belt is not fit to wear.
A. You can't have a belt tight enough to hold its place and be hygienic. I should think, on the whole, the cloth be lt isthe beat,making 1t 80 1t will catch on the other clothing, ∞ as to keop its place.

I am acrey for the women folka,--they have ac much trouble with their dresses. (Dr. Winegar: Ky clothing is loose, but it is an inconvenience to have clothing fastened toge ther at this rart of the body.) I think the clothing ahould be scmething like the Grecian gown where there is no union there.) It is imposisible to wear the ordinary belt without poaitive injury; Ferhape a ect of saet with a loose fold could be worn around the body without diamage. ("That is not artiatic.")

It is not necossary to have tight lacing in order to interfore with reapiration: It is only nece saary to have a band or guard about the lower part of the chest that says to respiration "Thus far shalt thou go, and no farther," so that there is no chance for expanaion. This illustrates the 1dea that the sides of the chest are the handles of a breathingubellows. Here is where the greatest movement is,--the lateral movement, and when the chest is thus tied up,its movement is crippled-it is crippled as much as a pair of bellows wid be with the handies tied together: You can't do much with a pair of bellows by seizing them by the belly and trying to pumd air with them, whe n the handisis are tied upiand so it is with the chest,when it is tied up, as 1 have described. To-morrow we will study the question, Nat are the injuries that arise from the interference of breathing caused by wearing the conventional dress?

DRESS-REFORM TALK,July 8,1900.

J.H.Kelloge, 4 . D.

Now let us all take a dop breath,--you and I--and the skeleton. (Explaining Cheat-skeleton.) This graphically illustrates the movements of the chest. Now while taking a deep breath, let us put our hands to our sides and see how they expand. Now I want to coll your attention to a very little, dimple thirg: I am going to put this little band here,--there is no tight-lacing here,--I have not drawn it in at all; I have allowed half an inch so as to leave plenty of room,-now see what meppens--these are short breathe and shellow breath. I. I want a little elastic rubber, --this rubber is very elastic and it has but littie strength--now watch the effect of that little rubber band, and see what its effect is,--you s e it restrains the movements of the chest hero very great $1 y_{,}--$place your hand there and see how little porce is requirod to prevent that movement. (A lady comes up.) You see,--it is be cause the fulcrim is behind, so to speak,--I will explain how that is: Here is the artiallation right against the vortebrae,--the transve rae process rests arainat the vertebrae; the end of the rib is working on the long arm of the lever--let this chair constitute the flerym, and here is the lever (Illustrating with chair.) By operating on the find of this lever, I can lift a great weight on the other end. It takes only a ilttio presaure at this end to control the other end, because there is a great purchase here: Now if this lever were one foot long at the other end and three feet long at this end, one pound here will lift three pounds there. Now suppose this part of the lever is one fcot long, and the other paet is ten feet long,--how many pounds at the tort end will be ralaed by one pound at the other end? ("Ten.") He have that prinoiple 11 Iustrated here, - a little restraint of the ends of the ribs is

Now the hing that 1 want you to notice is this , - that if there is any restraint at the lower part of the chest so that it cannot exand there, then it cannot expand anywhere. Why? Because they are all fastened tog ther. The moverents of the ribs are made by the flexion of the cartilage $8,-$-there must be a change at that part between the ribs where they separate: the st rnum is raised forward, o that when the lower part of the chest ispestrained it does not simply prevent expansion at the lower part of the chest, but at the upper part of the chest at the same time. Some people think," It makes nc difference which part of the chest I use." Dr. Mayef(?) wme yearsfagmaixizaideci corsets for wome in orier to prevent conemption, and he brings statistics toprove to prove that the wearing of corsets prevents consumption, and he says more men have consumption than women, and that the reason womon don't have consumption is because they wear corsets, and the corsets compel them to breathe with the upper part of the chest, and thus prevert consumption. Now my theory is very different from that,--can any one sugfest an explanation of the fact that more men have consumption than women? (More exposure.") (Dr. Kress: Is it not true thatymemen ficil to breathe sufficiently at the upper portion of the chest?) That is what Dr. Mayes says,--and so he recommends corsets. (Dr. Ninegar: May it to disease not be that men are more dissipated, and are exposed ${ }_{\wedge}$ in other ways, and so their vitality is lowered and the ir resistance diminished?) Yes, --and more men have pneumonia than women, because men are exposed than women. Besides this, men are more likely to come in contact with those who have tuberculosis than women. Nomen stay at home more than men, so that they are less likely to ter tuberculosis for that reason, -unless her husband has it, --and if he has it, she gets it, because, if a man gets tuberculosis, his wife is almost sure to have it. But the man who has little resistance is the man who habitually sits in his of-
fice or at his desk, or the lamyor porine over his books, or the alderman, Who do not have sufficient physical oxercise. Housekespers have such exorise as frequently coing up and dov stairs, which the sedentary business man does not h ve. Now the position of a man s itting dova u_{j} on hinsels (Illustrating by position)--he is a 1 doubled up and can scarcely breat o, --once in a while he will straighten up and take a long brsath, $-\infty$ ho puts his ham bohind his head and takes a long breath, -and that is perfoctly ight ithat is what a doz or cat doos. They reach out their paws and take as long and doop breathe as they can. That is an animal instinct within our bodies calline for more oxycen and air and so we make a forced expansion of the chest. If you will notice the pnoumograph you will see that about every aixth breath makes a bicger wave of vrit inge I have noticed many times, that once in about dso often a person trikes a desp breath. Now when a business man or professional man lits at his deak his lugg are crauped; he is not breathing enough; the air is stagnating in his lings,-it is not circulating freoly, and his bodily and local resistance is diminished. So I think we have reasons enouch to account for the greater prevalence of tuberculosis in men than in women, without considering that women are less subject to disecse than men because of wearing corsets, - it is not because their dress is healthy, but because men's occupations rencer them more 21 able to disease, - I am afraid Mrs. Kress will take issue with the Doctor upon this point.

Now while it is tme that woman does expand t o upper part of the chest move vitho a corset than vilen wearinc ons, she camot expand so such, as a whole, and she camot expand even the upper chest so much when wearing a corset as when she does not wear a corset. I will show yo that Dr. Meyes' idea is false, excont as recards ordinary tranquil respiration. (Illustrating by Chest-Skeleton.) This skeleton camot take so deop a breath now. I want to try thi on some man who is alive
and let you see that the same thing is troe,--will some one come formard who wears a bolt? (A younc man cones up.) Pisoo-dnches How can you take that up? ("T ree notches.") That belt does not seem to roatra!n the movements of the lungs--1t la very loose. Now a lady wt . a dress no tighter than that will say, "Just see how loose my dress is ,-you can put yourfands right undor my bell,--there is nothing tight about 14." I don't know at there 18, but we will see .,--1 will put my tapee
 Two inches, --that rakes a consid rable difference- it had made throequarters of an inch difference: and yet that belt, though loose, wuld intorfere with the breathing to a slight degree. How am going to take ameasaroment at the top the chest; you know then that these demonstrations at a school of health are werth more than a whole lecture, be cause the thing is proved rig on the spot.. Thero is 34 inc:os,-take a deep breath. (Breathing.) Two and a half inches. Breathe out,-three and a half inches. Now I will put on that bolt again. Now no one would ever accuse that belt of being tight. Uen are sometimes ticht, but In this case there is nothing to cumpiain of on that soore. Now take a deep breath. (Breating.) Tw and a fourth inches is the best that he can do.. Take a deep breath,-- two incke its to best that he can do. Try and do better than that,--1isten and hear the bfelt squeak. Now breathe out. (Breathing.) Two and a half inches this time . Now see this loose belt,--I can put my whole arm under it. You can see what a mistake it is to suppose you can wear a belt or anything else thet ia juat the size of the body without interfering with the function of breathing. I will put this on seme one was a larger chest, so that the we will be a IItie more pressure. (Another younc man comes up.) Isn't that loose? ("Quite loose.") That is loose? (Λ lady: Yes, that is quite loose.)

I think you ladies wuld say that le loose enough for a thor f_{f} f reform dreas. ("Yes.") Now let us see how much expanse we can get here. Ledies will fairly gasp, when you tell them how big their dresses abold be, --when I tell them they should be measured, and then add twe incies, In order to have the aress large er ough; that two inches is for an extra breath-for going up and down staira, etc. Now tetre a deep breath. (Breathinge) Just one inch, --you see how he expanis his waist, and his heart is beating away at an awful rate--take a deep breath--just one inch. It is too tight. Now you wouldn't think that was making on y con-traction--32 $1 / 2$ inches teke a doep breath- 38 inches; that expands the chest an inch more; the belt is loose. You can all see that the restriction of the lower part of the chest restrains the upper purt of the chest. It is true that this does not apply to ordinary respiration, because ordinarily we don't expand the full chest.

It is a stranice idea in the minds of women, t at it is necessary for a woman to have a small walst. Some yeara aco I read a paper bufore the American Vedical Association, bearing upon this aubject, and when I had finished, Dr. Opie, Professor of Gynecology in a Marylani Medical Colle $G e$, arose to criticize my remarks,--said he, "I a very much surprised at these remarks. My mother, and my sisters have taught me that it was an element of beauty in a woman, to have a small waist," and he ridiculad my statements and remarks; and I felt much relieved, wion a lady doctor, a Professor in a medical school in Mashington rose and to ok lasue with the doctor and arreed withme. EKX axazax woman has more liver and less heart than man in proportion to her size; the heart is the size of the fist, and a woman's fist is s aller than that of man, because it is the duty of the heart to back up the fist,--the fist cannot do anything without the heart. If aman has a large fist he has a lars heart,--a lary foot and a large hand are evidences of a large hoart.

In women, the hoart is smaller than that of men, because the amount of physical work is less. Tith this araller heart, woman izs a laref 1iver than man, in proportion to the size, and the abdominal viscora is at also larar in women than in men; this is because of the function of motherhood: The mother nurses the chlld as vell as herself, and ase madst dige st for both herself and her child, and so, if you are guim to coripare the mother With a man, you must take the mother and the child together. The mother and the child really make one creuture,because the child is fed by the mothor's stomach, and the purification of the child's bluod must be carried on by the mother's lyer and the mother's kidneys. So the visceral organd,--kidneys, liver, spleen, pancreas and atomach-are all larger in proportion to the size, in woman, than in man. I have E iven you my authority for this in my little pamphlet "The Influence of Dress."

The significance of this fact is very great, be cause, if those organs are all larger in woman than in man, in proportion to the size, since they all lie about the waist in the nerrowest art of the body, it is yory evident that the waist bould be laree in wo an than in man, becanse the organs lying about the waist are larger in woman, as i have stated. Now let's see where these organs are. (Referting to charts.) This picture is prepared as to show the position of the intornal orgers In relation to the outside of the body: This is confed from Ziemssen, and is a proper representation of the exact relation of things, --this is an exact co.y of the cut in Ziemsien's Anatomy. Here is the lover berder of the riba, and if you put a straight-edge right across here (at the 10 "er border of the ribs) you will see that the colon, the liver, the storad and the pancreas behind the stomach, and the spleen and both kidre ys in front, are entirely above this line, --run a line along here, whe re the ribs connect with the chest--the lower bodder of the ribs--running a line from there, and the colon, the stemach, the IIve r, the pancreas, the intest-

Ines and the spleen all lie above the ribs. It is vory important to know that and fact and the sipificance of it.

Now suppose contract the walst a little , bringing the sides of the ribs toge ther a little bit, --what will happen in this space whithis al ways completely fllled? These organe which are occupying this space-these larige, inportant, heavy, vital orians must go somewhere,--can they go upward? ("No.") No,--there is the sternum, the ribs, clavicles, col-lar-bonea-there ta a complete bony Pramework above, so that the re is no chance for them to move up,--they sometimes do move up a $11 \underset{\sim}{\text { tile, because, }}$ when we have the ribs forced together in this way, it does force the upper chest up a little,--and I have seen the upper chest ralsed away up; the chost is uite flexible so that the sternum is forced up. Will this young man come up here a minute? (Young man o os up.) Now watch this youni; man a moment: Does this press out the upper part of the chost a Ifttle? ("Yes.") There is a little raising of the organs, but there is not much chance for much movement; the only chance for considerable movement is downward.

Some time ago, I made a careful detormination of just were all the different organs were, and had a drawing made representing everything just as it was.: I have had them made in such a way that they come, one just opposice the other. I let this line fall upon both sides at once, and I want you to see this and tell me what organs can you see below the line. ("The colon, stomach,kidneys and part of the Iiver.") The stomach is not entirely beiow the Inc, but the greater part of it is. The othor organs are above the line, --how far above the ine is the atomach ? ("Two inches.") How far below the line on the other aide is the lower border of the stomach? ("Three or four inches.") I have seen it as much as six inches below. Here is the umbilicus, --this is the point

Whick locates thinia ,--you see where it 13 on the other side. The body of the atomach is entirely below the umblifus--three or four inches out of place--and 1 have seen the colon away down in the botton of the pelvis. In doing laparotonies I aiways notice where the colon is, and I have sometines folluwed the colon avay dom into the rectum, it was so territiy prolapsed. This la a matter of necessity in casea of constriction, -1: could not be otherwise. I have acen cases in with the liver was pressed over acainst the othergide, and pressed up acainst the ribs and was full of furcows; it acd been pressed so far over that the left lobe of the liver was turnedback and doubled over on itaelf. Twenty-five yeara aco, 1 was a pupil of Da. Auatin Flint in the Bellevue Hospital, New York, and he used to set us to taking diacnoses of hard cases in the hospital and cetormine, so far as we could, what was tematior talt them. It fe Il to my lot one day, to exarine a lady about 35 years of age There was quite a discussion as to what was the matter with hor. I found alump down on the rifht side by externci examination; it was about as larif as my fist, and it was moveable--I could nove it all round. I concluded it could not be an ovarian tumor, it wasn't floatinc kidneyjat was not a ribroid tumor, and it wain't a cancer. The petient didn't look to be very sick, and I waperilexed, until finally an fdea s ruck me, and I said to her, "Did you ever wear your clothes very tight,--" I dedn't dare ask hor if she laced. "Oh, yes," said she!'I tie my corsetstrings to the bed-post every mornine ." Then I made up my mind what was the matter with this woman, and I said to hor, "This is a tif t-lace fissure of the liver, -." there was a plece of the liver cut off. I tilen told the doctur that this woman had created a new fissure of the liver by tight-lacine and that the livor was almost cut off,--it was only hanging by a string; and he conflrmed my diagnosis. I was teling this story scme tine afo wile lecturing in Minneapolis, and when I had finishd
my lecture, a lady cac up to me and aaid "I have got that kind of liver: I used to do that vory $t \operatorname{Ing}_{\text {. " }}$. She then deaired me to exumine her abdomen. I did 30 , and 1 found an ugiy tumor wiere she had nearly eut her liver off.

An ement G man surceonse years aco publis:.ec an account of a cace in which a woman had amputated a portion of he liver in that way, d and that part of the liver died; it was so completely cut orf that it mortifi d and gangrened, and I had to take it out in orcer to save her life. I have seen sevgral cases reported in which womer have actuaty cut off a piece of the liver by constriction of the waist. This isextreme constriction, of course. The conventiona dress conle not be charged with such damage as that, these are cases of extreme conetrict Ion by iadies who were afrald of being fat. Here ls a case (reforring to ciart) which is copled era a photocraph of a bailet dancor in Parie - Then 1 was tiere, I boucht a phot graph of a woman who was a danseuse. Look at that waist and see wat it is, compared with the widt of the soulders abd hdps. Now inacine, if you can, wiere her liver, kidneya and atomach are, --there is no room for them where they should be, ad it lseyident that they are dreadfuliy out of place. Now, it is trat kind of constriction,--for instance, a woman wears a 26 inch coraet when she is 24 years old. Then she is married and has childeen and zaias flesh, --when she gets to be about forty she becins to gain in flest, as most wanen do. She becomes fatter, but she won't change corsete,--she isn't, coine to get a bit bigger, so sed sticks to the sare sized corset. When she goes to her ciressmaker, she says, "ty size is so and so--26--" She wont allow herself to get any bigger. Her arma, lega and hips may get enormousiy bif,but her waist a ail nut get a quarter of an inch bicier. The old Saracens did that ame thing: They used to put a powerful brass
over their atomacha with the idea that that would restrain them from gotting fat; it was a broad breast -band rivetted so that the the mat could not grow any bigece. Little children practice that sort of thing In spout. When I was a boy I used to sibp a cucumber into a bottle of water, and then wateh the cucumber and see it assume the shape of the bottle, and this method of constricting the waint is the cucumb e plan-it is growing un inte a corset. The mother puta her daughter into a corset and she crowa up into iti a woman grows into the dape of ner corset. You can always teil when a waman is rearin; a corset, because hor budy acquites the shape of the fabionable curset. And you cant te li when the fashion chances by the shape of the patients in your office.

Now a great many women have a misconce,ption in regard to becoming fat, and in ure thomselves, when they are not aware odf the da ace they are doinc themselves. A woman wetimes thinks sce is getting vory fat, when the trouble is that she does not stand si raight. I never ar all forge tone woman who once walked into my office in this way (Illustrating.) She said, "You see what is the matter with me." Said 1. "I don't see as there is anythinf the matter, -what is the matter with youp" " Why," sald sie, "can't you seo what is the matter with ve--I am too fat." "Oh, " I said, "I can correct that in five minutes." "Can you? I will eive you a thousand dollars if you will do that."Said sho, "You eean that you will cut something off "No," said, "I don't
mean a surgical operation,--stand up here, and put your head back and look up at the ceiline; put your arms dom as far as you can, bend back and look at the ceiling, and raise your chest. " She did oc, and ten I sald "Look down." She looked down, and she could a her toes. She looked round the room as if she were looking to see if she couldn't see some bie ugly lump of fat which had droped off. You can see how abgierd it is to carry the hips in front; they should be carriod behind

About all that is necessary, in a great majority of cases in which momen wear thoir clothing tight as they won't look ungainly, or like "friflta, is about the only thing necessary is to teach the worm how to stand-carrying the chest in front and the hipa behind.

1 might mention a case, as an illustration of the foolishness of the idea about the waist getting too big: There was a lady who had charge of the Cook County Hospital; she came here to visit the diet casea. She sald to Mrs. Baker, "Your nurses don't wear corsets." "No," ahe replied, "it is against the rules." "l am surprised it that," said the lady, "how do you marage to keep your atomach3 duwn?" Noy that moman had the idea that if sho didn't put her foot on her atomach and keep it dow, it would expand inderinitely, --that she must keep hor eye on it and keep it down. That is what tight-lacing is doing,--and ? suprose these women are troubled every day over that question--"How am I EOIne to keep my atomach downi. That woman kept her stomach do vn. I saw one woman whopt her stamach down fo far that it was six or eight inches below its normal place--it was almost und rofoot. fomen must be disahused of this idea thet the cheat has no richt to expand, and that it is ungainly, and masculine, and awful, to have a large waist. Women must be made to understand, and to believe that it is natur al for
a woman to have a lager walst than a man that it is not nasculine for a women to have a large waist, but that it is feminine, --but it will a great batile to make them believe that--but it is the trath.

I could eive you another evidence: Some years aro, I made a study for several years,--and I improved every opportunity that I could get to examine ancient models. Whenever I went to Vashington or New York, 1 meastred all the old models that 1 could find, --I measured seven or eight dirferent masculine figures. It is difficult to find a lerfect figure. I didn't find but seven or eight men who had the right

P1gure, su thet 1 could get a good !dea of the watst-measure of men. I by did the same thing with women, and found that, altar tak!ng the Venus de Milo as a model--and this is accepted ay over the civilized rorld as the most perfect model in existence of the feminine figure-no artist ever und ctakes to improve upon that--I found by measuremont of that model, that the waist was 47.6 per cent. of the hei ght. So that was the standard that we adopteci: Ye had to have a coefficient, and we ade one by simply cmparing the waist-measuroment with the height. N w suppose a lady's heisit is 60 inchea, --the waist measure is 47.6 per cent.of that, --that 1s, almost half the helfht.
g. Would the rale hold cood in very tall and slender prsim?
A. Of courise I an apealitnf; of the average woman. If a woman has very narrow hipa, and is very tall, with very narrow shoulders, naturally the waist would be very narrow also, and the proportion would not be good.

I found, on the other hand, that the walst-measure of the averafe man, out of all the models that I found, and fetting the ave race, was 45 and a fraction, per centoof the heicht. I wanted to see if that was purely an ancietn pecuifarity,or whether it is atill found in Iiving models: so for the last fifteen vears, I have been measutinf livi ng models of primitive people. The first time I was down arong the Yume Indians, I fot a letter from the Indian Commisifunef, which introduced me to the Indian agents in all the Indian territoryes, and then I rent down on the Indian Reservation at 01d Fort Vuma, where there had been no attempt rade to eivilize them until that time: That was the last tribe of Indians in the United States then living in primitive aimplicity, and the boya and Girla of ten or twelve years, and from that dom to the 1 title babies
vere iust as they were born, so far as clothing was concerned; they were rinning ebout in the bushes just as they were born, as healting and as Innocent 28 kittens or squicrels. The woren wore a bark apron in front and another behind, and these garmenta were tied with a string just abo ve the hips, but the strinf was rot tight. She gartent in the rear was arranged Ifge a bustle, - it seems that I had diacovered the origin of the bristle. The men wore still Iesa clotilifi,--a "G-cioth", a garment about the 3 ze of a pocket-handkerchief tied about the loins. They were hardy, $s^{t} r$ rong and vigorous, and livec on pumpining beans and seds. It was interesting, at night, to see the squaws preparing the ovening meal, which consisted of beans, suds and a great circle of yollow purgkins ranked around a firo. A squaw kept turning the pumpirins ac that they would be equally roasted all around. Tins food was delicious, and scmething like the "St. John's bread". The seeds, which were only about the size of mustard seede, were throtm into a pan of live coals and parched, - they swelled uy almost as bis aspeas, and were vory sweet and toothsme.
g2. How did they parch them?
A. The seeds were perfectly ary when thrown into the pan of livo coale, and they were tosied into the air with the coals, and the squaw who had charge of them, kept throwing the seeds and coals into the air 80 rapidly that the seeds were all nicely parcied, and not a single one of them burned.

Those Indians wore bright, intellifent people: I moasured a numbor of them, and rot a number of pneunographic tracings,which I nave lost In some way. But I found that those women breathed just as civilized men breathe, and fust as the lower animals breatho, ,-the lover part of the ches: expanding more than the upper part there is more room there for
oxpansion, beause the cartilage a here are longor and more flexible than others, and the lower pibs are not joined. So the greator vart of the expansion of the chost $1 s$ at the a des, where there is the greatest flex!blilty. The averaige was 55 percent of the helint, but two or three of the vomen were quite fat. Some time aftor that, I teied it acain-I was there five years later, and I found that the Indians had made great propress in civilization: The women wore dresses, and the men were rantaloons, and the irls wore shoes and stocinges, -and i beltev they all hed catarms, and couctis, an d colds; and they ate cor manent beet and had water-brash, and were quite sickiy looking,--neverthelesa come of them were comparatively healthy. I asked the Sistor superior (Sister Alphonse) to procure me a young aquam, as the subject of some sneumorhaphic tracsnes. She did ao, and I took the young acquat into the : Ission. Mrs. S.I.Baker was with me, and toas Mfow-torionker waa and :Irs. Foy was there, and Mrs. Kellock, also, I thintr,-they were there, sc they conld verify the staterent in regard to the a, weiat-measerementa; and I was very muen delighted when I found that the proportions were exactiy the proportions the Yenus de $\mathrm{M} \pm 10,--t n i s$ squaw had the same perfect propertions and figure of the Venus de Hi20-and the that was the wild woman in the ods; end you wil find such women in Fomen in Egypt and Arabia,--In fact I have had an oportiontty to see porsons of a rood many naticnalitiea, --Nubinas, Copts, Native Egyrtinns,-pecsons from away up on the upper lile--I took their measurements. I took twenty neasurements, and of that tisnty meanuremente, the averace Was exactly the proportions of the venus de $\mathrm{mi} 10,-$ tho:so yore the proportions of these twenty native women who had ver worn the ordinary oft1lixed dress, but hast always worn a simple piece of cloth wrapped around them-I found the average proportion of those women was exactiy that of the venud de Milo. So you sec how careful those ancient artists were to
represent the exact truth. Among primitive people,they had not degenerated, and had the same proportions as had tne pecple who 11 ved two or t ree tousand yeara ago.

Now iathere any reason a women an ould unde rtake, by artill cial means to change her form, or her proportions? Istere any eoqsan reason why a roman's fom ahould be put into an inflexible nonld or tely, or waist-bend which says to expansion of the chest, "Thus far sialt thou co, and no father?" It seems 0 me that that is a crime ajnitat nature, against God, and against womanood, and agafnat the roce, and that we onght to cey out acainst it, and women particularly ous t to be extremely wrought up about it, --and tiat we all ought to be atirrod up about this thints.

Sefore we co any farther, surpose wo nake a fer observations here, making a few measurementa. (A young man comos up.) i went to see whether this youne man's yest iot two tight. (Breathini.) Thirtyeight inches. (Freathing.) An inch and a half, You have not had very active occlupation for some time ? ("No.") It would be a good thing to cultivate lung-expansion. I have had but little chance to cultivate my Iuncs. I was brongt up in the printing business; thirty-seven years a.zo I was in the Review and Herald offiee printing-office, as a "printer's devil, " and I rermined there several years,-I stayod there 5111 I commenced toeching school; and from school-teaching into a modical college, and from the redical colleze I cume into the sanitartum, and I have lived indoors all my life-time. About fifteen yoars afo I rede up my mind that I was not going to live v ry long, and others acid they thought I would not. I would walk dorn tom, and had only about strencth enough to get back, I was so weukiy. I then went to work to
dovelope my muscles. I found that my lung-capacity was only 150 cubic inchea, --and that is very amall. Aftor five years, I found that my lang capacity was 180, and 1 felt pretty good,--the normal amount being on the ayerage, 200. Afterwards I raised it to 200, and the other day 1 found tat it wa 3:3, so I have cot it a little above the average at firty years of ace,--althour you could harcily expect much lungexpansion after the afe of forty-tyo or forty-tarec. If your lungcafacity is arall and growing suller, you are coing dom hill, and you should expand your lungs as much as possible,--four, five or six inches If you can. (Another young man comes up.) Take a deep breath,--five inches. That is a wond rfil difference,--it means so much better lungcapacity; it means that much better rospec for longeyity. Now hrs..... will you come up and be measured? ("1 nave a conventional dress.") That da the reason I called you up. This is the regulation size,-juet trenty-four inches. (Breathine.) Twenty-ax . (Eraathing.) Two and a half inches. That is not x very bad: I don't think there is very mach waist - sonstriction, and I don't think you will say that a p.rson who cen expand two and a half inches is suffering very seriously from looseness
constifction. It rifht be that reate r play would produce great r play fer lunc-activity,--but ve don't always require that. Of course a woman don't want to live in a bag; she wents some a rt of stape. I remember, some vears ago, when we had sota desa-reíormers in the city, and people laughed at them, and saici they looked like bags hutz on broomsticks. (Another lady cones up.) I wonder if this belt has any infiuence on the chest-expansion. (Ereathing.) Twenty al x inches. Now take a deep breath, --just one inch. Take a deep breath-Just exactiy one inch. Now I don't think that belt feela tight, - I den't think there is any one here who would call this belt tight at all -may be there la attgint beit the belt underneath is tight, howev r. I
expect,in this case, the ruot of the evil ts cieeger down; I think there should be sme refurn here. It is very interesting to soc how mad theac aress-reformers have to be reformed. (An ther iady cones up.) You have been in schools healtin, se I sippose we will find that you re a mode1. (Srathing.) Twenty-e ght inches. Now watel wy fing ra and sec how mach they move. (Ereathire.) A good guarter or an inch. (Loughtor.) तow you have no diea how much evil there is in a "belt that is not tight." This does not scem te be tight at ell. I wish you revid forn yourselves into a co mittee of tho whoie and invesrigate yoursolves, -you would be astoniahed to see hov much mischief you dolng with a dreas that you titnk is pertectly wolesome.
suppose a wotan's dressmaker made her dereas just as large es the woman was-a skin-fit, and no constriction,--she would thint sho had an mo to the extreme of dress-othics. In the mornine that dress is fust a ilt. But fust as soon as she begins to exerctio, the gets blaiter, becalse she has to have more air. Then, when she takes her breakfast, she is bigGer still,--there is a voman and a breakicost, and a woman plus a breakfast is bifger than a woman alone, and the eress is not lare on ugn-especially if the breakfast is a good sized one. After dimer, the man is still lare r, but it is the same dress ail the time. Now see what must necessarily ha pen,--but we will take this up at another time . A mouthful of food comes into the storach, but the walst ts avay in, so that the re is not roon for the food, but it crowds in and makes room. another mouthful, and sc there is another littie wedge put in betwoen the waist and stomach, and as mouthful after mothrul of the meal comes down into the stomach, it is like diriving a wedge into a log, forcing the etorich down, becalise the wist cannot expand and make room for it,

It mist go down; se there is roally the beginning of enteroptosis--that is the way it comes: There wouldn't be any prolapse of the stomach, if the there were not this wedging dum fromeating and ariming, and the weigating, and waie: censtriction -all these things are conatantly fercinf the atomach do m .

Oow I will make a few figures, and we will see how larg a woman's waize elicht to be, being 47.5 per cent. of the neight--that is ractically 48 per cent of the height--nearly one-half of the height. Now Let us see how much that would be for a woman fire feet or aixty inches hifit: Multip? 60 inches by 47.6 per cent., and we have 20.5 for the vistmeasure: that is the venua de :ilo measurement, also that of the Nubiamn belle, and the Yume scuaw. Here is a woran five feet,four inched or 64 inches; multiplying, we rina that the waiet-measure should be $30 / \frac{1}{2}$ nehes. It is woll to keep these things in mind. suppose a woman says to you, "\% beight is five feet, six inchea,--whet alould be my waist measure--
Q. Is this expansion measurement?
A. No,--it is natural casurement,--when the body is at rest. Surrose the woman is five feet,two inches or 62 inches tall--rultiplyinf by 47.6, we heve 29.5 inches and for 64 inches, 30,1/2so the waist-measure is parctically an inch for every two inches in hefight or a half-inch for every inch in height.

> Now whet slould be the waist-measure of a woman who is five feet highp ("28 1/2.") If a lady is five feet, rour inches high whet should be her waist-measure? (" "30.5.") How much do you add for each inch of helfht? ("Half an inch.") Bow, if a woman is five feet high, and her waist-measure is $281 / 2$ inches, what siould be the size of her dress? ("Thirty inchea.") Yes; that allows for expansion, if ane has a nomal waist.. Vill this lady tell us what her height is ?
(Five foet.eiva inches.") What is your waist-measure? (wnTwentyseven inches.") It ought to be thirty-one, - Your inches short; this Ie something serious: It means fou- inchea short in lung-casucity or breathing-careity. How there ahould be areat freedon of movenent at the waist-line; there ahould be room for movenent there when we are in a hurry. A ady soun has a large wast after adoptirg a proper diet for damace and clothing. A gentiaman once threatened to sue no for having spoiled his wifen deases for her, cecense ber woist had increased ac much in size wile ahe was here. (To a tady: Fhat is your heid.t? ("pive foet, tvo incos.") What is youp wasat-measure? ("Fhirtu inches. It oufth to be $291 / 2$ inctes, -30 you are hale an inch above the stand-ard-and that is a food thing. Sorictines ladies are slender,--but we are all the time talling about the awe rage woman; if the woman is tall and slender, we take that into account. (To a lady.) that is your hefght? ("Five foet, eicht.") Vat ia your waist-manke? ("TwentyPour. ") It should be $381 / 2$--your waist,-measirement is $31 / 2$ inches short,--that meana a creat deficiency of vital pewer and resistarce.
 ?. Vould not thet adided eifits and a hale inches render the form uns ymetrical?)
A. Ve will see. (Measuring lady.) You can see that this young lady is not out of proportion, with the aded eight and a half inches. Here is a young lady three or four inches taller, with a Whist yive inches saller, --you can see that she would be out of roportion with the addition of five inches. ! hove seen casesin which the waiata grew four onfive inches in a few months. (1 lagy. Then I came to the Sanitarium my waist rained five inches in five montha.) You were a chanyion awimer, --your waist-measure increased five inchos, in a nomal dress? ("Yes.") ("easuring and comparing measurements.) Miss Folder cun stand the addition of eight inches all right, if she
would take a course of health-cultare; she would be lar ts every ray, she would have a larger heart, larger chest-capacity, and liver-capacity, a and more beain-casacity, and would be a larger woman every way. Largos brain means larger vital capacity. Miss Singer, don't you feel as though you had more endurance, and more strength and vigor for the five inches that you have aimed? ("Yes.") Larker waistrike ans larger life, larger endurance, and greater vigor in every way, --that is, if it is a real gain in the size of the waist. (A lady: I have gained I have increased about two inches in waist-meain re, but 1 have lost it .) Thur must be some loss of vigor of muscles in such a case, and also a little dropping of the viscera. I know a young lady whose walst-measure was once 30 inches, and now it is 24; she has lust six inches, and her physique is now changed; She is not so strong and vigorous as she was then. The waist changes more or lose with the addition or abstraction of fat.

STUDENTS: CLINIC, July 2,1000 .

Electricity.

J. H. KCLLINGG, M.D.

What is a nusoidial current? It is a current made of of sinuses (Explaining by diagram.) We have aeveral kinds of sinusoldal curent, -a perfect ai nusoidal eurrent lolike that,--it increases or diminishos at an equal rate all the time. The positive is where the current entera; th negative $1 s$ where it goes out .. As the current enters and alowly builds up,it will be a little lesa irritating than the nefative where the break occurs., --this kind of current would be less irritating than the varadic ourrent - and this current would be less irritating still. (Diarrar.) Why is that? The electrical stimulation depends upon what ? On the chance of the electrical state: The reater the change, and the more suden the chanfe, the greater will be the electrical stimulation. Now in the si nus:idal current the change is uniform. Here is the zero polnt: and here is the maximum on one side, and there is the maximum on the other side.. Bow the chance is igradal, - it eradually risea to the maximun;then it falls to zero; then it gradually rises to the maximum, then it gradually falls to zero, and so it goes on; but the change Is very gradual; and this Eradual change renders the sinusoidial current but very littie i-ritating; that is the wonderful property of this current:

Perhaps the history of this current will intarest you:. I bilíete I had the honor of discovering this current about sixteen years aju. I had been developing different branches of our work, and 1 made up my mind to develop the eloctrical branch; so Imadoupmymind investiBated the static, faradic and galvanic currentis, and I thought I would investigate the so-called dynamic currentf. So I got torether all kinds of epparatus or machinery, and among others a machine for ringing bolls
on the telephone circuit call "The Eelephone Genc rator," and in making uee of this, I was astontshed to find that when you take hold of the sponges your arms won't ierk, --the current was produced without sensation--and you hed no prickling sensation such as you get from the galyanic cerent or the faradic current,--you simply got motion; you could apply it intornally and externally: The patient would lio on the table shaking, and yot feeling no sensation. I found thit it was a y ry curious thing, se I Wrote an account of it. After using it for several yoars, 1 called Dr. Massey's attention to it (that was some twelve or fif teen years ajo.) He was qite an electrician, but he knew nothinf abou: this current, intily He had been in Paris and studicd with Apostoli, invited him to come here and post me on Apostoli's ethod and aft rwards studited with Apostol!. and showed this to him, but he couldn't understand it. Then 1 wrote an account of it and rad the ajer before the Americion Medical Association in Cincinrati some ten vears ago. Three or four jears lator, d'Arsonval, of Paris came out with the discovory of a new current that he called "The Sinusoidal Current;" and I saw his paper and tracincs, and Mr. Dow and myself went to work and made an electrographor apparatus by which we conid make a tracing. \#e made a tracinf, and found thet my apraratus gave the same tracing that his did, and then 1 knew wiy the current had its peculiar propertios. D'Arsonval used his current only at high sped; hla alparatua was entirely difecent from mine: It was rede in such a way that the altornations vere made with very reat rapid ity--at the rate of twenty or thirty-thousand altanations to the minute. And I noticed this thing in this current, tht when it care u_{1} to twonty or thifty-thousand altgrnations to the minute, it was absolutely ainlesiit then becare painless and continued so from that point. Then I experimented on getting hifher speed and got thirto or forty-thousand alternations a minute, but it was almost painless. This is one of the
moat interesting and u whef olectricul apyliances that we have. The Ealvanic curront, of course, is the most important and uzeful because it is fundamental, but the sinusoidal current is next in value. The faradic curcent is of very little value, except as an icritant; it is a very good ireltant, and on that account is sometines useful. A very rapid sinusoidal current is used for n rye-erfecta; it produces no sensation
 \mathbf{v} :ry ireatiy increased in volume. It can be applied in such a way as to produce poverful nerve-affects upon the sengry a mes without producing any aensat ion upon the slin, --fge example, apply it oyse the eve, and you can see great waves of lightind ale creat strfulatiom vithout sensation. It also stimulates the auditury nerve without sensaion. It is far more efficient for producing anelgesic effects than any othor electrical meansift is far superior to static electricity for thia purpose. \#e may have twenty or thiry-thousand altcrnati ons a minute, and that speed is surficient . Now the hifh tension current is aimply a simsoidal current which goes up very high--how may altomations a minute? Pour billion alternations rer secont: it may bo carried up as hich as that,-though ordinaryly I don't give more than seven hundred niliton ato or netions per second--but even that is beyond campretonsion. Hore is a discharging of aci, and an alternating current, --when assark vasses, how lung does it take it to pass? A twenty-thousandth of a second, and while you see that spark passing, there 13 as many as a hundred moveconts back and forth: It is the same thing as though I had two fars of water, and they are freely connected by a large opening. Now I raise this jar and set the watr r to oscillating, and tho water here $n i l l$ go oyer to the other side, and oscillate several tines before coning to an ownilibrim. Pick $u_{p} a$ pall of water and set it dom and it oscillatos several timos before comine to an equilibrium. Nu su pose ve had a large feco open Water passage from one of these jars to anatser, the other, and taon tip a
one of them,--the water would rise higher in one pail than in the other, d end the re would be these oscillati ons, unt 11 by-and - by the waterwould settie down to an equilibrium/. That is what happens with the dis-charisinc-rod of a static machine, --one side geta full-on which side does 1t, acoumulate ? ("The positive.") The prime conductor,--here is the negasive and here is the positive this gets full of olectricityand then rushes over here and this isfull and the other is ompty and sume of it ifos back, and so it osclllates back and forth until an equiliortum is establishet. It tekes about a hundred movements of that kind, and the whole thing takes place in the twenty-tiousandth art of a second.

Ne sleak of electricity as a fluid, but it is not a fluid,--it is movement. The static curcent is an alternating carcont, an alt rnation takinf; place in the twenty-thoadandth partor a second, and a hundred movements take place in that tire ; bultiply tyenty-thousand by one hundred and you have two nillions,--this is the ordinary static machine. Now wit the spocial hifh-tension apparatus, the tension iscaised vory much himer than with the static machine, and the consequence is that thoe ascillations take placo much more quickly then with the other apparatus. Hertz had shown that these oscillations may amount to four bilion in a second, by making conditione as orfoct as pussible. Now in making these osclliations rapitily, we have v ry hlch tension ana yory small storafe, so make the oscillations rapidiy and the distance travelled mall.

The rapldiy oscillating current is uneful for norve-erfects. When we Went to use muscular erfects,we use the full st rencth of tho machine, porhaps, and the alowly movinc current. Suppose the current moves rapidly. auppose the alternations are five tundred per second, what will be the effect, when applied to a muscle? ("It will produce musculor contraction") What kind of muscular contraction? ("Clonic contractions.") Vould they contract several times? ("I think it would contract once, and then relax)

-5.

It would if you put on the electrode and kopt it on,--but suppose you put it in and kept it on--we will apply a galvanic curcent to the muscle and oloae it, and you get a contraction,--doos the muscle remain contractedi ("I think it rakea one contraction.") It makes one contraction. Now here is a current whioh eltemates, and as it altornated, the electeifeal atate ia continually ehanged,--now it ispositive, and now it is nefative, and each altarmation changos the electric state, hence each alternation thould, ie what ? ("fako a muscular contraction.") Nach altemation ar ould make a single muscular contraction.

Now suppese, in making these alternations at the rate of three or four thouzand a minute-your elecsricsi cuerent running at the rate of three or four thousand a minute-what kind Bf contraction roula you get ("The muscle would get tired out .") Why? Because the make and the oreak would be a rapid that the muscle would not have time to recognize the stimulus, -how rapid bust the alternations be bofore you got to the point where the musclo will no longer recognize the single continuJus at imulus? ("About thirty.") That is about as high as you could go. PGuFe up the time in which a muscular contraction takos place, and you san find how many of these you can get in a second. It is intecosting ;o knew that this afrees fairly well with what we know of the sturm of

Impulses sent down from a muscle all the timo. Here is a man with
 how fast will the toe move in ankle-clonus? ("SIx or seven times to the second.") That is about the natural rate; I have mever measured it faster than seven.

Now ace what you can do by the use of eiectricity, in reference to exerelse of the miseles: Tou apply the sinusoidal current to make the muacle contract vicorously, and suppose you can make it contract five
tires a second, -hos many would that be in a minute? ("Three hundred.) Now you want to make the abdominal muscles and the muscles of the spine extercise, -hov $20 n_{i}$ would it take a man lying down, to raise hishead or legs three hundred times? And when you apply the ai nusoidal current you can make thooe muacles contract 300 times a minute, or 6 ti es a uinute: bit the muacle is not now working under the stinulus of nerye onergy, and potheps it will not devolop as much undor the influence of electeioity as if it had cone that amount of work under the inPluence of the brain, still you onn see the enormous adyantaice you have by this means of exercise.

That is the effecs of contraction of the muscles u_{i} on the bloodcirevistion? ("It increases it. .") Is the amount of blood ereater or less in the retnpwen the muscie is contracted? ("Iess.") What is the condition of the artories? (More arterial blood, when the musclef is contracted.") There is hyperaemis of the muete when it is contractod.

TR. PAULSON: But there is less blood travelling through the muscle when it is contracted, - it travels through it at less speed. .-

MxLommxumaxx That is why we should not keep the muscles rigid in exereise, becense the muscie becomes asphyxiatedithere ts not so much blood tlowine through the muscle when on a tension as there is when relaxed.

DR. KEILOGG: The artorial circulation ts no e active during muscular action than when the muscle is at rest,-wo are talking about the venous part of it now . .

Now the point is, whether a muscle can be completely omptied: I don't auppose it would bo omptied at every reiaxation; but this is all that is necessary: Then a muscle contracts, there is a tension, which prevents the movement of the blood along the veins; and the moment the muscles relax the veina fill again, so it would not interfere with the
efreilation of the blood; contraction excites circulation, and with relaxation there is a chance for the blood to move on. (Illustrating and explaining by diagram.) So contraction oncouracea lymph circulation, as well as venous circulation.

Now the practical use of the sinusoidal current is this: Ve use the rapid current for pain; it is especially useful for pelvic pains and coccygodynia,spinal pains and gastralgia, and for paresthesia of the lumbar ganglia of the abdominal sympathetic. The application of the slow ainuscidal current is perhaps of still greater value than the rapid current, because we have heat and several other means of relieving pain; but as a meane of exercise par excellence, it is far ahead of anything bat else that we can employ, excert voluntary exercise. By voluntary exercise, however, we can get the maximum contraction of the muscles; we ca can get a stronger contraction of the muscles by the stimulus of the will than by any other means. The will has power to get more work out of the muscles than we can get out of them in any other way. So the sinusoidal current must not te looked upon as a perfect aubstitute for voluntary exercise, because the will can get more work out of the muscles than electricity can, and the muscies et tired quicker throug the impulse of the at nuscidal current than by the exercise of the w111. But when it comes to passive exercise, the sinusoidal current is far superior to every othdr means of producing pasive exercise, and is absolutely indi spensable. We can gest contraction by a slow interruption of the galvanic current, and by the static current, but it is painful and the patient don't like it, and, very neryous atients won't take it, but in the si nusoidal current, you have a current by means of which you can get exercise without sensation and pain, and the patient sees his arms jerking and his muscies contracting, and it amusea $h i m$, and on this account it is a very valuable
mesauro
Here is a patient (illustrating and explaining by diagram), - here Is the pubic bone, and here is the $s t e r n u m$, and here are the rectus muscles, and here are the oblique muscles at the side, down here. Now the electrodes must be applied in such a way as to get a contraction of thesc muscies, and also of these muscles: Now how will we get a contraction of these muscles. The best method is to apply the electrode ne ar the large muscles,--but one of the advantages of the sinuodidal current is, that you don't have to be oparticular about localizing is, as you do with the other currents: it seems to have stach dispersing power, and at: the same time such intorperfetrating power that you get a contraction without being particular to localize it; but it is necessary to appiy the large electrodes over the rectus muscles and the other behind, ac as to get a contraction,--or if you apply the small sponge, you must, later, apply one sponge here, and the other over there, on order to get tho desired resilyt.

Now 1 think we $w 111$ deal with the Galvanic curcent for a moment; (niarram.) Suppose we have here a positive pole, and here a necative pole. Suppose this is the electrode. Suppose we apply it to the body to prodice the change in a nerve known as electrotonus. Now if the current isincreased in intensty, what change does doesit produce in theso fields? There is a neutral point,--now if the current isincreased in Intensity, what isthe effect of it? (Ans.not understood.) hs the ares increases, the intensity increases, - this refers to di fercnce in surface aprlication. Now the question is, Gow far down does this current penetrate? stppose this is the poie, -we will locate it in one directionthisisthe surface: this/ispread out in each direction. suppose this oxtends invard, --this extendsinward aiso. Suppose we considor the s.ape of this aroe
of this area brought under the influence of the electric current internally. Suppose this is the trunk, -- "e place the electrode here, and another electrode there,--now what is the shape of the electrical field? ("The hour-glass.") any different opinion? (Yarious anawors.) Here is the skin which has a resistance troe hundred times that of the rest of the body, --it takes three hundred times as stron a curcent to zo through the skin as through the rest of the bedy,--because t e rest of the body iswater, and the skin is horn.. Now when you get a current strong enough to go through the skin, see what that current would do. Now if the body were all skin, the current would go straight through, --but the body is not all skin, and en the current goes through the sime, it has three hundred times as much power as is necessary to go through the rest of the body---and what does it do? ("Spreads through the whole bdy.") Yes,--and the whole body is the conducting medium. Now suppose we take three pointshere, and suppose all the electricity goes throubth these three points,--what would be true of one point weuld be true of the whole. Now through the whole body we will say it comes down to this point, and centers here. Now here is an elfctrode and here is an electrode: I w111 put the red one here, and the red one here and the white one here . Now we will atart with this red one-it comes dow here,p-it sends out these others, which are intcrmediate. Here is another line (diagram); It sends out one line down here and anoter one over there, and stil1 another one down here,--those are the lines which come from the red. Now take the white ones, and it will do the same thing. Now wee willake the blue (drawinf lines) ; we must have another line here; I think we can all see that there are more lines acrosis the center than there are anywhere else. I wlll make it more apparent,--we will leave out the peripheral lines. Here is a red line,--this pole sends a line over there,--and this pole sends out a line dom here. It is truo that lines
are sent out froe all these pointe, and spread out, but the more they are spread out,the more attenuated they become; but these lines will crose more in the cent or than in any other place,--more lines will crose in the cent or, provided the olectrodes are of the aame size, --Iractically it amounts to the same thing, and the lines of force will cross in the contcer Is that right, Dr. Read? (Dr. Read: Yes,--I agree to that.) Fere we have a man with a trouble inside of his body--right in the center of his body,--how would we expect to affect it with electricity? He would hese a IIt Ie electrode on each side, or a good larg one here, because the electricity is foing to disperse through his body,--then there ses another reason,--because the amount of electricity that you can get into the body depencs upon the anount that you can get through the skin. Now if you have an electrode that is this size phow many milliamperes can you get with an electrode of this size? Eight to ten, probably,--but it suld be very painful,--aay four to six; more than that would be very painfil. Then you want to get a current in the center of the body,--you must have Porty to eighty milliamperes, to have it amount to anyting, because you have got to fill the body. Suppose the electrode will carry 45 milliamperes of current for four square inches,--how much larger area for 30 milliamperes ? (Eight square inches.") Eight inches square. Eut my observation id, that it will require a much largr electrode than that,-that if you use 30 milliamperes, you want an electrode far foot square In order to be comfortable to the patient. If you had a clay electrode you could get along with an electr ode of this size, bocause the contact is ac perfect, but the ordinady electrode must be a foot square. So it depends upon the fitting of the electrode to the zin; if you have an electrode that fits, you have the whole surface. A sponge electrode Would not be good, because a dry sponge is no conductor at all--it is only the water. So you must dete rmine the size of the electrode by the quality of the electrode.

Suppose we had a case in which the organ upon which you want to act is about two inches below the surface,--si ppose ve want to act upon the spinal chord; suppose it is a very fat man, and the spinal chord lies about two inches below the surface,--anppose it isthree times as far from the spinal chord to the abdominal skin as it is to the dorsal skin-whet would you do? You wouldn't use electrodes of the same size: you want to focus your current to the spinal chord, $\begin{gathered}\text { you must have a mall } 10\end{gathered}$ electrode. If you want a considerable volume of current (diacram)--here you have it: now you have the curcent concentrated on the apinal chord. Now suppose it is the liver, and you went to concentrate the current,-what would you do? Put an electrode over the liver which is about as big as the liver, --and then what? we would have a large olectrode on the other aide, becale we want to concentrate the current in the ifver itsel!.
Q. I don't understand where the neutral point wold bo?
A. Right in the midide of the liver; ac you will have tho freatost yortex of forces right in the middle of the liver itself. There is as much current going out in the vicinity of this field as there is in this, but it is not so concentrated. Here is a way to test this thing: Here is an electrode whick. is two inches square, and applied to the back here is another electrode on the abdomen, which is a foot square, and you put the current through a foot square,--where would the patient foel the paine ("In the back.") Why? ("Because the cerent is concentrated there.") Ves. Now the idea is, to follow that in: Here it is a quarter of an inch below the skin, where the nerves are,--now the idea is to follow that duwn into the tissue, --there would be more pain at this Point than this, because the current is concentrated here,--and it is fust as true beneath the sin--and it is true of all the area here, - one current

Is larger than the other. I think thisis important, because electricity, as cormonly used, amounts to almost nothing, the currents are so weyvery amall. The usual direction in books 1s, to have a small sporge passed down the apine, or but I ddn't think that a ounts to anything. of elcctrictity About tventy-five years ago, 1 took a post-gradiate coursewith ir. George M. Beard. He didn't say anything about the value of electricity to me till I was going away, and then, what he said imressed me very much,--aid he, " When you come to use electricity in theteatment of a patient,it is important that the patient shll have faith in it iff he deesn't have fatth in it, it does not do him any good."

When you use electricity in a scientific way, and use large currenta, you wi 11 have wonderful effects. Years ago, 1 used to see patients tip over uncier electric treatients, and I would have to pick them up,-tos but I scon learned to look out. Then I would use larie cureents, they mild ametimes excite contraction of the blodvessels of the brain and the patient would faint away., s 1 learned to be cautious: You couldn't tell what was going on until you applied milliamperes. 1 found, by the application of forty milliamperes appliod te the back of the neck and over the lurbar ganglia of the abdomina sympathetic, and solar ploxis, that in three minutes suliva came out of the patient's mouth, --the sallvary glards and also the digestive flands were all excited to act1vity; I have not applied anything to the salivary glands, but to the smpathetic sustem. Here is the lumbur ganglia and solar plexus,which heve control over the stomach and intestines, and when curents are applit ed to the front and reat, the body isbetw on the currents, and the current a has to go through these ganglia,--you cannot apply a current to the back of the neck, and the other in front--the current can't fo from one electrode to the other without going through the great sympatetic gangitas.. That is the reason we apply the हalvanic current in this way.--
Q. Where is the posi tive pole?
A. It is above. It is a rule in the application of the galvan10 current, to have the positive pole applied to the heak, so that the current will travel from the head; but l think it ls better to reverse the thing, and have the negative and the positive below. There is no inconvenience in applying a larze electrode; and if you want to influence the nutrition of the spine, you will apply an electrode four inches in diameter along the apine, and apply arge electrode in front. Suppose you apply the electrode to the apine (lllustrating by diagram.) Here is the - the role length of the apine ant elior and here is the postertor-now apply the electrode heref-the four-Inch electrode. Now s.ppose you apply it in front--the electrode ovor the abdomen,--now see what we can get there syou sce we are applying the electrode to the stomach instead of the sine-how will you get over this ? ("Apply the large electrode.") Yes. You want the electrode in front just as long as the one behind--just as long, and four converging times as wide ; then you get the electricity at the apine. Now we must prepare the crosi-sections here: Suppose the cross-aection of this is 12 Inches, and the cross-section of that is four inches; that would bring the focus in here (diegram.), taking the cross-section above the two. Suppose we want to apply the electricity to the lumbar ganglia of the abdominal sympathetic,--you will have the electrode behind, six inchos wide, and in front, about twelve inches wide, because we have the thichness of the vertebrae, the aympathetic ganclia lying under the vertebraw. This mettr of the size the electroces is one of importance, as it enables us to apply the electrode were want it... You see how you can apply it to the head: There is a certain area in the head that you want to Influence: you put on a large electrode smewhere,--it akes but little difference where,--if it is near the surface of the brain, put on a and

-18

olectrode at that point. If it is the nose that you want to influence,-if the ond of the nasal cayity is congested, you apply the electrode oter the face, arplying the large electrode behind and the amall one in Pront.

The atatic and faradic currents don't penetrate much and the currents are y ry irritating. But the sinuscidel current socms to select the nerye-trunks to travel on, and 1 think that is the reason that if you apply this current to the head, you $f t$ a powerful 3 timulation of the optic nerve, and 1 will show you another reason when you make your experiiments in the other room. The fact is generally recognized that the st atic and faradic currenta act chiefly upon the aurface. You must meke your application over the motor point. Now these motor points are zenerally near the edfe sof the muscles, so, if you don't know where the motor points are, simply select the edge of the muscle; if you select the edre of themuscie, you can get the effect, even if you don't have the motar point. Now here is a point that 1 think-- this is another heresy that i have been foisting upon the pubilc for some time back, but I believe in it very thoroughy,--and that is, that in faradic electricity and electricity that is irpitating and exciting, including,perhaps, the galavic electricity, --that these currents act upon the internal organs in procisely the same way thet water acta, - hrough reflex influence. Ne know that the ralvanic current is irritating; we know that it offects the vasomot nerves; we know that the faradic curcent irritates the sensory nerve 3 ; we know what friction or porcussion will do, and what mustard w11I do--it will produce an irritation upon the skin, and we know what effects will be produced with the internal part connected with it... There are many irritants: water is a thermic irritant, a d electricity is a local iritant, and lalieve the inflence of electricity is lareez due to the irritation that is going on. This being true, in the
making applications to the viscera, we must make them to the cutaneous area which is roflexly connected with the viseera. Here is a man sufferIng from gastralgia, --we know that electricity applied over the mypogastrium (epigastrium?) will relieve it. It is generally claimed thet if we apply electricity to relieve rain--if we apply the faradic otrrent to relieve pain, fust as strong a ourrent bould be applicd as the pationt can bear, prowided it is a neumalgic pain. But su pose it is an inflamation: Jon't apply the current at all.. If you have pain, but no inflarmation, and you apply a faradic curront, you atould apply it so as to produce the atrongest kind of irritation, --the atronger the irritation is, the better effect you can get. If you have got an inflammation,it acts as an irritant, and you have the same effect as if you applied friction.

I think the real foundation for the application of electricity for visceral effects,is the same foundation that we have for hydriatic effects, --in the geography of the skin. There are two ways of producing effects with water, --one through the circulation, and the other throut the nerves. In electricuty we have two ways, --one by ete reflex effecta, the electricity being considered as an electrical or molecular 1 ritart, and consequentiy electricity is applied simply as a physical asent pasaing through the body, using the body as a conductar. So we have two methoda in electricity by which we can get effecta,..one by wid the internal organs are directly influenced, and the other, by whid they are reflexly influenced.

ADDRESS TO MEDICAI CLASS-SEUDNHES, April 27,1900.

, ---xxx---

TyphoId Pever,--Indications :
 1. To increase vital resistance.
 2. if Combat the bacillus.
 (4.) Limiting the growth,
 (b.) Destroying the bacillus.
 - (c.) (g.) Eliminating toxins.
 3. . Sustain vital resistance.
 4. \quad, Present lesions and complications.
 5. Symptomatic treatment to event pain and dis-

comfort.

That is the best thing for increasing vital resistance promptly? central cold applications to the skin. The cold bath should bo a short on one--a few seconds, or a few minutes--10,12, to fifteen. A cold bath that is followed by immediate reaction will increase vital resistance, and increase vital work. But wen a cold bath is prolonged until reaction is suppesaed,is depressing, and will not increase vital resistance.. That ia a gen cal principle which you can remember, and which will help you. But no cold application, the the for a mite, ten seconds or fifteen minutes, will increase vital resistance unless followed by a prompt and complete reaction. An increased ratal resistance consumes the body by increasing oxidation, and while we incruase the vital activities, we may, at the sane time be using up the vital resources, and so the ultmate effect wide be to weaken the patient, and we often find patients getting weak under the influence of too long cold-baths. We often find a cold-bath of thirty seconds too long; we often have to get it down to
two or three seconds, so as not to decrease the substance of the patlont. While inereas ing his vital activity.

What is another thing that will incrouse yital resistance ? cool the air, and lower the temperature of the room as far as we can, so that the temperative "ill not get 500 high ; have the temperaturo of the room about 60° : that is important.
8. Is this before the disease has setin, or afterwards?
A. This is without reference to that,-2we are simply surveying the whole thing: we are talking about methods by which we can increase vital resistance at any time. The manner of bath and the kind of bath would be regulated by the disease ; a cold bath is useful at any time, and It Is uaeful in all diseases; the temperature of the room should be cool--we might say cool air, instead of temporature of the room.

Now we want to combat bacillus: In the fiest place, we want to check the frowth of the bacillus. There is the bacillus located, In the early part of the disease? (In the Iymphatic structures.) Yes,it is located in the mesenteric elands and the lymphasic structuresift is not lying loose in the alimentary canal,--it is in the tissues. Now what would be likely to encourage the growth of that bacillus while it was in the thasues? (Heat,--moisture.) Yould not a state of passive congestIon be likely to encourage the bacllius? ("Yes.") Why? (Difforont answers.) Beause there is stagnation of the fluid. When we have fresh serum, re have a fluid that contains bactericidal substances called "Alexins;" they are in the blood, or serum, when fresh. Sut when the blood remains for aome time in one part, the alexins are all conaumed and used up, and so the serum would become a good culture medium for germs to grow in. Brieger, some years ago, pointed out the interesting fact that the bacillus of scarlet fever manufactures its toxins out of the normal leucomaines or toxins of the body. So, if we have a large amount
of aerum gatnered into a part, and it remains there for some, tho sorum losea ita bactericidal power, and the creatin and creatinin,and other xanthine bodies contained in the scrum, would, by the action of the bacilIus, converted into typhotorine, the jeculiar taxinee of this disease. So, If we can lessen the pasaive congestion of the lymphatic stmacturea, that would leasen the activity of the disease, - and wat will do that? That would a cold abduminal compresa do? ("Cause cuntraction of the bloodvessels.") How would you beat accomplish that? ("By a cold compress.") Ves (and we would not lesve it on longer than three sinutes perhaps.) Suppose we had a patient in the beginning stage of the disease, when the temperature is not high, but is noving right on, - it is obstinate, so that the patient is not likely to get chilled. ("I would not have it on so long that the patient would fail to react,--that is, unt11 It was blue.") You would not put it on long enough to chill the patcent ? (No.") But you would change it every two or three einutes before it got mara? ("Yes.") Let us see if any one has a different iea. (("A heatinf compress?") Vell, so far as limiting the grosth of the baciliusis concerned, there is no dotibt but what a cold compress, by $\operatorname{limiting}$ the blood-auppiy,is the best. But is there not some other way by which we can combat the baciliua and limit ita growth; one way is to lessen the blood-supply, --what other way have we --that is, to eat up the bacillif and carry some of them off. ("I should think enemas and cathartics would be useful in getting rid of thom and removing decomposIng material from the bowels.."! I am glad you have spoken of that, ,we w112 get to it, but we want to consider the cold -compress. Now wo cannot practice hydrotherapy in a desiltory way and at the same time be seientifie; Te have got to be clear-haaded in this thing, and know whit we are about, and why we do things: we have got to look down and soo what
procesa actually at rep; ve will sec a dilation in the mesonterle Eland, and the blood in stagnated, and the bacillua is growing: Ve put on a cold compress and that will limit the blood-supply and produce less favorable conditions for the growth of the bacillus. Now is there any other way of combatince the gr ifth of the baciliusis ye want to fncroase the ciralation of blood; we want more blood passing through the part, but wo don't want so much blood passing into the gart, because when the
 healing power In the body, and it does its work in one part and then Goes on In ita march through the body, and this march must be kept up, and the blood must not be allowed to atagnate .; now hav can we keep up this march of the bloud through these atructures? ("By the application of hot and cold water.") Ye don't wont much hot water,--we want a littlo, however--That else? ("Short cold-bath.") Ve are talking about the cold compress-how will we mane tho cold compress in such a way as to get an increased morement of the blood so as to combat passive conceasion, inf creasing the movement of the blood through the part? ("Remove it occaatonally.") It is the frequently renewed heatinc-ccmpress; we must change the cmpress fuat before it geta warn ; we uil allow it to get warm onough te keop up the action of the skin, and that will keop up the movement of the blood through the mesenterie glands, so ve will say, "a mwamerixa frequently renewed heatiñ oompress." What will be the temperature the copress? ("About 60° n.) That ia right; how soon shall we change it? (When it gets warm.") Yes, you want to change it when it gets warm, and not hale an hour ar an hour after it gets wame; it feta ware sooner When the patient's tamperature is very high. That would maintain the tone of the lymphatic structures and the internal atructures and the Iat etructuros, and the blood will keep marehing through and we will have active movement of the vessels. Is there anything else that can be done th by way of fighting the bacillus? ("Lowering the temperature, otc.")

Thet is doubtfid; perhaps it aids a little, but the blood is ao rapidiy drateibuted throughout the body that I don't know whether we should lower the temperatare much,--and then the question would be, whether the lowered temperatnre woild encourace or discourage the growth of the bacillus; 1t is a question whether the lowering of the temporature vould limit the Erowth of the bacililus or not, -1 cannot tell. But this is true, --that there la a nervous excitation, the same as whentrput a cold applicition to the akin, --we excite the bloodveasels of the related structures, and then the bloodvessela are excited, the tone of all the tissues is rafaed: all the cella in that vicinity are excited-all those that are under the influence of the nervous system--they are all excited, so t hat there is increased activity of the parts, --to 1llustrate: Here is a patient suffering from abdominal pain,--we put on a cold application, and that cold application has the effect to cause contraction of tho blood vessela in that part which is concested--we will suppose it is a congeated ovary, and we apply an fce-bas over the ovary,--would you do that to celieve ovarian pain? Ne might, if it was an inflamation, but you would not ordinarily be likely to succeed yery well, by this means, unless you did smething else at the same time. The cold apllcation which we make, taile it excites the bloodveasels, excites the nerves at the same time: but the nervea are already too much excited, so the pain is increased. Te don't apply cold whon we havo great pain; we depend upon heat for the relief of pain,--the same reflex which excites the bloodvescels excites the nerves of the part, and so increases their sensibility, - \boldsymbol{I} wonder how many understand that. You will find this in pleuritic pains and abdomel pains, and espectally in pelvic pains, you will find that a cold application increases pain, and the reason 13, that there is a sort of neve-fluction, as well as a blood-fluction.

$-2.15-$

Now this excitation of the reves is Fhat we want. The ee 2la, undor the influence of toxins produced by the bacillus,are bemumbed; they are intoxicated and zeralyzed under the inf hence of these toxina,--and ian't that where the sloughing of the pyrous patches taikes place, and where the ulceration takes places- It is beaause the phrta are stupefied and losa their fighting power.

Now we want to keep theas cella up to their maximun fichting power, and the application f cold wakes them up. We see this in a ran under the influence of optum, -his oraathing is reduced dom to four In a minute, and a mere flutter of the pulae: Now put icemater on that man's tack, and the effect of that application will be to avaken cardiac aetivity and respiratory activity, and it excites the aerves of the part. In the same way we excite the cells, and, throwigh them, the muscles are excited, and the movement increasedf in the same way, when we put oold upon the skin, we st up a train of reflex influencea. It is not simply the blood vessels that are excited, but also the cells and tissues or the part.. That is the reason a sold application increases vital writ. A cold application to the whole surface increques the vital work of the whole body,--anc so a cold application to the stin will increase its yital work and activity, oringing the cells into contact with the bacilius a.g as effectually to resist it. No want a work done in the lymphatic glands and other thaces whe the bacilil are locatod, whach will kill them, and so the more feequently we can put on a cold applcation vithout benumbing the skin limiting the force of the invard reflexes set ut, the better it will be for the patient, because overy time we put on a coid application, those cells are wakened up to renewed activity, just as a sloeping man is awakensd and set to wowk and excitod ch111 to activity. If we renew the ap lication too often we will exsarta the
parts and lesaon the reflox, and the defeat their very purpose. N $\begin{gathered}\text { g }\end{gathered}$ What is the flrst thing?--this ahould be rritten, "The Cold Abcominal Compress Prequentiy Renewed."

There ia another thing that we can do in reforence to limiting the growth of the bacilua,--and that is, to shat off the sort of material up upon which the bacsllus feeda,--In sther words, to reculate the patient's diet by cutitng off his mext-supply, his boet-tea, chicken-broth, oysters and wach things. A short time aro, after I got home from fisconsin, one of our nursea who had been d own in v. Yirginia in quarantine wan yeliow fever was expected there, and there were a number of typhoid fever caises In the nelghborhood, also one or two cases of yellow fever. She tola me that the doctors fold the people that they must not eat meat, because they would be more likely to catch typhold fever and yellow fever if they did se.: 20 no one ate meat, and the butcher's shop was shut up. That ras interesting; the doctors had found out by obseryation thst peqie who ate meat were likely to get typhoid fever, so they cut off those supples. Now what substitnte wald you use for the purpose of discoreasing these pathogentc symptoms? (Fruit-futces.") Yes; there is nothing better than grape-tuice for this purpose. I was noticim in a medical iompnal a short time ago, that Jr...... Preacribed zrape-juice In the treatment of this class of diseases, reporting that his succesa Was yery satisfactory. All kinds of fuit juices are to be recomended, is thece anything else that you waild recomend? ("Charcoal tableta.") Ye11, that is not such a bad thing. Bonchard recomended charcoal, beoevae it disinfected fecal matters, so that the soxin: were nearly all destroyed. ("Oor about yellow charcual.") It is not so good as some other foms of charcoal, still it might be used, smetimes. I thin! charcosi obtafined from cereals is the beat.

Now while the bacfllus is found at work in the tisaues, it starta In the inteatines, and from thare they work their way into the tissues, so It is important to get the intestines emptied thoroughly, and to ase the purest foods, --and I should say, In reference to foods, that the best vould be browned atarch roasted elce, Eranola and dinilar foodareye the proper fooda for typhoid fever; I might say that toasted cereala and fruits and fruit-juices are really the best foods for theae cases. Nov That would you sugeent an a veans of emptying the bowels thorsughiy? (Ä large enoma.") las any one any other sugbestion to make? ("A ciose of salts.") But we nust remember that those matters ascumatate in the colon, --they remain there until the liquid parts are abaorbed, and then the pasidue is cast out of the body. Now if we five the patient a dosko of salte, what is the condition \mathbb{T} the mucous membrane? ("Congested.") Yes,--and a dose of salto produces a Liquid stool, --and why? Becauao the mucous membrane is dilatod and conceated, and the serum is pourcd out into the intestino. Are salta bactericidal? (No.") Salts being a large amount of serum into the sall intestine, but do not kill zor s; some of they simply mush them away : it does not destroy them, but leares most of them bohind, and puralyzes the bloodvossels and the cells and a guantity of serum is poured out in which gerne frow. I havo yot to be convinced that there is any advantage to be gained in giving salta. I can see that it vould weaken the organism and leave bohind a stasis of fluid in which germa can develop. Suppose that instead of ging solts zo Give fruit-juices, --can typhoid fovor germs grow in fruit-juices? ("No.") No ; frust is laxative, and if we can render the interstinal tract acid by the use of fruit-fuices, we shall limit the frowth of the becilli much better than we can by a dose of salts. By tho "old-fashloned aay",doctors said, in casen of cholera, "Ve must purge the patient,
because there are germs in the intestines.":" a tho patient vas purged nearly to death, In old tizes,--but that is all done aws y with now. A sra great many doctors don't think of giving any laxative at all in cholera; they amply administer large enemas. The microbes are feting da far down into the colon as it is possible : Now if Ne give the patient liar co enemas, and at the same tine five the patient large quantities of fluids, it seems to me we are doing about all wo can dolor the purpose of emptying the intestines. Sometimes the patient outfera from anosmia, and te gave him a dose of salta, and that is very eifitual; doctors often give salts in such cases, and that drava the blood away from the brain, and the whole portal ofrculation is involved, and great portal congestion is in the hates of produced.. I have been fin giving do ce of suits from the force of habit becallse it is considered the proper thing to do before operating upon abdominal cases, and I an not sure wether it helps or hinders thong 1 have seen cases in which patients had a hard stable to bet over the effects of a dose of salts, having an inability to digest whining, ans ma naveea, etc., and I have made u_{k} my mind that 1 will have nothing note to do with salts if I can help it. I am satisfied that it would be better so introduce sulphate of magnesia a into the colon, -or some other excitant- - would have better effects than a dose of salts and letting them travel the whole length of the alimentary canal; there is no harm in giving salts per rectum, and I think wo might have gand resulfa: but I prefer giving the patient a dose of sulphate ff maine\$ta dissolved in water, and a soap enema will answer just sis well, and tace retained until I1 the bow Is move?

Now I suggest that you $\bar{\sigma} \bar{\sigma}$ over the so main heads when are written dom here and study them on rough ty, and in doing so you will be astonfared to find hot many things can be remedied by very simple means, and how for remedies youhead, as you 60 on in the study of typhoid fever.
(Recapitnlation.) "Linitation of toxina,--" how are toxins destroyed? By the cold -bath, by incroasing oxidation,--the cold-bsth improves the movement of the blood, and a incroases te abserption of oxysen through the body, and increasea the use of the oxygen in the tissues; so the coldbath is everything that to necesaary withou inceeastne oxidati $n,--N w$ are toxina dectroyed? (By oxidetion.") Cold incraases vital activity of all the orcans, and it increases the setivity of the thyroid giand, the supra-renal glande and all the polson-destroying sobstancos in the body If you atudy twhoid fover and get all thore is in it, and know how to deal with it, you can cieal with wll the other fevers, -and yout oan deal with almoat al acute diseases if you take one disease and analyze It thoroughly, it will ofen the way to the treatment of every other malady.

The elimination of toxins wil2 bo asompaniod by increased act1vity of the liver, slin and kidneys and bowels,--and what will do that? ("Cold-Bath.") The cold-bath is cood for the purpose of exeitins all these glands, but we must have another thing beaides tho cold-bath, because the pelaons must be diasolved in opder to be carcied out ..What is it ? ("Nater-drinking •") Yes,--anyt ing else? ("Breathing exercises.") Suppose the fatient can't erink, --then what ? ("Enema.") Yea, that is very important, --give him an enema ay least once a day. Let the pabient drink as much water ss he can, during the day, and if he can't dirink onough, give rim an ehema. Is it the business of the stonach to abarb? ("No.") phat is a new fact, which has recently been dischuered, --that the stomach absorbe's very littie,--the stomach contracts and unloads the wator into the intestines. Is the stomach as active as it ought to be in typhoid fever? ("Yo.") Is not dilatation of the stoman one of the complications which we have in typhoid fever ? ("Yes.")
That is ons of the complications that we have in typhoid feror, and it will
be 1 thely to be incroaaed or asgravated by making the pations drink great quantities of water, when the atorach does not aboc ob 7ator, , w on m must not d. that: so if the patient finds that thare is faeor apiashe inf cound in his atmach, thera is no use of aiving hin any nove. That 1s the great aborbentorgan of the body? ("Tha colone") It tho x ebonach can unload the water Int \boldsymbol{y} the stall intestines, it is ail -1ch, because it will be absprbed by the intestines and by the colion. Bouchard has pointed out the fact thit most pa:ients who havo typhoid fover have dilated atomack, and thit is the raason thy we ongit: not to $3: 112$ further dilate the stomach by overnoiming it with water which eannot be absurbod.. So the enema is very important in these cases, and it sonle be employed evary day, once a day at teast, and it is better to have if twice a day, and the temporature should be 70° :0 $10^{\circ}, 39$ that it aill lower the temperature of the body and accelerate the movoment of the blood through the parts and at the ame time the ratar is abse roded....
8. Do you think the blood 1111 neutralize the foxins?
A. Thez serm of the blood will do that . ; but these alexins ace manufactared by the potson-destroying thands. The serwn of tho blood is a sort of resarvole into which the cells pour thetr bactericidal substances: but sugpoze se five the patient bef-tea,--ve will neutrallze the bactericidal power that is in the seruin...

Niw let us see how we will austain the vital resources: first, by rest: second, ve must Eive the patient proper food to support his resuleces. Fe must not forget so feed oue typhold fevor pationt. That elements does the typhold fever patient need to especially sustain his resources? ("Carbonaceous elements.") Hould you say, carbo-hydratsa or earober hyfro-darbons? ("Carbo-hydrates.") hy not nydrocarbons? ("There is not sufficient power to digest those foods.") Vhy not give
hIm mushea? Because they are not thersughly esoked, --they are only eooked enouch to fercient. Does rav ataren ferment? (nits.") io, : *ill not fement any more than a etick of wood on a grin of whot: it muat Ilrat be partially digeated hefore it vill forcent. Nome of you know by oxperiarce that, gration bread ua harder to make than urdingey bread: it is 2tkely to be heayy, -- and why उucauas tho digestive fofe ment part in the bran,--the dastase--convorta sime of the etarch Into dextrin, and dextrin isbeary; you vouldn't put reset in is, - if you shonig make a paste of it and pus zesat in it, it woulan't rize, because the stareh has beon dextrinizod,- - 1t has been educed to the stage of amblodestrin; it wouldn't rise, but it wold ferment ver quicky, but paw atarch wh't fament, but it takes it a lone tine *? dicest. "ea the typhoid fever patiant a superabindance of saivis? ("No.") He haz a slow stomach and very little saliva, and paetially couked starch-food wen taiken intg the stomach, is likely to rumain there a lons tiro, and it is likely for ent. So we shoud fivo the patfent his starch in te nearly s digested state as possibla - -und that would be in a bromed state-convarted into achroddextmin, or o.rried stili furthor-te maltuge. Trumerta melt, "Maltinen or ainilar preparations would bo good, --bny of theso matt extrects which agn be purchased in the stores are aood but not the best.
Another thing mey be done, by wich the polient's vital re- sources are raised,--nd that is, to keep him from uetm, up hiz energies, I shoule havo mentloned that the sugar of fult suices ts the best of all, - it io lemulore, and lemuiose is the furm in whioh et.ech is tis natre eound hen finaliy digezted, -when the process of digestion is competed. Then there is a dibeasec mucous membrane, would that intorfere with digeation In avy vay? ("Yes.") hom? ("It woud interfore Wth the charging ut the fevulooe. ") Yes: the final ctange takes place
 The saitya and the paicreatic filice eunvers starch into multose, and that proegsa can go no frueter, so the final chatgc tatea place viale the mazoge is pasiong through the mticoud membrane. Davy has shofn that When the maltose or fluose are converted tht intu loviluso shat bio then converted back acain,--5the Intestinal juites has power to du tiat. Va have sugar in the form of levulose In tho jrape, bus rien the geape is made into the raiain, and the raiain atunda until it guta c:oyatailized, thon the Zevilose has boen transtome ithte ilicose. That is the difforence In the chemictl eomposition of levilosa-and rizucese? ("Whe formaio ia the ame.") what is the easontial difforance be boon the pwo?--the acobetstio diffacence is, thist one turns to tho cheht and tho other turns to the left--bus wiich is the mast easily oxidized,-- levulose or dextrose? ("tuevilose. (f) Yes; ita chemical urganizasion is such that its radical can bo separoted fromit more easily whateadiy than that thet of ciextr se. The incompletely oxidized portion of the nolecnion in Hucuse is in the center of it, winle in levuluse t tis onf one side, sb the radien ia more lousezy eumbinut; honce lovaluse is thuch mure easily oxidized than dextiose. When urdinary cane expar ia expusad to the light,
 uIose: and if you take cane sugar and boil is with some action it will be fereulualy converted into levilo:e afek filucose. Honevor which conta!ns levulose, if it stands untit it is ervatallizud ve candiod, tio Lerilose aill be convertod into diextrose or into fiucose. Nor in the He testine, the rev cae of this takes place, - tho grueose and the maltoso are chonget into len 10 se whlle pasaing the ough tha intestinal meous membrano How if this membrane in diseased, this c.ange is not easily offected, --jo, wevid it be vise to tate our carbo-hydrates in the fora of levalose, if Fe can get it? (Tes."). It is beautiful to know that we have levelose

In abundance in swoat grapes, and the fuicea of sweet fruita furnsan Us with one of the most perfeat ferste form of foods for the tpphoidfever patient which we can get; the argaf is in the most asatrizahle fem, and resdy for inmedfate use.
0. Hor about milk and kuryas?

1. They are wholeawa, bectuse they reader the intestino acid, and interfere with the action of the bad liue. Tactose is slat a frod carbe-hydirate.
"To jeswant lesions and complicationa" $7 e$ will madily ran these over. Pirst we will conaddar lesions of the digeztive organa. Theze are gastrointestinal infisationa, --we will say,"trettations of the st mach--" dilatation of the stman: there is sumetimes enormona dilatation, suthat the patient vaitabecause of the overflow of the stumach. Ve have Bustric irritation, gastric dilatation, vith uiecration, ",mpan!tis, Inflarmation of the bile-ducta, wand what elee do we heve ? Ve havo alpenileitis; that is unother complication, --but that is about all that we need to stop to talk cbout. That corpiscestion cio we have in the cospiratory organs? ("Pnewnonta.") \#e have beonehiol pheumonia, lobar pneteonia, Iuryngitis, bronenita, tyspnoea, hypostatic ongestion,-and wat else? (nulueration the larymen) Yes; that is a consequance of the laryngitis. He ala have tgocarditis, artheitis, phlebi-tis,--anything elasef in relation to the coeplcatory apparatus? Rhombrais. Now the liyer-system: (u*oningitis, he adee es, neuritis.") What kind of neuritis? (uperipharal."! Muitiple.; we alx have sclerogic, apoplexy, hemipiegia, hyoteria, epilepsy, entriction of the muscles. And then we have ataxic symptome; we have various symptons which indicate a gempact narvous ieritation of the general nove-centers, brain and spinal chord.

Now we will say tho bones and musoles first, -- "Osteo-myelitis,
artheltis? (".....disencration of the muacies.) find ab, cesa of the
 and pyumine (?) nepheitia, arciitits, araritia, haenstucele, etc. There are alsa cotplicationa of the kitinoys.

Relief of pain and discompont: Tho Itrat atise ta vhat ?
(Headache.") Fhat else? ("Kavaea.") Anorexis, eiovation of temperatare, --whit else? ""General molaide.") Tea, but wo ave that all the Nay thrutiv the diseaso : cunstipation talikezy-io be present. Ants is the first stage, - what do we hove in the second ataca ? A hist foven. ("It Is atationery.") Fh..t do we alav havo? ("A isish bonperatume.") There aro many symetaan that do not indicate treatnent; whot wa are getting et is, symptoms that indicite atmething is be cione, - for instance we don't do anythint fur the pulae, but we ought so.exumine it, aj ca
 What else? ("Fympanitis.") That is in the third stafe. I think it mould be well to look at eyphoid fever in If ve differens stages, - morhafr you are now looking at it in three stages: The firat stabe ia the onnet; tha inflanmation and the-second, the disease becaes atationay; the nest atago is fnot malie:stood): the fourth stace is the lieclinegend the fiffin stage is convaloscence.. Study the ofinicul mareh of this dizause throurh its difecrent stages, and I think you wili Iind, when you gut through, thes you can accompish everything necesoary with α vory fer and aimple moans, and you W112 be surprised tu see how mich yuu can accorplish with a cotei-bath, a cotd compress and a fow other sinpte treasures, then take up those gartous conditions and seo hov easily you can deaz with thon.

IECVMRE $=0$: 2 DICAI CTASS STUPEMTS, Kay B, 1900.

$$
\text { I. }, \mathrm{Kelloge}_{\text {S }}, \mathrm{K}, \mathrm{D}_{0}
$$

- - X - -

Typhoid Meyer, -Symptoms snd Treatrent.
Yital Resistance, $--t 0$ increase.
Bacillus, ---to destroy
Vital Resources --to pesenve.
Lestons and complications.
Dtstressing symptoms.

You may write on the blacesboard things ich you think should be done in different conditions of typhold fever.--How rould y increase vital resistance? Supose we had a :yphoid fever patient in bed: Fe Will keep $h 1 m$ there and keop $h i m$ still--how will we increase the vital resistance? ("A short cold application.") Yes; this increases vital work: it does nut aupply vital energy with wich to work, but it aimply rouses or stirs up the body to work, and in that way it increases its vital resistance, - It is the same thing as when, in the midst of a battIe, a cartain rushes out in front of his men, swings his sword over his head and shouts to his men to rush upon the enemy--to "Charge!"Aad then With three freat cheers they all oharge. That is what cold water is for: it calls upon the whole body to charge-it stirs up the whole body to charge upon the enemy, hence cold water is the thing that increases vital resistance. In every disease that you have to treat, you must remember that cold water must come in. Por yoars and years I have ueed hot-water treatment fiving patients fomentations for their jains,, 2nd they would Ialnt away every day; and I said, " $\mathrm{I}=11$, it takes time; the process is coing on and the patient is crowing better, but it don't show it." sy-and-by those patients would get tired and diszusted and
go home. When they had boen home a wook or two,they pould feol botter, and they would find out that their treatment had done them good. Nor If I had known enough to have fiven those patients a short cold treatment once or twice a day in addifion to the treatment that I was giving them, their imprevement wold have been more marked and rapid; but in those days, I didn't understand these physiddal processes, and tho nature of the battle in the body as 1 do now; that is the important thing that we didn't know twenty years ago,--we didn't know what kind of a battle was going on in the body in disease; we didn't know what disease was. He sald "Disease is abnomal vital action." That is ail right so far as it goes, but we didn't know anyt ing about germs and tho toxins that the body is trying to get rid of, 30 we didn't know the best things to be done. But now the thing is all plain and simple, and hydrothorapy comes to the front as the one thing that $w i l l$ do more than anything else In the vorld to raise vital resistance. Now will sume one tell us what we ought to do for this latient?? ("Short cold applications.") Yes,-how can they be made? ("Spray." Oold feiction. * Scotch douche.") Fould you use spray for typhold fever ("No.") \#rite dosn "Cold Short;" now let us see what "cold short"might be. ("A sponge. Not hand rub.") How mould you give the sponge? ("The wator would be quito cold, and let the water evaporate, and aponge parts of tho body at different times; I wouldn't sponge one part too long; I would mop a part of the body and let it evaporate; 1 would give it very short, and I would take great pains to get a reaction by rubbinge") Yes, it is reaction that we want for vital resistance. Now in regard to evaporation: Slow cooling always hinders reaction, and reaction is the thing we want for the purpese of increasing vital resistance, - how would you do the spong inf for that purpose? ("I would begin with an arm and keep the rest of the body covered, and I would sponge and dry the arm with sume kind of

Priction, and then cover up the arm; that would increase the reaction; I vonld be eareful not to expese tou much of the body.") Receever wo are looking over the whole disease, and considering all the different conditions ts which ve wapt to increase pitgl resistance. We sometimes ind a condition in typhoid fever than te need to make a spocial effort to increase yital esistance--what would that condition be ? ("It micht be in the convalescent state of fevers.") Yes, but suppose the patient were in a state of collapse? ("Sponging.") The only way you could do very
that. Would be to have youe sponge well wrung out of cold water, so that it is only molstened--it should not be very wet--just moist--and applied to the skin with a good deal of force, and followed by rubsing. Iust mop it over and mab it afterwards; that is very much like the vethend mub--you simply use the apenge to carry the water, instead of your hand: but the feiction -mit carries the watec right along, 30 it is bettur than the hand.; apply the water and then put on the : Grol and then rub; then make another application, put on the tovel and rub again,--but that is not useful in all conditions of typhoid fover.; veite domn "Sponginge" (There are many things to learn about what wo are Boing over, and if you are thinking hard about it,you will get a pror1teble course of instruction, otheraise you will be losing your $\$$ ime . If you are thinking hard about it, you will learn some things here that you could not learn in any other way.) Sponging is one way to increase vital resistance, - what else? (wititen-frivtion.") Vould that be good In this condition : Suppose the patient has a high fever, and his skin is hot, and you had made your application two or three times a day,--you would have a reaction already, so you wouldin't use the mitten-friction nor the sponge-batho would you? ("No, sir."). That else? ("Het-skeet rub.") Yes; with a towel you could reculate, vory exactly, the amount of water appliad, and the rubbing would be outside of the towel, and you vouldn't chill the patient by slow evaporation, because he would be pro-
teeted by the towel; and when you get through, you would take off the tovel and cover the patient. That rule vould be applicable to almost - very ease of typhoid fever.. That is another thing to be dene? ("Methand mab."! Yes, that is always applicable, and it is a spiendid thing in typhoid fover. Then would we use these shote celd applications in typhoid fever? Ve would use thom, in the ifet place, when we were employing no othere cold applications; and in the second place, when there was a spectal indication that there was a fallure of yital resistance, and When we could not enviloy a very cold application,--we might say, we would use these short cold applications always, when we are not using Qther cold aptlications. Nuw supposing we were using a cold -bsth-If we were using the Brandt bath, we wouldn't need theso other applications, because when be ia in this bath the patient is rubbed all the time he is in the bath. Suppese you vere using the raduated -bath of Bouchard,--rould you need the se applications? (nNo,sir.") Cold spplications should be made three times a day in syphoid fever for the purpose of stimulating the vitol resistance of the patient,--and erequently oftener than that. Suppose we use the graduated bith once in four hours,--vould ve need these short cold applications? ("No, sin.") supposing we ware using the prolonged neutral beth, and the patient was so feeble that he could not react, and yet he has a high temperature, --would you want to use the cold-bath? ("He might not react.") He would not reacto to a short cold bath? ("He might not, if he was vary feeble.") suppuse his temperature was low, so thet he had to use hot baths, --then What, --auppose the pationt had but little power to react, --wht kind of bsth would you five him? ("I would give him a hot application.") then whet? !"Give him a short cold-bath and vigorous application with vory 11ttIe water.") That kind of temperature? ("Moderate temperature.") The tese power your patient has to react, the colder must be the trat r, and the less in mount--have the water very cold and but $11 t t 10$ of it

If the patient's llesh is cold and blue, rub him in iee-water with the hand, --dip the hand in ice-water and then give the parts a vigorous pibwater bing: there is a IIttio IIIm of tee-in your hand , and the patient \quad gets that ingreasion, which is followed up by the impression of your hand, -or youl eight squeeze the cloth dey and then rub the patient--but rou Whidnt do it when the skin is hot, be ceuse it would stimulato circulatory reaction. Suppose you had a pationt with typhoid fever and pheumonta and the skin is cold, --what would be one of the first things to be done? ("A short het-bath of sue kind.") Yes,--get the blood to the surface, congesting the skin.; a hot blanket pack rould be a good thing for a bed patient. For a patient vith a temperatupe of 104° and lungs very much congested, and feeling very badiy, what would you do next? ("Apply cold.") What kind? ("I think ve micht apply a bath.") Vouldn't It take too long to get round to that ? ("Sponge.") You matre a hot applicetion when the skin is cold, and if you make a cold appileation after that, it must be made imediately afterwards,--could you suigest samething more? (" Vet-sheet rub..") Lay the wet-sheet round the patient? ("Yes.") You might do that, but I think the wet-shees pack would be better,--1t would be capital, wrappinc the ratient up well, so as to allow the bleod to accumulate in the skin, and that will keep the blood in the skin; you can apply the wet-sheet mub and the pack, but skexrast-
 pack would be good, because this congests the skin and keeps yit congestod; bat the sheet must be wrang very dey, the water being about 60°, and the patient must be wrapped up wam, and be sure that he warms up right quick; the alternate would be the wet-sheet rub--("How long would you keep him in there ?") Till you find that the temperature begins to come up, and then take off the pack. ("How much would it lover tho temperature, wion followed by a cold sheet"") It depends upon the amount of

Water in the sheet, --if thore were two pounda f water in the shoot and the patient reighed 146 pounds,you would lower the patient's semperature one degree, the temperature of the water being 73°; there rould be an increase heat production, but there wald be some evapocation, and that mfirht enough to balance the increased heat production--the - 0 will be an increast of gat-production when the skin is cold, but the trouble Is. In eeference to the retantion of heat. Getting the hoat out f the surface rould probably lower the patient's femperature - and perhaps that is as much as you should ettempt at one bath. If you haven't reaction you should repeat the pack; the importrent thickiantanget thet bioud fimedinhorisinithe important thing is te get the bluod rixed in tho

You can take your choice as to the number of these apilications,-egeordinf to the conditions--it must be two or three times a day.

There is another thing that increases yital resistance. !" Prolonged aprlication.") Put down same other batis-aslow wiplicutiona without the I!mitation of "* ortt-" simply, "cold." A shot cold application is used in cortain conditions, and we have other kinds fold. ("Erandt bath, gradated bath the cooling-pack, the cold e mpress and the cold enema, cold-vater drinking, cold air, etc.") Yes,-. and in some cases of fevor, cold affusion.

Now to deatroy bacillus : Ve have enema, water-drintring, neutral bath, and the heating-compress,--tour things by which to combat bacillus. One thing to do is to prevent the growth of bucillus,--and that will be, how? By relieving,passive congestion, and by depriving 1t of food; the second thing would be to destroy bacilius-noy would you destroy the bacillus? By increasing leucotycosis,--and what does that P ("Blood-action.") ("Short cold applicstion.") ("Insreased ciroulation.") Increased circulation,--where? ("In the glands.")

What vill do that? ("Tho abdominal compress.") Te have already put these things down, --that is the beautiful thing--when ve can deal with all these complications by means of aj fer thinga. The next thing will be to eliminate toxins,--rpat is the bsat thing te do that? ("Yie enena.") Yes. that onemuraces the elimination of toxins through the kidneya,-what else ? ("Iater-drinking.") That also encourages elimination,-What else? ("The neutral bith.") Why to you not suggest the hot-bath? removal Because thet encourage a rtankmatur outwardy instead of inva-dy; we depend upon the kidneys to remove toxins, so it is bettor not to use the hot bath for that purpose. Mary times we uce the hot-bath to encourage elimination, but in this casc we don't. Ve use the neutrul-bath because we don't want to increase the fevar; the neutrul-bath is a fev degrees below the temperature of the body, hence it lavers the temperatare If it isgrelonged, and incroases eliminazion through the kidneys by absorbing water.

There is another thing thet is to be done, -and that is destray texins. पe have considered four things, but there were only two things to be considered, --the bacillus and the texins--to hinder the frowth of the bacillus, and to eliminate and destroy the toxins; it is easy to remember that. Ho are toxims destroyed in the body? By oxidation and by antitoxins. Antitoxins ure mado by siecial onans,-WIII cold applications increast the action of those organs? ("Yes.") Te have the thert cold baths, and the lonc cold baths, and they increaso the destruction of toxins by increasing exidetion and w increasting the activity of the antitoxin-maling Elands.

Let us take up the next thing, --Yital rescurces and how to preserye them-and that is, rest, and food, and what else ? ("Lower the temperature.") Yes, that is important, --vhat are ase of the thinge necessary for lowering the temperature? Let us see if thore is anything
necessary more than re have written dom on the blackboard? fReading, Prandt-bath, ref-sheet pack, enema, vator-drinking, compresses, neutral bath" otc.) Do we neod anything elae? ("汭. ") Fe mignt uae the Wet-shee? Pib in bed, --but we have thas here, --evorytinng is hore that Ia necessary for lowering the femperature. Now a question of practical Intereat would be: Tian should wo make an efto:t to lower the temporature? Then the akin of the postent ia hot and jry; tien wo use the cold baths to Lower the temperature.. If the patient is sjeating, ahall we try te lover the temperature by cold baths? ("ise.") That then? (Give himplenty f water, and enemaz.") Tha! tind of bath rould ve Givo him? ("A neutral bath.") Fould a neutral buth be bettor than a cold bath? ("Yes.") Supyose the temperature of the patient were about 102° or 103 What would be the temperature of the bath? ("About 96.") I want you to get hold of all these things: you won't get hold of ail of them in any book,-not even in uy "Hydrotherspy," becanse if evecyining vere there, It Nould be a book as large as \#ebster's Dictionary; but the frinciplos are thure, and you can vork then out.

In what way is the neutral bath so usoful in elininating Polsuna?
A. Bacause by this means the watar is aboorbed through the 3 ktn by the proionced reutral bath, and somehov it acts upon the kidnevs with \& great desi of power to encourace their activity..

Now, in reference to Iowering the tomperatiove: We have here everything that is necessary for lorering the temperature. The grest thing In fever is $\bar{u}_{\text {metainda }}$ heatandininishyy heat elimination; the most important thing is to tnereade heat-ciimination; it is not 30 important :o lessen buat-prociction as it is to increase neat limination. That is where doctors make the mistake of omploving antipyrin ond similar acents to Iessen hest-peoduction, for at the seru time that it lessens heat pro-

Preduct fen, it lesaers all the yital processos of the brdy; such an ajent dimintanes oxidation; it Aimintates Elandular activity in eliminstion; it lessens the pover of the Iercocytas to fight the bacillus: : Lessens phasocytosia, and so lessens every yitul percess by which nature is contencifne with tan disease, ,-they are all diminised by antizy-in or ay other antititemic agent. Sa there is this avfil eoor cone enint medicinal antipyretfe afents,--that thoy leasen all the yital enorifics of the body. Sold water inceases teat production, but ut the aate tire, it Increased hect eimination; it at the sare time increasca oxidation and all the procasses by which the itsease is inhibited and the diaeaseproducing apent dentroyed. Now you sec the di ference between theso things. The important thing is to frereaso heat elimination, to bring the bluod to the surface and keep it in the surface, and coel it sfter 1t fets to the surface.

Now when anall ve apply the cold-buth? It depends upon theperiod of the disease: If it is oarly in the disease,--say when the temperature 1s up to 102°--you can apply the cold-bath as long as the patient can stand if... It is the cuitom not to apply the cold bath until the patfent's temporature gets up to 102°; but why do re sit idily by, white the enemy is getting his forces ready and fortifying himself, - why do ve waft so long before begining our a tack u_{i} on him? I don't believe in
 zx, is to begin ri_{i} ht off, as soon as the ran is cormencing to be sick, bscause he has rot all his strength and yigor and can make a guod efgh; se you can forat appiy food cold bath to him to rouse up his righting capacitiesy anc tile the disease is young and the fiftiont has strencth and yigar, we will try and strangle the diacase, and preverit its ectting a etrong foothola. So, in the beginning of the disense, wille the temperature is low, you would use the short cold bath would you not? ("Yes,--No. I.0") Yes; short celd baths, the wet-sheet rub, affusions
and almilur retheds that bring out atronis rital resietance, witio out :o any extent remoying the heat. Ve wint to develop the vital resistarce, and thon there is a tendency to Incroase heat-production,--and there is planty of room for dolne that; it ulun't do any ha:m at the start, beeallse there is atill a pretty good heat elimination, so we may nos such meav res as a tet-ateet pack, ret-sheet rub, etc. Ther is a food temperature for the wet-sheet pack in the beginning of the ifsease $--j x s t$ one good pack-and you might Iet tho pationt get warm enough to awoat a 11:tIe; contimue the orema and the wher-drinkingiset the pat iont to drinking water, --Iet him drink a gallon a day,if he can--and give him the graduated bath (not the eraduating bathybut the araduated bath.) Just as soon as we finc that a patient has a fover, we should use the cold batheand the nature of that will depend upon the intensity of the heat.

Now, weh the temperature is high, which one of the coldi-baths is best for lovering the temperature? ("The graduated bath.") What is the next best? ("She neutral bsth.") I am inclined to think the coolingpack should be put at the head of the list. The experience of invalids wIII show that the cooling-pack produces more marked effects than the cold-bath in lowering tenporature, and its effects are more permanent. The lowering of the temperature continues after the cold bath; when you Cive the Brandt-bath, for instance, the temperature is not lowored to Its maximum limit immediately aftor the bath, but contimues to fall. Now in the cooling pack, the falling of the temperature continues for a longer time than it does after the Brandt bath or after the froduated bath, becallse the maximum effect is reached while the aitient is still In those baths, but in the cooling-paek it is not so. How would you orpily the cooling-pack for reducing temporature? The water would be 50°; put the patient in, and in seven or elfht minutes,--es sion as the patient
begine to yerm up, and as soon ca the reaction begins--take him out, and put him In another shoet; it pill be ten or trelve einutes before ha beging to warti up wain (it will take a longer time than the frevious geviteationd, when you see the skeet la beginning to warm ur, take the patient out and put him in another shaet. The fourth time, it will prooably thirty aimites before you will find the t the pack is vam; but you will ensinue these applications until the patient does not wam up,--until the patient shivers. Repoat your cold pack until your pationt dues not warti up, -ountil he begins to shiver; then you will at once take off the pack and five the patient a vigorous mboing und warm up the aurface of the body, and yoth will have a very deciced fall of tumper.ture; and in this manher y w will knov fust when to stop. Thy dous tho patient abiver? ("Secause the blood is chilled.") The shivering indicates that the tomperathre of the blood has boen lovered. Ve aro not trying to cool the patient's akin, but his blood, and you leep taking aroy the heat un:il by-and-by you reach the point where the blood itself will be cuol, beculse you have peached the point whore heit elimination haw cxceedod heap-production: you fet the start of heat production and then the femperature of the patient oill fall, and then he will begin to shivor, and that is the time to stop your bath and rab up your latient and get him warm. In the Brands-bath the patient's lips get blue, and he is uncomfortabla and wantsto got out, becauso it is a torrible ordeal for the thatient to go through who has not been aocustomed so cold water treatment: but in the raduated bath you mut tho watient to keup up the reaction in the sisin, and it taltos good hard work to do it --(nKeeping up the hyperamla of the skin?"! Yes; and in the Eraduated bath, as the temberature of the watr lowers, rub the patient to geot up thas reaction, and when you get it dom to $B)^{\circ}$ to 85°, you have got to rub the patient 211 the time to keep up the reaction. The darger of the cold-bath and of the groduated-bath fa, that the bloodvessels will conteact, - -and

If they do, tho bath will do no good, beeanse the blood does net cone near the surface. Then you apply the wet-sheet pack the sheet warma up, an the skin will be heated by the reaction; the skin is wemed by the recetion and fllled with blood, and the evaporation cols of the skin all the wile: as seon as the reaction is strong, the shin is filled with blood; the skin becores much more hyperaenic in the bath than in the pack; the skin is full of blood, and the bleod fa richt there ready to be cooled, and so a cood reaction takes place acsin, and there is another. cooling, --and you can dose 1t; and you can not only dose 1t, but you krow When you have got enough by the length of time requifed for the bedy so warm up tee sheet, --and this indicates that you are getting the advantage; While in the Brandt buth you hardy kow what is happening until aftorwarde. But in the wet cooling-pack you have the thing under panfeet control all the time, and you know what is noing on, and whon to stop, and I think, on the whole, this is the method par excelicnce; it is practical and always perfect in its appidetition.
3. Is the power to eliminate increased by this bethe
A. The wet-aheet peck,--yea; becallse there is absorption of water taking place in the pack all the time; fust as soon as reaction takes lace and the caplilarfes aro surliod out, the Iymphatics bocone actIye and move the finid along, just the seme as the nautral bsth does, because the wet-stoet pack is cool: pretty aon ts approaches the temperature of the body, and then it is neutral. You ion't leave it on y y y lorfobut so lone as its temperature is below that of the body, the temperature of the body is meving inward; it is only yhen it is above the temperature of the body that it comes outward. Now suppose your patient has a tendency not to warm up in the cooling-pack, the sixineirculation is not yery good, --put your hand under the blanketa and rub $n \tan x$
him and jet the blood to the sur? se Faure it can be cooling.
Fe 1.11 leave these things on the biack-board, and to-monrov 1 think re will finish up The very same measure that isceroazo vitnighitamee answer for eimoat any other Indiontion, --that is the beatty of this syatect of treatinent.

5y looking at the Chart you can tell what aurt of man you are. Here is a Chart wifch has a strong expresision on it. See rahat thet meane: examine these lines and see what they mean. This black Ine is away down below: we sce at once that this is a rey feeble person; there are no muscles ap to the average; the sotal stroneth is onz 50. of the nomal,--that 1 s , only a $11 t 5 \mathrm{le}$ over a thousand poundis-125" pounds, wen it atould be 2700 pounds; in this case we kno:y re have a yery feeble person to deal with.

Fow let us see what are the best muscles: The musclos of the then are the atrongest. I think women get atronct thith muscles by being obIfred to manage their u_{i} iy skitts. I find that the thet-mascles of women are st rongor than thosc of men, in proportion to their fiencral atrencth. Fere is a figure that is grod; the Iunc-capacity is anc, Sust double the averace. The at renicth of the dilaphram-othe inspirat ry Capacity ia 40 ; that 13 above the averafe, --what rould that indicato-what kind of erson? ("stronc•") The total strencth 13 only 1.200. ("prety
 ame little time, the fenoral st rength has depreciated; but the lungcapectiy is good. There is hope for that person, because the vital capacity is hich. This ain wa the value of coefficients, --here ts the vital erficieney--the coefficient boes up to 300--three times the averanc.; that is a splendid showing. So ve knov, the mo ent we look at that Chart, that the patient is in a feeble state, but that there is areat hope in such a case, and we are not surprised to find that in four mondsh the atient has gained a strength of from 1200 pounds to 2300 pounds-so this patient doubled her strength in four months. I have trom such a doubling to take place in six or eicht weeks by a collrse of fraduated
exercise. Here we have quite a symmetrical Chart. These acefficients are relative, but we notice that they are all abc ve the nomal, the one exception; they are all comint nearer so a strajght line,which is the deasrable thing.

Now 1 think we can sce the importance of having a chart,--but we will go into that question at another time.

There are three ireat things to be accomplished by exerelse: rirst, to obtain syrmetry. Symetry 13 to be obtained, not by brincing down it ronfi points, but by briniting up weak ones. The oatilat so etires findsone mascle a lit:le toostronig, so thep brinithown the erone muscie so as to make the muscles even. That would be like tyin: up the right arm because it is stroncer than the left; the is the principle of oporations on the eye for asthenopia,-for the purpose of making atrong musclea weak. It is easier to make strong mascios weak than to make weak muscles strong. The true principle is to et rengthen the wear muscles ao that they will catch u_{i} with the strong ones, and this is done by exercise; exercise does not break down the srodg muscles, but builds up tie weak ones, "e secure sy retry ty developinf the weal: muscles.

Now there is one thencer in connection with the tal:Ing of exercise which is the most important of all thincs,--and that is the development of the respiratory power. It is of far rreater importance for a mar to develop his rospiratory power than to develop his bicepe power, or the power of his tricepa,--1t is of vastiy iraater importance to develope the ling capacity. May? Because a perion's breathing depends upon musctiar action; it is automatic, and yet it depends upon the at rength of the muscles. The atrength of a trap depencis upon the strength of the syring. Now every respirat ry motion is like te apring of a trap. The broath-
 Inspiration records the output of energy: every inspiratory erfurt regaires a arecial impulise sent out from certain centers in the medulis oblongata, and every expiratory effort repuires a special impulse scnt out by another centor, so it is not autoratic like the swinging in a pendulam. \#e sometimes see patients hold their breath; semetimos patienta ret into a state of coma and lorget to breatho, and in that casc the centers are, to a/s certain derrce paralyzed or benumed, and the patient don't treathe until the cartonic acie fas accumulates so that he geta blue in the face, and then he takes a doep breath, --for a long tIme there will be no movement, and then a deep breath,--a long panso and then another deep breath. That is because the norve -centors are so atuperled that orismary atimull don't act with proper force. Fut what there ts enerigy stored up in the instiratory muscles and the explratory mucles, and when the button is touchod" the encriy is iat forti. You see enericy is brought into the blood. Noy if these macies are swice tinco
es stronct at one as at another time, there will be twice the vicor usod in brin i ing in the air. The amount of air taken into the lungs does not derencis sc much upon the size of the chest as it does upon the strenith or the inspiratory muscies. Breathing, as Ithve said, don't depend so much upon the aize of the lunga as it does upon the frength of the resplratory earacity. musclea. You ask me for the proof of that,-that is easy: What is the calacity of the Iunge ? (Various anmers.) It depends upon the heifiti;here it is in litres,-- 1.14 for a cerson 53 Inche 3 in helight, and 1.66 for a erson 6 ? inches in height; but su ppose the total lung - capacity 13300 cubic inches--just abot a gallon. How much is left in when wo breathe out as hard as we can? ("One hundred cubic inches.") And how much in ordinary breathing? ("Two hundred.") So we have about two hundred, of the maximum of tidal a1t. Our lung-capacity is four times what we ordinarily use. Now
zince we have four times the azount ve rdinartiy use,then the onount of air that we ordinarily use depends more upon the inspiratory power of the muscles than it does upon the size of the lunge ; because one man may have a lung-capacity of 400 and another a lung-caracity o: 200, and the man with the lunf-caracity of 200 aubic inches may be oreathing out more afr than the other. I rember one areat bif fellow, -and how much do you suprose his tidal air was? ("Pifteen, porhaps.") Eicht cubic inches; that was all he could posaibly breathe out and in. He had had emphyama antil his lung-cells had broken dom and his Iuni-contracting; power was lee lost, se he had to use the pumpinc-ai. air arparatus.

Here is a man who is x ry feeble, --what is the lunic-capacity of a Yery fecble patient? His total lunc-capacity would probubly be not mor than 75 cubic inches: but let him get at ronger, and it will be different, because in retting the air into the lungs, we have to lift the ribs and etretch the cartilafes and at retch the cartilaffa and bend them, ind things must be at rained and stretched like inflating a rubber baE. In f b:eathing out. we aimply let the aimescape, but in breatning in, we have to compress the lungsiby meanis of muscular contraction. Then the question of cheat-capacity, in dealing with alck people, is not nearly eo important as to know the amount of tidal air or the a ount of air a war is capable of passing in and out; so the dimensions of the chest are not so important a matter as the strencth of the muscles. That is the reason why, in makin $\mathrm{i}_{\text {; }}$ the coefficient, 1 have taken the chest atrenith into consideration. The respiratory coefficient is obtainod by multiplying the lung-capacity in litres--that ts called the vital cupacity. Now instead of doing that, I combl ne that with the strength of the chest, multiplying the lung-capacity in literes by the reapirator
at rength in kilograme, so as so knot, not only what the lung-caiacity but what the strength is. Thy is that necessary? Because a person m!ght make one prodiciolis eff to 5111 his lungs and shov a great lunf-capacity, but unless his muscles were strong, he coulan't le ep it up; suct a person might not be able to run a hundred rodis,--and if he could, he might not be able to keep up that rate of breatning. The horse that Is able to \quad in in a mile-race 13 not the horse with the lon;est lug nor the nimbluat lefe, nor the at rongeat muscles, bu: it is t:e horse with the lareat reapiratory capacity, - that is to say: Vith cnronic invalids and other pat lents, a sraat deal depenciapon respleatory capacity. A person with inood reapiratory capacity has a foundation for reanlar t ceatment for increasing the movement of blood in his body and the movement of matter in his body which will reconatruct his botiy and cure him of chronic disease, wherocs a man who has nut good Lung-caiacity cotild not do that. So this hollow reapiratory capacity $i 3$ an immebely irportant Indicator of what a person has i ot to deal with, and a matter of the PIrat Importance is to five the potient such exercise as will give him respiratory capacity. The lungs is a reeat pump; it fumps the air and blood beth in and out. Then we draw air into the upper part of the body we draw blod into the lower part; ralat n_{5} the chest direws blood Into the chest, and it la then brontht into the heart. At the same time, this pumping wovement has a wonderful erfect upon the viacera: By thia movement the diaphragm comea down upon the liver and rives it a he althy squeeze forcing the blood out, the abdominal muscles at the same time reeping up the deep breathing. At every relaxation, move blood pushes in. At every movement of the lungs the viscera are compressed and relaxed the: the blood is allowed to move along. The movement of the blood is also a pumpinf process. Thesp processef atis the movement of the food out of the stomach, --1t helps the peristaltic wave all the way dow the allmentary canal.

The breathin: must be of such a charact r as to excite the resplratory activity. A pesonmint zit dom and exercise his limbs until he had tremendouz muscles, --he mioht have tremendous bieepa, and yet his Iung-caracity micht not be improved at all, - 13 not that so, Dr. Hastings? ("I knor the casc of a man whose nares is Dowd, who went to California for the benefit of inia lunga, althourh ine had imemense pectoral muscles and thtch muscles.") He can take hold a a bar with his littlo finger,and draw himzelf up and put his chin ovor it. This was done by the use of lizht wedrits: that was his tieory of dovel-
 his lunf-capacity. He had a marvellous muscular development, - -vith consumption: he went to California to die. Now if this man had taiken e:tereise that would have develiped his reapiratory muscles, he would have kept his lungs in a healtiy state, and would have avoided consumption. It is more important to have a! lendid te spiratory musclefs than any other kind of well developed muscles; a man might be without legs or arms and atill be a healthy man and live long if he has solendid respiratory muscles.

I think this is a very important point, because it bringa up a very practical question: What kind of exercise should the patient have ? If we can't put him in a symnasi um, as we wiah to do, we can havo him fump up and dow in a corner till he is out of oreath, or until no is breathing hari, and it will do him more good than any kind of training excite which does not Gevazopraf the lunfis. This exercise ai ould be of sud a characta: as to produce a demand for air and increase tho activity of the lungs. When a gerson feels a lit:Ie out of breath, wast doos it mean? Physiologically, it means two thini;a: Conirestion pif the lungis, and accumulation of poiaun in the blood. If a feeble minn walks uy and down In a room or in his orfice, he will show the results after a while;
but if he is a at ronf man, it von't arfechim. If ne is a fecble manghe will beeathe in this way: (111ustrating.) That aitows dyspnoea, --he has to make an effort to breathe: so to make such a man hop up anci down a few tires, will breathe like this: (1liustratinge) Thst indicates rifht away that he res Peeble respiratory muscles; he tires of it in a ofort time - Such a pueson exerciaes the voluntiary maclea in orcier to help he involuntary muscles. Now if we sive a man extretsea $=0$ atrengthen the breathing muscies --that holphim to breathe virorvusiy* that the virior of his breathin;-musclea is increased, --the effect will be, that that man will ail the time treathe with greater depth; the amoun: of tidal air will be incrousod.

Claude Bernari made aome experiments on atudents in the de ainvilie, on ademy boys : that was onty-Iive years ago: He tested their breathing capacity when asleep, when $1 y n_{i} ;$ down, when sitifng down, and while at work; he rut them ethrough ordunary fiynastic exercises for 3 ix ronthe, and shen he took their tidal air, and then he took it when they were asleep to determine the natural rate of breathing, becallse at other times they didn t breathe natural-when he asked thom to breathe natural they would take a great deep breath, which they could seep up. You can't get persons to breathe natural when you ask them to do 80: 30 when I want to determine that, I fow tell the perion I want to sel of his pulse, and while doing so, I watch his chest and count his breathing, and when he is not paying attention to me, he breatien naturally. The Professor found that after taking the th breathing; capacity of theas boys before their Eymnastic training and afterwaids, that it (that is, the autamatic breatining) was doubled by exorciac. Our IIfe is the amount of air we breathe. The difference betwon a frog's
manta $\wedge^{l i f e}$ and a bird's life is the breathing . The bird is pretty nearly all chesr, while the frog'a chest capacity is ifmited to a little
sac: he has no chest, and ne awallows alr juat ad we drink water; he fe geta his bef full of wind, and then he goes back into the mud and stays there for half an hour, and don't mind it because his liver is so ai u_{i} whon
fithe and ts he is frozen up for two or three month he geta along Fery comfortably, because he has enough oxysen atored up to onable him to remain frozen up for shat length of time.
and feeble respiration
Sow persona of sedontary hablts itre live ilke frofs in a 3 tainnant -001: Thein thinking is done in a sort of slimy medium; while an activo peraon who breathes strong and vigorous ,is like a bird. The bird's bone 3 are hollow, so he almost luterally breathes to the y ory tips of his toes, and ashe works hifwings, the afr is worked all through his body. Nature makes his bones hollow, and for ereater lightness and takec adyantage of that for breathing parposes, for the bird's bones are connected with his lungs , in the strongest binde. So if we increase the amom t of tidal air that a man can breathe auta atically wo Increase his chancea for life: All his vital processes are put on a higher level, and atl his life-functions are ererized. So the thin: to do ta to give the person exercise of ace sort that will make him a 1Ittlo out of breath and increase his breathinc-power form day to doy s) that he will be able to take vigorous exercise without getting out of breath. Fow may make a person row, ride the bicycle,or take any kind of edercise m:Ich will make him work hard enough to get out of breath and breathe hard: such exercise will be better for him tan certain kinds of york in the gymasium that ao not bring his muscles into play in such a way as to make him feel that he neods more air.

Another point in reference to the developmen of the respiratory muscles,fs, that the muscles must be used--that is, we must do something Which will set the respiratory muscles--we must do smething which will produce a strain of the muscles. Whe one breathes in this way, (1llustrating), he is not st rengtheninc his massizes reapiretory muscle; ©
much: more increase of the strength of the reapiratory muscles will be secured by vory vi;orous movements of the lungs because the voluntary museles are brought into play, and the cartilages are bent and streted and the muscles are worked harder than usal. But, in orcier so at rencthen these maclea, the patient must excreise a that they will be held to a strain while holdin $;$ his breath--he must be made to do ao e sort of work or exercise which wil make it necessary for him to mamentarily atop breathing--in other words, the reapiratory musclea must be fixed. One might bend his finger back and forth without retting much work out of 1t: but suppose he takes hold and pulls with it,--he is then fetting work out of it ; if 1 pull with it as hard as 1 can, I an ge:tin; the maximum aciount of work out of it i in order that a muscle ah: all grow, we muat make it do ita maximum aork, because nature will not make muscles or ow when there is no necesity for it; if there is no necessity for a muscle's being larger, nature will not make it larger; so in onder that a muscle shall be made laraer and atronger, we must work it un o lts utmost capacity: that is a natural physiological law,--that If we neglect to use an organ, 1t. will waste away. Cut a nerve so that the muscle is not used, and it will degenerate and disappoar,--and why? Because, even when we are asleep, there is an automatic mechaniam by which the miscles work: There is a volley of impulses being sent down all the while, which maintain the muscle-tone which is coing on continually. Now, if we expect this to be done, - If we expect this muscie-tone to be maintained, wo must maintain the orianization of the norvous syatem: If we cut a nerve, it must be repaired, othorwise there will be degencration In order to get the full caracity of a muscle, we must fix it.
 breathing out and in (illuatrating.). Supiose I want to use,--I
the muscles of my hand and arm to itd full caracity: I puil on a weight that is fixed and heaby, - I put all my mifht on 1:, - now I have usod my musclea to their full capacity. Noy how are you going to wo that with the luni-mucles? You must take scme exercise which will fix the chestmuacles. There is a very curious fact about this principio of strain, -1 will ask you to rake a lit:le experiment here: Tako hold of your forearme in this way (1liustrating.) Nov bend your finfers,--dio you feel the muscles movdnf; bend the whole hand, --bend the thumb as well as the ham --bend the thumb and the wrist; now bend all the musclos of the hand, now see how the mascles of the foroarm contract. Put your hand up on the forearm-you don't feel any asectal oxercise of the muscles up there unless you bend the arm. Now take your ponclls between the thumb and finger of the other hand, and take hold of that foreary. Now pinch the pencll lightly,--you can all feel the muscles noving. Now put your hand up farther,--pinch the pencil $1 i_{i}$ tly--you don't feel any movement: koep your hand on the arm and pinch the rencil real hard,-now you can feel the muscies of the arm contract. Now put your nand on the chost--on the pectoral muscles and pinch the pencil hard; kevp pinching; put your hand aver towards tho arm; pinch harder-harder--now you can foel the pectoral muscles come up. Now put your hand on your back opposi te that a ide: Now IInch hard--harier still--now 1 can feel these muscles contract--how many can feel the muscles of the back contract? (Hands raised.) Did you ever know before that you had to use your back-muscles when you undertake tis pinch a thing. If your back was broken or the muscies paralyzed, you would have to use your teeth for this purpose,--here is a man with a piece of tough beefiteak to carve, --he presses the knifo hard and clenches his teeth. You might think he was voracious because he uses his teeth, but it is not for that reason that he sets his teethilt is for the sare reas on that he sets his teeth when he is crac!:inc a nut with the
nuterackers. Here is a lady who is going to church: as ance ateps our of her house she is putting on her हloves; at the same time, she is talking with a friend. Now ahc is walking along; her glove begins to stick, and she has to pull hard, and at the same time, she has to 3 :op talking: you can't pull on the finger of a हlove when it la tirht, and keep on talking--the iaws are set by the effort of puling on the giluve. Wher a man da cracking a nut and talking, he has to dtop talking if the nut is a hard one. So the lady at artine Por chiarchpant while walking along, she is pulling on her filove: but the gluve sticks, and shc atops; fust the minute she begins to pull on one of the tight fingers of the Elove, every muscle is set by the effort, and she $s \neq 0$ gs because she can't IC on, - that is a otrain. Why can't the man talk while he is cracting the hard nut? Secause he can't broathe: Every muacle is set,--tinc respiratory muscles are set, and the miacles of the back are set, and he can't breathe, whe can't talk: there is air in hiz lunis, but the respiratory muscles are set, and sthere can be no se ice.

Now in order that the respiratory musclez a all be strengthered and developec, it is necessary that one $\ln _{\mathrm{n}} \mathrm{I} I \mathrm{t}$ take such exercise as will set these muscles. You get more exercise of the respirats ry muscles in cracking a nut than you do in sweeping a room, because in cracting the nut you set the muscles, and tho moment the muscies are sct, t ere is a pull on them. when you lift sonething, you hold your breath --you can't 1ift without holding your breath. When you lift, you fill your Iungs, -and why? Because you know you must wait awhile before youtget another breath; before you Iift, you ake a breath and pet ready, becatise you know it will be sc:e time before you can get another breath. No one would ever attempt to lift when his lungs vere empty: You take a docp breath, then you hold your breath and make your lift. Now, while your lungs
are flll of air and you are mak!ng the lift,you at rain the muscles and get yinor. But the musclea must bo brousit under a atrain before you get the maximum amount of work out of the lungs. We get much exercise that don't anount to much: Artificial respiration increases the tidal air, bu dgos not increase the strensth the respiratory muscles mach. It is onlypexercise that bringathe muscles into play that muscular vigor is increased, but that has nothing like the effect in develo,inf the muscies of the chest that a strain has. If you pull yourself up by a bargyou can't talk. Did you ever try to at n a ach or whistle while you vere hanging on a bar? You can't do it, becallse the chest-muaciea are continually fixed while you hang there. This kind of exercise is excellent for the cheat, for it develops the chest by fisd ng the muscles of the obest, and compels the development of the respiratory muscles; but that does not give us flexibility of the chest. Nothing developa the atrength of the musclea like fixing the muscles; a st rain-movement ts the thing for that--I don't mean syct a at rain as 13 injurious; 1 rean soch a strain as pinching some hard enough to make you hold your breath; by "strain" I don't mean overdoing the muscles: Physiologically, a strain x ans the simple lifting of a welaht, or making an exercise of seme art anch as makes it necessary to hold the breath,--that is a strain.

Now we have first, to increase the strengti of the reapiratory muscles by this means--the strain. Then we must have flexibility of thesg muscles. "any athletes can make a tremendous offort with the Chucefes of the legs and arms, but have little strength of the pirem Fomiscles. Such exercises as running and rewing develops the plexib111ty of the chest, and the ablity to keep up that movement for a lone time depends upon the ability to expand the chost; so we need those active movements which will cause the full expansion of the chest, and as
complete an emptying of the chest as possible, st as to allow of the entrance of a large amount of a!r.

Now what kind of exercise siall this be ? It is a general idea, 1 think, that there are certain respiratory exercises, atch as armralaing, ehast exercises and trunl exercises, etc., that bring into play the chest, oulders and arma--thet such exercises arc eapecially valuable as respiratory exercises. They are of sote value, becallse thoz develon the extra mucles of respiration, but 1 think they aro of comparativaly $\operatorname{calll}_{\text {all value. The exercises which are of greateat value and } a t \text { at- }}$ solute importance aro exercises which will create a noed for atr and w111 increase the aut matic respiratory movement, I think the reason for this is clear enough. Iet us make a litile experiment here : Now, for a breathing exercise, consisting of sirpily breathing as fuliy as we can th our arms akimbo and hips firm,--now let us breathe until we get tired. (General breathing-exercisc.) Pu: in herd work. In five minutes we would be tired ont, --why? Secause it is an unnecesiary ex reisc, becallse there is no ned for more air. Now herd is a boy wo has boon running a mile--two miles, five miles, or tenmiles, and his luncs are goine like that all the time, bus they are not, tired. Did you evor hatr of a boy fivi n_{E} up runing because his lunge were tired? it is the heart, that gets tired, but not the lungs. The bicycte-rider does not Eive up a race because his lunge are tired out, - It is his lege and heart that give out, . A boy stops running because his lege and heart get tired, but his lumge den't eive out. When one is chopinig, waitine fast on bicyczicle riding etc., , the langs keep up a 3 teady pumpiñ for houra, and don't fet tired out. But the heart and lunga get fuil of extra blood and it can't get out,and o there is congestion of the lungs, and sometimes the persen will spit blood. Fhy dicn't the lungs get tired out by exe:cise? Becate there is an automatic play of the lungs: There is a
divi ne yoice speaking to the Iunges, and when God speake, there is something dane: At every inajiratory movement there is a voice saying to the lungs, "Ereathe, -" Draw in air;" and at every expirationgthere is a roice which asys "Porce the air out," and so the lungs ip on with their work nutomatically, because shere is a divinely implanted instinct tapistatasix In the medulla, recognizing the need of air. Under a hum impulse, tho brain saysto the musclesof the lung, "Contract," when there is ne need of contioaction, and that contraction cames in fram without: that is the human will instead of the divine will which is actini upon the lings, that is the difference. fhile speaking over at the College ot onc time, I was recommending full res iration, and was explainiñ the method, first expanding the abdomen, then the sides, and then the upper part of the cheat-and when I had finsshed, a man anid, "I think you are ontirely wrong: I used to breathe in that way; but about a year aicosa man taug ht me how to use abdorinnal resyiration, and since/that tic, I
practicing practicing
thinets abdominal reapiration, and 1 am much improved." 1 then have been thisnts abdominal reapiration, and 1 am much improved." f thon asked him to show us how to breathe, first going out of the room and running up and down statrs a few times and thon come in and come, up on tho platiorin and show us how to breathe. Ye did 30 , and I asked him to bow us at once how wo oupht to breathe, and he said, "iuat wait a moment t111 I can et a breath." That settled it,--he had to get a breath be fore he could breathe abdominally, winde claiming that abdoninal breating was natural breathing. While he was gune, I told the audience that I Fas coing to ask God to tell us how to breathe; and when this man came In, he was breathing in the natural way,--the divine will was controlInng his breathing, amd in order to breatho abdominally, he had to stop that control and interfere with the natural method, which was involuntary, In order to do the thing voluntarily. So I proved, by this meane, that that art or breathing was wicked breathing,--that it was profane to
breathe adominally because he could not hold his breath long enough to do 1t; that settled that queation. Then I asied a little boy to cone p us and low us how to breatice, telling the audience that he knew how to breathe, and didn't have to have a nan tell him hoy io breathe, --that God told him how to breathe. So 1 had him go out and take exercise rirst, after which, I asked $h \mathrm{hm}$ to show ua how to breathe, and he took splendic breathe thout any hesitation, breathing wit hiswiole trunk. : Wow the man, aftor his exorcise, couidn't control hifreaptration it first, --be wes breating in the natural way, and he couldn't stop it: he wanted to breathe abdominally but he couldn't sop the natur al movement within him, and he had to watt till he ciot over his need for alp before he could mestop his involuntary breathine and breatho by the yoluntary method. The difference in the breathing is, that one impulise is fron withit, and the other is from without.

In you-breathing exercises you take a doep, fuIl resplrution, and It is a hard and tiresome and ted fols thing to do, bocaise there is no Impulse from within; but when the impulse comes from witnon wich is due to the need for air, which has bocn created by exercising the macles, then deep bresthing is as oasy as con be, --It is smply the antomatic play of the lungs. So I think you can ail see that the proper thing for the body is respiratory exercise,--which is the kind of exercise that creates a demand for oxyph. When this peid is applied, tho body will take care of $i t s e l f$, and the lunigs 711 tale care of themselves, and the reap!ratory origans will see that the lunge expand in such a way as to tak siu btain the proper anount of at r.

What we need to do in this, ad well as in all our work, is to cooperate with God, the ereat Intelligence that dwells within us, rogulating all our functions; that we have only to find out how na ure, or God, Wrka, and then cooperate with himithat if we col rate with nature, we
shall do our work right.
?. How do you measure exodelse by foot-pounds?
A. Fe take it this way : That a men waikin; at the rato of theoc miles an hour, is doinf the vork of lifting himelf porpondenlarly diefacer througt one-twantieth of that tace,--iori:ing out the metiod of Angus Smith [1 think it was he, a man walling a mile in twenty minutes is deing mechanical rork equivalent to liftim; the wetigt of hiscody onetentieth that diatrance. Then, if a man walkad trenty miles a day, at the rate of three miles an hour, he would have done the save arount of work that he would have done by lifting himself perpendicilarly one mile,--that he would have cone the same amount of work that ho would do by climbing; a perpendicular rope a mile lon G. Eat I prasume one would rather valk the twenty miles at threc miles an hour than to cismb the rope perpendicular rope a mile lont. Now we will have a itt:le cinic

Vurs is a patient aurforini frum hypotpepsia. The analysia
3l:ows aturafch fluid, 36; that is about one-ainth of what it aould be, and not a particle of free nydrochioric acid; combined chlorine, 3 s ; that diows that the re is only aboat one-sinth of the nomal stomachFork done, --and 180,000 5orms, 93,000 aerobes, and 30,000 anaerobea. There fa a considerable quantity oftache in the stonach eluid, and no yeast. So we see that the acid fomation is due to the microbes and not to yeast. Milk ts coagulated by acid-forming foms. The cocticiont of protefd difestion is $99,-$ almost nomal. The coorficient of starch is es almest nomal alsop--it is 1.76 (?) as compered with the nomal-zatareah, -Qen The motility is one. The scattered reaidue is abut twice as large as it should be, and the stomach contents just about nomal.

Now let us see wat is the matter: It is not dilatation of the stomach because the contents of the stomach-contents are about nomalif and yet be presence of eerms shows that tho food rematns in the stomach $\sqrt{\text { of }}$
long--the atomach hould be prolapsed. Permentation does not take place in the stumach unle i the food remains in the atemach more than five hours; but here is fermentation and putraiection. Te have mucus, -that indicates catarrh; thet acts in the way of infection; we are 1!kely to heve catarrh preaent when there ta no hycrociloric acie present; that shova an inactive state of the glands which make gestric juice. The dieation of starch isex ellent--and that ta wiat we might cryect to find: then the hydrochlucic acid ia low, starch difestion is hich. The shows that the aciceromation intorferes with at arch difeation. Fanio has shom, howevor, that there is a considerable amount of starch digestion when hydrochluric actc is adied; and recently, schafer calls attention to the fact that e arch difestion fis fuproved by the addition of hudrochlotic acid, --that after hydrochioric acid ie added te the farinaceous contents of the stomach, the diae ation of atarch actualiy improves a littlo. Anotior intoreating thing to which schafer calls attention, is, that the presence albumen with starch revents the remicious influence of hyd-ochloric acia, --in other words, that actd aloumen, wile it ifves a reaction, dees not interfere with the action of the etyalin upon the 3 tarch; that the physiolofical ostoot interieronce of hydrochloric acti with the action of $p t y a l$ in la prevented by the presence of albumen--that the acids and acid combinations are taken up the albumen inst ead of the ptyalin; that when thera is ulbumen pres---meat, for instance-on सith the hydrochloric actd is taken up by that, and coes not interfure with the action of the sdilva upon atarch-in other words, meat is a protection asainst hydrochloric acid. That is a new point that I was vory ilad to Ind in Schafer's late at work, on Physiclogy, and helps a little in our practical dealing ttl cases in which oranic acids are strone enoum to interfere with the action of saliva upon starch.

But this patient has good digeation, so we would not forbid acid fruita, -what ahould be our dilet-greacription then? We want to prescribe semething that will encourage the formation of hydrochloric acid, -what kind of food-subatances tin 11 do that ? (Dry food.") Poulow at one time made this intereating oxperiment: Fe made a fiatuan in a dog's stomach; he hal the dog in a cage, and fut food into his stomach withous his tasting it, sceinc it nor anelling it, and there was no digestion; but he found that by aimply letting the dog selil of the fook botore putting it in his stomach, the gastric juice of the atomach was pouced out In abundance, - the flow of sateric fusce was caused by the sell of the food. ("I know a person who hes no taste nor amell.") fe probably has not much digestion elther; te is probably a dyspeptic. ("Tien you bolleve in a porson's sellinf of hia food, in order to food dife stions") Fhis a mply indicates the fact that our food should be apretizing and savory; if the patient says iny food is insipid, and I have no appetite, " we al vild do amething to overcome that difficulty, -it is just as nocesbary to have food palatable as it 1 a to have it dige itible. One of the most indicestible qualities of rood is inat pidiness: Inaspidness of food will prevent the formation of gastric juice, -what you might call its refractability will prevent its difestion. If the food is ueanily Insinid, it does not prombte the formation of gastric suice, and there will be no proper digestion; but tha roverse is the case with paintable food. So we don't have to res it to nustard, pepper or any other unwholesome thing for the purpose of stimulating the apotite: Nature has given us, in our foods,all the flavors we want; there aro flavors Wut by nature in our fods wich are paramount, and above oll others in promoting the flow of digstive fluigh, How a litilic sigar in the mouth will causo the sallva to IIb, you can produce an abundeat How of saliva by putting a littie surar in your mouths ao nature has arrangor

It that, if you take into your mouth food without flavor, such, for instance, as a piece of dry bread--and ehew it a little while, the suliva converta a little of the sataren into sucar, and this promotes the flow of more saliva and the fomation of more sastrie juice: The intention 1s, that the aliva shall dige at enough starch in to segar in the mouth to deveiop an abundant flow of saliva and gastric suice to dige st the food that is coming in.

What is another thing that is necessary to proript dijestion ? ("The food should be well cooked.") The food ahould contain prititroisenous subs ances, tecause a nitrceenous substance is a pertocen, - it is an invitation te the stomach to make gastric fuice. If we take nothing but at arch into the atcmach, no fustric fuice will be forme because it would have no effact. So, if a boy swallows a penny, no gastric fuice will to fomed, because a penny is not difestible,--and so of woolen pledgets or scwiust: but if one swallows white of eff, lean meat, on nuts, which: contuin albumen, or any other form of albumen, tho stanach recognizes ripht away that there is a proteid there. How the stenach recognizes these different food-elements we don't know, but it is probable that the nitrogenous elements are recognized chiefly by the salts which are associated with them--the phosphatic salts--neat,for example: Nash meat until you wath the salts all out of it, and there is no flavor to it, and then it is almost indigestible;it is almost like india-rubbor, and the atanach will recognize it as a forelg body. The salt sot meat are pyowerful peptofens. The same thing istrue of leguminous foods; they hould be cooked in such a manner as to preserve their salts. It is a Istake to parboil beans till their firavor is gone and thon cook them and salt them. Beans contian calts,which are necessary to advertise to the stomach the fact that beans have come, and that beans noed a
lapge anount of hydrochloric acid to dige st the casein of the beans. The sante thing istrue of nuts of all kinds, as well as o: alowien and the white of eiss; they contein salts which are necossary to notify the stomach of the kind of food that is coming, os that the right kind and amount of digost tyo fluid may be produced. Nature hes a icod deal of "Fumption, --" nature always dees the zons!bie thing.

How we may find something different to what wo have guessed at here. On looking at the abdomen, I alould say the stomach wio dilatod,-Why? Eecauce the abdom!nal walls are flacedi; we find the border of the stomach at a low point, and at the same time find the abcioninal wall relaned, and the robabllity is that we have dilatation of the stomach. The abdominal walls, I sould soy, are distended. When we have dilatation of the stomach we have dilatation of the colon with it; but the sane thing which causes the muscuiar walls to relax, of dilate, aliows the colon to dilate ala ; so we have thissuspicion in conection wit the dilatation of the atamach. Now let the patient drink. Now if wo can find the water, we can find the stomach. (Hoving stanach.) To want to get a splash-1 got a splash a moment ago dom here; that ofod a peolce se of the stomach; the shape of the abdinen alows that the storiach is dilated--dilatation and rrolapse combincd. Here is anothor indicatin of prolase of the stomach: let the patient lie on the loft al de, with the knees well drawn up; turn the patient over, vell on the a relax of the abdominal muscles face: re ace here that there is and prolapse, - the onte roptosi s is very marked. (To the pationt:) Take a deep breath,--5 can feel the kidney down here. Now we will have the patient stand up.

The patient must have proteida. But y ou say the rationt camot digest poteids,--Iet the patient eat milk." But the patient says, "I have taken milk, and I can't ou: it,--it makes ae bilious." Some doctors
recormend cheese; but the patients atcmach has rma nough already without eating cheese,whtch is awaraing with them,--3till, if the pattent couldn't get any othur nitrogenous rood, sha weuld better eat cheese than not to have any nitrozenous food ; you might be in suct tralts that you couldin't zet anything else, and cheese is bettor than nothing,--but it should be well bolled as a precaution acainst for s, -and it is well to take another precaution: Take a little soch rith it, and this wili neutralize the tyrotoxicon butyric acidetc., se it won't be quite so bad. Stow the cheese firteer or twenty minites. This mothod ts largely used in England and Itsly. I notice thot fr. Millians, a prominent writer on cookry, in En iand, recomencs the method or boiling equese and adianc soda.

This buige indicates onteroptosis, so there is no question about 1t. Thisjaticnt mist have an abdominal supporter-you have a supporter? ("Yes.") Do you feel bettor while wearire it ? ("Yes.") i) the need of appoetine, yourseif by your hendis before you used the a pporterf ("Yes. ") Thut did you do for it ? ("tade a bandace out of ciotho") That eftect did that nave? ("I could walk lots better while ual $n g$ it .") then you apported yourself with your hands, did you notice that it jhelped you ? ("Yes, then I was walxing about.") You found that when you apported yoursels,you could co about ? ("Yes.") Yhet does this do? ("It iffes it up.") And more than that, -..it holds it st11I: The thing that givers pain is the swaying of the viscers about . When I lift it up,it givea pain. Suppose the oody were awinging at avery movement, --the viscera awings with $1 t$, like the boughs of a tree which sways in the wind; overythinc is stirred up, and there is no poace. This is sore? Now I presa hore-now notice this: I want to exa ine this kidney, --take a doep breath. Here is the kidney avay dum here.-here is a flouting kiliney right here. 1t hurts here, but it does not
hurt everywhere: Doa this hurt you? ("So.") You night know by the patent's expression that it did not hurt. Does this hurt you? ("Ho.") Does this hurt you? ("Yes.") That is involuntary--the muscles cont act, and she cannot help herself: and when the soreness is yer great, in many cases tho muscles are contracted and dram in to hold the viscera still. Now, a half an inch away from there, it dee not hurt.: I move out a half an Inch and peas fuse as far in, - does that hurt? ("No."inow I move a finger's broditi; now 1 move dow a hale an inch; now 1 go down a littho further, --that doesn't hurt; now I move u_{p} a little bit-here is the lumber candia on the right side. How ? will find the sub-unmbilical yoint--dioes that huts? (fees.") It hurts there, but not quite as mac as on the dies. Now notice the floating kidney. Now we will fit on the abcioninal supporter.

At the Sanitarium Gymnasium, Thursday, June 30, 1900, Battle Creek, Mich., 7 P. M. Dr. C. C. Hubbell, Chairman.

The Chairman: Dr. Kellogg, Members of the Christian Endeavor Convenetion, and Friends: Tonight we have begun our convention in the most pleasant way I ever heard of, and I think you will all agree with that statement of mine. Some time ago our genial secretary, Mr. Shaw, of Boston, came to Battle Creek and succeeded in interesting $D r$. Kellogg even more than he was already interested in the Christian Endeavor, and as the result, tonight we are the recipients of the greatest hospitality of Dr. Kellogg and the Battle Creek Sanitarium society, (Applause). -one of the youngest societies in the entire state of Michigan. If they do everything else the way they have served this banquet, so beautifully, I am sure you will say they will be a banner society in the near future. It is our privilege now to have a greeting from our genial host, Dr. Kellogg. Battle Creek is the health mecca of America, and Dr. Kellogg is the man that has made it the mecca; and I am sure before he gives you his greeting, you want to give him yours. Let us greet Dr. Kellogg. (Loud applause.) Dr. J. H. Kellogg: Friends, after such an introduction I always feel exceedingly small, so I will get up on this chair to let you see how small am. Some time ago a man came into my office, and he wanted to see Dr. Kellogg, and I was introduced to him. He said, "Are you Dr. Kellogg?" and he looked down at me. "Yes, that is what they call me here." "Dear me, I supposed you were a larger man." "Oh, no," I said, "I am a very small potato." What do you think he said to comfort me? He said, "That's a fact." (Laughter). And I always think of that when I have had such a grandiloquent introduction as I have had
here. I want to tell you at once that whatever there is here in the Sanitarium that is good or that is great or that is worth while, or whatever there is in Battle Creek that has grown out of these things and this intitution, is not due to me at all, but it is due to the principles that this institution represents. And it is because of these principles; and I am very glad that we have met here tonight, and because of your pesence. I assure you we feel it an honor, speakIng in my own behalf and in behalf of the Sanitariumx the Christian Endeavor society and the management of the institution, owe feel titat we are honored in having this society here with us this ovenirg; and we are glad of an opportunity to meet you; and as I have been looking around here while you have been eating, I have been saying to myself, "I wonder how they like our animal diet." You know, a doctor some time ago told a lady that she must live on animal diet for a couple of weaks. He came around after a few days and asked her how she was getting along. "Oh, first rate, Doctor," she said; "I get along very well with the corn and the oats, but the hay is something avful." (Laughter). Now, I think there are a good many people have the impressiun that Battle Creek people, and Sanitarium people at least, live mostly on shavings, hay, stuble end some things of that sort. We clain to live pretty high here. We generally live on the sixth floor, but this time have come down here so we would have room enough to accommodate you all; and we are certainly very glad to have you here. I don't know of enybody in the world we are more delighted to entertain than a Christian Endeavor society. I like the Endeavor so ciety not only because it endeavors, but because it does something more than endeavor; it actually does things. And that is what we hope our Endeavor society will do. I didn't like one remark your chairman made here this evening when he said that Mr. Shaw succeeded in interesting me in the Christian Endeavor movement. Now, I hardly think that is true. I think that I lad hold of him and persuaded him to, help us organize a Christian Endeavor socisty here in the Sanitarium.

Now, isn't that a fact, Mr . Shaw?
Mr. Shaw: That's right.
Dr. Kellogg: I got him into my automobile, and carried him all uround the country and labored with him some little time to stay here a while and help us organize a Christian Endeavor socioty. But it was his coming here that was the great opportunity for us, I am sure; and when ve saw Lr. Shaw, I had a talk with him, and we made up our minds this was exactly what we wanted here at the Battle Creek Sanitarium. You know the Battle Creek Sanitarium is an undenominational institution. We are Christian here, but raxamex we do not belong to any church. That is, we are sort of odd fellows; we believe in the great Christien principles, the foundation principles of the gospel and of Christianity, but we are sort of independents, and the poople who come here are of all denominations, and the people that work here are of all denomirations; so we can not have a church here exactly, but the Christian Endeavor society exactly fills the bill here, and we welcome it very heartily as the thing to help us maintain what we cant to maintain in this place-ea thoroughly Christian atmo sphere. As I said a moment ago, nothing could delight us more than to entertain Christian Endeavorers. As I was looking about, I noticed a gentleman here shaking his salt cellar, and it reminded me of the story of a Methodist pastor who told it to me same time ago. He said a friend oi his, a Methodist preacher, visited a school, and he wanted to impress upon the students of the school the value of Nethodist preachers in patticular-apreachers in general, of course, but Methodist preachers in particular; so he told them that story about the salt of the earth, you know, and he wanted wanted to make it apply properly, so he asked a few questions. "Now," he said, "what little boy here will tell me what salt is good for?" And one little fellow said, "Salt is good to eat." And a little girl put up her hends and she said, "Salt is good to keep good victuale from spoiling." He thought that the time had come now to introduce his
point, and he said, "Won't you tell what Methodist preachers are good for?" And they all shouted out with one voice, "to keep good victuals from spoiling." (Laughter). Now we think our victuals are pretty good, at any rate they are good to keep folks from spoiling, and to help spoiled people to get into a sood condition again; but I can not imagine any way in which our food can be promoted to better advantage than into Christian Endeavorers.

We are glad to have you here with us, as I said before, and we wish you great success in your meeting here, and we hope one of these days you will graft on a health plank to your movement. I can not imagine a better thing that could be done, for that is one of the things that pieeds to be done just now, --is to save the world from going down physically. Men need salvation from physical ruin and destruction as well as from moral ruin and destruction. There is a close connection between those two things, and I think the time will come, as I said before, when your whole society will get really interested in health and efficiency. You have doubtless all of you already noticed that you have a department in your paper on health and efficiency; and our good friend, Mr. Horace Fletcher has something to do with it; and the father of your movement, Dr. Clark, has become a fletcherite, which is a very good thing for everybody to di ; he has taken to chewing his food, and he says it has wonderfully increased his efficiency; and of course you and I want to follow Father clark; and besides, he is going to come here next fall and make us a nice visit, and then we are going to finish converting him, he will become on efficient Sanitarium disciple; then we expect he will go ut to convert il of you and get you into our Sanitarium ways of living. But I must not take more of your time. I feel so grateful for your presence here, and we give you a most cordial welcome. (Loud applause).
the prineiples that have been here before us with interest and with pleesure; and it is my great pleasure now to have my good friend, one of the best mankia beloved men in Michigan, Major Cole, give a word of appreciation to Dr. Kellogg and the Sanitarium.

Xiajor James H. Cole: I was nover so glad as I am tonight that my initituls are J. H.o-the same as this man's. ixxkxxXexize J. H. K.,-ohe ought to be King. J. H. Cole-othat is my name, but if this hot weather continues, I will be Peat. My friend Shaw and I, in rooms adjoining down at the hotel, were talking about supper, about dinner, and wondering what we better do. I am so glad we didn't take supper down town. I feel that my name is Cole, but I thirk it ought to be changed to that of a firm in Chicago, brothers there, whole druggists, by the name of Fuller and Fuller. Yes, I am full. I am glad I have been sitting beside the Mayor of the City too, a lawyer; and efter I get to heaven the first person I want to shake hands with is a lawyer--Joseph of Arimathea. When they forsook the body of our Lord, and the nation rejected him and the church rejected him, and by and by his body was taken down, it was a lanyer, Joseph of Arimathea, that went and took care of the body of our blessed Lord; so I an glad to sit by a lawyer. I told that to a lawyer, a judge of ours, in our town, and he says, "Why, that is the way all the lawyers have been ever since." I said, "This is not your regular day for lying is it?" Well, this is a delightful banquet. All of you that enjoyed what is on that progrem, sey, Amen. (Chorlus of voices: Amen, Amen.) Isn't it fine? I keep smacking my lips at the good things I have tasted of tonight. But I have heard of this institution again and again, and my precious daughter that you stood and prayed for so sweetly and beautifully a year ago at the Endeavor gathering--I thank you,--she is not well yet, but hundreds of times I have thought of this Sanitarium and wondered--this dear man you have heard from,--if
possibly they could not bring this dear girl back to health and strength again.
I can imagine why this man has stayed here twenty-two years as pastor of this church. If you have such food as you are havirg tonight here, and such a nice gathering, it is a delightful spot. I am glad that I am here. I won't keep on talking much longer, because I am afraid I will be in the same position as a preacher dow in Pittsburg. At the Sunday-School convention, one evening after several speakers had got through, there was an old traveling preacher came in at ten 0° clock to speak, and the audience kept diminishing. Well, he got up and wiped the perspiration off his forehead, and he says, " I, I, I have been a traveling preacher for twenty-five years, but if there is anything I hate it is a traveling congregation."

I must repeat what I have said before when we have gotten together. My brother told what this institution was here, on account of the different denominations represented; as I have told $x z x$ some of you before, my father was a Methodist minister; and my mother was a right angled, horizontal, perpendicular Presbyterian (Voice: Amen!)-edon't shout so loud; you will scare the Methodists. (Laughter). My oldest brother was a Baptist minister, my wife a Congregationalist-owhy don't you Congregationaliste say, Amen? (Voices: Amen). I have relatives who are Episcopalians; but I am what Dr. Kellogg is tonight; I mm a Presby-Congre-Bapti-mixture. Aren't you glad we are mixed? I can not help it; for this banquet, and the privilege of being here tonight, and the joy that fills my soul, as well as the good things xe that have filled my stomach- I can not, dar friends,--I can not help saying I wish all of you would join in just singing ther "All Hail the Power of Jesus" Name" together.t (Song).

