SOLE NEW IDEAS ABOUT DICESTION.

A Stereopticon Lecture at the Sanitarium Parlor, Pattle Greok, "ich., Thursday, April. 13, 1911, at 8PP. M.

By,
J. H. Kellogg, U. D.

Prior to ten years ago we really knew very little about the subject of digestion. It is only since the publication of the results of researches and experinents made by Pawlow, the great St. Petersburg physiologist, that we heve understood what digestion really is. Pawlow has discovered more than all that was known before about the processes of digestion. I amgoing to tell you something about these di scoveries tonight, and you will be greatly interested in knowing some of Prof. Pawlow's discoveries; and here is the man himself, or at any rate his shadow. I have the pleasure of knowing Prof. Pawlow. Four years ago I spent some weeks in his laboratory. He very kindly turned his laborat ory ovar to me when he found me interested in his work, and instructed his assistants each day to make any experiments I wanted then to inake, and to repeat for me the experiaents which have made him world famous, and which have thrown so much light uon the subject of dizestion. I came to know Prof. Pawlow quite well, and was entertained in his hoae; his wife is a most charming woman, and he hinself is one of the most kxauxi delishtful of men. He is a man alout sixty years of age. He received a few years ago the Nobel prize. You know that is a prize of fifty thousand dollars fiten every year to somebody who has made the gr atest di soveries, or the greatest afvancement in special lines. Nrs. Pawlow told me that her husband had very little property, very little noney; that he was not
worldy wise. She said he was not a good business suan, and the fifty thousand dollars he received was about ull he has in the world; that was the compensation for his life effort, for his salary froin the Russian governiant is xarakx berely enough to support him, just barely enoush to support him. Mrs. Pawlow said that her husband is simply a big boy who loves his leboratory and he loves his work, and he cares nothing for money at all; heis simply a good boy.

Now, this is one of his experiments. You cen not tell very tuch by the looks of that diagran mik which looks very different from the thing itself, what the experiment roally is. Now, this dog has had two operations performed upon him. One operation was to connect the stonach with the skin, so that the secretions accumulating in the stomach cald be collected. ind the opher is an operation by which the esophagus is interrupted so that instead of passing strai ht from the mouth to the stomach, it onds in the skin of the throat, and leaving another passage from the skin into the stomach. Now, Prof. Pawlow found very early in his experiments that many of the old observations made upon the stomach were ontirely wrong. It was formerly supposed that when food was taken into the stomach, no sacretion occurred until some time after the food had been in the stomach, until perhaps a half an hour or more after food entered the st mech and before the secretion of gastric juice besan. He found that insteat of this being true, that the secretion of gastric juice begins before food enters the stomach even; even before ind has entered the nouth; and that is why this experiment was performed. The esophague was interrupted so that food taken by the dog into his mouth passed out Into the dish in which ho ate it instead of going into the stomach; so the doy would chew the food and it would pasa back into the diah; he would soon chew it over again, and the dof would continue chow ing in this way for hours. Becaune, no food entering the tomach, his appetite is increasins all the while. He does not get tired of eating. In other words,
he enjoys it more the longer he eats. If the doz had been eating four or five hours, he is still hungry as ever; his appetite is keen as ever. I supposo some of you possibly way be enving that dog. You think you woild enjoy an breakfast four hours long, and enjoy the last morsel more than you did the first. This is more convenient, at any rate, than the practice in the time of old Mero. Bome of you doubtless have visited the ruins of Nero's pulace in Fiome, and will roberuber the banquet room, and down at one corner a doorway with the in scription ov r it, "Vomitorium.". It is reported that these old courmands used to eat as much as they could then retire to a little rom adjacent to relieve their stomachis, then return to the banquet and resume their gluttonous feasts, and so continued hour after hour.

But Pawlaw's nethod with the dog is very much more convenient; he does not have to take an emetic or use a feather to tickle his throat as these old gluttons did. Pawlow noticed that when this dof had been chewing a few monents, four or five minutes, thet the gastric juice bean to pour dow into this tube, and trickle into this flask. This is what he called appetite juice. While the food was still in the pan, and before it ever had entered the stomach, the gastric juice was pouring out freely into the stomach; and it was found that this so-called appetite juice was very powerful gastric juice, had very powerful digestive properties, was indeed the most powerful gastric juise that is formed at all, is this that is formed before the food enters the stomach. Pawlow observed that the stimulation of the nerves of taste is all that is really required to produce this outflow of gastric juice. Some of you perhaps have noticed on the back of the tongue some large papillue that stick up quite prominently above the others. There are twenty or thirty of these papillae knom as the papillae circumallate. I remember sone time ago a lady made the sudden discovery that she had these large papillae at the back of the tongue. She thoucht it was some cancer, or something awful, growing there. They are natural growths upon the
tongue. An you can readily see why they are called circuavallate. This is a single papilla, and this is a furrow which surrounds the pspilla. This represents a section, you eee, through the thickness of a vertical section, through the papilla, and hare is a little trough around it. Now, the pur pose of this trough is to recelve the fluids of the mouth which contain in solution the sapid substarces of the foodstuffs. Therex This liquid runs down into tiis little trough, and here alongside of the trough are these wonderful taste buds each one of which is an expanded end of a bunch of nerves. Here is the norve behind it that rund up into the brain, and in this little bud here are thousands upon thousands of delicate nerve filmients which under this arrunjeleat, as you see, come right out to the surface, project risht out, they come right out throush fhe mucous uembrane so that they come right into contact with the juices wh ich are present in the mouth and which contain the substances which have the property of flavor, which have flavors of some sort. Now, you do not find these taste buds projecting out from the surface of the tongue, because they would be very quickly torn off, you see, by contact. Theso delicate, jellylike aasses are extremely sensitive; theso substances if they projected upon the surfaces of the tongue woild be wery quickly torn off, but they are hidden away dow in this little groove in which the fluids settle from the mouth, and these taste buds can there be exposed right upon the surface so that they can come in contuct with the food substances which saks may enter into solution.

Now, Prof. Fawlow showed that whon foud is taken into the mouth and is
dberdd so that the properties can be detected and tested by these taste buds, that messages are sent along these nerve trunks up into the brain, and the message tells the brain what sort of substance this is in the mouth, and what is needed. If, for example, dry substances are taken into the mouth, then the message sent to the brain is that saliva is needed, lat liquid is needed, end
a large amount of liquid saliva is poured out into the mouth to dissolve, if pqssible, this dry substsince, or to render this dry substancexx moist so that it may be swallowed and carried dow the throat. If saccharin or bitter substances are taken into the mouth, tka acid substances, they also cause a very abundant outflow of the salive. When starchy substances are taken into the mouth, the seliva is poured out in greater abundance for the purpase of digesting this starch.

One of the very remarkable things observed by prof. Pawlow was that it was not even necassary that the pood should be put into the mouth in order that these reflex nerve actions, these signalling actions to the brain and to the stomach should take place; he found for exalple, that when ax substance like meat povder was brought near to the dog's nose so that he could anell it, immediately the galiva would begin to pour out of his mouth, within a very few seconds, and within two or three minutes the saliva and tha gastric juice would begin to pour out of the stomach also. He found even that the presence of the keeper was sufficient to cause the dog's mouth to salivate, his mouth to water, and the gestric juice to flow from the stomach. When the man who usually fed the dog pased through the room when it was near feeding time, at once the gastric juice would begin to pour fros his stomach, and the appetite juis was being developed. This is the same thing that happens to you and we when we come into proxinity with a good dinner, whe we are hungry. We see soinething that has a pleasant flavor. A little girlwas telling me this morning at the table that at public school the teacher said, talking about digestion, "you knov, then you go to the meat market and you see a nice liver hanging up there upon the wall, it makes jour mouth vater; you would like a piece of it." She said, "I told the teacher it wasn't true; that a sight of a liver or a dead animal did not make my mouth water at all", but the teacher said, "It does mine", and
most of the children said, "and mine too." But it depends, you see, entirely upon the appetite. So Pavloy observed that when the dos was befered som othing Wi o he did not like that it did not cause a flow of saliva, it did not cause the gustric juice to pour out; but it must be soinething the dog was fond of. One dos was yery fond of brad, and when he suw bread, the saliva would pour from his mouth, and the gastric juice would pour from his stomach, an when he saw meat, he paidno attention to it; there was no saliva ad no gastric juice. Another dog's stomach was stimulated by meat, und produced gastric juice by the mere sisht of the meat, or the smell of it. The experiments of Prof. Pawlow that he very kindly showed te one morning when I was in his laborator y, show thet music has the effect to stimulate the flow of saliva and of digestive fluins. A dog that was very intelligent and sensitive was confined in a room all by himself, and his keeper was with hin, and we sntered the room. Everything was stil 1, all quiet, and the dog was standing there with a little tube attached to a duct from his silivary glan and a little bottle connected and everything absolutely still. Suddenly the keoper moved a little lever with his Coot, axa a moverent absolutely iaperciptible, a very slight novement of the foot moved a lever and released an air current somewhere in the room whid produced a very high note, a note that seemed to me to be about the highest note you wer hear from a pipe organ, a very high, shrill note. Wixkxkixx within five seconds the saliva began to trickle down from the $\operatorname{dog}^{\prime} s$ mouth; within on or fifteen seonds a regular stream of saliva was pouring down as the result of the stimulation of this rausical note. That is one of Prof. Awlow's discoveries. That is the reason why we hare music for dinner,--becsuse we hope it may have some influence to charm away the dyspeptic demons that are haunting about.

Fere is a little gland that secretes mucus, that pours it in to the moth to help keep it clean and sterile, to prevent Eeras from growing there.

What a wonderfully interesting thin the tongue is, isn't it? Think of it--thirty or forty of these little sentinels placed at the baek of the toncue, each one of thein inspecting the food, each ne of them aking a careful exacination of every morsel we eat, and after it has been samined, telephoniag to the brain what kind of food is coming, and the brain then telephoning to the stomach to prepare for the food thet is caming, so that by the time the food gets into the stonach, if we take time to chew it properly, the stomach has the gastric juice alrealy there to digest it; it receives ite food with open arms, so to speak; the stomach is all ready. So you see when the mouth vaters, the stomach watess; and ore lesson we get from this is highly important--the food should be palatable. Sometimes it is just as important that it should not be prticularly palatable. For example, suppose your stonach makes too much gastric juice; suppose you are suffering from hyperacidity, you may draw at once the inference it would be a good thing to at bland food, food that does not stimulate the nerves of taste, an that does not stimulate these papillae of the tonguevery strongly, that leaves the stomach to itself pretty much, so that the stonach shall not be overstimulated. A person whose stomach makes to much gastric juice does not have to be stimulated. Some stimachs continually axxxxx pour out a strean of gastrie juice, day and night, whether food is there or not; and certainly we do not need to encourage that sort of stomach.

This shows some of the dogs. These doge get up early in the morning, at sixo clock in the rorning, and from six o'clock until ton o'clock every morning, for far hours, they do nothing but chew, chew. Food is put into these pans and they chow, chew, chew; every dog has a little tube that goes into a.flask, and the flask collects the gastric juicex, which afterward passes through a filter, and it is purified, uerated, and it is shipped all over Europe and ka even to the United States; and we hare got someof it in our pharmacy, of this
canine gastric juice to help people who can not zake any gastric juice of their own. Wach dog makes a quart of gastric juice every morning before breakfast; that is his day's stint; that is the way he earns his kxsaxix board. Then, when his tine to eut has cone, after he has produced his quart of gastric juice, there is a little oening in his throat there, through which a little stomach tube is passed, and hisbreakfast is introduced to tha stomach, and he never tastes his real breakfast a t all; he only tastes the breakfast he does not eat. It is a curious thing. He is fiven a large amount of meat and other things that he hows, but when it cones to foeding him, he gatx is fed on atmeal. I was particularly interested in that; the dog was fed oatmeal porridge, after while, throush a tube; but the thing he chews and has a good time with, is aeat chops of various sorts.

Here are some of the docs, you see, and they sue very intelligent and very healthy looking dogs. They sees to enjoy perfect health. Here is a little opening through which the tube is introduced, die foodis discharged. Tuken into the wouth it slips out through that little opening, and none of it ever Eets into the towach. They are healthy, hearty looking dogs, and they enjoy life apparently as ruch as any dogs you ever saw; and they were always glad to see the kaepers. I was interested in noticing that Prof. Pawlow was particularly popular amon his dogs. They seemed to know the master had cone, and whenever he appeared, every dog sat up and oave attention at once, wagsed his tail to say good izorning to him.

Hiere are the keepers. The docs are well cared for, and heve a great deal of attention given to them.

So we know some things now about digestion that we did not know before. For example, it has been found that the digestive work is sone almost entirely in this prt of the torach. The food is roceived here passes down the esophagus,
passes right into the center, then gradually works out through the outside, so when there is a large asss of food in the stomach, the central part of the wass is that which was last received. The out side of the mass comes in contact irith the mucous membrane and with the gastrie juice, while the inside of the food mass is stillin contact with nothing but the saliva. The sulivary digestion is tak ing place inside, while the gastric saxaxisxysixay digestion is going on outside. As the food is gradually dissolved by this contact with the digestive fluids, it becomes liquified, passes on in o this part of the stomach whi in is a sort of elector. When the liquid portion reaches this point, this part of the stomach contracts like the bulb of an atomizer so this part of the stomach is cmpressed by its own contraction, and the liquid is forced out through the pyloric sphincter here, and as the food cones down here, accumulates, the liquid food which is hifhly acid, and the effect of the contact of this ucid with the mucous membrane here is to cause the pyloras to open; and when it getw through the pylorus into the duodenum, us the acid liquid coms in contact with the duodenum, it causes the opposite thing to occur--the pylorus is reflexly closed, so here is an automitic arrangement by which the pylorus is opened ond shut, opened and shut. It is a very curious arrangement indeed.

When I was a boy and studied physiolozy, the pylorus was described as a gate keeper that resided at the lower opening of the stomach. ind I had a picture of a saall man sitting up there somewhere opening and shutting the gate. The pylorus was supposed to exercise a sort of intelligence, but we know better now. The whole thing is operated throuch the medium of the gastric jui it self. The nerves of the mucous merabrane of the somach are so constituted that when the acid liquid comes in contact with them, they cause the pylorus to open; they cause the pylorus to open, but the same acid liquid passing down a few inches into the duadenum, comes in contact with 婎axnerves that have a very interesting
function, and when stimulated by the acid liquid, the pjlorus is caused to shut. When a person hes highly acid gastric juice, thet is too acid, this cloging effect is too strong. The pylorus would open freely, but shen the liquid, the very acid liquid reaches the duodenum, the duodenum is adapted to the alkaline fluid like bile, or the pancreatic juice, and when thisvery acid liqu d comes down in contact with the mucous merdrare, it h as the effect to ceuse the pylorus to shut up so tight that it will notopen again readily. The door sticks, so to speak; then as the stomach contracts andmakes an effort to force the liquid contents out, the pylours will not relax, and the result is the contracting stomach, contracting with greater and greater vicor, forces soime of the contents of the stomach up into the mouth. Now, in the t op of the stomach, when fostion is going on, there is always a little collection of air. This air is swallowed with the $\mathrm{f} o \mathrm{~d}$, and rises to the top axxixaxas of the mass of food, so generally the only thing that comes up through the mouth is air; but sometimes the contractiong are so forcible that some of the liquid of the stomach will be forced out throush the gjlorus into the mouth also, and found to be very sour, verybitter sometimes, and e person thinks wo fermentation is taking place in his stomach. It is not fermentation at all; it is simply hyperacidity, and the only thing that is necessary is that this acility should be relieved. It generally can be relleved by drinking a quantityoof hot water. That is the mason we aivise patients to take water a couple of hours after meals, and when the acidity is very great, it cioes no harn to take a little soda, a small amont, half a teaspoonful perhaps of bicarbonate of soda along with the hot water, and this will neutralize the sastric juice so the pylorus will be opened up and the difficulty will be relieved.

Some other very interesting observations were made by Prof. Pawlow. He found that there are certain things which will increase the flow of gastric jui
juice, and some things whichwill diminish the flow of gastric juice. Por instance, he found that the extracts of meat have a very powerful influence in stimulating the flow of gastric juice; the extracts of meat, Eiemig's extract of beef, and other substances of that sort. The mo st powerful of all is the extracts of weat that is sourowhat advanced in decomposition, meat that has a high flevor--this is very powerful, because these products of putrefaction have a very powerful influence in stimulating the flow of gestric juice. The reason for it is this. The gistric juice is a disinfectant, and when the body finds in the tomach here, When Nature finds, in the somach a quantity of putrefying aaterial, she immediately goes to work to disinfect it, and manufactures a large quantity of gastric juice to pour out there to disinfect that foodstuff.

Another substance that is very powerfully stimulating to the gastric glands is butyric acid. Butyric acid is the acid of rencid butter, the thing that gies to rancid butter its strong, unplaasant flavor. So butter that h as a flavor of butyric acid in it, even if it is not very strong, is a very bad thing Por a person to eat who has hyperacidity, who has gastric ulcer; so the same thing is true with reference to meats of all kinds, all sorts of meats are very bad for persons who have hyperacidity, who have acid stomach. Now, the old theory was that ineat was just the thing for such personn, because people eating meat feel relieved for the time being, think the meat absorbs the acid and neutralizes it juet as soda does, but that is only temporary, because at the same time, while the meat is $a b s o r b i n g$ the acid, it is stimulating the stomach to make more acid, so the difficulty is increased, and increases more and more. I know this frometual experience, because twety years ago we used to treat our patients suffering with hyperacidity on beefsteaks. We used to eat two oxen a week here regularly. Our fanily was not as large then as it is now, not more than a quarter as large, but we ate a cople of cen everyx week--not giving meat to
everybody，but only to those we thoucht really had to have it，ought to have it，and tiose who insisted u on having it．We gave it to both classes．Now， we know botter．We have found ou：from fawlow＇s experinents that meat is not necessary for anybody，and that these people that foriaerly we thought were benefited by it，were actually made worse by it．Pawlow proved that without any doubt at all，and this is now recognixed by gastric specialists all over the world．Persons who give special attention to the treetinent of diseases of the stomach the whole world over prescribe meat，prohibit it absolutely to all persor suffering from acessive acidity，and suffering from gastric ulcer and disease of similsr character．In fact，an eminent gastric specialist some time ago made the statement that gastric ulcer is a mest eater＇s disease，and there is a good deal of evidence that cancer of the stomach is a meat eater＇s di sease， because cancer of the torach generally bejins vith ulcer of the domech，so if ulcer of the stomach is caused by meat eating，cancer of the stomach al so is caused by meat eating．Cancer of the stomech in this country is increasing very rapidly．Noarly one third of all the people who die of cancer die of cancer of the stomach and liver．Capcer of the stomach and liver kills about one thard of all the people who die of cancer，an the number is very large． One tiventieth of all the people who die in this country every year，－－that means seven hundred thousand people，－－die of cancer，and of the 75,000 that die of cancer，one third，or 25,000 of them in the United States elone die of cencer of the stonach，or eancer of the stomach and liver．And the use of ineat probably is chiefly responsible for this fact．There are some other sub stances al so which increase the flow of gustric juice．It was found that all foods which have flavor enou⿱一𧰨丶h stimulate the flow of gastric juice．The flavors of foodstuffs stiaulate the flow of gestric juice，and you can readily we then that the chewing of food，keeping the food in the mouth a long time，must have a very
powrful influence to cause an increased flow of gastric juice, and it certainly does. This is why if your stomach is slow, the best way to help that stomach is to chew a long time. That is why mastication of food, or fletcherizing, as it is sometines called, is so very valuable. In fact, it is almost a panacea for some troubles. There is only one class of stomach troubles that it is goodfor, and that is cases in which the stomach makes too much gastric juim already. You don't want to encourage it to make too much gastric juiee, so it is necessary to use food that is blend, and that will des roy the stimulation of the stomach. Prof. Pawlow found that different kinds of foods make different kinds of gastrie juice.

Prof. Pawlow found, for example, that bread makes a gastric juice that has very great digestive power, very powerful digestive properties, and very little acidity; while meat makes a gastric juice that does not have the digestive power that the bread gastric juice produced, it has far greator acidity. The masad meat produces the mo acid gastric juice of all foods, while bread produces a far less acid gastric juico, but gastric juice that is very powerful, has very great digestive power. Milk makes a gastric juie that has very low dizestive power, and very little acility. Fats of various sorts hinder the flow of gestric juice, prevent the flow of it. Olive oil hinders the flow of gastric juice more than any other food substance. Prof. Pawlow found that water profuces a flow of gastric juice, which explains at once a thing that oftenoccurs when patients say to the, "Doctor, my stomach is so sour, even water sours; I can not drink a glass of water without produciog aciłity in my stomach." prof. Pawlow explains that by his observations upon dogs, by which he fand that when he gave a fog a pint of water, the stomach poured out a I rge quantity of gestric juice; that water, when taken into the stomach in considerable quantity, caused the stomach to pour out gestric juice; so water does not cause fermentation of the tomach,
does not cuse the stomach to sour, but it xacic simply stimulates the stanach, causes the stomach to pour out in abundance gastric juice; so people who heve hyperacidity, make too much gastric juice, should avoid taking liquid food, and should eat food that is not liquidy; and on the other hand, they should svoid taking dry food, because if they take dry food, they must chew it a great deal in order to be able to mallow it, and a large anount of chewing will cause the stoma क topour out a lerge amount of gastric juice; so it must be taken into the stomach in the form of a thick pulp, a pulp about the consistency of granola mush; that is just the thing fr a person sufferingwith hyperpepsia, with acizity; cream
or breakfast toast softened--what we call gxakxax toast is just about theright thing for a person suffering with hyperazx acidity, or granose biscuit softened with a little cream would be an ideal thing for such a person, or a little water toast with a little butter added to it would be a vory good food for a person suffering froin hyperacidity. Any pulpy food, but some fat should be taken with it, becsuse fat hinders the stomach from raking gastric juice.

Now, another observation made by Prof. Pawlow was very interesting, and that was that while water causes a very abundart outflow of z stric juice, if there is a small a ount of soda introduced into the water, so swell an arount es one grain of soda in a pint of water, that one grain of soda absolutely sakx prevents the secretion of gastric juice. So you see soda is has a very poperful effect in hindering gastric $\dot{z} u \dot{x}$ digestion, anc we must condem all breadstuffs that are made with seleratus or with beking powder. Dikine powder is en exceedingly detrimental thing. Doubtless thoucads of peaple are suffering frow worn out stomachs, suffering fran dydpepsia and indgestion because their stomachs hue been worn out with baking powders. It is a lazy women's method of making bread, or hall I say an ignorant woman's method of making bread. Bread does not
require any raising waterial of that sort. We do not $n w d$ to add chemicals. 4. Good many years toco. I think 25 or thirty years age, I was down in old Virginia anc at the hotel taile I was served with besten biscuit, and I really thought it was the most delicious bread I ever tasted in my life; so I hunted up the cook and found out how to make these Virginia besten biscuit, and I found they were made sinply by making a stiff dough with flour, vator, and a little selt, an da little butter perhaps added, and the dough was beaten, beaten, beaten until the air was beaten into it, then it was made into these little round balls, put into the oven, and the air in the dough caused it to expand by the heat, sc it was a moet deliciously light and crisp biscuit, and I have nover discovered any better way of meking bread yet. I found this method in use in some other parts of the world. The liexicans knoad the dough, roll it with a round or cylindrical stone, then pat it out into little thin cakes, and bake it as we bake our griddle cakes on a hot tin. And ir Arabia I have seon the native Arab woman making bread in just the sate way; so it is not merely a modern discoveryi it is the old fashioned method of makine bread-everything recessary r ight there in the grain, in the flour, with water and air; these are all that is necessary to make very light nice bread but it requires a little more labor. It is easier to stir in some baking powder, put it into the oven, than to take care of it yourself. But the raining can be done juet as well, just as perfectly with the natural elements, air anc vater. I waying a word on this subject becauselw hope when you go home, you will dimise baking powder from your house altogether, turn it outdoors. Fe don't allow it here ir the saniterium, never use it in our cookery, ond we make broed just as light as it is possible to wish it to be-cake and everything of that sort can be made vithout any baking powder at all. There ere other methods I have not mentioned of making light bread. Beaten biscuit is not the only metrod. Those of you who are interested should go down to the
cooking school. You can get instruction there without charge, and I wisin every person in this house would go to the cooking school and get some instruction before goine home, so you can instruct your neighbors and cooks and get them started in a rationul wode of life.

Of course, all sorts of animal fets and vegetable fots as well rinder the flor of eastric juice, us I just mentioned to you; and that is the reasen why fots have the reputation of making poople bilious. It is an old ides that fats cause biliouspess. It is not because the fats clog the liver, but it is because the fats hinder the stomad from quaking the gastric juice which is necessary to digest food, so the food is after while pushed along down into the intestive, and not being digested, it rots, it decays, and this process of putrefaction in the intectine produces quantities of poisong which flood the blood and the body and make a person miserable and wretched, and everything ahout that otate that is called biliousness--it is simply acute sutointoxication.

There were other observations made by Pawlow, and made by Eeaument before his time, who had an opportunity to etudy the stomach of Alexis St. wartin. Alexis St, "ertin was a hunter whi had an accident-a gun discharged three or four feet fre his body obliquedy directed toward his body, and the fual charge of duck shot was received upon the abdominal wall and the chest, over the stomach, and tore awey the abdominal wall, and the wall of the stome ch itself, and a part of the wall of the chest, so thet when Dr. Feammont found he could look right into this great gaping place and see his lungs ani his heart beating, could look right in to the inside of his stomach. He thought the man would certainly die, but he refused to die, and when he got well, the edge of the opering in his etomach was grow fast to the edge of the opering in the skin, so there was a window right straight through into his stomach; and Br . Peamont hired this Canadian, flexie St. Hartin, to live with him as a servant, and he mede experiments upon himx for several years

He had put into the stomach various sorts of food, then he would watch and see what happoned to it, and would notice the effect. He noticed that when he put mustard, pepper, pepperseuce, ginger and things of that kind into the stomech, w when it had that rosy gray, that at once it became reddened like a bloodshot eye; and if it was continued, after while the stomach became very much inflamed. And Dr. Ogata made some experiments upon dogs, and he found cane sugar has just the same effect. That is the roeson why we have no mustard, pepper, peppersauce ginger xamixax or suy of those things upon our table. It is b ecause they cause this congestion and inflammation of the sforach, and that is the reason why we recomend malt sugar instead of cane sugar--becauce in the sersitive stomach the malt sugar does not produce this inflamed effect, whereas the cane sugar does. So we recomnend everybody, especially people who have sensitive stomachs, to use malt sugar. It may be taken in the form of dry sugar, or of malt honey, ,the eame thing--irnatead of cane sugar. Many people can ot take cane sugar at all without pain, but are able to u the malt sugar very well without any difficulty. We have found it is very valuable in tresting cases of gastric ulcer; it is of very greatservice indeed.

Now, observations were nade by fawlow upon the liver also, and. one of his observations I will explain to you in a moment, but first we must look at the liver and see this great fland which has five, lobes, which is the largest gland in the body, weichs three and a half pounds,--see what its functions are. The liver has wonderful vitality. The lower down the scale we $\mathbb{E O}$, the more important the finction of the liver seems to be. For in stance, there is the oyster vith its enormous liver. The oyster's liver is pretty nearly helf of the whole body. It is the large brown end of the oyster; that is his excretory
liver and kidney; or his auxizxaxy orgen. "In the dog we have a liver four times as big as the human liver in proportion to its size. The turkey buzzard has an
enormous liver. Over in Gerwany they feed their geese in such a way as to meke an enlergenet of the liver, and profuce disease of the liver by overfeeding. I saw described lately a now wachine they have got for feeding these geese. The geese are fastened to a plank, with their ejes put out, and their feet fasteved to a plank, and kept in the dark so they are moved around as little as possible. Once in every two hours a woman goes arcund with little pills of dough, opens the mouth of the 500 se and with a little raurod pushes it down in to the st ansch. But now they have got a machine that works by electricity in some way, and purips the food down ir to the stomach und does it a little quicker, ant the result is, the liver after while undergoes fatty degeneration and fills a large part of the inside of the goose; then the goose is killed, and those great, fat, degenerated, diseased livers are made into a paste, and that is one of the delicacies put upon the hotel tables, pate des foie gras--some of you know it, and you have perhaps thought it was very delectaible. It is made up of the diseased livers of geoge that kave been fattened the way I an telling you.

Now, there are some people who treat their livers very auch in the same way. That is what I wanted to tell you about. Thile they do not eat every or two hours, they feed themselves with pills or pellets pushed down with a stick, they nevertheless live upon food which destroys the liver and affects it in exactly the same way as those ovorfec geese. Overfeoding is oue of the things that destroys the Jiver, bectuse the liver is a digeotive orgen. After dinner, the liver is half an inch bigger than before. It dissolves solve of the food substinces in to itself, and holds them there before passing them on. After dinner, or after the liver has bocome decenerated with fat, the liver celle are all filled with fat. There are vir ious subatances that disturb the liver although the liver has enormous vitality. If it was not for that fact, I suppose we would all have berideed long bfore this. A German inventigetor some time ago made.
an experiment upon a rabbit. He cut off half the liver, and in three monthe, he exanined the rabbit and found that half had grown on again. Then he cut off the other half, and removed thet, end in three monthe more, he exanined the rabit, and this half had grown on, so the rabbit had a brand new liver. That is what scme of you are inking for, and I hope you will f ind it, for the liver has this power to repevduce itself, and to repair itself, and to stand an enormous amount of dmaze; and that $i=$ why it has been possible for us all to take so many chonges as we huve.

The no st important function of the liver is to destroy poisons. That

 is one of its most important functiong--to destroy poisons--these poisone that are absorbed from the colon and othar poisons that may be swallowed invater are taken up in this large portal vein and carried into the liver, distributed through the liver, and the liver destroys the poisons, or filters the poisons out. That is why it ispossible for a person to take water that comes through lead pipes for many years without suffering any injury, because the water keeps taking the lead off the pipes, and the liver takes the lead out of the water and stores it up in itself. That is why you can take a dose of mercury or of calomel or something else whenever you feel vilious, be cause the liver seizes on that calomel and stores it up in it self, and so protects the body from the damaging of fect of this powerful and poisonous drug. It depends somewhet upon how it is used as to how poisonous its properties are; but it is the liver that protects us against all these poisons. The man who swokes can smoke a lorg timo, be caue his liver catches the nicotin and destroys it ond so saves his brain ond other vital organs from the damagirg effect of the drug. The same is true of the an who uses beer and alcohol, and the mun treats himself in this way- it is his liver that stands between him and death and is working for him, fighting far him. But the liver by and by gets infected and overvorked. Among other things,it destroys bacteria. But it has to be wide awake to catch the bacteria and destroy them, and if it does not destroy them, they get by it into the gallbladder where they do harm; they stay there for yeurs. Sometime ago I operated upon the gall-bladder of u lha n, removed some otones from his galleblader and found to my astonishapent that these gallstones had typhoid fever geras inside of them; and upon inquiry it was found that the man had had typhoid fever fifteen years before, and those typhoid fever germs had been etored up in the gelletones there in his sell-bladder all that tive. It is now quite well known, though it was not so well known at that time, but it is now quite well known that the gall bladder is a pluce where typhoid fever gerus remain of a long time sometiwes, ufter a case of typhoid fever, so the potient becomes a typhoid carrier, and he goes about scattering these typhoid fever germs everywhere he goes, and becomes a. mouns of infection to other people, because his liver is worn out in defending the body, and it po longer has the power to destroy the bacteri which are growing there, as it should do. So the liver is one of the most interesting and versatile organs in the ontire body.

This picture shows you the liver cells where the wonderful work of protecting the bo d is done. These cells make the bile, end separate the lead calowel and other poisons, destroy nicotin and other bad poisons that are atsorked from putrofying materials in the colon and destroy these poisons. This work is carried on most faithfully, but only so long as the cells are intact. When these cells become degenerated, when they become overwhelmed with fat globules, and deteriorated, then they can not do the work.

Now, here is one experiment puwlow mede that I have told you about. I saw it made ir his leboratory. A dog had an operation performed upon it by which the portal vein was connected with the ascending vena ceva. The aeconding vera cava carries the blood straight to the heart, and so on around the body;
but the partel vein carries the blood to the liver and fter it has ben purified, thon it goes into the vena cava. Eut by t his operation, an opening was formed letween the portal vein and the ascending vena cave. Then the portal vein was tied so that no blood could pass through the portel vein to the liver, and the result was all the blood, laden with poisons thet formerly passed through the portal vein then throu h the liver for purification, --all this blood pa sed directly into the body of the animal. Now, this doE gol along all right and onjoyed good health. Those dogs blways do get slong all right for gome time after the operation, --as long as the dof ia fed upon an antitodic diet such es you find upon our tables upstelrs, and as long as the dof lives on a sanitarium diet, it is perfectly vell. Sut after while the dos was given meat to eat, and in three days it was a dead dog. And a dear dos is not worth very much. Now, there are a whole lot of poople doing the very same sort of thing that dog did. They are esting meat with crippled livers. Experiments have been made on men who have smoked for a series of years, and every person who has b a heavy mat eater, every person who has been a habitual user of tea and coffee, every person who has been addicted to the use of alcohol, persons whose habits of life kxive have been sedentery--every person who has suffered from inactive bowels, who has constipation, every person who has a dingy skin, and black circles arcund their eyos, and brown circles, spots upon their hands, ad a dingy skin, --every person who has a coated tongue and is subject to bilious attacks,... every such person has a crippled liver. It would not be possible for him to be in such a state, for anybody to be in such a condition as I have de scribed if unless the liver had first b ocome cripled; for the liver does its duty as long as it possibly can, keeps the body pure and clean; but when we see evidenes accumuleting, of impurities in the body, then know that the liver is crippled, so every person who is in that condition that I have mentioned here is very much
in the condition of the Pawlow fog. This is what is known as, Ecks fistula, and a doy that has Eck's fistula can rot eat meat; it is a fatal thing for the dog to eat天 meat; in three days it is dead if it eats meat. While the seme thing would be absolutsly true of the men who has a crippled liver, his liver may not be absolutely crippled, but it is so seriously crippled that this is measurably true. The man whose liver is crippled, the more meat he eats the sooner there is going to be a funeral in his case. He is preparing for a funeral, for his liver is dmaged and cen not deal with meut.

This fact shows that the liver does something that is necessary to be done when the man eats meat. A dor can not live unless the liver does someth ng to protect the body against the injurious influences of meat. But if the dog does not eat meat, he can get along and live comfortably provided the diet is a non toxic diet. I an telling you this so you can see that the bill of fare of the Sanitarium dining room is not made out without a good reason for it. It is not simply to satisfy a whim or a fancy or precedent, or snything of that sort, but simply to give to you the conditions which modern science shows are ebsolutely necessary for the best possible progrese toward health; and iny great amisition is that while my friends are here, while our guests are here under this roof, that I may persuade at least the more intelligent ones of you--if there is any difference-to continue to live in the way which we point out to you while you are here. I am givine you these scientific facte for every one of which I am able to vouch and demonstrete, give you tho absolute, positive evidence of it. I can give you the absolute, positive proof of every statement I make here, and I take the trouble to do this because I hope some of you at least, when you go home, willkeep on in the way in which you are tayight to walk while you aro here, --the only way in which you can preserve the help you got while here. IIy iriend the oyster. An anonymous poet wrote a posm about the oyster.

> "That man must hove had a pelate covered o'er
> With brass, thaxazaxiks or steel, wbo on the rocky shore Iirst broke the oozy oyster's slimy coat ind risked the reeking morsel down his throet."

If he had ever dissected an oyster, looked inside of it, he certainly would not tixini have felt that vay about it. I think this is the mouth of the oyster. Here are the gills. This is where the oyster bresthes. And the oystemr has a very large mouth, end the oyster passes the water throuch this and catches or strains off by a whole lot of little hairs in there, strains off the diatoms of food, and things of that sort. You see in oyster buisy getting his broakfast at the slimy bottom of the ocean, you will see he has his mouth wrapped around the slimy stems of seaweeds or scrapigg the slime off a stone. The oyster is a scavenger. Here is the amall intestine; here are various other parts. We can not pick then out. Nere is the liver, or purt of it. Here is the nice brown ong-the kidneys. Liver and kidneys are pretty closely associuted. Nere are the intestines. Here is the stomach, and here the hart. The next time you eet an oyster, reflect upon his anatomy, for example, an dee how much it will add to the delight of masticating him. For instance, when chewine up that brown end, ju t renember that is the oystets liver and kidneys; and if you find something that seems somsthing like a etring, that is the oyster's small intestine. It is all there; you swallow an oyster on the halfshell, you swallow him all; he is all there.

I was very much amused some time ago. It was discovered in England that typhoid fover was breaking out in epidenics where the water was all rieht, and efter while broke out in the fanily of the prince of Wales, and it was discovered that the young man who was sick, one of his children, hat contracted typhoid fever from eating oysters; and the fact was published in the newspapers, ar. a the oyster buginess at once ment down almo to to zero; nobody dared eat
oysters, bearuse the son of the Prince of Wales had typhoid fever from ating oysters, so it must be bad to eat oysters. When an irvesti ation vas made, 4. very ingortant discovery was made~that the oyster beds were all swarming with typhoid fever germs. Cystors generally grow nost abundantly right sround the mouths of rivers, which, of course, bring down the semage from the big towns upon their banks, end the oysters live upon the semage, end really the fattening grounds for oysters ure the mouths of great rivers where the sewage of great cities ios emptied; then dter the oysters are eaught, they are uaually takon up into fresh water for a while to take a drink, as the oystermen say. The oyster swells up to about twice its size in salt weter. So the man can get twice as wich for his oyster, you see, for they veigh twice as much when they have had a drink. Dr. Wiley some little time ago undertook to get this practice suppressed, becauce while they are drinking fresh water, they are faking in typhoid fever germs also, getting more and more infected. It was found in this examination made in Englund that as far as a mile out from sore oysters were found that had typhoid fever germs in their gtomaehs, even at a depth of 400 or 500 feet. Oysters live upon these bacteria; thet is thoir reguiar diet. There was a great stir made in England, and in order to protect the oyster men, it was suggeted that they ghould have u corps of oysters inspectors whose duty it should be to in spect the oyster , toguarantee they had no typhoid fever. Cf course, When an oyoter has typho-d fever and the doctor comes slong takes his temperature, feels his pulse, he could throw him out; but it looks as thoush tit would require a pretty large numer of inspectors to look at the tongue and feel the pulse and take the tomperature of every oyster that was offered for sale in the up market; so it was given axte es a hopeless task. The oyster had batter be Ieft to carry on his business as a public scavenger rather than to appear upon the teble.

Here is snother orgen that is very important in the digestive processthe pencreas. Here ie the spleen. These orgens are not only digestive orgonsi they are controlled by the sane principles end laws which contral the sulivery Elands and the stomach, as Pawlow has discovered, and influenced by the sense of tuste governed by the papillae at the back of the tongue; but the pancreos also manufacture a substonce which helps to destroy poisons. Some poisons in spite of the Iiver activity will escape and get into the blood; and it is neessary to have flands to destroy these poisons. The pancreas is one, and another is the thyroid gland. It used to be supposed the thyroid gland had noparticular function. It was thought to be a vestige of something that was in use some time in embryonic life perhaps; but now we know the function of the thyroid gland is to deatroy poisons. Some dermen physiologists removed the thryoid flands from dogs and they all died in a short time yith spasms. Afterward a Fronch investigator made the same operation upon rabbitsmeremoved their thyroid ilands, and they got along all right. Anothor investigator then rooved the thyroid lands Erom dogs, und fed his dogs upon bread and milk, as Pawlow did after his Eek's fistula, end the dogs lived and thrived, but as soon as he put the dogs on a meat diet, they began to get sick and in a few weoks died of spasa; so it became very apparent that one of the functions of the thyroid gland, as of the liver, is to destroy poisons which arise from meat euting, and the poisons which aro fownd in aett, doubtles, and poisons which are probsbly formed by the putrefaction of undigested portions of teat in the colon. So we know that if a person has no thyroid gland, or has a badly diseased thyroid gland, he should not eat any meat. A person who has a diseased thyroid sland shou?d avoid the une of meots. Thon the thyroid siand or uny part of it has boen removed, that means that meat should be entirely discerded, and not eat any more. It is more than probable that meat eating is one of the great causes of thyroin disease. In
certalif garts of Switzerland, there are places where they have goiters irax very extengively, sometimes enornous colters hanging eleer down to the waist, that are sustained by iands around the ntok; and these goiters are found to be produced by water from certain wells; and a studj of the metter in recent tires has shown that the water from these wells is different from the wator from other wells in that it produced soiter and that it has a different so:rce. The water was Found to produce goiter when given to aximels, even to fishes when placed in the mater. It was found by investigation that the water in these goiter wells comes from old sea bottoms and contuined the ronsing of fossil fishes and other enimals that were buried in that old sea bottom, but that the water that came froa granite sources, and chaik formations does rot profuce goiter, but on? y water that cones from old sea bottoms. This was pointed out by un eminert German professor not very lons ago.

Some poisons escupe the thyroid. The supraronsl capoule is useful ałso as e mears of pronucing subst nees which destroy poisons. It was noted long ago that when a person has large, di seased supraronal capsules, the skin becomes very much igmented. We know now that is simply the accuraulation of poisons in the ody, that cause this pigrentation of the skin, because the suprarersl capsule is diseased and is rot thle to destroy these poisons. Weat eating overworks these glands; mett eating overworks the iver, the suprarenul capsule and the cther poison-dostroying glands, and so in all these infferent ways meateating contributea to autointexication, not on y throush the intestinal putrefaction, but through flooding the tissues with poisons that are found in the meat. The colon is the principal source of the roduction of these poisons. Here we see the colon is partly removed from the upper part of the omentum. This great omentum hangs fown in front of the intestines. It is
one of the nost wonderful etructures in the wedy. If there is inflammation of the appen cix, the omentur bomes down and wraps itself around it. If there is inflametion uway up at the all-bladder, the omentwa climbs up there and wraps itself around the oll-bladder. Thenever there is any infaction, the membronous apron, the omentua, worke its way around, Sets in there where the trouble is going on, end protects the body. It is frequently referred to in medicel papers as the abdominal doctor. It comes at orce when it is callec, and does its work in a carvelous way.

Fere ie onothor illuotration of this marvelous intelli ance working in the body es shown by what h ppens when z pin sticks into the mucous membrene, having been swallowed. The mucous membrane begins to thicken up, gete thicker and thicker, and the intest ine begins to push itsolf up againet it, keeps pughing up further and further and by and by it gets pushed clear over, and the pin is going downstream head foremost, and all iswe? 7. This is an experimert made by frof. Bogor, of Paris, the pupil of the great Prof. Bouchard, and published in a recent book the actual observation tade, hich ghowo that there is an intelligence at wark in the body, and the process of digestion is controlled in a marvelous way that I have explained to you, by the teste buls in the mouth. All of these diestive processes, these poison-destroying operations that are continually carried on, all this work that is carried formard is all evidence of the presence of an Intellicence that is protecting us continually againat the inroads of disease. The colon through abuse gets all tangled up. The cecum becomes enorinously onlarged, the $x \times x$ sppendix is buried down underneath, and the transverse colon becomes prolapsed, and the igmoid elexure enormously onlarged, and the consequence is retention of materials in the colon. When the colon becomes crippled so badly as it is in these cases, it is not always possible for it, in advaneed years particulerly, to appooximete ite normal functions
permenently; it is necessary, continuully to make use of special means for the complete ovacuation of the colon; necessery to use specisily laxative foods, such as cran sind I ttuce, and fresh substances. And sbundance of bulky food must be Eiven, and such substances as are laxative. hgur agar, Japanese seaveed, is of very grect value. Malt honey, sweat substances of all sorts are laxative. We can not recolinend cane sugar for that purpose, because it is haraful to the stomseh, but malt honey is a real laxative, and of very great value. And not only tast luxative Coods be used, but antitoxic foods. Dr. Arbuthnot Lane of England has gone so far as to hold that these crippled colons should be removed, and he has performed the oparation in a large number of cases, and the patients have male remarkable ecoverios. Te find it is not nocessary to remove the colon, but only to take care of it, to keep it clean by frequent bowel movements. The bowels ought to move after every meal, or at least twice a day, and three times is beter. Dr. Shepard, the great missionary surgeon of Turkey, tells ii.e that when a Turk sones to him and talks to him about his health, about the first thing he says to hill generally is, "I am sure I an sick, Do ctor, because my bowsls move only once a day, and I know I nust be sick." It is the universal custoin evong the urks that the bowels should move two or three tiaes a day; and this rids the body of an enormous amount of poison.

You see hercillustrsted the difference between a meat diet and a poison diet and a right diet. The Sanitarium bill of fare produces this you see in this column, and the sast ordinary dixed diet produces what you see in this colum. You see the quantity of urine produced by the meat diet is neurly one hale largor, bedeuse the kidneys have so much more work to do, and the acidity is more than twice as great. The total nitrogen, which consists of poisonous sub;stances which must be oliminated, is noarly three times as great. The urea you soe is ulteogt tinrea tllles asx great; then w yen jou come to

Ginionia, wich is a vory reat poison, it is whost four times as great, and the crebtin twice as great; so you see all the way dam, three times as great-.. the sulphur found present and elininated. Then wo cone down to indioan. Tou see here it is noarly iffteen tings axs as great. In fact, on a perfect rezulation of the diet, there should be no indican at ull. Now, wen we find this state of things, as Z said, as a regult of a diet, it aesne that the ki neys ure enoriaously overworked, and they mu t be worn out earlier; so dright'g disease will come ut an parlior date. We taust live in such a way as to give our bodies as IIttle work as possible. If we want to wake the best use of our lives, we thu it ise our livers less, Sive our stomachs und livers as little work to do as necessary. If we limase upon our livers and bortachs and the rest of the vodjf too much work, there won't be enoush onergy left for brain work. We ore suffering ag the result of constant overwork of internal organs.

Fotice how regular these teeth are. These aro the teeth of a mound builder. See how splentidly matched they are, and all in place, aren't they' I have sone skulls retioved frow Roherts' Island, San Francisco lay, and we find the teeth in perfect condition. The reason why, is beoause they Iivod upon natural foods, upon cereals instead of meat. We need thirteen grains of like a day, and weat contains only hif a grain to the poind, horoas peas contain eight groins to the pound. Fine flour has only one grain to the pound, while Wheat has four; so you see if we aro zoing to get line enough for our vones and teeth, we nu 4 eat something besides Joat. The rouson why we do not find lime in the meat is begruse wen the hos eats com, the line in the corn gues into the bones, and when we eat it, we do not eat the bones. If we are ooing to get the lime back that wus in that coro, we heve to eat the mole hoz, bones and all. See how splandialy developed these teeth fere. The teeth are worn Sown alinost to the root, but without the slishtest evidence of decay. This is
a Mound Puilder's gkull, an old rian, with sixteen sound teeth in each jaw. You can hardly find such a thing nowadays. Ho lived upon a vecetahle diet. That is why his teetb are so much worn. If he had lived on a meat diet, the teeth wuld not have been worn like that. The asat does not require chewing; it is digested Withat chewing, only reguires to be broken up and swallowed. This Lound Builder lived upon the natural producte of the earth ond he chewed; and the Indian still takes pains to aasticste his food thorouchly and still has good teeth, and one of the things he is very fond of is the parchod wild rice which he gathors in the fall from the wild rice fields growing in the lakes of Dekota and finnesota. iild rice does not have the tendencies orlinary rise has, and contains more lime than ulao st any other cereal. I now of. This shows how the Indians gather the rice, and roust it in kettles. Flowers live naturally, and they are healthy and beautiful and stronji and the squirrel does the sage thing. The squirrel lives upon the diet that was assigned to hin to eat at the beginning. Jian hus departed, wadered away from his nor bal bill of fare, yet once in a while we can get sone good, sturdy jouns iellows to adopt the Sunitarium diet, ani it agreas with thon. These boys ure well sustalined by the non flesh diet, and we find sometimes peonle come along and visit the institution here, becone protty well converted to our principles and profit by them.

This libtle group some of jou will rectll. For instance, here is Prof. Irvin弓 Fisher. Fie cane here an invalid as he has told jou right from this floor repeatelly, and he has profited by the low protein diet. He has disctirded meate entirely from his housphold, und his wife and children are thriving, and the little ones are growing up splendicly on a meatless diet. This is s. S. "eclure, the editor of licClure's Magnzine. The spent a fow week a here a couple of yeurs ago, and he found himself rejuvenatet. He had been practically broken do mn for several years, but by iiscariling rasat, in a little hile he got a new suply of offieioncy, He conoiders hiaself now pore vigorous and enduring than he
has been for many, many years. In fact, he thinks he has added twenty-five jears to hielife by leuving out neat, tea, coffee, and adopting a sunitary mode of Iife. He made the statement in public here that he would as son thiok of gettints down on all fours out on the gtrobt and lioking upldirt as to eat a piece of beefsteak. He absqlutely abhors it. And this is r. Gifford pinchot, whose cenial fuce you see here. Wr. Pinchot wrote se not lons ago that he was enjoying etter health than for ten yeurs. I had a card froin him a day or two uge from Rome, gaying he was in perfect health, and ho was not in perfect hoalth three months ajo. He has made a marvelous uplift by simply adopting a rational diet. Juet think what a little change it is-oropping out beefsteaks, eating the natural food ciod designed for us to est--how ilttle trouble it is to do that. The things that cause us trouble really heve the most tremendous influence upon our lives wd destinies. Sir llorace Plunket, the man whe hiss done so wuch for Ireland in an asricultural way, und an economic way, mas aleo with us about the holiday season, and he has been trying the low protein diet and with wonderful benefit, so much benefit he intimated he was going to sond some one over here to learn the Sanitarium methods of cookery so they might be introduced into the agricultural colleges of iroland. This other fellove hore has beentryine it out 45 yeare, and he hus still enough energy left so that he x iq alle to stand at the operating takle, as I did jesterday eight hours steady, ioing operations, cot home at eleven o'clock, an dible still to do sone nore work without exheusting the surplus of anergy; but I fear I have tired you all out tonisht. So I will say good nisht and I ot you go to sleep.

RACE DEGEN BRACY.

A Stereopticon Lecture at the Stniterium Parlor, Bettle Creek, wich., Thursday, April 16, 1911, at 8:00 P. 27.

By.
J. H. Kellogs, M. D.

Ladies and Jentlomen: I think I have the nost patient audience in the world. (8:35 P.h.) We have the orchestra come in here so you will be entertained when you have to wait a fow minutes, so as to make it as pleasant for you as we cun. I have not been loafing, or idling, or taking a rest. I have been driven to destraction, almost, in trying to get through with my duties so as to get in and not keep you waiting a monent. Now, I am going to talk to you a little tonight on a subject which I frequently talk about--how we are going down hill, and what we have got to do to tren the tide. I have spent a few days at the capital of the state getting $u p$ very early in the aorning ond getting home very late at night, putting in two whole days as hard as I could work tryirg to get through some heal th bills to help save the lives of our felloscitizens of Michign, end I think I will tell you a word about it, so thet so e of you perhas will set to going si ilar activities when you return home to your states, if you have not already done sc,--things that ought to be looked after. The most importont thing i the world that any logisloture can do is to protect the morals and the hesl th of its citizens, to make lawe to protect the morels and the health of its citizens. And these two things are inore noglected than elmost any other things in legislation. It is a gread deal easier to get a law through of some sort that is going to holg enrich people's pocket books, a greatdeul easier to get a law through for the protection of pigs
anazing what an mppas spathy there is on this question of human Iife. Now, I made a discovery during the last few weeks since I have been studying statistics, the latest reports, and I have found that Michigan is losing its etanding as a houlthy state. Six yearg ago our death rats was only 13.3 to the thousand, which is very, very low, and during the years 1906 to 1911 , the avarage was 14 . That metins that is an averace of $\cdot 7$ per cent more than ought to die now; beceuse there is no reas n why we should not be just as healthy in 1911 as in 1905 ; and when we find the death rute is climbing up, it meane there is something wrong with the poople of the state--that they are ignorant and ought to be informed, that they ought to be educated. That is what it racans. Now, it means when you came to apply it to our population, that we have lost in the ctate of Michigan in throe ears 5500 people that we should not have lost, that we ought not to have lost, 5500 people died who should not have died; 550 c lives went out that ought to have been saved, because our death rate has been coning up when it ought to have been going down.

In our reighboring state of Indiana, for example, the death rate has been going staxdily dow, while in Michigan the deuth rate has been oteadily cooing up, while in the state of Indiana at the present time, a otate where they have more nosquitoes than Wichigan and hence more axlarik, and where they have more typhoid fever thon in Wichigun, where they have not so good a climate as We have ir Michigan with those great inland seas surrounding us almost like an island,--the death rate is on 1 y 12.2 --just think of it, 1.8 less than the average in Wichisan for the years montionsd, and that means a saving in Indiana of 12000 poiple--juet think of it; it means a suving of lives of twelve thousund people in three years. That mesns four thousand people a year die in the state of Michigan that would not die if we all lifed down in In it ans. Now, you know, I thank that we mould be better off if we could get the name of owr state chariged to InAians, end could zet tho health siministrationot the stote of Indiana
extended over the state of lilichigan. If we were all under the fatherly care of good Dr. Hurty, who is responsible for the reduction of the death rate down in the state of Indiana, it would be the greatest possible blessing to us; but now that I em a member of the state board of health, I begin to feel a fathorly interest in every citizen here, and feel it my duby to soe that steps are taken that can be taken to lower our death rate; and ore of the things I am trying to creote is a milk inspector in every commity wherever milk is sold. Just think of the shume of the present gituation when any old fermer cun keep any old cow that has got tuberculosie or anything else, and can milh that old cow axel into any old kind of a dish, and can feed her on any old kind of alope, and can elapt; the dietilled slops in the shape of milk, supposed to be wilk, anything In any old kind of a tin dish called a milk can, and earry it to market in any old sort of wagon. I saw one going down to the market the other deys and he had an empty garbage can in the back of his wacon, and a full inilk can in the front of hiswagon, and when he went back, hismilk can was empty and his garbage can was iull; and when he went back to market the next day, what went home vith hith in the afternoon in the back end of his wagon, wont to town in the front end of hia wagon, fon't you see? He takes the garbage in at the back door, and takes it out next day frow the front door. Then he calls it milk, you know, and the psople feed it to their bubies, and the babies die, and charge it to Providence.
Now, it is tine to reform, to wake up, to get a littie more sensible. So it is with pany ather things. Ice--who looks after the ice? Whe looken after the matter of ice, to know where that ice canse from? who krows how much filth and dirt there is frozen up in the ice? When the ice is thawed out, the Berins are just as hai as before thoy were frozen up; they coze up smiling in the spring, like the blossoms, and they be in their pernicioue activity at once, windif you swalloir sope typhoil fover sofes that hive been frozen up all winter,
they are not the least bit weakened by it; their long winter's froezins simply has accumulated enersy by their rest, and attack you in good earnest.

There is aputher thing thut needs to be cone in every state. A.few states are making an investifagion of the question of cold sorage meut. What has been going on for years and yearis and jears since cold storage was discovereed, since cold storge warehouses begen to be built? an animal dies, gets hit in the head, gets its throut cut, or dies sorae other wey, and is put in to t his sreat public morgue called a cold storage warehoise, and there it is supposed to be frozen up, and it just lies about there for montho and months, and years and years, aybe, and nobody knows how lome. A short time ago a health officer sot into a colcistolage warehuluse und he found some dead deer lying about thero that wore stumped that indicated that they had died in the year 1905. and they had been lying there waiting to be buried ell this time. Just think of it, just thirk of it. Another irvestigutor--I heard about this ju st a few days ago,... got into a cold storage warehouse somewhere, and ho found some fish that had been in there for twenty years; and all the fish that were there had been in Were all the way fras seven to twenty years, and there were tons of them, and they wore doling them out to poople. That thing was stopped by the health officer in owe otate, in Pennsylvania, because they made a law; and in Now Jersey and several other states they have a law prohibiting the sale of these desd carceses that have been $l y i n g$ around so long in cold sturage, or any here Q 90 , prohibiting their aale; an animal can not be kept in cold storage and sole for food aftor more than three montis. That is quite too long. Eut that certainly is the very limit. Now, just think of it. A an told me solue time diso he knew of a con in New York--it was the fnan who owned the warehouse, the proprietor of it, -- that he found thore in his own arehouse ducks and geese ap enickeng that had been there for three years -. for three years, getting bettor 411 tho time, zetting a hi hhevor, a haut Sout, as the Frupoh call it, getting

Vary gamey, undready for Chrigtims; gaved sometimes for years aheud. Now, if we do not have a. law of that sort in michigan, you see, all the states around us wi l be emptying their cold storage warehouses into Miohigan, end you will sea What we will have here--a regular epidemic of eppendicitis; for statistice have shown that appendicitis has increased onormously since cold storage came into fashion. Now, wo are golng to see some of the compquences of the se thinge. ak We are goang down hill very thst. One of the proolg of it io that the birth rate is diminishing.

He estimate of this birth rate 2 b based, not upon the whole populetion, but bmong the number of possivle mothers, between the ages of fifteen and 45. The population of women, the number of women in the population between fifteen and forty-five years of age, and this indicates the diminished birth rate in proportion to the number of women; and you see how it is. In "ew south Wales, it has diminished 30.6% in the last twenty years. In South Australie, 24, In New Zeal and 24, Victoria 24, and Tiestern Auatralia 23, Queensland 23, and the Jnited States 20. The birth rate has dropped off in 22 years 20 per cert. - uat thirk about how rast we are going down. We ought to have been gaing the otler way. Ahis is race suicide as sure we the world. In Eelgium the rate has diminisked 19.8, in erance, 19.7. So you gee it is ihminishing more rapidIy In tho United Stateg than it is in Fran . Fogland and Vales 1\%, Scotland 12, Denwari 9.8, Swedon 8.2, Normay 3.7, It 1 y 2. 5. There are only four countries in the onld where there has ben an incroase. Spain, 4 of one per cent; austria, .8, axd Naxxim Irelaxd 2.3--Irelandin coming up; they are oxpecting to have hone rule there, so they are cultivatires horee rulers, non't you see? they are improving a little. Now, here intthis country, where we raise kings and queens, cortainly Where every wan is supposed to 00 s ruler in this republican country, wasmexoug deuth rate ou ht not to be droppang ofi. Now, we will hurry on and look et gome gther thonge.

There are w whole lot of things that are well worth considering. Not only is the birth rate diminishing, but the babies are dyans off. The bailes that are born, a large roportion of them, pretty nearly half of them die in New Fngland and some other puits of the country, pretty nearly hulf of the se baibes that are bore have the misfortune to buve incompetent mothers, mother a that are unaule to nurse them; or if they are able to nurse them, they are unwilling to nurse them; they think it is too zuch trouble, so those little ones have to have a cow, have a wet nurse; the poor little things have to be brought up on a calves' diet, and it doesn't agroe with them. Just look at the difference. . Breast fed bables have a inortality of seven per cent. That is, one in fourteen of babies nursed it a normal way die, one in Pourteen of them die during the first jesr; but of the bottle fed babies, fifty per cent of thom die in the first year. Now, that ig a terrible sucrifice. Just think of it-half of all the babies that are bottle fed die before they are a year old, and only one out of fourtsen of the babies that are properly nursed die before they are a y ear old. Think what the mother is doing. I may say what a crino a mother is comittinf who refusee to nurse her infant. If the baby dies before it is a year old, you see that the probebilities are here. The probabilities are seven to one that she killed the baby herself, with her own hands. Sho miont better have strangled it, she might better have thrown it into the river with a stone tied about its reck, ghe aight better have cut its throat or knocked it in the head than to kill it by slow torture with cows' milk, with the indigestion and the boweld troubles, and the awiul suriering the poor littlo one has to 50 through; and the worrisome nishts; and the wothers think it is a torrible thing to be kept awake by the crying of the baby, but thik what the baby faels. Think what the baby is sufforing that wants, to ory, when itr has to siffer pain. It is bad erough for the nother, but the buby is ten times sis bud off; and by and by,
for monthe and months it is eluaciated, a mere skeloton, nothing but skin and bones, and it jusps out its last little breath and becomes food for worius, Just becnuso the nother auld not nurse it. Wuybe the mother a uld not nurso it. Dr. Bunge has invegtigated that subject, and ho finis that whon a mother is unable to nurse her child, one of two things is, the probuble cause of it. \#ither the mother's father was a drunkard, or el se her mother relused to nurse her, or was incapable of nursing her. It is a horeditary defect. Then a mother is not able to nurse a child, her daughter will not be uble to nurse her child. tt is a hereditary defect, und it is u conseguunce of race degeneracy, and Iiquor is one of the causes of it. Prof. Bunge found it was a most common cau so of it.-was intempsrance on the part of the father. Sirls take after their fathers, and boys take after their athers, and that is one of the hereditary effsets of drink that has not yet come to be very widely known, but you see what a terrible thins it is. Pretty nearly half tho thothers are not whe to nurse their babies, and helf of those babies that ure nursed on bottles, fed on bottles diex; so you see we truce it back to the drunken father who is responsible for the deuth of protty nearly half of the babies that die; protty nearly huif of all the babies that die, because their fathors wore interperate. In the tenement house distriets of our sfeet cities, the mortality of ohildren is something frichtful, soouthing irighiful. Now, just look on at a lew other thin iss.
Natice the efiecte of a law protein diet on the blood of chronic
invalids. We of the errors abroad in the wopld is the idou that incat is necesnot
sary to make blood, that ve cap have good red blood without rure beef steaks. I renember very well some twonty-five yours ago in England, I was gending a Iittle tirae with a great surgean over there, and twice a week, Thureduys and Mondeys, he had a dispensary clinic, any spent an hour in, a dyspeptio dispenserf, wa the poor poopla cate along for consultation und he examined them and
prescribof for them. And a sirl came along one jay about sixteon jeare old lookiog asipale as a piece of white sheeting, paleis posaible, skin wes abselutely White, and her lips where white. The poor girl looked us though she had hardly a drop of blood in her body, and he said, "I 士old you to eat more meat. Why don't you est wore meat?" "Why, Doctor, I don't eat anything else; I haven't eaten anything but heat for three monthb." Ghe Bula, "I have followed your prescription." "Well, you uust eut aore weut, eat more mest." and he sent her aloog." That poor girl was djing frou ineat poisoning that very minute, suiCaring from evidences of intoxication, and the blood was being destroyed by poisons formed in the intestines and at sorbed into the blood.

Now, to demenstrate the folly of this idea that meat is necessury to Hake the blood what it ought to be, I have vai soine statistics gathered togother. A thousarid consequtive cases. Everybody who comes here has the blood tested when they come, and I had a thousand ases of persoos who had the blood tegted when they came added up together, and the average obtained which was found to be 3,885,000. Then when they cane to go away the test was made again, and the averrige was 4,353,000. That was a xxax subsequent test. An i some of them got so much better they didn't care to have the test made the second time, and dion't take it, so we probebly do not get credit for all the improverhent there was. It is the people who are rot getting better that are certain to have the second test. Those who folt all risht slipped olf without taking the socond test; didn't care to take the test for the sake of helping our records. I remember what Mrs. moDowel?, tho has charje of the Jniversity settlonent in Chiceg, suid to me one day. She srid, gha gtarted a prayer meating, and sho sould not get anybody to cone to the prajer theatiog; thoy kept droppinj, droppinz, dropping off, and by and by ghe started a mother's mooting, san wore people came to that than would come to the prayer veeting, end she seis, "I Round out after while that the
peope would not come to the preyer meoting because they thaught they were going to bo counted when they caine to the prayer meeting so as to h we a report tatede, and that I was holding th at prayer meoting and fot fyy salary based upon the nutio or of people who came to the prayer meetirg; so they would not zomo to be counted; but thoy came to the wothers' meeting to be helped, and she had a very sood time with theil. Now, juu soe the hemo Siobin wont up fifteen per cent, and in thirty cases, of very bad anemia, io which the average mas only $1,989,000$, less than two fifths of what it oucht to be, the gein was up to $3,140,000$, a fain of 58 , on an absolutoly ineatless diet, absolutely po weat at all. and the heraglobin gained in these thirty wsee of unemia over $40, \ldots$, 47%, a gain of 20%, or 50% of whut it was ut the stort. Then we mude another test. We had un examination made of our helpers, people who had been living on a low protein むiet for a long tilie, and that had no meat. We never served weat on our helpers' tables here. For forty yours this institution has carried on its work without giving its employees meat. We never serve meat at the employees' tables. It is 45 years now, this next swmer, since this institution was opened, and meat has bsen excluded alwsys fron the binlly table, and we found the percentuge was of ren, the hemoglobin, that is coloring mattor, was 97 , and in women 96%; the red eells, 4,700,000, and in the 2omen 4,250,000, that being considered practicully normal. Nown in New York eity the doctors call 85% normel for a llew Yorker, because the New Yorkers kaxa are nearly ull sufforing from New Yorkitis you know, of which onenia is one of the eymptoms. The blood pressure is found to be fallon down. The blood pressure was found to ve, of the mea 133, spd of the women 119, which is certainly umple, high enough. It was taken with what we eall the narrow arm band, and the blood presaure taken here now, at the prosent tirie, would have b een shout tronty points lower.
ho may sive to himself. Did you ever think of it: The chronic maladies that browsht jou here jou didn't aetch from taybody. "'e spend millions of dollars to keep awry typhoid fover, to koep away scarlet fever, weasles, and thing of thiut sort; but how much money is spent by the jovernment, or by the minicipalities, by cities to keep away Bri弓ht's disess. to keep away cirrhosis of the liver, apoplexy, artarioselerosis-and those other horrible paladies that are kiling nore people, far more people than typhoid fever, or anyxax all of the oter infectious diseases put tagether--jugt look at these auladies, how they are cartying us off. In the last ten yours there have been killed by degenerative diseases between 1900 and $1909,2,882,000$ people in the United States by such diseases as arteriosclorosis, apoplexy, and Bright's diease. Now, tuberculoas carriod off in the suane tiae 1,343,000. In the next ten years, at the rate these chronic aladies are increasing, tuberculosis will kill $2,462,000$, while of decenerabive disorders, you see, in the ten years to come, the number that is going to be destroyed will be 4,167, ono--nearly double the number that was destroyed, three fifths more, sixty per cent more thun was destroyed in the last ten years. And preumonia, almo ot a million people have died of pneumonia in the lact ten years, and in the next ten yeara, there won't be quite so many, because we are gaining a little ground on that. Cancer is increasing. Five hundred thousand peopde diod of cuncer in the last ten yeurs; and 866,000 will die of it at the present rate in the next ten jears. Typhoid fever is standing still. See the vast numier that died froin dgegerative disorders as zodpared with the number that die from infectious disorders. Ners is another staterent about it.

One tenth of afl the people who die of cancer die between the ages of fifty
forty and «ẋxky years. One tenth of all who die between the ages of forty and fifty die of gancer. Half of all whe dio of cancer die batircen the ages of Pifty
fifty and seventy. One sixty--I looked it to the other day, and I wag vory auch qurpriseld to find that in the United States one sixth of all the peoplo tho die betwaen tho ages of forty and fifty, one sixth of all the women who die betwcen the ages of forty wad sixty die of cancer, and in the city of Chicaso in the last ten yeurs, ope fourth of all the Gerwans who died, one fourth of all the people born in Germany and living in the United Stetes, one fourth of all who die in Chicago of German birth died of cancer. Not one foul th of the mocen, but one fourth of all the germans who died diod of oancer. That is an awful thing to think of--that one sixth to one seventh of all the fomen over forty years of age who die are going to die of cuncer. That is what happoned in the year 1909, and doubtless as it was in 1910; and the proportion is increasing all the while. Co back twenty-five years ago and oniy half us many men died of cancer; but at the prosent time, two thirds as ony of the men die of cancer; and down in Austrulia, the number of men dying of cancer is increasing at such a rate that in a very short time as many men as women will die of cancer; and in some places it has ulready gone the ather way--more men than women are dying of that disease. Thirtypfive per cent of all tho pergons who die of consumption die batween the ages of twenty and thirty-five. Sixty per cent of those who die of tubercuiosis, die betwsen the ages of twenty and filty. Tuberculosis is a disease of early life; cancer is a disease of old afes, at any rate, over forty.
"If" we price each Iife lost at only $\$ 1700$, and each man's average eaming for the year at only 8700 , the econoaic gain to be obtained from preventing postponable sickness, rimeasured in dollars exceeds one and a holf billion doalars a yeer." That statement is made by Prof. Irving Fi sher, head of the politioul cionce dopartment of Yale Unirergity, a tow who has a great reputation the whole world ovar as a profe sor of economice. Just think of that loss-one and a hulf billions of dollurs. Whe could pay off the netional lebt inone year, the oreat betional debt could be eusily puid in one year i?

We simply suved the Iives of persons, who, die frou postponeble sickness in une geer. See how diseases sre increasing. teatt disease in 1900 wess 111 i in 1907 , Whs 141. That is tho number of deathsinievery hundred thousand. Think of what a terribte laukhter that is. 121 pooplo in every 100,000. That is more than one in 4 tiousend, you see, and in, 1907, it had gone up to 142, an increese of 27%. Brisht's Aisease increased 18% in that geven years; apoplexy 11 per cent, cencer 15.8 per cent; cirrhosis. $9 f$ the Iiver 22.4%, diabetes 43%, appendicitis 15 in spite of all the ilvos the surgeons have saved, in addition to that; corgenital dobility 98%; endocarditis 20%. So you sae we are going doun very fast vith theqe chronic d-sasses. We are not zeining as miuch ground in saving Iife by acute disease as we ure losing in seving life by cioronic diseases. "Both medical and statistical evidence of strongest character forces the belief thet lowered vital resistance, which inviteo pneumonia, kidney discase, heart ciisease, etc., accounts for the facility with whic cencer invedes our thotern human economy,

This is to be noted, thet it is only in flush eating countries where cancer is increasing. It is only in countries where ifesh auting is conbined with the sedentary life, yhere cancer is incraasing. Lions and wolves do not suffer frou cancer when in the wald gtite; but in cages they die of canper. Cats and dogs in our homes, dining at the same table at virich we eat, or beside the sane teble, or upon the satae food, as they usually do, die of cancer, and in lurger proportion even than hursan beings. The oldcat or the old dag finally looes lts appetitu, begins to look forlorn is taken off and shot somewhere. We don't have a post mortem exanination to see what is the matter with it; but if wo dil, we would find it had cancer of the stomach, or cancer of the liver, or some other avful lawlady. Cuncar of the breast ia a very comion disesse, and it is particularly common in dogq. tt is rery common in humanbeings, tho st solman aing wothen, but it is the rane thing thet occurg amons dogs very comionly.

Eight per cent of all the docs that are pick have cancer, and seven per cent of all the cats have cancer, anclife per sent of human beings. Doge aud cuts are aore subject to cancer than humar beinge are becauso they ure thore carnivorous in their habits, and permaps are fore sedentary in their habits; that is, doinestic euts und domestic doss.

Well, then there is the amoking habit. How common it is, how alnost universal it is. The average fimericen uses eifht poun is of tobacco every yeur. The average per capita consumption of tobucco is eioht pounds, andit is increasing. The tobacco journal says the use of tobacco is increasing. It is a shame to us that we should become so addicted to this savage, burbarous habit, so fixed in it. Tests wore made at Yule upon students, and it was found the weight was dininished in sudents who used tobacco one year or two years; it was found that the joungmen smokers gained less than those who did not suoke; that the nopshokers geined twenty er cent more in weight than the smokers, and twonty-seven per cont more in hei ht than the siokers, twenty-four per cent nore in vight and 27% more in height, and forty-two per cent more in chest girth, and 75% more in lung capacity. They all had symastio exercises, symasiun advantages, but just thirk what that wons--the boys that were swoking were far behind the boys that did not smoke in chest capacity, -75% increase in chest capacity means that ruch increase in vitality, vigor, stamina, endurance, in efficiency. Now, a study of the blood pressure shows very clearly that there is a great difference. Suppose the normal pressure to be 109. A person living on a high proteln diet, when ho gets to be about farty or fifty yeurs of uge, will have a blood pressure of 180 . He come B to the senitarium gith blood presoure of 160 , dropg off his beef stoak, and it cole s straight dow in a couple of weoks to 140 , und if he keeps on with the rational fiet, it will come fown still further; but if he duesn't reform, and should happon to drop in here, or should find some
intelligent doctor who knew what was the matter, with him and gave him friendiy, rational advice--keeps right on with his beefsteak and his tea and coffee, the bloed pressure dill keep on climbing until it gets up to 300 , and he can not so ruch farther than that. I have known of a few casen of 320 . We havo had several cases here of 310 , but whon he gets up so high as that there is going to be an mplosion pretty soon; it is not going to go wuch higher than that. Somethirig is soing to break. He can not kcp up that tension. The artories are diseased bocause this blood presssure is increasing in height.

From 1901 to 1907 the annual average number of deaths in the United States--the total number of deaths was 3066. In 1905 it was 4000 , and in 1909 it was 10,174. Just see how it is coming up. It more than doubled in five years., the mortality from that one disease. And the sudy of the death rate shows that the death rate iran this di sease has increased 300% in ten years. It was 6.1 to the 100,000 in 1900 ; and in the year 1909 , it was 20 to the 100,000 , which means an increase of more than 300%. If it keeps on increasing at that rate, you see what we are coming to. We find people now with high blood pressure, as high as it ought to be at 150 years, at twenty. We have several people in this house now, right at this ainute, people on 1 y 40 , or 41 , or 42 years of ge who have a blood pressure of 200 . In some cases this is a hereditary tendency that is rather hard to combet.

See how heart disease has increased. In five ygars, from corty thousand deaths in one year to 65,000 ; angina pectoris, a disease of the heart, from two thousand in 1905 has gone up to 3,481 in 1909. Now, there is some cause for this terrific increase, and one cause is our wrong diet. One reason why we have this degneracy of the artories is because we live upon an unnatural diet, upon a diet of flesh. That is not our natural diet. One of the proofs that flesh food is not our natural dietary is the fact that it is an unbalanced dietitry.
tary. For exaple, when you come to consider the athount of line found present in foodstuffs,--we need thirteen grains of line per dien, to support our boncs, and our brains, and the various tissues of the body. The lime requirement is thirteen grains every day. Now, we fin d in egge four graine to the pound; in one ega half a grain. "ow, we find in cow's milk, in a pound, fourteen gains, and In a pound of human milk three grains; in a pound of neat only half a grain of 1ime. There is as much lime in ope egg as there is in a whole pound of meat. A potato has obe seventh--has alaost no liae. In wheat wo have it, four graine; but in fine flour on fy one grain. Only twice as uch in fine flour as in meat. The lime is removed with the bran, you see, while in psas and beans we have eight grains of line to the pound. In a pound of protose, there is six grains of lime. Protose is prepared from nuts and frow the sluten of wheat which contains the principal part of the lime; so we have in a pound of protose sixa grains of lime, twice as much as in one pound of meat. One reason why protose is a better food than meat is because it contains the proper line content. So we know from this fact that meat can not be a wholesone food. It is not a complete food. When one lives on a diet of ingat, his bones necessarily become softened, and he gets ricketts, sad because of the Iack of line. That is the reason why the liong eubs in the great zoological garden of tondon became decrepit, infira, adricketty when they were fed on meat, and the reason was found to be because they ate the meat without the bones. When they were fed upon bone meal in addition to the lean meat, they got along all right. So if you are going to eat beefsteak, mutton chops, han, baeon and things of that sort, you inst have on the table some fround bone to sprinkle in along with that meat, so you will get the lime, because when the hag eats the corn, the lime goes into his bones, and the only way in the world you can get that, lime back, which was originally in the corn, and have the complote nutriment--the only way you can get the lame back
back is to eat the whole hog, bones and all, the whole hog or none if you are going to eat meat.

Increaso in mortality after forty years. That is the thing that is alvmins the life insurunce societias. They are getting thoroushly waked up about it, getting scared, for they are afraid they are going bankrupt becausem th the mortality ia increasing so rapidly from arteriosclerosis and these other old oge disenses. A life insurance president, Ir. Aittenhouse, not long ago made a statement of the subject, and he showed that the nortality between forty and fifty years has increased thirty-five per cent in 28 yesrs. Now thini of it--an increase of more than one third in 28 years. Those of us whe are between farty and fifty years of age--that does not include me, --but those that are between forty and fifty years of age, --men and women have only two thirds as good a chance to live as they had thirty years ago. Tho se between fifty and sixty have only famxtk four fifths as sood a chance, and tho se who ure between sixty and seventy which includos me, have only got three fourths as good a chance. So you see, my friends, this is a quabtion that cones right home to usa. What is the reason the mortality of these persons over forty years of ge hes increased so enormously? It is tho cumulative ef lect of the luxurious methods of living, the habits of life that we have eotten into within the last forty or fifty years. We are suffering the cumulative offect of the wrons doing of our ancestars. You know Oliver Wendell Holise says that every one of us is an omibus in which rides all his ancestors. Te have got so many gormandizers, smokers, tea drlnkers Whiskey drinkers in our omibusses that they kaep putting out thelr heads. That is where the difficulty is.

The consumption of neat per cspits in the United States is 182 pounds of beef; mutton and Fark, 60 pounds, incizutinx ilsh and poultry 50 pounds. idd thein together, and you see it is 224 pounds, and that ineans two thirds of
a pound of meat, or fish, or flesh, or fowl for every person in the whole United states daily. The per capita consumption per dien of wat is about two thirie of a poundi and we find we use aboat a quartor of a pound of suzar per day; 83 or 84 pounds per capita per annum. Figure up the food value of the meat and of the sugar, and we find it abounts to somewhere about 1500 or 1600 to 1800 calories. 40 for the subur, and about 1100 or 1200 for the meet; so that we have somevhere about 1700 or 1800 calories of food value in inout and cane sugar, and pructically not a grain of lime in it. Now, we have to have thirteen oruins of lime, and two thirds of our food contains no lime at all. So you see we are bound to suffer from lime starvation. That is why we are losing our teeth. If we keep an at the rate we are going, will be a toothless race before five centaries have jone by, whll be absolutely a toothless race. We ure losing the wisdoul teoth already; they do not come un now until we are about tiventy years old, and make a whole lot of business for the dentist and trouble for us when they do come. The wisdom tooth has pretty neaxly disappeured at uny rate, und is bound to dispppear ultimately. It has been sussested that the gold rines of the future will be found in the ceneteries. Some of jou know fro experience where a whole lot of that gold has zone to. It is astonishing how auch that gold costs that goes into our teeth.

One of the reasons for this degeneracy is wrong dress for which the women are responsible. We have got the X ray now, so we can look riht throush every woman's elothes and see exactly how she looks inside of her clothes-risht through, and we do not always require the X ray for that, but it gught to. Here you see the skeleton of the healthy wowan. This is one of a woman with an ordinary dress, when the wo an is dressed up; you can not tell anythins about how she looks ineide; the apnearance out side bay be very beautiful and artistic and lovely, but just apsly the X ray, and you see how things really are. Not
so very lon A gol a ease was exailined here by the X ray, and the ribs actually overlapped in front. Just comare those two fi sures. That is not an extraordizary pijure. That is juit about, I think we vill say, a la wode. Well, I want to fell you wen we come to look closely at the hunan figure, get a pretty definite idea of how it looks, End I augoing to show jou one of these days, a picture cude by the X ray, of the ordinury woman, so as to have positive proof of it, then there won't be anybodj who can suile at it.

That woman has plenty of room, you see, ad bhe is not ashamed to have a good sized waiot. There is no reason why a woman ghould have s little waist. A woun hae got less heart and more liver than a man has. Her liver is bifger than a man's, and she needs a larger waist to take care of $1 t$, to make rom for it. It is an uctual fact that wowan has a liver lurger in proportion to her height, and larger in proportion to her weight than wan has. She has a larger stomach, larger kidneys, and a larger spleen and larger colon-all these internal organs are larger, the viscera are lurger in proportion to the woman's size than in inan. There is a sood roason for it. Woman's liver hes to do work for two sometimes. It is the provision for motherhood, and there is nothing dishonorable about it. A wotian's waist is necessarily laryer than a an's waist, of the same height, the saue size, necessarily larger. Her shoulders are saller, hor hipe are largor, her wuist is larger for hjsiologic rousons; and there is absolutely no sense, it is indeed a positive species of insanity that women should want to have sial waists. Nere is a picture of a menly man, an outline of the fisure of a healthy man. You see the shoulders ure larger than the waist, and the hips are comperatively small in relation to the shoulders, and the bones; he has a good strong fisure.

Noss, there is a wotuan who has a normal figure, and an artiotic figure, There is no srtist who would presume to excel the beauty of the venus de Milo.

It is put forwardas the vory acme of srace and beanty in womanly form. Here you see is one of the caricatures of the fashion makers. You have scen things just like that in fashion plates, and I have seea theia on the street. I have sean a lot of them in the examining roon, and I isoow how they look inside. No provision has been made for that woman's stomach at ull. There has been no provision made for her liver. She was apparently entirely obliviows to the inet that she had a liver, or that there is uny insikx necessity for making provision for shything ingide. There is another copied from a fashion plate. That is a caricature that I got for the purpoee, or had it photographed frou a fashion plate, just exactly what I found. And this is the Venus de Milo acain. Now, over here you see the outlines of the human figure showing the internal organs us they are in a state of healch, where they lie. The liver is ubove the ribs, you see, sotirely. It is perfectly sufe, up in a bony case, above the lower border of the ribs, the lower corder of the iver caning a half inch above the lower border of the ribs. Here ie the stomach entirely above the rios also, and the colon comes just above the border of the ribs. The kidneys are up behind the ribs, and the soleen is up behind the ribs. They are all protected, these great important, vital viscera are all protected within this bony cage. Here is a little figure on the other side. This is a rormal womn. This is copied from Ziemsen's great work on anatony. It is not a diagram that has been gotten up for any specilic purpose. This is al so a copy from nature. This was drawn firola a woman that wore a halth corset-an invention of the devil; wat she declared she nover had worn angthing else but a health corset, and beakuse It wus a health corset, she knew it must be all right; but her liver was away dowa hore, and her stornch was away down there. Just look at it. In the norinal ficure you see here, the liver, stomach, pancreas, spleen, kidreys, colon arc all akove this horizontal line drawn from the lower ribs of one side to the lower-
mo et ribs of the other side. The other picture--the abnorimal cheet, deforinod by wrone ciress-half the liver is below the line of the stomach, amost entirely below the line; the kidnoys are away fown below the line. They ure wandering around as poor tramps, and the spleen is wandering around somewhere out of sight; and down behind the stomach out of sight somewhere is the pancreas. All the viscera are but of position.

Here, you see is a contrast. Hore is a picture of grace and beeuty in which there isn't any tight lacing, or any necessity for it. It is purely a riliculous fancy, a orbid ideal that has been created in women's minds that beauty requires a sall wilst. You see hore these greceful, flowing lines that are certainly in no ray inferior in beauty to the caricstures we sometimes see when the waist is constricted.

Now, there are other things. Fere is a point I want to call your a attention to- the importance of proper positacn. People get their internal organs out of place not only by wrong dress, but by wrong positions in sitting end working and standing and walking. Stand with the shoulders drooping and the chin hunging iorward--thet is what we find hero. You soe this man at work all doubled over. They get tired after while, becuuse the abdominel muscles relex and the blood runs uway into the absomen, and the blood they want in their arms and feet, in their auscles for vork, is accumulating in the interior of the body where it does them no good. This wan is standing up struight, and his muscles are tense, the abdoninal rogion is coupreosed and the blood is forced out into the arms and liabe, and various parts of the bedy where it can be used, instead of being stored up in a stagnant pool inside the abdomen. So those men will retain their energy and vim and endurance when the others are exhausted entirely. Here is thothor man sawing wood, one man in the correct position, and wother men in ap uncorrect position. Thielman will est tired in a little while becouse
he has net enough blood to keop his arms going. The other man has strongly contracted ab ominal muscleg, you see, and there is room under his veet; and this man's vest is tizht, becuuse the blood is eccumuleting down in that rejion of his body. The same thins is true with reference to sitting. You get tired very quickly when sitting relaxed in this manner. When sitting properly in a Sanitarium chair with the chect raisod, breathing ie eusy the poeition is corrfortable, is restiful, the blood is eirculoting throughout the body where it is needed. This poor wonan has eut in the habit of axryying her chest behind you see, instead of in Pront; and you see what a caricuture it is-ajust eticking away out behind. The chest belongs in front, not behind. Here is another view-a man sitting in a relaxed poeition, hisbeck 3 fes aguinst the chair will the way along, and it is a straisht backed chair, and the consequence is the chest is flat und the back is bulging out bahind so the chest is sticking out in the rear. This daan sitting up straight, his chost is in front where it belongs; but he has no support for the back, and he soon gets tired. He ought to hive a little cushion in there. Hore is a man who has a little support for the center of the back. The muscles get tired, and if he hasn't any gupport, down he goeq. He naturally gete round shouldered. He vinte to stralehten up; so he must back up against the will, place his hips again st the well, shouldere again st the wall, heels tigaingt the wall, and head arainet the wall. Here it is, right hero, you see. Then the bends the hecd buek like thie, and that brings him up in position, so the body is free from the wall and the shoulders, and he has got the corract position, with the chest well projected forward. If you haven't ay gymasium, you can use the all. Heels, hips, shoulders and head should rest against the wall; bond the head back and that will lift the chent forward, and there you zro, in a good, normal position. See these caricutures of human figures. They are dram from iife.

I have a little michine I devised sunie years ago. A person stands up aguinst if fint surfuce, and I have a littie sketching instrument by means of which I eun sketch it right upon the paper by drawing it right down in black and white. Prat is phat I found. Here is a nan case to the sanitarium years ago with his atovia on out of place, and his liver out of place, and he was in a miserable stute, and I didn't know what we could do for him. We dian't do very tuch for him, and he rent away, and afterwards cane buck uzdin, on'f when be came puek I sade him atand up strui, ht and put his hands under his shoulders, and he simply had to have the tailor make anuther vest for him. His belt wap eeveral inches too big; he diminished two inches in diarieter as soon us he stood up straight. It pulled hiki stome eh and liver up, den't you see, so there was more room below, and he found himself at once lifted up in his feelinge; his depression disoppeured, hie norvousness disappeared, and he felt like another man, full of energy and life, and he was a Boston business man. I met tim three yeurs afterwarde, and he said, "Dootor, you taught me how to stand and oit, and that was all I needed; I have been perfoctly well since."

I exawined this woikan, thousht she had a tumor, and I sald she vould have to have an operation. The next time I found the tumor of the other side of the gody, and I besan to inquire a little more closely, and If found she hat had when she was a dirl a lump in her side. She had an attack of fever and ague, snd when she got over it, she hai ague cako. At boarding school she aeked a young lady friend, "What shall I do to reduce my waist?" She said, "I will tell you what I did. I wore ny corset nishte, took it un a little evcry nfoht and every morning, sad by and by I jot my waist down and I have kept it down since." She said, "I tried it, shd after about six weeks, one morning when I was kiaxixgxit taking it up another notoh, I felt something pop, and my waiot went down, and it has been diden ever since"; and not unjy her waist was down, but her apleen was
down and had beon wandering eround everywhere. Thie poor woraan never cot vell efth that lurge, wandering ppleen. This wowan had a prolapsed stomuch and colon, and that was the shape in which I foun things, irtecd of being away up under the ribe there they belonged. The kidpeys had lecone so diseased I hat to remove one of them, and I took out a etone fros the insile of it that weighed fur ounces as the resuit of bad position in sitting and abnoral postures. It is a very comion thing.

Now, see here the normal form of the hewl thy wown, and thet is the conventionsl woman. That is the form that resulte from tight lunds, heary skirte, tight lacing. from relaxed sitting; that if the figure tho woran gete. A poor, weak, feeble woman who had that figure, after training got this figure, ond wae 4 new wonian, becume etrons, healthy, vigorous, and learned something of what it means to enjoy life, and became real y uthletic. It only needed the correction of a urome standing position. Here is another woman who wore a health waist, Which broke down the certer of the boyty, sind here is a great bulge down here, and that is a front view of the same figure. lere is another broken down ijure. You see the musbles in front are weekened, and the whole body is broken down, bydthis bulging out of the lower abcomen whit on meane the stomach, liver, kidveys und other orsuns are fom out of place; it can not mean anything else. It is simply the recult of displacement of the internal parts. That is the figure of a xaxxaka woman when she came here about twenty-five years ago; everything vac tumbled down here in the lower part of the abdomen; we got her etraichtened up, and that is the way she looked wiken ohe straihtened up; che wae a new wan altocether. She became a tescher of gymastics and enjoyed splendid health, and beceme is vigorous, healthy young wopan. She wes a broken dow bchool tescher. Now, you see this womarries the chest in front where it belongs, while the other vomon curries her chest behind;akers the dressuaker puts on some-
thing in front and something else behind to bulance things up. That is the only way the thing ean be done. We have to have a whole lot of appendages to piece out the caricetures that result from wrong attitudes, from neelect of proper stencing.

Nov, because of these virious neglects, and miny more,--becau oo of them we are degenerating, and we nave gut to turn about and cultivate health inetead of disease. I showed you har many poople died of heart disease, of andina pectorie, and one reason for it is because these little arteries that feed the heart becowe hard apd phalky, so the heart can not get its proper sup ly of blood. Sometines there is a apasm in these arteries, thon the noart labors under very great di sadvantage. There are palpitations, weakness, und failure. Tobacco weakons this splendid muscle that pumps the blood around in different purts of the body, seniling out through this liftle pipe here, the worth, the living tube of tho kiood in the body-all the blood in the body is sent through that tube every three minutes. The heart does work equivalert to lifting 124 tows every day of our lives, 124 tons. work is doneby that little muscle, the noart. So you see how important it is we should keep it up to its maximun capacity. Suppoee you paralyze it with nicotin, weaken it with tea, or coffee, damage it with urteriogclerosis, end the use of beefsteak, and by noglect of proper attention to the bowels so the absorption of these poisons from intestinal atutointoxication produces arteriosclerosis; we have degeneracy of these arteries. Suppose we mistreat the heart in this way; then it fails early, and that is why We have so many thousunds of people dying, increusine thousends of people dying every yaur irom heart disease. It is becuuce we cultivate heart disease. The heart is to circulate the blood. The normal blood examined under the microncope shows these wonderful fisures in it. The wonderful wite cells, the leucocytes, whioh ronder tost wonderful service in cupturing gorns, fefonding the body,
eating up irkgments found loseg in the blood streare that wight elog it up. Some of them work as geradentroyers. When neslect our diet, suoke tolueco, was Weoho1, ten, coffee, use putrefying foodstuffs that decay in the colon and ilood the klood with poisons, then the se wonderful celle, these little living creatures in the klood that rentior guch marvelous service, degererate and by and by die. They undergo deterioration of various sorts.

Here is tanother picture of a normid cell, showinis thinge they are able to do for us when they are healthy any normal, but whon they become diseasod they are po longer able to do. Hure is a picture showing how they are defending us ajainst germs. The white cells werk their way out throui the walls, apture the gerus und so defend the body. Now, they deteriarate when we subjoct ourselves to unwholesome conditions, to impure air of unventilated rooms, to sedentary life, neglecting to exercise, to ungholo one diet, the use of vinegar pickles, mustard, pepper, peppersauce and these othor unwholesome thans whith circulating in the blood paralyse these little living cells, so they are fot able to do their work; and thet results in lowered resistance to discase. That is what low vitality means. That is what disease mears. It means simply deteriorated blood because, as the old prophet saild, the life is in the blood; the Iife is in the bloed, and if we reduce the blood we reduce the life. A person whose blood is fifty perccent has only fifty per cent of the life he ought to have, has only fifty per cent of the vitality he ought to have; in fact, less than that.

One of the thinge essential to a hazh quality of the blood is activit f of the kidneys. One of the things thet is very much nejlected is the habit of drinking. The everage an does not drink encuch of Adan's ale. He takes whiskey, beer and things of that sort, but does not toke sakizaxx enough of guod old Alan's ale. Peon3e sometiles ask we the question, "Doctor, what kind of blood
purifierk do you recomend?" There is only owe blood purifier in the world that I would use. Water is the only thing that can wach the blood clean, water, and pure air, and the water purifies the blood by whshing the poisoris out through the kioneys which are the natural outlet for poisons. That is their function--to remove poisons from the blood by the aid of water. The paisons inuet be dissolved by water. When you find you have a minute, get a drink of weter. It will help you put of a sold quicker than anythire else. Muke up your mind, if you have a cold, you will drink a glaseful of wator every half hour ull day, and jou will be surprised how quickly you get over it. Take a couple of flasses before breukfast. Then take your breakfast of water. Take a slassful every half hour till dinner tine, then ait down and have a courle of nice slasces of hot water for dineer. Then try another fassful every half hour between neals, and some nore hot water for supper, and see how quickly you will get over that cold. The old adage to stuff a cold und starve a fever is simply ridiculous, because a cold is fever; it is a fever in which the body is saturated with poisons and has ceased to eliminate or destroy those poisons as it ought to do. That iswhat a cold is. By drinking large quantities of water we may rinse the cald out by ourxying off the poisons which produce it.
The very same thing is true with reference to arteriosclerosis. If
you have jot hif blood pressure, drink water to rinse the poisons out that produce it. If you have ot a dingy skin, free drinking of wator will rinse out those poisons and help carry thom away. Kake a practice of drinking, make it a duty, just is you do the washing of your hands. If your honds are dirty, you Whash them with water. If your blood is dirty and the skin in tawny, and the complexion is bad, there is no way to clear them out but by washing out with water. Everybody ought to drink ten or twelve to twenty iflaeses of water a day, and if you 10 , you nill find yourself coming up a great deal faster than you did.

Some can drink water when it iq hut much more easily than when it is eold. water This shows the filtering arrangement of the ki iney. Thoxwaikd comes out throuich the blood vessels, passea, though these tubes, und wa shes out the poisons accumuluting here, and that is the method of purifying the blood. Wen the circulation is not carried on properly, the kidneys themselves are destroyed by poisons, suturated with these poisons, paralyzed by them is the result of the supersaturation of the blood; so the core water we drink, the more the secretion of the kidneys is diluted, and the less irritatirg the poisuns ure. These evil practiees that have accumulthed during the ages, which are cultivating disease instead of health, are producing effects upon our bodies which are hereditary. We may lose e finger or an srm, but the man's san is not born minus an aix or a finger; but if he anjures his body with alcohol, tobacco, or gorinandiping, neflects of any sort, so that evary single cell of his body is deteriorated, not gimply a finger is gone, but every cell of his body has lost somethins of the original vitality and vigor which it possessed, that is hereditary.

Here is a picture of the law of herodity. A bleck eyed xamen man maries ta blue eyed woman, and they have four children all of whom hive brown eyes. Black.eyes and blue ejea wake brown eyos. That io the law. Here is a point I want to call your attention to, and that is that those black eyes are not the only thine that is inherited. Those blaek eyes seem to stand for a certain type of body, end along with tho se black eyes go other constituticnal tendencies besides the tendency to black eyes. Now, with those black eyes will go, for in stance, a reeumatic disposition, if the man has rheumatism. Rheumatism is not a diseage of the joints alone. It is not a disease of the knees or elbows. Rhouinatism is a disease which affects every single cell of the body. Then a man has got rheumatic joints, there is something wrong with every single cell of the body. There ie not a part of his body that ig thoroughly healthy. He
has दot rheumatisu everywhere. So that black ejed wen he rheumatism, and this black ejed boy, a grax dson of his has got rheuintism too. He has got just what the black ejed grandfather had. And if the blue eyed grandmother had hysterics, the blue eyed granddaughter will have hysterics, or nervoueness or some other form of deseneracy of the nervous system. So you see this is a question of tremendous con sequence. This question of heredity of diseases, or predisposition to diseases is inherited. Here we see a rheumetic man married a woman subject to pnoumonie, and you see how the two stems ere joined. Here was a case of uremic poisoning, or tuberculosis, ond the son of this family had theumatism, and a-daughter kasxx of the other family had rheumatiss, and the two joined, and they had three children all of whom had rheumatism. This is that
actual fact, not funcy. We see ky going on all about us. Diseases are multilying throu⿱h heredity, ond that is why the race is degenerating so fagt. We have got to turn around, to cultivate the oppositt, cultivate health. The time will come when young men und wowen will teke seriously into consideration the question of health beiore they murry. A young woman won't thirk of consexiting to marry a young men that has not a good strong heal thy, vigorous body; she wont marry him simply for the pleusure of becoming his nurse to take care of him, she wos't care to do that; she will have her ejes open. She mikt take into account the sort of children that are coming wast as the result of that kind of a combination. The young man will be inquiring about the nealth of the young womar, about the antecedents. The young woman will zant to know whether the young wan has good blood or not. There will be an aristocracy of houlth some time, when it will be a prouder thing for a man to gay that his father and his randfather and his great great grandfather were without any sort of infection, of blood infection, they had a cloanhistory, no horefitary diseane in his line, than to be descended from some duke that perhaps had a blot upon his brain away over in the old country somewhere. See what happened here. An imbecile inan
married aninsane woman. Nobody but an idiot would do such a thing as that. They had five children. One was a lunatie, the others were all idiots or imbeciles. That i athe result of that kins of combination. The inbecile man died, apel the ingenceroman found wother inbecilo stan that was willing to aurry her, end they had theree eight chlldren, all inkeciles. That is why the idiot population is incroasing. We have about 150,000 idiota 6hat ure koovn at the present time, and probably twice as many more that are not public charges the the United States at the present time. There are 150,000 insare people shut u_{i} in the insane asylums, and twice as many"more loose that haven't been caught yet. That is the way we are going. We have unquestionably at least 600,000 defective paople in the United States at the present time, and heredity is increasing every day, so it is time, thy friends, that we awakened to this thing and began to stir oursolves and seek to cultivate health, to use prophylaxis sabingt thie awful tidal mave of degeneracy that is rolling in upon us. That is the reason why this institution exists--to stand up here as a protest against the prevailing usages of society, and to eotabilsh here a sort of sanitary heaven here people can come and learn to be $s \infty d$ to their bodies. That is a thing that we hoven't alvays trouft about. "Whatsoover a man soweth, that shell ho also reap.""The wages of sin is death." That is not nodern lunguage; thege are old sayinge. If wo are sick, it is because te have cultivated sickness. If we are moll, it ie becalise we have cultivatod health. It is a great thing to be atarted risht. Peae is a baby that is started rist. Probably mont of us have had just as good a start, but we have done what we haxax could to get avay frcm it. Let us deteriire to gultivate health, to live to be healthy insteud of sickly, Iive for health, stuly Cod's laws and gboy them. I thank you for jour attontion.

May I5,I9II.

Sunlight-Freah air I.
Cocoa I,2. Tea and Coffee 2.
Beef extract 2,3. (Dr. Austin Flint)
Sun, energy from 5,6,7.
Animals are eaters, not satables 7 .
Animais are beings, not things 8 .
Turtles' hearts. (Key Weat experience) 8,9 .
"The very hiles began to ereeg" 9.
Cannibals and human steaks-"Long pig" Io.
Sailor tasted like tobacco Io.
Odor of pigs fed on flesh Io.
Man fed on pig Io,II.
Flesh-eating polluting to body II.
Bowel discharges of herbivorous and carnivorous animals II.
Brown circles under eyes,bad breath I2.
Pigs, chickens, turkey buzzards, enormous livers of I3.
Turkey, roast,I3-I4.
" $"$ Stuffing a corpse-01d savage still in us I4.
Diabetes-MIesh-eating I5.
Experiments upon thyroid gland (Dr. Curtiss of Johns Hopkins) I5.
Diabetes, starch in I6.
Neuritis, symptoms and causes I6.
Steakz, Iaundered I6,I7.
Arteriosclerosis-a fire of the house I7,I8.
01d arteries-01d age I7, I8.
Stopping advance of arteriosclerosis:
Cigars,tea, coffee 2o-Caffeine 2I-Beefsteak, Lowering blood pressure 21,22.
2.

Arteriosclerosis, diet in 22.

" among longshoremen-large meat-aaters 23.

Vinegar 22.

Thomas Parr at I52 -no hard arteries 23.
Yogurt-yilk 24.
Rhubarb 24,25.
Swimming 25.
Meurasthania an artificial disease 25,26 .
Getting rid of the old man 27,28.
A man getting well is like a man deep down in the water 28.
Autointoxication (Prof. Tissier's view) 28.
Hot and cold feeling after meals $28,29$.

```
                                    LECTURE "28.
    arteriosclerosis 17, 22, 23.
    chemicals to destroy the poisons of meat 15.
    chicken 5.
    cocou 1
    diabetes 15.
    flesh eating 5.
    meat, chemicals to destroy poisons of IG.
Vneurasthenia 25.
    poisons ofi medit 16.
    spine inflamed 3.
    swimming after exercise 25.
```

At the Sanitarium Parlor, Battle Creek, Mich., Monday, Way 15, 1911, at 8 P. M. bibeten 15 By,
J. H. Kellogg, M. D.

I hope you are all getting out of doors on these nice, warm, sunshiny days. Nature is after all the best doctor. There is more healing power out doors than there is indoors, a good deal. Fe are natural y outdoor animals. Thousand of people are getting well from consumption, one of the most dreadful of maladies, -thousands of people are getting well today just by living outdoors. If a man can get well of tuberculosis of the lungs by outdoor living, he ought to get well of almost anything else. Almost any disease must be curable by this method d if this terrible malady is curable by the outdoor life. So many people stay indoors too much; we get the indoor habit; we are brought up indoors, and we forget the great benefit there is by simply outdoor exposure. The sunlight and the fresh air coming in contact with our feces and hards, exercise, or movement, are all of great value as curative agents. I find a few questions here as usual on Monday ni gt.

Question: Is cocoa injurious?
Answer: Yes. Why: Because it contains poison. There is nothing
wholesome in cocoa; there is nothing good in cocoa, there is nothing beneficial; it is simply a seed of a poisonous plant, or a poisonous seed of a tropical plant. The cocoa seed contains theobromin. Now, theobromin is raixparix a poison. Seven grains of theobromin will make a cat very sick, end you know a cat has nine lives; and twenty grains of theobromin will make a man very sick. Theobromin is a poison. It affects the heart, effects the arteries, affects the liver, affects the kidneys, affects the blood vessels of the body, affects the nerves;
it is a poison allied to caffein, and caffein is a poison which is practically identical with uric acid; so theobromin the poison of cocoa, and caffein the poison of tea and coffee, and uric acid are practically one and the same thing. Now, there wouldn't any of you like to take uric acid. I imagine you would not if you really knew what it was; and yet, a great many of you have taken it. Everybody who takee Arnour's extract of b is taking uric acidi everybody who likes chicken broth likes uric acid; everybody who is fond of beftea is fond of a solution of uric acid. An eminent chemist said not long ago the he could not possibly tell by the art of his laboratory, he han's any means in his laboratory by which he could tell the difference between beeftea and urire except his nose. If he hadn't the sense of smell, take that away from him and he could not possibly tell the difference between urine and beeftea. Now, I am just telling you the plain facts about it. This chemist hasn't any chemical means by which he can tell the difference between a pint of urine and a pint of beeftea except by the smell of it. Now, that makes some of you wince. I am very glad to see it; because I hope you will remember that the next time you have somebody sick in your house, and you won't be feeding them with chicken broth and beeftea, and tho se abominable things. We don't allow them in this house. Theye never was a teaspoonful of beeftea in my surgical word, or chicken broth, or anything of that sort; we don't allow it there. I should feel that I was doing something to kill my patients if I gave it to them; I should feel that I was doing nothing to help him, but was certainly doing him harm. An eminent French physician said that beeftea is simply a solution of poisons, a veritable solution of poisons, and that is the exact truth about it. It is not a nodern discovery.) Dr. Austin Flint, the grandfather of the present Prof. Flint, Jr., of New York, -the father of the present Prof. Flint, Sr., of New York City, an eminent surgeon, a man I knew very well, for $\overline{3}$ was a private pupil with him in Bellevue Hospital, --

Dr. Austin Flint more than thirty yeare ago had an analysis of beoftea made and he discovered that it was identical with urine. Why shouldn't it be? The urine is sinaly extract of tissues. The kidneys are filtered, the fa blood washes the tissues, and the kidneys filter the blood and take out of the blood the extracts whichit removed from the tiseues, the waste matters. That is the duty of the kidneys; that ios their business--is to extract the wastes, take out of the blood the waste substances which the blood washes out of the ti sues. Now, then, the uric acid, the urine comes from the tissues, you see. It is simply extract of tissuss. So if we take the tissues and expresa the tissues, express the juice from the tiseues, wash the wastes, extracts in the tissues, do it mechanically, we are only doing what the body does by a vitalprocess--simply getting the urine out of the tisaues at first hand instead of ellowing it to be washed out by blood and then filtered out by the kidneys. So you see there is a good reason why b oeftea and urine are the same thing; they come from the same source. The urine is washed out of the tissues by the blood, filtered out by the kidneys, and the beeftea is simply squeezed out by a mechanical process; it is all the sane thing. So there is nothing wholesome in beeftea, or broths, or any of those things; they are absolutely innutritious; they ere simply poisons, ond beeftea, and China tea, and coffee, and cocoa,-othese are all really off the same piece. They are all practically the same thing--simply different flavors. There is nothing good about them. We can eliminate them with axizy great sixfexkuxty benefit from the body.
Q. Are gymnastic exercises beneficial for a patient with an inflamed spine and paine the greater part of the time from the head down through the body? A. No, a patient who has an inflamed spine should go to bed and stay there until the inflammation is subdued; but this patient who thinks he has on inflamed spine probably h as not got an inflamed spinel it is not at all likely
his spine is inflamed. The probability is the trouble is on the other side of his back altegether. Imet a lady the other day who had an awful spinal irritatin, had such terrible pain she had had plasters and blisters, mustard plasters and all sorte of things applied to the spire, and they didn't do a bit of good; forentations, electricity, arc light, and all sorts of thinge had been applied, and they did not do her ay good, and she came to see me, end I touched my finger to a little point at the ond of the sternum here and she flivched terribly, and she said, "If you do that again, I will punch you"; so I didn't do any more puncling, but I made a little further careful examination, and I proved to this lady'e entire satisfaction that the whole trouble she was suffering from wes on that front side of her back instead of on the back side of her back as she supposed; ond so it is with most of these so-called spinal irritations--they are on the front side of the back; it is the sjmpathetie nerve or nerve centers, the great lumbar ganglia which are situated at the wilicus, and the solar plexus whith ie just under the lower end of the sternum and ourlies part of the stomach--this is where the real soreness is; it is a congested state of the viscera, congested stomach and bowels, condgested portal circulation--that is the resi cause, and the pain in the back is a reflex pain. Now, when a man comes and complains that he has got gallstcnes, and we want to examine him for gall stoned, you kow we examine this back. We make an examination under his ribs, it is true, but then we make an exaraination of his back, en d right ak down here, about where the dorsal vertebrae join the lumber vertebrae, there we find a terder point if that man has on inflamed gall-bladder. We find a sore spot in his back. It is a reflex pain, it is reflex tenderness, what is known as Nayo Robson's aid sign of gallstones, or gall-bladder disease; so when a patient has pain between the shoulders, it does not mean pain in the spine, or disease in thexp spine; it mean s generally a congested condition of the solar plexus, a congested stomach, very often hyperacidity is present. It may be a prolapsed
condition of the stomach and bowels and a congested state of the viscera which is the cause. Most of these pains in the back come from visceral congestion. Nearly all of them come from this ceuse; they very, very seldom mean disease of the spine.
Q. Which particular treatient in your bathroom will be most beneficial for such a case?
A. A fomentation on the stomach will be more likely to do the back more good than anything done to the back. That is, we must hit the front of the back instead of the back of it,-.treat the front instead of the back.
Q. Why is not chicken a good food?
A. Well, now, I shall put another question to you which is exactly aralogous. Thy is ot a stove good fuel? It is the same thing, the very same thing. Food is fuel. All food is produced by the earth. The energy, all energy, no matter how we use it or how we get it, all energy comes originally from the sun. The only expre exception to that is the energy of gravitation. That is very little used. The energy of the tidal waves--there is a little energy there from that source, but originally the energy comes from the sun. Now, see how it is. The sunlight shines on the green leaves, and the green leaves under the influence of the sunlight take the atoms of the earty and of the air and fram the water, and argenize these mallecules into large molecules. It is exactly like carrying a stone up on top of a tower. When you carry a stone up on top of a tower, you roll it off, ad when it falls and strikes the earth there is a tremendous output of enorgy. The energy that comes from the falling of that stone, you put in it when you carried it up laboviously to the top of the tower. When you rolled it off and it struck the earth again, the same energy that you put into it in carrying it up, comes out again. When a bullet is fired half a mile up into the air, when the bullet gets back it strikes the earth with approximately the same energy with which it was sent up. The energy
which was stored in the bullet when it wes sent up, comes out again, is manifested again when it strikes the earth. So the sunlight fallez upon the green leaves, andig stored upin the wood that is formedgxarguxiex and the organic growth that is produced. Now, it may be shining upon a green field of wheat, and the energy is stored up in the grain of wheat, and the ox eats that wheat, and the energy which came from the sunlight is restored in the ox. Now, it may be it is a great tree that is produced, and this tree falls down, and under the influence of pressure is buried very deep under the surface of the earty, and after while it becomes converted into coal, and this coal is put into a furnace and burned, and steamis produce, and the steam runs an engine, and the engine runs a dymam, end the dynamo produces electricity; and here we see the veritable sunlight shining out again--the very sunlight that show upon the face of the earth thousands of years ago is shining out again now, resurrected sunlight; so the heat that we get from our stoves is simply heat that came from the sun, and it was produced in the form of wood or buried up in the form of coal and reproduced in our furnaces and stoves, in the form of gas, cosl, and wood undergoing comp bustion. Now, the very same thing is true of our bodies, ond the body stores up energy from the sun. Even windmills are run by the sun. The sun heate the air in one place and it rises, and that makes cold air flow in from another place, and a man puts up a wheel in the way of the wind, and the wind drives the wheel, and so runs the w indmills. So the sun evaporates the water from the sea; it rises in the air, passes over a mountain chain somewhere, is precipitated down on the mountaintop, and comes rushing down the mountain side, and an ingenious man makes a wheel and puts it into the current, ad the water turns the wheel, so the sunlight turns all the water wheels, you see. The water wheels and windmills are all turned by the sun, on d the steam wheels or mills are all turned by the sun, because food is simply fuel. Now, you see, allfood comes from the sun, and a man or an animal of any sort is simply a machine for using energy,--
ratxiarx energy which has been stored up, sun energy which has been stored up. Have I made that clear! An animal, like a locomotive, is simply a machine for utilizing energy, for using energy, not for making energy, but for using energy which has been stored up from the sun, which has come from the sun and is stored up in the form of fuel or food which is also fuel. Now, what would you think of this proposition? Here is a locomotive that needs some fuel. Well, let us get some stoves and put into it. Suppose the fire in the stove is getting low, d you need some fuel; well, let us put some k erosene lamps into the tove. "ow, it is true there may be a little fuel in the stove that has nt been consumed yet, so in the lamp there will be a little oil, and if yu put the lamp into the stove, there may be a little heat formed because there is fuel in the lam. Now, it is exactly so if one animal eats another; it is simply one machine eating another machine; it is like feeding a locomotiv a stove, or feeding a stove a lamp. It is using a mechaniem that was created to use evergy, as food for another mecharism which was created for the some purpose. It would semlike a horrible thing, wouldn't it, if you saw a locomotive going down the railway here, and every little while reaching out and seizing some small engine that pa is passing by, or some small locomotive, a traveling engine, seized upon by a big locomotive and consumed. You would say that was an awful thing. That is exactly what one animal does when it eats another--exactly the very same thing. Animals are eaters, not eatables. Please get that into your minds, my friends--that an animel is an eater, not an eatable. There is a great difference between an eatable and an eater. An eatable is passive, while an eater is active. An eater is an active thing, while the eatable is a passive thing. A potato is on eatable, but an animal is on eater, and not on eatable. An animal is an eater of eatables. When one animal xakexx consumes another animal, it is the eater consuming another eater. You never find such a thing as on eatable consuming another eatable; you never saw on apple eating a potato; you never saw a loaf
of bread swallowing a pear or a plum or a cherry. That would be preposterous. Eut when you see one animal consuming another animal it is absolutely an unjustifiable operation; it is an eater consuming another eater instead of c ansuming an eatable. We think of animals as things. Animals are not things; animals are beings. The potato is a thing, and the apple is a thing. A pesch, plum or cherry is a thing, but a horse or a dog or a cat or a sheep is a being, it is a sentient being. Why, you know, we do not stop to think that that beefsteak that is lying upon the table here, cut up and roasted, cooked ready to be eaten, that beefsteak a little while ago was looking out upon the world with eyes like ours. It was animated by nerves; it was alive, with read blood ruehing through its veins, end the nerves in it were sentient and feeling, and thrills of energy were passing through it just as through our own muscles and our own nerves; it was a live, sentient, quivering thing. That was brought home to me very forcibly sore years ago when I was down at Key West, sn d was going down the hill toward the wharf in the morning, to take my boat for Cuba, and I passed a man coming up the hill that h ad a big wooden tray on his hand which he held over his head, and there wes something on that wooden tray trying to get off. Every little while he would put up his hand and push it back, ond I was very curious; I could not make it out. It didn't look like anything alive. Itlocked for all the world like a beefeteak on the tray, and he was pushing it back all the time, and I could not understand the thing at all. I went on, passed thraigh a large archway, expecting to pass on to the pier which I noticed was just beyond, and as I stepped through the doorway, there was a spectacle just at my left as I turned to loak about, --I was really amazed; it was the most appalling thing I had ever encountered in my life. I had seen a ghost, or thought I saw a gbast at one time, and I thought it pretty nearly got me and my hair was standing on end; but here was something that really looked more uncanny than any ghost I ever encountered. Here was a counter covered over with beefsteaks, chops of various
sorts, and they were all writhing and twisting about. I said to myself, "Here is a frightful thing", and I thought it must be the thing the ancient poet referred to when he said, "The very hides began to creep", for here was living flesh ereeping about, en devery little while the marwho stood behind the counter was pushing it back from the counter, ond there was a great heart there, almost as big as the heart of on ox, beating away regularly, as though it was in the body of an animal. Then here were these chops and steaks climbing all about the counter, and the men had to herd them to keep them on just as he would herd his sheep to keep them in the pen. Well, I stopped and gazed at it with a good deal of wonder. The man behind the counter noticed my surprised and astonishment, and he said, "Why, don't you understend?" I said, "No, indeed; what sort of place is this?". It seemed to me I must be somewhere near the very inferno, and I said "What sort of place is this; what does this mean?" "Why," he said, "don't you know? You are in the turtle market. Just look out that dor." I looked out the coor, and there were half a dozen great Tortugas turtles turned over on their backs with their legs just going in all sorts of fashion. By the way, when I was down in Boston the other day, a man was fined and sentenced for cruelty to animals for keeping a tuttle on his back in the front window of his store. So the thing was made clear to me. That tuttle flesh would not die till it was actually put into the p th and cooked. It remained alive for days. I bought that heart and took it away with me to Cuba, and it Was beating the noxt day. Wurtle's hearts have beon kept alive beating for a whole weak. That beefsteak you are looking at on the table, thinking about cutting upand swallowing pretty soon, is just that saine sort of thing. It is not the sort of flesh that hes the same tanacity of life that the turtle has, but it is really the same sort of flesh. If we look at the fleshof an ox through the microscope, it looks for all the world like the flest of your own body. I understand that camibals are very fond of humen steaks. Down in the sandvich

Islands whon they used to eat miseionaries, they used to call human flesh long pig you know. they saidit tasted very much like pork, so they called it long pig. In one case, howver, the missionary was not eaten; but he was not a missionary; he was a sailor. A bostload of sailors were kasat zost on a certain shore, and a missionary afterwards inquired what becuas of thew. There were twenty of ther, and the native indiasted that they ate sineteen of them. He rade signs that they went down inside, nineteen of thea, but one of them they did not eat. And why not? And after sone considerablo interrogtion, they made out of the native this explanation. He said, "He taste too like tobacco." He was so saturated with tobaceo they didn't like the fluvor of hin. Did you ever stop to think of that? If you aro going to be eaten by a cannibal, would you like to have a bad flavor? You would like to have a good flawor, wouldn't you? I would. I have often thought of it, if a camibal were going to at me, I should like to have him really rodl me under his tongue as a sweot morsel, and really like to have hir have a good time enting me. I would not like to have him think of me, "My what a horrible flavor that isi my, isn't that nauseous?" I should like to have hin have a good opinion of me. Now, when a hog eats meat that is just what happens to the hog. His flesh becomes unendurable. If you ever had the experience, encountered a piece of pork that had been fed on dead things, you know exactly what that would nean? A butcher told he he vould not have such a thing in his shop, and he said he could always tell it by the smell of it, by the odor of the ox that had been fed on flesh. And nov there are laws in many states that prohibit the salling of pork that has bsen fed on flesh. In Indiana and various other states there are laws that prohibit the sale of flesh of hogs that have been fed on flesh. If flesh makes a man shch a fine man, wh is it that it makes a hog such a poor hog? Here are two hogs and a man. One of the hogs is killed. Now, the other hog eats half of that hag, and a man eats the other half. Now, this hog that has been eating half of a hog is not eit to eat. What about the man? Is he any more fit to eat than the
hog? Now, if he is not fit to eat, is he fit to kizk live? That is the question. If a man is so unfit, if his bo is is contaminsted that his flesh becomes strong and badly flavored and tainted, as the old poet safd, with food profane-we taint our bodies with food profane when we eat the flesh of aninals, said ${ }^{\text {vid, }}$ in describing the views of Pythagoras. Nov, if that is true, is the eating of flesh doing man any good? Certainly, it can not be so. Why is it flosh is so polluting to the body? It is because a part of that flesh --it is not simply flesh itself, but ksamxas what becomes of the flosh after it is eaten. It is because a part of the fleoh and a considerable part of it too, kaxa besomx after being taken into the body, ad some of it is digested, undergoes decay, undergoes putrefaction; that is why the bowel discharges maxams of the dos, the cat, the lion have such a horribly offensive odor, while those of the sheep do not. The contents of the bowels of any herbivorous aninal are not in a state of putrefaction; they are simply waste matters; but the waste matters from the bowels of a carnivorous animal are simply hofribly loathsome to the last degree. There is a parrot down in South America that eats bananas, and the bowel di scharges of that parrot have the fragrance of the banana and have no more offensive character tha a banana itself, bocause the diet is pure. There is no reason why the food that goes into the body clean and sweet and pure sould be in a state of poison and in a disgusting condition when it leaves the body. There is no reason why clean foo ds should be polluted by passinc through the body. There is no reason why the stomach and the mouth and the intestines should become polluted any aore than the hand does, not the slightest reason. It is only because we introduce putrefying materials. The flesh of a decoraposing animal, of a decaying beast, of a corpse, if you please, --we introdu a those things into our bodies, and portions which are not digested decay there, putrefy, rot in our interiors, and that is the reason winy our flesh bacomes polluted.

Now, my friends, that explains why some of you have these great brown circles around yur eyes, why you have sot tamy skins and piraples on your faces, why jou have got such a badly couted tongue and such a bad breath. I was talking to a man in my office the other day on this question, and it didn't seen to make any ímpression upon him. Finally I noticed ho had simply a terrible breath. I happened to say to hin, "Do you know, sir, what you breath smells like?" "No, I don't know." He suid, "I didn't know it snelled bad; didn't know there was anything offensive about it." I said, "Well, sir, your breath smells just like a doad rat. And it did. I told him just the truth. Perhap s you go off on a vacation aometime and come back and find a bad odor around the house somohow, and you look about, and you find in a closet somewhere a mouse or a rat that died and is undergoing decomposition. Why? Because it is flesh. And there are certain putrefactive germs insi the bo dy of that animal, and they are setting up putrefaction, gases are formed, and volatile poisons are formed, sromatic ptomains, toxines, and various other things,--cresol, indol, skatol and oth er poisons with horrible odors are being produced there until this aroma of dead ratax filled the house. Now, then supose that dead rat had been lying around inside the body of another animal. Suppose instead of being a dead ratd, it was a piece of a dead sheep lying around inside of you, decomposing and putrefying. Would it smell any less bad? The fact is we fairly fill ourtiodies with stenches. The loathsome material that escapes from our bodies when we kaxa live upon a diet composed of these decomposeble, horrible excretions leave our bodies this way inside; and all those stenches after being absorbed right into the blood, are poured out thr ough the breath. That is the explanation of the bad breath many people have and try hard to get rid of and can't; that is the explanation of the dingy skin of the horrible complexions many people try to hide. It is the putrofaction produced in the body, polluting the body. Now, that is the reason whyx we do not recomend, why I don't recomend a meat
diat, or chicken as good food. Now, a person who likes chicken and ats chicken needs a turkey buzzard intestine and liver. The turkey buzzard can gt along very will with that sort of diet. You would not like to keep a turkey buzzard in a cage in the house. A turkey buzzard is a very unsavory sort of bird, just as the fishhawk is, and all these carnivorous birds. They are very unsavory birds, for they have an offensive odor. But the turkey buzzard can get along and is pretty healthy after all. Why? Simply because he has the turkeyix buzzard' 3 stomach, and liver, and you haven't. Now, turkey buzzards have livers five or six times as bis as you have in proportion to the size. Did you ever notice what an enormous liver the chicken has, what an enormous liver the barnyard forl has? What an onormous liver the pig has--a liver four times as big as a man's in proportion to his aize; that is why he is able to live on such a diet. But even the dog gets old, rheumatic when he is twelve or fourteen years of age, or even before that time. There can be no question that the shortening of human life which has ben going on during the centuries, particularly during recent centuries, so very rapidly, is very largely due to the increasing use of flesh as an article of food. There is no doubt about that. Certainly chicken is not to be recommended. And chicken is an animal, it is an eater and not an eatable.) I had a good illustration the other day of a different way of looking at it. I met a little boy at the table upstairs, and he was all alone, happened to be the last one at the table, and he sat up there alone, and I thought he was not quite satified with his dinner, and I said to hii, "Well, sonny, did you get everything you want!" "Well," he said, "I would like a little chicken." "Why," I said, "My, you wouldnot like to eat a dead hen, would you?" "Oh, no. I would not eat a dead hen." He hadn't the slightest idea there was any connectios betweon a dead hon and a roast chicken or fried chicken; he didn't suppose thay belonged to the same category at all. (I heard the story of a little boy the son of a friend of mive. He was about sevan
years old. He happened to be visiting a neighbor' a little boy, and they invited him to stop to dinner, so he was sitting at the table with the rest, and the chief dish was brought in and placed upon the center of the teble, and the hostessi offered a portion of roast turkey to the littie boy and he expressed great surprise. She noticed he didn't seorn to know what to do with it, ond she said to him, "Why, Willie, don't you like it, wouldn't you like some?" "Why," he said, "that looks very much like a dead turkey." She said, "Yes, this is roast turkey, and wouldn't you like some?" "Oh, no, I don't eat dead turkeys." Well, then, the lady thought in order to accomodate him she must give him a little of the stuffing of the turkey. So she began raking out some of the stuffing, and put some upon the plate and offered to him, and he was still more surprised. She waited a monent to see what he would do, and asked hin if he didn't like stuffing. Said he, "What, would you eat what the turkey ate?" Now, we do not stop to tink of the horribly abominable things we eat. Now, just think; there is a turkey that had had his viscera taken out, and had been stuffed full of good, wholesome food and then we deliberately put it upon the table and rake out the stuffing out of its bo dy, from the interior of the body as a delicacy. In other words, we stuff a corpse with good, wholesome bread, roast it, bake it, put it on the table and rake out the interior of that corpse and offer it about, and eat it. Why, we have gotten down to some very loathsome things. We have some hakikx of the habits of savages and canvibals that are horrible, and some of the things we do are equally as loathsome as we think some of their habits are, and horrible and detestable. It is only because our forefathers were cannibals and roamed the wilds of great Britain clad in the skins of animals and war paint, feasting upon their enenies; and it is because our savage still leaps and yells in our hearts; that is the reason why we can eat beefsteaks and mutton chops continual1 y , because that old savage is still there. We must subdue it. We will when we get thoroughly civilized, if we ever do.
Q. What are the causes that produce diabetes?
A. I thin autointoxication is the principal cause of it. I think meat eating is the principal cause of it, and I am not alone in thet. There are a good many, I find a good many observing physicians who arexanking coming to recognize the use of flesh food as probably one of the causes of diabetes. We used to think it was because people ate too much sugar, but we have changed our minds about that. Possibly the extensive u se of cane sugar might have something to do with producing this disease, but it is more than probable that it is produced by excessive meat eating. Now, why? What is the connection between meat eating and diabetes? This thing has been known for some little time, that when there of
is disturbance of the glandsx the internal secretion, the thyroid gland and other internal glands,--that when these glands are disturbed, sugar frequently appears in the urine; in other words, we may have incipient diabetes as the result of disturbance of the thyroid gland. Now, the thyroid gland, it is generaly believed as the result of observations that have been made, especially by several eminent French investigators, and some German investigtors, and some researches made in this country--the thyroid gland is probably controlled by a little gland up at the base of the brain, the hypdohysis; and this little gland probably controls the thyroid gland. It is a very small gland, but it has a controlling part, and a nervous part too,--part nerves and part gland, and an observation has been recently made that seems to confirm this idea. A physician connected with Johns Hopkins university h ween making experiments upon animals, removing this little bo dy at the base of the brain, and he h as found when this littlebody is removed, that there is an enormous increase in the power to assimilate starch. The power to utilize starch is enormously increased. Now, this seams to sher that when this gland is overexcited, that the power to utilize starch is lost, or dininished. At ony rate, when the gland is removed, the animal gets the power to utilize an enormous anount of starch, much more than before.) These observations
are not get published. I learned about it when I was east the other day from a frien of mine in Boston who happened to know the facts, and he was already naking some experiments right along the same line. Dr. Curtiss of Johns Hopkins University has made these observations, and they will be published in the kuiziele bulletin of the Johns Hopkins University. This quite agrees with this observation. Excessive activity of the hypophysis is the cause of dininished metabolism of starch, and this causes the diabetes. A person suffering from diabetes h as lost iv power to store up glycogen. A man suffering fromdiabetes needs to train hymself to eat more starch, and more starch and more starch if he can, all he can assinilate, because he can not get along without starch. Starch is the source of glycogen, and it is the source of life and energy in the body, and wen the glycogen is used up, that is the end of the ran.)
Q. What are the complete symptoms of neuritis?
A. The principal symptoms of neuritis is pain in a nerve. In time, it may be atrophy of the muscles to which the nerves are distributed. There are tingling sensations, buraing sensations, di,sturbing sensations that come along all corabined.
Q. What is the treatment given in this in stitution for this condition?
A. The treatment is first of all to remove the cause of the neuritis. This cause may be mechanical, or it may be due to an injury, or it may be a cold, but it is most likely to be toxins; it may be alcoholic toxins, tobacco toxins, or tea or coffee todins, or toxins formed in the colon and absorbed ito the blood and that is the most common cause of all,--is the poison formed by putrefaction of ilesh in the colon. These poisons are some of them extremely virulent in character.
Q. Is it possible by any chemical means to destroy the poisonous qualities of meat?
A. Yes, indeed. Combustion will destroy t he poisonous qualities of meat entirely, cremation. That is just the way in which it can be done, and done effectively. I do not know of any way in wich it can be done without destroying the nutritive properties of meat very largely. At any rate, nobody would want it. Some years ago, when I beggn to learn about the real properties of meat, wix used to use meat here, a large amount of it; we used to use several oxen a weok here. For a score of years in this institution we used from one to four oxen a week; so te know something about the use of neat, and we stopped it only because we were'forced to discontinue the use of meat. We could not cure our patients while using meat, and we becara so thoroughly convinced of it that we dropped it out more and more and more until we finally got rid of it. In the later time of our use of meat, we had what we called laundered steaks. Te wanted to get rid of the uric acid-- the urine that was in the tissues, we wanted to get rid of them, so we had to wash our beefsteaks, and put them through a regular laundering process, washod thom and scrubbed them, and ran thera through wringers, and when they came up on the table they were alnost as white as a sheet; and they were not popular somehow, we could not induce people to relish then. A laundered steak h as no more flavor than a piece of india rubber. It tastes very much like a piece of india rubber, so you can readily see why they were not popular. It is the waste matters, the uric acid and other poisons, poisonous matters there that give the steak ite flavor. When you wash away all the poisonous matters, what is left, the nutritive part that is really useful, so far as it is useful, the food part that is left behind has no flavor at all; nobody can stomach it. I an satisfied that that experiment was not a success, so we gave it up, and finally threa the whole thing overboard.
Q. Can the ravages of arteriosclerosis be chelaked, and if so how?
A. Yes, the ravages of arteriosclerosis can be chocked if we begin
early enough. Now, it is exactly as it is with a fire. Arterioscleros is is a house afire. A man that has got arteriosclerosis is exactly like a house afire. His hous is on fire; it is burnig, and it is nd simply a fire in the house; it is a fire of the housp. Now, you know you may upset an alcohol lamp, and it burns a hole in the carpet, but when the alcohol is burned out, the fire would go out. There would be a hole in the carpet, a burned spot on the floor and perhaps on the ceiling, and things might be somewhat smoked up, and that would be all. The hous would still be as substantial as befors. That isacute disease-measles, scarlet fever, typhoid fever, or something of that sort. But suppose your furnace pipes get hot, ad the fire starts in the partition and works up through the partition, spreads in the partitions, an dby and by bursts out through the roof of the house, and your neighors corae bursting in the door, and shouting, "Your house is afire." That is another situation, don't you ses? It is not a fire in the house, but it is a fire of the house. Now, that is arteriosclerosis. That is a disease in which the whole house, the whole bay is falling ito disintegration, into decay, becoming senile. Bright's disease is a fire in the kidneys; it is a diseased condition of the structure of the kidneys. The kidneys have got old before their time. Arteriosclerosis is simply old age. As a French physiologist tells us, a man is as old as his arteries. He is as old as his arteries. If your arteries are old, you are old, no matter when you were born; you are old if your arteries are hard, if they are shriveling, then you are old. If the process is going on in the kidneys, then the kidneys are old; if it is going on in the liver, then the liver is old; and if it is going on in the brain, then the brain is old, and you will probably have senile denentia, and you may have it when you ars 25 or 30 as well as when you are seventy-five, practically the same disease. So we must begin early if we are going to put out the fire in the house, and we may be able to put it out even when it is bursting through the roof, but what kind of a house have we got?

It is guttedi it is a wrecked housp, and perhaps will have to be tom down so it won't fall dow unexpectedly. The house is spoiled; it is wreaked. Now, it is so with arteriosclerosis if we lit it go on too long. We may stop the further advance of it, but perhaps the house is spoiled, or only waiting to topple over when a little wind comes along, just a little extra strain of some sort and it will fall in. That is what hap ens when a man gets apoplexy. That is what happens when a man dies of heart failure--because the heart has been overworked, a long time intrying to circulate the blood against too high pressure. you see. And it wears the heart out. But suppose we have got the case in time, a man with a blood pressure of 150 , we will say; his arteries are a little herd, but not chalky yet. What can we do for that man? A concrete case will illustrate it I think as weil as anything. A doctor, a man very eminent in hisprofession, a man who held perhaps the h ighest position that a medical man can hold in the United States, in fact the head of the United States army medical serixie, the former Surgeon-General of the army, called into my office last summer,--a tall, stately, big, splendid looking man, and I was very much surprised. I said, "Why, Doctor, I am surprised to have a visit from you." "Well, Doctor, "He said, "I want to say to you that I have come here to have a thorough examination, and for you to tell me how to live. Now, I supposed I was all right till a couple of days ago." Ixwaz He was in the same state of mind as Paul Morton was you remember, the president of a great Iife insurance company; he thought he was all right, looked the picture of health, and went up to be examined for life insurance, and found they would not insure himi his own corapany could not insure him. 'hey got out a nav kind of policy, and he was going to be the first one insured under that policy, but his own company could ot insure him, but advised him to go and see a doctor right away. In three months he was dead. Now the Doctor said, "I was exanined two days ago, and found my blood pressure was 210.

Now, you can imagine how I felt when I heard that, because I have just retired a fey months ago, and I have been counting on having ten or fifteen years of pleasant life, a good time, could do what I like, travel and have a good time, and with a blood pressure of 210 , that means, I see, that I have got a funeral in my program instead of a pleasant life, and I do not feel well about it at all. Now, I want you to examine me and tell me how I can live so I can live a few years and have a good, pleasant time, as I have been calculating on." "Well," I says, "Doctor, let us look it over and see; perhaps you haven't got such high blood pressure after all." I took his blood pressure and found it 210, sure enough "Well, Doctor, let us see; I suppose you smoke?" "Oh, yes, I smoke; all army men smoke." "Well, do you know what a cigar does to a man?" "Why, a cigar doesn't raise blood pressure, does it?" "Why, certainly it does. One cigar will raise blood pressure twenty points in thirty minutes. Dr. Janeway, of New York, says that, and I know it, because I have demonstrated it repeatedly. A single cigar will raise the blood pressure thirty points in half en hour. Your blood pressure is 210 already; how much higher do you wont it to be? Suppose you smoke a cigar and raise it twenty points more, then it is 230." "Well. I guess I will have to cut them out." "Well, Doctor, how about coffee?" "It doesn't do any harm to drink coffee, does it? That dosn't have anything to do with blood pressure, does it?" "Doctor, how about uric acid? Does that ever raise blood pressure?" "Oh, yes, oh, yes, uric acid raises blood pressure." "Well, now coffee has caffein in it; caffein and uric acid are the same thing. They both raise blood pressure. Suppose you had a man here lying in a state of you collapse, his heart had almost stopped heating, and ke wanted to raise his blood pressure; he is in a state of shock, collapse, and you want to raise his blood pressure; what would you give him; what would you inject under his skin?" "Why, I would give him a dose of cafiein." "Certainly, you would. Caffein is
the only drug we can bend upon to raise blood pressure; we feel sure, more certain tha caffein will raise blood pressure than any other drug. If there is then power that will raise it at all, that is the one drug that will do it. Caffein is the most reliable of all drugs for that purpose. Now, hov large a do se would you give a man?" "Oh, I would give him three or four grains, and then repeat it if necessary." "Doctor, did you know that Dr. Wiley examined coffee and found that a cup of coffee has four grains of caffein in it, four grains of caffein? There is a full dose of cafiein in every cup of good coffee, and your blood pressure is up too high, and how much coffee do you think you ought to take?" "I guess I will have to cut it out. It is rather hard, but I guess I will have to cut it out." "Now, how ebout beefsteak?" "Of course, we army men use a good deal of meat." "Doctor, do you know Dr. Hall, of lanchester?" "Yes, I have heard of him; he is the physiologic cheraist over there." "Well. Dr. Hall a few years ago devoted a year and a half to the study of uric acid, and he found in a single pound of beefsteak farteen gains of uric acid. Now, it is two days work for the kidneys to eliminate that fourteen grains of uric acid. Six grains a day is the day's work for the kidneys. That is the regular work of the kidneys for a day in the elimination of uric acid; so there is two days. weik for the kidneys in one pound of beefsteak, and seventy grains in a pound of sweetbreads." "Well", the Doctor said, "I guess I will have to trke it out, but I don't see how in the world I will ever get along without it." I said, "Well, let's try it." In just four days the Doctor as down in my office, and he sat down in a chair his face just beaming with smiles. "Why, Doctor, it is breathlessly interesting, it is breathlessly interesting; my blood pressurehas come down thirty points in four days", and so it had. I took it myself, and it was 180 instead of 210. Now, the first thing is the diet. I just mention this as a concrete fact so you will see kspa what happens. I have seen that thing happen in scores of cases, hundreds of cases. The average man
who comes here with a blood pressure of $140,160,180$, or 200 loses twenty or thirty points or more from the change in diet in the first two weeks he is here. But there is more than that. The body must be rebuilddd. Dr. Haig says it takes three mondhs to change the tissue of the body, and I think that is true. The tissues have to be changed, sometimes agin and again and again. It is one of the most important questions that could be asked here, is this very question of what could be done in arteriosclerosis, because that is the one disease that will go mafching steadily on just like a fire in the house unless there is something radical done in the way of change of habit s.
Q. Is saccharin good for diabetic patients?
A. I don't recomend it. It is not very toxic, but is somewhat poisonous.
Q. What is the proper regimen for a patient with arteriosclerosis?
A. I think I have pretty well answered that question already. I might say in addition, eat a great deal of green, fresh vegetables, uncooked vegetables, lettuce, and cabbage, and fresh raw fruits. Drink a good deal of water, wash out the waste matters and make the blood as clean as possible; get the tague clean, and keep the bowels moving tree or four times a day; keep the skin active, an dkeep in the open air and the sunlight, and take a good deal of exercise. Walk several miles a day, get into a good perspiration every day. Be careful about cooling off.
Q. What objection if any is there to the use of vinegar?
A. Vinegar is worse than aleohol. Prof. Voix, of Paris, showed some years ago that vinegar ksx or acetic acid has twice the power of alcohol to produce gin liver.
Q. What do you think of horse radish as an article of food?
A. It is not food at all. It is poisonous, has no food at all.
Q. Does very hard work cause arteriosclerosis?
A. I very seriously doubt it. It is claimed that arteriosclerosis is common among longshoremen who axt do very hard work, but these longshoremen eat enormous quantities of meat, and I think it is the beef, the meat, rather then the hard work, that produces arteriosclerosis; because over in England there died a good many years ago an old man who lies buried in Westminster Abbey, and you may ses a slab which marks the place where he is buried, in one of the aisles of Westminster Abbey. His age at death is authenticated by the very best authorities as 152 years and nine months, and he was examined after death by Dr. Thomas Harvey, who made an examination of this man's body after death, and he could not find a hard artery in it. Almost 153 years of age, and not a hard artery in his body. No arterial change at sll. He died of indigestion. The King brought him up to his court because of his great age, and he feasted him three weeks, then he had a fit of indigestion after eating a big dinner, ad died of gastritis, died of indigestion, probably acute intestinal autointoxicetion. He lived all his life on black bread, potatoes and buttermilk. That was that man's diet, and he worked hard; he was a laboring man, and had to work all his life for a liviihood, and he worked hard. So it ie nd hard work that produces arteriosclerosis; it is bad eating.
Q. What would be the cause of a sickening dull pain extending over the left spine, to the left hip, and down the side of the abdomen?
A. It is more likely to be a diseased condition of the colon than anything else. If we investigate that case, we probably shall find there is colitis, and on examination of the colon, we will probably f ind it is contracted and feels like a rubber bag. That is the probable cause. The pain is simply reflex. There might possibly be something else, might be sarcoma or cancer, tubercular disease or something else, but in more then nine cases out of ten we will find the cause to be what I have stated.
Q. Will water that contains lime cause gravel in the kidneys?
A. I think not.
Q. Will gravel cause gallstones?

A No.
Q. In what form is yogurt best taken, liquid or in the form of tablets?
A. Some people can ot tolerate milk. Dr. Combe of Lausanne calls
attention to the fact that some people suffer from milk dyspepsia or casein dyspepsia or inability to digest milk for some reason. Ithink it is because casein is not readily absorbed, and it remains in the colon and undergoes decomposition there and so encourages autointoxication. I think this is the reason why milk disagrees with some people, and such persons should take the yogurt ferment in the form of tablets.
Q. Is it injurious for persons suffering from diabetes to take sweets such as syrup and sugar; also salts and fats, and dried beans?
A. Yes, it is injurious for such apatient to eat most of those things. The fats can be assimilated in reasonable amount. Beans can be used to some extent, but sugar and syrups ahould be avoided entirely.
Q. Why not use fine salt in the treatment rooms?
A. The purpose of the salt rub is to excite the skin. Some complain that the salt is not coarse enough, but if any of you find it is too coarse, call for a finer brand. We have both kinds.
Q. Why not have rhubarb sause?
A. It is unfit to eat. It is poison. The acid of rhubarb is oxalic acid, and it is poison. You use it to take out ink spots and things of that sort. It is not fit to go into the stomech. Oxalic acid is different from organic acids. It differs from other organic acids. There are three organic acids which are foods and assimilable,--tartaric acid, malic acid, end citric acid. Oxalie acid is poison; it is not assimilated, but passes through the body
and acte es a poison in the body.
Q. Is it wise to go into the swimuing pool just after taking exercise in the gymnasium?
A. Yes, it is a good plan provided you are not exhausted. Cne should never go into a cold or cool bath when perspiring and exhausted. The perspiration does no harm; it is a good preparation for a cold bath provided you are not tired. A cold bath requires reaction, and reaction requires action of the spinal centers. If one has been exercising or working until he is exhausted, then these nerve centers are not able to produce the reaction, so when the cold strikes the skin and the blood rushes in, it does not get back again, the proper reaction is not produced, and harm may be done. Fatigue is the contraindication in perspiration, and exhaustion is the contraindication for a warm bath when perspiring.
Q. What is the cause of the nose feeling cold to the touch?
A. It is a vasomotar disturbanee, a contraction of the blood vessels of the nose. In a dog it is said to be a sign of health. In a dog this coldness of the nose $i s$ due to the fact that the dog does not perspirb on his skin in general, but all the perspiration is about his nose and mouth. That is the way the dog cools himself off--is by the evaporation about the nose and mouth, so that is perfectly normal for the dog; but the human species perspires over the whole skin, and evaporation is taking place from the whole surface and not specially the nose.
Q. What is the cause of neurasthenia?
A.. Newrasthenia is not a disease; it is a symptom. It is an artificial disease, we might say, created by Dr. George M. Beard, of New York City, 25 years ago. I helped him make it. I was a private student with Dr. George M. Beard, a post-graduate student. He was an expert in electricity, the most expert of anybody in the scientific application of medical electricity in the United States. I had gone to hin after graduating in medicine to study, some 36
years ago, to study electricity and nervous diseases in which he was a specialist in New York. I found him busily at work collating symptoms, and I helped him in this work of collecting symptome, and classifying the symptome of various nervous patients that came in. After while he collected a large group of these symptome in which it was not plain what the cause of symptoms was- the patient did not have any organic disease to which the symptome could be traced, and he put these all together in a group and alled them neurasthenia. I t is purely a symptomatic disease. I don"t hold myself responsible for the disease, but only as I said, I helped make it working simply as his assistant. I think it is generally recognized at the present time--personally I have always held that neurasthenia was not a disease at all, but only a symptom of morbid conditions which were the resl disease. Neurasthenia is nothing but a symptom. It is no more a disease than dropsy, no more a disease thon headache is a disease, only it is a larer group of symptoms, and it may be the outgrowth of various conditions. Neurasthenia is most often die to intestinal autointoxication. The man that has chronic nourasthenia generally has a coated tongue, a bad breath, inactive bowels, very often has colitie and other indicetions of intestinal autointoxication. Clear off his tongue, get the bowels into normal condition, get the skin cleared up, and all the other symptoms disappear.
Q. What causes the blood vessels to stend o t very prominently on the left side of the head?
A. This is a condition which is very often present in pesons who have suffered much from migraine headache. It most comonly occurs on the left side of the head for the reasen that the left side of the body seems to be a little weaker than the right side, and seems to be more subject, especially to nervous diseases then the right side. And the blood vessels of the left side are very often found more prominent than the right, because of these frequent attacks of congestion.
Q. Is constant dizziness usual in ceses of autointoxicetion?
A. It is a very common symptom indeed, due to poisons absorbed from the intestine attacking the brain.
Q. Is beer sanitary?
A. No.
Q. Should not a person who has been here two and a half months show some sign of improvement:
A. That depen ds upon what he is doing and what has been done to him. It may be he has improved and doesn't know it. A man who thinks he is no better just thinks he is no better because some one particular symptom is just as prominent as when he came. If we should inquire carefully into such a case, we should probably find many indications of improvement. Eor instance, I met a man some time ago who was sure he was do better. He had been here several weeks, and was no better. He said, "Now, here, Doctor, I have the same pains on the top of my head I had when I cane here, and I am not a bit better." "How about your strength! What was your strength when you came?" " 2500 pounds." "What is it now?" " 2500 pounds." "Isn't that better?" "Yes, but the pein is just the same." "But you can gadx: lift a thousand pounds more than since you came, end that is better so far. Well, isn't your tongue cleaning off?" "Yes, I admit that." "What about your appetite?" "I have a better appetite than when I ceme." How about your sleep?" "I sleep better, but I am not a bit better than when I came here; that pain is just as bad." Yet almost every other symptom had almost entirely disappeared. I said, "Now, it looks to me that when that pain disappears you will be vell. One of these morninge you will wake up and find that pain gone, and will pack your trunk and be of home before night just as like as not." A man getting well is like a man that has been away down deep in the water, and is comeng up; we have got grappling iron around him and are pulling him up, we can see he is coming up; he can not see, and he feels just as bad as before; feels just as bad at ten feet under water as when he was 100 feet under
water. When he is a foct under water he feels just as b ad as though it were a thousand; when he is half an inch under water, he feels just as bad as though he were at the bottom of the sea. It is only when he comes up and gets his nose out of the water that he begins to feel better, don't you see: Now, I said to this man, "Your nose is just half an inch below the surface. Tomorrow morning, just as like as not, you will be all right." And it turned out that way. These symptome have been present for a long time, monthe and months and monthe, and got stuck pretty fast. It is hard to dislodge them sometimes. When they finally di sappear, the work of cure is almost completed. But whenone gets rid of all of his bad feelings, he is likely to be vell. It does not come in a day. Getting we 77 by the Banitarium process means reconstruction, making the body all over n ew, gettire $r i d$ of the old sick man, and putting on a new man of health, well, vigorous joyous man.
Q. Do you ever find autointoxication among vegetarians?
A. Yes, indeed. It is often present among vegetarians. You can hardIy ever find a vegetarien who has not at some time been a meat eater, or made use of eggs and milk, ax and eggs and milk as well as meat will produce intestinal autointoxication. I don't think intestinal autointoxication will be likely toarise in a person who lias eaten no kind of animal protein. Prof. Tissier of the Pasteur Institute holds that view and believe he is right about it--that autointoxication is due to the decomposition of animal protein and is not likely to begin, or to originate at any rate, with the ordinary vegetable proteins, because the amount of protein wind in the vegetables is so small and always associated with carbohydrates which are sufficient to prevent the putrefactive process.
Q. What causes a person to feel extremely hot after a meal and intensely cold half an hour later?
A. It is only a very susceptible person who would notice that. Eut
when a person takes a meal, the heart is stimulated and there is an increased flow of blood and a person feels warmer, iswarmer just after the beginning of the meal. But after the facmart procese of digestion is well established, the large blood vessels of the abdomen here are well dilated, and a large amount of blood is accumulated in the abdomen here to carry on the digestive process, and people who have very sensitive vasomotor centers are likely to suffer in consequence of this spasm of the vasomotor nerves of the small vessels of the extremities. The overexcited state of the viscera here reflexly excites the vasomotor centers of the brain, and in that way causes spasm of the vessels of the arms, feet ond legs, so a person feels cold. It is not because the circulation is weak, but because his blood vessels are in a spastic state. Such a person gets colder every minute when he exercises. The best way to relieve it is to lie down, because the vertical position encourages the accumulation of blood in te abdomen. Another good way is to raise the chest high and take very deep breaths. I saw some patients in the gymasium this afternoon lying down on strips of carpets raising their legs and arms chest high. That is one of the very best things you could possibly do to relieve the condition just described, because it drives out the excess of blood from the abdomen, gete it into the extremities where it is needed. This can be better accomplished by exercise in a horizontal position or by simply lying down on a couch or taking exerci se upon a bed. I think I have onswered all the questions. I thak you for your patience.

A Stereopticon Lecture at the Sanitarium Parlor, Eattle Creek, Mich., Nay 18, 1911, At 8:00 P. M., By,
J. H. Kellogg \%M.D.

Ladies and gentlemen: I suppose you are all improving your present opportunities to get outdoors, to get all the fresh air you cen. There is no excuse for sitting indoors such weather as this; in fact, it is rather embarrassing to be indoors here, and wes really need a little more fresh air here.

Now, we have upon the screen here two very shapely heads combined. The black line here represents the skull of a man whose skeleton was found b buried away down beneath the gravel in a place which was some years ago, nobody knows just how long ago, the bed of the Thames river. It is now forty feet above the present bed of the Thames river, and it is claimed that the movement of the bed of the river up and down, since this skeleton of which this skull is a part, was deposited, amounts to 170 feet, and the calculation of geologists takes
is that it is the the bed of the Thames river about a thousand years to change a foot; so the calculation is thet this skull belonged to a man who lived 170,000 years ago. Here is the outline of the skull of the man. The shape of the head is the thing that is importent. The shape of the head of the cave man was sloping from the front and more like the head of an ape, a very mall brain; because the cave men who was supposed to have lived 150,000 years ago had very much the skull of the ape it has been argued that man must sometime h awe been an ape and h as gradually worked his way up; so this was rather a serious problom for geologists to wrestle with, how it is that this galley hill man had a skull in every respect equal to that of the modern Englishman. He has well developed
teeth, you see; that is one beautiful thirg about it. This skull has 32 sound teeth in it. The tecth have endured all these years. Teeth of the olden time were evidently madd of better stuff than those of modern growth. The same thing is observed about the teeth of the Mound Buildersm-there is mueh less evidence of decay; andeven so late as the plague of London, the skulls which have been exhumed have been found to be of much better material--the teeth, showing much less evidence of decay, being much sounder. A large number of skulls are found in the museum of the College of Physicians end surgons of London, the great medical and surgical museum of London--it has been found that these skulls which are dug out of what is called a plague pit-othe bodies were buried in these pits when they didn't take time to give them a formal burial, these skulls are found to have teeth much sounder than those of modern men; so the indication is very strong that we are degenerating. In fact there are many indications of that.

There can be no doubt, when we come to study the matter, that are rapidly degenerating; we are losim our teeth. The outsi de incisor teeth are lacking in a good many persons. If we have thom at all, they are perhaps mere little pegs, and we have to get the dentist to fix them up for us. So we are losing our toea, as I told you the other night, so I won't dwell particularly upon that tonight.

I want you to compare these skulls as shown by the hesvy outline and the dotted outline of the skull of the modern Englishman, so you will see there is practically no difference. So the ancient man had just as good a head as the modern man; he had just as big a brain as the modern Englishman, and he didn't look any more like a monkey than the modern Englishinan does. Of course, we are more or less closely related to apes; we cen not escape kinship; but this ancient man was no more like an ape than is the modern man.

Here is another thing I want to call your attention to. The human race is dying at the top. It is decaying at the top. It is like a tree, ond I had this little design made to make this apparent to you. When you see a tree beginning to die at the top, you do not have much hope of that tree. If a single branch somewhere near the ground dies, you lop it off and expect to save the tree; but when yoy see a tree dying at the top, you know something serious has smitten that tree, and that its days are not very much to be prolonged. three Now see what we have. Here is Bulgaria, with a population of qxagexerxemxmillion, and 3000 centenarians, one centenarian for every thousand people. There are just a few twigs dying at the t op in Bulgaria. In the United states, we have only 3600 centenariens in the whole United States, one in 25,00. Bulgaria has 25 times as many centenarians as we have in proportion to the papulation. When we core to Spain, ie is one in 44,000; in France, one in 190,000; Ingland, one In 200,000 , and in Germany, one in 700,000 . The centenarians are nearly all gone. The tree i s rapidly dying; the top is narly dead. But because we see a good aany sprouts growing up around the root, we must not imagine the tree is flourishing. We find we are keeping alife a great many babies and young people that formerly died off. Half a century ago, nearly half the babies died before tley were a year old, and now about o fourth of them dia before they are yax a year old, and two fifths of them die bef are they are five years old; but we have been keeping a whale dot of thomalie that used to die. So the average length of life of the population is increased, but the number of persons who acquire great age is rapidly dininishing. In other words, the tree is dying at the top. Now, we will resume our talk of last week where ite left off. Here is this race degeneracy that is progressing so rapidly. The O1d Book says the blood is the life. Then the Creator gave to Nah permission to eat flesh, he took particular pains to tell him he must not eat blood. "But the blood thereof, which is the life thereof, thou shalt not eat of it." The
fact was recognized away off in prehistoric times that the blood is the life, and the blood was regarded as sacred; it was respected, and it was regarded as the source of life in the body. Now, so long as the blood is clean it can maintain the b dily life, activity and efficiency, because the blood is the element of the body which fights for the life of the body. There are something like 20,000 million million of these blood cells in the bog at one time. A large number of t hem are germifighters; their function isto defend the body against germs, and against poisons. Now, so long as the blood is cloan, so long as the blood is pure, so long as it has a high standard of vitality and vigor, it is able to make a good defense. Now, some of you were exanined here perhaps yesterday, perhape some day before; and all of you had your blood exanined when you came, and some of you had a report that your blood was 100. That means that your blood is up to the standardi it has the normal anount of blood cells, for the normal activity, and the quality of the blood is nomal as far as that exanination can determine. Some of you had this examination and found your blood was 75. That means you are 25 per cent below par. It means your defensive army has only three quarters the number it ought to have. Some of you had a report of 50%. That means that half the soldiers in your army have been killed off, have died of cholera, perhaps, or beri-beri, or something else; they have died, and you have only that per cent of your fighting force. Now, jyist see what yoarrsituation is,-- it is just like that of some of those cities dom in Mexico that had to capitulate becuse their fighting force was too small to contend against the enemy; they had to surrender. That is just your situation and you have been surrondering; you have been surrendering, and that is why you have corae here at last. You really have got to the point where you had to capitulate completely, will
and you have to surrender to our old enemy, death, pretty soon if we can not reinforce your fighting men. It is of greater importance than anything else that the fighting power of the body should be maintained at the full amount, the high-
est standard, the normal standard. That means 100. We had a gentleman some time ago who se blood was down to 26. By the way, I had a letter fron that man to day. Then his eyes were closed, he looked as though he were dead. He was really in a very sad situation, with pernieious anemia. I had a letter from him today saying he was sorry he had to leave just the day before I returnod from my shart vacation a little while ago, and he wanted to write to tell me that he went away full of life. That is his expression; he said, "I went away foll the Sanitarium full of life." He was here about ten weeks, I think, and he has got his blood back again, and he is the happiest man in the State of Illinois, and I am happy too, because he was a very useful wan. I met him about sixteen years ago away down in old Mexico, and he was a pioneer missionary down there, and it did me a great deal of good to know that under a good Providence, we had been the means of bringing him back to health, life, and vigor again. It was all because hisblood was restored, you see. He was quite right in saying he has sone away full of life. He has gotten his blood up to normal again and feels the energy and vigor he on ce had, and the defensive power he had before. Now, it is important, then for us to consider the organs of the body which maintain this situation of the blood, or keep the blood pure, that make the blood.

In the first place, the blood is made in the bones. That is a curious thing, isnet it-athe blood is made in the bones, these ugly, uncouth bones. They are the laboratories in which this marvelous fluid, the blood, is made. All the blood is made in the bones. We can not do very much for the bones; but when the blood becone unclesn and impure, then this blood-making process is interfered vith.

Now, the most conspicuous organ you see here is the liver, a great gland that weighs three and a half pounds--the biggest gland in the body, ond one of the raest wonderful organs in the body, the most abused organ in the body-m how many people say, "Oh, my liver, my miserable liver", and go to a doctor and
ask the do ctor to give you something to stir up your liver. You want the doctor to give you a drug you can put in there and stir yoor liver up. A man went to his doctor and asked him to stir up his liver, and he gave him some iodid of mercury which didn't do a thing to the liver but hinder it a lot; didn't do it any good at all. Calomel is a very comon drug that people use to stir up livers. It doesn't do the liver a bit of good, but simply hinders it. An old doctor of Edinburg proved more than 100 years ago, by experiments on dogs, that calomel actually lessens the work of the liver. Under the influence of calomel the liver makes less bile than it does when the calomel is not given. And Dr. Rutherford, a modern English inestigator, made a careful study of the same subject in a man with a biliary fistula, and proved in this case by careful experiments, that mercury in all forms lessened the work of theliver; so there is no excuse for it, and I don't think any of you will ever take another dose of calomel for the benefit of your liver. It may be for the ben efit of the undertaker, but it won't do your liver any good, you may be sure of that. What is the reason the liver seems to get lazy? It is not because it is lasy; it is not because it has forgotben to do its duty; it is not because it is negligent; it is not because it is inefficient; it is because the liver has more tork to do than it can possibly do. It is an overworked liver, like a poor donkey that is loaded down until it can no longer stagger under its load, and it falls dom upon its knees. That is the situation of the lier; it is sinply overwork; it can not do its duty. Now, let us see what its duty is. One of its duties is to collect all these blood that is brought up from the internal organs, the stanach, colon, and the intestin and various other internal organs, -gather all this blood up and filter it before allowing it to pass on into the gneral circulation, up to the heart, and to be distributed all over the body. That is one of the most important fuctions of the liver--to inspect the blood, to exanine the blo od, to filter and to purify the blood. It does rany other thins, but that is one of the mo s imm
portant things we trant to talk about tonight, is this purifying, blood-parifying function of the liver. Now, when the liver becoraes crippled, it can no longer do that. That is the reason why, when Pawlow made an experiment upon a dog-here you see the larvevein that brings the blood into the liver and distributes it, and these various af lobes of the liver are divisions in which the work is dove, or which purifies the blood; then the blood is sent up to the heart to be distributed to the body in general. This shows the little cells where the work is done. The blood is all brought in here to be filtered, and it is inspected by these little cells arranged in a row all along the line of the se smell blood vessels; then after it has been inepected, it is sent on through the great central vein to be distributed to the body after it has been purified. The liver not only takes out poisons, but it destroys poisons which it gathers out, and it takes out geras also; and this illustrates an experinent I was telling you of a moment ago-how when the liver is crippled, it can not do its proper work. This is what is known as Eck's fistula. Here is the vein that carries the blood to the liver to be purified, and here is the large vein that carries the blood up to the heart for distribution to the body. This vein is not usually joined as you see it here, but it is separate. The blood is carried through the ascending vena cava to the heart, an $d i s$ then sent out through the body. This experiment consists in joining this portal vein to the ascending vena cava so the blood, insteadog goang to the liver to be filtered will go straight into the general circulation, go straight through the bo dy without any filtration. I saw this experiment made in Pawlow's laboratory at St. Petersburg, four years ago. The dog that has this operation performed geta along all right for a few days. In this particular case the dog did not happen to get aldng all right, but usually it does. The dog died of shock after the operation the next day, but generally the dos survives, and the dog gets along perfectly comfortably so long as it has just the right diet. But the diet it nust have under these circurastances is
a diet of bread and milk, cereals, oatmeal muah, and things of that sort. It can not eat meat. The moment a dog begins to eat meat it gets sick, and if it eats meat for three days, it is a dead dog every tince. The dog cen not survive more than three days on meat diet when its liver has been crippled in this way; because when meat is taken into the body, poisons are tak on in with the meat. Not only that, but portions of the meat that are not digested undergo putrefaction in the colon. I want that idea to get thoroughly impressed upon your mind. It is not simply the poisons that are in the meat and which anount to a good deal, but it is the putrefaction of undigested fragments of the meat that yemain in the intestine. Now, you know the difference between the bowel discharges of a cat or a gaidx dog and those of a sheep. The bowel discharges of a sheep are not so very offensive, but those of the cat or dog are horribly offensive. You know very well the difference between a dried up and rotting apple, for example, and a decaying rat. If you are off on a vacation and when you get home you find a bad smell in the house, somebody says "dead rat", and you begin to look a round, and by and by find a little mouse dead in a closett, and the whole house has b con saturated with the stench of that dead mouse. Suppose there were half a bushel of decayed apples down cellar; the house would not be scented up in that way. The apples might smell a little stale, but there would not be the horrible, penetasting odor that pollutes the entire house so that it is impossible to stay there.

Now, that is the thing I want to impress upon your minds, my friends, that dead flesh is the thing that rakes that dead rat smell so bad. The odor of that dead rat is simply the odor of putrefjing flesh. And bits of putrid beefsteak smell just as bad as a dead rat. A piece on dead cow or dead sheop or dad hog siaells just exactly as bad as a doad rat--worse, becau se there is more of it. So when you have gotten into the intestine fragments of flesh of any sort, fish, flesh, or fowl, that are undergoing putrefaction there, the effect
upon the body is exactly the same as though you swallozed a dead rat for breakfast, or ate a putrefying mouse you found in the closet and swallowed it. Now, suppose you have swallowed some flesh and it has gone into a state of putrefaction after you have swallowed it. The effect upon the body is exactly the same as thoush you had swallowed a putrefying animal. As a matter of fact, the flesh that goes into your stomach is in a state of putrefaction already, when it goes in. As many as 700 million bacteria are found in a mall morsel of meat not larger than a teaspoon--just a bit about the size of the tip end of your thumb, 200, 300 , and as high as $700,000,000$ of bacteria, producing poisons. That is the kind of meat you eat; that is tender beefstak. If it is cold storage beef, it will have twice as many, or even more, and hallibut, and herring, and liskx c codfish, and all that sort of thing is simply swarning with gerns in countless numbers. Whenever you eat the flesh of a dead anymal of any sort, my friends, I would like to have you think of it a dead rat in the closet, because that is the very sort of thing you are eating in a modified form. It has not got quite so far but is on the way to it, and by the time it gets into your colon it will get into the dead rat state, get clear on to the very highest degree of putrefaction.

Now, when one has a crippled liver, you see, mich is not able to deal with these poisons, he is in a bad way. Such a liver is not able to deal even with the ordinary poisons that are found in meat. I wonder if there is anybody hare that hasn't a crippled liver; I wonder if there is anybody here that has not been abusing h is liver for the last ten or fifteen or twenty or 25 years, or filty years-has not been abusing it in that way. Such a person must certainly have crippled it. I exanined today a gentleman whose liver was only half as big as it ought to be. Sometimes it is too big and sometimes the liver is too small. It will first get too big, then will contract intil it is too small. It is on the way to destruction, is already in a crippled state. And a person
whose liver has been abused, a man who has smoked for five or ten or fifteen or twenty years, or the man who has been drinking beer, or the women who has been drinking tea or coffee for five to twenty-five years, has a crippled liver. A person whose bowels have been inactive for gears is certainly suffering from a crippled liver; there can be no doubl about it. It just depends on how good care you take of it. I met a gentleman today who said he was here three days four years ago, and we tald him how to live, and he had had awful trouble with his stomach, and he went home an dnever had had that trouble since. I said "Did you live up to the instruction?" "Well," he said, "I didn't eat any meat for four months, but I confess I am getting to be something of a backslider, and I have fallen back since that time. By the way, Doctor, what do you think is the matter with ny arm? I have got an awful pain up here, and it feels numb and tingles, and is sore an d lame? What do you suppose is the matter with it?" IE said, "I guess you have gbt beefsteak poisoning. It is neuritis as the result of autointoxi ation." Neuritis is a very common beefsteak disease. It is called rheumatism, but it is a different thing from rhoumatism, though chronic rheumatigm originates very much in the same way. This gentleman had only a couple of days to stay this tire, and thought he would get cured up again. Now, he was cured before not by any hocus pocus, or laying on of hands, or any magic we were able to bring to bear upon him, but by the good advice he got and which he followed; and the good advice helped him. The old prophet, you know, said, "Cease to do evil, and learn to do well." That is the secret of getting well--is ceasing to do evil. He ceased to do evil. He found out how to do well and he did it for a little while and got better; then he relapsed, and now he has got sanething warse than what he had before. It will take a much longer time to get rid of that pain; it may hang on for six months instead of for a few days, ins spite of all we can do. I am sorry; but it is a sin of presumption. He knew hav to live and didn't do it. He was fond of beefsteak, so he relapsed
and went back to his sins again. I am talking these things in this way because I want your visit here to be of service to you when you go home; I wantyou to keep on getting better. Ifeel it a sort of disgrace when a person backslides and goes back.

Ancther thing that is particularly embarrassing is a person that has been here and been helped once and gone away, been better, then backelid, got down, and then comes back, and when he comes back we can of do as much for that man, or do it as quickly as we did before. They have exhausted some of their vital stamina; the healing power in their bodies is depreciated to some degree. The exhaustion of vitality is like a bank account. Draw your money out and you haven"t got it. So whenever you have a recuperative process set up in the bo dy, it restores you to hoalth. When you have been down, been lifted out of a pit, and sot up again, something isgone from you; your energy has been lifted up again to some degree, but you can not advance that man so surely, so well. If he gives us a fair chance we can do something for him; but if he has to come back again a third time, he can not expect so much.

I reamber very mell a man who was with us about a dozen times. He was one of the very first patients I had to do with when I first was connected with the institution about thirty-six years ago. We had only about a dozen patients then, and I could remeaber them a great deal better than I can now. He was a very prominent banker in Iowa, a partner of a famous Iowa banker who had been secretary of the Interior, and he carle here very, very sick. He staoked and ate a great deal of beefsteak, and he was very careless about his diet in every way,--was not a drinking man, and was very careful in his habits in other particulars; but he ate a great deal and was careless in eating. We found him in a very, very bad state; got him on his feet in a few months, and he was happy. He wrote me in three weeks, "Doctor, I am so well I can smoke ten cigars a day and can eat three big beef steaks a day", and he was as happyy as a clam. I wrote
him back that he was dangerously well and would be back here again before long. In six months he was back, and he was so bad off he came pretty nearly iyixg going to an insane asylum. He had actually to be brought here by a strong man. We got him on his foet again. Now, in the couree of twenty years, that man and his wife together spent soven years in this institution, counting them as one person--the two persons together spent seven years in this institution, and it was all due to backsliding. The next to the last time he came, he had been careless about his eating again. He took to his beefsteaks and cane sugar and things, and he had added diabetes to histroubles. The last time he came, he had both diabetes and Bright's disease. The next time hd didn't come. He went to the cemetery instead. Now, that man might have been cured andmight have remained cured when he got on his feet the first time; he never need to have been sick again; it was a disgrace and a shane. It was simply his cigars and beefsteak and hisneglect to do the things he was instructed to do.

Now, my friends, I want to say to you I find it worth my while to do the things I recommend to you to do. I recomend plain living to you, - I live plainer than any of you. I recommend you should not eat beefsteak,--I never taxgkt touch it. I recomend you should not eat mustard, pepper, peppersauce and things of that kind. I would just as soon take arsenic or poison of any other kind as to eat those abominations. I recommend that you chew your food very thoroughly. I an careful to chew my food. I recomend you to eat a low protein dietary. I make my protein very low. I nake my protein just as low as I know how. I don't eat anything that has any more protein in it than bread has, and I don't eat very much read. I eat ju-t about half as much protein as I recommend anybody else to eat. I find most people are afraid of getting their protein too low; but I am trying it, and thriving upon it, and I f ind myself improving from year to year. I am in better health at this present time than I ever was in my life before. I never knew what it was to feel so full of energy
and snap, and ability to work as I do at the present time; and I am sure it is not because I am eating beefsteaks, for I don't eat beefsteak. I am sure it is not the high protein diet, a rich diet that helps me, because I do not use those things. I lived on a very rich dietary when I was a boy, and until I was about fourteen years old, and my health was wrecked; my digestion was ruined. I was such a puny boy they thought I would not live till I was tewnly. Everybody prophesied I would die before I was twenty. I was just thinking as I was coméng don to the lecture that those people are nearly all dead; I can hardly remember any of them who are alive that I knew in my boybood; they have ilearly all passed away--men about my own ag, grown up, become senile, and broken downin health and passed off the stoge; and I find myself still here and able to work; and I am as confident as I am alive that it is due to following a simple dietary, a simple mode of life, unstimulating foodstuffs, obeying the laws of Nature. It pays to be good. I do not knar anything that pays better than to be good, to live according to the rules the Almighty made for us when he constructed our bodies.

Here is a ruined liver. Suppose such a man goes to eating beef steak s_{j} he is just as bad off as that dog that has Eck's fistula, you see. He might just as well cut his throat, about, as to undertake to live on beefsteak. That is a cancerous liver. Here are some more ruined livers. Here is a congested liver, here a cirrhotic liver, a gin liver, a fatty lier, an inflamed liver, a hobnailed liver, a cancerous liver. I operated on a case not very long ago, and found a cancerous liver four times as big as it ought to be. Just thik of that woman eating beefsteak. You saw what it did to the dog in the laboratory. It will do the thing to the woman as to the dog, because her liver was erippled in the same way. I do not suppose there is one person in a thousand that comes to this institution here that does not have a more or less crippled liver; and such persons need to take a diet that will give the liver every chance,
and that will be productive of just as aaall an amount of poisons in the body as possible.

Here is the thyroid gland which is a poison destroying gland. It aids the liver in destroying poisons. Some poisons pass on through that the liver is not able to destroy, and the thyroid gland helps about that, produces a substance which stimulates the suprarenaln capsules of the liver to produce the adrenalin which helps burn up poisons. This gland sometines gets enlarged. A lady in the house now has one side onorkously enlarged, and it h as got to be removed, I suppose. We have to remove sometimes a large part of the gland. There are two bry common forms of goiter, acute enlargement of the gland or exophthalmic goiter, in which the gland is too active, hyperthyroidism it is sometimes called, sometimes called Graves's disease,--a very rapid pulse, very marked nervous symptons, protruding eyeballs, and trembling of the fingers, and there are various other symptoms, a rise of temperature andmuch weakness and perspiration, nervous disturbances of various sorts. This disease is coming to be much more comon than formerly. It is increasing in frequency, and the operation performed is to remove a part of the gland. That is the operation that is done for relief of this condition. It is caused by an excess of these poisons and a moat diet is largely responsible for it. It may be an inactive state of the bowels flooding the body with poisons so that the gland is over excited and becomes enlarged. A man came to my office to see me about lis wife's case today, and I noticed he had an enormous red nose, a nose enormously enlarged and very red; he had a characteristic rum blossom, and I know what made it in that particular case, too. It is rather an open secret what makes rum lossome. The reason why this man's nose was red was it had grown too big for the rest of the face, because the blood vessels of his nose had been stimulated; the vasomotor centers had been stimulated by alcohol, and that caused relaxation of the
blood vessels of the nose, and there had been too much blood brought there and It had grown too fast for the rest of his face.

A similar condition prevails in the thyroid gland when toxins absorbed from the colon are present in lare numbers; the gland is over-excited, and they become enlarged, filled with blood, and they send into the blood too large an amount of their secretion, thyroidin, and that excites and disturbs the entire body. The usual remedy is to cut off a part of the gland. That leaves only a part of the gland behind, and the same influences continuing, this gland is influenced still more, and the remaining part is very liable to undergo degeneration, almost certain sooner or 1 ater to un dergo degeneration. This degeneration which takes place by and by leaves the person without the thyroid gland, so the poisons will be left to accumulate in the body, a condition know as myxedema is produced-a condition whith is much saore serious than the first condition. So the thig that needs to be done is not simply to operate upon the gland, which is sometimes necessary, but to change the dietary, to correct the habits, to remove the cause of this condition. There is the suprarenal capsule that we have been talking about that makes the adrenalin and helps to burn up poisons; and here are the kidneys that have to do that elimination of poisons. This is the filtering part of the liver through which the waste matters are filtered out and pass down through the kidney and this part of the body. Now, if one takes into the body too large an amount of poisons, the kidney is overworked as well as the liver and too large a quantity of these poisons is thrown down through te liver, coming in contact with the liver cells so they are spoiled and the liver itself undergoes a degenerative process.

Here is a fatty liver; here is a beer drinker's liver, and a gin drinker'a liver. These are ather characteristic. This is the kidney of a man who has been using alcohol or whiskey; or tea of a woman who has been using tea or coffee for a good many years; the kidneys of such a person are certain to be
erippled. Now, if we want to maintain this overworked kidney and liver, we must give them an easy time. A man can live as long as the kidney and the liver and other excretory organs are able to keep the blood clean--the man can generally live. If the kidneys get worn out, the manmust die, no matter what his age is. If the liver gives out, the man must die no matter what his age. But even the man with the old liver and the old kidneys can manage to eke out an existence for a long time by taking extra good care of his liver and kidneys. That is the thing I want to impress upon your minds, my friends--th at by extraordinary care in living, by doing works of supererogation, it is possible to take such care of our danaged, abused, crippled kidneys that they will still do service for a long tine, even greater than might be predicted.

Here is the colon showing its position as it is found in a normal state. Here is the sigmoid flexure. Here is an ray pictre, a radiograph of a colon. By giving the patient some yogurt with some bismuth in it, the colon is made visible to the X ray, so we are able to take a picture of it as you see here. Here is where it lies up next to the liver, but it has fallen down a little here. Here is a little loop that goes clear up to the diaphragm, and axe when it comes down here, you see, it makes a great loop here. It comes down here, makes a fold backward, and another onef here and several loops here. When the colon becomes elongated, as it is here, and folded over on itself so many times, it is certain to be a difficult colon to manage, because the contentis of the colon are retained. Then it is very hard for the colon to pass ther along. Suppose you take a rubber tube and fold it; you know the tube collapses, folds upon itself. Here is another corner where there is a collapse and there are some more here. So when the excretory matter is passed ito the colon, it passes alog up to these points, and then it is stopped for a long time, and after while passes over here an dremains here, and when the pressure is sufficient, then it is driven over. This is the source of a tremendous amount
of trouble when the colon becomes prolapsed and elongated, as the consequence of chronic disease. In such cases it is necessary to take great care to maintain the contents of the colon in a moist state. That is why we racomend colax, or agar-agar, Japanese seaweed, and the bran biscuit, sterilized bran and other similar preparations,--that is why we recommend lettuce and a great deal of greenstuff, and oresh vegetables for persons suffering with this sort of troubleso the colon will have sufficient material to spread out these folds so there will be sufficient bulk in the bowel to stimulate it to contract with sufficient vigor to force the contents elong in spite of the folds. This is a practical demonstration of this difficulty which is so common in people who have relaxed abdominal muscles, people who have neglected to develop the abdominal muscles, and who are sedentary, and the colon gets into all sorts of tangles.

Here is another illustration of the same thing as a result of the retention of these decomposable natters in the colon, end bacteria of various sorts are enabled to grow there. These are putrefactive bacteria which you see here. That is the way it looked under the microscope, and they are growing in great numbers. In this case, 25% of the bacteria were of the putrefactive sort. You see they are blue in this picture, and these are the friendlygerme, which produce acids, whereas the red ones produce poisons in the alimentary canal, poisone of an alkaline character, produce ammonia, ptomains, indol, skatol, and other bad melling, offensie things. Now, these poisons produced by decomposition going on in the colon in that way, poison the blood, and these blood cells that have the duty of getting out into the tissues and capturing the germs and eating them up, they become paralyzed so that they can not do their work; then the person gets a little cut, perhaps, and it suppurates, dces not heal. I was examining a patient today who had just a little puncture on his finger last year and it suppurated until he had to have his han d and arm lanced,
because blood poisoning had set in, and he was ten weeks getting over it. If his blood had been right, he would not have had any trouble at all. Unfortunately, he did not recognize the significence of this incident, so he did not go to work at on to purify his blood. He was suffering from chronic stasis in t he colon, poisons were being absorbed into the blood, and the bdy was saturated with poisons. Now, we find he has Bright's disease; his legs are swolIen up with dropsy, thera is albumin and casts, less of power to eliminate chlorid of sodium so thisis accumulating in his body and he has got dropsy, and his chances of recovery are very, very slim. I think he will get up once more, and he may still live a good many years, xad of useful life; but it will be the easiest thing in the world to get down again. And if he once more gete down, he will never again get up. That is when these blood cells are not able to fight for the body, are not able to estroy gerns, they become instead a menace to the body, because when they are not able to fight, to defend the body, some of them attack the body, attack the brain and eat it up, attack the spinal cord and other parts.

This is Prof. Wetchnikoff wb made the remarkable discovery I have just stated; he studied these cells in the Pasteur Institute, of Paris. I met him four years ago in visiting the Pasteur In stitute, and we have a man now here visiting us who spent some time in the Pasteur Institute, studying, and he is perhaps better acquainted with this man thon we are. Dr. Metcheroff has made the remarkabe discovery that these blood cells are the defenders of the body, and their ability to defend the bo dy depends upon keeping the body clean and pure, and when we allow the blood to get unclean so the breath smells bad, and the skin becomes dingy and pigmented and brown circles form around the wes, and brown spote form on your hends, --that means your body is being saturated with poisons, and when we allow the blod to get so contaminated as this, to have a bad taste in the mouth, and a coated tongue, and a foul odor, an offensive
odor in the bowel dscharges, that means generally autointoxication, and meens a polluted state of the blood, means paralyzed body defenders, means wo ought to be doing something straight away, or Eright's disease, or liver disease, or arteriosclerosis, hardening of the arteries, or some other mischief will be soon making itself apparent.

Here is Mr. Fletcher. He doesn't loks so very old. A few years ago he could not get life insurance because he was in such a miserable state. Eut after taking paine to eat properly, taking peine to chew his food thoroughly, every morsel he ate, he succeeded in ax improving his state of health to such a degree he didn't have any difficulty in getting all the life insurance he wanted, and he has really been rejuvenated. Here he is making a great leap over the water, going down into the water feet first with all the precision of a youngster, although he had not practiced the feat for more than forty years, be did not have the slightest difficulty in turning this sumersault in the air, and doing feats that are very difficulty even for young people.

Notice this table showing the bacteria in meat. Four hundred and twenty millions in a little piece af not as big as your thumb of sausage. Small sausage had half as many more. Round steak had $560,000,000$; roest beef 560 millione; well done tenderloin had 55 millions, and tenderloin rare had 1.68 millions; so you see cooking does ot destroy these gerws. For instance, there were a billion germs in a quarter of a dram of pork the next day after it was brought to the laboratory. These were portions of meat brought up here to our laboratory for examination by the chef of the Post Tavern. The chefx was making some studies in chemistry in our leboratory, so we asked him to bring along some meat as he served it at the table, just as he servedx it. This was the result. So you see what the people at Post Tavern are eating. If you go down there somewhere to get a square meal, ycu can see what you will get.

I have known people to do such things before now. But post Tevern diet is just as good as any other hotel diet in the country. I must not neglect to ay that. The tender meat you buy in the market is always well advanced in decay. Sometimes you haxe will be sure to get it all right, and you will take the aysters alive on the half shell before they have a chance to undergo putrefaction. Did you ever think of t he oyster's anatomy? He hasn't got any eyes, but he has got a whole lot of other things, liver, kidneys, small intestives, stomach and an enormous mouth; and these are the gills, and the bacteria gather in great numbers in these gills, and they are always found present in the oyster. The next time you take a live oyster on the half shell and masticate him, just think of what a delightful morsel it is. Now, let me see, this is the head--hot nice it is. This is its brain--what little it has; here is its spial cord if he has any. Here is his liver and kimey; this is emall intestine. Now, isn't that interesting to thik of--taking a live creature an d ch oring him up just as though a big Cyclops got hold of you and swallowed you alive, mesticated you while you were still alive and quivering? Think of swallowing a live beast, alive and kicking. That is the way the live oyster goes down. If we had vever seen an oyster eaten alive, and somebody should come here andertake to introduce the practice into this country, it would be condemned as cruelty to animels, and as most inhuman and monstrous. Now, the oyster, then, is alie; it has not undergone decomposition yet, perhaps on the half shell, alive and kicking, as I was saying; still is just as bad as the rest, I think, because he lives on germs, and h as gt his stomach full of the very vorst kind of germs, so when you swallow him stomach and all, including the last dinner he ate, you have got youreslf well infected. And there is no improvement.

Now, how strange it is that we should abuse this marvelous machine of ours; how strange it is that we should abuse this wonderful bo of of ours that has been created for such high purposes; that has such a marveloss intelligence
at work within it all the time. Here is an illustration of it. A baby awellows a stickpir. We thak the baby is going to die sure. It is not at all likely the baby will die because it swallowed that stickpin. When it E_{s} down into the baby's stomach, you can almost guaratge that nothing serious will happen. Prof. Roger, of Paris, made a careful study of this question an animals and found this: The stick pin begins to penetrate the wall of the intestine, and immediately the wall begins to grow thick, and it thickens up so fast the pin does not get through, and the wall begins to push up, prese up around that pin so that it stands up straight, and by and by it begins to be pushed over, and in the course of a few minutes it has got taxtlx the pin pushed clear over so that it is going down stream, and everything is all right. Now, isn't that a wonderful thing? That thing happens when all the nerve that connect the intestive with the brain are cut off so there are no nerves connected with the brain at all. This is thing is automatic; so you see what a marvelous intelligence there is at work within us; and this intelligence is able to remedy wonderful defects. It is able to correct terrible conditions of disease. It is this power that brings us back to health again. The same power that knows what to do with that pin knows what to do with ulcer of the stomach; it kows what to do with that disessed liver; it knows what to do with diseased kidneys, or any other conditions. Itworks for that man. It works at nigt. Here is something that works while youare awake, and that worke while you are asleep, that is all the time intelligently working to do the very best possible thig for us. We ought to cooporate, don't you think, when we have such a beneficent power as that working for us, we ought to do the best we can; but we don't. We put as meny obstacles in the as possible.

Hers is another thing. This is the apron that hangs down in front of the abdomen, the out side of the abdominal wall known to butchers as the call. It is the omentum, the anatomiste call it--aimply a thin membrane wilh some fat in
it, and blood vessels and Iymphatics; it has a most wonderful function in the body. It is called the abdominel doctor, because it carries help where it is meoded. Here is where the appendix is. It gets infected, ond the omentum comes down and wraps itself right around that appendix so if the appendix should suppurate and burst, the pus won't get out into the abdominal cavity. There is not much danger from appendicitis if we let it alone, because this abdominal doctor is there and knows what to do. Maybe there is trouble with ellstones up hare. Many a time I hae operated upon the all-bladder and found this abdominal doctor here, actually turned clear over and climbed up there and wrapped itself around the gallobladder. In case the gallobladder had ruptured half a dozen gall stones might be let out into the abdominal cavity, and no harm would be done beause this omentum would vrapz itself all around them, and it had wrapped itself around the gallobladder and made a pocket there, and those stones would be let through into that pocket, and not the least bit of harm would be done. I took the gallstones out and the patient made a perfectly good recovery lives in this town now, and is a healthy, heppy, robuet woman. There were only 107 gallstones. The omentum had by this marvelous intelligence which it has, wrapped itself around; and it moves about fromone part to aother where it is needed, and had taken care of this case and saved the woman's life. We depend upon this abdominal doctor to a wonderful degree. Yesterday I operated upon a lady's stomach, to make a new pylorus for her, to attach the intestine at another place so food could pass through and pass by the obstruction there. The last thing I did before closing up the abdomiel wall was to bring in the abdominal dector, hold it up there where it was wanted, and fold it down over my operation so as to be right handy by to begin business to take care of that ugly wound I had made. The patient is getting on tip top today, slept fairly well last pight, and in a week or to you will see her out in a wheelchair here all right, and her troubles will be gone. And the reason my operation did not kill hr is because
this abdominal doctor was on hend to take care of her. My friends, it is simply marvelous. I wish I had an hour or two to tell gou of these wonderful things that are going on in the body as the result of the intelligent co-operation of the Power that is within us, which is the identical power that made us; it is the same Power that made us in the first place, and it is still with us, looking after us, taking care of us. And how we ought to co-operate. I was going to tell you some other thinge, but we will leave them to another time. I will now show you some of the mi schievous things the fly does. It will give yu a histery of the fly and show you some of the horrible things the house fly is about, so you will be quite interested when you go home to protect your house and food and babies, and everything in the home from the most dangerous objects with which we come in contact, the common fly. I don't know of anything so dangerous; but now I will stop talking as the pictures will tell their own story.

THE MIRACLE OF HEALING

A Lecture At the Sanitariua Parlor, Eattle Creek, $/ 2$ ch., Sabbath, Hay 20, 1911,

At : $: 00 \mathrm{P} . \mathrm{M} ., \mathrm{By}$
J.H. Kellogg, M.D.

The healing of disease has always b a mystery. The earliest people looked upon disease as aninfliction coming either from a divine source or from an evil source. When a man was sick, it was either bocuase Cod or the devil made him sick. And the gods must be placated, or the devil must be in some way cajoled into letting him alone. So the old methods of healing, based upon that philosophy, consisted chiefly of magic of various sorts. There were certain places, certain springs, that were supposed to possess this magic ability to charin away disease. There were certain herbs supposed to have the power to persuade the devil or demon in the man to leave him, so these herbe were sometimes burned and brought near the nostrils of the eick men, then carried away and brought back again, an α so again and again, with the hope that the devil might be coaxed out. Siekness was supposed to be a demoniacal possession, and the demon must be in some way induced to leave.

This idea in a modified form is still aliv in the world. After while, in some way, the ide came into being that cartain drugs poseessed the power of exorcising the diseased entity out of the patient. The disease mas still looked upon as an entity; but when the superstitions of the early daye and the Dark Ages began to leave the human mind, people more and mon became possessed of the idea that disease was an entity of some sort, if not en intelligence, if not a demon, it was still an entity of some sort that must be driven out, an entity that mu t be battled with. And so it had to be attacked in various ways.

Doctors 200 or 300 years ago used to attack di sease so vigorously that sometimes there wasn't much left of the patient when the battle was over, and it is quite possible that that might happen een in these latter days. It is a thing the doctor elways has to be on the lookout for, that the remedies he administers are not possibly doing his patient as much harm as good. And the wise doctor is always careful upon that point. He takes care that what he does will do no harm, if it does not do ery much good.

By degrees, better ideas of disease have come into being. At the present time people are losing their faith in drugs more and more, and doctors are using drugs less and leas, and this has come about by e recognition of the real nature of disease. Disease is no longer looked upon as on entity, something malign that has got possession of a man and is sapping his life; somethire that must be distroyed; but disease now is looked upon as a natural processi it is rightfully regarded as a natural process, a process by which the body is seeking to brin itself back to a normal state. This is the result of some departure from the normal candition of life. It is the same forces of the body which are ordinarily in operation, but in operation under adverse circumstances. That is what we call disease. When the body is doing thing in a state of disease, it is not doing anything which it is not ordinarily doing, but may be doing it in a different way, different from its ordinary process; but it is only such a different process or different action as is required by the emergency that the disease h as itself developed.

We might illustrate this in a great many ways, but I want to impress another thought, so I will hasten on. We find the remedial process, the cure of disease or morbid conditions, is not confined to humen beings; it is ot confined to animals either; it is a thing which pertains to all life of all sats, vegetabe life ss well as animal life. Tear off the limb of a tree. In due time in minet instances, you will find that the wound has been nealed over. As I was
coming down here a few moments ago. I passed a tree upon my law that I had set out some 17 or 18 years ago, and the next year after I set it out. I was very much distressed to find that becau of an oversight of the gardener on a very hot day, the bark on one side of the tree was blistered, so the bark was dead on one side of the tree. A friend said that that tree would die, that I must take it up; but I passed it today, and it is a large, fine tree with a trunk nearly a foot in diameter, end the place where one half the back had come off was all covered with bark. New bark has grown out around the tree, end the edges of the bark gradually grew together until the trunk of the tree is entirely covered, and it is a larg, splendid, healthy, vigorcus tree. It has been cured, it has been healed by the same process that is making the tree. The eame process that is creating the tree has been at work healing the tree.

Now, the very same thing happens toourselves sometimes. Our covering skin--the bark of the body we might call it, gets wounded. Here is a cut in the skin, or a burn perhaps, that takes off a square foot of skin. In due time it is covered over, not with new skin entirely in this case; we do notget exactly a healthy, normal skin, but it is a covering, a protective covering which takes the place of the skinvery well. It doesn't do to have the entire body covered with that kind of skin, but it onswers very well to cover over this raw surface at any rate. We do not find the hair growing upon it; we do not find the sweat glands graximg in it; we find it differs in quite a number of particulars, so it is not like the ordinary skin, but it fiesxaxerx heals over. If we look at the edge we can see it is healing, we can see that there is a little white rim around the edge. Each day we will see it spproach the center a litle more and a little more, and in due tire it is covered over. We have various whealing things" tat we talk about that we apply, healing salves, healing lotions of various sorts that we put on wounde that many poople have very great faith in,
but none of these are capable of healing. If wo stop to think of it, we know there is no such thing as salve that can heal or can make skin. Suppose, forInstance, one of these things that is supposed to be so healing shouldbe zubbed on a table or a board somewhere. We would ot see anybing growing there, or any skin produced, or any evidence of life or activity. So these so-celled healing things do not heal; they only protect. There is nothing anything can do to a raw surface on the skin except protect it. The healing process is a prom cess by which new skin is created, or by which a new covering is formed to protect this raw surface. So, if we have a cut and there is a gap in the skin, in a little while we find it healed up. And it has been a mystery through all the ags why the healing takes place. Here is, then, a normal skin, the celle pursuing normal activities; we cut the skin and there is a ap there. At once these cells begin to grow, to reproduce themselves with great activity. Cell proliferation, as it is called, takes place, and the cells grow, and in a little while the ap is filled up. Why does this oocur? Why does this gap close up in this way? Why do these cells take on this hyperactivity as soon as a woun of that sort occurs? Nobody ever knew until just the other day. Dr. Rose, of Liverpool, who has been studying this question for a good many years, made the di scovery the other day that the thing that starts this process of healing is te dead celle. It is the destrayed tissues, the disintegrated flesh. The living cells are destroyed by the wound, and the products of the destruction of these cells act as a stimulus to the living celle and cause them to take on this extreordinary activity. So we see those cella are ready to do something which they ere not doing if they have a right kind of stimulus. All they require is notification of the right kind. There is an instinct within them which eauses them to heal a wound, when healing ofa wound is needed, and all they require is notification, and the notificstion which comes to them is the most natural
thingin the world. It is the natural product of the wound itself. The product If the destroyed cells are a potification to the la living cells that there is work now fo them to do in repairing damage that has been done. This is a very interesting discovery made by Dr. Ross, and by means of this discoury, he was able to look through a microscope and see livig cells at work, dividing and multiplying It was the veryfirst time in the whole hi story of the world that the white blod cells were seen to divide and multiply right under the eye of the observer, under the stimulus of these products of tissue destruction. So we begin to kow a little more about these secret processes than we have known before; so the mystery is to some degree being removed; but dow beneath it all the grest mystery still remains.

What is it in the cell that causes it to behave in such a different way from ite ordinary method of work? There are the cells, remaining quiet in the skin, and all of a sudden, under this new stimulus, they begin to grow and multiply, reproduce thomselves to an enormous degree. Sometimes paximata persons have lost as much as one third of the entire surface of the bdyy, and that would mean a couple of square feet perhaps, and that two square feet had to be reproduced. See what a tremendous work it is that these celle have to do. It is an extraordinary work; it is a sort of emergency work, something entirely different from what they are ordinarily doing. Now, we see that illustrated in quite a good many observations that are made by the biologist. Here is a lobster, for example, that loses ite leg; gets into a fight with apother lobster, and one of its legs is pulled off, or maybe two or three. In six weeks he will have three new legs just as big and in every way just as good as those were. He has got perhaps a whole now set of legs. It sometimes happens that a lobster gets very much frightened and shakes his legs all off through fear; or tkay he becomes angry at something and tears them off. He throws his legs away onthe slightest provecation, perheps because he has learned from experience that
he will get a new set of legs. I has seen some people who behaved just about as reasonably as a lobster. They throw away their livers, and throw away their stomachs, throw away their nerve energy, live in a great variety of ways recklessly; but they do not get it back again as easiy as a lobster. If a man cutsoff a finger, he does not have a new finger grown on. But a lobster and other lower orders of life, the jellyfish, for example, and the earthworm, have this power of reproduction of lost parts to a marvelous degree. Cut an earthworm in two, and one half will grow on a head and the other half a tail, end you have got two worms instead of one. Take a jellyfish, chop it up into a thousand pieces, and each one becomes a complete jellyfish and sails off in the water about ita besiness, and becomes another separate, distinct fish.

There is something of this power in the human body. The liver, for instance, has a marvelous power to reproduce itself. A German physiologist took a rabbit and cut off half its liver, and it grew on again in the course of three months; then he cut off the other half, and it grew on; so the rable in the course of half a year, had a brand new liver. That is what a good many people need--reconstructed livers; end not only that, but reconstruction of the whole body. Now, fortunately, there is a process of repair going on in the bdy, a process of change going thxaxgkxtusmany on by means of which the body is reproduced. The soft parts of the body are changed phaps every few months. The greater part of the tissues are undergoing continual change. The hard parts change very slowly, but the soft parts change very rapidly. The blood, of wheh we heve cbout ten pints in our veins, in a person of avarage size,--this blood is changed every siz weeks. That is, the blood cells are all made over new every six weeks, and the watery part of the blood, the lymph, the plasma of the blood is changed much more often than that; but the blood cells are all new. Through this process, recreation and reproduction are going on in the bdy contianally. Eight million new blood cells are made evgry second of our lives--think of it--
eight million nez blod cells are made overy second of our livea, created every second of our lives. This process of re-creatin, of reproduction is continually going on. The old is wearing off, boing cast out, and the new isbeing produced and built up. This is a process of creation, then, you see, going on within us continually. We think of creation as something that happened away back somewne in the ages, away back in the beginning of things; but that is not the place to look for creation. That is so far back we do not know just when it was, and we haven't got any very exact, authentic record of exactly how things happened at the creation; but the ereation that ought to interest us, that is thexxixax of vital importance to $u s$ is the creation that is going on right now, here, at present, right before our eyes; a process that is going on continually, that we cen look at and see with our eyes.

Here is an illustration of it that you soe going on right along-the famers going out planting. In a few days the farmers will be planting their corn all about here, and we will see a farm going out with a bushol of corn on his shoulder, and next fall, we will wait just a fow weeks and we will see that same farmer out there with horses and wagons hauling in the corn that is grown f from that one bushel. Five hundred bushels of corn, perhaps, will be got back where only one bushel went out. Now, that 499 bushels of corn have been created. Eery one of to kernels of com in that 500 bushels, every kernel has just as much vigor and vitality, veighs just as much, and is in every way equal to the kernels of corn that rent out; so you see there is a creation. I was riding out some years ago axa and passed a long row of nagnificent trees, perhaps twenty-6ive or thirty beautiful trees stood in front of a man's farm-onormous, great naple trees, and I could not begin to reach around them. A friend of mine who was well acquainted with the country, told me ho know the famp who lived behind those trees, and that that farmer fifty years ago went to the woods and gathered up those trees, then little bits of sprouts, jutit little bits of serubs, dug
them out of the earth, brought them all in on his shoulder, all on one sbulder. Now, it would take several yoke of oxen to haul one of those trees at the present time. Theee has been a tremendous increase of tree substance, and it has been done by a process of creation, by real reconstruction, and re-making, and reproducing.

The process of eating is a real process of creation. The food we eat at our tables, this food is dead, it is inert. The bread and the potatoes and all the rest of the things we eat if left there upon the tale would soon pass into decay. We eat them, they are created into our bodies, they are transmuted. It is like making gold out of lead; they are transfigured; more then that, because the food we eat to day tomorrow will be walking around and talking, will be aliv, and thining, sentient, full of force and energy, while today it is dead and inert. So here is a process of creation, a marvelousprocess. We may call it the miracle of life if you please, because there ae so many things that are absolutely inexplicable. The only explanation of the mystory is this: that the same Power that rade us in the first place, the same Power that made the first man, the first living thing, --that power, that supreme Power that sustains the universe, that Power is still in us, wo rking in us; it dwells within usi it is incarnate if you please, in every soul and every fiber of our bdies. The powor which made Adam in the first place had to stay with Adam to keop him alive. Adan had to be recreated every second. He needs the stroun of life continually pouring ito him, and he needs a continual impulse, an intelligent impulse to control the conditions of the body, of every cell, of every function, in order to keep it going. The human machine, the living machine, whether it is aninal or vegetable, is so marvelous, so intricate it can not run all by iself alone, but it requires continual supervision, continual control. John Fisk said that when he was a boy his idea of God was of a great Being somewhere that away back in the beginning had sometine in sele the world and the universe, and set it
going, and then vent off somewhere and sat down to see it go, and had hot had much to do with it since.

Now, I relly think it is that idea that gets ito the minds of the majority of people who thinis crudely in relation to this matter; and the majority of people in thinking about the cosmos, in thinking about cosnios and about the genesis of things rarely ever get beyond the kindergarten stage. I think most people think in kindergarten terms with reference to the origing of things. That was JohnFisk's idea when he was a boy. He got a better idea before he got through. It is necessary for us to cast these i das off in thepresence of the results of modern research and inquiry; it is necessary for us to recognize the fact that the power that made us is still with us. It did not make us and then set ue adrift, but it stajed with us and must stay with us so long as life lasts, the supreme Power that created us is right with us all the time, and superxising every function of our bodies. Now, the miracle of healing is really nothing more than the miracle of life. The same Power that created us has not deserted us when we are sixk; it remains with us. Healing is not very different from creating, from what is going on continually.

As a simple illustration of that, we might think of digestion, for example A man eats his breakfast. If we could lok into his stomach before ard he ate that breakfast, we could see it was pale. Dr. Beaumont had an opportunity, you know, to study the inside of a man's stomach xary through a little window a man accidentally made when he went out hunting. There was a window left in his stomach, so he could look in and see what was going on. He could see the mucous merubrane there, and it was pale. After the man swallowed a fem mouthfuls of food the whole mucoua membrane of the stomach becane red almost with a bloodshot appearance, becane congested and red, and pretty soon the gastric juice began to pour out in drops as perspiration sometimes starts from the brow. The process
of digestion was begun. Now, every time a person⿻ eats, then, his stomach becomes congested. He gets congestion of the stomach, too nuch blood in the stomach. If a person eat's con \ddagger inually, this condition of congestion will become permanent, and people sometizes by overeating, by too frequent eating, by abusing their stonachs, the stomachs get after while into a state of permanent congestion, but the noraal way is for a man after he has eaten to rest for a while and give his stanach a chance to rest; and in this period of rest, the stomach is restored, the congestion is removed, the stomach returns to its normal state. Now, the stoma on has little pockets in it, and these little pockets are lined with curious cells, and in each one of these cells is a large number of little granules, and each one of those granules is stored up energy. The little cells are packed full of these granules. Every cell has a little center called the nucleus, and those granules are packed in the cellsf so thick you cab not see the nuclous, or can hardly see it at all; but it is all covered up. But after the stomach has beon working for some time, these granules dsappear, and the cells become pale. The store of energy wich was gathered in there has been spent. While the stomach rosta between meals, these granules re-appear, they are gradually gathered in agin.

Now, there is a process of rebuilding, there is a process of creatio, by which these granules are created whersthey did not exist before; so the cells aequire a store of energy. The stomach that has beon digesting a meal for severalhours becomes in a certain sense sick, becoraes fatigued, tired, and it needs to be restored, and this process of restoring xas is a kind of healing, because if the work is repeated again and again and again without any opportunity for rest, there becomes finally a state of permanent crippling, and injury, and the stomach is di saased.

The very same thing is true of muscle work. Hard work wears out the
muscle. Rest and sleep is a healing process by which the worn, itigued parts are recreated, restoredx to their normal state again.

Now, what we call disease is someting a little different from the conditions thest ordinarily occur in our ordinary lives. It is somewat different, but it does ot differ so very much after all. It is really not very different in kind. It is only the extension of the same thing. Here is a man who says he is neurasthenic. He says he feels exhausted. Somebody was asking me some tirae ago if I real y ever had any experience, if İreally knew anything about a how neurasthenic man felt; and I said sure I did, for I had had neurasthenia myself very, very bad. "Is that so?" "Yes," I said, "I have had it a great many times. I have worked all day, and worked most all night, perhaps, or all night and the next day and half the next night, and along about three 0^{\prime} clock in the morning. I got dreadfully neurasthenic. I get into a state of terrible neurasthenia, but I get a chance to go to bed and sleep, and in a few hours I am cured." So I have had a good many experiences with nerous exhaustion; but that the man that calls hinself a neurasthenic, or becomes neurasthenic does not get cured when he sleeps; that is the difference. He has to have more than one night's sleop to cure him. Fatigue and work exhaustion are cured by rest. When a man gets neurasthenic, he has gotten to a state where he can not rest; he has gotten to a condition where he is ot cured by sleap and by rest. He is in a state of chronic weariness, a state of chronic exhaustion. All his trouble is that he has lost the power to store up those little granules of energy; he can not adcumulate energy; there are toxins in hisbo dy, poisons whith paralyze his nerve ceters and so inhibit the activities whib otherwise he might be capable of.

Now, I mention these illustrations so you will get the idea, if I
cap possibly convey it to you, that disease is not a thing so far different from the things which we experience in our every-day lives; it is only the natural forces of the body operating under unnatural conditions. It is the body seeking to carry a lod heavier than it ought to be able to cerry. A man says he is
bilibas, for exanple. Now, he is notbilious because h is liver h as ceased to act; but he is bilious only because the poisons have accunulated in his body xatijix in such enompus amount that the liver is not able to deal with them all, is not able to keep the blood clean and pure, and so to keep the body in a normal state. Now, what that man wants is ot sopthing to repair his liver; what remove he wants is to lessen the work of his liver, to mamkiakixrs these poisons, to cesse producing them so that the liver will not have this abnormal mork to do. Suppose a man has a fover. We used to think fever was a thing that was to be combated. Now we know that a feer is curative. For instance, if a child has diphtheria, geta a rise of temperature, the purpose of that rise of thaperature is to cure the child. The fever is curative; it is necessary. A child with diphtheria without any fever is in a great deal more serious condition than a child with diphtheria with the fever, because fever is a healing process. Undr the influence of fever, or rise of temperature, the bacteria can be destroyed, an d this elevation of the temperature is one of the things necessary for the destruction of the bacteria, the infection whith is making the child sick. The most waderful thing we see conected with disease is the manner in which the body adapts itself to emergencies. A very good illustration of that is what occurs, for exanple, when a nerve is cut. Now, it used to be supposed that when a nerve trunk was cut--suppose my fingers represent the fibers of a nerve, and the nerve has been cut so they are separated. Now, the old idea was that the only way in which that nerve could be restored was by starting at the root, beginning and growing out the whole length of the nerve, because nobody could see how it was possible for all these delicate little fibers which make up the nerve, perhaps one twenty thousandth of an inch in diamater-how it was possible for them ever to get matched togther agin so that the right ones were joined. You can see what would happen if a nerve from the little finger joined a nerve to the thumb. If you wanted to mo the little finger, it would be the
thuicb that would work instead; so thigs would be badly mixed up. Suppose we had to start clear back at the beginning and form a new nerve. That is the old supposition. But more recent observations have sown that the nerve may actually be repaired; and that in this bundle, perhaps 10000 minute filaments each one wenty thousandth of an inch in dianeter, --perhaps in that great nultitude of diverse filanents each one finds its mate. Now, think what a wonderful thing that is. The process is described by histologists who have studied it, something like this. Here is a telephone wire cable, and the cable is broken. Perhaps there are a hundred different wires in that cable. How are they all to be matched together again? It is quite a job to get then all together. But now suppose such a thing as that happened. You wo wa see the two ends hanging dow here, and all of a sudden, you should see one of the copper wires in one end of the cable grwing iut into the air, moving about in various ways, and touching the wires in the other end of the cable and finally fixing itself to one of them and growin fast there. That is exactly what happens when a nerve is cut. These filanents grow out, exainine, test out each one of the different correaponding nerve filaments in the other pare, and finally attach themselves. Each filament attaches itself tox its mate. And in that way the repair is effected. Now, one can readily see that such a thing could ot happen without intelligent control. And it must be an Inteliigence that is looking after this thing. In the process of repair. there must be an intelligent control of each of these active elements. When the skin has been torn off and a new skin is formed, a new skin has been created to cover that raw surface. When a nerve repairs itself, it is because there is an Inteliface at work superintending that repair. Now, the same thing is true in every part of the body where there is a healing process going on. For instance, here is a men gets pneumonia, or suppose it is appendicitis. That petient comes with pain in his side, and wa sexd him to bed, get a drop of his blood, examine that blood, and we can tell
by tha exanination, inpart, whether that patient is g oing to require an operation or not. Because in the blood there are certain cells the duty of which is to fight geris. And when these cells are present only in normal number, and the patient has a pain in hissich, we are not afraid of very profound infection. If we make another exanination and find these cells present in the blood in double the ordinary number, then we know that there are infectious gerns there, and mischief going on, and we must watch it sharp; and the next day we exanine it and we find perhaps three times the ordinary number, and then we know that infection is severe so that it will be a good plan, perhaps, to do an operation right away quick. But when anybody is cured of it without the operation, it is this reproduction of germ-destroying cells in the blood.

Here is a man who has pneunonia. Examine his blood, and we find perhaps the ordinary number, six or seven thousand white cells in a little drop of blood; in two or three hours he will havel ak hard chill, and he gets up to twenty-five or thirty thou sand instead of six or seven thousand, and perhaps at the end of 24 or 48 houss it may be 100,000 . The cells are enormously multiplied. We aske another examination and find fifteen or twenty billions of new cells have been created in the blood, on the spot, for the purpose of saving this nan's life. In pneumonia there is an infection of the body. We used to think pneumonia was a disease of the lungs, but now we know better. It is a disease of the whole body, a general infection with a local manifestation. But the entire body is sick, and the infection is affectim the entire body, influencing it, and here are these little blood cells multiplied in enormous numbers for the purpose of fighting off these germs. If the number produced is sufficient to destroy the germs, then the patient recovers, and by frequent examination of the blood it is possible to tell how the battle is going, just as possible as it is for the general to stand off on hill somewhere ard watch the contending armies with a telescopo-ait is possible for him to tell whether
his forces are being weakened or are gaining ground. So, by examination of the bloal, the intelligent, up-to-date physician can tell just how the battle is going in a case of pneumonia.

Here is a man who has typhoid fever. He lies there day after day, week after week. We see him going dow, gtting thinner, histongue coated, his fever runing $101^{\circ}, 102^{\circ}$, and sometines considerably higher than that, and day by day we see the patient apparently going down; he goes down two or three weeks, possibly four weeks, then all of a sudden he begins to come up. Now, after a patient h es once got dows so far, why doesn't he keep on going down? Why does the change come after three or fur weeks, or two or three weeks? Why does he begin to come up? Why doesn't he keep right on going down?

When a man has cancer, there isn't any change of that sort. When a person has malarial fever, as a rule, thers isn't any change of that sort unless there is something done for him; he is likely to keep on going down; but this man with typhoid fever, at the end of two or three weeks, we find hire coming up soain. It doesn't always happen so, but that is the usual way. A careful study of this matter has shown that when the patient has gone on with this diseage, typhoid feve, for two or three weeks, there is a change in the body. The body has produced certain substances in the blood which are antidotes for the poisons of the typhoid fever; certain new bodies are present that were not there before, so the typhoid fever germ will no longer grow and flourishin the blod, can no longer manufacture these toxins, and the germ is weakened and killed off; at not any rate, if the germ is killed off its toxins are neutralized to such a degree that the man can recover. So he does recover. And after he has once had typhoid fever in this way he is changed; he is different from the man he was before; he is not likely to have typhoid fever again, because the body has learned somethig, so to speak; it has acquired the power of fighting typhoid fever gering, and has acquired the ability to produce certain substances which were
introduced during the typhoid fever; and in this way the man's life is saved. Now, what a marvelous illustration this is, my frien $\dot{\xi}$, of an intelligent act within the body to bring in an emergency procedure. It requires something that you and I can not do, something more than human power. The same power that created the first man has pw created within the body an antidotal substance by which the man has become changed, so that the typhoid fever is no longer able to progress; the tissues are able to fight the typhoid fever. The very same thing happens when a man gets sinall-pox. Small-pox germs get into his body and the man is going down day after day, andby and by comes a change upward. A point is reached where the body produces in sufficient quantity these antidoting toxins whereby the poisons can be combated. The same thing happens in diphtheria when recovery occurs, and advantage has been taken of this by an ingenious scientist, Prof. Brlich, to produce a condition in the blood of a horse in which there is a tremendous power, an unusual andextraordinary power of resisting diphtheria. Inject some of the poison into the horse and in a short time, he injects some more, and more and more, until after while it is possible to inject into the horses blood a thousand times as much poison as would have killed him at the first. His blood acquires the power of resistance to the extent of a thousand times what it h in the first place. So a emell potion of serum from this horse's blood injected into the body of a child would be sufficient to protect the child against the diphtheria poison; and that is the philosophy of antitoxin; that is the reason why antitoxin has seved so many lives of children. See what a marvelous thing that is, my friends. A small dose of poison is inteoduced into the horse, and the horse is made just a little sick, but not very sick, and in a few days, a little while afterwards, anther dose is introduced, and after while the bay is trained so the antidoting substane can be introduced in enormous quantities. Then a little of the serum from that blood is injected into the body of the person that h as diphtheria and it
will save the life of that patient. That is what the human body is trying to make, but it is not able to make quite enough, perhap, to save the life; so we borrow some from the horse, and in that way the life may be saved.

I think the is one of the most wonderful illustrations of the intellient Power working in the body in the case of an emergency. So we see, I think so clearly that no scientific man will undertake to deny it,--we see there is abundant evidence that there is within thebody an intelligent force, an intellignt power continually at work. This idea does ot seam to be altogether a new one; it has always been possessed by samekraly some people or other away back in the ages. David, you know, said, "He wakeneth me morning by morning." David knew he could go to sleep, but he didn't kow how he could wake up; he didn't know how it was he waked up; and I don't know any physiologist that can explain this waking up. It is a very remarkable thing. Waking up is a great deal more reiaarkable than going to sleep. It seems to me it is easy to go to sleep; we can not keep awake; we are tired and exhausted, by the toxins that accumulate in our bodies; so we become tired and go to sleep; but how about waking up when we once get asleep? Why don't we stay al seep? Sometimes a person does go to sleep and never wakes up. We can not voluntarily wake ourselves up from sleep; but David said, "He wakeneth me morning by morning." An infinite Power is caring for us, looking after our interests all the while, an that is the power that heals, so that all healing is divine healing. We hear people talk sometimes about divine healing. We hear some people discussing about divine healing. I am a thorough believer in divine haling, because I believe in divine creating. I romember very well a lady cane into my office some years ago whose life had not been very successful, and she was 37 years old, and very unhappy andmiserable, an invalid, broken down; all her life plans had been frustrated, and she was very unhappy indeed, and she said to me one day, "Doctor, do you really
believe there is a god that takes an interest in us?" I said, "Why yes; I knax not only believe it, I know it, am sure of it." "Oh, if I could only believe that. I would be happyi but I can not believe it. God is so busy looking after all the great affairs of the universe, I can not believe he h as any time to look after me." "Now, "I said, "I can prove it to you." "Well, I wih you would." I said. "Now, put out your hand here. I want to feel your pulse." And I put my finger upon her pulse, and I said "Your heart is beating." "Why, yes, my heart is beating; of cour se my heart is beating. I don't feel it, of course." "The heart doesn't beat unless it is told to beat. Your arn is not going. If I ask you to strike the table here, you can do it or not as you choose. Now, just suppose you tuake your heart go a little fasted. It is beating 75 times a minute; make it beat 100 times a minute." "Oh, I can't make it beat." "Well, make it go slower then." "Oh, I can't make it go slower either. I can't change the beating of my heart by thming about it." "But your heart is a muscle; you can control your hand. You can beat fast or slow with your hand. Your heart is a muscle like the muscles of the arm, that move when you beat with your handor your fist. Why can't you control your heart? It is a muscle, and every time the heart contracts it has to have an order; it has to have instruction; it has to have an impulse; it has to have a direction given it to beat, and how hard to beat, and how much to beat; so there is a muscle, an d in the case of your arm your will is behind that muscle; your will sends an order out to the muscle, and the muscle acts. The sarae thing is true of the heart; there must be an order, a will behind it. So you see there is an intelligence in the body that is making yur heartbeat because you have nothing to do with it. There is a will there which is controlling your heart. You can not control it. It has to be controlled. If it was not, it would be running away snd very soon would stop. It has to have directions given to it, ad you can not give it any directions. There is some other powor that is controlling
it." Well. she thought about it. A couple of weeks afterwards I saw her, and her countenance was entirely changed. The old, unhappy look had di sappeared. She wanted to see me in the office a momint, cans in and sat down, and said, "Doctor, I want to tell you I am the happiest woman that lives. I went up after talking with you the other night, and I got down before the open window, as the nax sun was setting in the western sky, and I said, "O God, help me to believe that there is a God that cares for me", and she said, "it just canc our me that minute that that was really emphatically true, and I have been happy ever since." This woman was an invalid. I am glad to tell you that in a few weeks she was well, and the ambition of her life was satisfied. She is today living in a beautiful home with a noble man for a husband, and a lovely family of little ones about her, and she is as happy as she can be. She has found that the power that made her was looking after her all the time, and she thought she had been forgotten; but she found she was being led along in just the road she needed to travel; and I said to her, "It may be one of the providential things in your life, and one of the evidences of providential care--the fact that you are right here." and it will turn out so and is already.

Now, I think that is one of the most important things for sick people to get into their minds,w-the fact that healing is a divine process, that it is a corrective process. It takes exactly the same power to heal a man that it did to cure him. What are we going to do about it then? There is only one thing we can do, and that is to get ourselves in harmony, to get in line. That is the only thing we can do. Somebody suggested that the greatest thing anybody needs to do is to get in harmony with tho universe, to get in tune with the universe. When one thinks of the great universe, he can not think otherwise than of harmony, because you see how these great planets circle around the suns, and the suns are all circling around other great centers sonowhere, and there is a great harmony. The great astronomical clock keops time; it does not lose time.

We see the procession going on, and in all the processes of Nature there is evidence of narvelous harmony; it is all regulated and controlled. This Power behind it all is working for us, it is working in us, and it does not forget us. When a man is sick, the power that made him is interested in hin, fight therex with him, working for him, doing the best it can to cure him; and if there is any man that is ot cured, it is oly because the conditione are such that he can not be consistently cured. This Power works in harmony with the great law of consistency; it must do that; it can not do otherwise. We must never thi of God as an unlimited being; God is limited. He is limited by his perfection. God can not do everything. God can not lie. God can not do any unreasonable or inconsistent thing. Being perfection, all his acts must be absolutely consistent, they must be harmonious; so it is imposeibje for Goc to do certein things. For instance, here is a man that has got tobacco heart. God cen rot cure him of tobaceo hoart as long as he keeps on moking. He absolutely cen not do it, positively can not. The man that hes tobacco heart has been using tobacco until his heart has got sick, got diseased, because of the poisonous offect of nicotin upon it, and all the time God has been doing for him everything he possibly could do under the circumetances. If he had not, ther man would have died. The first time a man eur smoked he would have died on the spot f tit had not been that the Power that made him sustained him and onabled him to combat that poison; so he has been healed as far as he could be healed all the while. This healing process that has been going on within us all has protected him from death, has saved him from immediate destruction. It has not healed limm entirely because he has kept on using his tobacco. Now, he must stop the use of tobacco. If he ceases to use tobacco, then he will gt well, get well so far as it is possible for him to get well. He may be irreparably damaged. The old prophet said, "Cease to do evil, and learn to do well", and that is the whole thing after all. is I said, it is to get in tune, to get in harmony.

Now, my friends, there is great hope in that thing--that the pover that made us is the Power that heals us, and the Power that made us and has been interested in us all our lives, sustainedus, cared for us, directed us, led us in a thousand ways. We have never apprecisted at all that that power is working for ue, is just going to do the very best that can be done for us, and the thing that we can do is to get in harmony and co-operate. How earnestly, then, we ought to study everything that pertaine to our physical welfare; how earnestly we ought to be willing to co-operate, how willing we ought to be to co-operate in every way in our power so that this halag process that is working in us may be pere fected, may be carried forward without hindrance.

I know some people believe cod doesn't co anything for anybody unless he is teased to do it, unless he is somehow persuaded to do it, somehow bribed to do it. No, the Power that made us is not that sort of being, my friends. It is too great, too benevolent for that. The power that made us and has taken the pains to cure us is interestad in us on our own account-not on his account, but on our account. A mother sees her litle boy fall into a mud puide in the street and sho goes out and rescues him, brings him in, washos him up, puts on a clean suit of clothes. Why? Noty for her benefit because she wants a clean boy; for his benefit. It is her boy, and she wants that boy to be a clean boy and a sweet boy. She is interested in him. Now, my friends, can you imagine that the power that made us, that created us, should have less interest in us than a mother has in her boy? could be less solicitous for our wellfare than a mother is for her child? The Bible says, you know, "Like as a father pitieth his childror, so the Lord pitieth those that fear him." I believe that is a great principle and a great truth.

A man was in my office soms time ago who told me how terribly he suffered. In fact, I mat him outside and took him in, he looked so bad; he could not sleep, he said, and he was afraid he was going to take his life; he was in a dreadful
state of mind, and I saw at once it was a case that needed heip right away quick, and I didn't know whether I knew anything--I idn't think I did know anything I could do for him quick enough to help him, because that awful thought was crowding upon him that he mast take his life; and he was afraid he was going to do it. He was in a most terrible state of mental anguish and agony, and could not sleep. I said to him,"I know of man that was in just your state once, and he got out of it." "Do you, Doctor" How did he get out of it?" "Well," I said, "I till tell you." I opened the Bible, theagGood Book here, and I read in one of the Pselms here, the sixth Bsaln and the 6th verse: "I am weary with my groaning. All the night make I my bed to swim. I water my couch with my tears." "Trell," he said, "Doctor, that is me. Why," he ssid, "I just lie awake there and weep and weep and weep, hour after hour; that's just me. How in the world did he get out of it?" So I read aother verse. "The Lord hath heard my supplication; the Lord will raceive my prayer." See what happened to him. "Thou hast put gladness into my heart." "Thou hast put gladness into my heart", --there wasn't any there before. "I will both lay to down in peace and sleep." Well, that is just what happened to him. He laid down in peace and slept. So we got dun on our knees, and I prayed, and he prayed in my office. I met him half an hour afterwards out in the lobby as I was going through; I saw him and he came hurrying to me across the Lobby, got hold of my hand,--"Why, Doctor," he said, "I am just the happiest men that ever was. That awful feeling is all gone, and I just feel like another man." Now, there was something put listo him that was not there before; and that is the adantage of the knowledge that God is a great beneficent Father; that there is a great healing Power that is abroad in the universe that is working for us, working for us when we do not ask it to work, that does not have to be teased or persuaded to do things for us, but is working for us, doing everything it can do all the time. And now then, all that we can do is to get in harwony, eft in tune, get in line; an diat we can do if we will.

We can turn away from our evil ways andwrong ways, and surrender ourselves to the great Power that made us; and that ought not to be a very serious thing for anybody to consider,--surrender ourselves to a power that made us, the great Creator of all the universe. It ought not to be a very hard thig to surrender to a Power so great as that. Certainly there is nothing humiliating about it if we recognize the fact that Cod is our friend and our father andour healer; then we con co-oporate, and we can expect streat things may be done for us, that would not be done and could not be done when we were in rebellion and fighting against this Power, and not co-dperating, but daulatiag combat it instead. But I must not tax you any longer. I thak you for coming in this evening; and I hope each one of you will try to lay hold of this great healing Power and to co-operate withit.

HCW TO LIVE LONG AND WELL.

A Stereopticon Lectere at the Sanitarium Parlor, Battle Creek, Mich., Thursday, Wiay 25, 1911, at 8 P.M.

> By,
J. H. Kellogg, M.D.

I an going to talk to you a little while tonight about how to live lon g and well, how to attain to a great age. When I was in Vienna a few years ago, I visited the famous Prof. Winternitz, who is professor of hydrotherapy at the royal medical school at Vienna. I am very well acquainted with Prof. Winternitz, and while I was there, the Professor and Mrs. Winternitz made a little dinner party to which I was invited. During the course of the dinner, it was noticed that I did not eat any meat, and one of the ladies said to me, "Doctor, I think you are the most original man I ever met." That was a very polite way of saying that she thought I was a crank. I said, "Is that so? Why, this idea of living on a non-meat diet did not originate with me; if it had, I should have very little confidence in it. It is because it is old, and because it is the oroginal diet of man that I have confidence in it." She said, "Doctor, do you think one could live to be very old on such a diet?" I said, "Why, certainly; I had a relative who lived on this diet and lived to a very great age." "Is that so? How old did he live to be?" "Well, I am afraid to tell you, for fear you would not believe me." "Oh, yes, we would believe you." "Well, he lived to be nearly a thousand years old." "0-0-0-h!" They were all disappointed. A man at the table said, "Just tell us his name." I said, "His name was Adam." "Oh:" Now, my friends, we seem to be quite content if we can live to be sixty or seventy years old. But we frequently find people sixty or seventy years old who are quite vigorous. We had a visit here some time ago from a gentleman who
was one of the finest gentlemen I ever met in my life, Dr. Stephen Saith, of New York, who was then over eighty years old; and I received a short time ago an invitation to attend the celebration of a banquet on the celebration of his 87 th birthday. It was given to him by the leading physicians of New York. He made a very intereating and a very appropriate address on this occasion. Eighty-seven years young, this fine cld gentleman is--hair as white as snow, his skin as clear as a boy's. He hasn't got great brown circles around his eyes and great big freckles on his hards; he hasn't got hard arteries. The arteries are still soft. I believe he will still be young at sixtyxysarnxafxag a hundred years of age. It is astonishing how content we are, how satisfied and willing we are to be killed off when we are fifty or sixty years old by some miserable disease by germs of some sort. Why, my friends, we ought to be ashamed to be old when we are still young in years,--old in body, worn out, decayed in body, the body tumbling into ruins when we are only lifty or sixty years old--we ought to be still in our youth, just in our prime. Now, the trouble is we do not live right. We have departed far away from the norinal conditions of life. Our hearts wear out. Now, a man is very likely to live so long as his heart is still young, and so long as his kidneys are young, and the lior is young-he can get along with a very iserable kind of a stomach if he only has a young heart and young kidneys and a young liver. We have such a great excess of lung capacity that we can get along with a very small amount of lungs. We use ordinarily less than one tenth part of our lung capacity in our ordinary breathing; so if we are not going to run and exercise in a violant way, we can get along with very small lung capacity; but we can get along with small liver capacity because it is the duty of the liver to keep the blad clean. That is the thing of greatest import. ance, the rost essontial thing for life,--is clean blood, because it is the blood that creates; it is the blood that maintains our life; it is the blood that heals. And if the blood becomes unclean, then the whole body rapidly falls into decay.

That is the trouble with alnost every one of us here--the blood has become unclean. It is an old saying, when you have a wound on your hand or any part of your ody, a skin wound that does not heal readily, that is said to be a sign of impure blood; and it is.

Now, here is the heart. As I was just saying, we are young so long as the heart is young. These arteries you see supply blood to the heart so long as they remain young; so that the blood can nourish the heart, the blood can be supplied, the heart can be suplied with blood and then it continues to do its work. You see the heart is a muscle, and it izx has a lot mixa of work to do; it has the biggest job of any in the body. That little muscle there, only the size of your fist, lifts 124 tons every day--just think of that, my friends. That little muscle has to do 124 foot tons of work a day. "Why," you say, "a little muscle like that could not do it." Now, this is the way it has to do it. Here is a big bushel basket full of marbles. There are probably some people here who could live that bushel basket full of marbles, but a small boy could not lift it; and yet a baby can lift that whole bushel full of marbles by lifting one marble at a time--just ono marble at a time; so the heart, doing its work one beat at a time, sixty beats a minute, it lifts so many ounces at each beat; and you take all those little lifts and put them together and it maked 124 foot tons; and that is a lot. That is 248,000 pounds, or a quarter of a million pounds that little muscle has to lift every day.

Now, it makes a wonderful difference whether that little nuscle is supplied with clean blood or with dirty blood; it makes a wonderful difference whether not it is saturated with al cohol, or tobacco, with tea or coffee, or caffein, and the poisons of sustard, pepper, peppersauce, ginger, and things of that sort that produce all the putrefaction that is going on in the colon; it makes a wonderful difference whether the blood goes coursing down through t these veins to support that kika living pump; it makes a wonderful difference what kind of blood it is. It is the duty of the liver to keep the blood clean
by keeping poisons out of it, filtering poisons out. It is the duty of the kidneys to keep the blood clean by separating poisons from the blo od, straining or filtering the blood and carrying off the poisons. Examinations made, postmortem examinations have shown that thexbeart of all people sixty years of age, 73% have degenerated arteries. That is, the arteries have undergone degeneration in 73% of the xzeari people who die at the age of fifty to sixty years. That is a very large percet. Three fourtlss of all the people who die between fle ages of fifty and sixty years have old hearts. That is the primary reason why they die. You have perhaps noticed that most of the people who die of pneunonia are babies or old people; they are old folks or babies, the victims of pneumonia are. The babies die because they are so youngtheir hearts are weak yet, are not yet strong. An infant that is carried around in arms is a very sedentary person, and has nt taken exercise enough to get a strong yeart yet; so the heart is very feeble, very weak. An old man who has become too feeble for exercise, sits around in his chair by the fireside-nhis heart is weak from lack of exercise or from senility; and if he gets pneumonia, he is pretty certain to die, because his heart has not the power to suraxkix carry him through that terrible disease, to withstand the paralyzing effect of the poisons which are circulating in the blood when a person h as pneumonia. We must thimk a little more about our hearts, and take a little better care of our hearts. If we sit down and do not exercise, the heart gets weak just as any other mu sele of the body gets weak. Did yu ever stop to think of that? Suppose you have been lying in bed a weak; you get so weak you can hardly walk. And your heart gets weak in just the sarne proportion as your legs. Because when one is lying in bed, the heart has only to move the blood in a horizontal plane, but when one is standing up, or sitting up, and going about, working, the heart has to lift the blood up into the head; it has to pump it up iaka out of the feet; it h as to circulate the blood in the body in a vertical plane; it has an inmensely greater anount of work to do. We
must take better care of our hearts if we want to live to be old. That is one thing of vital importance. The majority of people who die die of heart failure. This is so universally true that it is not permitted nowadays that a doctor shall put down as a cause of death heart failure, because that is what everybody dies of. If the doctor puts down on the death certificate heart failure, the authorities come back to him to know what that means; what el se did the patient die of? Because if the heart were only able to keep on with its work, the majority of people who die would not die at tho particular time they do die at any rate. So with the lungs. People who have consumption do not die, really, because they haven't enough lung capacity farxax to keep them alive. They die of some other trouble. Other parts become weak alon with the lungs. The kidneys and liver have failed, and that is the real cause why they die. Ninety-six per cent of all people who die of tuberculosis of the lungs, have degenerated livers, liver disease. Eighty-six per cent of them have degenerated kidneys, and those as the things that really kill them rather then the loss of lung capacity. Now, te blood which this heart circulates is the most wonderful tissue of the body; it is really a living tissue, a fluid tissue, a sort of circulating market, it is called, because it carries around foodstuffs to the tissues, and takes back from them waste materials, the waste substances that have been used. These cells which you see here, the red cells, carry in t he oxygen which feeds the tissues, and the clear portion of the blood, the plasma of the blood, carries in the dissolved aaterials which are to be made into tissue, the liquefied foodstuffs; but besides that, there is another class of cells that are known as white cells; they are colored here in this picture, but they are white when you look at them through a microscope; they really are transparent, sxaxtbaxalaxing free from coloring matter, as a matter of fact, haven' τ any color at all, but are transparent like water; and as you look at them through a miecoscope, you can look right through them; but when saline substances have been applied, they
acquire the sppearance you see here. and by means of urious stains that are used it is possible to distinguish a number of different kinds of these living white cells. These cells are very numerous in the blood. About seven thousand of them are found in a minute drop of blood not so large as the head of the smallest pin; a drop not so large as the head of the smallest pin conteins seven thousand of these living cells, every one of them a perfect, living creature that can feel, that can smell that can taste, that can digest, that can move about, and yet it hasn't any legs, it hasn't any brain, it hasn't any nose, hasn't any tongue, hasn't any mouth, hasn't any stamach, --just a little drop of living jelly, but it ksexthaxy is the ultimate living substance, protoplasm, and it has all these properties in one without being differentiated; every particle is able to digest; every particle is able to feel, and able to smell, and able to taste, apparently, and is able to move about by volition. It certainly is a wonderful thing, this little living cell.

Now, some of these have for their business to go around theought the body--these large ones hare have for their business to go about theough the body and gather up rubbish, the material that is not useful any longer, that has outlived its usefulness, is worn out, a waste matter, and is in the way. It is the duty of these cells, these large cells, th pick up those little particles and carry them off in a sort of garbage box, the spleen, in which these things are deposited, or in the liver, so they are finally duraped out of the body. Some of them are carried out through the surface and so are carried away and thrown off from the body. These smaller ones have for their duty to capture germs that get into the body. Now, ger.ns are the very greatest of all the enemies of thexpx human life. They get into the body, and they grow and multiply and clog up the blood vessels, and the tissues, and the worst of them manufacture poisons which ettack the body in a variety of ways and destroy the body, set up degenerations, paralyze the n erve centers, and produce a great ariety of unpleasant
symptoms; so these white cells are wonderfully useful. They are the defenders of the body and the scavengers of the body. Some of them are scavengers and some of them are defenders. They are sanitary police, if you please, a sort of military police. Some of them may be sort of sheriffs that are sent out to arrest our enemies, invaders of the body; and others are scaveggers that go about collecting up t to waste material.

This shows some of tho se sane large white cells. Here is one of the little germ catchers. These small cells capture the germs, and these big ones are scavengers that gather up rubbish and destroy it. This is not a fairy tale I an telling you, or an inaginary story; it is what we know to be true, what we can see, for we can see these cretures at work. Sometimes perhaps you have had a sprain in your finger or in some other joint. After while it would swell upl and by and by the swelling would disappear. How did it go away? These large cells swarm out from the blood and gnaw away that swelling and carry it off bit by bit, digest it and carry it away so it is dissolved out. These are some of these same white cells that have become diseased. You see how different they look from the picture we had a moment ago. This is leukemia. In pernicious enemia the appearance is very sinilar. These white cells become degenerate, they lose their power to do the work which they ought to do, and they multiply in great numbers in the blood and attack the body itself in stead of attacking the rubbish,--attack the body itself and destroy it, do it damage. When the body itself becomes deteriorated, they sometimes invade the inuscles. Here is a normal muscle fiber, and here are some of these cells which natural y lie between the muscles, and they have gotten into the muscles here and are eating up and destroying them. That is what happens to a man who has fatty degeneration from the use of alcohol. That is what happened to Jeffries, why he got beaten, because he had been keeping a saloon for several years, been drinking beer, and he was not aware of the fact that he had lost the great power he once had; and
he was not able to develop those muscles by exercise to the gigantic strength he once had; so when he came to the final coinat, he found he was lacking; his muscles had been stolen away from his bdy while he had been drinking his beer; his muscles had undergone degeneration. That is the reason why, as the pugilists say, a man fails to come back; he has lost the power to recuperate. They don't know why, exactly, but they say he hasn't the power to come back; he has lost that power. He had lost it because he had undergone this degeneration, and these white cells had made it. We have a very good illustration of what these cells do to us when the hair becomes gray. The hair is a tube that has liquid in it, and in this liquid inside of the hair, there are little pigment cells, little bromish colored granules; and thos shows a picture here of hair of that zort, and these are the little granules in the hair, and here is one of tho se pigment cells, those great white cells we were talking about we see here, and this one looks like a great octopus or devilfish, climbing up inside the hair here and stealing away the coloring matter. You see it has othered in a great number of them, and when it gathers up a great number of these pigment cells, it goes away and leaves the hair, and carries the coloring matter off with it, and that is the way the hair becomes white, because it has been robbed of it s cologing matter. Now, in the same way they attack our brains and attack and rob our nerves. They rob our kidneys, and steal away the kidney substance, carry it off. Here they are attacking the kidney, and here you see then at work. That is what Bright's disease ism-it is the ann's kidneys being robbed by the white cells of his body which naturally are scavengers, but they have seized upon the bdy itself and are destroying it, because of the diseased condition into which the bdy has come through wrong habits of life. Here they are attacking the nerves and carrying away the nerve tissue. That is the way people get locomotor ataxia; that is the way they get paralysis. They sometimes attack the blood vessels, and here they are attacking a brain cell. That is the way we lose our
memories; that is the way we get stupid in old age, that is the way we get apoplexy, because these cells attack the blod vessels of the brain.

Now, these cells are induced to do this destructive work by the taking of poisons into our blood, the poisons I was telking to you about whon destroy and paralyze the heart. These same poisons, when taken into the blood, destroy the blood vessels, destroy the brain through setting up wrong action of these white cells. These poisons are, for the rost part, products of germs. Some of them we take in from the outside like al cohol, that is a product of gris too; but tobacco which is not a product of germs, tea and coffee-those are other poisons that we take in along with our food generally, and there are urious other poisons we might inhale. There is opiun, and strychnia and other drugs including morphia, that have a similar effect; but the worst of all poisons are poisons that are generated in our bodies, poisons that are formed in the colon, poisons produced by the putrefaction of undigested remnants of foodstuffs. We are coming to appreciate that more and more. For thirty-five, or nearly forty years now, the world has been learning about ptomains and leukomains, and other poisons that are generated within the body, but only within the last few years have we come to appreciate the real importance of these poisoneus substances, and the terrible havoc which they work in the body, when their action isunrestrained Here are some of the germs, these little red masses you see here, which represent the germs whichproduce these deadly poisons in the colon. They are sometimes found growing in the mouth, on a coated songer the tongue becomes coated, and the breath is bad; and these same ferms are growing all the way down through the whole thirty feet of intestine. They flourish in the lower part of the small intestine and the colon, and the colon is dilated and diseased, and then these germs grow with great rapidity, and in enormous number, so kangxamx many as 200 or 300 trillions of them be produced in a single day. Just thik of that number--beyond all conception. Two or three hundred millions of millions
are produced in a single day. Now these other germs you see here, these other masses, the long bluish masses, are the friendly germs. These are germs that are also growing in the intestine, but in smaller numbers here, and the proportion of the red ones to the blue ones, and the proportion of friendly and unfriendly ones, the poison makers, and the acid formers,--the proportion depends upon the diet. Now, you know if you go out into the country you may see a certain soil here, perhaps a black muck soil, and you find certain species of plants growing, and you get out into another part of the country, and find sore sandy hills, and you will find an entirely different class of plants growing up on the top of those sandy hills from those you find down in the marshes on the mudk lands, and the low lands where there is plenty of water. Now, it isexactly so in the interior of the body. These geras begin to grow right away after we are born, in the body. Within six hours in summer $t i m e$, and twenty hours in winter time, the whole interior of the alimentary canal becomes luxuriantly covered with bacteria. They are growing in great numbers everywhere. Now, these bacteria are called the flova, the flowers, if you please, the flora, the vegtation of the intestine and the alimentary canal. Now, those that are formed at birth, that first eccupy the body here, are friendly gerns that produce acids, and in producing acids they protect the body against the encroachment of unfriendly germs which produce poisons, whi ch can ot produce acids and which can not grow in the presence of acids; they can grax not grow where the acid-forming geras are present, because theyproduce alkalis, and an acid condition is unfavorable to their growth; and that is the reason why the frontier housekeeper puts her fresh beef into sour milk to keep it. The fresh moat is full of putrefactive bacteria that can not grow in the presence of acids; so the fresh meat is put into some sour milk, and will keep there for some little time. By changig the sour milk once every two or three days, the meat can be kept fresh a long tine. Next month we will have a celebration, and you can a l have a
chance to participate. We have down in the cooking school here a beefsteak. It is the only beefsteak we have in the house, and the only beef steak we hare had for everal years, but that beefsteak was put into a glass jar with some yogurt butterailk three years ago the seventh day of next june, three years ago next month it was put in there, and it is perfectly sweet now, in better condition then when it was put in there. It is in a perfect state of preservation, and it will keep, I suppose, indefinitely, so long as the buttermilk is changed two or three times a week it retains the acid, and the beef steak undergoes no change so long as it is in this acid condition. That is because of these Bulgarian bacilli that are growing there, and they produce acid, and the acid prevents the decay of the meat. Now, the very same thing is true of our own interiors. If we keep them in a buttermilk condition, if yu pleass, or keep them in a slightly acid condition, then the putrefactive bacteria which produce autointoxication, which cause headaches and migraine, and sick headache, and biliousness and skin diseases, and arteriosclerosis and a great variety of chronic ailments--these germs will not grow, and they can not produce their poisons. That is the reason why a vegetaiole diet is so much more favorable and healthful than than a meat diet, because meat favors the growth of unfriendly germs. It not only favors their growth by furnishing material upon which they live and thrive, but it actually introduces the germs themselves, for they are always found in meat in great numbers. A bit of meat as ig as the ond of your thumb may contain as many as twenty billions of these unfriendly germs ready to produce their poisons and growing in the body just as soon as they are swallowed. Tha Some of the meat, of course, is digested and assinilated, but a part of it remains undigested, and those parts undergo putrefactive changes in the colon and so make the trouble. So if we are suffering from autointoxication, you see at once the importance of discarding meat with its putrefactive materials and introducing into the intestine only those foodstuffs that oncourage the growth of the friendly geris. Cereals
of all kinds, everything that contains starch in abundance, or sweets, the sugars of fruits and fruit juices, sweet juices of all kinds, and vegetable products of all sorts with these farinaceous and saccharin materials encourage the growth of friendly germs, and consequently are the natural diet of man, for man's alimentary canal is not adapted to dealing with a great number of putrefactive poisons.

There is a very intelligent face. I presume most of you will recognize it--the face of Thomas A. Edison. Michigan feels very proud of him, because he was a Michign man. He was bornin Saginaw, not far from here, and was formerly a newsboy on the Grand Trunk Railroad that xusis runs through this town. He showed himself to be a genius before very long, and was doing things without very much assistance. He educated himself, worked himself up to the position he now holds as the master inventor of the world, probably the greatest genius in invention that there has ever lived; and he has thought it worth while to give some attention to the question of diet. His wife was with us last summer. His sister-in-law was with us several months, and his wife made us a visit while she was here, and she was a very charming lady, in perfect health, and she told me a great deal about Mr. Edison's habits. I knew him many years ago, but have not had the pleasure of meeting him now for a good many years, but I was glad to know that he discards tobacco, and discards alcohol, and avsolutely won't have anybody about him that smokes or drinks. At one tine he found outside of his door a cigaret case, and he put this notice up-that the fool who owned the cigaret case could have it any time by calling for it. He has given careful attention to the question of diet, he takes pains to chew his feod, eats very sparingly, eats twice a day, takes the greatest care in the selection of his food, and sansxt takes those things that are wholesome for him. Mr. Edison thiks it worth while to take care of his corpomobile, as Mr. Fletcher calls the body; he thinks it worth while to give his bdy just as good care as he would give his automobile, or phonograph, or any of the various delicate machines which
he has invented. Now, a man of \mathbb{H} r. Edison's genius and intelligence would not give attention to a matter of that sort unless he thought it worth while. And he finds it worth while; he finds increased efficiency in his bodily machine when he gives it the kind of care which he is taking of himself. Here is another face which will interest you.

This is the face of Cornaro, a man wh at fory found himself broken down completely in health, a perfect wreck from high living and dissipation, and he changed completely his habits of life and lived to be over one hundred years old, in perfect health, and on the mo st abstemious fare, taking just some very simple food. He looks rather sparb, but you see he has a very kindly and intelligent face. He was an architect and an artist, and a man of letters. He became a very wealthy man, and a man of very great influence, a promotor of art and of the public weliare.

Here is another strong face that yau will recognize, the face of Tolstoi, who during the last thirty or forty years of his life--in his early life was a high liver, given more or less to selfish indulgences, but during the last twenty or thirty years of his life was a strany strict abstainer from intemperance of every sort. He was a flesh abstainer and never tasted flesh under any circuristances. The newspaper story got out that Mr. Tolstoi had given up vegetarianism. I know some of his friends advised it because he had diseased kidneys, had malarial infection from mosquito bites, and his kidneys were affected, and the doctor aid he must eat meat. His son, Leo Tolstoi, wrote me about it; but he didn't. He strictly abstained from flesh eating, and I have a letter from his daughter written to me by his request a year or two before he died, in wich he said he abstained strictly from flesh, never tasted flesh under any eircumstances, and denounced the use of flesh as entirely unnatural and unwholesome. He prolonged his life many years by his abstemiousness, taking care to provide his body with the sort of nourishment that was be it for it.

There is another genius, Leonardo da Vinci. You know who he was, next to Michael Angelo, perhaps, one of the greatest artists that has ever lived, certainly one of the greatest that has lived in the more modern times. He lived from 1452 to 1509 , and he was a strict abstainer from flesh, abhorred flesh eating, and was a man of great temperance, and great sobriety. He gave great attention to the care of his physical health, and this has doubtless accounted to a large degree for his wonderful success in life in everyparticular, and for his marvelous excellence as an artise.

Now, look, on the other han d, and see what our flesh indulgence demands.
In every large city there is an abattoir here the most horrible scenes are enacted. Just think of it--the evisceration of animals, the cutting open their bodies, tearing out of their entrails, shedding of their blood, and the cutting of their throats, of the groans and the screans and the shrieks of these poor brutes; and these men smeared with blood, grinning like demons as they see the blood spurting from the throats of their victims-mit is too horrible a thing to describe, to be thought about; yet wo compel the existence of these dreadful things in order that we may feast upon flesh that is absolutely unnecessary, that inflanes our own blood, and that deteriorates and degenerates and destroys our own bodies. These cattle have been decoyed into these pens where there is no possibility of escape, where they have no chance for their lives; and here comes a man from behind where he is not seen, and strikes the animal in the forehead, stuns it; then this door falls down, and while the animal is stunned, is still quivering, its skin is taken off, its entrails are taken out, and the adinal is sent on to be quartered, and finally sent on to the tables of men and women-Christian men and women.

Such a thing could not exist in India among the higher classes there, among the Brahmins. A brahmin would just tk as soon think of cutting his throat as of eating the flesk of an animal. If there were six Englishmen set afloat
at sea in a boat and they should be icked up sanx six weeks afterward, if there was one of them found left, all the rest of them would probably exist only in him as a representatie of them all. But if there were six Hindus, six Brahmins cast to sea in a boat, when they should be found, if they should be found at anyx time afterward, there would be six skeletons there instead of one man representing the whole number.

Now, in the eating of flesh see what we expose ourselves to,--trichina in pork. Two per cent of all hogs have trichinae. Mr. Grubb, of Colorado, the great potato raiser, the man who raises, I suppose, more potatoes than any other man in the United States and is supposed to raise the best potatoes too that are raised in the United States, so good that he gets ninety cents a bushel no matter what the market is,--he raises 400 bushels to the acre, and he is a member of the State Board of Agriculture of Colorado, and is just back from a two years' trip all thrugh Europe where he has been sent by the United States Governinent to study potatoes. He came up here the other day from Chicago on purpose to find out how the Battle Creek Sanitarium cooked potatoes, and to find out whether I recommen ded potatoes, and what for, and I had a very interesting chat with him. Now, he is, as I said, a member of the State Board of Agriculture of Colorado, and he told me that in one section of Colorado forty per cent of all the hogs are infected with tuberculosis ; forty per cent of them all have tuberculosis. How do they get it? They get it from eating the skimmilk from the cows. The milk is sold to the deiries there, the cream is used in te dairies for the making of butter, and the skim milk is taken back and fed to the pigs, and there are so many tuberculous cows there that forty per cent of the pigs have tuberculoass. He also told me that up in Wisconsin you can trace the dairy routes through the country by the tuberculous pigs. All over the State of Wisconsin where there are dairies, where there are butter factories, where they are making butter, the milk is skimmed, and the skimmilk taken back and fed to the pigs, and the pigs
are everywhere infected with tuberculosis. He told me that in Scotland he f found more than 50% of the cows have tuberculosis-cows that are slaughtered. In Germany over 50% of the cows that are killed and sold in the market have tuberculosis. In some parts of this country the same thing is true. Probably, takine the Uited States as whole, probaily about one fourth of all the cows have tuberculogis sooner or later when they are killed. So we see this disease is becoming very, very widespread, and largely, without doubt, through the use of milk and of flesh of tuberculous an imals.

Down in the state of New York they have been fighting tuberculosis for a good many years now, and I saw an official statement a day or two ago to the effect that there has been absolutely no progress whatever made in fighting tuberculosis during the last five years. In the State of New York tuberculosis kills just as many people today as it did five years ago--just as large a proportion of people; there has been practically no progress made. The same thing is true in this state and in other states. Consideralle progress was mede at first, but very little progress is being made at the present time, and there isn't likely to be any very great additional progress made unless we get aut at the root of the matter, unless we cut off the great causes of this disease which are the u se of tuberculous milk and the tuberculous flesh of animals, and in the lowered vital resistance from our indoor life, and neglect to live outdoors in a natural way.

Here are measles in flesh that produce tapeworm, and there is a full grown tapeworm. Each one of these little specks has got a young tapeworm inside, and when that cell is broken by the gastric juice, the little tapeworm attaches it self to te lining membrane of the irtestine, and grows and developes and after while we have got a full grown tapeworm. A tapeworn is a whole community. The first meraber of the community, the first man hangs on, and all the rest of the members of the community hang on to the one ahead of them. It is a community
in a procession. Eech de of these little creatures is a separate individual, and each one just clings fast to the one ahead of it, and has another one cling: ing fast to it behind. It is not only a separate individual, but two individuals, for these are bi-sexual creatures, and every one of those little joints is both male and female, and produces thousands of eggs. These eggs fin their way into the sewers and are carried into the rivers, and cattle drink the water and get the eggs, and in that way become infected, and oxen becomeng more and more infected. We get trichinae from pigs, and get tapeworms from oxen, from beef, so we are sowing seeds of tapeworm everywhere, in every strean all about the country, and we are reaping the harvestin ourselves.

Go down to the market and you will see a piece of meat that looks very read, and that means the animal had fever when it was killed. You see some pale meat, and that means consumption. You see some yellowish meat, and that means jaundice; the animal had jaundice. These creatures are very subject to jaundise. They have gallstones also.

Bectause of our use of meat we are suffering from lime starvation. Did you ever stop to think of that: As I was telling you the other day, when we eat the pig we do not get all the corn that the pig ate. The pig eats the corn and gets the lime, but the lime gees into his bones; and we fail to eat the bones, so we do not get all the lime, and becaus of that we are suffering from lime starvation. As you here, a pound of eggs has four grains of lime; one egg has half a grain; a pound of cow's milk has fourteen grains; a pound of wheat four graise. We need thirteen grains of lime every day of our lives, because we lose thirteen grains of lime;if we live largely on meat we get no lime. If we eat four poundsof meat a day, we get only two grains of lime. So we can not get it from meat, but must get it from peas and wheat. Fine flour bread containe no lime. Personally I never eat fine flour bread, I discard it entirely for it contains no lime; and it is lacking in other necessary elements. The graham
flour contains all the lime that we need, - four grains to the pound. hnd if we eat graham flour, peas, beans and things of that sort, we shall get the proper amount of lime; but if we live upon a meat diet, we can not possibly get it. The Arerican people are suffering from lime starvation, because two thirds of the American diet is made up of meat and cane sugar and so is lacking in lime. The natural diet is designated, indicuted to us by wother Nature just as clearly as the diet of the horse is indicated to him. Now, the horse eats the diet that belongs to it. You never see a horse trying to food that belongs to some other class of animal. A horse has horse sense, so he seeks his proper bill of fare. The average man has lost his horse sense, and so he eats not only the food thet belongs to him, but he hunts up everything, goes around the world to find what other animals are eating, and he eats everything every other aninal eats. I don't know of any other animel that eats what man doesn't eat. He prides himself that he is oranivorous, which is not at all true. He is frugivorous. Now, teeth.
look here at his ixist. There are thirty-two teeth, sixteen in each jaw, three molars behind, three big molars, then two small molars; then one bicuspid tooth then one single cuspid tooth, then four incisors,--four on each side. Now, that is what we have in the jaw of the gorilla--three large molars, two small molars, two canine, then the four incisors, two in front on each side. Thirty-two in all, and exactly the same sort of teeth, but they are better developed teeth, but just the same sort, and the number and arrangement in the jaw of his teeth is just like ours; and if we seek to know what his diet is, we find it is absolutely irugivorcus. Some of you had the pleasure of hearing Dr. Geil the other night, who gave such on interesting addrese about the pygmies and other curious people of central Africa. Dr. Geil stated that when he was out in the center of Africa among the pygmies in the great forest where the sun never shines because the trees and the vines are so thick the sun can not penetrate the mass of verdure, Dr. Geil said he asked the pygmy chief whorn he knew, xhat how he knew what
to eat when he went into a new forest sometimes. He said, "If we find a nut and we do not knor whether it is good to eat or not, we place it somewhere where a monkey can see it, and we watch the monkey to see what he does. If he eats the nut, then we eat it; we know it is all right. We follow the nonkey in diet." That reminded me of an incident that happened here in this institution a good many years ago. We had with us a very interesting man, Captain Sanderson, who was on officer in the British Army in India. His duty in India was to go out very year with an army of men and capture a great troop of elephants to recruit the elephants of the Eritish army. At that thme the British army-about sigkatx forty years ago, used elephants instead of freight trains. They had very few railroads in India then, and they used the elephants for freight trains to carry their baggage and their military supplies, cannon, and so on. It was his duty to go out into the jungle every year and capture 200 or 200 elephants. He told me he captured at one time, in a single trap, 124 elephants. That is the biggest bag of game, I guess, anybody ever got. He had a thousand men help him to do it, and a very great stockade, miles around; and they drove the elephants into it, gathered together from a great territory, and finally got them into the stockade and captured them all at once. He found after some years he was stricken down with Jungle fever as soon as he reached the jungle, so he was incapacitated for his work, and it was a very great distress to him. He studied the matter ovr, and got some hints from a little book he got hold of from a sea captain, a book that went out from Battle Creek I am glad to and it set him to thinkint. So when he went back to the jungle, he said, "I am going to watch to see what the monkey eats. The monkey can live in the jungle, and if he can do it, why can't I? And I am going to see what the effect is of following the monkey." And he tried it, and he told me the results. He said, "I found that when I followed the monkey in diet I could follow him everywhere. When I ddd as the monkeys did, I could live anywhere the monkey could live." And that is
what the Sultan of the pygmies said. "If we do not know what to eat, we watch the monkey to see what he eats; then we eat that, and we know it is safe."

So we are akin to the monkeys, and what is proper for the monkey to eat is proper for us to eat; but the remarkable thing about it, my friends, is that the monkey knows better than we know what to eat; that the monkey has an instinct that can tell him then a thing is good to eat, and when it isn't good to eat; and we haven't. If a nan wants to kow what to eat, he can get a great deal more information from going into the forest, sitting down and watching a wise ape to see what he eats-a great deal morexx information than he can get from hunting up a professor of chemistyy and asking what are the constituents of foods, and what are good to eat and what are not. Beause the professor of chemistry knows nothing about the food except the dead food; whereas the monkey knows its live, vital properties.

Now, here is the horse and the dog. The teeth are very different, and are not at all like ours. The dog eats flesh, the horse eats corn and grass, the monkey eats fruits and nuts and soft grains. That is the human dietary, the natural dietary, - ifuits, nuts, and soft grains; but by the aid of cookery, we may also eat dried grains and of course vegetables. If we had folldwed our natural dietary we would be delivered from nearly all the troubles we have. Very few of you would be here if you had followed the monkey in diet. It is because you have been trying to eat what belongs to the dog, and what belongs to the turkey buzzard, the scavengers and the carbivorous animals,--cheese redolent with puteefaction, swarming with maggots, so-called skippers, and mites which are first cousins to the itch mites that burrow in our skins. Cld cheese is swarming with them. And fish that are really far advanced in decomposition,--codfish, hallibut, herring and all that sort of thing, and those various dried fishes, salt mackerel, and so on, are simply swarming with bacteria and begin to putrefy so quickiy after being taken ontxaxtivex into the body; snd the poisons generated
generated do mischief, lead to hardening of the arteries, make us old before our time, wear out our tissues, so the blood cells become diseased and attack the body instead of defending it as they ought to do. But it isn't all in diet. There is a good deal in diet but not all. There is a good deal in living outdoors, getting the benefit of the exercise, of fresh air and the sunshint, and sporting in the water.

Here are the cereals. See what a wonderful store of nutriment they have. 100 calories to the ounce, 1600 to the pound is about the average. You can generally reckon cereals as having 100 calories to tho ounce. When they are cooked upon the table they are about three fourths water, so contain about 25 calories to the ounce as served upon the table. Flesh foods have on an average less than half the value. There are only a few flesh foods, like cheese, ham and bacon whi d contain a great amount of fat, contain a higher value. Fish have only wbout one third the nutritive value of the cereals. Cereals have 1600 calories to the pound, and the oyster has only 235. As a matter of fact, a pint of oysters h as less nutritive value than a piht of milk. A pint of oysters h as only about half the food value of a pint of milk. These creatures have almost no food value at all. Beefjuice, counted as being so wonderfully nourishing, has only 115 calories in a pint--just think of it; and an ounce of rice containa as much nourishment as a pint of beeftea. And it is only the fat in the beeftea that is nourishment. Take the fat all out of it, and it will have really no nutritive value at all; because beeftea is simply made up of excrementitious substances; it has the composition really of urine.

Here are the nuts. See what enormous nutritive value they have,-nearly double that of the cereals, you see, -300 , five times the nutritive value of medts. No foods known to man have such a wonderful nutritive value; so wonderfully rich in stores of energy, health and tissue forming material, as nuts. When we come to vegetables, the nutritive value is low, it is true; there is
almost no protein, and few carbolydrates; but the vegetable contains a large amount of very valuable salts, alkaline salts which are of very great value to thebody. And the fruits are also very rich in salts which are of very great vulue to the body. The actual value is about the same as that of green vegetables, very much less than the cereals; but fruits have this advantage, that when we take then, we take the food in a digested state, ready to be assimilated immediately, and imediately available. When you come to consider the digestibility of foods, you see a marvelous difference. Rice is digested in one hour, whereas roasted pork requires five hours; just thing of it. Fried egs require three houre, and other meats also require time for digestion, four or five hours. Stewed oysters three hours and a half,-more than tree times the lensth of time of rice, while the nutritive value of rice is twice as great.

There is nothing in the animal world which compares with the beauty, and the freshness and the glory of these splendid fruits and vegetables the Creator has designed for our sustenance-nothing equal to therd. A beautiful pear, a luscious strawberry--how it tempts us to reach out for it. But whoever thought of reaching out after a bird; and whoever thought of seizing a rabbit and taking a taste of it? There is no such instinct in us. Cur normal instincts rebef et the use of flesh, at the flesh diet; but it is only because we are drilled in it, trained to it from infancy that we can tolerate these horrible things.

I want to say a word about the outdoor gymnasium, for this is the time of year when it comes particularly into play. Some of you were at the swimming exhibition this afternoon in the indoor gymnasium. We are getting ready a running path across the road, and gtting a new outdoor gymasium ready as rapidly as possible. It will be ready in a short time, and we hopt to induce a great number of people this summer to live outdoors as much as possible, to get you in to the habit of living outdoors while you are here, so when you go home you won't forget it.

Isn't that a beauty? Three of the products of Minnesota, and this baby is the finest of thera all. Why aren't we all as fine as that? Why don't we remain fine? We are born fine, but we get spoiled. It is because we depart from Nature. If we can keep close to Nature, close as that baby is, as close as the quirrel does, and the birds, we would not so early fall into dacgy and get to be poor, miserable, wretched specimens of disease; but would retain our freshness, vigor and efficiency, and live on and on to a good old age. We do not need to die at thirty or forty. If we die at all, we ought to die at 150 or 200 years. Mr. Wu Ting Fant says he is going to 1 ive to be 200 years old. He has become a flesh abstainer in the last ten years, and from a chronic invalid, has become a strong, vigorous, healthy man whose efficiency is wonderfully increased. He is coming back to this country, I understand, and if he does, I am sure we shall see him here. I had a letter from him the other day, and he says he has organized a soeiety of flesh abstainers in China, knd that the most eminent officials there have become members; and that he has started a vegetarian restaurant, or got a very popular restaurant in Shanghai to introduce a vegetarian department, and they have a meeting once a month, and they are becoming very greatly interested in these vegetarian ideas. It is not new to the Chinese by any means, for they have vegetarian societies there, and once in a while a man may be found going about the country telling the story of the poor cow that they used to lead about but were not allowed to eat; and by and by when the famine came the cow was slain and actually eaten; first he was allowed to starve, and then slain and eten, and she finally ends up her lament by saying, "When I am a man, and you are a cow, I will treat you then as you treat me now." But I must let you go. Good night.

