
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9” black and white
photographic prints are available for aity photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

A Bell & Howell Information C om pany
300 North Z eeb Road. Ann Arbor, Ml 48106-1346 USA

313.'761-4700 800/521-0600

O rder N u m b er 9513439

H ierarch ical te stin g u sing precom pu ted te s ts for m odu les

Murray, Brian Thomas, Ph.D.

T he University o f M ichigan, 1994

C opyright © 1 9 9 4 b y M urray, B rian T h om as. A ll r igh ts reserved .

U M I
300 N. Z eeb R d
Ann Aibor, M l 48106

HIERARCHICAL TESTING USING PRECOMPUTED
TESTS FOR MODULES

by

B rian Thom as M urray

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
1994

Doctoral Committee:

Professor John P. Hayes, Chairman
Professor William P, Birmingham
Professor Ronald J. Lomax
Professor Trevor N. Mudge
John W. Hile, Research Fellow, General Motors

The return from your work must be the satisfaction which that work brings
you and the world’s need of that work

W. E. B. Du Bois

© Brian ThomasJylurrav 1994
All Rights Reserved

To my family.

ACKNOWLEDGEMENTS

I must express my heartfelt appreciation to my advisor John Hayes for his patient

mentoring and guidance. By his instruction and example, I have learned a lot about computer

science and how to do research. His skill in research, writing, and teaching are a continuing

inspiration to me. Furthermore, I value his friendship as much as the skills I have learned.] also

appreciate the friendship and interaction I have enjoyed with the many fellow graduate students

who also worked with John during my tenure.

I am deeply grateful to my wife Alison for her patience and understanding during this

project, which was always “almost finished.” I also thank my daughters Lauren and Alyssa for

patiently waiting for Daddy to finish “his book.” My love for Alison and Lauren and Alyssa

inspired me when the work was difficult. My parents deserve thanks for having encouraged me all

my life and instilling in me the belief that no worthy goal is beyond my grasp.

I want to thank my supervisor John Hile for his support and advice throughout the years it

has taken me to complete my research and my thesis. He has provided both material and

management support, without which I could not continue. He has always been supportive of the

concepts as well as the techniques and tools I have developed.

I must also thank R. G. “Ben” Bennetts and the folks who formed the test generation

group at Cirrus Computers in the mid 1980’s, including Dave Potts and Andrew Guylcr among

others. The lessons I learned working with them while developing methods to use Cirrus’s Hitcst

as a hierarchical test generator ultimately led to the research reported here.

Finally, I want to thank General Motors for funding my research, originally through

tuition refund and ultimately through the Technical Education Program. I especially want to thank

Elaine Chapman Moore for the variety of administrative help she has given me.

iii

TABLE OF CONTENTS

D ED ICATIO N ... 11

ACKNOW LEDGEM ENTS.. iii

LIST OF FIGU RES.. vi

L IS T O F T A U L IiS .. ix

LIST OF APPENDICES... x

LIST OF SYM BOLS.. xi

CHAPTER

I. INTRODUCTION I

1.1. Design and Testing... 1

1.2. Basic Testing Theory.. 5

1.3. Hierarchical Testing.. 17

1.4. Summary and Thesis Overview ... 25

II. PRECOM PUTED T E S T S .. 29

2.1. Precomputed Versus Conventional Methods.. 29

2.2. Using Precomputed Test Methods.. 32

2.3. Propagating Precomputed T ests... 37

2.4. Representing Information... 41

2 .5 . PathMan.. 49

2.6. Sum m ary.. 58

III. THEORY O F PROPA GATIO N ... 60

3.1. Propagation Algebra... 60

3.2. Transparency Analysis... 79

3.3. Partial Transparency... 96

iv

3.4. Sequential Transparency.. 106

3.5. Summary.. H*

IV. TEST PA C K A G E PR O PA G A T IO N .. 112

4.1. Symbolic Propagation.. 112

4.2. Hierarchical Error Propagation... 118

4.3. Design for Transparency... 139

4.4. Sum m ary.. 148

V. TEST G EN ERA TION AND SIM U LA TIO N .. 150

5.1. Multiplc-Abstraction Test Package Simulation..................................... 150

5.2. P a th P km l... 172

5.3. Sum m ary .. 184

VI. CONTRIBUTIONS AND FUTURE W O R K .. 185

6.1. Thesis Contributions... 185

6.2. Future W ork.. 188

A PPENDICES... 191

BIBLIO G RAPH Y .. 204

v

3

5
7

I I
II
14
17
20
30

34

36
38

39
48
51

52
53
53

61

62

63

64

65

70

72

LIST OF FIGURES

Typical organization of design and test in the development of a new IC..................

Automatic tester and the testing process...
Adder circuits viewed at two levels of abstraction: (a) gatc(low), (b) register (high).

Generic test generation algorithm..
An example of D-propagation in a carry circuit..

(a) Finite state machine and (b) an equivalent pseudo-combinational model

Scan testing scheme...
Four-bit adder as an example of hierarchical testing..
Propagating and justifying module tests in a circuit...

Example of a circuit Encode that is easy to test using precomputed tests.................
Example of a circuit with library modules Divfilt which is difficult to test using
precomputed tests...
Notation for module input/output signals...
Typical modules and their buses...
Bus assignment exam ple..
PathPlan algorithm...
Propagation procedure of PathPlan...
Justification procedure of PathPlan..

Basic block Fltrdp of the Gaussian filter chip..

Three-bit, 2-input multiplexer with input data busX ^ = in i, control bus input
X c - ctrl, and output data bus Z/> - outO[1 ..0].....................................:.........................
Set of values applied to XD of a 3-bit, 2-input multiplexer and corresponding
outputs at ZD for V{Xc) = I ...
Two compositions of a subfunction vector (F hF2 Fk)\ (a) space and (b) time....
Propagation function P[MUX;(ctrl,inl);{0,4,5,6,7>] for V(XC)= 1..........................

Three-bit adder module with input data bus XD as addend, input control bus Xc as
augend, and output data bus ZD = sum[3..1]..
Series (a) and parallel (b) connections of modules..

The series composition of two propagation functions P l and P j
Example of a propagation diagram for a circuit with series and parallel

vi

connections.. 73
3.9. Example of a propagation diagram for a datapath circuit with a bus connected in

parallel with two modules... 74
3.10. Fltrdp datapath circuit, (a) schematic and (b) propagation diagram........................... 76

3.11. Typical modules and their buses.. 80
3.12. Three-bit adder module with input data bus XD as addend, input control bus Xc as

augend, and output data bus ZD = sum[3.. 1].. 82
3.13. (a) Circuit diagram and (b) propagation diagram for circuit with transparent

reconvcrgent fanout.. 86

3.14. (a) Module connections for Theorem 3.5, and (b) corresponding propagation
diagram.. 89

3.15. Fltrdp datapath circuit: (a) schematic and (b) propagation diagram........................... 91
3.16. Four-bit ripplc-carry adder as an example of a one-dimensional iterative logic

array.. 92
3.17. (a-b) Recursive description, and (c) propagation diagram of an n-bit, ripplc-carry

adder... 93
3.18. Digital filter datapath circuit 95
3.19. Propagation diagram for the boxed subcircuit in Figure 3.18...................................... 96
3.20. Comparison of three propagation paths... 97
3.21. Maximum transparency index as a function of number of blocks domain size 8.... 101

3.22. Maximum transparency index possible as a function of the input data bus size for
transmission functions with 4 blocks and 8 blocks... 104

3.23. Lower bound on maximum transparency index as a function of output data bus
size.. 105

3.24. Three-bit adder module with input data bus XD as addend, input control bus Xc as
augend, and output data bus ZD = sum[3.. 1].. 107

3.25. Two 2-transparcnt modules connected in series... 109
4.1. Propagating a symbolic test package (TS\TR) through the Fltrdp datapath circuit... 113
4.2. Implementation o f a two-input, 4-bit multiplexer: (a) basic cell, and (b) four basic

cells combined to form the multiplexer.. ' 120

4.3. Response functions evaluated at various points on the propagation path to the
output in Fltrdp. PRi denotes the response function on bus i....................................... 122

4.4. Four-bit 2-input multiplexer connected to a module detecting all-zero and all-oncs
vectors (M2)... 125

4.5. Test response propagated through MUT in timeframes later than when is applied. 126

4.6. Use o f symbolic values to represent propagation functions... 129

4.7. Response functions represented as symbolic signal values on a propagation path
to the output of Fltrdp. PRi denotes the response function at bus i............................. 133

4.8. Algorithms for subfunctions {ADD.SUBTRACT.XOR,MULTIPLY} and {AND,
OR}... 137

4.9. ADD module function for R-j... 137

vii

138

140
141

141

143

145

146
148

151
153

154
155

156
157
158
160
160

164
165
166

166
167
168

169
173
175

178
179
180

AND module function fo r/?7..
Three-bit adder module with input data bus XD as addend, input control bus X c as
augend, and output data bus = sum [3..l]..
Smalldp, a datapath subcircuit of Divfilt..

Pass-through multiplexers, an example of an optimal (-transparent module...........

Construction or orthogonal transmission function r 2...

Orthogonal transmission function (OTF) method applied to random logic block...
Embedded multiplexer (EM) method applied to random logic block........................

Smalldp with (--transparent replacement for module A/8............................
Relationship of MATSim to PathPlan ..
Dimensions of hierarchy and abstraction..

Structure of M ATSim ...
The Fltrdp datapath circuit...

Vcrilog nctlist for Fltrdp (Figure 5.4)..

Main routine tor MATSim ..
Update routine. ..
Propagating a test package (TS;TR) through the Fltrdp datapath circuit....................
Example o f MATSim output of circuit state information; add3 is the M U T............

Data structure for one block of a response function...
Implementation of a two-input, 4-bit multiplexer...
Response function data structure at output of MUT...
Example circuit for propagation of response functions, a multiplexer connected to
two complementary fanout modules..
Response function data structure at output 1 (Figure 5.13)..
Response function data structure at output2 (Figure 5.13)..
Algorithm for analyzing the propagation condition for a set of response functions.

Bus assignment exam ple..
The main PathPlan2 algorithm ...

Top level algorithm for sequential test generation..
Module add3 in Fltrdp to be tested by PathPkm2...

MUT connected to Fltrdp tested by PathPlan2...

viii

22

44

46
56

77
81

99

100
130

132
132
135

135
136
136
138

147
153

183

LIST OF TABLES

Performance of PathPlan relative to gate-level test generation..................................
The AND operator defined for D5...

The set of symbolic error signals used in ARTEST [58]...
Performance of PathPlan relative to gate-level test generation..................................
Common algebra laws that do and do not hold for propagation algebra. The
numbers of the laws that do not hold arc in parenthesis...
Transmission functions for the modules in Figure 3.11...
Transmission functions and transparency index for modules in Figure 3.11...........
All possible structures for partitions on 8 elements, the mean and variance o f the
block sizes, and the transparency index of corresponding transmission functions..
Definitions and examples of the elements of R4..
The ADD operation and R4...
The AND operation and B4...

Function table for the AND operation...
Function table for the MULTIPLY operation..
Function table for the ADD, SUBTRACT, and XOR operations...............................
Function table for the OR operation ..

The set of symbolic error signals or “types” used in ARTEST [58]..........................
Summary of synthesis results for ^-transparent modules...
Combinations of abstractions forming layers..

Performance comparison o f PathPfan2/MATSim and PathPlan................................

ix

LIST OF APPENDICES

A ppendix
A Mathematical Concepts.. 191
B Propagation Algebra.. 198

x

LIST OF SYMBOLS

Svmhol

Ts

Ri

< W

X .Z

XD , ZD

x c , z c

V { X) , (V (X)} ,S (X)

P [M; { X d ;Zd);C1]

#
o

T [M\ { X d \Zd)] { S c)

Trans(T)

B.

Test stimulus vector sequence for u module or circuit

Test response vector sequence from a fault-free module under test
when T s is applied to the module’s inputs

Test response when fault f. is active in the module under test

Test response error or discrepancy represented as a vector se­
quence pair

Test package containing test data for a module or circuit

Set o f input and output ports

Input and output data bus ports for a module or circuit

Input and output control bus ports for a module or circuit

Vector (signal value) at port X, all possible values at X, vector se­
quence constructed from { V (X) }

Propagation function on domain £2 from X fJ to of M, repre­
sented by a set of input/output pairs , 1 < i < n , where
{oCj, a 2, a ;|} is a partition of £2, and p(. is the output of the
function for a.

t

Connection operation for parallel circuit junctions

Connection operation for series circuit junctions

Transmission function for module M, a propagation function on
Q = { V (X)} when the vector sequence Sc is applied to X c

Transparency index for transmission function T

Size of a t in element (a f;p .) of a propagation function

Set o f all possible values that may be applied to an n-bit bus

xi

X

s
R

C

s
R a - {X,S,R,C}

R7 - {X,StRtC,0H, l |l ,§

Q

Unknown symbolic signal value

Stimulus symbolic signal value

Response symbolic signal value

Corrupted symbolic signal value

The /i-bit all-0 vector

The n-bit all-1 vector

Stimulus values not including 0 ;(or 1

Basic symbolic signal value set

> Basic symbolic signal value set for typical datapath operations

Domain of propagation functions, set of signals to be propagated

xii

CHAPTER I

INTRODUCTION

Much of daily life is automated by computer-based digital systems whose failure could be

catastrophic. Typical systems include real-time transaction-processing systems, airplane control

systems, implanted medical instruments, and automotive control systems. For safety's sake, these

systems, which arc implemented by electronic integrated circuits (ICs), must be thoroughly tested

before and during use. This thesis addresses the problem of test generation for complex digital sys­

tems, especially for application-specific integrated circuits (ASICs), and the relationship o f testing

to design.

1.1. Design and Testing

The reliability of all ICs is strongly dependent on how thoroughly they arc tested. This is

because ICs most often fail as result of fabrication defects rather than wcarout, and thorough test­

ing for these defects weeds out weak ICs. New fabrication technologies for ICs arc constantly

being developed and quickly brought to production to address requirements for higher circuit den­

sity. ICs manufactured using a new process often have many defects and it may take years for a

process to mature to the point where the number of defects is negligible [2].

Problem s o f Testing. Testing is costly. It has become one of the most expensive aspects o f manu­

facturing, a fact which has prompted many IC makers to seek testing methods that use cheaper

testers, simpler test fixtures, and shorter test sequences. In addition to manufacturing cost, it typi­

cally takes about one third to one half of the design time to develop a method for testing a new IC

1100], Meanwhile, competition in the marketplace makes short development time essential. Com-

1

2

pulcr-aidcd design (CAD) tools lor very large scale integrated (VLSI) circuits have significantly

reduced some aspects of design time, but corresponding gains have not been made in the area of

test generation, despite the fact that testing has been thoroughly studied for more than thirty years

[2]. Adequate testing solutions have remained elusive mainly because requirements change as

technology and design styles evolve, and because many test problems are truly intractable.

The testability of ICs depends on how easily internal nodes of the circuits can be con­

trolled and observed. The high density o f new ICs—recent VLSI chips contain several million

transistors—makes this difficult. Moreover, soaring clock and data rates arc creating new ways in

which ICs can fail. Timing errors and parametric faults arc becoming more prevalent and often

require new test techniques.

H ierarchical Design. A typical digital IC design scenario is shown in Figure 1.1. The first step is

architecture design. In this step, specifications are translated into architecture components that the

designers know how to build reliability. For example, decisions arc made regarding such things as

on-chip memory (RAM and ROM) size, what type of pipelining will be used, what instruction set

will be used, whether microcoding will be used, etc. These design decisions can be analyzed by

modeling the system at the register level and simulating it. The smallest elements in these models

tend to be modules such as RAMs, ROMs, adders, and multiplexers.

After the architecture details arc determined, the functionality of many o f the modules

may be specified in terms o f Boolean equations and state diagrams. These in tum arc translated

into networks of logic gates and flip-flops, a process called logic design. Finally, the circuit can be

designed in terms of individual transistors and other low-level circuit elements.

At each level in this top-down design process, design and simulation steps are carried out

repeatedly until the specifications for that level arc satisfied. Normally, designers try to minimize

iteration between levels. This can be done by careful project planning and the use of predictive

CAD tools such as timing analyzers and simulators, which allow many low-level circuit effects to

be predicted at the gate level.

During architecture planning, designers may formulate a strategy for how the IC will be

tested. The test strategy specifics, in abstract fashion, what fault types will be covered, how the IC

will be partitioned for testing, how tests will be generated for each partition, how tests will be

3

Design Flow

Register
Level

H igh-level
m odeling and

sim ulation

D etailed
logic

design

Gate
Level

G ate-level
m odeling and

sim ulation

C ircuit
design

Circuit
Level i

C ircuit-level
m odeling and

sim ulation

Traditional
Testing

Incorporation
o f design for

testability

G eneration o f

Evaluation o f
fault

coverage

Hierarchical
Testing

Architecture A rchitecture Test strategy Test strategy
Level -------- design developm ent developm ent

High
Level

Incorporation
o f design for

testability

G eneration of
tests

G eneration of

E valuation of
fault

coverage

Physical
Level IC layout

and m ask
generation

Low
Level

Figure 1.1, Typical organization of design and test in the development of a new IC.

applied to each partition, etc. However, incorporation o f any hardware to be used for testing

(design for testability) is not usually done until the gate-level logic design stage is reached. In

addition, test generation is only done after complete, detailed gate-level models have been dcvcl-

4

oped since most CAD tools require these models as inputs. Current ASICs have hundreds of thou­

sands oflogic gates and soon will have millions. Gate-level test generation tools are already taxed

to the limit and may soon become inadequate. In order to handle large circuits, these tools require

highly constrained gate-level design styles, and therefore cannot effectively use the high-level

structure of the circuit. Finally, test generation accounts for a large number of gate-level design

iterations, and frequently prompts architecture changes to address problems that were not pre­

dicted during test strategy planning. This reflects the large gap between test planning and lest gen­

eration, and the fact that predictive tools arc almost non-existent.

Hierarchical Testing. Recently however, a number of high-level and hierarchical techniques for

test generation have been proposed [9, 12, 18 ,57,58,59, 62,64, 75,84, 87, 89, 90,93, 94]. These

techniques take advantage o f the hierarchical structure found in most circuits and exploit circuit

behavior that is only apparent at the register level. As shown in Figure 1.1, hierarchical testing

techniques allow test strategy development, incorporation of design for testability, and test genera­

tion to take place at higher design levels. Since fewer functional objects arc manipulated at the

register level, design iterations arc made more quickly. Test generation performance is also

enhanced because there arc fewer primitives to test, and because high-level circuit behavior, such

as the ability to load test values into multi-bit registers, can be exploited more easily. The more

important hierarchical techniques will be reviewed in Section 1.3.

Although hierarchical test generation techniques have been proposed since the mid-1970s

[10], only recently have they become practical to use, as design styles have evolved to the point

where hierarchical design is well-supported. New CAD tools are able to synthesize gate- and cir­

cuit-level simulation models from higher-level models [32, 95]. In many eases, designers compose

circuits using libraries of large predefined modules such as ALUs and RAMs which have precom­

puted tests, thus obviating the need for test generation at lower levels of abstraction, a fact which

we explore here. Overall, hierarchical techniques arc well-suited to currently prevailing and future

design styles. The test generation performance improvements obtained by the use o f hierarchy

offers the potential for dealing with ICs containing hundreds of millions o f transistors.

The previously published hierarchical techniques have not been very successful—few

have been incorporated in commercial systems. In many eases, they do not effectively represent

5

Response
analyzer

Pa Item
generator

IC under
test

Test Fixture

Automatic
Tester

Figure 1.2. Automatic tester and the testing process.

the high-level structure of the circuit, and in other cases they rely on heuristics that have not

proven to be widely applicable. Nevertheless, various hierarchical techniques arc becoming

important, such as the use of precomputed tests.

This thesis examines in detail the use of precomputed tests for modules in generating tests

for new ICs incorporating these modules. In this chapter, we present a general introduction to test­

ing theory and review the previous work in hierarchical testing with special emphasis on test gen­

eration using precomputed tests.

1.2. Basic Testing Theory

The testing process for integrated circuits is outlined in Figure 1.2. The pattern generator

stimulates some of the inputs of the IC under test, and some time later the response analyzer reads

the response sequence Z of the IC and checks for discrepancies between Z and an expected

response ZQ produced during test generation; a fault is detected when Z * Z Q. From this descrip­

tion, one can see that faults will be detected not only when the IC generates incorrect logic values,

but also when values are generated at the wrong time. To produce and analyze the large amount of

test data needed for modem high-speed ICs, automatic testers like the one depicted in Figure 1.2

have become large and expensive; some production testers cost millions of dollars.

Automatic testers arc controlled by programs similar to those for general-purpose comput­

ers. The bulk of a typical test program is stimulus and response data, and it is the responsibility of

the test generator to compute these data. Test generation is examined in detail in the next three sub­

sections.

6

1.2.1 Circuit Modeling

Circuit models at all design levels are often classified as either structural or behavioral.

Structural models emphasize the fact that circuits are composed o f components (modules) which

are interconnected by wires, or groups of wires, called buses. Behavioral or functional models, on

the other hand, ignore circuit structure as much as possible, concentrating on only a few relevant

structural details that allow us to describe the circuit’s input/output behavior. Most models used in

practice arc mixed, that is, they contain aspects o f both structure and function.

As noted above, high-level structural models contain large modules, which arc themselves

often described by behavioral models. In addition, the buses used to interconnect high-level mod­

ules arc frequently treated as primitive entities which propagate abstract multi-bit signal values.

Gate-level models arc composed of a relatively small number o f simple primitive modules (gates)

that implement basic Boolean logic operations (AND, OR, NOT, EXCLUSIVE-OR, etc.). In many

eases, circuit models arc also hierarchical, that is, large modules dclined at design level i can be

recursively composed by interconnecting smaller modules defined at the next lower level i - 1.

Thus, large modules may be described by multiple models, some structural and some behavioral.

A simple example o f hierarchical structure appears in the ripplc-carry adder o f Figure 1.3,

which is composed of several full adder (FA) modules. Figure 1.3a shows a structural model of a

FA module; this is also an example of gate-level design. A behavioral description o f a FA is given

by the following set o f Boolean formulas defining the adder's sum (S) and output carry (Ci+1) sig­

nals in terms of input data (A and B) and input carry (C,) signals

5 = A © B © Ci

Ci+{ = (A a B) v (A a C.) v (B a C,)

Here, all variable values arc binary (0 or 1), and a , v , and © denote the Boolean operations AND,

OR, and EXCLUSIVE-OR, respectively.

Figure 1.3b shows a group of FA modules connected to form a 4-bit adder, which is then

combined with two registers to design a simple processor. This circuit provides an example of

higher-level logic design at the register level. A[3..0], fl[3..0], etc. denote buses defining higher-

level versions o f the binary signals in the full adder equations above. The operation o f this adder

can be succinctly represented by the high-level equation

C . A Bi

Gates

FA

cs 1 + 1

(a)

Buses

A[3„0] B[3„0]

S[3..0]

Register A Register B

FA FAFA, FA

M

S[0]

0 A[0] B[0]

Sft]

A[t] B[l]

Adder
Sf21

A[31 B[3]

(b)

Figure 13 , Adder circuits viewed at two levels o f abstraction: (a) gate(low), (b) register (high).

S [3..0] = A f 3..0] +H [3..0]

Behavioral statements such as these arc often combined into text descriptions o f a circuit

8

in a systematic form called a hardware description language (HDL), Note that there is no unique

way of constructing behavioral models o f this type. Recently however, designers have begun to

standardize HDL formats. VHDL (the VHSIC Hardware Description Language [20]) has been

mandated as a standard by the United States Government. Structural descriptions arc modeled in

HDLs as a list of wires and the corresponding modules they connect to; this is known as a nctlist.

Alternatively, they can be entered into a design system graphically, as a schematic diagram of

symbols representing modules or functions, connected by lines representing wires and buses.

In the past, designers were often most comfortable working at the low, gate level, or with

hierarchical models whose large (non-primitive) modules arc described only by structural models.

In this ease, hierarchy is only a convenience for the entry and maintenance of the design; it is not

used by CAD tools. The gate level is also the best supported in terms of design theory and CAD

tools. Design data can be easily entered graphically, and low-level circuit models and layout etui

be reliably and efficiently generated from such gate-level models.

High-level simulation o f behavioral descriptions, on the other hand, has often been con­

sidered a superfluous step which requires the development o f additional simulation models that arc

not readily translated into lower-level models. However, analysis o r many performance-enhancing

design trade-offs is only possible by high-level simulation. Such design trade-offs arc becoming

increasingly important as IC densities grow. Recently, a number o f new CAD tools have been

developed which arc able to automatically synthesize gate- and circuit-level descriptions from

high-level behavioral descriptions [32]. These high-level synthesis tools show promise in automat­

ing digital design in a number of specialized areas, particularly signal-processing and digital con­

trol.

1.2.2 Fault Modeling

Faults in ICs primarily result from physical defects introduced during manufacturing. A

variety of disturbances arise even in mature fabrication lines, and cause subtle failures that may

not be detected for a long time without thorough testing. They can later show up as performance

degradation, as errors in little-used functions, or as obvious catastrophic failures.

To generate tests, we use logical fault models that reflect changes in circuit function due to

physical defects. A digital logic circuit is then said to fail if the function it implements differs from

9

the function it was designed to implement. Fault models provide a consistent and technology-inde­

pendent mechanism for how the logic function might fail, as well as a standard yardstick for mea­

suring the quality of a set of tests. In developing a fault model, it is important to strike a balance

between accuracy and complexity. The model must also match the characteristics of the design

lcvel{s) at which it is used.

The most common fault model is the low-level single stuck line (SSL) fault model. Physi­

cal failures arc represented by maintaining a single line in the circuit at the constant value 0 or 1

regardless of how circuit operation stimulates the line. To test if a line is stuck at 0 (I), wc must

find a sequence of one or more primaiy input test patterns that will make the line 1 (0). This

exposes the fault. The test must also arrange for an error caused by the fault to be propagated to a

primary output where the error can be observed. Tests must usually be found for all 2N SSL faults

in an AMinc circuit. Typically a given test will detect or cover more than one fault. The fraction of

faults covered by a set of tests is called the fault coverage. Experience has shown that ICs tested to

provide high fault coverage (0.99 or better) for SSL faults generally have high reliability in the

field. At present, the coverage of SSL faults is the only well-accepted measure of test quality, and

all other measures must be calibrated against this model.

Few formal higher-level fault models exist, and those that do arc often defined in impre­

cise terms. In Lin and Su's rcgistcr-lcvcl fault model [64], for example, faults arc classified accord­

ing to their effect on some register-level components. TheSc effects include such symptoms as

register decoding errors, and dala transfer errors. Other higher-level fault models arc extensions of

the SSL fault model. For example, Bhattacharya and Hayes [12] extended the SSL fault model to

include all bits of a bus, leading to the concept of bus faults.

Since the SSL model only approximates the physical faults that occur in ICs, a consider­

able amount of work has been devoted to verifying it and to developing new, more accurate mod­

els. Problems with the SSL model, particularly for CMOS circuits, were identified as early as 1978

]98], so CMOS circuits are sometimes modeled at the (very low) switch level [47], where transis­

tors arc treated as idealized switches. Recently, designers have also become concerned about two

alternative types of faults. The first type is the delay fault. Some defects cause the IC to generate

correct logic values only after an excessive delay [63]. The second type is the bridging fault, where

10

physically separate wires in a circuit arc connected by a fault. By modeling the effect o f manufac­

turing defects on layout, Ferguson and Shcn were able to inductively show that the most likely

CMOS fault is a bridge between adjacent wires [29]. Modeling delay and bridging faults can result

in better quality tests, but test generation procedures for them arc much more complex than for

SSL faults. However, tests for these more accurate fault models can be generated and stored for

register-level library modules, and later used as precomputed tests.

Finally, some circuits, such as RAMs and ROMs, have unique failure modes [2], RAMs

for instance, can fail so that certain patterns written to and read back from a particular address will

expose a fault, otherwise the fault is not observed. These circuits are usually tested using com­

pletely different methods from those used for logic circuits [2]. Such tests can also be stored as

precomputed tests.

1,2.3 Test Generation

In principle, it is possible to generate tests without the use of an explicit fault model. There

arc two approaches to such “ black box” testing: random testing, where pscudo-randomly gener­

ated patterns arc applied to the inputs o f the circuit; and exhaustive testing, where all possible pat­

terns arc applied. Neither of these is practical for an entire VLSI circuit. Empirical evidence

suggests that some faults arc resistant to random testing [100], and most high-volumc IC manufac­

turers believe that fault coverage o f 99 percent is necessary. To see why exhaustive testing o f

entire circuits is not practical, consider an IC with 50 inputs (small compared to most modem

VLSI circuits). Assuming that the circuit is combinational, the number o f possible input vectors is

250 = 1.126xl015, A tester, operating at 50MHz would take more than 260 days to test this IC

exhaustively. A sequential circuit would require an even larger number of input test vectors.

An alternative approach is to derive tests For faults in a structural circuit model algorithmi­

cally. Most research is devoted to algorithmic test generation. In Figure 1.4, we outline a generic

procedure for generating tests for all faults in a circuit model. Step 5 of this procedure is per­

formed by an algorithmic test generator. We next discuss the details of algorithmic test generation.

Com binational C ircuits. The most studied approach to algorithmic test generation employs gate-

level structural models; nearly all commercial test generators do so. We will discuss the two most

widely used gate-level algorithms, versions of which can also be used at other abstraction levels.

n

1 test generation
2 {
3 do {
4 select an uncovered fault;
5 generate a test fo r the fault;
6 evaluate fa u lt coverage thus far;
7 } while (fault coverage is inadequate and time has not run out);
8 }

Figure 1.4. Generic test generation algorithm.

Stuck-at-0 fault site

S ensitized path

> J
Figure 1.5. An example of D-propagation in a carry circuit.

Test generation algorithms have two basic steps: (1) expose the currently selected fault, and (2)

propagate an error signal from the site of the fault to an observable output.

We first introduce some standard notation used for describing errors in test generation

algorithms. If a line in a circuit is 0 (1) when it should be 1 (0), the error signal value on that line is

represented by the symbol D (D) for discrepancy. Consider the circuit in Figure 1.5. This circuit is

the carry part of a full adder (Figure 1.3a). A stuck-at-0 fault at the output of gate G f can be

exposed by attempting to make the output 1. A signal on this line will be detected as an error if it is

0 when it should be 1, that is, a D. The fault G (stuck-at-0 can be exposed, therefore, by assigning

0 to one or both o f A and H.

Suppose that the output line of G4 is observable. To observe the fault, we must propagate

the D error signal from G j through C 4 , which requires sensitizing G A to the error signal. We can

do this only by assigning 1 to each o f G4's inputs from gates other than G j . The output o f C 4 will

be D as shown, which still carries the error information. The error propagation step just described

is called D-propagation. Now, the outputs o f G 2 and G3 have been assigned specific logic values,

but not all of their inputs. If C(. is assigned the value 0, the circuit behavior will be completely

12

specified. This process of determining complete and consistent specifications o f circuit signal val­

ues is called justification.

The most widely known test generation algorithm is the D-algorithm, first published in

1966 [33]. It provides a systematic implementation of the D-propagation and justification steps

described above. In the ease of D-propagation, several D ’s (D ’s) may be propagated simulta­

neously, since sometimes an error signal must be propagated along more than one path to reach an

observable output. In the D-algorithm, D-propagation and justification operations make only local

assignments of signal values. To justify a value on the output o f gate G jt the D-algorithm makes

assignments to the inputs o f G r If these arc not primary inputs, assignments to them become

objectives for subsequent justification steps.

Both D-propagation and justification involve decisions or choices. For example, to accom­

plish D-propagation in the circuit of Figure 1.5, C(. could have been assigned 1 instead o f 0. If D-

propagation or justification cannot be done at some point without invalidating signal values

already assigned, the D-algorithm backtracks, that is, returns to an earlier decision point and

makes an alternative decision. For example, an alternative path can be followed from a point on

the D-propagation path where a signal line branches in several directions.

The D-algorithm has been successfully implemented for many years. Around 1980, it was

shown to be inefficient for an important class o f circuits called crror-corrcction-and-translation cir­

cuits [40[; it may be inefficient for other useful circuits as well. Poor choices for D-propagation

and justification in these circuits lead to an excessive number of backtracks and unacccptably long

computation times. A major reason is the fact that backtracking might be initiated at any gate in

the circuit.

The PODEM (Path Oriented DEcision Making) test generation algorithm avoids this

problem by backtracking only at primary inputs [33]. In PODEM, internal values arc not justified

explicitly, as in the D-algorithm. To satisfy an internal objective such as a D or D on some internal

line, a value is assigned to a primary input X f and the circuit is simulated. If the simulation proves

that the assignment docs not satisfy the objective, the algorithm assigns another input value. If dur­

ing simulation, two values conflict on a line, the algorithm backtracks by changing the value of the

last assigned X r When both values have been tried unsuccessfully, the algorithm backtracks to the

next-to-last assigned input. In this way, the algorithm can exhaustively explore all possible circuit

states, but only implicitly. So while the effect o f all circuit states is considered, not all possible

assignments arc made. In contrast to the D-algorithm, PODEM makes assignments only to pri­

mary inputs, not internal nodes o f the circuit. Nevertheless, the assignment to be made should be

related to the initial objective. In PODEM, a procedure called backtrace obtains this initial assign­

ment. PODEM traces a path from the site of an internal objective to be satisfied to a primary input.

Along this path it transfers its initial objective gate by gate until an assignment is made to a pri­

mary input.

A number of test generation techniques have been developed since PODEM [33, 52, 85],

most o f which arc simply extensions to it. Their goal is to reduce the number of backtracks by

identifying choices a test generation algorithm might make that cannot lead to a solution, without

actually pursuing every decision. For example, the FAN algorithm [33] seeks to identify conflicts

at fanout branches within a circuit, thereby avoiding backtracks at the primary inputs and the cost

of simulating large parts of the circuit. Conflicting assignments at fanout branches cannot be satis­

fied by any assignment at primary inputs. Gate-level test generation spccdups reported in [33]

averaged about 3.5 over PODEM. In general, new techniques for gate-level test generation like

FAN do not result in ordcr-of-magnitude spccdups over previous techniques.

Sequential Circuits. Algorithms such as the D-atgorithm and PODEM cannot generate tests

directly for sequential circuits because they assume that all assignments arc instantaneously propa­

gated. However, we can extend these algorithms to generate tests for some sequential circuits.

Consider the standard (Huffman) model of a finite state machine in Figure 1.6a. We construct a

pseudo-combinational iterative model of this circuit by:

1. Replacing each flip-flop, which has a fixed (clock determined) delay, by a pseudo flip-flop

whose function is equivalent to the flip-flop’s, but whose output is produced instanta­

neously, and

2. Connecting multiple copies of the circuit to form an acyclic circuit in the iterative form

shown in Figure 1.6b

Each copy o f the iterative circuit represents a different instant in time and is called a timeframe.

Given a known initial state q (rQ) at time /Q, the most common approach to sequential test gener-

14

1

X (t)

„ Combinational Flip-
logic flops

Q(t)

T
<?('<+1)

2 (0

*('o)

(a)

W ,) x(tT)

Initial
state

qVo)

i

T

1

Pseudo
Comb.
logic

Pseudo
Comb.
logic Hip-

fiops g('i)

flip-
flops

Comb.
logic

T

i

f
z %) Z(t2)2 (tj)

(b)
Figure 1.6. (a) Finite state machine and (b) an equivalent pseudo-combinational model.

ation is to construct an iterative model (Figure 1.6b) with r timeframes and execute a combina­

tional test generator, ignoring the Z outputs in the first r - 1 timeframes and the final state output

q (t r) . If the test generator cannot generate a test for the circuit in r timeframes, add a timeframe

and begin test generation again [2],

If q (tQ) is unknown, then the algorithm must justify objectives backwards in time, as well

as propagating error signals forward in time. The reverse-time processing approach, exemplified

by the extended backtrace (EBT) algorithm [67], avoids this complication by processing gates

strictly backwards through the circuit and backwards in time, determining events which must

come last, then next to last, etc. It starts at a primary output and follows a predetermined path to

the site of a fault chosen for testing. All necessary assignments for one instance of time arc deter­

mined before moving to the next earlier instance.

Another approach to sequential test generation is to randomly generate vectors from a

given seed or set of seeds and fault-simulate them to determine their fitness for a test program

according to a given cost metric. This approach is typified by the following algorithm [5]:

15

1. Crcaic a set of trial test vectors and simulate using a fault simulator (discussed below).

2. Evaluate the trial vectors according to some cost function.

3. Select “optimal” trial vectors and add them to the test sequence.

In general, test generation for gate-level sequential circuits is not very well developed.

This is an area where hierarchical approaches could make a major impact because most VLSI cir­

cuits are sequential. Gate-level techniques arc mainly useful for small circuits of a few thousand

gates, unless the circuits arc modified to make them testable. We will discuss this further below.

Complexity Issues. Test generation is well known to be a difficult practical problem and a number

of theoretical results support this conclusion. The fault detection problem, that is, the problem of

computing a test to detect a given SSL fault, is NP-complctc [50] for combinational circuits. The

lower bound complexity o f standard search-based test generation techniques is Q (N 2) [41], and

O (N3) in the average case [100], where N is the number of modules in the circuit. Finally, the

typical approach (described above) o f extending gate-level combinational algorithms to handle

sequential circuits has worst-case complexity O ((2 ^) 2m*') , where m is the number o f state vari­

ables [16], We see from this that if all else is equal, reducing the number of modules in the circuit

by increasing the abstraction level should decrease test generation complexity.

F ault Simulation. Faults arc simulated during test generation to determine the coverage of the

current test (line 6 in Figure 1.4) and to reduce the number o f tests needed. The process of analyz­

ing coverage using a fault simulator is called fau lt grading. A fault simulator models faulty ver­

sions o f a circuit as well as an unfaultcd “good” version. If there arc JV faults to be considered, then

the fault simulator simulates N + 1 different circuit responses to a given input in one simulation

pass. The outputs from the simulation pass due to the M faulty circuits arc compared with the one

good circuit, and faults associated with incorrect circuit outputs arc detected.

Usually, a test generated for a particular fault in a circuit will detect a number of other

faults scrcndipitously. Fault simulation is not an essential step in test generation, and many test

generators do not include it. However, fewer tests are generated when a fault simulator is used,

which tends to speed up generation of a complete set o f tests and results in more compact test sets.

On the other hand, fault simulation can be computationally expensive. A few hierarchical

fault simulators have been developed [77], but these have not significantly reduced complexity in

16

the general ease and so arc not widely employed. Fault simulation is most often included within

test generation algorithms for combinational circuits [99]. By focusing on a limited range o f cir­

cuits, these fault simulators achieve significant performance improvements over more general fault

simulators, and thus are acceptable for inclusion in the test generation algorithm. This is a recur­

ring theme in CAD: generality must be balanced with efficiency.

1.2.4 Design For Testability

A number of logic design techniques facilitate testing. For example, avoiding logical

redundancy, providing for direct initialization of memory devices, and providing a mechanism for

logically breaking global feedback loops, all make testing easier. Many companies compile long

lists of such design for testability (DFT) rules. However, this ad hoc approach adds considerably to

the designer’s burden and may still not provide satisfactory testability.

A contrasting approach is systematic DFT. The basic idea o f the most common systematic

technique, scan design [25], is the separation of memory modules from combinational modules

during testing. Memory modules, e.g. flip-flops, arc chained together into a shift register or “scan

chain” when a special test mode is activated. This partitions the circuit into a set of combinational

subcircuits Cr each of whose inputs and outputs are connected to the scan chain; see Figure 1.7.

Each combinational subcircuit can be tested by shifting its input test data into the scan chain

through the scan input X s , letting the data ripple through the logic in parallel, loading the results in

parallel into another part o f the scan chain, and scanning the data out serially through Zs . The scan

chain itself can be tested by shifting a pattern of Is to fill the chain, followed by the same number

of Os, and then the sequence 0101... Tests can be generated for the combinational subcircuits using

any combinational test generator, since the subcircuit inputs and outputs may be treated as pri­

mary. Therefore, connecting all memory modules of a circuit into a scan chain obviates the need

for sequential test generation.

There arc many variations on the basic theme of scan design [7, 35, 92]. The most impor­

tant design issue is whether to include all flip-flop elements in scan chains (full scan) or only some

of them (partial scan). Partial scan is used to break feedback loops and to provide access to hard-

to-tcst modules, but sequential test generation is still required to generate tests in this ease. The use

of scan design greatly simplifies test generation; however, scan elements add to the area of the chip

F]ip-flop Scan chain

Figure 1.7. Scan testing scheme.

and cannot be used for dense memory modules such as RAMs. Very Jong scan chains can also be

slow to load and unload during testing.

Hierarchical approaches to design for testability arc just beginning to appear [9, 12. 19.

26, 51, 61, 73, 82]. Some of these identify registers for partial scan by analyzing behavioral

descriptions 119], while others seek to modify behavioral descriptions to avoid optimizations that

create unnecessary loops [61]. Bhattacharya studied modifications to individual register-level

modules to improve their testability [12]. Finally, several hierarchical DFT techniques seek to

ensure direct controllability and observability o f every module [9, 26, 51, 73, 82]. Since abstract

high-level representations o f circuits arc developed first and gate-level details are added later, hier­

archical testability techniques can be introduced early in the design process. Moreover, since one

module of a high-level model can potentially include many gates, a single testability feature in a

high-level model can benefit a large number of gates.

1.3. Hierarchical Testing

We have given a brief review of classical (low-level) test generation theory and indicated

its computation deficiencies. We have also indicated some places where we think hierarchical

techniques can be used. Now we will summarize the more important hierarchical techniques that

18

have been proposed, most of which simply address test generation. These range from well-defined

extensions of gate-level algorithms to largely heuristic approaches influenced by research in artifi­

cial intelligence [13].

High-level Models. Several of the proposed hierarchical techniques model the circuit in terms of

high-level functional blocks interconnected by single-bit lines. The fault models can allow for

arbitrary faults in these blocks, and the test generation algorithms used may be simple extensions

of the classical ones described above. Somenzi et al. [90] described such a technique based on the

D-algorithm, Chandra and Patel [18] proposed a similar technique based on PODEM, and more

recently, SOCRATES [84] has included higher-level primitives.

The fundamental advantage of higher-level modules is that there arc fewer of them in the

circuit to evaluate. However, the use of low-level (single-bit) interconnections between high-level

modules negates this advantage as the space used to store propagation information is exponential

in the number of bits, causing correspondingly long processing times. In addition, the algorithm

has an exponential number of choices at each module, so there is a potential for excessive back­

tracking. This behavior was empirically observed by Chandra and Patel [18].

Bhattacharya and Hayes defined a test generation methodology that uses high-level inter­

connections (buses) and fault models in addition to high-level modules [12]. Faults in this model

affect all bits of a bus. A bus is totally stuck-at-0 if all bits are stuck at logic level 0, and totally

stuck-at- 1 if all lines arc stuck at logic level 1. An extended version of PODEM called VPODEM

assigns vectors to buses to propagate these bus-level faults through the circuit model. The circuit

and fault models, as well as the test generation algorithm, reduce to classical ones if components

arc restricted to single gates, and bus sizes arc restricted to one, thus providing a truly hierarchical

test generation method for large circuits.

The approach taken by VPODEM is especially suited to regular circuits like iterative logic

arrays. In many such eases, it can be shown that a test generated for a total bus fault in the high-

level model is guaranteed to detect all SSL faults on corresponding lines in a gate-level model of

the circuit. Experiments conducted with medium scale ICs [12] suggest that tests generated for

total bus faults in the high-level model detect more than 70 percent o f the SSL faults in the corre­

sponding gate-level model. The number of tests so generated is typically less by a factor of «,

19

where n bits is the main bus size, than might be required to achieve the same fault coverage using

gate-level models alone. The smaller number o f tests combined with the reduced component count

in the high-level model lead to a reduction in the total test generation effort, also by a factor of

about n compared to standard techniques. Moreover, using VPODEM and a gate-level model of

the same circuit, we can still obtain 100 percent SSL fault coverage by generating tests for SSL

faults not detected by tests for total bus faults.

The circuit model used by Bhattacharya and Hayes [12] docs not correspond directly to

the circuit model as entered into a design system, so some work is required to construct the higher-

level testing model. Moreover, the approach docs not take full advantage of function and data

abstractions in the original circuit, that is, its inherent high-level function.

Functional Approaches. Another class o f test generators called '‘functional’’ test generators check

for incorrect operation of high-level functions. For example, Thattc and Abraham proposed a high-

level test generation scheme based on a graph model of the circuit under test [94], Their method

was primarily designed for microprocessors and programmable circuits of similar nature. Nodes of

the graph arc registers, and a directed edge / is inserted from node /fj. to node Rj if the circuit can

perform a rcgistcr-transfer operation of the form I ' .R .^ -R ., that is, function I maps values from

register R. into values in register /?.. Faults in this model typically represent erroneous data trans­

fers; other fault types can be difficult or impossible to represent.

Other approaches use functional descriptions o f the circuit based on HDLs [62, 64, 75],

Lcvcndcl and Mcnon model faults as D 's injected into the variables of a HDL description [62].

Because faults arc modeled at such a low level, the advantages of the higher-level circuit model

arc somewhat offset, as we have seen before. Lin and Su model a variety of faults, including incor­

rect instruction decoding, and incorrect register transfers. [64]. Recently, Rao ct. al. [75] have pro­

posed a similar approach for VHDL models. In their approach, as well as that of Thattc and

Abraham [94], the faults are not described by well-accepted models, and the relationship of the

faults to standard models is hard to quantify.

Artificial Intelligence-Based Methods. Finally, we will discuss three methods based on heuristic

principles derived from artificial intelligence (AI). Saturn is a test generator with a strong focus on

design hierarchy [89]. The circuit model that it uses has information about the structural hierarchy

20

B [0..3]A[0..3]

S[0..3]

FAFA

i+1

FAFAj

i+ l

S[0J

0 A[0JB[0]

S[l]

A[1]B[1]

SL2] S[3]

F igure 1.8. Four-bit adder as an example o f hierarchical testing,

and also about the rules of circuit behavior at the various levels of abstraction. For example, the

adder in Figure 1.3b is described structurally as composed o f four full adder modules with appro­

priate connections. It can also be described in Saturn as a module performing the high-level func­

tional operation 5(3..0] = A[3.,0J + fl(3..0]. Similarly, the full adder modules are also described

both bchaviorally and in terms of their internal structure. Satum will always attempt to propagate

values through modules at the highest level o f abstraction for which it has a model.

The test generation algorithm used by Satum resembles the D-algorithm. It operates in

bottom-up fashion by first generating tests for faults on gates in the circuit. When testing a gate,

values are propagated to the boundaries o f the gate's parent in the next highest level of the design

hierarchy, then abstracted to the behavioral level of the parent.

As a demonstration of this bottom-up test generation philosophy, consider the four-bit

adder of Figure 1.3b, which is repeated in Figure 1.8. To generate a test for this circuit, Satum first

generates a sequence of tests for all faults in one of the full adders, justifying internal signals only

as far as the full adder inputs and propagating fault effects only as far as the full adder outputs.

This test is then stored in a library for future use in testing full adders anywhere in the circuit.

Singh’s work on Saturn was innovative and several test generators developed later used

similar techniques, however, Saturn’s performance on the few small examples cited was modest.

An extension to Satum called PF-TG (Program Fragment Test Generator) was developed by Shir­

ley at MIT [88], PF-TG generates tests by merging statements from precomputed tests, stored as

21

fragments of test programs complete with loops and conditionals, into a test for the whole circuit

using automatic program-writing techniques developed in AI research [8], Its overall algorithm

and circuit model arc the same as Saturn’s, but propagation and justification through modules is

accomplished explicitly by knowledge stored in a library. The technique is completely heuristic,

and dependent on the test programmer’s skill in writing the test fragments for control and observa­

tion. However, the resulting test has the characteristics of a test program and can therefore take

advantage of tester features unused by typical test generation algorithms.

Like Satum and PF-TG, the circuit model for DB-TG [88] is described hierarchically and

uses knowledge to constrain the search space. In contrast to PF-TG, however, this knowledge is

not directly contributed by the user. Rather it is derived from earlier simulations o f the circuit,

using a symbolic simulator. During test generation, DB-TG relics on data it recorded earlier. A

symbolic test value R is determined to have been propagated when it appears in unmodified form

at a primary output. Finally, the symbolic values arc replaced with sequences of precomputed test

values which arc required to test the module. As in the case of PF-TG, the approach is based

almost entirely on heuristics, and DB-TG was tested only on one small circuit. Finally, as noted

above, symbolic simulation for design verification is not part of the design cycle for most compa­

nies, nor does there appear to be a trend toward using it.

Finally, Krishnamurthy [57] used AI techniques to describe fault propagation and line jus­

tification methods for each module in a design hierarchy to improve the performance of the con­

ventional D-algorithm. This approach has subsequently been used in a number of experimental

hierarchical test generators, notably SOCRATES [84],

Precom puted Tests. A new, but growing class of test generators use hierarchical techniques as

described above, but focus on the ability to justify precomputed tests for modules and propagate

module test responses to outputs where they can be observed. This important capability is the main

strategy in a number of experimental test generators [9, 58, 59, 68, 88, 93]. Currently evolving

design styles, which rely heavily on CAD tools, arc making this capability very desirable. Design­

ers often reuse modules that have been stored in a library, and many of these modules do not have

accurate gate-level models for test generation purposes. However, when they were designed, tests

were generated for the modules and stored for future use. Testing using such precomputed tests

22

Module

Estim ated
num ber
of gates

Estim ated
num ber of

gate
evaluations

Num ber
of high-

level
modules

N um ber of
module

evaluations
by PathPlan

Fltrdp 254 64,516 6 57

Vcrtdp 138 19,044 5 21

Rowdp 220 48,400 6 33

Alu 62 3,844 9 167

Progptrl no 12,100 12 210

Progptr 156 24,336 6 68

Table 1.1 Performance of PathPlan relative to gate-level test generation.

therefore augments and complements well-established lower-level test generation schemes. In

cases where precomputed tests may be easily applied to modules, it is advantageous to use them,

especially when the modules arc large. Not only is the test generation effort reduced, fault simula­

tion for fault grading is minimized.

We developed an algorithm for test generation using precomputed tests and implemented

it in a tool called PathPlan [68]. This program is one of the earliest to specifically use this

approach. In PathPlan, precomputed tests arc represented symbolically and propagated through

modules in the circuit model. The test generation algorithm used is loosely based on the D-algo-

rithm. We will discuss the design o f PathPlan in detail in Chapter II.

Since the circuit modeling level is much higher than the usual gate level of the D-algo­

rithm, the number of components is substantially reduced. Moreover, the number of backtracking

choices available at each module is also greatly reduced. Some performance results for PathPlan

arc shown in Table 1.1 [68]. The modules in these circuits are implemented by module generators

which produce layouts rather than nctlists o f gates. However, we can estimate the number o f gates

in each module and therefore in each circuit. As noted above, the lower bound complexity of test

generation is A/2] , where N is the number of modutcs. For instance, to generate a test for the

gate-level version of Fltrdp (254 gates) using conventional techniques would require 64516cj

gate evaluations for some constant that depends on the test generator. With the same assump­

23

tions, PathPlan has the significantly lower bound o f 36c2 on module evaluations for some con­

stant c2 . Since the complexity of a module evaluation in PathPlan is similar to that of a gate-level

algorithm, we will assume that Cj and c2 are within the same order o f magnitude. The actual per­

formance o f PathPlan for Fltrdp is 57 module evaluations (sec Table 1.1). Thus we see in this

instance a potential speedup of perhaps three orders o f magnitude over conventional test genera­

tion. Performance results for most other circuits in Table 1.1 arc similar.

An approach similar to, and partly based on PathPlan has subsequently been implemented

by Mitsubishi and used to test several circuits [11]. Despite this success, PathPlan is a preliminary

system with a limited ability to propagate high-level signals. The propagation techniques used by

PathPlan cannot handle general rcconvergcnt fanout, or any irregularities in bus structure. In a cir­

cuit with a regular bus structure, all buses in the primary data path have a constant width n\ no

buses arc truncated to smaller sizes.

Since the initial development of PathPlan, several other experiments in test generation

using precomputed tests have been published. In [9], Beenker ct al. o f Philips describe their work

on a test generation approach that relics heavily on special DFT techniques. The SPHINX tool box

(later renamed Panther and marketed commercially) works in concert with the design system.

Many modules implemented by the design system have precomputed tests, and all latches, regis­

ters and flip-flops employ full scan. Modules arc grouped hierarchically to form “execution units”

(EUs). Each EU is directly controllable and observable via buses and test registers and contains a

small test controller module that controls the scan chains and routes tests to modules within the

EU. The EUs themselves arc grouped into “processors". Each processor also has a test controller

that controls the propagation o f tests to and from EUs and the test controllers within the EUs. Pan­

ther provides the tools to implement the scan chains and test controllers hierarchically. When the

design is completed, every test stimulus vector can be applied directly to every module via scan

chains and buses. Similar techniques were also proposed in [26, 51,73, 82]. Propagation of test

information through other modules is minimized; Panther is not designed to propagate the precom­

puted tests through modules other than scan chains.

No new general principles o f hierarchical test generation arc developed in Panther. Test

generation becomes a matter of scheduling tests to be applied. In [9], Beenker ct al. describe how

24

their approach is applied to an error-correction circuit with 225,000 transistors [103], thus further

demonstrating the practicality of precomputed tests for commercial circuits. The performance of

Panther in testing this chip is impressive. The test for the entire chip was generated in about 2

hours, which includes the time (80 minutes) to hierarchically generate tests for two programmable

logic units which are then used as precomputed tests. It is claimed [9] that the DFT logic adds only

about 8 percent to the chip area, however, the design style enforced by the CAD system naturally

provides high controllability and observability and is not practical for all applications. Panther is

tightly coupled to the design style, and the test generation tools assume that each individual mod­

ule is directly accessible.

Su and Kimc [93] have developed a tool called HPath for sensitizing multiple (multi-bit)

paths in a hierarchical circuit. These paths deliver precomputed test data from primary inputs to

module inputs and propagate test responses from module outputs to primary outputs. The HPath

algorithm is based on heuristics, and contains two subfunctions: GPath, which is a symbolic ver­

sion of PODEM designed to find sensitized paths in modules with gate-level models; and FPath,

which, like Pathplan, finds paths through high-level circuits by using rules stored in libraries about

propagation through modules. Hpath suffers from a similar inability to propagate error information

through circuits with an irregular bus structure. Since HPath primarily uses heuristics, very few

general principles are developed in [93] that might lead to the development of more advanced hier­

archical test generators. In [93], Su and Kimc report the average time required to sensitize paths to

modules in several circuits, but this information is not compatible with other benchmark data.

Finally, Lee and Patel have reported on two versions of a test generator called ARTEST

that they have developed for testing using precomputed tests [58, 59]. They assume that circuits

arc composed o f two parts: a datapath containing large modules with precomputed tests, and a

control unit which provides control signals to the datapath and is composed of gates and flip-flops.

Each part has a separate test generation algorithm. The datapath is tested using hierarchical tech­

niques. Lee and Patel assume that the exact description of the error signals associated with each

module test is unknown, Therefore, when a stimulus vector v is propagated to the inputs of a mod­

ule under test (MUT), the output is marked as "type faulty" if v matches a precomputed test vector

for the MUT, or “type good" if v docs not match any test vector. We will discuss this “typing"

25

approach to error propagation further in the next chapter and in Chapter IV,

In the first version of ARTEST [58], the datapath is tested using a hierarchical algorithm

similar to PODEM. Each test vector is justified individually; no attempt is made to propagate tests

symbolically as in PatfiPlan. In the second version [59], a relaxation algorithm is used to justify

internal signal objectives such as precomputed test stimuli. Symbolic expressions with undefined

variables are propagated from the inputs of the circuit. This creates a system o f equations which

must be solved individually for each test vector to be applied to the MUT. Both versions o f ART­

EST use conventional gate-level techniques for testing the control unit. Faults propagated to the

interface between the control unit and the datapath are propagated as high-level error signals

(types) by the hierarchical test generator.

Lee and Patel have evaluated ARTEST’s performance on small and medium sized exam­

ples (a few thousand gates). In [58], they compare the performance o f the first version of ARTEST

to a gate-level test generator HITEC [72]. Using both programs, they generate tests for a version of

the Am2910 microprogram sequencer [3], ARTEST uses 61.75 CPU seconds to generate a test

compared with 2,297 seconds for HITEC— a speedup factor o f 37.6. ARTEST performs well for

several circuits that contain global feedback loops and rcconvcrgcnt fanout. However, all circuits

tested have a very regular bus structure, ARTEST cannot generate tests for circuits with an irregu­

lar bus structure, even if it is possible to successfully propagate the precomputed tests. More effec­

tive hierarchical error propagation techniques are essential to the development o f testing methods

for general circuits.

1.4. Summary and Thesis Overview

We have reviewed classical testing theory and practice, and have the following observa­

tions.

Test generation for ICs continues to be an important and difficult problem, The changing

nature of technology and design styles ensures that the problem will never be perma­

nently solved. Present techniques arc already inadequate in many eases and the problem

is getting worse.

26

* Simulation and synthesis o f digital systems increasingly take place at very high levels of

abstraction. Hierarchical test generation tools provide an opportunity for addressing the

testing problem at a point in the design process when changes and trade-offs arc most

easily made.

Conventional test generation techniques arc based on the SSL fault model. O ther fault

models such as bridging faults between transistors may be more accurate, but cannot be

handled by conventional techniques. In addition, some types of circuits, such as RAMs

and ROMs cannot be effectively tested using the SSL fault model.

Hierarchical testing techniques show great promise for improving test generation perfor­

mance and for matching test generation tools to evolving computer-aided design styles. However,

current techniques have many drawbacks, and so have not been widely implemented. Some of

these techniques make use of the hierarchical modules of typical circuits, but retain a bit-level

interconnection structure and related fault models [18,90]. Thus, they do not realize the full poten­

tial o f high-level error propagation because o f the low-level interconnection structure. Other hier­

archical testing techniques use higher-level models and bus-level interconnection structures, but

use high-level fault models that arc difficult to relate to more precise and well-accepted models

[12, 64], Still other techniques arc based almost entirely on heuristics, so no generally applicable

principles of test generation have been developed for them 188, 89]. Finally, few of the proposed

techniques attempt a systematic approach to design for testability, despite the fact that hierarchical

techniques can be implemented earlier in the design process. In general, the field of hierarchical

test generation is still in its infancy.

Hierarchical test generation techniques that can use precomputed tests [9, 58, 59, 68, 88,

93] have two particular advantages: (1) tests can be generated using multiple fault models for the

same circuit, including the SSL fault model, as well as more accurate and technology-specific fault

models; (2) tests that exist for previously designed modules can be reused when it is inconvenient

or impossible to regenerate tests for these modules in the circuit that contains them. Moreover, our

initial test generator PatfiPlan demonstrates the possibility o f significant performance advantages

over conventional test generators. Nevertheless, all current hierarchical test generators that use

precomputed tests are limited by their ability to generate tests for circuits with an irregular bus

27

structure.

In this thesis, we present the theory and tools we have developed for generating tests for

circuits using precomputed tests for modules. Our test generator PathPIan, which is widely cited,

was one of the first automated CAD tools for this type o f test generation. Since error propagation

over irregular buses is a limitation of PathPIan and subsequent published tools, we have concen­

trated on research to develop improved error propagation techniques. To accomplish this task, we

have formulated a theory o f information propagation in bus-structured circuits. Some aspects of

the theory arc applied to the development of a new test generation tool MATSim , which analyzes

error propagation. MATSim is incorporated in PathPkin2, a successor to PathPIan, which is not

limited to circuits with a regular bus structure, but still generates tests with the same high perfor­

mance achieved by PathPIan. Throughout the research reported here, we have sought to develop

general theory and techniques that may be used by others, as well as implemented in our own

tools.

In Chapter II, we discuss test generation using precomputed tests in more detail and con­

trast it with conventional techniques. We motivate the use of precomputed tests, and illustrate the

problems of test propagation. Finally, we describe PathPIan as a demonstration of a test generator

that uses precomputed tests, and identify the key extensions that arc developed in the remainder of

the thesis.

Chapter III presents a new, general theory of test data propagation, in which the informa­

tion propagation characteristics of modules and circuits arc succinctly represented algebraically.

The theory formalizes intuitive notions of information propagation, and also allows us to identify

some unexpected characteristics o f propagation through modules. We use it to analyze circuits

with irregular buses and prove several theorems relating the effect of module and circuit structure

to information propagation.

Chapter IV addresses the problem test data propagation during hierarchical test genera­

tion. We discuss how test data can be propagated as symbolic expressions and matched to precom­

puted test stimulus sequences at the inputs to embedded modules. We show how to hierarchically

analyze the propagation of errors produced by embedded modules being tested, using methods

based on the propagation theory introduced in Chapter III. Finally, since many circuits cannot be

28

adequately tested by precomputed tests, we propose a new design approach to modify them to

improve testability. This also uses theory the developed in Chapter III, and augments traditional

DFT approaches such as scan.

In Chapter V, we describe the design of our new test generation tools MATSim and

PathPlan2 that implement the propagation techniques covered in Chapter IV. They arc intended to

extend the capabilities of PathPIan, but arc not based directly on it; they arc completely new tools.

MATSim provides the error propagation capability missing from previous work. It can be used

manually or incorporated into automatic test generation tools such as PathPlan2, It thus provides a

foundation for more advanced tools to automate test generation for future ICs. We present some

experimental results showing that while PathPlan2 is a more powerful and general program than

PathPIan, its performance is at least as good.

Chapter VI summarizes the research described in this thesis and discusses future research

in propagation theory and testing using precomputed tests for modules.

CHAPTER II

PRECOMPUTED TESTS

In this chapter, we introduce the method o f testing using precomputed tests for modules

and compare it with conventional techniques. We illustrate the method using some example cir­

cuits and introduce key concepts and terminology used throughout the thesis. Finally, we describe

the design of PathPIan, our initial test generator that uses precomputed tests.

2.1. Precomputed Versus Conventional Methods

The defining assumption o f precomputed test methods is that a library of tests exists lor

every module in the circuit under consideration at some level of abstraction. In most eases, these

modules arc much larger than logic gates. Each module’s library test covers some set of faults in

the module, such as the set of all SSL faults. The goal of precomputed test methods is to combine

the tests for all the individual modules into a test for a multi-module circuit. This contrasts with

conventional methods, where the goal is to cover a set o f faults. We arc interested in precomputed

test methods that use a structural circuit model, such as a nctlist, and accomplish their goal by jus­

tifying a module test stimulus sequence Ts at the inputs of each module under test (MUT) in a

given circuit, and propagating the corresponding module test response sequence TR from the out­

puts of the MUT to the primary outputs of the circuit, as illustrated in Figure 2.1. TR may be prop­

agated directly to a primary output or to some other observation point, such as a scan path. In

Figure 2.1. r v is justified to a primary circuit input where it is denoted CTS for circuit test stimu­

lus sequence. The response TR is propagated along two paths to primary circuit outputs. The

responses at the outputs arc denoted CTRl and CTR2 for circuit test response sequence. Note that

29

30

Hierarchical circuit

M2 CiR2
4

Scan path

Primary
output

CTS

Primary
input

■■■ ► MUT ... M, - Register
T ^ 8 J 4

Ts — ------ t R IModule
under test

Primary
output

O -
CT*l

Figure 2,1. Propagating and justifying module tests in a circuit.

TR is propagated through modules and A/2 , both o f which have output buses smaller than

their input buses. This is an example o f an irregular bus structure. The test generator must select

each module in turn to be the MUT and justify Ts and propagate TR until all modules arc tested,

or until it is proven that they cannot be.

Precomputed test methods and conventional methods differ in the nature of their objec­

tives. Recall that when testing for SSL faults, for instance tine t of the MUT stuck-at-v, the initial

objective is set / to p. In precomputed test methods, the initial objective for the test generator is to

apply the set Ts of test stimuli to all inputs of the MUT. During test generation, values propagated

to the inputs of the MUT arc compared to Ts and if there is a match, TR is propagated from the

output of the MUT. Clearly, applying Ts is a more complex objective than setting I = v since sev­

eral MUT input ports arc usually simultaneously specified as a group or vector. Moreover,

although faults in the MUT may be covered by many different test vectors, in precomputed test

methods vectors that do not match Ts arc ignored. This leads to the main drawback of precom­

puted test methods: various constraints imposed by the circuit containing the MUT may prevent

either Ts or TR, or both from being propagated, despite the fact that all non-rcdundant faults in the

MUT could be covered by different tests.

31

Nevertheless, a basic assumption in the use of precomputed tests is that tests for faults

within modules must be reused and cannot be regenerated in the context of a larger circuit. Our

goal is to ensure that precomputed test data arc correctly and efficiently propagated if they can be.

When they cannot be successfully propagated, then fault coverage will be reduced, unless the cir-
■

cuit is modified to improve testability.

Another characteristic feature of precomputed test methods is that faults within the MUT

produce arbitrary multi-bit errors at the outputs of the MUT. Due to fanout within the MUT, a sin­

gle fault can produce errors at more than one module output bit, and each vector in 7\, can sensi­

tize more than one fault, causing multiple single-bit errors. Therefore, when the MUT contains a

fault, an individual test response vector in TR can assume an arbitrary error value v. * v.. For a

given MUT, fault model, and test stimulus sequence Ts , there may be many possible error values.

When generating a test, we must ensure that every v* produces a different value than v. at a pri­

mary output, that is, propagate the error. In contrast, to control complexity most conventional test

generators consider only a small number of the possible error values. For example, VPODEM [12]

uses only two fixed error values: the all-zero vector (due to a bus totally-stuck-at-O) and the all-one

vector (due to a bus totally-stuck-at-1). These errors are produced as a result of assumed faults on

lines and buses according to the VPODEM fault model. Such simplifying fault model assumptions

arc unacceptable for testing using precomputed tests.

Finally, most precomputed test methods use hierarchy and signal abstraction because the

circuits for which these techniques are appropriate contain several large modules, often intercon­

nected by a well-defined bus structure. In addition, the multi-bit objectives and multi-bit error sig­

nals arc more efficiently propagated over buses. Efficiency in propagation is important because

precomputed test sequences for large modules can be quite long.

Hierarchical representations of signal values allow precomputed test methods to take

advantage of the bus structure in a circuit to improve efficiency. If we model module connections

using single-bit wires, each carrying signals independently of adjacent wires, then signal propaga­

tion must take place at this same low level. The performance advantage frequently obtained by

avoiding testing within modules is at least partially offset by the complexity of simultaneously, but

independently propagating many individual intermodule signals. On the other hand, circuits whose

32

modules arc interconnected by large regular buses, which can be modeled as monolithic signal-

carrying objects, can be tested with good performance, as demonstrated by PathPkm. Unfortu­

nately, few circuits arc composed solely o f regular buses. As noted, buses arc often truncated to

smaller sizes, thus losing some o f their ability to propagate information. Information can also be

lost as signals are propagated through some types of modules. Such eases present nontrivial, but

often surmountable barriers to high-level signal propagation.

We have defined the precomputed test method and contrasted it with conventional tech­

niques. Next we motivate the method by means of some examples, and discuss the class of circuits

that it can effectively test.

2.2. Using Precomputed Test M ethods

Although they often improve test generation, the main reason for using precomputed tests

is that circuits often contain modules that cannot be tested by classical techniques. Precomputed

test methods are most appropriate for circuits that contain modules from two groups: (1) library

modules, and (2) modules not tested using the SSL fault model.

The first group consists of modules designed and tested independently, and stored in a

library. Many modem circuits arc composed o f modules that arc built by separate design teams.

For instance, a microprocessor may be partitioned into CPU, memory management unit, cache

controller, I/O circuits, etc., each designed separately. Design teams responsible for a module often

also have responsibility for generating tests for it. In many eases, the modules arc so large that it is

impractical to regenerate tests for them when they arc interconnected at the next level in the design

hierarchy; the original tests arc reused. In other eases, the module library is sold to other designers

as part of a design service. Customers o f the design service include the modules in their circuits

and use functional models o f the modules to verify their design. However, the structure o f a library

module is proprietary and is often not provided in sufficient detail for test generation. Neverthe­

less, precomputed test data for the modules are not proprietary and can be provided with the func­

tional models.

The principal modules in the second group, modules not tested using the SSL fault model,

arc embedded RAMs and ROMs. These modules cannot be tested by classical techniques and arc

33

usually treated as a special ease when testing an IC containing them. Also in this group arc mod'

ulcs tested using more accurate, technology-specific fault models, e.g. bridging faults between

transistors. Such fault models are useful in developing better quality tests, but arc so detailed that

test generation is impractical for typical VLSI circuits. These detailed fault models can be used to

generate tests for small submodules, and precomputed test techniques can be used to compose the

module tests into a test for the entire circuit.

An example of a circuit that is relatively easy to test using precomputed test methods is

shown in Figure 2.2. This circuit was generated by AutoCircuit, a high-level synthesis tool [321

being developed at General Motors Research and Development Center and based on the System

Architect’s Workbench from Carnegie Mellon University [95J. The circuit Encode is part of a spe­

cial-purpose communications chip. The modules in this circuit are synthesized by module genera­

tors. They arc similar to library modules and gate-level nctlists suitable for test generation arc not

available for all modules. Nearly all buses in this datapath have the same width (42 bits). The bus

structure is very simple, while the total number of transistors is fairly large—67,000 for the entire

chip, including four multi-port RAMs.

Each module in the datapath schematic of Encode is uniquely named PROCR_/‘,

MUXR J , or REGR_fc, where MUXRJ is a multiplexer and REGR„fc is a register. Most other

functional modules are named PROCR J . Below the module name is the width of the primary data

input bus and the module type. The CONCAT module adds lines to a bus. Now consider the prob­

lem of testing MUXR_3 in Figure 2.2. The CONCAT modules (PROCR_3—PROCR_6) shift a

constant value 0 or 1 into the low order bit of the inputs to MUXR_3 and MUXR_4. The value of

this bit can be controlled by inputs tj through t4. Therefore, the test vector set Ts for MUXR_3

can easily be justified through path (MUXR_1, PROCR_l, REGR_1, REGR_3, PROCR_3) and

path (MUXR_1, MUXR_2, REGR_2, REGR_4, PROCR_4). The test response TR can easily be

propagated through (REGR_5, MUXR_5, MUXR_7, REGR_5). These two paths arc transparent

to the propagation o f signals.

An example of a more difficult type of circuit that we would like to handle using precom­

puted test methods appears in Figure 2.3. This circuit is called Divfilt, and implements a digital fil­

ter containing about 2,900 transistors. Typically, several such circuits arc combined to form an IC,

M U T

O
M I K R J /

—

PR0CR_4 K nNn]_________
<42x CONCAT R x 'isJ

MUXR_1
RAMPODOUTB <«>.M U X

RHCR_3
<41>

RAMPEDOUTB

PROCR 5
<42>, CONCAT

PROCR JS
<42>, CONCAT

MUXR 5
<42>, MUX REGR_5

<42>

RAMPODINA

MUXR_8
<42>, MUX

REGR.6
<42>

RAMPEDINA

Figure 2.2. Example of a circuit Encode that is easy to test using precomputed tests.

35

or arc integrated on-chip with a microprocessor. Like Encode, Divfilt was synthesized by AutoCir-

cuit and contains primarily library modules. The FREAD modules in this circuit have the undesir­

able feature o f truncating bus width. Note the large number (12) of FREAD modules out of a total

of 51 modules. There are also several eases of reconvcrgcnt fanout, e.g. from the output of

PROCR„25 to the inputs of PROCR_l. Finally, note that Divfilt is highly sequential; there arc ten

register modules and several feedback paths throughout the circuit. The complicated bus structure

is the result o f the optimizations used by AutoCircuit to reduce the number of modules. Many

modules arc reused in several different operation.

Despite the complexity of its bus structure, Divfilt docs make extensive use of multi-bit

buses. High-level propagation techniques can therefore be used for testing some modules. In addi­

tion, Divtilt’s complexity is mitigated by the fact that relatively few types of library modules arc

used. AutoCircuit typically designs on-thc-fiy large sequential modules such as counters, from

lower-level modules such as adders and registers, because the latter can be shared with other func­

tions. Large modules with behavioral models arc sometimes helpful in identifying circuit behavior

useful for testing. For instance, the fact that a collection of modules arc combined to form a stack

circuit can sometimes aid test strategy development. However, it is easier to propagate errors in

Tr through a small set of well-characterized primitive functions, as we will later show. The mod­

ules that AutoCircuit uses most arc adders/subtracters, multiplexers, FREADs, CONCATs, ANDs,

ORs, NOTs, RAMs, and registers.

Now consider the problem of testing module MUXR_1 in Divfilt. Its test response TR will

have to be propagated through at least 12 modules to reach a primary output (SEND_2), along a

propagation path with significant loss of information (bits). This circuit is extremely difficult to

test, either by conventional or precomputed methods. Many faults in modules cannot be detected

because buses that carry the errors they cause arc truncated, making it impossible to differentiate

an error from correct circuit behavior. The IC defects that cause the faults can remain latent in the

circuit and cause failures later on. Clearly, some circuit modifications will be needed to test Divfilt.

Microcontroller products offered by such companies as Motorola and Tbxas Instruments

provide further examples of circuits with library modules. Precomputed testing methods arc fre­

quently used to test these circuits. Microcontrollers from Motorola contain CPUs (microproccs-

module name BE0R-15 FJWg£

"" u l ix r i RFcn t PRQCR_?3^^
REGR- 5 d 2 » .C O N C A T -

F R O C R ^ lb P R O C R 9 H — U I U

-’̂ s f - r i s s i ___

output bus width I module type
(12 bits)

P R O C a 21 PR Q C R _20 r e g r 2
<10>£P-EAO < 1 0 > JW X

t O — C > - c = h

iwfii send.!

m u x r a
< tO .M U X

REG R 3

>PROCR 1
<:»,oa PRfTP T M JXR_B(1».UUX

PR O C R _3
<1xA N DPR O C R 2 2 PR O CR 13

c t O l i l N U S < 11>fPR £*D PVU$PROCR H p c o C R 12
<11>. MINUS W y C H - Z

PR O C R _4«1>N0T
I2 .F R E A D

PROCR 30
* t2 > . FREAD PRO C R _32

MUXR 4
<tO>.MUX REGR t

> P R O C R _m
<U .F R E A DPR O CR 0 PR O C R 7S

c lU .C O N C J T < 1U .F R £A O
PROCR IBF R O C R 1 9 MUXR 5 REG R 7

<ier»M U X < 1(>c1 0 > FREAD < 1 0 x P * W
P R O C R JW
«4 > FREAD « E G H _W <3

MUXR e PRQ CH 11
.MUX <3>,PLU 5.

m in u s

PROCR J f SEND)
<1 to .FR E A D <ft»

Figure 2-3. Example of a circuit with library modules Divfilt which is difficult to test using
precomputed tests.

37

sors) such as the 68332 and 68HC11, as well as dozens o f other modules such as RAMs, ROMs,

I/O ports, and bus controllers. These modules arc designed in several countries. They arc stored in

a library and connected together in different ways to construct different microcontrollers. Each

module has associated precomputed tests and simulation models, and it is usually impractical for

completely new tests to be written for the modules when they arc composed into a microcontroller.

In general, since on-chip data and address buses provide good controllability and observ­

ability, microcontrollers arc usually somewhat easier to test using precomputed tests than Divlilt.

However, because a number o f special purpose circuits arc also included on-chip with the CPU,

microcontrollers do have some irregular buses. Therefore, in this thesis, we will focus on the prop­

agation of test information in circuits like Divlilt. Effective techniques for testing such circuits arc

also useful for dealing with circuits with more regular buses such as Encode or typical microcon­

trollers.

Now that we have defined the precomputed test method and illustrated the types of circuits

that must be tested using precomputed tests, we turn our attention to developing our key concepts

and terminology.

2.3. Propagating Precomputed Tests

In this section, we formalize circuit terminology we have used informally until now, and

introduce the concept of module and circuit transparency— the ability to propagate TR . We refer to

all components in the circuit under test as modules. Signals enter and leave modules through input

and output ports. All n-bit module interconnections arc called buses, even when n = 1. If X is a

bus, then |X| = n denotes the width of the bus. Individual subsets of bus lines arc described using

standard array notation; for example, if |X| = 8 , then X = X [7 ..0] . The most significant bit of

an n-bit bus is X[n-11. This is commonly referred to as Big Endian notation [21]. The signal value

associated with a bus or port X is denoted F (X) and the set of all possible values that can be

assigned to X is denoted by { V {X) } . Specific values on multi-bit buses arc represented as binary

(marked with a subscript 2) or decimal numbers. For example, the bit pattern V {X [2..01) « 111

is denoted 1112 in binary and 7 in decimal. Subscripts are omitted when discussing single-bit val­

ues, since there is no ambiguity in interpretation. In most eases, we represent values as decimal

Module

*•

Figure 2.4. Notation for module input/output signals.

numbers. Circuits arc directed graphs whose nodes are modules and whose edges arc buses. Buses

start at module output ports and end on module input ports. When considering a module in isola­

tion, we may unambiguously refer to its ports and the buses attached to them by the same name.

Let M (Figure 2.4) be a module with input ports X and output ports Z. T/{ is propagated

from a subset o f the input ports XD <^X to a subset o f the output ports ZD g Z. Propagation is

often controlled by a third set o f ports X C ^ X - X D . A test stimulus set Ts is justified at Z n by

assignments to X D and X c . The buses X D >XC, ZD, and Zc are called respectively, the input data

bus, the input control bus, the output data bus, and the output control bus, and (AD'-Zn) is a data-

bus pair. We assume in our analysis of propagation that X D, X c , and Zjy may be freely chosen.

Library modules, such as adders and multiplexers, often have standard -X^’s, and Z ^ 's

based on functional considerations. However, when the modules arc used in a circuit, the data and

control buses suitable for testing purposes may differ from these standard configurations. Some

typical datapath modules arc shown in Figure 2.5. Each module is shown with a particular assign­

ment of inputs to X c and XD , and outputs to ZD, Figure 2.5d shows the usual assignment of buses

for a multiplexer, while Figure 2.5c shows a less common but still useful assignment. Figure 2.5h

shows a decoder with only two decoded values being used, This module is a version of a classic

decoder module which has one output bit for each possible input value. Frequently, only a few

input values need to be decoded, and VLSI circuits often have large buses which prohibit the use

of complete decoders, so module generators arc used to create small versions such as the module

J O - Z D

(a) N A N D gate

K
x cc D ° - Z o

(b) N O R gate

A D D ER
M U X

(c) A dder (d) M ultip lexer 1

M UX — h —
M U LTIPLIER

— f--------
3

(c) M ultip lexer 2 (0 M ultip lier

clr elk

X C

(g) R egister

enable

(h) D ecoder

F igure 2.5. Typical modules and their buses

40

in Figure 2.5h. Here we assume that only inputs 0 and 4 arc decoded, so that when the decoder is

enabled and V (XD) = 0 , then V () *= 1, and if V (X D) <= 4, then V (ZD) = 2 . All other

values at X D map to 0 at ZD .

The propagation problem (also called the observability problem) for a module M may be

stated as: given a data input value V (X D) , determine a control input value V {Xc) so that the data

output V {ZD) is distinguished from the output V (ZD) ' due to any V (X D) ' * V (X D) . M is said

to be transparent with respect to V (X c) if such a control value exists. That is, M is transparent if

any change in value at X D is reflected in a change in value at ZD . For example, Multiplexer 1

(Figure 2.5d) is transparent when V (Xc) = 0. The concept o f transparency is also defined simi­

larly by Marhbfer [66], and the path from X D to ZD through a transparent module is called an F-

path by Freeman [30]. M is partially transparent if for some V (Xc) , V (ZD) ' is distinguished

from V (ZD) due to at least one V (XD) ' V (XD) . In this ease, some changes at X D can be dis­

tinguished at but not all. For example, the decoder in Figure 2.5h is only partially transparent

when V (Xc) = 1, since not all of the inputs arc decoded—most map to 0.

Some propagation paths with specific transmission properties have been defined. Two of

the more important ones arc 1-mode paths and T-mode paths [I], both of which arc fully transpar­

ent. V (XD) is propagated from X D to ZD without modification along propagation paths with I-

modcs. V (XD) is propagated from XD to ZD either unchanged or inverted—a simple transforma­

tion, along paths with T-modcs. An example of an I-modc is demonstrated by Multiplexer 1

(Figure 2.5d) when V (X c) = 0, and an example o f a T-mode is demonstrated by the NAND gate

in Figure 2,5a when V (Xc) ■= 1. Other useful functional path characteristics or modes may eas­

ily be envisioned.

The justification problem (also called the controllability problem) for a module Af is to

determine an assignment to X D and X c such that V (ZD) = Ts . Frequently, as in the ease of

observability, X c is used to control information propagation from X D to ZD . In these eases, each

V (Zp) corresponds to a unique V (X p) . For example, when V { X C) = 0 in Multiplexer I

(Figure 2.5d), then any desired value v at ZD can be obtained by applying v to X {). Both I-modcs

and T-modcs can be used in this way for justifying as well as propagating, a fact that is exploited

by PathPlan.

41

2.4. Representing Information

In this section wc discuss the representation o f precomputed test data. These data are prop­

agated as signal values in the circuit model. Two types o f information need to be propagated: (1)

correct or fault-free signal values, including Ts , TR, and various control signals, and (2) error sig­

nal values that represent the effect of faults.

Vector Sequences. As discussed above, our precomputed test.methods use hierarchy and abstrac­

tion in the propagation o f signals as well as in the description of circuit structure and behavior. In

order to represent signal abstraction, wc consider all signal values to be vector sequences [45,12],

A basic vector sequence is an n x rti matrix o f logic values representing a sequence o f Boolean

vectors. Each of the n rows of a vector sequence A represents the signal values for one bit of a bus

over time. Column / of A represents the set o f logic values on the bits o f an w-bit bus at time

instance t. These values may be freely interpreted as any valid encoding over the bits, such as inte­

gers modulo m. Gray codes, etc. The time units arc typically clock cycles, but may be interpreted

as gate delays, groups o f clock cycles, or the like.

In general, wc consider Ts and TR to be vector sequences. As an example, the following

stimulus/response vector sequence pair represents a sequence o f three vectors on the input and out­

put ports of a 3-bit adder such as that of Figure 2.5c.

/ _ _ \
0 0 0
1 0 0 0 0 0
1 1 0 I 0 0
0 0 0

t
1 1 0

1 1 0 p 1 °.
< _1 0 0 y

Vector sequence matrices can be refined into submatrices in hierarchical fashion. For

example, a natural partition of the input stimulus vector sequence part of (2.1) for the adder is

42

(2 .2)

0 0 0
1 0 0
1 I 0

0 0 0
1 1 0
1 0 0

which also illustrates how vector sequences can be represented by symbols. If we assign the output

part o f the pair (2,1) to the symbol A 3 , then the pair (2.1) can be written as

' r 1 ^
A .

(2.3)

Wc sometimes use a shorthand notation that allows vector sequences to be written on one

line. Horizontal sequences, implying a range o f time instances, are enclosed in square brackets.

Vertical vectors, implying a range o f values in space, arc enclosed in parentheses. For example, if

(2.4)

and

'*1
\

• A

\
,A3

J

zljt A n ^13
a 21 a 22 ^23

^31 A32 ^33

A ' ^1 1 A 12

a 21 a 22
(2.5)

then we write A = [(A M 31, A 32\), (j4 ,3, A 23, /133)] . If wc interpret the individual vectors

o f a vector sequence as integers, then using our shorthand notation, the vector sequence A t in

(2.2) can be rewritten as A { = [3, 1 ,0] . In these examples, the basic elements of vector

sequences arc constants, but they can also be variables, as we show below.

Certain vector sequences arc used so frequently by themselves and in the construction of

other sequences, that they have been given special names and symbols [45]. These include the n-

bit all-0 vector sequence 0 j(and the all-1 sequence 1 which arc used later, as well as C |(, the

/j x 2n counting sequence (the output o f an n-bit counter), and D |t , the n x n diagonal sequence.

E rro rs . Let Z be a bus in a circuit under test C, and let V (Z) = v when C is working correctly.

43

Let V (Z) = \>c when C has a fault. The pair (y, yc) is called a discrepancy, and represents an

error signal on Z. In conventional (gate-level) test generation, error signals arc usually represented

by the symbols D = (1,0) and D = (0,1). Error signals are frequently combined with fault-free sig­

nal values in a single set. In the D-algorithm and PODEM for instance, the signal values arc ele­

ments of a five-valued algebra D5 - {0,1,X,D,D>, where 0 represents the pair (0,0) and 1

represents (1,1). The value X implies uncertainty, which can be represented by the unordcrcd set

(0,1}, therefore X represents ({0,1 >, {0,1».

Wc can apply logic functions such as AND, OR, and NOT to D s by appropriately combin­

ing operations on the basic elements 0 and 1. We use the general method for extending basic alge­

bras presented in [46], Let A - { a {, a 2, ..., ait} be a set o f constant values, for instance {0,1},

and let O = {<t>p (J>2, 4 > w> be an associated set of operations, such as {AND, OR, NOT} so

that together A and O constitute an algebra denoted (A, d>). A is referred to the basis set. There

arc two general methods for extending A to a new set A ' that allow the operation set <5>' associated

with A ' to be easily constructed from the operations in d>.

The first method creates A' from ordered n-tuplcs of the form a ! = (o ^ , a l2, ..., a.) ,

where each a (j is an element or A. The interpretation of « / in this ease is that the signal may

assume value a .j under condition j. A set A' constructed in this fashion is called a P-set. The dis­

crepancies D = (1,0) and D = (0,1), and the fault-free values (0,0) and (1,1) in D5 arc P-set pairs.

The other method is to construct A ' from a set of subsets of A, so that each a / e A' is itself an

unordcrcd set o f the form = { n .p a J2, ..., a jk} , where each is an element of A. The inter­

pretation of a.' in this ease is that the signal may assume any value in the set. A set A ' constructed

in this fashion is called a U-set and is typically associated with uncertainty about the current value.

The elements of X = ({0,1}, {0,1}) in D5 are examples of U-sets. Clearly, P-scts and U-scts can be

combined as they arc in D5 - {0,1,X,D,D}= {(0,0), (3,1), ({0,1 },{0,1}), (1,0), (0,1)}.

Next wc show how to obtain the operations in O ' by combining operations in O . Con­

sider an operator 0 (a , , a2, ..., a m) defined on A. 0 can be extended for any P-set as follows:

0 ' (« , ', a 2\ ..., am’) = (0 (« ,, , fl21, ..., flm l), 0 (a 1T a22, ..., am2),

 ̂ (2.6)

where = (a .j, a j2, ..., r r /() e A ' and a - e A for 1 < / < m and l < j < n . Similarly, 0 can be

44

AND 0 I D D X

0 0 0 0 0 0

1 0 1 D D X

D 0 D D 0 X

D 0 D 0 D X

X 0 X X X X

Table 2.1 The AND operator defined for D5.

extended for any U-sct as follows:

(f) (fij ,) = {(f) (f/j p) * *)* (^12’ fl21* 1 1 ̂’

<f)(«l,j t « 2 1 a m 0 ’ tM r t l P a 2Z> $(**12' a 22f <lm l ^

where a ! = { a iV a i2, ..., ajn} e A' and a f . e A and 1 < i < m and 1 < j < n.. In other words, the

new set is constructed by combining members from each of the sets a 2 , ... , am' in all possi­

ble ways. Equations (2.6) and (2.7) define an extension rule which is satisfied by many useful mul­

tiple-valued logics [46].

We can now use (2.6) and (2.7) to construct logic functions for D 5 . For example, consider

the AND operation and D s .

AND (D, 1) - AND ((1, 0) , (I , 1))

= (AND (1, 1), AND (0, 1)) = (1 ,0) - D

while

AND (0, X) = AND (({0> , {0}) , ({0, 1>, {0, 1 }))

' - (AND ({ 0 } , {0, 1}) , AND ({ 0 } , {0, 1 >))

= ({A N D (0 ,0) , A N D (0, 1)> , {AND (0, 0) , A N D (0, 1)>)

= < { 0 ,0 } , { 0 ,0 }) = ({ 0 } , { 0 }) = 0.

The complete function table for an AND gate is shown in Table 2.1. Tables for the other logic

functions arc similar.

45

This algebra (Z?5 , {AND, OR, NOT}) is used by test generation algorithms to compute

values at the inputs and outputs o f gates in the circuit. In PODEM, for example, after a proposed

assignment v of logic values to the primary inputs is established, an implication operation is per­

formed to determine an equilibrium logic state which is consistent with v. Each gate in the circuit

is updated according to the function tables such as Table 2.1 to determine what its output will be in

response to a change on the gate’s inputs. It is possible to use tables such as Table 2.1 to unambig­

uously analyze the results of error propagation along rcconvergcnt paths in a circuit. If both inputs

to an AND gate arc D, then the output is D. On the other hand, if one input is D and the other D

then the output is 0, that is, the error signal is blocked.

For precomputed testing, wc want to propagate error signals on buses, not individual bits

of buses. Test response errors at the output o f the MUT have the form (TR, TRj) , where TR . is the

response of the MUT to Ts when fault is active. For example, if fault / . is a stuck-at-1 fault on

the least significant bit of the output to a 3-bit adder, then the discrepancy associated with fault f-t

for the test response given in (2.1) is

/
0 0 0 0 0 0

\

1 0 0 1 0 0
1 1 0

7
1 1 0

\ _0 1 0 .1 i L J

Wc can represent individual vector sequence discrepancies like (2.8) as P-set pairs, similar to those

in D 5 . However the number of elements in a set o f such pairs is not fixed, it depends on the size of

the buses in a circuit and on the length o f the sequences. Wc cannot define a fixed set such as D s ,

because bus size varies between circuits, and so wc cannot define corresponding functions to prop­

agate the values in a circuit model.

However, by abstracting signals, wc can create a small fixed set of symbolic error signals.

Lee and Patel pursued this approach for the test generator ARTEST [58], They constructed a set of

symbolic error signals as a P-set similar to £>5 using the ad hoc basis set {X,V,U,V’,U’} with the

following interpretation

X = an unassigncd value

V = an assigned, known value

46

E rro r signal Symbol In terpre tation

(X,X) X Unassigncd

(X,V) CF Constant faulty

(X,U) VF Variable faulty

(V,X) CG Constant good

(V,V) C Constant good and faulty

(V ,V) CGCFE Constant good and constant faulty effect

(V,U) CGVF Constant good and variable faulty

CV.U’) CGVFE Constant good and variable faulty effect

Table 2.2 The set of symbolic error signals used in ARTEST [58].

U = an assigned, but unknown value

V’ *= an assigned known value different from the correct value

U’ ° a n assigned but unknown value, different from the correct value

The symbolic error signal P-set constructed from this basis set is shown in Table 2.2 together with

the symbols and their interpretation provided by Lee and Patel [58]. These interpretations arc

meant to clarify the meaning of the signal but arc frequently ambiguous. Some signals such as X

arc similar to values in other signal value sets such as D 5 . Others, such as CGVFE, arc unique to

ARTEST. The signal CGVFE is used to represent all errors o f the form (T/{, TRj) simultaneously.

The signal C is used to represent all fault-free control signals and Ts . If CGVFE is propagated to a

primary output, then all test response errors are propagated.

Since the elements o f the signal value set described above are all abstract symbolic values,

they cannot be used alone to determine the state of a circuit during test generation. Therefore, they

are combined in ARTEST with an explicit fault-free signal value and the resulting signal is a pair

o f the form (v, t), where v is a vector and t is an element o f the symbolic signal value set given in

Table 2.2 and is referred to as the type.

The type set used in ARTEST has two drawbacks. First, the set is constructed in ad hoc

fashion so that the method described above for extending basic operations cannot be systemati­

cally applied. Types arc propagated in ARTEST using a set of rules for each module. Second,

47

CGVFE can only be propagated along fully transparent paths. Since all test response errors arc

combined in CGVFE, if any particular error (TR, TRi) cahnot be propagated along a propagation

path, then ARTEST must pessimistically assume that none can. Therefore, as previously dis­

cussed, ARTEST cannot generate tests for circuits with an irregular bus structure, such as Divlilt

(Figure 2.3).

In Chapter IV, wc will present a hierarchical approach to test response error propagation.

Our highest-level signals are similar to those described above for ARTEST and propagate test

response signals along fully transparent paths. Less abstract error signals arc used to propagate test

response errors along partially transparent paths. The signal value sets and their associated func­

tions arc rigorously defined using P/U-scts and the operation extension methods described above.

Test Packages. Wc refer to the information unit containing all test, propagation, and control infor­

mation for a module or circuit as a test package. Test packages arc the elements o f the module

library used for testing by the precomputed test method. Like packages in the hardware description

language VHDL [20], they hide and abstract information. The simplest form is the stimulus/

response pair (TS\TR) , where Ts and TR arc, in general, vector sequences. A test package exhib­

its the same hierarchical structure as the underlying vector sequences. In particular, (TS\TR) may

be partitioned into control and data parts as implied by the partitioning of buses depicted in

Figure 2.4. Such a test package can be denoted by (V (X D), V (X c) \V (ZD), V (Z Q)) . Each of

the buses XD , X C , Z D , Z c may be further refined (in space) into the natural buses of the circuit, as

in the example modules in Figure 2.5. This implies a natural correspondence between entries in a

test package and the ports of a module.

Since Ts and TR can be represented by vector sequences, refinements of the test package

(Ts \Tr) in time can be concisely represented. For example, the multiplexer of Figure 2.5b can be

tested as follows: select the data input inO for k clock cycles by applying a sequence of k 0 ’s to Ctrl,

and apply a sequence of k patterns in a vector sequence A l to inO. The process is repeated in k-

cycle sequence for the other data input ini with ^(ctrl) “ 3*. The resulting test package for this

ease is

Figure 2.6. Bus assignment example

/
Aj d

\

TP{ - (Ts;Tr) - d ■{a , a J

_0 1 /

The value d denotes “don’t care”, and implies that any /t-bit vector sequence can be applied as part

o f the test. This test package can also be written as ([(d, A1)]» [0, 1] ; [j 4 , , Aj]) .

Figure 2,6 shows the various components o f the test package applied to the input/output ports of

the multiplexer.

Wc commonly separate test packages into two main types: those containing test data for

module faults called fault test packages (FTPs), and those containing propagation information for

modules called propagation test packages (FTPs). These may be loosely compared to the fault D-

cubcs and propagation D-cubcs of classical testing theory [16]. The test package for the multi­

plexer described above is an example of a FTP. PTPs define functions mapping specific inputs to

outputs for the purposes of propagating test information. In a test package of the form

(S (X p) , S (X c) ;S (ZD), S (Z C)) , S (XD) or S (ZD) may be vector sequences associated with

several ports. If a variable a appears within S (XD) , then a should also appear in the correspond­

ing position within S (Z D) . As an example, the FTP for propagating sequences through the data

port X, of the multiplexer in Figure 2.6 is denoted by TP2 = ((a, d) , 0 ; a) . In TP2 the variable

a appears in positions corresponding to X (and Z, and the constant value 0 corresponds to the

control input X 3 . During test generation, all values in the PTP must match the values on their cor­

responding buses. Therefore, TP2 implies that when V (X3) is 0, the same vector sequence must

be assigned to both X x and Z, since both must match the same variable. The corresponding pack­

age for propagation through X2 is ((d, a) , 1 ; a) . Wc will demonstrate how PTPs arc used in a

49

test generation algorithm in the next section.

2.5. PathPlan

PathPlan (for path planning) is our initial version of a hierarchical test generator using

precomputed tests. It was developed at General Motors Research Laboratories in 1987 and was

one of the earliest reported automatic test generators designed specifically to generate tests for cir­

cuits using precomputed tests for modules [68]. It has not been used to test commercial circuits,

however, a similar program partly based on PathPlan has been used for production testing [11].

Our work developing PathPlan, as well as the work to develop necessary extensions to it, form the

basis for this thesis.

PathPlan propagates symbolic references to vector sequences representing Ts and TR

through circuit models using an algorithm similar to the D-algorithm. The module test stimulus Ts

is justified module by module from the MUT to primary inputs (Pis) and the module test response

Tr is propagated module by module to primary outputs (POs). Ts and TR arc stored as FTPs for

each module in a circuit to be tested. PTPs arc used to transfer information through modules. To

simplify the processing of test response errors, PathPlan restricts propagation to eases that require

only simple transformations o f the symbolic signals being propagated. If /I is a vector sequence

representing TR , then A or its logical inverse A must be propagated along a path from the output

of the MUT to a primary output in order for error propagation to be considered successful by

PathPlan. As noted earlier, this mode of propagation is referred to as T-mode propagation. A T-

mode path is transparent, therefore any test response error (7^, TRi) at the output of the MUT

will be propagated along such a path. PathPlan docs not explicitly represent error signals, since all

errors arc implicitly propagated along T-mode paths.

In PathPlan, vector sequence signals arc assigned to buses and propagated along data

paths using a procedure called instantiation. The same instantiation procedure is used for both jus­

tification and propagation. We will describe how it works by means of some simple examples.

Instantiation is fairly trivial when assigning the various stimulus and response components o f a

FTP to a MUT in a given circuit. Consider an instance of the multiplexer of Figure 2.6 in a circuit,

and assume that its test is characterized by the test package TP j = ([{A j , d), (f/, A ,)], [0,1]; [A , ,

50

A j]) derived above. The signals assigned to all the ports in this instance of the multiplexer arc ini­

tially d. When the instance becomes the MUT, then the simplest form of instantiation is used to

assign values to the multiplexer's ports as follows: A j is assigned to port X j, rf is assigned to port

X 2 ,0 is assigned to port X 3 , and A (is assigned to port Z.

Instantiation is also used for the more complex process of signal propagation in the fol­

lowing way. Again referring to Figure 2.6, suppose that a vector sequence AR representing TR has

already been assigned to port X (o f the multiplexer instance, but that all other ports arc still initial­

ized to d, A r can be propagated through the multiplexer using the PTP TP2 = ((a , d, 0) ; a) .

First, since the variable a in position 1 o f TP2 corresponds to port X(, instantiation assigns Aw to

a . Next it substitutes A R for variables named a everywhere in TP2 producing

TP3 - ((Ar , d, 0) ;A^) . Finally, it intersects each value in TP3 with the value already assigned

to its corresponding port, where intersection of two vector sequences is defined by the intersection

of their corresponding bits in the usual way 179]:

O n O =* O n rf = d n 0 = 0

I n 1 = l n r f = (i n i = 1

d n d = d

I n O = O n l = 0

Here the empty set symbol 0 denotes conflict. In most eases, conflicts can be analyzed symboli­

cally, since different vector sequences arc assigned different symbols in PathPlan. For example, if

A j and A2 refer to different vector sequences, then A { cannot be intersected with A2 without con­

flict. Instantiation can be used in a symmetric way to transfer a vector sequence As representing

Ts along a path from an input to the MUT to a primary input.

A key element of instantiation when used for propagation is the assignment o f vector

sequences to variables in the input (output) part of a PTP and the subsequent substitution of the

same vector sequence for variables in the output (input) part of the PTP. In the propagation exam­

ple above, the value A^ on port Xj was propagated to port Z when the same variable a appeared

in the positions o f the PTP corresponding to those ports. The process of substituting the same

value for all variables of the same name in a test package to be instantiated is called unification.

The unification procedure is widely applied in computer science 133], most notably in manipula-

51

I PathPlan
2 {
3 while {there are modules left to test) {
4 select a module to test;
5 while (there are FTPs fo r the MUT) {
6 initialize circuit;
7 select a FTP;
8 instantiate(ports o f the MUT, FTP);
9 while (there are test responses to propagate) {
10 choose Tr ;
11 if (there are modules in the test frontier) {
12 current module = MUT;
13 record choice;
14 propagate;
15 >
16 if (jrropagation is successful) {
17 justify;
18 if (justification is successful) simulate implications
19 if (no conflicts) record success;
20 }
21 }
22 >
23 >
24 >

Figure 2.7. PathPlan algorithm.

tions of expressions by compilers, in automated theorem proving, and in logic programming.

The instantiation process may be summarized as follows;

1. For each position in the test package TP containing a variable, assign the value on the cor­

responding bus in the circuit to that variable.

2. Unify the variables if possible

3. Intersect the values in the test package with the corresponding values in the circuit, and

assign the results to the buses in the circuit if there is no conflict

If a conflict is encountered in steps 2 or 3, other test packages arc tried, if available.

Figure 2.7 shows the main body o f the test generation program PathPlan. It uses two pri­

mary subproccdurcs, propagate and justify defined in Figures 2.8 and 2.9, respectively. There arc

often several FTPs to be instantiated for a given MUT; individual tests can be hierarchically

decomposed into smaller FTPs to be applied separately as discussed above, and alternative FTPs

can be used when the application o f an initial FTP is impossible. The test frontier contains a list of

52

1 propagate
2 {
3 while (TRUE) {
4 if (destination module exists and more PTPs)
5 select a PTP;
6 else if (test frontier not empty)
I select a destination module;
8 else return(FAILURE);
9 while (there are PTPs fo r destination module but no
10 successful instantiation) {
I I instantiate(ports o f destination module, PTP);
12 if (instantiation successful) {
13 record choice;
14 current module = destination module;
15 i f (current module is connected to PO)
16 retu rn(SUCCESS);
17 > else {
18 select new PTP;
19 if (no PTP) backtrack to last recorded choice;
20 >

21 >
22 }
23 >

Figure 2.8. Propagation procedure of PathPlan.

the modules chosen for forward propagation. These arc the modules whose outputs arc unas-

signcd, and at least one o f whose inputs has been assigned TR . Modules can be chosen for justifi­

cation if their outputs have been assigned but not all their inputs have been assigned yet.

PathPlan has been implemented and used to test several practical circuits. It consists of

about 7,000 lines of C and accepts circuit descriptions written in an HDL similar to the commer­

cial test generator and simulator Hitcst [76], In order to demonstrate the use of PathPlan, wc

describe its application to the Gaussian filter chip which is an IC designed at General Motors R&D

Center for use in image processing applications [65]. It is a small but nontrivial CMOS design

with approximately 40,000 transistors. All modules arc synthesized using module generators as in

Divfilt and Encode. Two on-chip RAMs support line buffering operations. Figure 2.10 shows a

basic block of the circuit called Fltrdp. Three of these blocks arc used in the Gaussian filter and

form a major portion of that circuit.

Fltrdp is composed of five types of modules: ADDERX, ADDER, FO, MUX, and

LATCH. Buses 5, 12, and 13 arc 1-bit buses; all others arc 8 bits in width. ADDERX is an adder

53

1 justify
2 {
3 while (there are buses to be justified) {
4 select a bus X to be justified;
5 current module = module driving X;
6 select a PTP fo r current module;
7 while (there are more PTPs or until successful instantiation) {
8 instantiate(ports o f current module, PTP);
9 if (successful) record choice;
10 else {
11 select PTP;
12 if (no PTP) backtrack to last recorded choice;
13 if (there are no more justification choices)
14 propagate;
15 if (propagation fa ils) rc tu rn (FAILURE);
16 }
17 }
18 }
19 re tu rn (SUCCESS);
20 >

Figure 2.9. Justification procedure of PathPlan.

FO

clr

inO

ini

msb

A D D E R X
msb

inO

inO

A D D E R

in 1

sum

MUX

ini

Figure 2.10. Basic block Fltrdp o f the Gaussian filter chip.

whose carry-out bus has been combined with the most significant 8 bits o f the sum, forming the

output bus msb. The least significant bit of the sum is called Isb. ADDER is self-explanatory,

LATCH is an edge-triggered latch module, and MUX is a multiplexer. PathPlan models fanout

explicitly as a module; FO is a fanout module. The carry-in value to all adders is 0, and any out­

puts not used arc not shown. In this example, ADDERX is designated as a module type different

from ADDER to mitigate PathPhm's limited ability to handle bus irregularities.

Wc will show two passes o f PathPlan used to derive a test for the multiplexer MUX in

54'

Fltrdp. As before, the FTP for testing MUX will be

(7 ^) = ([(A , , d) , (r / .A,)] , [0, l] ; [A , , A ,])

which matches ports inO, ini , Ctrl, and outO, respectively. The circuit will be initialized so that

every bus has value d. After instantiating ((Aj ,d), 0 ;Aj), the list of the values on all 14 buses of

Fltrdp is as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A d d d 0 d A \ d d d *1 d d d

The MUT is not connected to a primary output so wc include the destination module M6 in the test

frontier and propagate. The test package for propagating values in parallel through the latch is

((C, a , 0) ; a) , where C is a clocking sequence ([0101...]). After instantiation, the values on the

buses become

1 2 3 4 5 6 7 8 9 10 11 12 13 14

d d d d 0 d A i d d d C 0

Since bus 14 is connected to a primary output, propagation has succeeded. As all inputs to the latch

except inO arc primary inputs, the next nontrivial justifications to be made rue on buses 7 and 5.

The test package for propagating values backward through ADDERX is ((a , a) ; (0, a)) . This

test package represents a strategy for backward propagation (justification) in which a value A is

added to itself, thus propagating A to the most significant bits o f the sum (msb). In this case,

x c - The PTP for the FO module A/3 is (a ; (a , a)) . Wc now select bus 7 for justification.

After instantiation, the values on the buses arc:

1 2 3 4 5 6 1 8 9 10 11 12 13 14

d d d d 0 A i *1 d d * t C 0 *1

Finally, the outputs on modules M j and M 2 arc justified. After these justifications, the values on

55

buses arc:

1 2 3 4 5 6 7 8 9 10 11 12 13 .14

*1 A . *1 0 *1 A x d it A . C 0 A l

The first component of Ts has now been propagated to primary inputs.

Wc next try to instantiate ((d, A (), 1 ;Aj) in the same manner. The sequence of steps is

shown in the following list of bus values.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

d d d d 1 d d d d A \ A] d d d

d d d d 1 d d d d A \ A \ C 0 A l
d it d d 1 d d 0 A > A \ A I C 0 A l
it d it it 1 0 0 0 A i A \ A l C 0 A,

0 d d 1 1 0 0 0 A . A l A l C 0 A i

0 0 1 0 1 0 0 0 A i A l A l C 0 A 1

As discussed in Chapter I, wc measure performance in terms of module evaluations, and

in PathPlan wc measure module evaluations by counting instantiations. For the circuit in

Figure 2.10, PathPlan requires 57 module evaluations to fully test modules M 5 and , and par­

tially test modules and M 2 and A/4 . Module M l is only partially tested because the Isb output

is unused. Neither module M 2 nor module M4 can be fully tested at this level o f abstraction by

PathPlan using T-modcs due lo rcconvcrgcnt fanout. In the ease of module M 2, TR is propagated

along buses 5 and 6 and rcconvcrgcs at module M s . There is no T-mode for module M 5 that prop­

agates vector sequence symbols simultaneously on both control and data inputs. Note that if errors

in Tr appear at both the lsb and msb outputs o f module M 2 , or only at the msb output, then they

arc always propagated through M s . However, an error that appears at lsb alone can only be propa­

gated if bus 9 is not 0, that is, when the inO and in 1 input signals to module M 5 arc different. To

exploit this fact, wc can partition the FTP for M 2 into two different parts; those that produce errors

only at lsb arc propagated together, and the rest arc propagated separately. However, wc must still

use an ad hoc PTP (one not using the T-mode propagation) for module M5 to propagate TR . This

56

M odule

Estim ated
num ber
o f gates

Estim ated
n um ber of

gate
evaluations

N um ber
of high-

level
m odules

N um ber o f
m odule

evaluations
by PathPIan

Fltrdp 254 64,516 6 57

Vcrtdp 138 19,044 5 21

Rowdp 220 48,400 6 33

Alu 62 3,844 9 167

Progptrl 110 12,100 12 210

Progptr 156 24,336 6 68

Table 2.3 Performance o f PathPlan relative to gate-level test generation.

approach is not systematic; it does not address the general problem of rcconvcrgcnt fanout. Rccon-

vcrgcnt fanout is also a problem when using symbolic vector sequences to test module M 4 in

PathPlan. With T-mode propagation, wc cannot simultaneously control bus 8 to apply Ts to mod­

ule M 4, and bus 5 to propagate TR through module M 5.

Some results of applying PathPlan to other practical circuits arc shown in Table 2.3,

which repeats Table 1.1. Fltrdp has been described above. The modules named Vcrtdp and Rowdp

arc datapath circuits similar to Fltrdp and used in the template-matching IC described in [65],

Vcrtdp has two registers, an inverting buffer, an adder, and a multiplexer. Rowdp has one register,

an inverting buffer, two adders, and two multiplexers. Both can be tested completely by a test gen­

erated by Pathplan. Alu is a high-level model o f the 74181 ALU/function generator described in

[12]. Most of the modules in the high-level model employed by Alu arc word gates. Finally,

Progptrl and Progptr2 are circuits used in a control unit. They consist primarily o f multiplexers,

but the bus size of the multiplexers in Progptrl is 4, while the bus size of the multiplexers in

Progptr2 is 8. The fact that the modules are smaller, and that there arc more of them accounts for

the lower performance of PathPlan in testing Progptrl.

PathPlan is an early version o f a test generator designed specifically for testing using pre­

computed tests, therefore it has some restrictions that have been addressed by subsequent research.

In particular,

57

1. It can only handle acyclic combinations o f primitive modules

2. It uses only T-modc propagation

Restriction 1 can easily be addressed in principle by extending PathPlan to include the

same modifications used in conventional gate-level test generators to handle sequential circuits

168]. Restriction 2 simplifies the algorithm but shrinks the solution space by leaving out many pos­

sible solutions. For example, suppose that module A/4 of Fltrdp (Figure 2.10) is the MUT. As dis­

cussed above, Tr cannot be propagated through module Ms due to PathPlan'?, reliance on T-

modcs. This restriction can be addressed by extending PathPlan to process more complex sym­

bolic expressions, which we do in Chapter IV. Exclusive T-modc propagation also limits the kinds

of transparent propagation paths that can be used to propagate errors. For example, an incrcmcntcr

is a transparent module, but docs not have a T-modc. ARTEST addresses this issue by using types

as described earlier.

The main limitation o f PathPlan is also shared by all other previously reported hierarchi­

cal test generators using precomputed tests for modules. They cannot analyze error propagation

through circuits with truncated buses and arbitrary rcconvcrgcnt fanout. It is this limitation that we

address in the remainder o f the thesis.

Despite its limitations, PathPlan does have some advantages which make it useful for

testing circuits with large complex modules and a regular bus structure. These advantages stem

from PathPlan's simplicity. The main test generation algorithm and related procedures are imple­

mented in about 1000 lines of C. The rest o f the code supports libraries used by PathPlan as well

as compilers for the hardware description language and the test package library. All the functional

behavior for each module is contained in PTPs. PathPlan can handle both combinational and

sequential primitive modules of arbitrary size and complexity. It only requires PTPs for the mod­

ules sufficient for propagating vector sequences through them during testing using T-modcs, Per­

formance measured by module evaluations depends on the number of PTPs stored for each module

since these must be searched to find one that can be instantiated. A few simple propagation modes

arc often sufficient.

One additional aspect of test generation using precomputed tests often leads to problems;

the propagation of signals through the MUT in timeframes other than when the FTP is instantiated.

58

This issue is handled in DB-TG [88] by optimistically assuming that the MUT only affects signals

in one timeframe. PathPlan assumes that propagation is blocked. This problem is ntrcly men­

tioned in the literature. In some instances, the errors produced by the MUT can be propagated

through the MUT even when it is faulty. The effect of each fault in the MUT on the error signal

must be analyzed to determine whether the error signal is propagated. We will address this issue in

Chapter IV.

Finally, we consider the affect o f dcsign-for-tcst techniques on test generation using pre­

computed tests. As discussed in Chapter I, many o f the classical methods used for improving cir­

cuit testability are equally useful for precomputed test methods. In particular, full and partial scan

design can be used to provide controllability and observability thus milking circuits easier to test.

In addition, direct access to modules can be provided by routing internal buses through special

multiplexers. Variations on these techniques arc used in [9, 26, 51, 82, 73]. An alternative

approach to improving circuit observability for propagation is to modify non-transparent modules

to increase their transparency; we will discuss this approach in Chapter IV.

2.6. Summary

In this chapter, we have introduced the precomputed test method and provided examples

of the types of circuits that it can test. This method is appropriate for circuits with modules that

cannot be tested using classical techniques. Each module must have an applicable precomputed

test set. Test stimulus vectors Ts tire propagated through structural models of a circuit under con­

sideration to a module under test, and the corresponding response TR of the module is propagated

to a primary output or other observation point. The circuits tested using precomputed test methods

have large modules connected by multi-bit buses. Frequently, these buses contain irregularities

such as reconvcrgcnt fanout and truncations.

We also identified the key aspects of precomputed testing as well as the main components

of our method and contrasted them with similar concepts in classical methods. Since the circuits

for which precomputed test methods are appropriate contain large modules with long tests, as well

as multi-bit buses, for efficiency, test information should be propagated at a high level of abstrac­

tion whenever possible. In our method, Ts and TR have a hierarchical representation called a vec­

59

tor sequence. At the highest level of abstraction, vector sequences arc propagated as symbols. In

conventional methods, single-bit signals arc used for propagating fault-free and faulty (error) data.

Error signals arc propagated more abstractly in most precomputed test methods. High-level sym­

bolic error signals cannot be easily propagated through irregular buses. This is a main limitation of

previously published hierarchical techniques for generating tests using precomputed tests for mod­

ules.

Finally, we described our initial test generator PathPlan in detail. PathPlan represents

precomputed test stimulus and response sequences as vector sequences stored as test packages for

each module. It generates tests by propagating symbolic references to vector sequences through a

circuit model and performs only simple transformations on the signals. PathPlan can be used to

test many useful circuits, however, as with other techniques using precomputed tests, it is ineffec­

tive at propagating error information through circuits with an irregular bus structure. The represen­

tation and propagation of error information through complex bus-structured circuits is an

important research issue that is a central focus of this thesis. Another restriction of PathPlan is its

inability to propagate arbitrary expressions of vector sequences. Solutions to these problems arc

examined in Chapter IV. First however, we develop our general theory o f propagation.

CHAPTER III

THEORY OF PROPAGATION

This chapter presents a theory of propagation, a formal method for characterizing the

information transmission properties o f logic modules and circuits. Its goal is to automate analysis

o f error propagation in complex bus-structured circuits during test generation. The resulting theory

is very general and has broad applicability. We have applied it to error propagation for test genera­

tion and also to design for testability.

3.1. Propagation Algebra

In this section, we formalize the propagation characteristics of modules and circuits and

define the basic elements o f propagation theory.

3.1.1 Propagation Functions

Let M be a module with input X and output Z, and let F be the function of M mapping val­

ues at X to values at Z. Often we arc only interested in propagating values from a subset of the

inputs to a subset of the outputs. If we select values only from the port e Z , then we shrink the

codomain of F. We call the resulting function a module subfunction and denote it by F [X\ZD] .

Consider the 3-bit, 2-input multiplexer shown in Figure 3.1. Let Z D be the two least significant

bits o f Z, that is, Z D = outO[I..O]. The input is X = (ctrl, inO, in i). Signal values on ZD can only

range between 0 and 3. For example, F (l,2 ,4) = 4, while F[(ctrl,inO,in 1);outOI 1..0]](1,2,4) = 0, and

F(l,2 ,5) = 5, while F[(ctrl,in0,inl);out0[1..0]](J,2,5) = 1.

Next, we consider mappings from a restricted set of input ports {Xc X D) . Since the val­

ues assigned to other input ports arc unspecified, the result is a set o f subfunctions, one for each

60

61

X ^ctrl

X

XD=inl ini

inO

MUX outO

Ctrl

} ZD=outO[i..O] > Z

Figure 3.1. Thrcc-bit, 2-input multiplexer with input data bus XD = in 1,
control bus input X c = Ctrl, and output data bus Z D = out0[1..0].

combination o f values on X - X C - X D . We denote the subfunction mappings from values at X c

and X D to values at Z D as F [(Xg, X D) ;ZD] (At, x 2) , where is a value assigned to X c and x 2

is a value assigned to X D. Consider again the multiplexer shown in Figure 3.1.

If it is clear that we arc referring to subfunctions, and if X c , X D , and Z0 , arc known, then we will

simply write F [(X ^ X D) \ZD] as F.

Finally, we consider the set o f information or signal values to be propagated from XD to
t

Z/Jr The full set o f values that can be applied to a module at X D is { F t X ^) > ; however, we arc

often only interested in a subset o f these, f i e {V (Xf l) } . For instance, Q can be the set of possi­

ble responses or outcomes from a test. The module subfunction defines an equivalence relation R

on Q . For x v x 2 e C i , and some constant value c assigned to Xc , let x]R x 2 if and only if

R is an equivalence relation since set equality is reflexive, transitive, and symmetric. If x [and x 2

are equivalent, then they cannot be distinguished at ZD . Indistinguishability o f signal values,

defined as equivalence, plays a central role in our analysis of information propagation.

A partition ji on a set S is a collection of disjoint subsets o f S called blocks, whose union is

S. Two elements Sp s2 e S are equivalent, denoted Sj = s2 (n) , if and only if they arc in the same

block. If R is an equivalence relation on S, then the set of equivalence classes of R defines a parti­

tion 7t on S and vice versa. In particular, the equivalence relation on C defined by

F[(ctrl, inl);out0[1..0]](0,x2) = <0,1,2,3> for all x 2

FKctrl, inl);out0[1..0]](0,x2) = x 2 , x 2 e {0, 1, 2, 3}

FKctrl, inl);oul0[l.,0]](0,.x2) = x 2 - 4 , x2 e {4, 5, 6, 7>

F [(Xc , X D) ;ZD] (c, a ,) = F [(X c , X D) \ZQ\ (c, x 2)

62

0,1,2,3,4,5,6,7

3

■4-
XD 3

inO Ctrl

MUX outO

ini

0,1,2,3,0,1,2,3

ZD = out0[1..0]

Figure 3.2. Set of values applied to X D of a 3-bit, 2-input multiplexer and corresponding
outputs at ZD for F(XC) = 1.

F [(X ^ X D) \ZD\ induces a partition on £2. As an example, for the 3-bit, 2-input multiplexer in

Figure 3 .1 with £2 » { V (XD) } = {0, 1, 2, 3, 4 ,5 , 6, 7} , we have the following:

F[{ctrl,inl);out0[1..0]](l,0) - F[(ctrl,inl);out0[1..0]](l,4) = 0

Ff<ctrl,inl);out0[1..0]](l,l) = F[(ctrl,inl);outO[L.O]](l,5) = 1

FKctrljn 1);out0f 1..0]]< 1,2) = F[(ctrl,in 1);out0[1 ..0]](1,6) = 2

F[(ctrl,in 1);out0[1..0] J< 1,3) = F[(ctrl,in 1);out0[1 ..0]](1,7) - 3

This is depicted in Figure 3.2. The subfunction F[(ctrl, inl);outO[L.O]](l,x) forms a partition

{{0,4},{l,5>,{2,6},{3,7»on£2.

In our analysis, it is frequently necessary to a treat a set of related subfunctions as a single

unit. Let £ = (F j ,F 2, Fk) be an ordered /.'-tuple of subfunctions, each with the same input

data bus X {) and domain £2 £ {V (XD) } \ P is called a subfunction vector. We can compose sub-

function vectors in various ways. For instance, each subfunction Ft may be defined as

F [{Xa XD) \ZDj] (ct x) , where V(XC) is a constant value c, and each ZD i ^ Z is an output

port disjoint from the output ports in subfunctions F . ,) * / .This is depicted in Figure 3.3a. In this

ease, each subfunction vector represents the mapping of values from a single input data port X D to

values on multiple output data ports Z Dj. Consider again the 3-bit, 2-input multiplexer in

Figure 3.1. Let Xc = ctrl and X Q = ini as before. Let Z m = outO[I..O] and Z m = out0[2], so that

F j = F[(ctrl,inl);out0[1..0]]and F2 = F[(ctrl,inl);outO[2]]. Then,

(1, a) , 0 < a < 3

(1, a - 4) , 4 < a < 7
(^ (U K f j C U j) ■

Alternatively, each subfunction F. can be defined as F [(Xc , XD) \ZD] (a ., a) , where

63

(a)

V(Xc)=xl V(Xc > x k .

M
X/j zD

MV(ZD) = F(A! a) = F] V(ZD) = F(xk,x) - Fk

(b)
Figure 3,3. Two compositions of a subfunction vector {FItF2 Fk): (a) space and (b) time.

each Xj is a different value assigned to X c . This subfunction vector represents the mapping of val­

ues from a single input data bus X D to values at a single output data bus Z D due to a sequence of

control values assigned to X c for each mapping. Each F. represents the mapping due to a different

value in this sequence, as depicted in Figure 3,3b. For the 3-bit, 2-input multiplexer in Figure 3.1,

(F (0 , 0) , F (1 , 0)) = ({0 , 1, 2, 3} , 0)

(F (0 , 1) , F { 1 , 1)) = ({ 0 , 1 ,2 ,3 } , 1)

Here the control sequence applied to X c is [0,1], These are the two common interpretations of a

subfunction vector used in our analysis.

A subfunction vector also defines a partition on Q related to the partitions defined by

its constituent subfunctions. Let .Vj and x 2 be two elements o f Q and let R be the relation on Q.

such that a'|/?a‘2 if and only if and x 2 are both contained in the same block in every partition

7tr This is an equivalence relation because, once again, set inclusion is reflexive, transitive, and

symmetric. The structure of the partition defined by subfunction vectors is a key element in deter­

mining the propagation characteristics of a module or circuit with respect to the set of information

64

inO Ctrl

3
MUX outO i

ini 2 P i = o
P2 = l3= /n a \

ZD = autO[1 .,0]

a 2 = {5}
a 3 °<6>
a 4 ={7>

P4 = 3

Figure 3.4. Propagation function / J[MUX;(ctrl,in 1); {0,4,5,6,7 >] for V(XC) = 1.

values in £2.

Definition 3.1: Let M be a module with input control bus X Q and input data bus X D, and let P be

a subfunction vector derived from the function of M. Let a . denote the ith block of the n-block

partition nn on £2 defined by Pt and let P(- - P (a^ . Then the set

P i M - ^ X ^ X p) ;£2] = { (c t p P ,) , (a 2;P2) , . . . , (ctw;Pn)} is a propagation function on £2.

P [M\ (X a XD) ;£2] is said to be based on P, tt^ is said to be embedded in P [M\ (X ^ XD) ;£2] ,

and each pair (a .;p .) is referred to as a block of the propagation function.

Consider the 3-bit, 2-input multiplexer o f Figure 3.1 shown again in Figure 3.4. Let

£2 = {0 ,4 , 5, 6 ,7} and F = F[(ctrl, ini), outO[I..O]](I,A), then F (I , 0) = F (l , 4) = 0,

F { 1 , 5) = 1 , F (1 , 6) >= 2, and F (1, 7) = 3. Therefore, the propagation function on £2 based

on F is

F[MUX;(ctrl, inl);{0,4,5,6,7>] - {(0,4;0), (5;1), (6;2), (7;3)} (3.1)

which is depicted in Figure 3.4. The partition jtq embedded i n / J is { (0 , 4) , (5) , (6) , (7) } .

As another example, consider the adder module in Figure 3.5. Here, XD is the addend,

X c is the augend, and ZD is the three most significant bits of the sum. Let £2 = {0, 1, 2, 3} and

(F (0 , . v) , F (U -)) , Then, P{0) = (0 , 0) , P{ 1) = (0 , 1) , P(2) = (1 , 1) , and

P (3) = (1 , 2) . Therefore, the propagation function on £2 based on P is

P[ADDER; (ini, in2); {0,1,2,3}] - {(0;(0,0), (1;(0,1)), (2;(1,1), (3;(1,2))> (3.2)

65

Xc=ini

X/J=in2

ADDER | Z ^^sum ^..!]

Figure 3 5 . Three-bit adder module with input data bus XD as addend, input control bus X c as
augend, and output data bus ZD - sum[3.. 1].

and the embedded partition is n a = { (0) , (1) , (2) , (3)} .

The mapping of inputs to outputs represented by a single block of a propagation function

is similar to the mapping described by a singular cube, which is a representation of an incomplete

Boolean function introduced by Roth [78], and widely used in describing logic synthesis algo­

rithms, It is written «|v, where u is a set o f values h. for input variables (ports), and v is a set of

values v(. for output variables (ports). Here each it. or v. must be cither 0, 1, or d (don’t care). For

instance, the block (0 ,4;0) in equation (3.1) is equivalent to the cube d002|002 .

Since propagation functions use partition theory, several definitions and operations

derived directly from partition theory can be applied to them. For instance, the partition on S con­

sisting of all singleton (one-clement) blocks is the zero partition, and the partition consisting of a

single block containing all elements of S is the unit partition. By analogy, the propagation function

where the embedded partition is the zero partition on £2, and where ct(= p (. for all i, is the

zero propagation function. The propagation function /■* = { (cc;P) } where the embedded parti­

tion 7in is the unit partition on £2 and P - £2, is called the unit propagation function. Consider

again the 3-bit, 2-input multiplexer of Figure 3.1. If V (Xc) = 1, then

P [MUX; (ctrl, i n]); {0, 1, 2 ,3} 1 = { (0 ;0), (1;I), (2 ;2), (3;3) }

is the zero propagation function on £2. If V (X c) = 0 , then

P [MUX\ (ctri, in i) ;{ 0 , 1 ,2 ,3}] - { (0, 1, 2, 3; {0, 1, 2, 3}) >

is the unit propagation function on £2.

If two values and a'2 arc both in the same a . , then they produce the same output

V {ZD) and so they cannot be distinguished. In this case, some information is lost in propagating

values from XD to Z/2 . Since every element of £2 is contained in the single a . of the unit propaga­

66

tion function, the associated module propagates no information from XD to Z D , On the other

hand, since each a (. o f the zero propagation function contains exactly one value, the associated

module propagates all information.

We now define some basic operations for combining propagation functions. These arc

used in the application o f propagation functions to transparency analysis and error propagation,

which arc discussed later. We begin with the intersection operation for propagation functions

which is derived from partition intersection (see also Appendix A).

Definition 3.2: Let P (and P 2 be propagation functions on the set Q . The intersection o f P i and

P 2, denoted P j n P 2 , is the propagation function on £2 such that

1. If ttq is the partition embedded in P {, is the partition embedded in P2 , and 7tn is

the partition embedded in P l n P 2 , then = irn n 71̂ , the partition intersection of

"n, and*n 1:

2. If x l g a (. in P { and x t g a j in P 2 , then there is a block (a A;Pj) in P j n P 2 such that

x x g a k and p ft = (P ;, P^).

A method of computing intersection is implicit in the definition. To illustrate intersection, consider

the adder module in Figure 3.5. Let Cl = {0, 1, 2, 3} , let P { be the propagation function with

V (Xc) = 0 , and let P 2 be the propagation function with V {X c) = 1. Then

P { = {(0 , 1;0), (2 , 3 ; l) }

P 2 - { (0 ;0), (1 ,2 : 1) , (3 ;2)}

P l n P 2 = { (0; (0, 0)) , (1; (0, 1)) , (2 ; (1 , 1)) , (3 ; (I , 2)) >

P x n P 2 is the same as the propagation function P in equation (3.1). P { and P 2 arc based on sub­

function vectors and P2 respectively, and P is based on subfunction vector P. Note that P is

the concatenation of P { and • that is, P = (P lr P2) • This situation is formalized in the follow­

ing theorem

Theorem 3.1: Let / >(and P2 be the propagation functions based on subfunction vectors P^ and

P 2 . respectively. Then P l n P2 is based on (P V P 2) .

Theorem 3.1 follows directly from part 2 of Definition 3.2. A number of key aspects of propaga­

67

tion arc based on propagation function intersection, as we will show later.

We can also define a union operation for propagation functions based on partition union.

Definition 3 3 : Let P x and P2 be propagation functions on the set £2. The union o f P x and P 2,

denoted P x u P2 , is the propagation function on £2 such that

1. If 7Iq is the partition embedded in P [, rtn is the partition embedded in P2 , and is

the partition embedded in / > i U P 2 , then u , the partition union of

and ;

2. If (a.;(J.) is a b lock o f 7*j v P 2 , (a /P j) is a b lock o f e ither P x o r P 2, and if

a ; r \ f X j ^ 0 , then for all k , the Ath element of P ̂ is contained in the Jtth element of p..

The union operation can be computed by generating the partition union using only the a ’s of P x

and P 2, then forming the elementwise union of the P ’s. As an example of this operation, let

P l = { (0, 1;0), (2, 3; 1) } and P 2 = { (0 ;0) , (1,2;1), (3 ; 2) } , as in the intersection exam­

ple above. Then 7*, u P2 - { {0, I, 2, 3; {0, 1, 2}) >

Many of the properties of a propagation function P on £2 depend only on the embedded

partition This partition determines the information propagated by the module subfunction on

which P is based. Let P { and P 2 be two propagation functions based on subfunction vectors P x

and P 2' respectively. If the embedded partition o f P x and P 2 is the same, then P x and P2 propa­

gate the same information.

Definition 3,4: Let P x and P2 be module functions on a set £2. Let jtq be the partition embedded

in P j , and 7tn be the partition embedded in P 2. Then P x and P2 arc congruent, denoted

P { = P 2, if and only if 7tn = t i ^ . Let (a^ p .) e P { and (ctyPj) g P] . Then as a special ease,

P j = P2 if and only if P x = P 2 and a . = a . implies P(. = p̂ ..

For example, if P x = { (0 ;0), {1;1> > and P 2 = { (0; 1), (1 ; 2) } , then P x = P2 . The con­

gruence relation is important in the application of propagation functions. It is commonly the ease

that two propagation functions arc congruent, but not equal. However, propagation functions need

not be equal to propagate the same information—they need only be congruent.

The congruence relation is clearly reflexive, transitive, and symmetric. Therefore, the set

68

of all propagation functions on a set Cl is partitioned into equivalence classes by congruence. Two

propagation functions arc in the same class if and only if they are congruent. Each class is defined

by the embedded partition common to all elements within the class.

As mentioned, the zero propagation function with one element in each a (. transmits all

information, while the unit propagation function, with only one block containing all elements of Q

transmits none. By extension, propagation functions that have more blocks with fewer elements

transmit more information than propagation functions with fewer blocks and more elements per

block. This property is expressed algebraically in the next definition.

Definition 3.5: Let P x and P2 be propagation functions on a set Q . Let 7TQ1 be the partition

embedded in P i and n a2 be the partition embedded in P2 . Then P (is less than or congruent to

P 2 , denoted P , < P 2 , if and only if jr^ j < If P (and P 2 arc not congruent, then we can say

that P j is strictly less than P 2 . denoted P] < P2 . If < P 2 or P 2 < P j , then P (and P 2 arc said

to be comparable, otherwise they are incomparable.

For example, let P j = {(0,1,2,3;0), (4,5,6,7;1)} and P 2 = <(0,l;0), (2,3; 1), (4,5,2),

(6,7;3)>, and let 7T£il and n n2 he the embedded partitions of P , and P 2 , respectively. Then

TTjjj ^7rf t2, since all o f the blocks o f rtm arc contained in blocks o f na2 (see Appendix A).

Therefore P2 < P { , and more information is propagated by P 2 than P { .

Clearly, if P l < P2 and P 2 < P j , then P , = P 2- The set P ^ o f all propagation functions

on a set £2, together with the ordering relation < is a partially ordered set, since the set 17^ of all

partitions on O is a partially ordered set. In fact, the set n ^ , together with the partition intersec­

tion n and union u operations form a lattice denoted (n ^ , n , u) . Lattices are algebras character­

ized by the fact that the two operations satisfy the idcmpotcncc, commutative, associative, and

absorption laws (see Appendix A). The algebra formed by P fl and the propagation function inter­

section and union operations (P ^ , n , cj) is homomorphic to (n a , n , u) , that is, the operations

behave the same way in each algebra (see Appendix A). For example, let A| and x 2 be elements of

n Q , then the commutativity property for partition intersection can be written x { n x 2 = .v2 n a , .

On the other hand, if a-j and x 2 are elements of P n , then the commutativity property for propaga­

tion intersection can be written Aj n ^ = a 2 rs A j. In general, if we replace equality by the con-

69

grucncc relation, then (P a , n , u) can be considered a lattice—all lattice properties and theorems

apply. Therefore, we will refer to the algebra (/*Q , n , u) as the propagation function lattice. A lat­

tice with only two elements is a Boolean algebra, therefore, if £2 = {0, 1} , any propagation

function on Q, is a Boolean algebra and subject to laws similar to those for standard logic gates.

The classification of (Pa , u) as a lattice makes a wealth of theorems and properties

applicable [14,42]. We will show that lattice intersection is extremely useful in analyzing propaga­

tion through circuits. Other lattice concepts arc also useful.

3.1.2 Module Connections and Propagation Algebras

We have defined propagation functions to represent specific input-output mappings for

individual modules and showed that together with the intersection and union operations they form

a lattice, an algebra with several useful properties. We now show how to combine propagation

functions for individual modules into a propagation function for a multi-module circuit using

appropriate connection operations. These operations form a separate, derived algebra which we

use to analyze the information transmission properties of multi-module circuits.

Most circuits composed of high-level modules can be modeled as directed graphs in which

modules arc edges and connections arc vertices, since most modules arc unidirectional. Even cir­

cuits with tristatc buses can often be modeled as directed graphs for particular operation cycles

[12]. Since all connections in a directed graph can be treated as series or parallel connections {see

Appendix A), we can model the behavior of the circuits of interest using operations based on just

these two fundamental types of connections.

Two modules and M 2 arc connected in series if a bus joins the output data bus of

module A/j to the input data bus of M 2. In order to define a parallel connection, we must first

define two types of junctions: fanout connections and merge connections. If a bus L is connected to

the input data buses (XD ’s) of n > 1 modules, then the junction of L and these data buses is a

fanout junction. Information propagated on L is copied to the inputs of the n modules. Now, let

Z.;(be a set of buses that connect the output data buses (Z ^ ’s) of n> 1 modules to primary

outputs or to the input data bus o f a single module. L {, L)f are concatenated to form a single

bus L. The point where L [t L;| becomes L is referred to as a merge junction. Information that is

propagated independently on each is combined with the information on the other buses to form

70

(a)

c i
D1

Cl
F anout'
junction

■D2m
Merge
junction

(b)

Figure 3.6. Scries (a) and parailef (b) connections of modules,

a single information unit. Two modules arc connected in parallel if their input data buses meet at a

fanout junction and their outputs meet at a merge junction. Examples o f scries and parallel conncc-

tions arc shown in Figures 3.6a and 3.6b, respectively.

In classical circuit theory, where electrical components such as resistors, inductors, and

capacitors form the edges of a graph G, and component connections form vertices of G, series-par­

allel connections greatly simplify analysis. Let C (and C2 be two circuit components with admit­

tances Y j and ^ .respectively , If C , and C2 arc connected in parallel, then the admittance of the

combination is given by Y - Kj + Y2 . If C , and C2 arc connected in scries, then their combined

admittance is given by

1 = 1 + 1
Y Y i K2

If we define a “reduced sum” operation * as A*B

Y l Y2
(3.3)

AB
A +B

, then we can express equation (3.3) as

Y - Yl *Y2 [28], We now have a parallel connection operation + and a series connection opera­

tion * for admittances. Propagation functions represent information transmission properties of

modules and circuits that arc analogous to admittances, which represent electrical current trans­

mission capability. Therefore, we will define parallel and scries connection operations for propaga­

tion functions that arc analogous to + and *.

71

The series and parallel connections for modular bus-structured circuits shown in

Figure 3.6 arc also similar in concept to the connections in switching circuits studied first by Shan­

non [86]. However, in Shannon’s model, the outputs o f switches (modules) in parallel arc wired

together and information is transmitted serially after the junction. In our model, the outputs remain

separate and information is propagated along multi-bit buses in parallel. For analysis purposes, we

merge information on the parallel buses into a single vector. Shannon’s model leads to a definition

of series and parallel connection operations that form a Boolean algebra. The module connections

described above lead to a different algebra, which we describe next.

If two modules Af j and M 2, with propagation functions P j and P 2 respectively, are con­

nected in parallel, then the combination can be considered to be one module, with one input data

bus and two output data buses. We saw above that the propagation function for the combined mod­

ule is given by the intersection of P l and P2 . Thus we have a partial correspondence between con­

nection operations and the propagation function lattice. We denote the parallel connection

operation as Py#P2 •

Now let and M 2 be two modules connected in series to form a module with one input

data bus and one output data bus. If F j and F2 arc module subfunctions for M [and M 2% respec­

tively, then the resulting module subfunction for the series combination is the composition

F 2 (F [) o f F j and F2 , that is, the outputs of F { form the inputs of F2 -The function F 2 (F ,) is

denoted F^°F2. The composition of two subfunction vectors Pl = (F lp F n , ..., F ik) and

P2 = (F2i , F 22, . . . , F 2k) is the pairwise composition o f the individual elements.

V*2 - <f M°F2rF12°F22--.'V f 2*>
Now let Py = { (1;0), (2, 3 ; t) , (4;2) } and P2 - { (0, 1;0), (2 ,3 ; 1) > be propagation

functions based on and P2, respectively, and let P be the propagation function based on

^ t ° ^ 2* When Py and P2 arc combined to form the series composition P. the output part P w of

each block in F , must be contained in the input part a 2j of some block in P 2 , since the outputs of

Jfrj become the inputs of P2. For instance, (1;0) is a block in /* ,, and (0 ,l ;0) is a block in P2. The

0 in the output part of (1;0) corresponds to the 0 in the input part of (0,1 ;0). If P [; e a 2j , then a

block is added to P whose input part is a {i (1 in this example), and whose output part is p2j. (0 in

this example). This is depicted in Figure 3.7.

Figure 3.7. The series composition of two propagation functions Pj and P2.

In the general ease, the p . 's of a propagation function arc not singletons, they arc vectors

o f sets. As discussed above, the composition of two vectors is the vector formed by the pairwise

composition of the elements. Let p f [y] denote the j\h element of the vector P(.. The following def­

inition covers the general ease of series composition.

Definition 3.6 : Let / J , and P2 be propagation functions on the sets and Q 2 respectively. The

series connection of P j and P2 , denoted P l °P2 , is the module function on such that if

(a u ;p l j) £ p [, (a 2̂ ;P2j.) £ P2 , and P t . \q] n a 2j. ^ 0 , then there is a block

(a ^ p p e ^ \ ° ^ 2 whcrc a i/ = a * ^ PjyE*?] C [<?]. If z is an element of some p i(. [q \ ,

then z must be an element of some a 2 -t otherwise ‘s inconsistent.

The scries connection operation can be computed by a straightforward application o f the defini­

tion. As an example, let P { = {(0,1;({0,1 >,{0,1»), (2;({0,1 },{1,2»), (3;({1,2},{1,2»)} and P 2 =

{(0;({0,1},{0,1»), (1;«0,I> ,{1,2»), (2,3;({1,2},{1,2»)>, then P * P 2 = {{0,1;({0,1 >,{0,12})),

(2;{{0,I },{1,2»), (3;({0,1,2},{1,2»».

The series connection operation for propagation functions is obviously quite different

from the union operation. The latter depends only on interactions between the input parts of prop­

agation function blocks (the a ’s). The union operation is not even defined for P { and P 2 above,

since these two propagation functions arc defined on different sets of module inputs. Therefore, the

algebra formed by the set of all propagation functions and the series and parallel connection

operations just discussed, is not the same as the propagation function lattice described in Section

3.1.1. We refer to this new algebra, ('I ', #, ") as the propagation algebra, and we will examine its

properties below. However, first we discuss a graph representation o f circuits that illustrates the

73

D1 •D1

D3 D3 D5 ■DS

D6 ■D6

V1 ZDt^D2

Vi

(a) Datapath circuit C j

v5

v6

Zd4>Xd6

v 7

(b) Connection vertices for Cj

V4

FANOUT
vertex

MERGE
vertex

(c) Propagation diagram for C {

Figure 3.8. Example of a propagation diagram for a circuit with series and
parallel connections.

series-parallel structure o f modular, high-level logic circuits. This graph defines an expression in

the propagation algebra.

A propagation diagram is a directed graph whose edges represent propagation functions

and whose vertices arc module interconnections. Examples o f propagation diagrams and the pro­

cess used to construct them arc shown in Figures 3.8 and 3.9. Circuit C] in Figure 3.8a is an

example o f a datapath circuit with scries and parallel connections. Data bus inputs and outputs

have been selected for each of the modules in this circuit; control buses arc not shown. Data prop­

agated to the output of module A/j fans out along two parallel paths and rcconvergcs at module

m 6 .

74

02 02 OS ■OS

PltJCDl

v2

v3

(a) Datapath circuit C2

v4

ZdsX m

ZM '1

(b) Connection vertices for C2

V4

MERGEFANOUT
vertex vertex

(c) Propagation diagram for C2

Figure 3.9. Example o f a propagation diagram for a datapath circuit C2 with a
bus connected in parallel with two modules.

The first step in the development of a propagation diagram is to create a vertex for every

modulc-to-modulc connection. Vertices are labeled by pairs of the form (ZDi>

or (Z Di, PO k) , where P Ik is a primary input and PO k is a primary output. The complete set of

vertices produced by this step is shown in Figure 3.8b. We do not allow input data buses or output

data buses to be included in more than one vertex, therefore, vertex v2 is combined with vertex v3 ,

and v6 is combined with v7 . Vertices with the same ZDi arc combined into a FANOUT vertex, for

example, (v2, i’3) . Vertices with the same X Di arc combined into a MERGE vertex, for example,

(r 6, v7) . Finally, an edge from a vertex v. to a vertex v. represents a propagation function for the

75

module whose input data bus is contained in v. and whose output data bus is contained in v.. The

linal propagation diagram is shown in Figure 3.8c.

Circuit C2 shown in Figure 3.9a is an example of a module with a bus connected in paral­

lel with two modules in series. This circuit results in the set o f vertices shown in Figure 3.9b. In

this ease, vertices v2 . v3. and v5 arc candidates for being combined into one vertex. However, a

vertex may not be both a fanout vertex and a merge vertex—this would create a cycle. If a com­

bined vertex contains pairs with the same ZDj and X pj, we separate the pairs into two vertices so

that pairs with the same Zp . arc in a fanout vertex, and the rest are in a merge vertex. Therefore,

we combine vertices v2 and v3 into a fanout vertex and v5 becomes a merge vertex. The two new

vertices arc connected by an edge labeled 0 for the zero propagation function. This edge represents

a bus whose only function is to transmit information with no modification.

Expressions in the propagation algebra (propagation expressions) represent the transmis­

sion of information in a set Q. from a primary input port or output data bus o f a module M j to a

primary output or output data bus of another module M 2. A propagation expression can be con­

structed by traversing the propagation diagram from one vertex to another. The expression repre­

senting any path P [, P 1, . . . , P n in the diagram is the series connection of the propagation

functions on the path. P l aP2e . . . °Pn . The expression on the outgoing edge of a merge vertex is

the parallel connection o f the expressions on the incoming edges. For example, the expression cor­

responding to the propagation of information from the input port of Cj to the output port is

(P X°P20PAU P ° P 3°P5) °P6 (3.4)

and the propagation expression for C2 is

(P]°P2,3P 3# P l o0) oP 4 . (3.5)

In order to reduce the number of parentheses in propagation expressions and improve readability,

we have assigned a higher precedence to the series connection operation ° .

To illustrate propagation diagrams and propagation expressions in terms o f a familiar cir­

cuit, consider the Fltrdp circuit first discussed in Section 2.5. Fltrdp has been redrawn in

Figure 3.10a with bus truncations explicitly represented by truncate modules. As before, all mod­

ules and buses arc numbered. The output buses o f the adders, modules M j , M 3, and M 6 , arc 9 bits

wide. Bus 7 is 1 bit wide. The rest o f the buses arc 8 bits wide. The propagation diagram shown in

76

ADDER Trunc(8..1)
M2

Trunc(O)
Ma

ADDER

Trunc(8..l)-i>

ADDER

10 11

Trunc(7..0)
m 7

MUX

nil W8

elk
13

LATCH

c l r ^

(a)

(b)
Figure 3.10. Fltrdp datapath circuit, (a) schematic and (b) propagation diagram.

Figure 3 .10b represents a propagation path from input bus 1 to the output bus 13. Here the connec­

tion labels in the vertices have been omitted for readability. The corresponding propagation

expression is

/y uj4#(/y (o# (/y/y))) °/y/>9.
The propagation algebra has several useful properties, some o f which are shown in

Thblc 3.1. Also shown arc several cases where properties do not hold (the numbers of these eases

arc in parenthesis). In this table, we assume that P. is a propagation function on Q. for module

M.. We also assume that all series connection operations arc consistent with real circuit connec­

tions. For instance, aP 2 is only defined if the output bus of M j is the same size as the input bus

o f M 2 . Finally, we assume that if F , and P 2 are combined in parallel, then Q j = f i 2, that is, they

have the same domain. We use the stronger equality relation in place of congruence whenever it is

applicable. Note that the commutative, idcmpotcnt, and absorptive laws do not hold for the series

connection operation thus the propagation algebra is not a lattice. However, since the computa-

77

Property No. S tatem ent of p roperty and its status

Identity la
lb

0 °P j = P j a n d P jo0 = P j for every element P j .
l# P j = P j a n d P j# l = P (for every element P j .

Distributivity 2a
(2b)

P j ° (P 2# P ,) = (P . ' ,P 2) # (P , 0P 3)
P j # (P 2°P 3) £ (P lUP2) ° (P lk P 3)

Commutativity 3a
(3b)

P]# P 2 = P 2# P j
p l ' p 2 * p 2' p l

Idcmpotcncc 4a
4b

V p i = ' , i
P j ° P j = P j if and only if P j = 0 or P , = 1.

Absoiption 5a
(5b)

P j ^ P j O P ^ P j
P , ° (P j # P 2) ^ P 1

Associativity 6a
6b

P t# (P 2# P 3) = < P ,# P 2) # P 3
P j ° (P 2°P 3) = U \ ° r 2)° P 3

Miscellaneous 7
8
9

P ,# P 2 < P j a n d P j# P 2 < P 2
0 # P j = 0
p < p °p ‘ 1 - ' 1 1 2

Table 3.1 Common algebra laws that do and do not hold for propagation algebra. The numbers
of the laws that do not hold arc in parenthesis.

tion o f the parallel connection operation # is the same as the intersection operation in the propaga­

tion set lattice described above, the propagation algebra is a semi-lattice [42].

Apart from the four major properties o f commutativity, idcmpotcncc, absorption, and

associativity, Table 3.1 lists some other typical properties o f algebras encountered in digital sys­

tems. For instance, the zero propagation function acts as an identity for the scries connection oper­

ation, since connecting a bus to the input or output of a module M docs not affect the propagation

characteristics o f M, Another important property is the distributive property 2a. This property

allows us to rewrite expression (3.4), for instance, as P j° (P 2°P 4# P 3°P 5) °P fi. Distributivity

implies that the propagation characteristics o f a module are transferred along all paths leading

away from its output. Rewriting propagation expressions can aid in analysis, as we show below.

Property 7 indicates that two modules connected in parallel propagate at least as much information

as each docs individually. Property 8 indicates that the propagation characteristics of a bus in par­

allel with any module dominate the propagation characteristics o f the combination. Finally, prop-

78

crty 9 indicates that combining two modules in series can only reduce the amount of information

that is propagated.

We can simplify propagation expressions, that is, rewrite them with fewer propagation

function symbols, by using the properties in Table 3.1, The following series of steps simplify

expression (3.5):

This set of simplifications illustrates the dominance of a transparent path in a parallel connection.

We have presented a very general theory for studying the propagation of information in

bus-structured circuits. The two main concepts are:

1. Subfunctions and subfunction vectors define a partition on the set of information symbols

to be propagated through a module or circuit. Hence, many aspects of information propa­

gation can be studied by analogy to partition theory. We have formalized this insight in the

form of propagation functions.

2. Bus-structured circuits can often be modeled for analysis as directed graphs forming series

and parallel junctions at vertices. Each junction corresponds to an operation that combines

propagation functions. The set o f propagation functions and series and parallel connection

operations form a propagation algebra, and a graph representing a circuit corresponds to a

propagation algebra expression.

The propagation algebra satisfies several common algebraic laws and properties that re fleet intu­

ition about information propagation. These laws and properties can be applied to propagation

expressions to manipulate them mechanically, thus raising the possibility of automating analysis.

To apply propagation theory in precomputed testing, we specialize propagation functions

by restricting the set of input symbols £2. We have studied two applications of this approach:

transparency analysis and error propagation analysis. We discuss transparency analysis next and

error propagation analysis in Chapter IV.

{1\0P2°1\M\o0)oPa = Pl0(P2°P3M)°r4
p {° (P2° p 2m) ° p a = p 1°o °p a

by property 2a

by property 7

by property la

79

3.2, Transparency Analysis

A module or circuit is transparent if any error can be propagated through it. As discussed

in Chapter II, transparency is a property of modules and circuits that greatly simplifies error prop­

agation. If there is a known transparent path from a bus X in a circuit to a primary output, then any

test response error (TR, TRl) propagated to X is implicitly propagated to the primary outputs. We

define a special type of propagation function to analyze this property. In this function, the

sequences applied to X c to control propagation are explicitly represented as a parameter. Recall

that our convention is to use square brackets [...] for ordered sequences in time.

Definition 3.7: Let M be a module or circuit with input data bus X p , input control bus X c , and

output data bus ZD . Let P. = P ĵ A/; (X a XD) ; { V (XD) } when V (X c) has the fixed value v .,

and let Sc be the vector sequence [Vj, v2, vk] for any k timesteps, k > 1. Then

T\ M' , (X c , X d)] (S c) = P i n P 2 n . . . n P k

is a transmission function for module M.

Transmission functions describe the ability of a module to propagate information

sequences (not just a specific set of values) from X D to ZD , as well as how this propagation is con­

trolled by sequences applied to X c . Consider the set of typical datapath modules in Figure 3.11

(which repeats Figure 2.5). Transmission functions for these modules with typical values for Sc

and k - 1 or 2 appear in Table 3.2. We assume that the register (Figure 3.1 Ig) has already been

reset to 0. We assume that the decoder (Figure 3.1 lh) decodes only inputs 0 and 4, that is, the least

significant bit of the output is set when the input is 0 (output value 1), and the most significant bit

o f the output is set when the input is 4 (output value 2). If the input is not 0 or 4, then the output is

0.

As previously discussed, if P , and P2 are propagation functions on a set Q for modules

M j and M2 respectively, then P { < P 2 implies that F j propagates more of the information con­

tained in Q, than P 2- For a different domain it may be that P2 < P { . However, if

Q = { V (Xp) > , as in the case of transmission functions, then P , < P2 implies that M l propa­

gates more information than M 2 . The unit propagation function transmits no information, and any

Xc O Zd % D ° - Zd

(a) N A N D gate (b) N O R gate

A D D ER
M U X out

(c) A dder (d) M ultip lexer 1

M U X out —

M ULTIPLIER

— ^ —3

(c) M ultip lexer 2 (f) M ultip lier

R EG ISTER

clr elk
________ A _

D

(g) R egister

enable

(h) D ecoder

Figure 3.11, Typical modules and their buses

81

M odule TYanstnission functions

(a) NAND gate 7X [01)-{(0 ,l;l)}
7'([1])={(0;1),(1;0)>

(b) NOR gate 7 X [0])-« 0 ;l) .(l;0)}
7 X [l])-« 0 ,l;0)>

(c) Adder 7X10]) = {(0;0), (1; 1), (2;2), (3;3), (4;4), (5;5), (6;6), (7;7)>
T([l]) = <(0;l), (1;2), (2;3), (3;4), (4;5), (5;6), (6;7), (7 ;8 »
T([2]) = ...

(d) Multiplexer 1 T(tO]) = {(0,1,2,3,4,5,6,7;0) >
T(tl]) “ <C0;0), (l ; l) , (2;2), (3;3), (4;4), (5;5), (6;6), (7;7)>

(c) Multiplexer 2 T([0J) - {(0, 1;0)>
7 X n i)= { (0 ;0),(l;l)>
T([2J) - . . .

(0 Multiplier T(L0])= {(0,1,2,3,4,5.6,7;0)>
7X[1J) = {(0 ;0), (1; I), (2;2), (3;3), (4;4), (5;5), (6;6), (7;7)}
7X[2]) = ...

(g) Register 7X10.1]) = {(0;(0,0)), (1 ;(0, 1)), (2;(0 ,2)), (3;(0,3)), (4;(0,4)),
(5;(0,5)),(6;(0.6)).(7;(0,7)»

(h) Decoder 7X10]>-{(0,1,2,3,4,5,6,7;0)>
7X11]) = <(0 ; 1), (1,2,3,5,6,7;0), (4;2)>

Table 3.2 Transmission functions for the modules in Figure 3.11

transmission function T {S C) < 1 propagates at least some information. This leads to the follow­

ing definition.

Definition 3.8: Let M be a module with input data bus X n , input control bus X c , and output data

bus ZD, and let T { S C) be a transmission function for M . If T (S C) < 1, then T [S C) and the

associated module M are said to be sensitized by Sc . Alternatively, T (S c) and M arc said to be

partially transparent, since at least some information is propagated by M.

Sensitization is a property of a module, and not dependent on a particular set of inputs

applied to the module’s X p . It corresponds exactly to the conventional definition when applied to

common logic gates. For instance, let M be a two-input NAND gate. Let X D be one input port and

X c be the other; the output port is ZD . In this ease, T([0])= {0,1; 1)> and T([l]) = {(0;1), (i;0)>.

82

!| Z£}=sumI3..1]

Error 1: l-»0 Error 1: 0—>0
Error 2: 1 —>2 Error 2: 0-» I

Figure 3.12, Three-bit adder module with input data bus XD as addend, input control bus X c
as augend, and output data busZD = sum[3..1].

Since T{ [0]) = 1, the gate is not sensitized for the control input 0, as expected. Similarly,

T ([1]) < 1, so the gate is sensitized for the control input value 1.

Less obvious is the application of this definition of sensitization to larger, bus-structured

modules. Consider the adder in Figure 3.12. As in previous examples, X p is the addend, X c is the

augend, and Zp comprises the three most significant bits of the sum. For this module,

T’f t l]) = { (0 ;0), (1, 2 ;1), (3, 4 ;2), (5 ,6 ;3), (7 ;4)} . The adder is sensitized since

T ([1]) < 1; in fact, it is sensitized for all control inputs. However, some errors cannot be propa­

gated from X D to ZQ. For instance, if a fault causes a correct V (XD) - 1 to be changed to 0

(error 1 in Figure 3.12), then the resulting error cannot be propagated through the adder. On the

other hand, if an error changes V (X^) = 1 to 2, then the error can be propagated. The special

case when all errors arc propagated is covered by the following theorem.

Theorem 3.2: Let M be a module with input data bus XD , input control bus X c , and output data

bus ZD . M is transparent from X D to ZD fo r a particular control sequence Vc if and only i f

T (V C) s 0.

The proof of Theorem 3.2 follows from the preceding discussion. Transmission functions provide

a succinct definition of transparency that we can use in formal analysis.

3.2.1 Propagation Characteristics of Modules and Circuits

The structure o f the buses connected to a module M greatly influences the transparency of

M. For example, if |XD| > |Z0 | then M cannot be transparent from XD to ZD when the length of

the control sequence |5’c | for T (Sc) is 1. In this case, M’s domain is larger than its codomain. We

ADDER

83

will discuss the ease where |SC| > 1 in Section 3.4.

Most modules have only a few “natural" data bus pairs (XD;ZD) with associated trans­

parent propagation modes. For instance, in a multiplexer, each control bus value selects a different

data input to propagate to the output. Using transmission functions, we can examine the behavior

o f less “natural” assignments of input ports to X c and XD . This is useful since library modules arc

often connected in unexpected ways when used in a circuit.

Theorem 3.3: Let M be a module with input data bus XD , input control bus X c , and output data

bus ZD. Let Sc = [Vp \’2, ..., v^] be a k-stcp sensitizing control sequence, that is, a sequence o f

k values assigned to X c .

(a) L e t Xc ' be an a l t e r n a t i v e i n p u t c o n t r o l b u s s u c h t h a t X c c X c ' a n d l e t

Sc ‘ - I v j v2' , . . . , Vj.'] be a sequence o f k values assigned to X c ' . I f the value o f each bit o f

v. is the same as the corresponding bit o f v .' fo r 1 < i < k , then

T [M t {Xc , X D)] (S c) = T [M ; (X c ,, X D)] (S c >)

(b) Let XD' be an alternative input data bus. I f X D c X D' , then

T{M-,(Xa X D’)] (S c) f T [M ; (X a XD')] (Sc)

Proof: For part (a), let Tbc based on subfunction vector P = { F F k) . Recall that each F. is

itself a set o f mappings, one mapping for each unspecified assignment to X - (X C - X D) . By

making Xc larger, we specify more o f the domain. This reduces the number o f mappings, but docs

not change them; the embedded partition of T remains the same. For part (b), note that increasing

the size of increases the number of elements in each a (. without increasing the number of

blocks. Therefore, blocks of the embedded partition of T \ M \ (Xa X D')] cannot be contained in

blocks of the embedded partition of 7" (M; ()] . □

Theorem 3.3a implies that, for a given data bus pair (XD\ZD) , if the corresponding X c is

unknown, then we may safely choose X c = X - X D . If a control bus exists within X - X p for

which a sensitizing assignment can be found, then there exists a sensitizing assignment for the

entire set of ports X - X D . Theorem 3.3(b) implies that there exists a transparent data bus pair

(Xp\ZD) of maximum size. Intuitively, if making X D larger reduces the transparency of a mod­

ule, then there must be a more transparent X D' embedded within every sensitized X D.

84

As an illustration o f Theorem 3.3, consider Multiplexer 1 in Figure 3 .lid . Let X c ' =

(inO.ctrl) and Zp = out[1..0], the two least significant bits of the output. As long as V(ctrl) = 1, the

multiplexer is sensitized (but not necessarily transparent), regardless of V(inO). On the other hand,

if X c and ZD arc as shown in Figure 3 .lid , and XD' = (inO,inl), then the transmission function

will be less transparent than for X D = in i, since we arc attempting to funnel more possible values

to the same output.

Definition 3.9: Let M be a module with input data bus X D , input control bus X c , and output data

bus Z p . If Xp £ Xp and Zp c Zp , then (XD'\ZDr) is a subpath of the data bus pair (XD\Zp)

The following corollary to Theorem 3.3, which is also noted by MarhOfcr [66], illustrates the

importance of subpaths.

Corollary 3.1: Let M be a module with input data bus Xp i input control bus X c , and output data

bus ZD . Then T (S C) < 1 i f and only i f there is a subpath {XD'\Zp } such that the corresponding

transmission function T [M \ { X D' , X C) \ {Sc) = 0 .

Proof: If T (S C) < 1, then there arc at least two non-empty blocks (a . ; p .) and (a ^ P ^) . Let

e a. and .v2 e ct^, then x l and x 2 differ in at least one bit position. Let one of these bits be

Xp \ let Zp = ZD , and let the corresponding transmission function be V (5’c) . Clearly, T (Sc)

can contain only two blocks, and the embedded partition must be { {0}, { I} } . Therefore,

T (5C) = 0 . Now assume that there is a transparent subpath {XD’\Zp) . By Theorem 3.3b we

know that increasing the size o f Xp can make the corresponding transmission function less trans­

parent. However, each unique V (Xp) must still reside in a different block, therefore T (Sc) can

never be the unit propagation function. □

Continuing the example above for Multiplexer I in Figure 3.1 Id, let Zp = out[1..0].

Then, T([1]) = {(0,4;0), (1,5; 1), (2,6;2), (3,7;3)>, which demonstrates that the module is sensitized,

but not transparent. If Xp = inl[l..O], then {Xp \ZD') is a subpath of (XD\ZD) and the corre­

sponding transparency function is 7’([1]) = { (0 ;0) , (1 ;I) , (2 ;2), (3 ;3) > = 0 .

We now turn our attention to the algebraic analysis of circuits for transparency. The goal

of this analysis is to determine whether a propagation expression composed of transmission func­

85

tions is congruent to the zero propagation function and therefore transparent, or else cannot be

congruent to zero and therefore only either partially transparent or non-transparent (congruent to

the unit transmission function). We frequently leave out the control sequence parameters in these

expressions and assume that a controlling sequence exists (or docs not exist) with the required

transparency. Transmission functions can be treated as variables. For example, in a typical propa­

gation expression T x° (T2#T3) , each transmission function ‘‘variable” T. has a number of valid

assignments, corresponding to various control sequences applied to the module associated with T .t .

Many key properties of the propagation algebra appear in Table 3.1. However, most of

those properties apply only to parallel connections. Here we consider the transparency of scries

connections. A partially transparent module in a path consisting of series-connected modules usu­

ally reduces the transparency of the entire path. The following theorem makes this general state­

ment precise.

Theorem 3.4: Let T x and T2 be transmission functions fo r modules M x and M 2 respectively.

(a) Tj °T2 = 0 implies T x ~ 0 .

(b) T x°T2 = T j i f and only i f there is no block (a 2 .;p2,-) in T2 , and no t\vo blocks (a ^ ;P ^)

and (a u ;P 1((.) m T, such that a 2! contains p j . [<7] (the qth element o f $ x.) and P 1Jt I?1

for any q.

Proof: Part (a) follows directly from property 9 of Table 3.1, that is, Tx °T2 > T x. For part (b), by

definition, T ° T 2 = T x if and only if no blocks of Tj arc combined by the connection operation.

This is true if and only if a 2i contains at most one P^. [q] . □

Theorem 3.4a states that the first module in a series must be transparent for the entire

series connection to be transparent. Property 4b in Thble 3.1 is a special ease of this theorem. The­

orem 3.4b states that M2 need not be transparent, but its corresponding transmission function must

distinguish those values that can be generated by A f,. The module M x may add spurious or redun­

dant information that is rejected by M 2 .

Theorem 3.4 is useful for analyzing eases of reconvergent fanout. Consider the circuit in

Figure 3.13a, which truncates the least significant bit of the input bus and propagates either the

86

Trunc(2..1)
Modulo 4
incrcmcntcr

inO

ini

MUX

Ctrl

(a)

0

(b)

Figure 3.13. (a) Circuit diagram and (b) propagation diagram for circuit with transparent
rcconvcrgcnt fanout.

resultant two-bit value v or v+1 {mod 4) to the output, depending on the control value applied to

the multiplexer. The propagation diagram for this circuit appears in Figure 3.13b. As shown in

Figure 3 ,13a, we can treat the circuit as the series connection of A/(and M 2 , where A/(is hierar­

chically composed of modules Afu and 3 / ,2> Let 7. be the transmission function for module M r

The following set of equations illustrate Theorem 3.4b.

T n = { (0, 1;0), (2, 3 ;1), (4 ,5 ;2), (6, 7;3) }

7 | 2 = { (0 ;1), (1;2), (2 ;3), (3;0)>

T u ° T n = { (0 , 1;1), (2, 3 ;2), (4 ,5 ;3) , (6 ,7 ;0)>

T \ ~ T n UTn ° T i2 - {(°* 1;1>’ <2’ 3 ;6)- (4 ,5 ; l l) , (6 ,7 ;1 2)}

7*2 ([0]) - { (0 , 1 ,2 ,3 ;0) , (4 ,5 ,6 ,7 ;1) , (8 ,9 , 10, 11;2), (12, 13, 14, 15;3)}

r i °7'2 = { (0 , 1;0), (2, 3 ;1), (4 ,5 ;2) , (6 ,7 ;3)> = 7 ,

In this ease, 72 is not transparent, but T l °T2 = 7 , .

In order to apply Theorem 3.4b in the analysis of modules in scries, we must know the

structure o f all of the transmission functions in the series chain, which complicates the analysis.

87

Consider the FItrdp datapath circuit of Figure 3.10. We can treat the network from the primary

input bus 1 to the inputs of the multiplexer module 8 as a single module M. However, since the

input to M (bus 1) is 8 bits wide, and the input to module 8 (all inputs form X D) in this configura­

tion is 17 bits wide, we must apply Theorem 3.4b to analyze transparency. The transmission func-
17

tion for module 8 has 2 = 131,072 elements to distribute among the blocks. It is therefore

difficult to analyze this case by inspection.

Nevertheless, we can define a condition that enables us to make a strong statement about

the transparency o f the second module in a series connection. Let M be module with output data

bus and let T be a transmission function for M. Let \T\ be the number o f blocks in T. If

JZjr,| = log2|7 l , then Thas the maximum number of blocks for a combinational function (the con­

trol sequence has length 0 or 1) and is said to be bus-size limited. The codomain o f the subfunction

upon which T is based contains all o f the possible values that can be produced on Z D. In this ease,

no spurious information can be added by M . The following corollary, which modifies Theorem

3.4b for the ease in which A/j is bus-size limited, summarizes the preceding discussion.

Corollary 3.2: Let T] and T2 be transmission functions fo r modules M] and M 2 respectively,

and let ZD[be the output data bus o f A /,. I f jZD i | = log2j7’J| , then T {°T2 = T { i f and only i f

t 2 = o .

Consider T n ° T l2 in the example above. r n meets the requirement that |Z01| = log2|7'1 j | .

Since 7 ^ = 0 , it is true that T{XQT n ~ T n . On the other hand, let T3 = {(0,1;0), (2,3;2)}{not

congruent to zero). Then T l l °T3 = { (0 , 1 ,2 ,3 ;0), (4 ,5 ,6 ,7 ;2)} .

A primary goal in developing a theory of propagation is to uncover methods for analyzing

propagation in circuits with irregular buses. While error propagation may be blocked by non-trans­

parency along any single path in a circuit, the combination of paths in parallel can allow all test

response errors {TR, TRj) to be propagated. Some errors can be propagated along one path, and

the rest along other paths. This combination of paths in parallel creates a distributed propagation

path. We can determine whether such a path is transparent by intersecting the transmission func­

tions of its constituent single paths. If the result is zero, then the distributed path is transparent.

Let Mj and Af2 be two modules connected in parallel, and let 7'] and T2 be transmission

88

functions corresponding to M j and M 2 respectively. If 7 (> 0 , 7 2 > 0 , and 7 j# 7 2 = 0 , then the

connection is a distributed transparent path, and and 7 2 arc complements, Unfortunately, prop­

agation functions do not have unique complements— a key algebraic property. For example, con­

sider

T x = { (0, l ;0), (2 ,3 ;1) , (4 ,5 ;2) , (6 ,7 ;3)> (3.6)

72 « { (0 ,2 ,4 , 6 ;0), (1 ,3 ,5 , 7 ;1)> ■ (3.7)

T3 = { (0 ,2 ;0) , (1 ,3 ;1) , (4 ,6 :2) , (5 ,7 ;3)> (3.8)

Since 7 j# 7 2 ~ 0 and 7 j# 7 3 = 0 , both 7 2 and 7 3 are complements o f T y . The lack o f a unique

complement sometimes limits our ability simplify propagation expressions algebraically.

Modules with different types o f transmission functions may be combined in parallel to

produce a circuit with distributed transparency. In general, we must compute the intersection of the

corresponding transmission functions in order to determine transparency. However, in some eases

we can simplify propagation expressions algebraically, without explicitly computing the intersec­

tion. To show this, we make use o f special pairs of complements which we now define.

Definition 3.10: Let T#Tmax s 0 such that there is no 7 (J > 7 and no Tb > Tmax, where TUTb = 0

or TaUTmax = 0 . Then Tmax is said to be a maxima! complement of T { , and vice versa.

Among comparable transmission functions, maximal complements are unique up to congruence.

Maxima] complements have useful properties similar to unique complements in some eases. 7 (

(3.6) and 7 2 (3.7) given in the example above arc maximal complements, while 7 (and 7 3 (3.8)

arc not. The following theorem shows how maximal complements can determine a specific trans­

parency requirement for parallel propagation paths.

Theorem 3.5: Let A/(, M 2 , M 3 , and M 4 be modules connected as in Figure 3.14 with transmis­

sion functions 7 (, 7 2 . V’3 , and 7 4, respectively, and let Z Dl and ZD3 be the output data buses o f

My atul I f My and M 3 are bus-size limited, that is, \z Di\ “ l° z \T i\ and |z m | = loe | r 3|-

and i f T y and 7 3 are maximal complements, then

7 , 0 72# 7 30 74 = 0 i f and only i f T 2 = Q and 7 4 = 0.

89

Bus size limited

D2 ■DlD\ Dl

(a)
Maxima] complements

(b)

Figure 3.14, (a) Module connections for Theorem 3.5, and (b) corresponding propagation
diagram.

Proof: Clearly, if T2 = 0 and TA = 0 , then 7’, 07'2#7’30r 4 = 0 , since T ° T 2 = T { and T3°T4 = T3 .

Now let T l °T2#T3aT4 = 0 and suppose that T2 > 0 . By Property 9 (Table 3.1), T ° T 2 > T x, but

according to Corollary 3.2, T ° T 2 ^ T X* This means that T]0T2 > T [and T x°T2#T3°T4 ^ 0 by

definition of maximum complement; we have a contradiction. Therefore T2 = 0 . Clearly, T4 = 0

by the same reasoning. □

According to Theorem 3.5, if A/, and M 2 are two bus-size limited modules connected in

parallel whose transmission functions arc maximal complements, then the only way that the result­

ant distributed propagation path can be transparent is if all modules connected in series with M x

and all modules connected in scries with M2 arc transparent. This implies that each of M j and M 2

propagates only the information that the other docs not.

Theorem 3.5 is often useful in analyzing circuits. If the set o f modules connected to a

fanout point X arc bus-size limited with transmission functions that arc maximal complements,

then non-transparency in any branch of the distributed propagation path beginning at X makes the

entire circuit non-transparent. Conversely, Theorem 3.5 defines a transparency requirement for the

modules on parallel propagation paths that can be determined algebraically. We will present spe­

cific examples using Theorem 3.5 in circuit analysis below. First, we consider the types of mod-

90

ulcs whose transmission functions have the required properties.

Theorem 3.6: Let M 1 and M 2 be two truncate modules with the same input data bus XD such

that M { propagates only bits o f X D not propagated by M2 and vice versa. Let Tj and T2 be the

propagation functions o f A/j and M 2 , respectively. Then T l and T2 are maxima! complements.

Proof: Clearly, = 0 . We need to show that there is no Ta > 7 , and no Tb > T2 such that

T x# T b = 0 or TciUT2 = 0 . Let (a ^ P ^) be a block in T l . M 2 propagates bits that Af, does not

(and vice versa), therefore the elements in c t j . must all be in separate blocks of T2 since they arc

all mapped to different outputs (P ’s). Let the input data bus o f A/j and M2 be N bits wide and the

output data buses of M { and M 2 be and N 2 bits wide, respectively; then N = N l + N 2 . The
N N \ N 22 possible inputs arc distributed evenly among the 2 blocks in T j and 2 blocks in T2, so

N 2 N l
there are 2 elements in each block o f T x and 2 elements in each block o f T2 . Thus each block

in Tj contains exactly one clement from each block in T2 and vice versa.

Now, suppose that there is a transmission function Tb > T 2 such that T |# 7 fc = 0 . This

implies that there is a block (otfti;Pt | .) in Tb , and at least two blocks (ct2 -;P2 .) and (ot2*;P2*̂

in T2 , such that a bj contains all the elements from a 2j. and a 2k. Now for some block (c tI(?;P ir/)

in T j , a 2j and a 2k each contain exactly one element o f a l ? . Therefore, a.bj contains two ele­

ments of a I(?. These two elements will also be in the same block of T ^ T b , so T tUTb > 0 , a con­

tradiction. Therefore, there is no Tb > T 2 such that 7 j# 7 fc = 0 . By the same reasoning, there can

be no T > 7 . such that T #7 - = 0 . □a \ a 2

Sets of two or more truncate modules connected to the same input (fanout point), whose

transmission functions arc maximal complements, arc common in circuits. Buses arc frequently

divided into two or more parts, each used in a separate calculation.

3.2.2 Examples o f Transparency Analysis

Wc now present some additional circuit examples to illustrate our analysis technique.

Fltrdp. The Fltrdp circuit and corresponding propagation diagram arc shown again in Figure 3.15.

In this case, edges o f the propagation diagram arc labeled with transmission functions. As usual,

transmission function 7. is associated with module AT. The corresponding expression for the

propagation path from bus 1 to bus 13 is given by

91

ADDER *4
M3

Trunc(O) ■

Ma

T runc(8 ..1)-f

ADDER Tmnc(8..1)
 A/2

_
ADDER

9 m 6

10

Tninc(7..0)|
M1

MUX

LATCH

(a)

(b)

Figure 3.15. Fltrdp datapath circuit: (a) schematic and (b) propagation diagram.

T3°{T4tHT5° <o#(7y>r7)))) aT8°T9

= 7 y (T4U {Ts °0)) ° T ^ T 9 by property 8

= r 3° ((r 4o0) # (7 5o0)) °Ts °T9 by property la (identity)

= r 3o0 o7'8or 9 by Theorem 3.5

Adders like module arc transparent lor any X c , so T3 = 0 . Likewise, module M 9 (the latch) is

transparent when clocked. However, because o f the reconvcrgcnt fanout at module A/g , we cannot

determine whether the entire circuit is transparent without analyzing the individual transmission

functions that make up the propagation expression. Transparency cannot be determined in this

ease by rewriting the expression.

Iterative logic array . A ripplc-carry adder, such as the four-bit adder shown in Figure 3.16, is an

example o f a one-dimensional ILA. Some portion of the output o f each module M. (the carry-out

C/+, in this ease) is used to connect it to another submodule M i + j in the array. Each submodule

also has a carry-in input port Q . ILAs can be recursively described; an n-bit version / is con-

92

Carry-in

A[0] B|0] a (11 B in AI2] B[2] A[3] B[3]

S [l]

FA

i+l

FA

i+li+l

Carry-out
Figure 3.16. Four-bit ripple-carry adder as an example o f a one-dimensionaJ iterative logic

array.

structcd from an (n - 1)-bit version, / j and an additional submodule, M /r By modeling the

LLA as a series-parallel circuit, we can use Theorems 3.5 and 3.6 to prove the following theorem.

Theorem 3.7: An n-bit one-dimensional ILA M n (n > 1) is transparent i f and only i f all o f the indi­

vidual cells which compose it are transparent.

Proof: We begin with a recursive model of the ILA illustrated by the ripplc-carry adder in

Figure 3 .17a. The n-bit adder is composed of an (n - I)-bit adder A n _ t connected to a full adder

module FA . Each module in this diagram has input data and control buses and output data and

control buses. The output control bus Z c l = C)(connects the two modules. We also assume that

the carry-in line to the (n - I)-bit adder is contained in X D l. The adder is redrawn for analysis in

Figure 3.17b and illustrates some typical transparency modeling techniques. For instance, all indi­

vidual module data buses connected to primary inputs are assumed to be concatenated into one pri­

mary input data bus X D . Similarly, all individual module output data buses connected to a primary

output arc concatenated into one primary output data bus Z D .

Bus X D fans out to truncate modules, the outputs o f which arc the individual module data

bus inputs XD r This modeling technique allows us to represent the distribution of data from an

single input bus outside the ILA to the individual inputs of constituent modules inside the ILA.

Similarly, the outputs of individual modules here arc treated as one bus outside the ILA. In this

diagram, we also assume that the outputs o f the (n - 1)-bit adder and the full adder contain both

93

XC|=<A[(n-2)..0],Cin) XD r B[(n-2)..0] XD2=B[n-l]

ADDER ZCl=Cn FULL
ADDER

FAn

ZC2“ Q i+1

An-\

ZJ5l=S[(«-2)..0] ZD2“ (Cn+i, S[n-1])

Xc = (Aln-lJ, A[(/i-2)..0], Cin) ZD = (CH+„ S[«-l], S[(n-2)..0J)

" (Bfw-11, B[(/i-2)..0])

(a)

'£>1

D1

0 2 •02

(b)

(c)

Figure 3.17. (a-b) Recursive description, and (c) propagation diagram of an n-bit, ripplc-carry
adder.

data and control. Finally, note that the output of the (n - 1)-bit adder, which initially contains both

ZDX and ZC1, fans out to two truncate modules. One of these truncate modules, TrunefZ^j),

selects the bits of ZDl associated with data, and the other, Trunc(Zc l), selects the bits associated

with control. Figure 3.17c shows a propagation diagram for Figure 3.17b, in which transmission

function Tj is associated with the module M.. The expression that represents the transparency of

9 4

the circuit is

(^ 1<,7’j°7 ’4) # (((7'107'307'5)#7 '2) °T6)

— (T 1°7’3°T4) # ({ T f T f T s T6) # (T 29T 6))

= 7’1° (7 ’3o (7'4# (r 5o7’6))) # 7 '207 6

by distributivity

by distributivity

The pair of truncate modules M l and M 2 meets the requirement o f Theorem 3.6, as docs the pair

o f modules M 4 and M 5 . Therefore, T x and T2 arc maximal complements and by Theorem 3.5,

T3° (T 4# (T 5°T6)) must be congruent to zero. By the same reasoning, T6 must also be congruent

to zero in order for T x° (7^° (T4# (7’5°7’6)))# T 2°T 6 to be congruent to zero. If

Theorem 3.7 supports the intuitive notion that it is possible to determine the transparency

o f an iterative module by examining a small version o f that module, at least in the ease of full

transparency.

Divfilt. Next consider the Divfilt datapath circuit discussed in Chapter II and displayed again in

Figure 3.18. We will analyze the transparency o f the boxed group of modules in the upper left

hand comer o f the figure. The propagation diagram for this group of modules is shown in

Figure 3.19. The propagation expression representing the transparency from primaty input port

RECV2 to the output of PROCR_l is

We want to find a valid assignment of transmission functions to the TVs in this expression that

make it congruent to zero. We assume that control buses for each module can be independently

assigned. As discussed above, each T. is a variable— it assumes a different form for each control

sequence applied to M .. We arc only interested in propagation modes where T. < 1 if such modes

exist. In some cases, there is only one transmission for a module (e.g., X c = 0) . In other eases,

Mj will only have one control assignment so that T. < 1. In the last two cases T. = 0 since there is

only one transmission function of interest.

Multiplexer MUXR_1 has only one sensitized mode of operation, and this mode is trans­

parent. Therefore, we set = 0 . Registers such as REGR_5 arc likewise transparent for only one

control sequence. The transmission functions for CONCAT modules and FREADs (truncate mod­

ules) arc constants, in the ease of FREADs, T j < 1. The OR gate PROCR_l has no natural control

T j0 (T 4# (T5°Te)) = 0 then 7*3 s 0 by Theorem 3.4a. □

(3.9)

R£CVl D r r n 1 1 PROCR 2 REGR 13 ^ 7 .

MUXfl.7 fl£GR_T2 SENDJ t<laT <1>«1».MUX
PROCR 21 PROCR_20 R £ g r 2

< 1O JR E A 0 ^CfeVUX <1tt^

U U X R J3
<tO.MUXMifVD , a ™ - PROCR_25 PROCR„2B

PROCR 5
* t> .N O T

PR0CR_15 PR0CR_3
<11>.FREAD <11».USER0P

PROCR 1 PRnra ? MUXR.2
<1>.MUX R E G R i<1>OR uujCh a

*1C > .SL <1>MUX

P.EGR 4
< 11*

PROCR 22 PR0 S5^1®
<ttt>.UIMCS, <1t>.FR£AD

PLUS

<T*.AND

PRQCJM 4 p e n c R 12
1>,MWU$

P R O C R 4
< J> .N O T

PROCR 30
<12>,FREAD PROCR 32

■c-t-.CONCAT

z f T -U U X R 4
R EG R 1IO.MUX

= >
PROCR 10 *4».FR£aDPROCR.I PR0CR_21

<1*>.CONCAT ct4>,FR£A0PROCR 13<io>.PREao
MUXR_5 REGR 7

<10>,MUX <1Qi
PROCR M MUXH 6 PROCR 11

<3>.WLX <*>PLUS.
MINUS

REGH 10<4> ,F R E A D

PROCR 17 SEK ut
<1Q*,FREAQ *£>

VDL/i

i £ > — O

Figure 3.18. Digital filter datapath circuit.

96

Figure 3.19. Propagation diagram for the boxed subcircuit in Figure 3.18.

inputs since both its inputs arc part of connections with vertices in the propagation diagram. The

only module with more than one relevant transmission function is the subtracter module

PROCR_I4. However, a subtracter module, like an adder, is transparent for every possible control

value.

Modules PROCR_, REGR_5, and PROCR_25 arc all transparent, so 7’1Q7*2°7 3 = 0

(Property la). PROCR_26 and PROCR_30 are complementary truncate modules, therefore,

7,7#(r4°rs°r6) s o if and only if T5°Tb = 0 (Theorem 3,5). Since PROCR_14 is a subtracter,

Ts {Vc) = 0 for any Vc . However, PROCR_I2 truncates all but the most significant bit of the

output of PROCR_14, thus T'5°Tfj^. 0 , and T7# (T 4°T5°T6) ^ 0 . In Sections 3.4 and 4.3 we will

discuss techniques for making this circuit transparent.

3.3. Partial Transparency

To simplify test generation with precomputed modular tests, it is desirable to use fully

transparent modules and circuits to propagate a test response TR . While this is frequently not pos­

sible, it may be possible to propagate TR along partially transparent circuit paths, an issue we

explore in this section. If we cannot propagate TR through fully transparent modules, it is useful to

know which o f the available partially transparent propagation paths are the most transparent.

Consider the circuit in Figure 3.20, which contains reconvcrgcnce similar to that of Fltrdp.

We have identified three paths from the output o f the module for analysis. PATH1 consists of

the modules Af2 , M3 , M A/6 , and A/8 , and their associated interconnections. PATH2 consists of

the path including modules A/5 , A/? , and M 9 , PATH3 simply passes through module A/R. These

paths arc marked on the schematic in Figure 3.20. PATH3 is clearly transparent, but PATH1 and

97

ADDER / I

« , Tl
addo m

Trunc(0)

PATH I

PATH2

/ inO ctrliruncU''U
Af, 2

MUX
L

*C4=1-
ADDER

Ma
mL

3
Trunc(1..0) J .

?
ini m 8

AV<=2
ADDER Trunc(1..0)

MUXPATH3

PATH2
and

PATH3

Figure 3.20. Comparison o f three propagation paths.

PATH2 arc not. Both PATH! and PATH2 contain about the same number of gates from the output

of module 1 to a primary output. It is not easy to determine the more transparent of these two paths

by inspection. The transmission function for PATH1 is

t p a t h \ " -t(°> 7 ;0), < l ,2 ; l) t (3 ,4 ;2) , (5 ,6 ;3)> (3.10)

and the transmission function for PATH2 is

T p a t h 2 “ { (2» (3 ,7 ; I) , (0, 4 ;2), (1 ,5 ;3)> . (3.11)

We now discuss a method for analyzing the relative transparency of these two paths.

In Section 3.1 we noted that if TpATm < TpAT]}2, then TpATin propagates more infor­

mation than TpA T in - However, in this ease, TpAT{n and TpATll2 arc algebraically incompara­

ble. We cannot determine the relative transparency of these two transmission functions by

comparing them directly using our algebra. Instead we compute a numerical measure o f their

transparency which can be compared. Let M be a module with input data bus XD% input control

bus X c . and output data bus ZD . Let \>D be a value assigned to X ^ in a correctly working circuit

and vn ’ be a value at X D in a faulty circuit. The pair (vD, vD') is a discrepancy. If

N { V(XD)> , then the total number of possible discrepancies is N (N - 1).

Definition 3.11: The fraction of discrepancies distinguished by a transmission function T is called

the transparency index of T, and is denoted Trans (T) .

98

If all discrepancies arc equally likely, then Trans (7) is a measure of the probability that a dis­

crepancy will be propagated through M from XD to Z D.

To compute T rans (T) , we first compute the inverse o f Trans (T) , that is,

1 - Trans (T) , using the structure of the transmission function. Let Jt be the partition embedded

in transmission function T, and let B j be the size of block / in t c . Finally, let O pacity (B p N) be

the opacity or non-transparency index of block /, that is, the contribution o f block i to the total

fraction of discrepancies that cannot be distinguished by T. Since no two elements in a block can

be distinguished, the contribution of block i to the number o f discrepancies that cannot be distin­

guished is Bj (Bj - 1) , the number of pairs in block i. Therefore,

B j (B r 1)
O pacity {BP N) = — _ 1} (3.12)

If there arc n blocks in n , then

n
Trans (T) = 1 - £ O pacity (S ., N) (3.13)

i - 1

As an example, let T, = { (0 ;1) , (1 ;2), (2 ;3), (3 ;4), (4 ;5) , (5 ;6) , <6;7), (7 ;8)> . Since

Bj *= I for all /, T rans (7^) = 1. Now consider 7^ = { (1, 3 ;0)f (0, 2; 1) > . The size of both

blocks T2 is 2, therefore, T rans (7 2) = 1 - (1 / 6 + 1 /6) = 2 / 3 . The transparency indices of

the transmission functions for the modules in Figure 3.11 arc listed in Table 3.2. Note that for typ­

ical datapath modules, the transparency index is either 0 or 1. Most non-transparency results from

the way that these modules arc connected— for example, connections to truncate modules.

We refer to the set of block sizes (B ^ B ^ for an embedded partition jr, as the

partition structure o f tc. A canonical list of all possible partition structures for the case where the

number of possible inputs to X Q is 8, is shown in column 2 of Table 3.4. Column 1 lists the num­

ber of blocks in each partition structure, columns 3 and 4 list the means and variances o f the block

sizes in each partition structure, and column 5 lists the transparency index implied by the partition

structure. In each partition structure in Thblc 3.4 the block sizes arc listed in order of decreasing

size. Note that the transparency index generally increases with the number o f blocks in the parti­

tion structure, but not always. For instance, the transparency index o f transmission functions with

embedded partitions whose structure is (6,1,1) is 0.46, but the transparency index o f transmission

functions with structure (5,3) is 0.54. The large block (6) makes (6,1,1) non-transparent. By refer-

99

M odule Transmission functions Trans(T)

(a) NAND gate r<[0] ° {(0,1; 1)> 0.00
7([1] = {(0; l) , (l ;0)> 1.00

(b) NOR gate 7TCI0] = <(0;1), (1;0)} 1.00
ran = {(0,1;0)> 0.00

(c) Adder rao] = {(0;0), (1;1), (2;2), (3;3), (4;4), (5;5), (6 ;6), (7;7)> 1.00
ran = <(0;l), (1 ;2), (2;3), (3;4), (4;5), (5;6), (6;7), (7;8)} 1.00
r«2] =»

(d) Multiplexer 1 7X10] = {(0,1,2,3,4,5,6,7;0)> 0.00
ran - {(0;0), (1;1), (2;2), (3;3), (4;4), (5;5), (6;6), (7;7)} 1.00

(c) Multiplexer 2 ruo] = <(0,I;0)> 0.00
ran = <(0;0) , (1; 1)> 1.00
7X12] & ... 1.0 0 ...

(0 Multiplier rao] = <(0,1,2,3,4,5,6,7;0)> 0.00
ran = <(0;0), (1; 1), (2;2), (3;3), (4;4), (5,5), (6 ;6), <7;7)> 1.00
7<[2] ...

(g) Register rao,]) = {(0;(0,0)), (1;(0,1)), (2;(0,2)), (3;(0,3)), (4;(0,4)),
(5;(0,5)), (6;(0,6)), (7;(0,7))>

1.00

(h) Decoder 7(10] «{(0,1,2,3,4,5,6,7;0)> 0.00
ran = {(0;1),(1,2,3,5,6,7;0), <4;2)> 0.46

Tuble 3.3 Transmission functions and transparency index for modules in Figure 3.11

ring to Table 3.4, we can now finally analyze the relative transparency of PATH1 and PATH2 in

Figure 3.20. The transparency index of each of these paths is the same because they both have the

same partition structure (2,2,2,2). Hence, Trans (T^) = T ra n s(T 2) = 0.86. 7 j and T2 both

propagate the same amount of information, that is, the same number of discrepancies. However,

since 7"j and T2 arc incomparable, each propagates a different set o f discrepancies. In fact,

r , # r 2 = { (0 ; (0,2)) , (1; (1. 3)) , (2 ;(1, 0)) , (3 ;(2 , 1)) ,

(4 ; (2 ,2)) , (5; (3, 3)) , (6 ; (3, 0)) , (7 ;(0 , 1)) } = 0

Together, 7 (and T2 propagate all information.

Incomparability is an important aspect of propagation along parallel paths. In general, if

M j and M 2 arc two modules connected in parallel, with corresponding transmission functions 7 (

and 7'2 , then T1#72 < 7", and T tttT2 < T2 if and only if 7 (and T2 arc incomparable, that is, M]

100

Number
o f blocks

Partition
structu re Mean Variance Trans(T)

8(*> (1, 1, I ,1, 1.1,1, 1) 1.00 0.00 1.00

7(*> (2,1, 1,1, 1, 1,1) 1.14 0.14 0.96

6(*) (2,2,1, 1, 1, 1) 1.33 0.27 0.93

5(*) (2,2,2, 1. 1) 1.60 0.30 0.89

4(*) (2,2,2 ,2) 2.00 0.00 0.86

6 (3,1,1,1,1,1) 1.33 0.67 0.89

5 (3,2,1,1,1) 1.60 0.79 0.86

4 (3,2,2,1) 2.00 0.64 0.82

4 (3,3,1,1) 2.00 1.32 0.79

3(*) (3,3,2) 2.67 0.34 0.75

5 (4,1,1,1,1) 1.60 1.80 0.79

4 (4,2,1.1) 2.00 1.99 0.75

3 (4,2,2) 2.67 1.32 0.71

3 (4,3,1) 2.67 2.34 0.68

2<*) (4,4) 4.00 0.00 0.57

4 (5,1.1,1) 2.00 4.00 0.64

3 (5,2,1) 2.67 4.33 0.61

2 (5,3) 4.00 1.99 0.54

3 (6, 1, 1) 2.67 8.35 0.46

2 (6,2) 4.00 8.01 0.43

2 (7,1) 4.00 17.98 0.25

!(*) (8) 8.00 — 0.00

Table 3.4 All possible structures for partitions on 8 elements, the mean and variance of the block
sizes, and the transparency index o f corresponding transmission functions.

and M 2 must propagate different information. Furthermore, since the transmission function of the

circuit formed from series-connected modules is always greater than or congruent to the transmis­

sion function of the first module in the series (Property 9 in Table 3.1), we can determine a strategy

101

1 .

0 .8 ,

0.6-■

Maximum
transparency 0.4.
index

0 .2 .

0
4- 4- 4- 4- 4- 4-

1 2 3 4 5 6 7 8

Number o f blocks

Figure 3.21. Maximum transparency index as a function of number of blocks domain size 8 .

for propagation by comparing the transmission functions of the first modules along each branch of

a fanout junction. Let M j and M2 be two modules whose input data buses arc connected to

branches o f a fanout junction, and let T i and T2 be transmission functions for A/, and M 2,

respectively. If T { < T2, then the path starting with M] should be chosen for propagation, since

propagates everything that T2 docs, and more. If T, and 7'2 are incomparable, then propagation

should proceed in parallel.

Now we consider the partition structure that maximizes the transparency index. As

observed above, the transparency index of a transmission function seems to increase with the num­

ber of blocks, but not monolonically. The distribution o f elements among the blocks is also impor­

tant. In Tabic 3.4, we list the partition structures in order of decreasing transparency index. For a

given number of blocks, we also mark with an asterisk the partition structures leading to maximum

transparency index. We plot transparency index as a function of the number of blocks for these

marked partition structures in Figure 3.21. For these partition structures, transparency index does

increase monolonically. Also note that in each partition structure marked with a * in Table 3,4, the

block sizes arc all nearly or exactly the same size. That is, the instances of maximum transparency
2

index in Table 3.4 arc those eases where the set of block sizes have minimum variance (o) for a

given number of blocks. Variance is used here in the classical sense to measure dispersion from the

mean, that is,

102

o’ - f M^ n ■ 1
t - 1

where B is the mean block size. Since the total number of elements to distribute among blocks is

lixed, variance is reduced the closer all block sizes arc to N / n . N is always a power of 2, namely

lA'J
2 , but n can be any natural number and depends on the module function. As illustrated in

Table 3.4, for the set of partition structures with maximum transparency for a given n, not all

blocks are exactly the same size in each partition structure. However, in each case no other parti­

tion structure with the same number of blocks has lower variance. This fact is formalized in the

following theorem.

Theorem 3.8: For a given number o f elements and blocks, the embedded partition o f a transmis­

sion function with maximum transparency index has the minimum variance among block sizes.

Proof: We will show that monotonically increasing the variance of partition structures monotoni-

cally decreases transparency index. We are considering transmission functions with n blocks,

whose domains contain N = | {V (XD)} J elements. Assume without loss o f generality that the

block sizes in Ihc embedded partitions for these transmission functions arc ordered

B { > B2 & ... as they arc in the canonical list of partition structures shown in Table 3.4. All

possible partition structures may be obtained from the minimum-variancc partition structure S .

by transformations of the form

A’j - -» I, 1, - S2

which increase variance. Consider one such transformation —» S2 , and let T] and T2 be trans­

mission functions whose embedded partitions have structure Sj and S2 , respectively. By (3.12)

and (3.13)

B, {B . ~ I) + B . (B . - 1) + C
7'™"S(r.) - Nif- j--------

where C is the non-transparency contribution of all the blocks except r and j. Similarly,

{Bi+ 1)B + (B . - l) (B . - 2) + C

103

Wc want to show that Trans (T2) < Trans (7 ^) , that is,

(5 ,.+ 1)5 + (5 . - 1) (5 , - 2) + C 5 , (5 , - 1) + 5 , (5 , - l) + C
1_____ {_______ [_____ J_______ _J_________ < 1 — / J________N(N-l) N(N-l)

which implies

(5 .+ 1)B ,+ (Br 1) (5 . - 2) > 5 . (5 . - 1) + 5 . (5 . - 1)

By expanding and collecting terms, wc obtain

2B r 2 B .> -3 (3.14)

The relation (3.14) is true if and only if B i > 5 ^ - 3 / 2 , which holds since 5 ;. was defined to be

greater than or equal to B.. □

We refer to transmission functions whose block sizes have minimum variance as maxi­

mum transparency transmission functions. TpAT{n (equation (3.10)) corresponding to PATH1 in

Figure 3.20 and TpATf[2 (equation (3.11)) corresponding to PATH2 in Figure 3.20 arc maximum

transparency transmission functions. It is interesting to note that for 18 of the 22 partition struc­

tures in Table 3.4, the transparency index is greater than 0.5, that is, more than half of the discrep­

ancies arc propagated. We conclude therefore that most sensitized modules arc quite transparent.

As another illustration o f this fact, consider Figure 3.22 where wc have plotted the maximum

transparency index as a function of the input data bus size for transmission functions with 4 and 8

blocks. This figure shows that as the data bus size increases, the maximum transparency index pos­

sible for any transmission function with n blocks approaches an asymptotic lower bound that

depends on the number o f blocks. In Figure 3.22, for transmission functions with 8 blocks, this

lower bound is about 0.9, and for transmission functions with 4 blocks, the lower bound is about

0.77. The following theorem formalizes this fact.

Theorem 3.9: Let T be a maximum transparency transmission function with n blocks, the mini­

mum possible transparency index fo r T is Trans (T) = 1 - - .
n

Proof: Let n be 7”s embedded partition and let 5 . be the siz.c o f block / in n . By definition,

n
Trans(T) = 1 - ^ O pacity (5 ., A') (3.15)

< - i

104

1

0.95 --

0.9 . .
Maximum
transparency
indcx 0.85 . .

0.8

0.75 4
2 3 4 5 6

Input data bus size in bits

Figure 3.22. Maximum transparency index possible as a function of the input data bus size l’oi
transmission functions with 4 blocks and 8 blocks.

For maximum transparency transmission functions with n blocks, the transparency index depends

only on the number of elements in the domain N, and is minimized when N becomes very large.

Taking the limit of both sides of (3.15)

lim Trans (T) = lim
iV —> ro N —¥ c,n\

n
= 1 - V lim O pacity (B N)

N - t °°/ - i

According to Theorem 3.8, all blocks in T must be as close as possible to exactly the same size,

therefore /I. is f N/n~\ or _ N /n \, since N may not be divisible by n. Suppose that N is divisible

by n, so IT =• N / n . By equation (3.12),

•* (it { N / n) { N / n - 1)O pacity {B. ,N) = -V- ^

I - ^ O pacity {Bp N)
/ - I

Transmission
functions with
8 blocks

Transmission
functions with
4 blocks

Expanding yields

105

Lower bound
on maximum
transparency o.7
index

0.6

0.5

0.9

2 3 4 5 6 7 8

Output data bus size in bits

Figure 3.23. Lower bound on maximum transparency index as a function of output data bus
size.

This form of O pacity (B p N) for maximum transparency transmission functions is the same

regardless of whether N is divisible by n. Taking the limit,

The number of blocks in a transmission function is bounded by | { V (ZD) > | . Therefore,

for a given number o f output bits |Z J , a module has its maximum transparency index when its
K \

transmission function has 2 equal-sized blocks. Truncate modules meet this criterion. Truncate

modules M 2 , A/j, and A/? in Fltrdp (Figure 3.15) each truncates a 9-bit bus to an 8-bit bus. In

each ease, the transparency index of the corresponding transmission function is 0.998; no module

with |X0 | = 9 and jZ^J = 8 can have a larger transparency index. Interestingly, according to

Theorem 3.9, the smallest transparency index that a truncate module with an 8-bit ZD could have

is 0.996, regardless o f Xf l ’s size. Figure 3.23 shows the lower bound on maximum transparency

index as a function of |ZD| for Z D sizes up to 8 bits. Note that truncate modules with only a 4-bit

(l / n) 2 (N2 - n N)

n 2 - n

Therefore, lim O pacity (B ^ N) = 1 / n 2 . Finally,
a; v *

lim Trans (7) = 1 - Y (1 /n 2 1 - 1/ n □

106

can propagate at least 90% of the discrepancies that appear at their inputs.

In summary, even when there is a very large difference between the size of the input and

output buses, the fraction o f discrepancies that can be propagated can still be very high. This fact

can be understood in the following way. Consider a discrepancy [vD, v D') to be propagated

through a module with a maximum transparency transmission function 7. There arc at most

[N/n~\ - 1 values for vD' , such that (v^, vD') cannot be propagated, since there are at most

TN/n~\ elements in each block of 7. However, there arc at least (n - 1) {[_N/nJ) other values

for vD‘ such that (vD, vD') can be propagated, since there arc at least { « - I) (LW /hJ) other

values in blocks that do not contain v^. No matter how many values conflict with vD , there arc

more that do not, and the ratio of conflicting to non-conflicting values clearly depends on the num­

ber of blocks. This implies that partially transparent propagation modes arc likely to be very suc­

cessful at propagating TR even though they may fail to propagate all possible discrepancies.

3.4. Sequential Transparency

In the general definition of transmission functions, modules arc controlled by sequences of

inputs at X c . Control sequences Vc = [v j , ve2, l o n g e r than one timcstcp were studied

by Marhdfcr [66], but were not integrated into a formal theory of propagation, as we have done in

Sections 3.1 and 3.2. Multi-step propagation is determined by intersecting incomparable transmis­

sion functions. The intersection o f two transmission functions 7j and 72 is always at least as

transparent as either 7 1 or 72 . For parallel connections, this fact is summarized in Table 3.1 as

Property 7. Intersecting 7 (and 72 is equivalent to applying the two functions in sequence (Theo­

rem 3.1). For a single module M, and 72 are defined by their control sequences SC] and SC2

respectively, that is, 7 (= 7 (S C]) and 72 = T (S C2) , where 7 is the transmission function for

M. This implies that if 73 = 7, n 72 then the control sequence for 73 is the juxtaposition of SC1

and Sc 2 , that is [Sc p Sc 2] .

Definition 3.12: Let M be a module with input data bus XD, input control busX c , and output data

bus Z p , and let T (S C) be a transmission function for M such that 7 (£ c) = 0. If k = |Sc j , then

M is said to be k-transparent. Wc usually only refer to a module as ^--transparent if Jt > 1.

107

;J ZD=sum[3..1]

Figure 3.24. Three-bit adder module with input data bus XD as addend, input control bus X c
as augend, and output data bus ZD = sum[3..1].

For example, consider the adder in Figure 3.24 one final time. For this module,

T ([0]) - { (0 , 1;0), (2 ,3 ;1) , (4 ,5 :2) , (6 ,7 ;3)>

r U l]) = { (0 ;0) , (1 ,2 ;1) , (3 ,4 ;2) , (5 ,6 ;3), (7;4) >

T ([0, I]) = T ([0]) n r ([l]) - { (0 ; [0, 0]) , (1; [0, 1]) , (2 ; [1, 1]) ,

(3 ;f 1 ,2]) , (4; [2, 2]) , (5 ; [2, 3]) , (6 ; [3, 3]) . (7 ; [3 ,4 J) > = 0

Therefore, the adder is 2-transparent. Since it is not transparent for any control sequence of length

1, it is not 1-transparent.
LyJ

If a module is A-transparcnt, it is also (£+1)-transparent if k < 2 - 1 . We are usually

interested in the minimum value o f k. We can derive a lower bound on k which is tight in the sense

that useful circuits can be constructed which meet it.

Theorem 3,10: Let M be a module with input data bus XD , input control bus X c , and output data

bus ZD ‘ Let T (Sc) be a transmission function such that Sc = [i’j, \>2, ..., v^] is the shortest

sequence fo r which T (Sc) = 0 . Then m ax [1, |"|Xi)| / |Z £)|"j] is a tight lower bound on k.

Proof: Let n be the embedded partition in T { S C) , and let 71. = T tv .) , l < / < J t . Then,

k = Tty n ji2 n ... n n k . Assume that |XDj > jZ ^ . In order for k to be minimum, every intersec­

tion must yield the maximum number o f new blocks. In this case, n 7i | = [jiJ x jrt | . Further-
|Z I

more, each n. must have the maximum number of blocks, 2 . Therefore, for minimum Jt,

T (Sc) = 0 implies that

Y l 2 |Zoi = 21*”1
i - 1

ADDER

108

Thus, 2 ^ = 2̂ which means that fc> |'|X £l| / |Z D|"|, since if |X0 | is not divisible by |ZD|,

an extra control step will be required. If |XD| < |ZD| , then the minimum value for k is 1, therefore,

the lower bound on k is m ax [1, |'jXD|/ |Z /)| ' j] . □

This theorem succinctly captures the requirement mentioned above that < [ZD| in

order for a module to be 1-transparent. A module M can also be O-transparcnt if |XD| < |ZD| , and

X c => 0 . Intuitively, this means that if M is not O-transparcnt, then buses connected to it must

meet a fundamental requirement stated in the following corollary to Theorem 3.10.

Corollary 3.3: Let M be a module with input data bus Xp , input control data bus X c , and output

data bus ZD. I f M is not O-transparent, then |XC| > log2 (p|XD|/ |Z D|~j) .

In other words, M 's control bus must be big enough so that the minimum number of control values

can be applied.

Recall from the discussion in Subsection 3.2.2 that the truncate module 6 (PROCR_12) in

Divfilt (Figure 3.18) blocks propagation through the boxed subcircuit. PROCR_12 truncates the

12-bit output of the subtracter PROCR_14 to one bit. According to Theorem 3.10, the shortest

control sequence that can propagate all discrepancies through a module with ■= 12 and

|Z/:)j = 1 has length 12. Of course, PROCR_12 has no natural control input that can be used for

propagation. Additional inputs shown in Figure 3.18 rcllcct parameters used by the synthesis tool.

PROCR_12 can be modified to improve propagation, we discussed in the next chapter. Alterna­

tively, we can treat modules 5 and 6 as a single module: a subtracter with only the most significant

bit (borrow) used as output. Such a module is 2 11 -transparent. All possible values must be applied

sequentially to X c to propagate all discrepancies from XD to ZD . Thus, circuits can have transpar­

ent modes of operation that arc totally impractical.

Next, we consider the combination of modules in scries when the minimum-lcngth control

sequence is longer than one. The control sequences of the individual modules on the propagation

path must be modified to form a control sequence for the entire path. This fact is summarized in

the following theorem.

109

0011 0101

C l C2

D l ‘D1 D l ■D2
Propagate 0: 0000
Propagate 1: 1111

0000
0011

0000
0001

Figure 3.25. Two 2-transparcnt modules connected in scries.

Theorem 3.11: Let and M 2 be modules whose minimum-length control sequences have length

k j and k 2, respectively. Then the minimum length o f a control sequence fo r the series combination

o f M j and M 2 is k^k2.

Proof: To propagate a single vector vD2 through M 2 , it must be held constant for k2 timcstcps.

Therefore, each control value vC] assigned to X c l must be repeated for at least k2 steps. Since

there are at least k] o f these, each value i*i)1 at X Dl will take at least k yk2 steps to propagate

through the scries combination. □

The circuit in Figure 3.25 shows two ^-transparent modules arc connected in series. Both

M j and M 2 could be 3-bit adders with the three most significant bits of the sum forming ZD , as in

Figure 3.24. The sensitizing propagation mode for each module is [0,1]. Note that in Figure 3.25,

each timestcp of the sequence Vc l applied to X c l is repeated k 2 = 2 times, and that the entire

sequence Vc2 = [0 ,1] applied to X c2 is repeated fcj = 2 times. The 2-transparent transmission

function for and M 2 is:

T([0, 1]) = { (0; [0 ,0]) , (1; [0, I]) , (2; [1, 1]) , (3; [1, 2]) ,

(4; [2, 2]) , (5; [2, 3]) , (6 ; [3 ,3]) , (7 ; [3 ,4]) }

This transmission function must be converted to two 4-transparcnt forms:

r , = { (0 ; [0 ,0 , 0 ,0]) , (1; [0 ,0 , 1, 1]) , (2; [I, 1, 1, 1]) , (3 ;[1 , 1 ,2 ,2]) ,

(4; [2, 2, 2, 2]) , (5; [2, 2, 3, 3]) , (6 ; [3, 3, 3, 3]) , (7; [3, 3, 4, 4]) >

and

T2 = { (0 ; [0 ,0 , 0 ,0]) , (1; [0, 1,0 , 1]) , (2; [1, 1, 1, 1]) , (3; [1 ,2 , 1 ,2]) ,

(4; [2, 2, 2, 2]) , (5; [2, 3, 2, 3]) , (6 ; [3, 3, 3, 3]) , (7; [3, 4, 3, 4]) >

110

for modules M , and M 2 , respectively. The resultant transmission function is:

T {°T2 = { (0 ; [0 ,0 ,0 ,0]) , (I ; [0 ,0 ,0 , 1]) , (2 ;[0 , 1 ,0 , 1]) , (3 ;[0 , 1, 1 ,1]) ,
(4 ;[1,1, 1 ,1]) , (5 ;[1 , 1, 1 ,2]) , (6 ;[1, 2, 1, 2]) , (7 ;[1,2, 2 ,2]) >

As in the ease of serially connected modules, the combination o f /.'-transparent modules in

parallel docs have an effect on the propagation modes. In order to satisfy the requirements of the

parallel connection operation, the number o f timcsteps for all modules must be the same. Thus the

length o f all control sequences must be normalized. The only constraint is that all elements of the

new sensitizing sequence appear in the original order. For example, suppose that module M has

sensitizing sequence Vc = [0 ,1 ,2] . Both sequences Vc l = [0 ,0 , 1 ,2] and

VC2 = [0, 1, 1, 2, 2] arc equivalent to Vc in their ability to sensitize M since both preserve the

order of the values.

The length of the shortest normalized control sequence is the least common multiple of the

lengths o f the individual control modes. As an example, let T [and T2 be ambiguity sets for mod­

ules M j and A/2 , each o f which has a single-bit output. Let

Tj ([0, 1]) « {{0 , l ; [0 ,0]) , < 2 ,3 ;[0 , 1]) , (4 ,5 ; [1 ,0]) , (6 ,7 ;[1 , 1])>

T2 ([1 ,2 ,3 J) = { (0 ; [0 ,0 , 0]) , (1, 2; [0, 0, 1]) , (3 , 4; [0, 1 ,0]) ,

(5 ,6 ; [0 , 1, 1]) , (7; [1, 0 ,0]) } .

Then

7 y ([0 ,0 ,0 , 1, 1, 1]) = { (0 , 1; [0, 0 ,0 ,0 , 0 ,0]) , (2, 3; [0 ,0 ,0 , 1, 1, 1]) ,

(4 ,5 ; [1, 1, 1 ,0 ,0 ,0]) , (6,7 ; [1, 1, 1, I, 1, 1]) }

r 2' ([1, 1 ,2 ,2 ,3 ,3 1) = { (0 ; [0, 0, 0, 0, 0, 0]) , (1, 2 ; [0,0 , 0, 0, 1, 1]) ,

(3, 4; [0 ,0 , 1, 1 ,0 ,0]) , (5 ,6 : [0 ,0 , I, 1, 1, 1])

(7; 11, 1, 0, 0, 0 , 0]) >.

The parallel combination of T i and T2 is

T ,#7*2 = { (0 ; [0 ,0 ,0 ,0 , 0 ,0]) , (1; [0, 0 ,0 ,0 , 1, 1]) , (2; [0 ,0 ,0 , 2, 3, 3]) ,

(3; [0 ,0 , 1,3, 2, 2]) , (4 ; [2, 2 ,3 , 1 ,0 ,0]) , (5; [2, 2, 3, 1, 1, 1]) ,

(6 ; [2, 2, 3, 3, 3, 3]) , (7 ; [3 ,3 , 2, 2, 2, 2]) >.

I l l

3.5. Summary

In this chapter, we have presented a general theory of propagation through modular bus-

structured circuits. We showed how circuits can be modeled as series and parallel connections of

modules and analyzed using this theory. We applied the theory to analysis of transparency and

demonstrated the analysis on some example circuits. Finally, we identified some of the fundamen­

tal properties and limitations o f transparency in modular circuits. We will discuss some further

applications o f the theory in the next chapter.

The propagation theory formalizes intuitive concepts of information propagation in bus-

structured circuits, such as propagation along parallel, partially transparent paths, so that analysis

of propagation paths in circuits can be automated. This is a necessary step in generating tests for

circuits with an irregular bus structure, which was our goal. We also obtained some novel results.

For example, we showed that even when there is a very large difference between the sizes of the

input and output buses of a module M, the fraction of discrepancies that can be propagated through

M can still be very high. The theory is general enough that other applications for it may also be

possible.

CHAPTER IV

TEST PACKAGE PROPAGATION

In this chapter, we discuss the representation and propagation of test package information.

The theory and methods described here directly address the deficiencies o f PathPtan and other test

generators that use precomputed tests. We also show how to modify circuits to increase their trans­

parency and thereby improve their ability to propagate test packages.

4.1. Symbolic Propagation

As discussed in Chapter II, test packages arc information objects containing test, propaga­

tion and control information for modules and circuits. The basic form of a test package for a M lIT

M is (Ts ;Tr), where Ts is a precomputed test stimulus sequence for Af, and TR is the fault-free

response from M when Ts is applied. Ts is frequently decomposed into spatial vector sequence

components A ,, A 2, ..., A n , that correspond to the natural inputs of the MUT. The central problem

in test generation using precomputed tests is to produce vector sequence signals at the primary

inputs that

Propagate to the inputs o f the MUT and match A p A 2, ..., A fi

• Establish fully or partially transparent propagation paths from the output of the MUT to

primary outputs so that all errors that can be produced by the MUT arc observable.

We want to propagate vector sequences symbolically whenever possible, as we did in PathPlan. A

symbolic vector sequence A can only be propagated by PathPlan from the data input X D to the

data output of module M if the module function implemented by M leaves A unchanged or

inverted at ZD \ PathPlan avoids the creation and manipulation o f more complex expressions of

312

113

Response function

7 s “ G M 2) MUT

2Ai+2
Stimulus
functions

Trunc(O)

Trunc(8..1)ADDER

ADDER

ADDER

in i

inO
MUX

Ctrl

Figure 4.1. Propagating a symbolic test package (TS;TR) through the FItrdp datapath circuit

vector sequence symbols. However, as we saw when testing FItrdp (shown again in Figure 4.1),

this approach is often overly restrictive. Recall from our discussion in Chapter II that PathPlan

cannot simultaneously propagate Ts to module M 6 (the MUT) of FItrdp, and errors through the

multiplexer module M s using T-mode propagation. Nevertheless, if the appropriate signal assign­

ments arc made, M6 can be tested. Let Ts = (Ap A2) and TR *= A x + A 2, so that the fault test

package for M6 is T j = (A p A2;Aj + A2) . A [is required on bus 8 and A 2 on bus 9. If we

assign the symbolic vector sequence expressions A , to buses 1 and 2, A j + 2 to bus 3, and A2 to

bus 9, as shown in Figure 4.1, then the symbolic expression propagated to buses 8 and 9 match Ts ,

and Tr is propagated to the primary output, bus 12.

4.1.1 Symbolic Expressions

To improve upon PathPlan, signals must be propagated as symbolic expressions, as dem­

onstrated in Figure 4.1. These symbolic expressions arc functions composed of individual module

functions; they arc another form of the propagation expressions (PEs) discussed in Chapter III,

where function composition due to circuit structure was written to emphasize its series/parallel

nature. The vector sequence data represented by symbols in a PE constitute its domain. PEs propa­

gated from primary inputs to MUT inputs arc stimulus functions and PEs propagated from the

MUT outputs to any other point in the circuit arc response functions. Stimulus and response func­

tions arc determined by control signals applied to the Xc s o f modules. Different control signals

imply different functions, as shown in Chapter III, and in most eases, if control signals arc unas-

signcd or unknown, the function is undetermined.

114

To successfully instantiate a test package (TS \TR), the coilomains of the stimulus func­

tions must be components of Ts . Often, we can determine whether vector sequence components

A p A)t o f Ts arc propagated to the inputs of the MUT by matching A v A n symbolically to

PEs, as shown in the FItrdp example above. Otherwise, the PEs can be evaluated using vector

sequence data and matched to the components of Ts numerically. This amounts to moving down

the hierarchy to the level o f the individual vectors and bits of the vector sequences. In the FItrdp

example above, let A j and A 2 be given by

0 1 0 1 0 0 11
0 0 11 0 1 0 1
0 1 0 1 0 0 11
0 0 1 1 A- = 0 1 0 1
0 1 0 1 2. 0 0 1 1
0 0 1 1 0 1 0 1
0 1 0 1 0 0 11
0 0 1 1_ 0 1 0 1.

To match Ts numerically, we propagate one vector in one timcstep, that is, one vector per clock

cycle. For example, at timcstep 1 we attempt to propagate the vector 0 to bus 8 to match the first

vector o f A j and at timcstep 2 we attempt to propagate the vector 101010102 to bus 8 to match the

second vector of A t . For FItrdp, we arc able to match PEs symbolically to Ts , despite the fact that

there is no T-modc path from primary inputs to the inputs of the MUT.

As demonstrated by PathPlan, we can sometimes determine symbolically whether all

errors are propagated from the output of the MUT to primary outputs. For example, if a PE at a pri­

mary output is equivalent to TR (I-modc propagation), or is only the logical inverse o f TR (T-

mode propagation), then all errors arc implicitly propagated. However, in many cases wc cannot

tell by analyzing symbolic expressions whether all errors arc propagated from the outputs of the

MUT to primary outputs. Wc will discuss response functions and error propagation further below.

First wc discuss the problem of representing symbolic expressions so that they can be easily

matched to Ts .

4.1.2 Sym bolic E xpression S im plification

As they propagate through a circuit model, PEs grow as a result of module function com­

115

position. In the FItrdp circuit o f Figure 4.1, if PEs arc allowed to grow without modification, then

the output o f module I would be A x + (A x + 2) , and the output o f module M 2 would be

(j4 j + {A j + 2)) / 2 , since truncating the least significant bit of a bus is equivalent to dividing sig­

nal values on the bus by 2. Continuing in this way, the input to module M 6 (the MUT) on bus 8 is

The test package value to be matched at bus 8 is A] . We want to determine symbolically if (4.1) is

equivalent to A j using an algorithm.

To solve this problem, we turn to the field of computer algebra [4, 22 ,74], where mathe­

matical formulas are manipulated symbolically. Maple [38] and Mathcmatica [102] are examples

o f programs that embody these techniques. To manipulate symbolic formulas algorithmically, it is

usually necessary to convert them to a standard or canonical form. Arbitrary formulas arc then

simplified to match the standard form. The simplification algorithms o f a particular computer alge­

bra program like Mathcmatica [102] are among its most fundamental components. Unfortunately,

there is no general agreement on what the standard form should be. However, wc can follow some

typical guidelines to obtain a standard form for symbolic expressions that allow us to symbolically

match PEs to components of Ts [22].

First wc consider the requirements of a canonical symbolic expression; a representation of

a propagation function. Let F be a set of functions and E be a set o f expressions. The elements of

E arc canonical if there is a bijcctivc mapping from F to E t that is, two different expressions in E

always correspond to different functions in F. Wc need to define the set o f functions to be consid­

ered and the corresponding set of canonical expressions, and design a simplification algorithm that

always converts arbitrary expressions representing functions in F to canonical form.

In order to define the set of possible functions F, we consider the types o f module func­

tions used in typical circuits. We consider a restricted set o f module functions first, the arithmetic

functions. Assume that circuits are formed from adders, subtracters, multipliers, and truncate mod­

ules, whose corresponding module functions arc the integer operations; +, - , x, and division by 2"

(truncating n lower order bits is equivalent to division by 2n), respectively. The set F contains the

functions computed at various points in a circuit formed by interconnections of these modules, as

A j + (i4j + 2)

2
2

116

illustrated by FItrdp in Figure 4.1. Wc can define corresponding canonical representations with the

following features:

• All expressions are fully expanded, that is, the distributive law A (B + C) —> AB + AC

cannot be applied to any subexpression to get a new representation

No equivalent terms arc present, that is, no terms with the same set of vector sequence

symbols

No zero terms arc present, that is, no terms with a coefficient o f 0.

The canonical expressions have the same form as multi-variable polynomials with rational coeffi­

cients |22]. Each term o f the expression can contain multiple vcctor-sequencc “variables” as well

as a rational coefficient, in this ease, a fraction with denominator 2 n . A typical “multi-variable” PE

is { 1/ 2) A jA2 + AjA3 , where A {, A2 , and A 3 arc vector sequences and multiplication is repre­

sented by juxtaposition. Two different expressions in this form represent different functions.

Moreover, all expressions that can be created by function composition in the circuits described

above can be converted to this form by the following technique.

Algorithm for creating canonical form s

1. Distribute multiplication over addition A (B + C) AB + A C

2. Collect equivalent terms by adding coefficients

3. Eliminate any resulting zero terms

As an example, expression (4.1) can be simplified as follows:

| [i ((A I + l) + (A j + I H + A j)

= l + \ + i + \ + l Distribute multiplication over addition

- + 5 Add like terms

Individual vectors in a vector sequence arc treated as integers, therefore fractions that do not

reduce to an integer only have meaning as coefficients, and A x + ^ becomes A {. By applying the

steps above, wc have simplified (4.1) to a canonical expression that matches the required test pack­

age component. In Figure 4.1, the simplifications were applied as soon as possible at the output of

each module.

117

In general, PEs in a modular circuit are more complex than in the example above. For

instance, AND, OR, and NOT (word) gates introduce Boolean operations, giving rise to Boolean

expressions. The most common canonical representation for a Boolean function is the sum-of-

mmtcrms or disjunctive normal form [55], Boolean PEs can usually be simplified to reduce the

number of both terms and literals. Most PEs contain a mixture of arithmetic and Boolean opera­

tions, as well as other higher-level operations. Such PEs may not have a canonical form that can be

produced by a fixed set of simplification steps. However, in many eases the basic simplification

steps for arithmetic expressions given above can still be recursively applied to arithmetic subex­

pressions, treating other functions as symbols. Similarly, as a separate step, the Boolean simplifi­

cation operation can be applied to Boolean subexpressions, treating other functions as symbols.

For example, the PE (1 / 2) (((A + 0) v (B a A)) + A) is simplified by the following steps:

I (((A + 0) v < B a A)) + A)

= Q ((A + 0) v (B a A)) + ~A j Distribute multiplication over addition

= (# a A)) + ^A j Eliminate zero terms

1 , 1 .
= ^A + -A Absorption (Boolean simplification)

~ A Add like terms

In this instance, wc are able to reduce a mixed arithmetic/Boolean expression to its simplest form.

More research is needed to formally characterize all of the possible PE functions and to develop

simplification algorithms that guarantee a canonical form. However, by combining arithmetic and

Boolean simplification algorithms hcuristicaily, as shown above, many PEs can be simplified and

matched symbolically to components o f Ts . It is important to note that in all eases, even when PEs

cannot be matched symbolically, they can always be evaluated numerically to check for equiva­

lence as wc showed above for FItrdp.

Finally, wc consider the cost o f symbolic PE manipulation relative to the cost o f propagat­

ing the individual test vectors of 7^ separately to check for numerical equivalence. In symbolic

118

propagation, a large number of test vectors, representing many clock cycles of data, arc concur­

rently processed. This feature is directly exploited by PathPlan. By using simple propagation

modes, it avoids manipulation o f expressions and the corresponding processing costs. The various

simplification steps mentioned above add to the computation time required for signal propagation.

The cost is low if expressions are small, as in the FItrdp example. Since PEs grow as a result of

function composition, the longer the propagation path, the longer they can grow. PEs can be kept

small if they arc only propagated through a few modules, or if they can be simplified to a few sym­

bols at the output o f each module, never having a chance to grow large.

There is no bound on the size of expressions that can ultimately be simplified and success­

fully matched symbolically to a component o f Ts . For example, suppose that the output of a sub­

tracter module is connected to input o f a MUT M, and suppose that A j is the component o f Ts

required at X [. Let E y is an arbitrarily long expression being propagated in the circuit containing

M. If A { + Ej and E x arc two inputs to the subtracter, then the output value (vector sequence) of

the subtracter is A^ + E l - E { = A { , which matches the required signal for X { . On the other

hand, the cost o f propagating E x and simplifying it at the output o f each module on a propagation

path to Xj may be excessive, and negate the advantage o f symbolic propagation. Therefore, the

sizes of PEs that a test generator propagates symbolically should to be bounded in order to control

cost. When expressions containing more than a fixed number of terms and symbols arc created, the

test generator can revert to evaluating stimulus functions to propagate individual test vectors

numerically. In general, symbolic propagation and matching will be cost-effective when PEs rep­

resenting stimulus functions arc short and vectors sequences long. This will be the case for circuits

composed of very large modules and regular buses, e.g., microprocessors in a microcontroller.

4.2. Hierarchical Error Propagation

Error propagation along transparent paths can sometimes be analyzed by simply checking

the form of symbolic PEs. This is easy when errors arc propagated along I-mode or T-modc paths

as in PathPlan. Wc can also use the symbolic techniques discussed in Chapter HI to identify eases

where a combination of partially transparent paths may be combined to form a fully transparent

distributed path. However, for a given fault model, the errors produced by a particular MUT arc

119

sometimes propagated along only partially transparent single or distributed paths. In these cases,

successful error propagation depends on the types o f errors to be propagated—it cannot be deter­

mined simply by analyzing the form of the symbolic PEs, the functions they represent must be

evaluated.

In this section, we present a hierarchical method of error propagation. At the lowest level

o f abstraction, response functions arc evaluated in a special way for the set of errors that can

appear at the output of the MUT. This detailed method allows us to determine when rill errors arc

successfully propagated through irregular circuits, but it is still more efficient than propagating

individual single-bit errors as in classical test generation. At the highest level of abstraction,

response functions with special properties arc represented symbolically and propagated along

transparent paths in a circuit model using high-level module functions. This abstract method

allows us to efficiently propagate errors along all types of transparent paths, not just T-modc paths.

4,2.1 Response Sets

To analyze test response propagation in circuits with irregular buses, wc can evaluate

response functions for the set of values in their domain. Let { (7 ^ , r in>*

(TR t TR j) > be the set of test response discrepancies to be propagated, where TRj is the response

of the MUT to Ts when some fault i is active. For a given fault model, the set of all possible vec­

tors that can appear in TR or any TR ., that is, the domain o f the response function, is called the

response set. An element o f the response set can be a correct response, a faulty response, or a cor­

rect response to some vectors in Ts and a faulty response to others.

Consider the two-input, 4-bit multiplexer shown in Figure 4.2b, which is constructed from

four single-bit multiplexers (Figure 4.2a). Assuming that the SSL fault model is used, the test stim­

ulus vector ctrl = 0, in0[3..0J = 15, and ini[3..0] = 0, produces the response set

- {0 ,7 , II , 13, 14, 15}. (4.2)

The correct response is out = 15; the other responses arc due to SSL faults propagated to each indi­

vidual output bit, as well as a stuck-at-1 fault on ctrl. Since there is no fanout within this module

except for ctrl, all faults on lines other than ctrl produce independent errors at the output.

It can easily be shown that the test package

120

inO
out

ini

MUX

Ctrl

(a) Basic cell: two-input, single-bit multiplexer

out[0]

out[1]

out[2]

out[3]

inO

ini
MUX out

Ctrl

ini

inO
MUX out

Ctrl

inO

ini
MUX out

Ctrl

inO

ini
MUX out

Ctrl

Ctrl

(b) Four basic cells combined to form a two-input, 4-bit multiplexer

Figure 4.2. Implementation of a two-input, 4-bit multiplexer: (a) basic cell, and (b) four basic
cells combined to form the multiplexer.

121

f r- -i \
0 1 0 1
15 15 0 0 ;[i5 0 0
0 0 15 15

detects all SSL faults in the multiplexer. The first row o f Ts corresponds to input data bus Ctrl, the

second row corresponds to inO, and the third row corresponds to in i. The response set for this test

package is

Q r = {0, 1, 2, 4, 7, 8, 11, 13, 14, 15} (4.3)

While 0 is an error response to the first vector, it is the correct response to the third vector.

The size o f is only 10, while the number o f SSL faults is 48. Therefore, evaluating the

response function for QR is more efficient in this ease than propagating individual single-bit errors

due to faults. For most modules, errors produce the same response for a given test sequence Ts . In

addition, the size of the response set is bounded by the size o f the bus at the output of the MUT, but

often depends on the length of Ts rather than the size of the output bus or the number of faults in

the MUT. For example, if wc construct a two-input, 8-bit multiplexer from single-bit, multiplexers

a test stimulus sequence similar to the one for the 4-bit multiplexer (four vectors) produces a

response set of size 18. The module has 96 possible faults and 256 possible outputs.

4.2,2 Evaluating Response Functions

Next wc show how to analyze error propagation by evaluating the response function,

denoted /*fl, for the vectors in the response set. As an illustration, let the MUT be the multiplexer

shown in Figure 4.2b, and let the module M connected to its output be a modulo 16 incrcmcnter.

That is, V{ Zp) - V { X p) + 1 (mod 16) . The response set is given by (4.3); therefore, the

response function evaluated is

Response 0 1 2 4 7 8 11 13 14 15

PR 1 2 3 5 8 9 12 14 15 0

Assume that the response function from the output of a MUT to some other point Z in a

circuit containing the MUT is always represented as a propagation function of the form defined in

Chapter III. Let ClR be the MUT’s response set; then PR - { (a / .p ^ } , 1 < f < n , where is

the set of elements of Q R that produce the same output P(. at Z, and {ctj, a 2, a ;t> is a parti-

122

7V TR=Ay1S 1 MUT
1 0 ADDER

a/3

0 ADDER
A/,

Tmnc(8..1)
M2

Trunc(O)
M4

MUX(A [, A [/2, A |/2 + 1)

A,/2

Tninc(8..1)j~4
Ms

A J 2+1
ADDER

MUX

Pm = { (0 ;0),(l;l) ,(5 ;5),(6 ;6)}
Pr i “ P ^ P a “ {(0 ,6;0), (1,5; 1)}

(5.6;2)>

^ « ii - / y / W - <(0.1; 1). (5,6;3)>
^ 1 2 = (P30I>4 ^ 3 aP 5 ^ 0P5°^60f }i r ^ - <(0;0)t (1;I), (5;3), (6;2)> = 0

<0,1,5,6}
A] = [0 5]

Figure 4.3. Response functions evaluated at various points on the propagation path to the
output in FItrdp. PRi denotes the response function on bus /.

tion of Qw. Continuing the example above, we represent the fully evaluated response function at

the output o f the incrcmcnter as

R { (0 ;1), (1;2), (2 ;3), (3 ;4) . (4 ;5) , (5 ;6), (7 ;8),

(8 ;9), (10; 11), (11 ;12), (12 ; I3) , (13;14), (14;15), (15;0) > = 0 (4.4)

In some eases, wc can determine from the form of the response function whether all test

response errors arc distinguished at Z. If two elements o f the response set, v (and v2, arc con-

taincd in the same block of the response function, they cannot be distinguished. On the other hand,

if only one element of the response function is in each block, that is, if PR = 0 as in (4.4), then

clearly all errors arc distinguished. In this ease, the circuit from the output of the MUT to Z is said

to be transparent relative to the response set.

Figure 4.3 shows response functions evaluated at various points in FItrdp for error propa­

gation analysis. Each bus in the schematic is identified by a number below it; the output of the

MUT is bus 1. The evaluated response function for each bus / is denoted PR r and is listed below

the schematic, together with the associated PE for bus i in the series-parallel form presented in

Chapter III. As usual, P. is the propagation function of module M .. Above each bus in the sche­

matic is a simplified symbolic expression in the form described above (Subsection 4.1.1). The test

123

package (TS;TR) is successfully instantiated at the MUT and TR is the vector sequence [0 5],

denoted by the symbol A }. The response set - {0, 1 ,5 ,6 } contains two faulty values, 1 and

6, as well as the two correct values, 0 and 5, which appear in different vectors (timcstcps) of

t r = a v

Although several response functions arc greater than 0, the response function PR]2 at the

output (bus 12) is congruent to 0. Wc have shown here that FItrdp is transparent relative to f l /(.

Recall that in Chapter III, wc could not show that the path from bus I to bus 12 was fully transpar­

ent because, due to rcconvcrgent fanout, the proof required explicit evaluation o f series and paral-
17lel connection operations for transmission functions with 2 - 131,072 elements. However,

response functions arc usually much smaller than transmission functions. In general, it is much

easier to show relative transparency than full transparency.

Figure 4.3 also demonstrates how fully evaluated response functions can be propagated in

a circuit model as composite signal values. Note first that the response function at the output of the

MUT is always 0. In FItrdp, PRX = {(0;0), (1; I), (5;5), (6 ;6)} = 0. The response function at the

output of any other module Mi on the propagation path is computed by applying the module func­

tion for to response functions at its inputs. Let PR = { (ct -ip^.)} be a response function at the

input to module M .. The module function for M. is used to compute a new value of P . for each

block of PR . For instance, the response function PR)(= {(0,1; 1), (5,6;3)> at the output bus 11 of

module A/ 6 in FItrdp is computed from the response function PR8 = {(0,1 ;0), (5,6;2)> on bus 8 by

adding 1 to each Pr If the updated values P, and p̂ . for two blocks (a ^ .) and (a . ; p .) arc the

same, then the blocks arc combined to form (a ,.u c c ^ p .) . For example, when PRl = {(0;0),

(1 ;I), (5;5), (6;6)} is propagated through the truncate module M s , the result is {(0;0), (1;0), (5;2),

(6;2)>, which is rewritten as PR?i = {(0,1;0), (5,6;2)>.

When Tr is propagated along two or more paths to a point of rcconvcrgencc, such as

module Mg in Figure 4.3, then the response functions of these paths arc combined by the parallel

connection operation. Therefore, PR1, PRg , and PRll in Figure 4.3 arc combined to form

W /J/fti " { (0; (0 ,0 , I)) , (1; (1 ,0 , 1)) , (5; (1, 2 , 3)) , (6 ; (0, 2, 3)) > (4.5)

The individual components of each p. in (4,5) arc then applied to their corresponding buses to

compute the response function at the output of the multiplexer. For example, block 1 of (4.5) is

124

(0;(0V0,I)), therefore, pj = (0 , 0 , 1) . The first component 0 o f p j corresponds to the control

input o f Mg (bus 7). The second component 0 corresponds to the inO input of Mg (bus 8), and the

third component corresponds to the in 1 input o f JVfg (bus 11). Therefore, this block is propagated

to the output of module Af8 , the primary output of the circuit, as (0;0).

Wc have achieved our goal o f developing an error propagation technique for irregular

buses. Wc can analyze error propagation along a distributed propagation path, at least for the case

where the distributed path is transparent relative to the response set of the MUT. Previously

reported test generators such as PathPlan and ARTEST [58] cannot analyze such distributed prop­

agation paths. These test generators can only propagate errors over fully transparent single (not

distributed) propagation paths, that is, paths whose transmission function is congruent to zero.

4.2.3 Error Propagation Analysis

Next, wc show how to analyze test response error propagation when the (possibly distrib­

uted) propagation path is not transparent relative to the response set of the MUT. Let PR be a

response function on response set Q R from the output of the MUT to some point Z in a circuit. All

the test response errors for a particular MUT can often still be propagated, even if PR > 0 . For

instance, if two elements Vj and \>2 in arc both correct or both faulty, it docs not matter

whether they arc combined in the same block and therefore indistinguishable. Whereas, previously

wc have been analyzing eases where all possible pairs o f responses must be distinguished, here we

are concerned with distinguishing discrepancies o f the form (v, vc) , v, t,c e Q R, where v is a cor­

rect response and \>c is a error response due to faults in a particular MUT exposed by some vector

in Ts , All errors produced by the MUT can be propagated to Z if all discrepancies of the form

(v, vc) can be distinguished at Z.

If the test stimulus sequence Ts consists of only one vector, then there is only one correct

response v. All errors exposed by Ts are propagated to Z if v is not combined in one block of PR

with any other response vc in the response set. The requirement that the correct response v be sep­

arated from faulty responses in PR is called the propagation condition.

If Ts consists o f more than one vector, then the corresponding response set for the MUT is

the union of the response sets for each vector in Ts . Any element of the response set can be a cor­

rect response, a faulty response, or a correct response to some vectors in Ts and a faulty response

125

mm.% m u x outo — t—
4

; in i iiiiiiiiiiiyiiMiiiPi)
MUT

Figure 4.4. Four-bit 2-input multiplexer connected to a module detecting all-zxro and all-oncs
vectors (M2).

to others. As wc showed above, the test package

(T s ‘Tr)

/
0 1 0 1

\

15 15 0 0 ;[is o o is]
V. _0 0 15 !5_ j

detects all SSL faults in the 4-bit multiplexer o f Figure 4.2b. Let £lRj be the response set of vector

i in Ts , then £2W1 is given by equation (4.2); £2Ri ■= (0.7.11.13.14.15). Similarly, Q ^ 2 -

{0,1.2,4,8,15}, £2R3 = 0,It2, and = £2Rj. The correct response in each set is underlined.

The union of these response sets, £2^ - {0,1,2,4,7,8,11,13,14,15}, is the response set for Ts .

The order of a response set is the number of test vectors in the corresponding test stimulus

Ts . Response sets £2fl/, 1 < i < 4 , given above arc first-order response sets and £2fi has order 4.

Note that there is often considerable overlap between first-order response sets, therefore it is much

simpler to evaluate the response function for the combined response set than for each individual

first-order response set. Let PR be the response function at some point Z in the circuit being tested.

All errors exposed by Ts are propagated to Z if the propagation condition is met for all the first-

order response sets corresponding to the individual vectors in Ts .

Suppose that the 4-bit multiplexer o f Figure 4.2b is part of the circuit shown in Figure 4.4.

The output of module M 2 is 102 if its input is the all-0 vector, 0 I2 if its input is the all-1 s vector,

and 002 otherwise. Therefore, the response function for the test package given above is PR <=

{(0;2), (1,2,4,7,8,11,13,14;0), (15; 1)>. Clearly, module M 2 is not transparent, or even transparent

126

Timeframe ;0

Ts Tr
1 • » * MUT

Timeframe tQ+m

F{TR)
H • • • MUT

Figure 4.5. Test response T„ propagated through MUT in timeframes later than when T - is
applied.

relative to . However, it docs meet the propagation condition for vectors 1 and 4 in Ts since 15

is not combined with any other response. It also meets the propagation condition for vectors 2 and

3 in Ts , since 0 is not combined with any other response. Therefore, all errors arc propagated to

the output of M 2 .

As discussed in Chapter II, if the MUT is on a global feedback path, then TR may have to

be propagated through the MUT in timeframes later than when Ts is applied to the inputs of the

MUT. The faults in the MUT may affect the propagation of errors produced when the MUT is

tested in timeframe t0 The situation is illustrated in Figure 4.5, which depicts a test package

(TS;TR) successfully instantiated at the MUT at timeframe /0 , and a symbolic expression

F (TR) containing TR propagated to the input of the MUT in timeframe t0 + m. The response

function at the output of the MUT is PR. To analyze error propagation in this ease, the test genera­

tor must have detailed knowledge o f the faulty behavior of the MUT. Each fault/), 1 < i < k, in the

MUT can alter its function and lead to a different response function at its output in timeframe

r0 + m. Let p R r i < ; < k, be the response function associated with fault /), and let PRQ be the

fault-free response function. This is depicted in Figure 4.5. As an example, suppose that for a

given Ts , the MUT has two first-order response sets = {0,1 > and QR2 = {5,6} leading to an

order-2 response set = <0,1,5,6}. At the output of the MUT in timeframe t0 + m , let PRQ =

<(0;1), (1;2), (5;6), (6;7)} be the fault-free response function, PRl = {0,1; 1), (5;4), (6;5)} be the

response function due to fault I, and PR2 = {(0;1), (1,5;2), (6;3)} be the response function due to

fault 2,

To determine whether all errors arc propagated, all PRjs must be analyzed to determine if

they satisfy the propagation condition. If so, then all errors are propagated. On the other hand, if

the propagation condition is not met in the fault-free response function PR0, then some errors arc

127

not propagated. If the propagation condition is satisfied by PR0, but not by some of the faulty ver­

sions, then further analysis is required. In the example above, the propagation condition is defi­

nitely met by PRQ since it is transparent relative to Q R . The propagation condition is also met by

PR2, but not by P Rl since responses 0 and 1 arc contained in the same block. Wc must analyze

P Rl further as follows. If fault / , causes the correct response 0 to become 1 in Q R , then the error

(0,1) is not propagated. However, if fault / , docs not cause this error (and perhaps others), then all

errors arc propagated through the MUT. This analysis requires detailed fault models for the MUT,

and is necessary if propagation through the MUT cannot be avoided. However, such detailed mod­

els of modules to be tested arc often unavailable when precomputed testing is used.

In summary, test response propagation in irregular bus-structured circuits can be analyzed

by evaluating response functions for the response set of the MUT when 7^, is applied. This method

satisfies our goal of analyzing such circuits. For large modules, the response set is usually small

relative to the total number o f single-bit errors that must be propagated using low (gate-) level

methods. The response set for a MUT with an n-bit output bus is also usually small relative to the

total number o f possible errors for an n-bit bus. Therefore, fully transparent propagation paths arc

rarely needed, although they simplify analysis when they exist.

The response functions are represented for analysis as pairs of the form (a .;p .) ,

1 < i < n , where {ctj, a 2, a j(} is a partition of the response set and [i; is the output o f the

response function for the subset They can be computed by propagating them as complex sig­

nals in a circuit model. If a response function PR is congruent to zero, then the propagation path

represented by PR is transparent relative to the response set and all errors arc propagated. This

case is easy to analyze. On the other hand, if PR > 0 , then the possible errors may still be propa­

gated, however wc must analyze them according to the propagation condition, that is, the require­

ment that all correct responses arc in separate blocks of PR from faulty responses. Finally, wc can

analyze whether test response errors arc propagated through the MUT in timeframes other than

when Ts is applied by evaluating several response functions corresponding to faulty versions of

the MUT. However, this analysis requires a detailed fault model for the MUT, which may not be

available. Analysis of error propagation using response functions is implemented in our test gener­

ation tool MATStni, discussed in Chapter V. Next, wc discuss propagation in regular or nearly rcg-

128

ular circuits.

4.2.4 Symbolic Error Propagation

Although error propagation in complex bus-structured circuits can be analyzed by evaluat­

ing response functions, in many cases such detailed analysis is unnecessary. In addition, for some

modules, the data necessary to construct response sets may be unavailable. Since most standard

datapath modules arc fully transparent for some modes o f operation (see Table 3.2), most non-

transparency is due to bus truncation or random logic blocks. When a circuit contains only regular

buses and no random logic blocks, such as the Encode circuit in Figure 2.2, a more abstract

method o f error propagation analysis can be used. Even in FItrdp, where irregular buses do exist,

there arc some transparent paths. This fact is exploited by PathPlan and ARTEST. However, there

are many transparent propagation paths that arc not T-modc paths, so they cannot be analyzed by

PathPlan, and ARTEST uses an ad hoc method o f error propagation that requires mixing abstrac­

tion levels. In this subsection, we discuss hierarchical representations o f response functions as

symbolic signal values and show how module functions can be systematically constructed to prop­

agate these symbols.

Symbolic Types. Wc will now assign symbols to various groups o f propagation functions to clas­

sify them at a very high level. For example, all transmission functions with the same transparency

index might be placed in a single group identified by a “type” symbol. For purposes of error prop­

agation in test generation, we are interested in symbolic representations of response functions. Let

R be the symbol associated with all response functions PR such that PR = 0 . For example, if the

bus X D connected to the output of the MUT is 2 bits wide, then R contains all response functions

o f the form {{(0;0), (1;1), (2;2), (3;3)>, {(0;0), (1; 1), (2;2)>, ...}. In other words, R contains all

fully transparent response functions as well as all possible response functions that arc transparent

relative to some smaller set c {V (X D) > . Let Z be a bus on the propagation path from the

output of the MUT. If the response function at Z has type R, then all possible errors can be

observed at Z; the path to Z is transparent.

Similarly, let C be the symbol associated with the set of all response functions PR such

that 0 < PR < 1. For example, if the bus X D connected to the output of the MUT is 2 bits wide,

then C contains all response functions o f the form {{(0, 1;0), (2;2), (3;3)}, {(0;0), (1,2; 1), (3;3)},

129

i MUT

Figure 4.6. Use of symbolic values lo represent propagation functions.

...}. If a bus Z on the propagation path from the output of the MUT has a response function o f type

C, then wc cannot determine whether all test response errors exposed by Ts arc propagated to Z

without analyzing the fully evaluated form of the response function as described above.

Since stimulus functions that propagate Ts do not carry errors, wc classify them sepa­

rately; let S be the symbol associated with any stimulus function. Finally, both stimulus and

response functions may be undetermined in some circuit states; in these eases, no information is

propagated. Let X be the symbol associated with any propagation function P such that P = I . The

four symbols X, S, R, and C represent our basic set of propagation function types that arc useful

for testing using precomputed tests.

Figure 4.6 illustrates the use of symbolic type to represent propagation functions for test­

ing with precomputed tests. In this figure, the test package is successfully instantiated at

a MUT. Symbolic expressions of vector sequences arc propagated to the inputs o f the MUT and

matched to Ts . The test response TR is produced at the output of the MUT and propagated

through a module M with function F as a symbolic expression denoted F (T R) . These symbolic

expressions represent propagation functions. Below each bus is the symbol that represents the

type. The stimulus function that matches Ts has type S. The response function at the output o f the

MUT has type R. However, the output data bus of M is smaller than its input data bus X D \ M

is not transparent. Therefore, the type o f the response function at the output of M is C.

Symbolic Signals. X, S, R, and C can also be defined using P-scts and U-scts as symbolic signal

values representing the information that can be propagated by the corresponding response function

type. For example, let Z be a bus on the propagation path from the output o f the M UT and let P R

be the response function at Z. Then R is the symbolic signal value representing the set o f discrep­

ancies <(0,{1,2,3}, (1,<0,2,3}), (2,{0,1,3}), (3,{0,1,2})}, where the first element o f each pair is a

130

Symbol Definition Interpretation Two-bit example

X Unknown signal {({0 , 1,2,3},{0, 1,2,3})}

S {<Vj,V.),V|.6 v ny Stimulus signal {(0,0), (1,1), (2,2), (3,3)}

R UJ1 Response signal {(0,{1,2,3», (1,{0,2,3»,
(2,{0,1,3}), (3,{0,1,2})}

C { (v., V) , V . G V }V \ J , n J Corrupted signal {(0, {0,1,2,3}), (1,{0,1,2,3 » ,
(2,{0,1,2,3}), (3,{0,1,2,3})}

Tabic 4.1 Definitions and examples of the elements o f R4.

vector propagated to Z in a correctly working circuit and the second element is the set of possible

values propagated to Z in a faulty circuit. If PR has type R, then all these discrepancies can be

propagated to Z; the two definitions for R arc therefore equivalent. In general, let

Vn = {0, 1, . . . , 2H - 1} be the set of all possible vectors that may be applied to an «-bit bus Z,

then R - { (v., VB - v(.) , e V J .

Similarly, S can be defined as the set { (v., v(.), i\ e Vn} . In this ease, if S is propagated

to a bus Z, then Z has the same value in a faulty circuit as it docs in a correctly working circuit,

since stimulus functions do not propagate errors. X can be defined as { (V , V) } which indi­

cates that the value of a bus could be any value in cither the correct or the faulty circuit, that is no

information is propagated. Finally, C can be defined as { (v., V), e Vw} , which indicates that

while the value o f a bus in the good circuit is known exactly, the value in the faulty circuit is

unknown. In other words, wc cannot tell whether errors are propagated. Wc refer to the set

{X.S.R.C} as R4. Table 4.1 summarizes the interpretation o f R 4 as a set o f symbolic signal values,

and displays an example of each value for 2-bit buses.

We can also define less abstract symbolic signal values than S and R. For instance, con­

sider the set of signals on a 2-bit bus. Let

RL° = < (0 , { 1 ,3 }) , (1, { 0 ,2 }) , (2, { 1 ,3 }) , (3, { 0 ,2 })}

and

HI
R - { (0 , { 2 ,3 }) , (I , { 2 ,3 }) , {2, { 0, 1}) , (3, {0, 1})}

RL° and RHI arc both contained in R, and together, they contain all possible discrepancies. They

131

form a complete set of less abstract symbolic error values than R. Now, R L° is not blocked by a
HI

truncate module A/(that removes the most significant bit of a 2-bit bus and R is not blocked by

a truncate module M 2 that removes the least significant bit of a two-bit bus. However, R is

blocked by both M x and M 2 ■ Therefore, there is a useful hierarchy o f symbolic signal values with

R 4 at the top and fully evaluated response functions at the bottom. Less abstract values arc used

when greater precision is required, and more abstract values arc used when greater efficiency is

desired. By refining R into some less abstract values, error information can be propagated through

circuits with a small number of truncated buses.

Signal Value A lgebras. Symbolic signal values can be propagated through a circuit model using

high-level module functions. Together the functions and signal value set form a symbolic signal

value algebra. Lee and Patel introduced a symbolic signal-valuc (type) algebra in [58], Their types

arc constructed in ad hoc fashion, and as a result, the associated module functions cannot be rigor­

ously derived from basic operations on the underlying signal sets. The module functions arc imple­

mented using rule-based methods, which arc often inefficient and difficult to prove correct.

Moreover, some module functions cannot be closed for the given type set and consequently the

algebra is not well-defined. By treating symbolic response function types as symbolic signal val­

ues using P-scts and U-scts, and using the operation extension methods we presented in Chapter II,

wc can easily construct well-defined and useful algebras based on R A.

We will illustrate the construction of module functions using the addition operation,

denoted ADD. Some examples o f the operation applied to elements of R 4 are as follows:

1. ADD(X,X) = AD D ({v. + , for all /, j >, { v. + i>., for all /, j }) = X, assuming + is closed

and onto for v. + v..

2. ADD(S, S) = { (v. + vf v, + Vj) , for all /, j } = { (vjt, = I , . . . ,* } = S

3. ADD(S, R) = (v(. + Vj, { v(. + v^}) = R, for all i , j and h such that v}i ? Vj, since { v. + v/(}

cannot contain v . + ik if (v. + vp) z (+ v) for all p q .

Note that ADD(Rt R) = { v(. + { vf) + vk} } = C, for all i, j , /t, k t such that v(vfi and v . ^ vA.

Thus adding two response signals results in a corrupted output— the algebra is extremely pessimis­

tic about the propagation o f errors. As previously noted, R is blocked (becomes C) whenever a

132

ADD X s R C

X X X X X

S X s R C

R X R C C

C X C C c
Table 4.2 The ADD operation and R4.

AND X s R c
X X X X X
s X s R c
R X R IS I S w & i

C X c m i i I C
Table 4 3 The AND operation and B4.

module function is not transparent, despite the fact that many specific discrepancies may still be

propagatcd.Table 4.2 shows the ADD operation table for R4 obtained by combining all pairs of

elements in R4 , as we did above for ADD(X, X), ADD(S, S), and ADD{ S, R). Finally, note that

all subsets of R a containing X, but not containing the error signal value R, arc closed subalgcbras

of (R4 ,ADD). In particular, the smallest closed algebra is based on the singleton set {X}. Algebras

based on {X, S}, {X, C>, and {X, S, C> arc also dosed.

In many eases, we can develop a very efficient implementation for the high-level module

functions by properly encoding the symbolic values as vectors of Boolean values. There is no

guarantee that a good encoding will be found, however—it depends on the underlying algebra. To

determine a good encoding, one strategy is to look for similarities with other algebras that already

have good encodings. The ADD module function for R 4 is very similar to the AND operation for a

four-element Boolean algebra # 4 . Table 4.3 shows the AND function table for the four element

Boolean algebra. Here the elements o f the algebra have been assigned symbols from R 4 . X is the

7.cro element and S is the unit element in Table 4.3. R and C are intermediate values. Tables 4.2

and 4.3 arc identical except for the elements shaded in Table 4.3. Therefore, we define an encoding

133

MUT
7>=At

ADDER

ADDER Trunc(8..1)
M2

Trunc(O)
M4

MUX(A,, Aj/2, A (/2 + l)

A ,12

Tninc(8.,l)|-4
Ms

A . / 2+1
ADDER

MUX

/> * ,= R
Pr I ° C Aj = [0 5]

^flii = C
P R \2 " C

Figure 4.7. Response functions represented as symbolic signal values on a propagation path to
the output of Fltrdp. PRi denotes the response function at bus i.

for R 4 by slightly modifying the standard encoding for the four element Boolean algebra B A to aid

in handling the differences between (/?4 , ADD) and (# 4 , AND), B A requires only two bits. X is

encoded as 002 , S is 112 , R can be 012 , and C can be 102 . AND is then computed using logical

AND (a) for individual bits independently (word-wise AND). For R 4 , we first encode the underly­

ing sets: V —> 002 . v. —> 112 , and (VH - v.) —»012 . Next we concatenate the codewords of each

element in a pair. This implies that X - 00002 , S = 11112 , R = 11012 , and C ° 11002 . The

output of the ADD module function can be computed by taking the word-wise AND of the inputs,

and treating the ease where cither input is R separately. This can be easily programmed as follows.

2
3
4
5
6
7

ADD(input / , , r2; symbolic signal values)
{

our
if ('0„/ = = R * < S 't v t 2 = = R)

= C'
rc tu rn(tOHt);

Figure 4.7 shows response functions represented as symbolic signal values at points along

a propagation path from the output o f the MUT to the primary output in Fltrdp. As in Figure 4.3,

each bus in the schematic is identified by a number below it; the output of the MUT is bus 1. Here

134

the response functions for each bus i is denoted PRi and is listed below the schematic together

with the associated symbolic signal value. PEs not listed arc assumed to be stimulus functions with

the corresponding symbolic signal value S. Above each bus in the schematic is a simplified sym­

bolic expression in the canonical form described in Subsection 4.1.2 The test package (TS;TR) is

successfully instantiated at the MUT and TR is the vector sequence [0 5], denoted by the symbol

A , . Note that R is propagated through the adder (module M 3) but is immediately corrupted by the

two truncate modules M 4 and M 5 . Thus error propagation at this level of abstraction is more pes­

simistic than the analysis shown in Figure 4.3.

Although, R 4 is sufficient to correctly represent the propagation of error signals through

the set of modules in Fltrdp, R cannot be propagated through other typical module functions. For

instance, R cannot be propagated through any input of an AND gate, regardless of the other input.

To address this issue, we add some less abstract values to R 4 in order to propagate R through data­

path modules other than adders. Let 0 ;| be the n-bit all-0 vector, that is, {(0,0)}, let 1;(be the u-bit

all-1 vector, that is, { (2 ,f - 1, 2n - 1)} , and let S be the same as S without 0^ and 1h , that is

S = S - {0n, 1;)> . We will construct an algebra from the set {ADD, SUBTRACT, MULTIPLY,

AND, OR, NOT, XO R} of module functions, and the set / i4 + {0/jt l j(, S> of signal values. We

call this signal set /?7 ; it has the property that it is closed for all o f the above operations and R

appears as an output in all functions, that is, R is propagated when the function is transparent.

Consider the function tables for AND, MULTIPLY, ADDiSUBTRACTiXOR, and OR,

shown in Tables 4.4-4.7. These tables were constructed using the algebra extension techniques

developed above for (R 4,ADD). Note that when inputs arc elements of R 4 = {X, S, R, C}, R docs

not appear as an output in any of these tables. By adding S , R can be propagated through the

MULTIPLY function, since MULTIPLY(§ , R) = R. Similarly, l j(is needed to propagate R

through the AND function, and 0 ;) is needed to propagate R through the OR function.

In each function in Tables 4.4-4.7, a subfunction consisting o f four symbols is enclosed in

a box. In the function table for ADDiSUBTRACTiXOR (Table 4.4) and the table for MULTIPLY

(Table 4.5), the behavior of the set R 4 = {X, S , R, C) is exactly the same. Therefore, we can

implement a single module subfunction for k 4 and {ADD,SUBTRACTJOR,MULTIPLY), and

construct module functions ADD, SUBTRACT, XOR, and MULTIPLY for f?7 by treating the clc-

135

AND X s R c s
X X X X X X °n X

§ X s c c s 0
It

s

R X c c c c R

C X c c c c 0 n C
S X s c c s 0

n
s

0 0 0 0 0 0 0 0
f t 11 n It n n n n

1 X s R c s 0 1n II n
Table 4.4 Function table for the AND operation.

MULTIPLY X § R c s 011 1
i t

X X X X X X 0
n

X

S X s R c s s
R X R C c c 0

It
R

C X c C c c C

s X s C c s 0n s
0n 0

II
0

I t
0

i t

K X § R c s 0n
Table 4.5 Function table for the MULTIPLY operation.

mcnts of Ry - R4 as special cases. Similarly, since the behavior o f R4 in the tables for AND

(Tabic 4.6) and OR (Thble 4.7) is the same, we can implement a single module function for k 4 and

{AND,OR}, and construct module functions AND and OR for Ry by treating the elements of

R7 - R4 as special cases in each function.

To implement the algebra R y , wc begin by encoding the elements of Ry as we did for /?4 ,

namely, X => 00002 , S = 11112 , R = 1I012 , and C >= I1002 . For R y, wc encode the ele­

ments of the subset R 4 similarly, but add an extra 0 bit, thus: X = 000002 , S = 011112 ,

R = 011012 ,a n d C = 0 1 1002 . For the elements of R y - k 4 , we set the most significant bit to 1.

136

ADD X s R C s 0n 1«

X X X X X X X X

§ X § R C s s s
R X R C C R R R

C X c C c C C c
S X s R c s S s
0n X s R c s 0n 1II
1n X s R c s 1n s

Tabic 4.6 Function tabic for the ADD, SUBTRACT, and XOR operations.

OR X s R c s n

X X X X X X X
I f

s X s C c s s
f t

R X c C c c R
I t

C X c C c c c
t l

s X s C c s s
I t

0
t t

X s R c s 0
tl I t

K 1n K K K f t

Table 4.7 Function table for the OR operation.

Wc encode 1 n as all 1 s, that is, 1 n = 111112 , 0 as all Os except for the most significant bit, that

is, 0 ;| = 100002 . Finally, S is encoded as 100012 .

Algorithms for implementing {ADD,SUBTRACT^OR,MULTIPLY} for k A and

{AND,OR) for R4 appear in Figure 4.8. As in the module function ADD for R 4 , ^ and t2 arc the

encoded versions o f the symbolic signal values. Sample algorithms for implementing the module

functions arc given in Figures 4.9 and 4.10. Figure 4.9 shows the module function for ADD. Eval­

uations functions for MULT and XOR are similar. Figure 4.10 shows the module function for AND.

The module function for OR is similar.

137

1 {ADD,SUBTRACTXOR,MULTIPLY}{ input t r t2 : symbolic signal value)
2 {

4 i t (t = = R < fi . f i / v / 2 = = R)

5 *oui ~ C , ‘

6 returnf /);
7 V

1 {AND,OR}(input t l , t2 :symbolic signal value)
2 {
3 if </j = = R) f 1 = C ;
4 if (f2 == R) #2 — C,-
5 fout ° U A t 2'
6 rcturn(t);
7 }

Figure 4.8. Algorithms for subfunctions {ADD,SUBTRACT,XOR,MULTIPLY) and
{AND,OR}.

1 ADD(input f j , t2 .'symbolic signal value)
2 <
3 /* Convert . 0 and S to § and compute subfunction *f

4 if (r , a 10000) r , ' - S ;
5 e lsefj" = t]t-
6 if </2 a 10000) r2' = S ;
7 c lse /2' = r2;
8
9 f = {ADD,SUBTRACT,XOR,MULTIPLYK *,'• V);
10
11 /* Special cases *1
12 if((f0(„ = = S)<£<£(/, a S = = S I I / 2 a S == S)) tout = S;
13

14 :f <'. = = ° „ > u , = v
15 i f (/2 0n) t oul - ' 2 -
16
17 == ^ == “ S.*
18
19 rc tu rn f to u t);
20 >

Figure 4.9. ADD module function for R7.

ARTEST’s E rro r Value Set. Now let us analyze a similar set of symbolic signal values used for

propagating error information: the “ typing” scheme given in [58] for the test generator ARTEST

that wc discussed in Chapter II. The set o f signal values used by ARTEST is summarized in

Table 4.8, which repeats Table 2.2. The functions associated with this set are not discussed in [58],

138

E rro r signal Symbol Interpretation

(X,X) X Unassigned

(X,V) CF Constant faulty

(X,U) VF Variable faulty

(V,X) CG Constant good

(V.V) C Constant good and gaulty

(V .V) CGCFE Constant good and constant faulty effect

(V,U) CGVF Constant good and variable faulty

(W) CGVFE Constant good and variable faulty effect

Tabic 4.8 The set of symbolic error signals or “types” used in ARTEST [58].

1 AND(input / , , t2 :symbolic signal value)

2 <
3 /* Convert I n , and S to S and compute subfunction *t
4 if (f , = = S) t l ' - S ;
5 e ls e / , ' *= / , ;
6 i f (/2 == S) t2' - S ;
7 e lse /2' = /2 ;
8
9 toul = {AlVD,OJl}(tl' , r2');
10
11 return(/);
12 >

Figure 4.10. AM) module function for R7.

and as mentioned earlier, arc ad hoc.

Although the ARTEST type set contains several more values than R 4 , there arc few prac­

tical differences in its ability to represent abstract values. ARTEST was designed to support fault

propagation from the output of a MUT, where the faulty value is not known, but is known to be

faulty (denoted U ’). This technique is used by ARTEST to generate tests for datapath circuits. It is

assumed in [58] that datapaths arc controlled by control units which arc tested by a separate algo­

rithm. The interface between datapath and control circuits is assumed to be neither directly con­

trollable nor observable (e.g., by a scan chain). The control unit is tested by a conventional (low-

level) test generation algorithm, and faults that arc propagated to the interface are injected into the

139

datapath circuit and propagated by the datapath test generation algorithm. The faulty values

injected in this way are known, and are denoted V \ Thus, test response data generated at the out­

put of a MUT is assigned type CGVFE and test response data injected from the control unit inter­

face is assigned type CGCFE.

Since there is no apparent difference between "unknown” and "unassigncd,” U is equiva­

lent to X. In this ease, X and VF arc equivalent to X in R4 and CG and CGVF arc equivalent to C

in R 4 . The type C in ARTEST is equivalent to S in R 4 , and type CGVFE is equivalent to R in R4 .

Only ARTEST types CF and CGCFE are unique to ARTEST. Type CF is an unassigncd fault site,

and its use is not clear. CGCFE is not an abstract value, rather it is a name given to the class of all

possible low-level faults. That is, CGCFE = { (v., vp > , where v. * v I n this ease, knowledge

of both correct and faulty values is required for propagation through modules. Since each element

of CGCFE is not individually named, both correct and faulty values must be computed, implying

that the class is superfluous.

Wc conclude that the ARTEST type set is roughly equivalent to R4 in its ability to propa­

gate error information. As wc showed above, the level of abstraction represented by R4 is

extremely pessimistic and is insufficient to propagate signals through many module functions. The

less abstract signal values added to R 1 arc needed to propagate R through MULTIPLY, AND, and

OR. Since R is blocked for MULTIPLY, AND , and OR, propagation o f CGVFE will likewise be

blocked for these module functions. To propagate R through these modules, ARTEST must per­

form a more detailed, low-level analysis for error propagation; the method for this is not discussed

in [58],

4.3. Design for Transparency

In many circuits, error information is unavoidably lost as TR is propagated from the out­

put of the MUT to primary outputs. In this ease, an alternate test package with a slightly different

response set can sometimes be used to test the MUT. Often however, the constraints imposed by

the propagation path block the alternatives as well. This is the case when only part of the function

computed by a subcircuit M is used in the larger circuit containing M. In Fltrdp (Figure 4.1), for

instance, truncate module M 2 is used to divide the output of module M , by two. When module

140

ZD=sum [3..1]

Figure 4.11. Three-bit adder module with input data bus XD as addend, input control bus Xc
as augend, and output data bus ZD = sum[3..1].

My is the MUT, some test response errors are blocked by module M 2 regardless of which test

package wc use. As discussed in Chapter II, the faults producing errors that cannot be propagated

arc redundant in these circuits, but since the test has been precomputed, wc may not be able to sep­

arate detectable faults from redundant faults in TR. Therefore, we want to increase transparency to

improve testability. In this section, wc present some examples of how the propagation theory of

Chapter III can be applied to increase transparency.

One technique for designing circuits that can easily propagate TR, is to route test points to

primary outputs, perhaps through multiplexers [83], Another technique is to use a hierarchical

form of scan or boundary scan to ensure adequate observability [9]. These techniques lead to high

routing overhead and highly constrained design styles. Both approaches provide additional paths

for routing TR, An alternative approach is to modify modules on the normal data paths of the cir­

cuit to make them more transparent, that is, to synthesize transparent modules. Some examples of

places where specially designed transparent modules might be useful arc: points of rcconvcrgcnce

as in Fltrdp (module A/g) and Divfilt (module 8 in Figure 3.18), truncate modules, and decoders

and random logic modules where |XD| > |ZC| .

Let M be a module with |XD| > [Z^]. Then M cannot be designed to be 1-transparent. Our

method is to synthesize a module M ' to replace M, where M ’ has two modes of operation: normal

mode, where M' behaves as M, and test mode where M ’ is Jt-transparent. Before discussing some

methods for synthesizing M \ wc consider modules that are naturally /.'-transparent. As discussed in

Section 3.4., the adder module in Figure 4.11 is transparent for the sequence S (X C) = [0, 1] .

The combination of adder module My in Fltrdp (Figure 4.1) with truncate module M 2 produces an

8-bit version of the adder similar to the 3-bit adder in Figure 4.11 (the least significant bit is trun-

ADDER

141

RECV2
<11> mi i y r 1 d c p d c PROCR 25 PROCR 26

<“ >MUX <?1>-5 <12>.CONCAT <12>,FREAD

O t > H
M*> M i

O
REGR 4
<11> PROCR _14

<11>,MINUS

11

M-,

PROCR 12
<12>£READ

PROCR_30
<12>,FREAD

Af<

PROCR 1
<1>,0R

Figure 4.12, Smalldp, a datapath subcircuit of Divfilt.

inO

ini
out

in2
MUX

in3
Ctrl

LD

* c

Figure 4.13. Pass-through multiplexer, an example o f an optimal ^'-transparent module.

catcd from the sum). It can easily be shown that this combination is also transparent for

S (Xc) = [0, 1] . Now consider the subcircuit of Divfilt (Figure 3.18) shown in Figure 4.12. As

discussed in Section 3.4, the combination of modules M 5 and A/& is 2 *1 -transparent, therefore,

even in eases where a module is naturally A-transparent, the required control sequence length may

be impractical and modifications to improve transparency become attractive.

The multiplexer shown in Figure 4.13 is an example of a A-transparent module where A is

Malways minimum, that is, A =

transparent module since its on

(sec Theorem 3.10). In a sense, this module is an optimal A-

y function is to propagate information on XD to Z D, |Zp j bits at a

142

time. Wc ctm use this module as a fc-transparcnt replacement for truncate modules. In normal

mode, information is transferred from one input, e.g. inO, to ZD . In test mode, all inputs arc

selected in sequence. We refer to a multiplexer used as a /.'-transparent replacement for truncation

as a pass-through multiplexer. The pass-through multiplexer can be used in place of truncate mod­

ule M 6 to improve the transparency o f Divfilt. In this case, test response errors can be propagated

through module M 6 in 12 steps. This is a considerable reduction in test time compared with the

2 11 steps required to propagate through the subtracter and truncate module together using the nat­

ural ^-transparency of the combination. However, the multiplexer requires 36, two-input gates,

causing a gate count overhead o f about 20% (there are about 148 gates in the original circuit).

Thus there is a timc-space trade-off associated with k -transparent design.

Pass-through multiplexers provide an effective method for dealing with non-transparency

caused by truncate modules. However, we arc also interested in systematic methods for modifying

arbitrary combinational modules. Recall from the discussion in Chapter III that /.--transparency is

determined for a module M by intersecting k transmission functions for M, each associated with a

different control value. If the resulting transmission function is congruent to zero, then M is k-

transparcnt. For example, for the adder in Figure 4.11,

n [0]) = { (0 , 1;0), (2 ,3 ;1) , (4 ,5 ;2) , (6 ,7 ;3)>

T ([l]) = { (0 ;0) , (I , 2 ; l) , (3 ,4 :2) , (5 ,6 ;3) , (7 ;4)>

T ([0 , I]) = T([0]) n T { [l]) = { (0; [0, 0]) , <1;[0, 1]) , (2 ;[1 , 1]),

(3; [1, 2]) , (4; [2, 2]) , (5; [2, 3]) , (6 ; [3 ,3]) , (7 ; [3 ,4]) } = 0

The general procedure for synthesizing /-transparent replacement modules consists o f the

following steps

1. Identify data bus ports X D and Z D from the propagation paths of the circuit containing the

original module

2. Identify k transmission functions whose intersection is congruent to zero

3. Identify a control bus port X c in X - X D , and add one bit to act as a switch to change from

normal mode to test mode

4. Assign control values to each transmission function

Figure 4.14. Construction of orthogonal transmission function T2.

5. Synthesize the module

Wc want to minimize k , so each intersection should produce the maximum number of new blocks,

as discussed in the proof o f Theorem 3.10. This requires a special set of transmission functions.

Definition 4.1: Let T t and T2 be transmission functions for a module M with m and n blocks,

respectively. Then T x and T2 are orthogonal if there is no transmission function T3 for M with m

blocks such that 7’3 n 7 ’I < 7 ’1 n r 2 , and no transmission function TA for M with n blocks such

that T, n 7’4 < T 1 pi 7*2 .

Note that if T, n T2 = 0 , then and T2 arc also complements, but that they can be orthogonal

without being complements.

The transmission function associated with each control value for a pass-through multi­

plexer is orthogonal to the transmission function for the other control values. In addition, for any

transmission function wc can easily construct an orthogonal transmission function T2 with n

blocks by distributing the contents of each block of Tl among the n blocks of T2. For example, let

= {(0,6;0), (1,2,4; 1), (3.7;2), (5;3)}. Then wc can create a transmission function T2 =

{(0,I,4,3,5;0), (6,2,7;1)> with two blocks as shown in Figure 4.14. In this case, Tj n T2 =

{(0;(0 ,0)>, (1,4;(1,0)), (2;(1.1)), (3;(2,0)), (7;(2,1)), (5;(3,0))>.

We intersect orthogonal transmission functions to design A’-transparcnt modules with min­

imum control sequence length k. The next theorem formalizes the requirement, and follows

directly from the definition o f orthogonality and the proof of Theorem 3.10.

Theorem 4.1: Let TQ > 0 be a transmission function for a module M with input data bus X ^ , input

control bus X c , and output data bus ZD . Let T v T2, . . . , 7 '^ 3 be a set o f transmission functions
Isuch that T0 n T l n . . . n T fc_ l =0 . Then k is minimum i f and only iffo r all i > 1, 7\ has 2 u

blocks and is orthogonal to ... n T . _

144

The sequence length k in Theorem 4.1 depends on the initial transmission function TQ. If T0 is a

cy tn

1*D

|Z J
maximum-transparcncy transmission function with 2 blocks, then k is optimal. Otherwise, k

may be greater than " , but will still be minimum for the given TQ.
IZ D

Wc have developed two specific methods for obtaining a set o f k orthogonal transmission

functions to make a module /.'-transparent: the orthogonal transmission function (OTF) method

and the embedded multiplexer (EM) method. Using the OTF method, we first obtain an initial

transmission function T[t for a module M by identifying a “natural” transmission function for M

based on its normal function. Alternatively, wc can select an arbitrary maximum-transparcncy
lz*>ltransmission function with 2 blocks. Orthogonal transmission functions are then constructed to

intersect with TQ as discussed above.

Figure 4.15 demonstrates how a module with a ('-transparent test mode can be specified

for synthesis using the OTF method In this figure, wc show a block symbol for a random logic

module dee 1.1 together with a definition for the module written in the Verilog hardware descrip­

tion language. The module d cc l.l has a 6-bit data bus input ha (XD), a test mode input tm (XC X

and a 3-bit data bus output ta (Z D). The minimum control sequence length that can make d cc l.l

transparent is 6/3 = 2.

Module definitions of the kind in Figure 4.15 serve as input to a number of logic synthesis

programs that automatically construct gate-level models and map the gates and interconnections to

a physical implementation. The input and output ports arc specified at the top of the HDL descrip­

tion (lines 3-5). The always statement beginning on line 8 specifics that this is a definition of a

combinational module. When the test mode input is 0, d cc l.l executes its normal mode function.

This function is specified by a transmission function in the form of a case statement in the Verilog

description (lines 10-19). Each line in the case statement specifics a set o f inputs at ha that pro­

duce a specific output at ta, that is, a block o f the transmission function. For instance, the first

block specifics that ha inputs 1 ,4 ,1 0 ,4 0 ,4 2 ,5 8 ,5 9 , and 61 produce the ta output 0. When the test

mode input tm is 1, the module executes an orthogonal transmission function. Note that every ele­

ment o f a single block in the transmission function for the normal mode is in a different block in

the orthogonal transmission function. Only two transmission functions arc required for transpar­

ency, thus the lower bound is met for dee 1. 1.

145

1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
16
17
18
19

module dccl.l (tm, ha, ta);

input [6:0] ha;
input tm;) I/O ports
output [2:0] ta;
rcg [2:0] ta;

always begin @(ha)
if (tm == 0)

ease (ha)
1,4,10,40,42,58,59,61: ta = 0; ■+
5,6,9,25,28,32,53,55: ta - 1;
2,11,19,31,38,57,39,43: ta = 2;
8,15,30,37,49,50,51,56: ta = 3;
13,29,33,34,48,44,45,47: ta « 4;
3,12,14,16,20,21,22,35: ta = 5;
17,18,23,24,26,41,63,52: ta - 6;
7,27,36,46,60,62,54,0: ta = 7;

cndcasc

tm

•f—► ha dccl.l

-block

Transmission function
representing normal mode

20 else if (tm == 1)
ease (ha)

1,5,2,8,13,3,17,7: t a - 0 ;
4,6,11,15,29,12,18,27: ta - 1;
10,9,19,30,33,14,23,36: t a - 2 ;
40,25,31,37,34,16,24,46: ta - 3
42,28,38,49,48,20,26,60: ta - 4
58,32,57,50,44,21,41,62: ta - 5
59,53,39,51,45,22,63,54: ta - 6
61,55,43,56,47,35,52,0: ta *= 7;

cndcasc

Orthogonal transmission
function for test mode

21
22
23
24
25
26
27
28
29
30
31
32 end
33
34 cndmodulc

Figure 4.15. Orthogonal transmission function (OTF) method applied to random logic block.

The second, EM, method combines the definition of the normal function for a module M

with the definition o f a pass-through multiplexer. This method is illustrated in Figure 4.16, where

we show the definition in Verilog and block symbol for the module dee 1.2. The normal mode for

this module has the same function as dec 1.1 shown in Figure 4.15, but the fc-transparcnt test mode

is implemented using the EM method. This method requires an extra bit in XQ for dee 1.2. The first

bit is the test mode switch tm as in dec 1. 1. If tm is 0, then the module implements the normal

mode function. If tm is 1, then the test mode is selected. If tc is 0, then bits 3 through 5 of ha arc

146

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

module dec 1.2 (tm, tc, ha, ta);

input [6:0] ha;
input tm;
input tc;
output [2:0] ta;
reg [2:0] ta;

I/O ports

tm tc

/ - ► h a dec 1.2

Transmission function
representing normal mode

always begin @(ha)
if (tm - - 0)

case(ha)
1,4,10,40,42,58,59,61: ta = 0;
5,6,9,25,28,32,53,55: ta = t;
2,11,19,31,38,57,39,43: ta = 2;
8,15,30,37,49,50,51,56: ta = 3;
13,29,33,34,48,44,45,47: ta = 4;
3,12,14,16,20,21,22,35: ta = 5;
17,18,23,24,26,41,63,52: ta - 6;
7,27,36,46,60,62,54,0: ta - 7;

cndcasc
else if (tm == 1)

begin
i f (tc ■=■=■ 0)

ta = ha[5:3];
else if (tc = 1)

ta=*ha[2:0];
end

end

cndmodulc

Figure 4.16. Embedded multiplexer (EM) method applied to random logic block.

Definition of pass-through
multiplexer

propagated to the output ta; if tc is 1, then bits 0 through 2 of ha arc propagated to the output ta.

The if statement in lines 23-26 implements the pass-through multiplexer.

Some synthesis results for dccl.l and d cc l.2 are summarized in Table 4.9, together with

gate counts for the versions o f the 11-bit ripplc-carry subtracter used in Divfilt and discussed

above. Clearly, modifying a module to include a A-transparent test mode can significantly increase

its size. The Finesse automatic logic synthesis program from Cascade Design Automation [27] was

used to obtain the results for d cc l.l and d cc l.2 using the standard parameters of the program; no

effort was made to minimize the overhead—we arc only interested in the relative performance of

the OTF and EM methods. Note that the function performed in normal mode by dee 1.1 and dee 1.2

147

Module
Design

strategy

G ate count
in basic
module

G ate count
in modified

module

11-bit ripplc-
carry subtracter

ad hoc 55 91

d cc l.l OTF 52 98

d c c l.2 EM 52 68

Tabic 4.9 Summary o f synthesis results for /.'-transparent modules.

is a maximum transparency transmission function. Wc take advantage of this fact for d c c l. 1, so wc

only add the function required to implement one orthogonal transmission function. Despite this,

dee 1.1 is considerably larger than dee 1.2 , which uses a complete pass-through multiplexer for the

test mode function. Apparently, for d c c l .l , few gates can be reused as part of the test mode func­

tion, therefore, the EM method is better since the pass-through multiplexer is very efficient for

implementing /.-transparency. The OTF method may be better when more gates can be reused to

implement the orthogonal function. The two methods may also be combined; this has the potential

to improve overall efficiency.

In spite of the fact that /.-transparent replacement modules are often much larger than

unmodified modules, the overall increase in the size of a circuit that incorporates the modules can

be very low. Recall that the Smalldp datapath in Figure 4.12 is transparent from the primary input

REC V2 to the inputs of module A/g , the OR gate, but that rcconvcrgcncc at the OR gate blocks the

transparent path. In Figure 4.17, we show a 2-transparcnt replacement module for the OR gate.

This module was designed by the OTF method. Here T2 acts as the test mode switch, and T l tog­

gles between two orthogonal transmission functions. The Jt-transparcnt replacement module

increases the gate count of the entire circuit by only 2%.

Another application for orthogonal transmission functions is to construct partially trans­

parent modules. As discussed earlier, it may not be necessary to synthesize a completely transpar­

ent module in order to improve transparency enough to allow propagation of specific response

functions. The synthesis of partially transparent modules is an important topic for further research.

148

T2 T1

RECV2
< 11> PROCR_25 PROCR_26

<12>,CONCAT <12>,FREADMUXR_1 REGFL5
<11>,MUX <11>

REGR_4
< 11> PR0CR_14

<11>,MINUS PROCR_12
<12>.FREAD

PROCRJ30
<12>,FREAD

Figure 4.17. Smalldp with ^-transparent replacement for module Af8,

4.4. Summary

In this chapter, wc analyzed the hierarchical propagation of test package information. A

test stimulus sequence Ts is represented as a vector sequence and we want to propagate it symbol­

ically whenever possible (high-level propagation of stimulus signals), as in PathPlon. In many

eases, symbolic vector sequences must be propagated as expressions representing the composition

o f module functions in order to justify Ts . To match symbolic expressions propagated to the input

of the MUT to components o f 7's , the expressions must be simplified to a canonical form. If test

package data cannot be propagated symbolically, the vectors that make up the vector sequences

can be propagated individually and matched numerically to the vectors in Ts (lower-level propa­

gation of stimulus signals).

Expressions propagated in a circuit represent functions. The functions applied to the

inputs of the MUT arc called stimulus functions. The functions propagated from the output of the

MUT to some other point Z in a circuit arc called response functions. In some eases, response

functions can be analyzed symbolically to determine if all test response errors arc propagated.

However, when TR is only propagated along partially transparent paths, we must evaluate the

response functions for the set of values, good and faulty, that can appear at the output of the MUT

149

when Ts is successfully instantiated (low-level propagation of errors). The fully evaluated form of

these response functions is considered to be a propagation function of the kind wc discussed in

Chapter III. If a response function PR is congruent to zero, then all pairs of values that can be gen­

erated by faults in the MUT arc propagated— including all errors. If PR > 0 , then all errors may

still be propagated if the good value for timestcp t in Ts never occupies the same block in PR as a

faulty value for timestcp r. This requirement is called the propagation condition.

Response functions can be represented symbolically and propagated using high-level

module functions (high-level propagation o f errors). We assigned symbolic type names to groups

of response functions. The same names are used for the corresponding set of symbolic signal val­

ues that represent the information type propagated by the response functions. For example, the

type R represents all transparent and partially transparent response functions, and the correspond­

ing symbolic signal value R represents the set of all possible discrepancies.

Since error propagation is blocked by non-transparent modules in some eases, we arc

interested in methods for increasing transparency to improve testability. Wc have shown examples

o f how this can be done by modifying modules to have a ^-transparent test mode. Wc presented

two methods for modifying modules: the OTF method and the EM method. In the OTF method,

wc identify orthogonal transmission functions whose intersection is congruent to zero and synthe­

size a module with a test mode that implements the orthogonal transmission functions. The EM

method adds the function of a pass-through multiplexer to the module function. The EM method is

more efficient unless the orthogonal transmission functions can reuse most of the normal function

of the module.

The techniques described in this chapter directly address the required modifications to

PathPkm discussed in Chapter II. Propagation o f symbolic expressions removes the T-modc

restriction of PathPlan. Analysis of response functions can be used to deal with circuits containing

an irregular bus structure. The propagation methods described in this chapter arc implemented in

our test generation tools described in Chapter V.

CHAPTER V

TEST GENERATION AND SIMULATION

This chapter describes the design of two new test-processing programs MATSim and

PathPlan2, that use precomputed tests for modules. These tools extend PathPUin and address its

limitations discussed in Chapter II, but arc not based directly on it. MATSim is a novel simulator

that implements the test package propagation methods discussed in Chapter IV. PathPlan2 is a test

generator that uses MATSim to propagate signals.

The relationship between MATSim and PathPIan2 is shown in Figure 5.1. PathPlan2 gen­

erates stimulus signals to apply to the primary inputs of a circuit to be tested. MATSim simulates a

circuit for a given set of inputs, generates reports on the circuit state, and analyzes error propaga­

tion. It propagates test package information at multiple levels o f abstraction. Vector sequences

used by MATSim as stimulus signals at the primary inputs, and response vector sequences propa­

gated by MATSim to primary outputs form a circuit test package, which can be converted to a stan­

dard test program by expanding vector sequences in a straightforward way.

5.1. Multiple-Abstraction Test Package Simulation

The Multiple-Abstraction Test Package Simulator {MATSim) is an event-driven simulator

similar to a fault simulator. It has two principle characteristics. First, it analyzes primary input

sequences to determine whether a given test package T P { => (TS‘,TR) is instantiated at the current

MUT, and whether all test response errors (TR, TRi) arc propagated to a primary output, an activ­

ity wc call test package simulation. Second, it is a “multiple-abstraction” simulator, which means

that events from several different abstraction levels can be processed together. For example, at a

150

151

MATSim

Circuit
test package

Test Vector
G enerator

Test program

Figure 5.1. Relationship o f MATSim to PathPlan

particular time instance, the simulator may be processing signals consisting o f symbolic cxprcs-

sions, integers, and Boolean constants. It uses the hierarchical error propagation analysis method

discussed in Chapter IV to determine if all test response errors arc successfully propagated to pri­

mary outputs and tabulates test coverage, that is, the number of test vectors successfully applied

from each Ts , rather than fault coverage. Conventional fault simulators propagate error signals,

but link the errors directly to faults rather than to successfully instantiated test packages.

MATSim supports a variety of module primitives, including adders, multiplexers, and typ­

ical gate-level primitives such as AND, OR, and NOT. Gate-level modules may be word gates or

single-bit gates. Future versions of MATSim will support user-defined functional modules; how­

ever, all functions must be decomposed into primitive functions, since the hierarchical signal value

sets, discussed in Chapter IV, are designed for a fixed set of module functions.

Abstraction and hierarchy have been used in fault simulation previously [77, 81, 89, 88].

The Multiple Abstraction Rule-Based Simulator (MARS) developed by Singh [89] propagates

fault-free signals at several levels of abstraction. Module functions arc implemented by rules

stored in a database. However, only gate-level error signals arc processed by MARS. The CHIEFS

concurrent, hierarchical fault simulator [77] also uses separate functional and structural models for

each module in the structural hierarchy. When the inputs to a module M in CHIEFS arc updated, a

functional model is used to produce new outputs for M. As in MARS, only gate-level error signals

arc processed. CHIEFS traverses the hierarchy o f structural models within M down to the gate

level to update fault lists. Other hierarchical fault simulators such as CHAMP are concerned with

152

coverage o f switch-level faults [81], These fault simulators also do not process error signals more

abstract than those due to SSL faults. Finally, Lee has implemented an architectural-level fault

simulator ARSIM to speed up simulation for hierarchical circuits with precomputed tests for mod­

ules [88], However, ARSIM docs not propagate signals at multiple levels o f abstraction. It propa­

gates the set of symbolic error signal values discussed earlier for ARTEST [58], and relics on

lower-level fault simulators to analyze fault coverage when these symbolic signals are blocked by

non-transparent modules.

5.1.1 D im en sio n s o f A b s tra c tio n

As wc saw in Chapter I, a large number of test generation tools use hierarchy in an attempt

to speed up test generation. Each tool exploits a different view o f circuit hierarchy to gain perfor­

mance advantages. However, hierarchy and abstraction in circuit design, while widely used, arc

poorly quantified. There is no standard method for using hierarchy in design, and therefore no

optimal way to exploit it in test generation. Although most modem CAD tools allow circuits struc­

ture to be captured hierarchically, not all tools support the use o f behavioral models for higher-

level modules. In order to describe the hierarchy of abstractions that MATSim can exploit, wc have

developed a multidimensional view of the abstraction hierarchy relevant to test generation. It is

illustrated in Figure 5.2 by a Y-chart similar to that used by Gajski [37] to define relevant dimen­

sions o f abstraction in layout synthesis.

The three axes of the Y-chart arc labeled information, time, and function. Abstraction in

the information dimension ranges from bits to words to multi-word packets (vector sequences).

The time dimension ranges from gate delays to clock cycles to instruction cycles. Finally, the third

dimension deals with the hierarchy of functions. Consider a ripplc-carry adder module. It is com­

posed of full adders, which in turn arc composed of logic gates. The adder is itself only one com­

ponent of the datapath for a computer. The structural composition hierarchy has a corresponding

functional composition hierarchy ranging from Boolean functions through arithmetic operations to

computer instructions. The functional hierarchy defines the meaning of the signals being pro­

cessed. For instance, the adder module is designed to perform either signed or unsigned addition

on integers modulo n for some n. A single-bit AND gate performs the AND operation on Boolean

signals. The search for effective methods of exploiting the functional hierarchy motivates most

153

TimeInformation

M ulti-word 4
packet

Word

f Instruction cycle

C lock cycle

Bit G ate delay

N AN D gale

Com puter datapath

Function

Figure 5.2, Dimensions of hierarchy and abstraction.

Abstraction
'-^D im ension
Laycr~^~-\^_ Information Time Function Exam ple

Symbolic High High High Symbolic vector sequence
expressions, symbolic error signal

values

Vector Medium Medium Medium Response functions

Bit Low Low Low Signals in classical test generators
and fault simulators

Table 5.1 Combinations of abstractions forming layers.

research in hierarchical test generation.

Each axis can be divided into three ranges: low, medium, and high abstraction. We call a

point in this three-dimensional “abstraction space” a layer. The three primary layers of interest in

this thesis arc called symbolic, vector, and bit. For the symbolic layer, all dimensions are high

abstraction, for the vector layer, all dimensions are medium abstraction, and for the bit layer, all

dimensions arc low abstraction. These layers are depicted in Table 5.1. Intermediate layers can

also be defined that mix the abstractions in other ways, for instance single-bit signals (low-level

information abstraction) can be propagated through large modules with very abstract models

(high-level function abstraction).

154

MATSim

Generate
simulation

report

Sim ulate
events

Process
multi-layer signal

events

Report
conflicts

l*roccss
com m and

events

Figure 5 3 . Structure of MATSim

MATSim assigns every signal to a layer. TWo layers arc currently implemented, symbolic

and vector, which implement the test package propagation methods discussed in Chapter IV. The

hierarchical error propagation analysis method discussed in Chapter IV is implemented using two

layers. Fault-free test package data, including Ts , TR , and various control values for sensitizing

modules arc propagated as symbolic expressions of vector sequences; they arc the symbolic-layer

signals. Symbolic signal values from the set /f7 =* {X, S, R, C, 0j(, 1̂ , S } arc assumed by sym-

bolic-Iaycr signals. These signals arc propagated along transparent single paths in the circuit

model. If error propagation is blocked at the symbolic layer by non-transparent modules, all of the

individual vectors of the M UT’s response set arc evaluated at the vector layer and propagated

numerically. Wc examine this two-layer hierarchical technique for error propagation further below.

5.1.2 S tru c tu re o f M ATSim

MATSim has three functions as shown in Figure 5.3; to simulate events, to report simula­

tion results, and to detect and respond to conflicts. MATSim simulates events representing changes

in signals at multiple levels of abstraction as discussed above. Simulator commands to print the

state of the circuit at a particular timestcp or to stop at a particular timestcp arc also represented as

events. Since MATSim implements signal propagation for the test generator PathPlan2, it must

detect and respond to conflict. In test generation, once a signal has been assigned to a bus Z at time

155

in3

in2 ADDER

add I
ml

Trunc(8.,l)
11

ADDER

Trunc(O)

14

Tm nc(8..1)[-f
12

ADDER Trunc(7.,0)
t3

Ctrl
inO

MUX

ini
muxl

oull

Figure 5.4. The Fltrdp datapath circuit

t, no other signal value can be assigned to Z at time t on the same layer. Any other signal propa­

gated to Z denotes a conflict which, when detected, causes the test generator to backtrack.

Verilog P arse r and C ircuit D ata Structure. MATSim reads circuit descriptions written in netlist

form using a stylized subset o f the Verilog simulation language [91]. The netlist may be hierarchi­

cal as discussed in Chapter 1. An important feature o f the netlists is that they are executable by a

standard Verilog digital simulator, so the results of MATSim can be correlated with results from

other simulators.

The Fltrdp circuit is shown again in Figure 5.4, where the modules have been assigned

symbolic names for use in a netlist. The Verilog netlist for Fltrdp is shown in Figure 5.5. The mod­

ule types addmod, frcad 1, etc., refer to module definitions. MATSim uses modified version o f a cir­

cuit data structure (Nctstruct) developed at Carnegie Mellon University for representing circuits

designed by high-level synthesis. The routines that access Netstruct, and the Verilog parser that

produces it are part of the AutoCircuit synthesis tool [32].

The Verilog language was designed to describe both circuit structure and function, as well

as the simulation environment, including the stimulus vectors. However, the semantics o f Verilog

do not support assignment of symbolic expressions. To support such expressions, MATSim reads a

separate file containing a list o f stimulus events with signals represented as symbolic expressions.

There is also a separate file for test package descriptions. The test package descriptions define the

156

module m a i n (C l o c k ,reset, ini
/// class: Structure

/*{portclass: CLOCK
/*{portclass: ASYNC
/ * (portclass: DATA]
/ * (portclass: DATA)
/*(portclass: DATA]
/♦(portclass: DATA]
/ * (portclass: DATA]
/♦{portclass: DATA]
/♦{portclass: DATA]
/♦{portclass: DATA]
/*{portclass: DATA]
/♦{portclass: DATA]
/♦(portclass: DATA]
/♦(portclass: DATA]
/♦(portclass: DATA]
/♦(portclass: DATA]
/♦(portclass: DATA]
/♦(portclass: DATA]
/♦(portclass: DATA]

,in2,in 3 ,i n 4 ,f r l ,fr2,fr3,c t r l ,o u t l);
]♦/ input [0
:_CTRL] ♦/
♦/ input [7

input [7
input [7
input [7
input (7
input [7
input [7
input [2
output [
wire [6:
wire [8:
wire [8:
wire [7:
wire [7:
wire [7;
wire [0:
wire [7:

:0] Clock;
input [0:0] reset;

V
* /
* /
V
V
* /
* /
* /
* /
V
* /
* /
* /
* /
V
* /

0]
0]

ini ;
i n 2 ;

:0] in3;
:0] in4;
: 0]
s 0)
: 0]

f r l ;
fr2;
fr3;

:0] ctrl;
7:0] outl;
0] addlout;
0] add2out;
0] a d d3out;
0] t l o u t ;
0) t2out;
0] t3out;
0] t4out;
0] muxlout;

addmod
freadl
addmod
freadl
addmod
freadl
fread2
muxmod
regr_l

endmodule

addl{ ini, in2, addlout, ctrl);
tl(addlout, fr2, tlout, ctrl);
add2(in3, tlout, add2out, ctrl J;
t2(add2out, fr2, t2out, Ctrl);
add3(t2out, i n 4 , add3out, ctrl);
t3(add3out, frl, t3out, Ctrl);
t4(add2out, fr3, t4out, Ctrl);
muxl(t2out, t3out, muxlout, t4out);
regl(muxlout, outl, ctrl, Clock, reset }

Figure 5.5. Verilog netlist for Fltrdp (Figure 5.4).

symbols used in the stimulus file, as well as provide the underlying test vector data.

D iscrete-Event Sim ulator. MATSim is a discrctc-evcnt simulator and its overall structure is

shown in Figure 5.6. An event is an action which is scheduled to occur at a specific time instance t.

The action may be a command to the simulator, for instance to print the current state to a file.

However, the most common action is to assign a new signal v to a bus Z in the circuit at time t, so

the most common event may be expressed as a triple (v.Z.r). The bus Z is a primary input or output,

or an input or output o f some module. MATSim labels events according to their source. Initial

events are produced by reading the file of stimulus events written by the user, or created by

PathPlan2. Signal assignments made as a result o f initial events cannot be changed in the same

clock cycle. All other events arc generated during simulation, and corresponding assignments can

be changed an arbitrary number of times unless they arc marked as "frozen.” All signal values arc

marked frozen at the end of a simulation pass (line 9) in Figure 5.6. This is the mechanism used by

157

2 {
MAT Sim
{

3
4
5
6
7
8
9
10
1 1
12
13

currentjim e = in itjim e;
while (TRUE) {

result - processesventsjttjcurrcnt_time(currentjim e);
if (result == assignmentjonflict)

relurnC assignment ̂ conflict);
i f {result == quit II num jurrent_events == 0) {

freeze values;
re tu rn(q u it);

>
currentjim e = current J im e + timestep;

>
14 >

Figure 5.6. Main routine for MATSim.

PathPlanHMATSim to detect conflicts.

Events arc scheduled by entering them into a timing wheel [2], An event E = (v, Z, t)

inherits the layer assignment of v. In MATSim, the layer associated with E determines the update

routine that handles it. The routine process_events_at_currentjime retrieves all of the events

scheduled for the current time and initiates the appropriate action for each, depending on event

type and layer. If the event is not a command, process_eventsjitj:urrentjim e calls the layer-spe­

cific update routine. An update routine implements an event by assigning v toZ , evaluating module

functions whose inputs arc connected to Z, and scheduling new events produced by the evaluation

of module functions; it updates the state of the circuit.

A skeleton update routine is shown in Figure 5.7. Specialized versions o f this routine exist

for each layer. The update method is based on the one-pass evaluation strategy with suppression of

multiple signal changes scheduled for the same time [2]. As noted above, the routine implements

the value changes specified by an event E = (v, Z , t) . First, it assigns the value v (denoted

evcnLvaluc in Figure 5.7) to the bus Z (denoted cvcnt_bus in Figure 5.7). If another value has pre­

viously been assigned to the port and frozen, then there is a conflict. Let p v p 2, • ••,/>* be the set of

module inputs (input ports) that arc connected to Z. If M is a module with input port p. (I < i < k) ,

then A/’s module function is evaluated at the current layer. If the value o f a module function

changes as a result o f new inputs, then this change becomes a new event. Since real circuits com­

pute module functions after a finite delay 8 , the new event is scheduled for the future time instance

158

1 upclate(input event, time)
2 {
3 assign e v e n tj’alue to event j o r t ;
4 if (there is a conflict) re tu rn (conflict);
5 for (every port /p o rt on fanout list o f event_port) {
6 assign eventjvalue to fport;
I if (there is a conflict) re tu rn (conflict);
8 fm od = module with port fport;
9 updateJist = evaluate(fm od . eve n tJa ye r);
10 for (every event update_event in update J is t) {
II process update event according to layer;
12 if (update event_value != update_eventjsv) <
13 update _event_time = update_event_delay + time;
14 if (update_eventjim e == itpdaie_cvcntjst)
15 cancel_schedu!edjvent(update_event);
16 schedule(update_event);
17 update_eventjsv = update _event_valuc;
18 update_eventjst = update_eventjim e;
19 }
20 >
21 >
22 re tu rn (no_conflict);
23 >

Figure 5.7. Update routine.

i + 8 . Each module function evaluation can produce multiple events since the module can have

multiple outputs and the MUT can produce error propagation signals (discussed below) on two

layers in addition to TR , the fault-free response of M to Ts . Each layer-specific update routine

handles the events returned from the module evaluation routine differently (line 11 in Figure 5.7).

However, each update routine compares new signals to be scheduled to previous signals on the

same layer scheduled for the same bus. The new signal is only scheduled if it differs from the old.

If two events on the same layer arc scheduled for the same port at the same time, then the most

recently scheduled event is kept and the other canceled.

MATSim currently supports a small set o f module primitives including; adders, multiplex­

ers, inverters, OR gates, AND gates, subtracters, bus-truncate modules, and bus-concatcnatc mod­

ules. This set can easily be expanded to include other primitive modules such as RAMs, ROMs,

decoders, encoders, multipliers, and XOR gates. Each primitive module has an associated evalua­

tion routine for the symbolic and vector layers.

159

5.1.3 Simulation o f Fault-Free Signals

In this subsection, we describe how MATSim processes fault-free signal components. All

fault-free signals arc symbolic expressions of vector sequences, and so arc processed at the sym­

bolic layer. Because vector sequences are capable of representing signals from bits to multi-word

packets, expressions based on vector sequences can represent the full information hierarchy. As

pointed out in Chapter IV, it is sometimes necessary to propagate the individual vectors o f a vector

sequence numerically, for instance when symbolic expressions cannot be simplified to match Ts .

In MATSim, Ts can be propagated to the MUT using cither symbolic references to vector

sequences as in PathPlan, or as individual vectors as in ARTEST. The individual vectors of Ts

and Tr arc also handled at the symbolic layer in the current version o f MATSim. We discussed

symbolic expressions and how they arc simplified in Chapter IV. Here we give some additional

implementation details for MATSim.

Symbolic expressions can be considered as trees, where the root and interior nodes arc

operators and the leaves arc vector sequences. In MATSim , vector sequences arc stored once, and

the leaves of expression trees contain pointers to the vector sequence data. Symbolic expressions

arc frequently divided by a constant, as a result of shifting by truncation, or by propagation

through a division circuit. As discussed in Chapter IV, division by a constant is represented by

multiplication by a rational coefficient. For simplicity therefore, all constants in MATSim arc rep­

resented by rational numbers and implemented by integer pairs numerator/denominator. For exam­

ple, the constant 0 is represented by 0/1, and I is represented by 1/1. Symbolic expressions arc

manipulated by well-known computer algebra techniques [54], so that they arc always maintained

in exact and reduced form. Subtraction is implemented in MATSim as addition o f a negative num­

ber. The sign o f a vector sequence is associated with the numerator of its rational coefficient.

Therefore, A - B is represented as A + (- 1 /1)B .

An example o f the propagation of expressions through Fltrdp is shown in Figure 5.8,

which repeats Figure 4.1. The symbolic test program shown in Figure 5.8 successfully instantiates

test package (A], A2; A] + A2) at the adder module add3. The output from MATSim when simulat­

ing this example is shown in Figure 5.9. The names of the buses arc printed on the left hand side of

each line, followed by the symbolic expression assigned to each bus as a fault-free signal value.

160

Response function

Trunc(O)

Ctrl
inO

ADDER
add2

MUXAi + 1 outl
ini

muxl

2 A , +2 A t + A
ADDER

; 2m3 add3
T s ~ (A lfA2) M U T

Stimulus
functions

ini

Figure 5.8. Propagating a test package (TS;TK) through the Fltrdp datapath circuit

Circuit State at time 300
Module: main

main.ini C + (A1) t 1/1))> error component « S
main,in2 C + (A1) C 1/1)) / error component « S
main.in3 (A1) . error component “ S
main.in4 £ A2) ' error component - S
main.frl { 0 / 1) ' error component = 0
m a i n .Cr2 < 1/1 error component - S
main.£r3 (0 / 1) - error component = 0
main.ctrl (0/1) - error component ” 0
main.outl (+ (A1) (A2)), error component » R

Module: addl
addl.ini (> (A1) (1/1)), error component - S
addl.in2 C * (A1) £ 1/1)), error component - S
addl.outl C + (* (2/1) (A1)) £ 2/1)), error component

Module: tl
tl.ini (« (* £ 2/1) { A1)) (2/1)), error component
t l .in2 (1/1)- error component = S
tl.outl { + (A1) (1/1)) , error component - 5

Module: add2
add2 . Ini (A1 error component *■ S
add2. In2 < ' (A1) (1/1)), error component “ S
add2.outl (+ (* £ 2/1) (A1)) £ 1/1)), error component

Module: L2
t2.ini (+ t * (2/1) (A1)) (1/1)), error component
t2.in2 (V i). error component = S
t2.outl (A1). error component ” S

Module: add3
add3.ini (ni error component = S Objective: { A1)
add3.in2 (n2)- error component » S Objective: (A2)
add3.outl { + (A1 3 (A2)), error component - R

Module: L4
t4 .ini (+ C it £ 2/1) (A1)) (1/1)), error component
t 4 .in2 (0 / 1) , error component “ 0
t4.outl < 1 / 1). error component = S

Module: muxl
muxl.ini (A1), error component - S
muxl.In2 (+ t A1) (A2)), error component « R
muxl.outl (+ t A1) (A2)), error component - R
muxl.ctrl (V I). error component = S

Figure 5.9. Example of MATSim output o f circuit state information; add3 is the MUT

161

Expressions arc printed by MATSim in prefix notation, except for rational constants, which arc

written in infix notation as discussed above. For example, A { + 1 on the line for bus main.in2 is

written as (+ (A j) (1/ 1)) .

In Chapter IV we showed how symbolic expressions arc simplified to a canonical form to

match them to Ts . MATSim simplifies expressions after each module function is evaluated. Since

symbolic expressions can contain both Boolean and arithmetic operations, there arc two algo-

rilhms for simplifying them. The set o f arithmetic simplification steps is:

A l. Distribute multiplication over addition, e.g., replace A (B + C) by AB + A C

A2. Apply the associative law to remove parentheses and reduce the number of tree levels

A3. Combine rational expressions forming coefficients or constants into a single rational

number

A4. Add like terms.

A5. Eliminate unit coefficients.

A6. Eliminate terms with zero coefficients

As discussed in Chapter IV, the key simplification steps for arithmetic expressions arc A l, A4, and

A6; the remaining simplifications steps arc intermediate steps required in MATSim. After expand­

ing (step A l), for instance, expressions frequently have a tree form where the child Y of a node X is

the same as X. For example, let A + I and B + 1 be inputs to an adder. The result at the output of

the adder is (A + 1) + (B + 2) . Each parenthesis implies a node in the expression tree. We reduce

the size of the tree by applying the associative rule so that {A + 1) + (B + 2) becomes A + B + 3.

The only Boolean simplification step currently implemented in MATSim is involution.

Evcn-lcngth chains of the Boolean NOT operation arc eliminated, that is, N O T (N O T (X)) is

replaced by X. Both the Boolean and arithmetic simplification algorithms arc applied recursively.

Each searches for subexpressions of the proper type to simplify. Arithmetic simplification steps

treat Boolean operations as symbols, and vice versa. For example, the expression

(1 /2) (((A + 0) a B) +C) is simplified to (1 /2) (A a B) + (1 /2) C .

After simplifying an expression using the general techniques A I-A 6, MATSim performs

some ad hoc context-specific checks to see if the expression can be simplified further. For instance,

if an even (odd) expression is identified at a 1-bit port, it is simplified to 0 (I). An example of this

is shown in Figure 5.9. The input data to module t4 (t4 .ini) is odd because (+ (* (2/1) (A l)) (1/1))

162

denotes 2 x A 1 + 1, an odd number. Since t4 truncates all but the least significant bit, the result is

1 at the output of module t4 (t4.out).

To reduce memory overhead, expressions arc reused as much as possible. When updating

a module, new expressions arc constructed by creating a root node (an operator) and adding point­

ers to subexpressions representing the arguments. During simplification, various parts o f an

expression E arc copied and/or rearranged, so some parts o f E arc pointers to copies generated

elsewhere, and some arc unique to E. It is obvious that simplification rearranges expressions, but it

frequently also results in the generation of multiple copies o f the expressions at the inputs. To see

why, consider the expression | (A + B) , created when A + B is propagated through a truncate

module which deletes the least significant bit of a bus carrying A + B . As a prerequisite to further

simplification, this expression must be expanded. However, if A + B is modified, ports to which it

is assigned will be incorrect. Therefore, a new expression must be generated by copying A + B and

using it as the basis for modification. Uncontrolled processing o f expressions uses memory rap­

idly. Therefore, MATSim implements extensive memory management routines to control the

growth of expression storage.

5.1.4 Error Propagation

In this section, we discuss how MATSim propagates error information hierarchically at

two levels o f abstraction, symbolic and vector. Response functions can be represented as symbolic

signal values (symbolic-layer signals) to analyze error propagation in circuits with transparent

propagation paths. On the other hand, in order to analyze error propagation in irregular circuits, we

must evaluate the response function from the output o f the MUT to primary outputs for all possible

responses from the MUT (the response set). MATSim propagates vector-layer signals for this anal­

ysis.

MATSim uses the set of symbolic signal values R 1 = (X, S, R, C, 0 n , 1 , S > for sym­

bolic-layer error signal propagation. These are implemented exactly as discussed in Chapter IV.

An example o f their use appears in Figure 5.9. Error propagation signals are labeled "error compo­

nent" in this listing. Every fault-free symbolic expression has a corresponding symbolic-layer

"error component," even signals propagated from primary inputs as stimulus or control signals.

These signals, main.in 1, for example, have error component S or 0. The value R appears at the out­

163

put o f the MUT when Ts is successfully instantiated at the inputs tot the MUT. In Figure 5.9, mod­

ule add3 is the MUT. The test package objectives: A l assigned to add3.ini, and A2 assigned to

add3.in2 are satisfied by the assignment to primary inputs. Thus, the signal value at the output of

add 3 is R, which is subsequently propagated to a primary output.

The processing of error propagation signals at the symbolic layer is the default in

MATSim. A global switch determines when vector-layer processing should be used. This switch is

set by the test generator PathPlan2 when propagation is blocked at the symbolic layer, that is,

when R cannot be propagated along any path in the circuit from the current state. It can also be set

manually when MATSim is used as a stand-alone simulator.

Error propagation at the vector-layer is analyzed by evaluating the response function for

the set of vectors in the MUT’s response set at the output o f every module on a propagation path

from the output of the MUT to a primary output. This is implemented in MATSim by propagating

response functions as complex signals representing propagation functions P = { (a ;;P .)> ,

1 < i < m , from the output of the MUT when Ts is successfully instantiated and vector-layer pro­

cessing is enabled. A special data structure is used to represent the response functions. Let

I < j < n, be the (first-order) response set for jth test vector in test stimulus sequence Ts , and let

PRj be the corresponding (first-order) response function at some point Z on the propagation path.

Each £2^ has one correct value and one or more faulty values. Recall from the discussion in

Chapter IV that to determine if all errors arc propagated, we must analyze each PRj to determine

whether the correct value is in a different block from any faulty value, that is whether PR . satisfies

the propagation condition.

MATSim combines all the first order response functions PRj , 1 < j < n , into one order-/)

response function PR . Each block of the composite response function PR has one current value

p r but several response subsets a (̂ , 1 < j < n , one for each first-order response function on Q Rj

containing a block whose current value is P; . The index j is referred to as the timcstep since it indi­

cates which vector of Ts produces £2R ,. We also separate correct responses from faulty responses

for each timcstep to facilitate analysis of the propagation condition, as wc will show below.

The data structure for a single block is depicted in Figure 5.10. The current value P; of the

block appears in the box at the top. To the left of each current value is a list of timcstcps with cor-

164

Cl:

Good timcstep list Faulty timcstep list

Faulty response listGood response list

Faulty
response

Correct
response

Correct
response

Current
value

Correct
response

timcstep 2

Correct
response

timcstep 1

Faulty
response

timcstep 2

Faulty
response

timcstep 1

rcct MUT responses whose current value is P(., and to the right is a similar list o f timcstcps with

faulty MUT responses whose current value is P(. Thus, each a^. is split between the good timcstep

list and the faulty timcstep list. Each timcstep in the good and faulty lists contains a set of

responses associated with the timcstep. A complete response function is represented by a linked

list of these blocks.

In order to demonstrate the use of this data structure, we will examine a response function

for a two-input, 4-bit multiplexer, which we also used as an example in Chapter IV (Figure 5.11).

The set of first-order response sets for this module is as follows, with the correct response in each

first-order response set underlined.

O*, = {0,7,11,13,14,15}

Q R2 = {0,1,2,4,8,15}

^ / t 4 =

These lead to a combined order-4 response set of Q R = {0,1,2,4,7,8,11,13,14,15}. The response

function on at the output of the MUT is PR - {(0;0), (1; 1), (2;2), (4;4), (7;7),(8;8), (11; 11),

(13; 13), (14; 14), (15; 15)}, The corresponding data structure for PR, which is to be assigned to the

output of the MUT, is shown in Figure 5.12. Each block o f PR is shown in a shorthand notation

165

inO
out

ini

MUX

Ctrl

(a) Basic cell: two-input, single-bit multiplexer

in0[0]

in 1 [0],
out[0]

out[l]

o u t[2]

ini
MUX out

ctrl

inO

ini

uO
MUX out

ctrl

inO

ini
MUX out

Ctrl

ini

inO
MUX out

ctrl

ctrl

(b) Four basic cells combined to form a two-input, 4-bit multiplexer

Figure 5.11. Implementation of a two-input, 4-bit multiplexer.

166

«pL oJZL ajlL oQp gQ p
2:0 1:0

X X
3:0 4:0

2:1

I
3:1

2:2

I
3:2

2:4 1:7

L 2
3:4 4:7

2:8 1:11 1:13 1:14 1:15

3:8
L
4:11 4:13 4:14

1
4:15

Figure 5.12. Response function data structure at output o f MUT.

outputl

output2

Trunc(1..0)inO

in i
M U X out

ctrl

Figure 5,13. Example circuit for propagation o f response functions, a multiplexer connected
to two complementary fanout modules.

that corresponds to Figure 5.10. The current value [if for each block i is in a box at the top of Fig­

ure 5.12. To the left of each current value is the list o f timcstcps with correct responses (marked G

for good), to the right is the list of timcstcps with faulty responses (marked F for faulty). Each box

in a timcstep list has the form j'.CL.j, where j is the timestcp and a ~ is the list of MUT responses

a t /

Now consider the propagation of PR through a circuit. Let the output of the two-input,

four-bit multiplexer be connected to two truncate modules in parallel, as shown in Figure 5.13.

167

1:11

2:2

3:2

1:14

4:14

4:7,15

1:7,15

4:13

1:132:0

5:8

3:0

4:0

1:0

2:4.8

F igure 5.14. Response function data structure at outputl (Figure 5.13).

The response function for truncate module Trunc(1..0) is PRl = {(0,4,8;0), (1,!3;1), (2,14;2),

(7,ll,15;3)> and the response function for truncate module TYunc(3..2) is PR2 ~ {(0,I,2;0),

(4,7; 1), (8,11;2), (13,14,15;3)>. Computing the output o f a module for response functions at the

modulc‘s inputs is a two-step process. The first step is to compute the new current values for each

block using the module function. The second step is to combine blocks whose new current values

arc the same. These two steps implement the scries connection operation discussed in Section 3.1.

The resulting response functions for buses outputl and output2 of the circuit in Figure 5.13 arc

shown in Figures 5.14 and 5.15, respectively. If response functions are incident on more than one

input of a module, then they arc combined using the parallel connection operation discussed in

Section 3.1. before computing the output of the module.

Since module functions need only compute new current values for blocks, the cost of

propagating a vector-layer (evaluated) response function through a module is proportional to die

number o f its blocks. Blocks arc combined as they arc propagated through non-transparent mod­

ules. Therefore, propagation performance at the vector layer increases as propagation paths

become less transparent. Consider propagation through a truncate module that removes one bit of

the input bus. The number of blocks can be reduced by as much as a half. Propagation of vector-

layer response functions is slowest along fully transparent paths, however these paths arc easily

analyzed using symbolic-layer error propagation techniques.

We take advantage o f the response function data structure given above to evaluate the

168

2:8

3:8

4:15

1:15

4:13,14

1:13,14

4:0

3:0

2:0

3:4

2:4

3:1,2

2:1,2

Figure 5.15. Response function data structure at output2 (Figure 5.13).

propagation condition, that is, the requirement that correct responses be separated from faulty

responses in a response function PR. The propagation condition is satisfied by PR if for each

block, there arc entries in only one response list for each timcstep. For example, we can easily see

that the propagation condition is not met for the response function shown in Figure 5.14, since

there arc entries (shown shaded) in both the good and faulty timcstep lists for block 3 at

timcstep 1.

Propagation functions PR r 1 < i < k , can be propagated in parallel along Jfc partially trans­

parent paths to primary outputs. These response functions are combined by MATSim using the

intersection (parallel connection) operation to create a single response function

/*/f = f° r the set of primary outputs. In order to determine whether all errors

arc propagated, MATSim applies the propagation condition to PR . Similarly, MATSim can analyze

a set of k response functions propagated sequentially through a Jt-transparcnt module or subcircuit.

Again, the set of response functions propagated to a primary output or set of primary outputs over

multiple time instances arc combined using the intersection operation and the resultant response

function analyzed for the propagation condition.

For efficiency, we have combined the procedure for analyzing the propagation condition

with intersection o f propagation functions. The algorithm is shown in Figure 5.16. Let 91 be the set

of response functions to be analyzed. Response functions in 91 may be a set of response functions

169

1 analyzej)ropagation_condition(input Si:set o f response func tions)
2 {
3 co ilision jist = 0 ; new_collisionJist = 0 ;
4 fo r (a/i response functions P Ri in 9 i) {
5 for (each block B in PRj) {
6 for (each correct response timestep tc in good timestcp list o f B) {
7 for (each faulty response timestep tF in
8 faulty timestep list o f B) {
9 if (tc == tF) {
10 response J i s t - fau lty response list fo r tp ;
11 if (tF is in co ilis ion jis t) {
12 get old_responseJistfor tF from coilisionjist;
13 response J i s t = response jist n old_responseJist;
14 if (response jist # 0)
15 add response jist to new_collisionJist;
16 }
17 >
18 >

>
20 >
21 if (new_collisionJist == 0) rc tu rn (SU C C ESS);
T l e lse {
23 empty co ilisionjist;
24 co ilis ion jis t = new_collisionJist;
25 empty new_collision J is t;
26 >
27 >
28 >
29 re tu rn (FAILURE);

F igure 5.16. Algorithm for analyzing the propagation condition for a set of response functions.

propagated serially in time over a single bus, or a set of response functions propagated to different

outputs, or both. For each block in each response function PR(in SR, the algorithm analyzej?ropa-

gation_condition checks to sec if correct and faulty responses occupy the same timcstep t. If they

do, the propagation condition is not satisfied for PR r but it still may be for

P R = PR or R\ n ^ R 2 n ••• n When correct and faulty responses

both occupy timestcp / in a block of one response function PR}, the list of faulty responses is

stored as a block associated with / in a list called response jis t in Figure 5.16. For example, if cor­

rect response 0 occupies timcstep 2 with faulty responses 4 and 8, then responsejist will contain

the pair (4.8) associated with timcstep 2, denoted (2:(4,8)).

Non-empty rcsponscjists created by analyzing a set of response functions for the propa­

170

gation condition arc stored according to timestep in a list called co ilisionjist in Figure 5.16. For

example, suppose rcsponscjists (2:(4,8)> and (2:(5,7)) arc created by analyzing response func­

tions PRl and PR2 respectively. Each is added to coilisionjist, which then contains a list of pairs

associated with timestep 2, denoted (2:(4,8), (5,7)). When a set of blocks associated with a partic­

ular timestcp is retrieved from coilisionjist, it is referred to as old_rcsponscJist in Figure 5.16. In

step 13 of analyzej>ropagation_condltion, when it is determined that the propagation condition

has not been met at timestep t, an o!d_rcsponseJist associated with timcstep t in co ilisionjist is

retrieved. It is intersected block by block with the current responsejist. If there arc no elements in

common, then all discrepancies associated with timestep t are distinguished, otherwise, the inter­

section is added to new_collisionjist to be compared with another response function. If, after

examining each response function in 9(, ncw_collisionjist is empty, then all errors arc propa­

gated, otherwise ncw_collisionJist becomes coilisionjist.

The procedure analyzej>ropagation_condition follows the propagation function intersec­

tion operation, but only lists of faulty responses arc actually intersected. Given an ordered list of

response functions, the procedure terminates successfully when the shortest sequence of intersec­

tions is determined to be sufficiently transparent to satisfy the propagation condition. All response

functions must be intersected to prove that the sequence is not sufficiently transparent.

As an example o f how analyzejjropagattonjeondition works, let 91 = { / ’̂ p PR2} .

where PR[is the response function in Figure 5.14, and PR2 is the response function in Figure

5.15. After processing PR l , co ilision jist contains <(2:(4,8)), (3:(4,8)), (1:(!!)), (4:(11))> since

faulty values 4 and 8 conflict with correct value 0 in timcstcps 2 and 3 of block 1, and faulty value

11 conflicts with correct value 15 in timcstcps 1 and 4 o f block 3. Next, the procedure processes

PR2 - In this ease, correct response 0 conflicts with faulty responses 1 and 2 in timcstcps 2 and 3 of

block 1. Intersecting these blocks with corresponding blocks in the co ilisionjist results in the

empty set, so no blocks arc added to a ncw_collisionJist. Continuing in this way, we see that all

intersections result in the null set, so ncw_collisionJist is empty at line 21 and analyze_propaga-

tionjeondiiion returns SUCCESS; all errors arc propagated.

Next we consider the complexity of analyzejiropagation_condition. Let 19(1 the number

of response functions in 91 and V be the number of test vectors (timcstcps) in stimulus sequence

171

Ts . The maximum number of blocks that a response function can have depends on the width

^ max ^ us ’n circuit; in the worst ease, every response function in 91 will have
wm„

2 blocks. Amortized over all blocks, the number of timcstcps to analyze in any particular
(block is V /2 J . In the worst ease, the size of Q.R is 0 ^ 2 I, so the worst-casc cost of

the intersection operation is 0 ^ 2 . This implies that as the problem size grows in terms of 91,

W . and V, the worst-case complexity of analyze_propagation_condition is

o ((|9 1 |) (2 lVm“I) (v / 2 Wmax) (2 W''n")) = o (y VH 9t |v)

As noted in Chapter IV, for many modules, the size of Q R is O (V) , not Ol 2 " " I , therefore we

expect the avcrage-casc complexity to be o (|9 t|V f2 j . Finally, in the optimal ease, no intersections

arc required, and propagation is determined by the first response function in 91 to be analyzed.

However, all blocks and timcstcps in the first response function must still be examined by any

algorithm analyzing the propagation condition. Therefore, the lower bound complexity o f the

problem of analyzing the propagation condition for a set o f response functions 91 is £2 (V) . If any

o f the response functions in 91 is congruent to zero, then the propagation condition is met without

executing analyze_propagationj:ondition.

5.1.5 Summary of MATSim

Let M be a MUT and let T P { = (TS;TR) be a test package for A/. MATSim can determine

whether all errors that can be produced by M are propagated to primary outputs. MATSim needs no

structural model for M, and TP j can be based on any appropriate fault model. It can calculate fault

coverage if the faults that cause each faulty vector in the response set for Af arc provided. Conven­

tional fault simulators on the other hand require more detailed structural models for modules and

explicit fault models. As discussed in Chapter II, for many modules, e.g., embedded RAMs, the

use of precomputed tests is not only appropriate, but necessary. The propagation of precomputed

tests for embedded RAMs can easily be analyzed by MATSim , but not by conventional fault simu­

lators.

MATSim propagates test package information hierarchically at the symbolic and vector

layers. Symbolic-layer propagation is significantly faster than the bit-layer methods used by stan­

dard (gate-level) fault simulators, since far fewer module evaluations arc needed on any path

through the circuit. Modules with precomputed tests are usually connected by multi-bit bus struc-

172

turcs that arc well-suited for the symbolic-laycr signal abstraction supported by MATSim. Since

high-level functional circuit behavior is readily apparent to the designer, symbolic test programs

can often be easily generated for these circuits manually, or by the combination of manual and

automated methods used by Pa(hPlan2 (discussed below).

MATSim implements propagation of symbolic expressions, response functions, and hierar­

chical error signal values within the framework of a conventional event-driven simulator. Some or

all of the features discussed above can therefore be added to existing commercial or experimental

simulators. MATSim accepts both combinational and sequential circuits described in the conven­

tional HDL Verilog, which is also accepted by several commercial fault simulators.

However, only a small number o f primitive modules arc currently implemented by

MATSim . More primitives can be added, but a general method for modeling large modules such as

microprocessors is needed for MATSim. The models must implement the module functions that

propagate symbolic error signals as discussed in Chapter IV. These module functions can be diffi­

cult to construct for arbitrary modules. However, functional models for arbitrary modules can be

implemented by decomposing the modules into dataflow graphs of primitives. This method is

already used in the AutoCircuit Verilog parser [32] which MATSim employs, so MATSim can be

modified to include the capability.

5.2. PathPlan2

The PathPlan2 test generation algorithm is the successor to our original test generator

PathPlan. It implements the extensions to PathPian that we identified in Chapter II and uses

MATSim to propagate signals. In this section, we discuss the overall design of PathPlari2, the use

of test packages, the test generation algorithm, and some experimental results.

5.2.1 Design Philosophy

PathPkm2 is intended to propagate generate tests for circuits by propagating test packages

(Ts \Tr) for modules at two levels of abstraction: symbolic and vector. The primary emphasis is

on symbolic-laycr propagation of fault-free signals such as Ts and TR as expressions, and hierar­

chical propagation of test response errors at the symbolic and vector layers. It uses a test genera­

tion algorithm with forward-only signal propagation similar to PODEM [40]. Like PODEM, the

173

X
A v d

n
MUX ■f-+~ 2

n
/-► ini
n ctrl

x3 0, 1 }
Figure 5.17. Bus assignment example

basic structure of PathPlan2 is simple: generate new objectives, that is, internal signal values to be

justified, relate the new objectives to the primary inputs, and perform forward implication (simula­

tion) using MATSim. Objectives in PathPUmZ arc Ts , and control signals for modules on the prop­

agation path. PathPlan2 relates new objectives on module ports in the circuit to primary inputs by

topological backtrace from the site of the objective to some primary input. All of these tasks arc

greatly complicated compared to gate-level test generators such as PODEM due to PathPlan2's

use of high-level functional modules and symbolic data.

5.2.2 Test Packages in PathPlan2

As in PathPlan, every module M in the circuit has two types o f test packages. The fault

test package (FTP) contains precomputed tests for M and propagation test packages (PTPs) arc

used to determine values for signal propagation and arc associated with all modules other than the

MUT. Test packages for PathPlan2 are similar in format to those used by PathPlan. Variables arc

unified with values to be propagated, and vector sequences must be matched exactly to the current

circuit state using the instantiation procedure discussed in Chapter II. For example, an FTP for the

multiplexer shown in Figure 5.17 might be

where the d's arc don’t care values. PathPlanZ uses the values in this test package that arc not

don’t cares as objectives for the corresponding bus.

When propagating the test response TR Pathplan2 does not use PTPs to compute or assign

module output values as in PathPlan. Instead, module output signals arc computed using simula­

tion by MATSim. Module inputs determined by instantiation provide objectives for PathPlan2.

{Ts J r) = ([(A v d) , (t/f A ,) | , [0, !] ;(< /,r/))

174

The PTP { (a , d) , 0;d) for the multiplexer in Figure 5.17 specifics that TR is to be propagated

from input inO (XD)> and that 0 is an objective for ctrl.

PTPs arc also used by the backtrace procedure to transfer objectives from module outputs

to module inputs. Suppose that the objective A j (component of Ts) is to be transferred from the

output o f the multiplexer in Figure 5.17 to input inO on a path from the MUT to a primary input.

The PTP T P j » ((a , rf), 0 ;a) can be used to transfer this objective. First, A { is assigned to the

variable a throughout the test package using unification as discussed in Chapter II. Then all the

inputs specified in T P j become new objectives for PathPlan2 to satisfy. Note that in contrast to

PathPlan, during backtracing no signal values arc actually assigned to buses except at primary

inputs.

5.2.3 Test Generation Algorithm

Figure 5.18 describes PathPlan2’s procedure for testing a module M. The goal o f this pro­

cedure is to propagate precomputed test stimuli to a module M and to propagate all errors pro­

duced by M to a primary output. Stimulus and response sequences are stored in a test package

{Ts \Tr) . The assignment of a symbolic vector sequence component of the stimulus sequence

Ts to a corresponding a input bus k of Af represents an objective that PathPUm2 attempts to satisfy

by making assignments to primary inputs and propagating them using MATSim. The assignment of

symbolic vector sequences as control signals to sensitize modules to propagate TR arc similarly

treated as objectives by PathPlan2. Success is achieved when these objectives arc met and when

error propagation signals that contain all errors in M's response set reach primary outputs.

PathPlan2 terminates unsuccessfully if the components o f T s cannot be propagated to M, or if the

error information in the error propagation signals cannot be propagated to primary outputs.

The algorithm works at two levels of abstraction, the symbolic layer and the vector layer,

corresponding to the two levels of abstraction currently supported by MATSim. As noted, MATSim

currently treats all fauit-frce signals, including individual vectors as symbolic-laycr signals. The

FTPs used by PathPlan2 describe the format for the components o f Ts . If an individual compo­

nent is a symbolic reference to a vector sequence, then PathPlan2 will propagate expressions

using MATSim. If vk is a single vector, then PathPlan2 will propagate vectors at this same level of

abstraction. However, MATSim uses the same symbolic-laycr update routines to propagate the sig-

175

1 test onep iodule
2 {
3 errorpropagation J a y e r = symbolic
4 perform initial implication;
5 if (successful) ro tu rn (SU CCESS);
6 while (TRUE) {
7 if (there are more objectives) {
8 get new objective (k, v^) ;
9 (j, vj) = backtrace((k, v*));
10 push(PI_stack, (j, v .)),*
11 imply forward;
12 if (successful) rc tu rn (SU CCESS);
13 } else if (PI stack empty)
14 re tu rn (FAILURE);
15 if (symbolic-layer error propagation is blocked) {
16 errorpropagationJayer = vector;
17 imply forward;
18 if (successful) re tu rn (SUCCESS);
19 }
20 while (test is not possible) {
21 errorpropagation J a y e r = symbolic;
22 (h vj) = P°P(P I_stack);
23 imply forward;
24 if (there is an untried alternative v'.') <
25 /Vj = v ;
26 push(PI_stack, (j , v.)),*
27 imply forward;
28 if (successful) re tu rn (SU C C ESS);
29 } else if (PI_stack empty)
30 rc tu rn (FAILURE);
31 if (symbolic-layer error propagation is blocked) {
32 errorpropagation J a y e r - vector;
33 imply forward;
34 if (successful) re tu rn (SUCCESS);
35 }
36 >
37 >
38 re tu rn (FAILURE);
39 }

Figure 5.18. The main PathPlan! algorithm

nals; the vectors are treated as trivial expressions.

When Ts is successfully matched at the inputs to the MUT, PathPlan2 initiates error

propagation in parallel with the propagation o f fault-free signals. It automatically controls the

abstraction level for error propagation. It tries first to propagate symbolic error signal values from

176

the set R j (symbolic-laycr signals). If propagation is blocked along all paths to a primary output,

then PathPian2 automatically switches to the vector layer and attempts to propagate errors by

evaluating response functions using the same circuit state previously used to propagate signals at

the symbolic layer.

We now examine the test generation procedure of Figure 5.18 in more detail. PathPkm2

generates (bus, value) pairs (A, v^) as objectives and uses a backtrace procedure to assign vk to a

primary input (PI). The initial assignment is saved on a stack PI_stack and forward implication is

performed using symbolic-laycr error propagation. If forward implication is successful, the algo­

rithm terminates successfully. Otherwise, the algorithm switches to the vector layer for error prop­

agation. If a test is not possible, alternatives are tried for each PI assignment in the stack. Note that

there may be many alternatives for each PI, whereas there arc just two in PODEM. The algorithm

terminates unsuccessfully when all possible alternatives have been tried for each element in the

stack. The test for success in symbolic-laycr error propagation in lines 12 and 28 is simply a check

to see if the symbolic error signal value propagated to a primary output (PO) is R e R 1 . The test

for success in the ease of vector-layer error propagation (lines 18 and 34 of Figure 5.18) uses

analyze jyropagationcondition (Figure 5.16). Let the test frontier be denned as the set of lines

carrying error propagation signals incident on modules whose output is unassigned. The state of a

circuit determined by PathPlan2 during a test generation pass, but before it terminates success­

fully, is called a partial test. For any partial test, propagation is blocked (line 15) at the symbolic

layer when the test frontier is empty. Propagation may still succeed at the vector layer if there has

been no conflict.

When generating new objectives (line 8 in Figure 5.18), PathPIan2 attempts first to satisfy

the requirements o f the MUT. When the input stimulus sequence has been matched at the inputs to

the MUT and a test response TR has been produced at the outputs of the MUT, PathPkm2 gener­

ates objectives for propagating TR using PTPs. PathPlan2 selects a module M on the test frontier

and searches the PTPs for M to determine a relevant input control port X c and value V (Xc) that

will make M transparent for TR on input data port X D .

PathPlan2 initiates backtracking (discussed below) at line 20 when a test is not possible

given the current state of the circuit, that is, when

177

1. Propagation is blocked at the vector layer, implying that error propagation on both the

symbolic and vector layers have been tried unsuccessfully

2. There is a conflict, implying that two different values arc scheduled to be assigned to the

same bus at the same layer

3. The inputs to the MUT have all been assigned, but do not match Ts

4. A new objective cannot be generated

Propagation is blocked at the vector layer when analysis o f the response functions at the test fron­

tier using analyzej)ropagation_condition shows that all errors arc not propagated. To determine

conflict, MATSim checks for frozen values. The majority of assignments to the M UT arc not tests,

in contrast to the typical gate-level ease. Therefore, if all o f the MUT inputs have been assigned,

but the values arc not in Ts , then a test is not possible from the current state, and backtracking

must be initiated. Finally, PaihP!an2 backtracks when, given the current partial test, no test pack­

ages for any module can be applied to obtain a new objective.

To backtrack, PathPlan2 returns to a previous decision point by popping the old alterna­

tive off PI_stack and generating a new alternative. The algorithm returns to the symbolic layer to

attempt error propagation. It may switch again to the vector layer again to complete propagation if

the symbolic error signal R cannot be propagated through any module at the test frontier. Although

it is easy to generate all possible alternatives for a vector, there is no unambiguous alternative for

arbitrary symbolic expressions. Therefore, alternatives arc not tried exhaustively for symbolic

expressions. Instead, PathPlan2 associates strategies for generating alternatives directly with the

test package component of the objective (k, v^) that is backtraccd to the primary input. Exam­

ples of such strategies include: increment, decrement, and multiply-by-two. For instance, if the

most recently assigned PI is ini and has signal value A , and the alternate generation strategy is

increment, then on backtrack, the new assignment is A +l. Backtrack termination strategies also

include placing limits on the number o f backtracks.

The algorithm test_onejnodule discussed above generates tests for acyclic combinational

circuits or circuits with full scan. We now outline how PathPUm2 can be extended to handle

sequential circuits with feedback loops. The values assigned to ports of the circuit model become

arrays of values indexed by time. These arrays arc allocated in fixed-sized blocks. The extended

version of PathPlan2 searches for a test generation solution in time and space up to the limits of

178

2 {
seq_test_one_modute
{

3
4
5
6
7
8
9

initialize max_span, , and m axjim e;
do {

allocate value arrays o f size max_span;
if (testj>nejtiodule() == SUCCESS) re tu rn(SUCCESS);
increment m a x jp a n , tQ, m axjim e;

} while (max_span <= SPANJJMIT);
re tu rn (FAILURE);

10 }

Figure 5.19. Top level algorithm for sequential test generation.

these arrays. New larger arrays are dynamically allocated to continue the search. The top-level

algorithm is given in Figure 5.19. The variable m a x jp a n controls the size of the value arrays. The

variable tQ is the timcstep in which the test is instantiated, nominally in the center o f the value

array. The variable m a xjim e , is the maximum timcstep for cither propagation or backtrace.

One difficulty in sequential test generation using precomputed tests for modules, is the

propagation of error signals through the MUT in timeframes other than t0 . The symbolic error sig­

nal R cannot be propagated through the MUT since we cannot be certain that error information is

not masked. To analyze error propagation using response functions, multiple versions of response

functions are needed, one for each fault in the MUT, as discussed in Chapter IV. The propagation

condition must be analyzed for all of these response functions, which complicates the analysis by a

factor proportional to the number of faults in the MUT. In addition, a detailed fault model is

needed for the MUT, which may not always be available.

The ability to generate tests for sequential circuits is an important requirement of commer­

cial test generators, since most practical circuits have mcmoty elements and feedback. The two

extensions to the basic PathPlan2 algorithm discussed above can be added to convert PathPlan2

to a sequential circuit test generator. However, our main objective in implementing the current ver­

sion of PathPlan2 is to demonstrate new signal propagation and analysis techniques, based on our

propagation theory, that allow precomputed test packages to be propagated in circuits with com­

plex bus structures.

5.2.4 Example

Next we present an example of how PathPlan2 generates a test for a module. Wc use the

179

in3

outl

iti2

ini MUT

Trunc(O)

ADDER
addl

ini

inO
MUX

ctrl

muxl

Figure 5.20. Module add3 in Fltrdp to be tested by PathPlanZ.

version o f Fltrdp shown in Figure 5.20. The MUT is add3, and the FTP we want instantiate is TP,

- (A ,, A 2; (J). In the following, to demonstrate signal assignment we use the statement Z := v to

indicate that value v has been assigned to bus Z. As before, the statement V(Z) » v indicates that the

value v has been propagated to bus Z.

To instantiate TP , , PothPlan2 begins by backtracing objectives to the nearest primary

input (lines 8-11 in Figure 5.18) and simulating using MATSim. Therefore, it makes the assign­

ment in 4 :« A 2 first. This satisfies the objective specified in T P , , namely, Vr(add3.in2) = A 2. Next

PathPlan2 transfers the objective F(add3.inl) = A, to the other primary inputs. Recall that PTPs

arc used in determining how objectives arc transferred from module outputs to module inputs dur­

ing backtrace. For modules tl and t2 we use the PTP TP2 = (2a; a) , where a is a variable. In

other words, to obtain a particular value v at the output of a truncate module such as tl , the input

should be 2v. For modules addl and add2, we use the PTP TP3 = (a , a ; 2a), where again, a is a

variable. In other words, for a particular value v, to obtain a output of 2v, v must be applied to both

inputs. Using these PTPs, we find PathPlan2 makes the assignments in3 := A , , in2 := A , ,

ini := A, in this order.

With these assignments, TP, is successfully instantiated, and muxl.ctrl = 0 because the

least significant bit of an even number is 0. Since PathPian2 begins by processing error signals at

the symbolic layer, the error signal at the output of add3 is R. However, the error signal cannot be

propagated through muxl with the circuit in this state. Switching error processing to the vector

layer (lines 15-18 in Figure 5.18) docs not help since m uxl.ini is disabled; the transmission func-

180

in 3 _ l.

in3 2 .
MUT

ADDER
aild2

in2

ini

ADDER
addl

Trunc(O)

Trunc(8..1)
t2

Ctrl
inO

MUX

ini
muxl

outl

Tmnc(8..1)-
tl

m4
ADDER

add 3

Figure 5.21. MUT connected to Fltrdp tested by PathPlan2.

tion of muxl is 1. Therefore, PathPlan2 backtracks (lines 21-23) by choosing an alternative for

the most recent assignment in 1 := A (. We assume here that the backtrack strategy associated with

each value is increment, so the new assignment to ini is A t + 1. The output o r addl becomes

2A (+ 1, but the output o f the truncate module tl is which also fails. When PathPlan2 back­

tracks a second time however, we obtain ini :=■ A j + 2, and the output of addl is 2A { + 2 , which

becomes A x + 1 at the output o f tl. This results in T P l being successfully instantiated and also in

V(muxl.Ctrl) ~ 1, which propagates R to the primary output. The final symbolic test program is

ini := A j + 2
in2 := Aj
in3 :» A ,
in4 := A 2
V(outl) = A, + A2

Recall (Section 2.5.) that PathPlan cannot generate a test for add3 because it cannot propagate

arbitrary symbolic expressions.

Next, we show how PathP!an2 switches layers to complete error signal propagation when

propagation is blocked at the symbolic layer. Consider the new version o f Fltrdp in Figure 5.21. In

this version, an arbitrary MUT is connected to add2. We assume that the FTP for this module is

77*j « (A j , A 2 ; A 3), and that the test has two test vectors with first-order response sets Q W] = <0,

1 > and QK2 = {5, 6} respectively. We also assume that the correct value in is 0 and the cor­

rect value in Q.R2 ‘s $•

To generate a test, PathPlan2 first tries to instantiate TP^. Since the MUT is connected

181

directly to primary inputs, PalhP!an2 immediately makes the assignments in3_l := A x and

in3_2 := A 2 . The FTP T P X is instantiated and the symbolic-laycr error value R is produced at the

output o f the MUT. To propagate the test response through add2, PathP!on2 uses the PTP (a , 0;

a) , which results in the assignments in2 := 0 and ini := 0 after backtrace. At this point, the test

frontier consists o f the inputs to truncate modules t2 and t4. Since R cannot be propagated through

truncate modules, propagation is blocked.

Next, PathPlan2 switches to the vector layer. The response function at the output of the

MUT is PR = -{(0;0), (1; I), (5;5), (6;6)}, which is propagated to muxl.ctrl and mux l.inO. In order

to propagate this response through m uxl, PathPlcin2 uses the PTP (a , , a 2, a 2 + 1), where a ,

and a 2 arc variables. This test package specifics that redundant error information can be propa­

gated through all inputs of the multiplexer simultaneously as long as the two data inputs differ— in

this case, they arc made different by adding 1 to the value at port ini. After backtrace, PathPUm2

makes the assignment in4 := I. The final symbolic test program is

ini := 0
in2 := 0

in3_l := A,
in3_2 := A 2

in4 :<= 1
V to u tt) - MU X { A 3, A 3/ 2 , A 3/ 2 + 1)

Recall that ARTEST [58] cannot propagate error information through circuits with irregular buses

of the kind illustrated by Fltrdp in Figure 5.21.

5.2,5 Summary of PathPlan2

PathPlan2 automates the generation of test programs that employ precomputed tests and

several levels of abstraction. It can generate cither symbolic or vector-level test programs depend­

ing on the abstraction level in the test packages used. Since PathPlan2 uses a test generation algo­

rithm similar to PODEM that only makes assignments to primary inputs, it needs no implication

procedure other than MATSim.

In addition, PathPlan2 is unique as a test generation algorithm making assignments only

to primary inputs, in that it supports symbolic-laycr signal assignments and backtracking.

PathP!an2 uses a variety of alternative-generating strategics associated with each primary input as

182

discussed above in order to backtrack. In addition, PathPlan2 uses FTPs during backtrace to trans­

fer some functional constraints and requirements to primary inputs. For instance, in the Fltrdp

example (Figure 5.21), we showed how PathPlan2 transferred an objective o f 2A f at the output of

an adder to A j on both inputs to the adder using PTPs. PalhPtan2 cannot currently take into

account conflicting constraints from different paths, although this capability can be added.

The current version of PathPian2 also does not implement the sequential circuit test gen­

eration algorithm discussed above. The ability to generate tests for sequential circuits is important,

and future versions of PathPlan2 will include this feature. However, as mentioned, the objective

here is to demonstrate that PathPlan2 can generate tests for circuits with distributed partially

transparent paths, since this is a key limitation o f PathPlan, ARTEST, and all other previously

reported hierarchical test generation methods using precomputed tests. We demonstrated above

how PathPlan2 propagates precomputed test responses on partially transparent paths in Fltrdp. We

will discuss further examples below.

5.2.6 Experimental Results

PathPlan2 and MATSim are implemented in C and C++. Together with the Vcrilog parser

and related library functions, they contain roughly 30K lines o f code. Here we report the results of

using PathPlan! to generate tests for some medium-sized datapath circuits. The objective of this

experiment is to further demonstrate the ability of PathPlan2 to generate tests for circuits with dis­

tributed partially transparent paths, and to compare the performance of PathPIm 2 to the perfor­

mance of PathPlan for the circuits that PathPlan can also handle. Since PathPlan2 is a more

complicated program than PathPlan— it is designed to generate tests for more general types o f cir­

cuits— it might be expected that PathPlan is more efficient for the smaller domain o f circuits that

it handles. However, we have found that the performance o f the two programs is similar.

The experimental results are shown in Table 5,2. CPU time measurements were taken on

an Sun 4 workstation with 32 megabytes of memory. The simple datapath circuits Fltrdp, Vcrtdp,

and Row dp were used as benchmark circuits in the original work on PathPlan and are discussed in

Chapter II. Performance results for PathPlan were not measured in terms o f CPU time, since this

depends on the implementation o f the algorithm, the quality of the compiler, the machine used to

execute the program, etc. Instead, module evaluations arc counted. Subsequent performance mca-

183

C ircu it
N u m b e r

o f
m odules

N u m b e r
o r

gates
(est.)

PathPlanUMATS im PathPlan

M odu le
ev a lu a tio n s

C PU
(sec)

Test
covcruge

<•$>

M odu le
ev a lu a tio n s

C PU
(see)

T est
co v erag e

m

Fltrdp 6 254 255 1.12 100 57 - 70

Vert dp 5 138 29 0.25 100 21 - 100

Rowtlp 6 220 100 0.59 100 33 - 100

Sm alldp 8 250 180 1.07 100 - - -

M dp 7 792 439 3.21 100 - - -

Tabic 5.2 Performance comparison o f PathPUm2/MATSim and PathPlan.

surements on other test generators, particularly ARTEST, have been limited to CPU time. There­

fore, we have provided measurements of both types for PathPlan2. The “ test coverage” column

lists the percent of tests in the test packages that were successfully applied.

We assume direct control of all control signals for the datapaths in this experiment. Topi­

cally, datapath circuits such as these arc controlled by a separate control unit. The output of the

control unit is latched in a register and is part of a scan chain. This is a modest design-for-tcstabil-

ity strategy implemented in nearly all machines of this type used in commercial circuits. A sequen­

tial version of PathPhm2 can also generate the control signals in many cases if there are no

conflicts. This will make test generation times longer, but will not invalidate the results presented

here.

As shown in Table 5.2, the performance in terms o f module evaluations for PathPlan2 and

PathPlan arc comparable (within an order o f magnitude) for Fltrdp, Vcrdp, and Rowdp, despite the

fact that PathPlan2 is more complicated and general. The circuit Smalldp is a modified version of

the datapath circuit shown in the box in Figure 3.18. In its original form, the circuit is untcstablc;

some changes were made to make it possible for PathPlan2 to instantiate all test packages.

Despite these changes, the circuit still contains bus truncations that make it impossible for either

PathPlan or ARTEST to test it. Finally, Mdp is a small computer datapath circuit similar to one

used as a benchmark in ARTEST. Since this implementation o f PathPlan2 assumes direct access

to control signals, an assumption not made by ARTEST, we cannot directly compare the pcrfor-

184

mancc of the two programs. Nevertheless, the performance o f PathPlan2 in generating a test for

this circuit appears to be similar to its performance in the other eases listed.

5.3. Summary

We have presented two new test generation tools PathP!an2 and MATSim. PathPlan2 is a

hierarchical test generation algorithm similar to PODEM in that it uses forward-only implication.

MATSim analyzes error propagation for circuits with precomputed tests for modules. It docs not

require low gate-level models for modules being tested, these rue implicit in the precomputed

tests. It propagates signals at two levels o f abstraction, and can analyze error propagation along

distributed partially transparent paths.

PathPian2 generates tests at two levels o f abstraction. It assigns signal values to primary

inputs and uses MATSim to propagate these signals to the inputs o f the MUT and to the control

inputs of modules on the propagation path from the output o f the MUT to primary outputs. Pre­

computed tests stored in test packages can be represented symbolically and propagated as sym­

bolic expressions, or numerically and propagated as vectors. Error signals are propagated

symbolically by default, but when propagation is blocked at the high level, PathPkm2 automati­

cally switches to propagation at the vector level to complete the analysis. Hence, it can analyze

propagation in circuits with complex and irregular bus interconnection structures, a capability

lacked by previous high-level test generators using precomputed tests

CHAPTER VI

CONTRIBUTIONS AND FUTURE WORK

This chapter reviews the major contributions o f the thesis and brie fly discusses some

future directions for research.

6.1. Thesis Contributions

Hierarchical test generation using precomputed tests is an important method for comput­

ing tests for complex digital circuits, Many circuits arc composed of well-defined modules from

proprietary design libraries and have precomputed tests stored for them. It is often inconvenient or

impossible to generate new tests for these modules when they arc included in a larger circuit. This

thesis has presented the theory and tools we developed for generating tests for circuits using pre­

computed tests for modules. The major contributions arc as follows:

We designed and im plem ented one of the first test generation programs PathPlan

designed specifically to use precomputed tests and symbolic propagation techniques

• We developed a new, general theory o f signal propagation for modular, bus-structured

circuits

• We developed an efficient, hierarchical method for analyzing error propagation when

testing modular circuits with complex, irregular buses.

We proposed a novel, logic design method for increasing the transparency of modules to

improve the testability of circuits

• We designed and implemented a pair o f test generation tools MATSim and PathPlan2

with the unique capability of generating tests for modular circuits with complex, irregu­

lar buses using precomputed tests and hierarchical signal propagation

PathPlan generates tests for circuits by propagating symbolic representations of prccom-

185

putcd test data, stored in units called test packages (T S;TR) , through a circuit model. The test

stimulus Ts is propagated to a module under test (MUT) and the test response TR is propagated to

primary outputs. Both Ts and TR arc represented using a flexible and hierarchical notation in

which signals arc sequences o f vectors. Only simple transformations o f Ts and TR during signal

propagation arc allowed by PathPlan. This approach cannot handle circuits with complex, irregu­

lar bus structures including truncation and rcconvcrgcnt fanout—a restriction also shared by all

published test generation techniques developed since PathPlan that use symbolic and high-level

signals. However, PathPlan is very effective for testing embedded RAMs and other large modules

in circuits with regular buses that cannot be tested using conventional techniques. It also demon­

strates that symbolic propagation can provide substantial performance benefits over conventional

techniques. In some cases, PathPlan can generate tests up to three orders o f magnitude faster than

conventional techniques. This is important when the precomputed tests arc long, as they may be

for embedded modules such as CPUs in microcontrollers. The overall philosophy o f PathPlan has

been implemented by a major electronics company, and it forms the basis for the other contribu­

tions of this thesis.

The main limitation o f PathPlan and other test generators using precomputed tests is the

pessimistic methods they use for analyzing the propagation o f errors at high levels of abstraction.

The problem of hierarchical error propagation has been poorly understood. To expand the range of

circuits that can be tested using precomputed tests and hierarchical propagation techniques, wc

developed a theory o f complex signal propagation for modular circuits. To characterize the propa­

gation of vector sequences through module functions, wc introduced the concept of propagation

functions. A propagation function is a representation o f a module’s input-output behavior in which

disjoint subsets (a partition) of the module’s input signal domain arc mapped to signal values at the

module’s output ports. Signal propagation in multi-module circuits is characterized by expressions

in a propagation algebra whose elements are propagation functions expressed as partitions and

whose operators correspond to series-parallel connections. The propagation algebra is governed by

a number of common algebraic laws and properties, which wc have identified. Special versions of

propagation functions called transmission functions represent the information transmission prop­

erties o f modules and circuits alone, independent o f the information to be propagated.

187

Wc defined a circuit to be transparent if its input signals can propagate through it without

loss of information. This property is explicitly represented in our propagation algebra as the zero

propagation function. We then studied the central problem o f propagating errors, that is, discrepan­

cies between faulty and fault-free signals. If there is a transparent path from the output of the mod­

ule under test (MUT) to primary outputs, then all errors can be propagated along this path; it is not

necessary to analyze the propagation of individual errors. Therefore, the knowledge that transpar­

ent paths exist can be exploited to improve test generation speed. On the other hand, if a circuit has

poor transparency, it may be impossible to propagate all errors to primary outputs. Our techniques

exactly quantify the capacity of modules to propagate errors. When factors that contribute to poor

transparency arc detected, circuit modifications can be made to improve transparency.

Subcircuits with no single transparent path can still be transparent since partially transpar­

ent circuit paths in space (connected in parallel) or in time (sequences of propagation modes for

the same path), can be combined to provide fully transparent information transmission. Previous

hierarchical test generation approaches based on precomputed tests do not take this composite

transparency into account. The transparency of such combinations is explicitly represented in our

propagation algebra by the intersection/parallel connection operation.

Wc derived several theorems describing the effect on transparency of circuit or module

structure. For example, wc determined the effect of relative input and output port sizes on the

transparency o f modules (Theorem 3.3 and Corollary 3.1). Wc derived necessary and sufficient

conditions for transparency in series connections (Theorem 3.4 and Corollary 3.2) and parallel

connections (Theorem 3,5). We demonstrated that when the output data port o f a module is much

smaller than the input data port, the amount of error information propagated through the module is

limited only by the size of the output port. Moreover, the amount of information that can be propa­

gated in this case is surprisingly large (Theorems 3.8 and 3.9). To deal with incomplete transpar­

ency, wc introduced the concept of A'-transparcncy, that is, the propagation o f data signals along

partially transparent circuit paths in k timcstcps using k different control signals in sequence to

make the paths transparent. Wc also obtained bounds on the minimum value for k (Theorem 3.10).

Wc employed the propagation theory to obtain an efficient hierarchical method for analyz­

ing the propagation of test response errors for specific modules. Wc developed a high-level method

188

for representing response functions as symbolic signal values. These signals can be efficiently

propagated through transparent circuit paths using high-level symbolic module functions. Wc have

developed a method for rigorously constructing these functions from the signal specifications. Our

method is more general than previous, ad hoc methods of defining and using high-level error prop­

agation signals, and supports a full hierarchy of symbolic signals. At the lowest level in this hierar­

chy, error propagation is analyzed by evaluating response functions from the output of the MUT to

primary outputs when Ts is successfully applied to it. The response functions arc represented in

the partition format developed in our propagation theory, and can be efficiently propagated as

complex signals through circuits with irregular buses. Since some circuits are opaque to propaga­

tion, wc have also devised design techniques to improve circuit transparency. In contrast to con­

ventional approaches that use additional buses or scan latches to bypass opaque modules in

circuits, our methods focus on making opaque modules more transparent. Wc developed two meth­

ods based on our propagation theory for specifying ^-transparent modules that can be synthesized

using conventional logic synthesis techniques.

Wc implemented our method for hierarchical error signal propagation in a pair of pro­

grams called MATSim and PathPlan2. MATSim is a novel simulator that propagates test package

data at two levels of abstraction, symbolic and vector. Fault-free stimulus signals in MATSim arc

represented by symbolic expressions that arc simplified using techniques derived from symbolic

computer algebra. These techniques have been specialized by us for use in symbolic simulation.

MATSim also uses our hierarchical error propagation techniques to propagate T{{. PathPUm2 is

our new hierarchical test generation algorithm. It extends the capabilities o f PathPlan and uses

MATSim to propagate T s and TR . PathPlan2 can generate tests for circuits with irregular buses

not handled by previously published high-level test generators using precomputed tests for mod­

ules. It is a more powerful and general program than PathPlan, nevertheless, its performance is at

least as good.

6.2. Future Work

Wc conclude this section with some suggestions for extending the results of this thesis.

Theory. Our general theory of propagation can be used to analyze signal transmission through cir-

189

cults composed of combinational modules and simple transparent sequential modules such as reg­

isters and latches. However, many circuits contain complex sequential library modules described

by behavioral models. To handle such modules, the propagation theory can be expanded to analyze

sequential modules, or alternatively, methods can be developed to automatically decompose

behavioral descriptions of large sequential modules into high-level combinational and transparent

sequential components for use in analyzing signal propagation. Similar decomposition methods

;rfc widely employed in high-level synthesis programs such as AutoCircuit.

The simulation approach employed in MATSim can form the basis of a general theory of

symbolic simulation. Such a theory would be useful in several CAD areas including testing and

design verification. The theory would fully characterize the canonical forms for expressions cre­

ated while propagating symbolic values in typical circuits. Exact and complete algorithms for sim­

plifying expressions arc also desirable. Wc plan to further develop context-specific simplification

techniques for expressions used as signals in circuits with buses o f fixed width. MATSim currently

simplifies known even (odd) expressions to 0 (1) when they arc propagated on 1-bit buses.

Test Generation. PathPlan2 can generate tests for acyclic circuits with irregular buses using pro-

computed tests for modules. Wc plan to implement the sequential extensions discussed in Section

5.2. and employ PathPian2 in testing microcontrollers composed of large library modules and cir­

cuits designed by AutoCircuit. When generating tests for sequential circuits, TR is sometimes

propagated through a MUT M in timeframes later than when Ts is applied to it. In order to propa­

gate test response errors through M , individual faults in M must be linked to faulty responses in

Ai’s response set and multiple versions of response functions must be propagated through M using

detailed fault models. Wc plan to add this feature to MATSim and study the performance of various

implementation methods.

MATSim currently analyzes the propagation of test response errors as discrepancies, but

docs not relate these discrepancies to individual faults. The same fault f. in a MUT M may produce

several different error vectors contained in the response set. Therefore, when one error caused by

f. cannot be propagated, f. may be covered by another error that is propagated, Adding some

redundant vectors can improve fault coverage when test response errors must be propagated

through non-transparent circuit paths. On the other hand, typical non-transparent modules such as

190

truncate modules may block certain errors no matter how many redundant vectors arc added. The

effectiveness o f such redundant test vectors in precomputed library tests for modules needs to be

investigated.

Design for Testability. One promising area of future research is design for /.--transparency. Our

experiments suggest that the overhead of using ^-transparent modules in a circuit is comparable

with other design-for-tcstability techniques such as scan design. However, our current design

methods produce /.-transparent versions of modules that arc much larger than the originals since

these methods focus on minimizing the sequence length k, not the module size. Techniques for

optimizing module size and trade-offs between module size and sequence length need to be devel­

oped. Methods arc also needed for designing partially /.--transparent modules and analyzing the

relationship between module size and the amount of transparency (transparency index). Our theo­

retical results (Section 3.3), suggest that some modules can be made quite transparent with small

modifications.

The relationship between transparency index and the propagation of typical faults in prac­

tical circuits requires further study. Increasing transparency may provide diminishing returns for

propagating these faults. Instead, there may be specific errors which should always be propagated.

Finally, it would be useful to compare the overhead of A-transparcnt design techniques with other,

more common design techniques such as scan design and the routing of test points to determine

when each is most appropriate. Transparency should be enhanced only when necessary and always

in the most efficient way. The combination of a powerful hierarchical test generation program that

processes precomputed test sets, and design techniques that provide sufficient transparency only

when needed, should lead to a comprehensive testing method based on precomputed tests that

simultaneously enhances the productivity of designers and improves the quality of the circuits they

design.

APPENDICES

191

192

APPENDIX A

Mathematical Concepts

This appendix reviews mathematical concepts that are used in the propagation theory

described in Chapter III.

A .I. Partition Theory

A relation = on a set S is an equivalence relation if and only if it is

reflexive, that is, x = x lor all x e S

transitive, that is, if .v, - x 2 and x 2 - *3 then a, s x 3 for all x ,, x 2, a3 g S

symmetric, that is, a , = x 2 if and only if x 2 s a , for all a , , x2 e S .

A partition n on a set S is a collection of disjoint subsets of S called blocks, whose union is

S. If s e S , then Hn (s) is the block that contains s. Two elements a , , s 2 e S arc equivalent,

denoted s', = s2 (ti) , if and only if Bn (s ,) = • If K is an equivalence relation on S, then

the set of equivalence classes defines a partition Tt on S , and vice versa. The partition consisting of

all singleton blocks is the zero partition and the partition consisting o f a single block containing all

elements of S is called the unit partition.

Let Tt, and 7t2 be partitions on a set S. The intersection 7t, n 7t2 is the partition on S such

that for any two elements s, t e S , s s t (Tt, n ti2) if and only if s = t (it ,) and s s7 (7 t2) [44).

This operation can be computed by intersecting (using set intersection) each block of Tt, with

every block of Jt2 . Let { 0 ,1 ,2 ,3 ,4 } , Tt, = { { 0 , 1>, { 2 ,3>, {4}} and

w2 = *>’ <2>* (3 , 4 } } , then ti, ^ = { { 0 , 1>, {2>, {3>, { 4 } > .

Let Tt, and 7t2 be partitions on a set S. The union Tt, kj 7t2 is the partition on S such that

two elements of S, s and t arc equivalent, ic. s = t (7t, u ti2) , if and only if there exists a chain in

S, s = .vQ, s , , sn = t for which cither s, s s. + , (Tt,) or s = / (ti2) , 0 < / < n - 1 [44J. The

union operation can be computed by the procedure shown in Figure A .I. This procedure chains

193

1 ComputeJJn\an{ 7t , , n 2)

2 {
3 n l ' u i t 2 = 0 ;
4 for (s <= S J B ^ s) = B n (s) u B n^(s) ;

5 i = l ;
6 do {
7 for (s e S)
8 B. + ,{ a’) = B. (.v) u /s o block o f Kj or n 2 and (B n B. (s)) * 0 } ;
9 if (B . + j (s) ==■ B . (.v)) add B. (s) to ji, u n 2 and delete alt s e B. { s) front S;
10 / - /+ 1;
11 } while (S * 0);
12 re tu rn (j i1 u n2);
13 >

Figure A .I. Algorithm for computing partition union.

together blocks from 7t, and 7t2 that have elements in common. Let S = {0, 1,2, 3, 4} ,

tc! = { {0, I} , {2, 3>, {4} > , and jt2 = { {0, I >, {2>, {3, 4} > , as in the intersection

example above, then Ttj ji2 = { {0, 1 >, { 2 ,3 , 4} } .

If jij and ji2 arc two partitions on a set S, wc say that ti2 is greater than or equal to 7 t,,

denoted rc, < tt2 , if and only if every block of 7t, is contained in 7i2 . A binary relation R on a set S

is called a partial ordering of S, denoted (A\ <), if and only if R has the following properties:

1. Reflexive: a R a for all a <= S ,

2. Transitive: a R b and b R c implies a R c,

3. Antisymmetric: a R b and b R a implies a = b.

The set of all partitions on a set S, together with the ordering relation < is a partial ordering [44].

Let (S, <) be a partially ordered set, and let P be a subset o f 5’; then an clement .v e S is the

least upper bound (tub) of P if and only if for every p e P , p < s , and for every p e P, p < s'

implies that s < s ' . Similarly, an clement s e S is the greatest lower bound (gib) of P if and only if

for every p e P, $ < p , and for every p e. P , s < p implies that s' < s .

A lattice is a partially ordered set that has a lub and a gib for every pair o f elements. The

set o f all partitions on a set S is a lattice, where for any two partitions 71, and ji2,

g l b (t i] tn 2) = ji, 0 tt2 , and lub (tt ,, 7i2) = n , u it2 |44]. A lattice can also be characterized as

an algebra, L = (S, n , u) , where S is a nonempty set of lattice elements, and n and u arc binary

194

operations satisfying four basic postulates for any a, y, z e S.

1. a- n x = x and x u x = x

2. .v n) ' = y n x and x u y - y u x

3. - v n (y n z) = (a o y) n z and x u (y o z) = (x u y) u z

4. x n (a u y) = a and a u (a n y) = a .

These four postulates arc known respectively as the idempotent, commutative, associative, and

absorption laws. If L = (S, n , u) is a finite lattice, then it has a least and a greatest clement

denoted 0 and 1 respectively. Thus for all s e S , s < 1, 0 < a , .v n 1 = s , and i u O = s . The zero

partition and the unit partition given above arc the least and greatest elements respectively in the

lattice of partitions.

A Boolean algebra is a lattice L that also obeys the distributive law, that is., for a, y, z e L

A n (y u z) = (A n y) cj (A n z) and a c j (>’n z) = (a u y) n (a u z) , and in which each

clement has a unique complement, that is, for all a e L , there is a unique clement a ' ^ a such that

A n a' = 0 and a u a j = 1. The lattice o f partitions lacks these properties and is consequently

not as special and well-studied as the Boolean algebras. Nevertheless, a number of useful theorems

have been derived for general lattices [14, 42].

Let L j = (S j , *, +) and L 2 * (S2 , *, +) be two algebras with sets Sj and S 2 respectively,

and binary operations * and +. L j is homomorphic to L 2 if and only if there exists an onto map­

ping /i:ATj —> S2 , such that h (.v*y) = h (a) *h (y) and h (A + y) = h (a) + h (y) , for any two

elements A*,y g S j . In other words, both L l and L2 have the same behavior with respect to the

operations * and +; the homomorphism is said to preserve the operations. The algebras L x and L 2

arc said to be isomorphic if h is also one-to-one. In this case, and L 2 arc identical except for the

names of the elements.

Wc can depict the ordering relation in a lattice L by means o f a graph, called a Hasse dia­

gram 155], whose vertices arc elements of L. Vertex a is drawn in a higher level than vertex b

whenever b < a , that is, b < a and a * b (in the case of module functions, a ^ b). Vertices a and b

arc adjacent if there is no clement c, such that b < c < a . If £2 = { 1,2, 3,4} , then the set of all

partitions on £2, Sa , is

11(1) - {{1,2,3,4}} n, - {{1.2.3}, {4}} Ha - { { I, 2,4}, {3} }

195

" 3 - { { 1 . 3 . 4 } , {2}}

«6 " { { 1, 3}, {2,4}}

n9 - ({ 2 , 3) , { I} , {4}}

Tij, - { { 1 ,4 } , {2}, {3}}

«4 " {{2, 3, 4}, {]}}

" 7 “ { {]>4>- {2, 3} }

«10 " {{1.3) . {2}, {4}}

"la - { 0 , 4 } , { I}, {2}}

*5 - {{ 1 ,2 } , {3,4}}

rt8 - { { 1 ,2 } , {3}, {4}}

- { { 2 , 4} , { 1}, {3}}

« (0) - {{1} , {2}. {3} , {4}}

71(1)

Figure A.2. Hassc diagram for the lattice o f partitions on Q = {1, 2, 3 ,4} .

The partitions Tt (0) and Tt (1) arc the zero and unit partitions, respectively. The Hassc diagram

for Lq = (SQ , n , u) , is shown in Figure A.2. An interior vertex a represents an clement n a which

is the intersection of two elements n b, jic e where 71 <71^, and 7trt<7tc . The elements nh

and 7t arc themselves represented by two vertices above and adjacent to a . For example, in Figure

A.2, TtJ 2 is adjacent to superior vertices tt7 and 7t3 and the intersection of the partitions Tt? and

tt3 is

7t7 nTT3 = { { 1 ,4 } , { 2 ,3 } } n { { 1 ,3 ,4 } , {2}} = { { 1 ,4 } , {3}, {2} } = n ,2 .

The vertcxt rr2 is also adjacent to Tt,2 ; the intersection of any two of ti7 , ti3, and ti2 is 7i12. Note

that ti7, tt3 , and n 2 are all at the same level in the Hassc diagram and arc thus incomparable.

A.2. Series-Parallel Graphs

A graph G is a set of nodes N = n2, n m } and edges E = { e ^ <?2, c } .

Each edge is a pair ej = { an, nk} of nodes, which implies that e. links iij and nk . A graph is

196

Figure A,3. Example o f a non-confluent graph,

directed if every edge is an ordered pair, e. « (» , n .) , which implies that the edge begins on n.
* J K J

and ends on nk . T\vo nodes arc adjacent if there is an edge between them and two edges are adja­

cent if they share a node. A circuit is a sequence o f adjacent nodes and edges

f n , , e . , n. , e . , e, , n. I that begins and ends on the same node. Each e. specifics which
^ K l '] K J ' 2 ' m K \) ‘ j

edge connects adjacent nodes n. and n . in the circuit (since more than one edge may connect

them). A circuit C imposes a direction on its edges: each e. begins on n, and ends on n. . T\vo
'/ Ks i

edges e. and e. are confluent if there do not exist two circuits C (and C2 , each containing edges

e{ and Cy such that the direction imposed on exactly one of the two edges is reversed between C,

and C2 (23], A graph is confluent if all its edges arc confluent.

Consider the graph G in Figure A.3, and consider the circuits C , = (n , , c , , n2 , e2 ,

e3 , n4 , eA, rij), and C2 « (n p e v n2, e&, n4, e3, n 3, c5, n ,) . The direction of both Cj and C2

through edge Cj ■ n2} is the same, namely ti2) . However, the direction o f C,

through e3 is (rt3, n4) , while the direction o f C2 through <?3 is (n4, «3) . Therefore, G is not con­

fluent. In electrical circuit theory, where edges represent resistors or batteries, G is called a Wheat­

stone bridge. No graph with an embedded Wheatstone bridge is confluent [23], On the other hand,

directed graphs are all confluent, because the directions of the edges arc already fixed; circuits

must conform to the fixed direction in order to be valid. If a graph has no circuit, then it is trivially

confluent.

According to Duffin [23], every edge in a confluent graph is part of a series-parallel con-

197

ncction. Most datapath circuits can be modeled as directed graphs, since most modules arc unidi­

rectional. Even circuits with tristate buses can often be modeled as directed graphs for particular

operation cycles [12], Therefore, most datapath circuits can be analyzed as a set o f edges con­

nected in scries and parallel.

198

APPENDIX B

Propagation Algebra

The propagation algebra (S , #) describes the behavior o f propagation functions in the

same way that a Boolean algebra describes Boolean logic. The properties which define this algebra

arc listed in Table B .l which repeats Table 3.1, In this appendix, wc show that the transparency

algebra is consistent, that is, there is at least one system that has these properties. Any other alge­

bra that also has these properties is propagation algebra. All properties in Table B .l, except those

marked with a *, are independent, that is, they cannot be derived from any other properties. Wc

will indicate how this is proved. Note that only three properties arc marked. This is due to the fact

that there is no unique inverse for either # or °, a key property used in deriving new algebraic the­

orems. In defining the properties in Table B .l wc make use o f the following two relations.

Definition B .l: if a, and b arc in S, then a < b if and only if a#b = a .

Definition B.2: if a and b are in S, then a = b if and only if a < b n b < a.

B.3. Consistency

To show that the propagation algebra is consistent, wc will prove that the properties of the

algebra are satisfied by the set of all propagation functions and the series and parallel connection

operations introduced in Chapter III. Wc begin by showing that Definition A .l is equivalent to the

definition of partial ordering given earlier. Definition A.2 was discussed in Chapter III. Let S be

the set o f all propagation functions, and let a, b e 5". In the propagation algebra, the relation a < b

implies that every a of a is contained in some a of b.

attb ~ a if and only if (a aj n a b .) = a ai for all i and j

if and only if . c a ^ . for all / and j.

if and only if a < b

199

Name Property

Closure 1 attb is in S whenever a and b are.

Identity 2a

2b

There is an element 1 in S such that 1 tta = a for every element a
in S,

There is an element 0 in S such that 0 a = a and a °0 = a for
every element a in S.

Distributivity 3 a° (b ite) = (a°b) t t (a°c) whenever a, b, c, (b i t e) , (a° b) ,
(a ° c) , a 0 (bttc) , and (a ° b) # (a ° c) are in S.

Commutativity 4 attb = btta whenever a, b , attb and bita are in S.

Idcmpotencc 5 a ft a ~ a whenever a and a tta arc in S.

Absorption 6 att (a ° b) = a whenever at b, a °b , and att (a °b) arc in S.

Associativity 7a aft (b ttc) s (attb) tie whenever </,&, c, (a ttb) , (b ttc) ,
att (bt tc) , and (attb) tie arc in S.

7b a ° (b ° c) = (a°b) °c whenever a, b, c, (a ° b) , (b ° c) ,
a° (b ° c) , and (a°b) °c are in S.

Miscellaneous 8* attb < a and attb < b
9* 0 #n = 0
10* a < a b

Tabic B .l: Properties of transparency algebra.

Wc will analyze each o f the properties in order.

1. C losure, attb is in S whenever a and b arc.

It is clear that tt is closed, since it is based on partition intersection.

2. Identity.

a. There is an element 1 in S such that 1 tta = a for every element a in S.

b. There is an element 0 in S such that 0 °a =* a and n°0 = a for every element a in S.

For part a,

\tta - {(o, I , 2 1̂ - 1 ;(o, 1, 2 |ZdI - 0)> # 'C (c x 1;P 1) (a , ,;[!„)>

- (l , p ,)

(a 2; (0 , P2), { I, p2) f . . . t (2 |Zd! - 1, p j) ,

(a „ ; (Q , P JI) , (l , P J,) (2 |Zfl|- l , p J) >

— a

200

For part b.

0 = { (0;0), (1; 1) , . . (2 ^ ° ' - 1 ;2|Zd|- 1)} { (a , ^) , ...f ((y,Pn)>

If a (. contains j, then 0 a contains 0';|3.) for all j e a r This implies that 0 oa combines

(a .;P (.) for a il/.

Finally, consider

a° 0 - { (a ^ p ,) , . . . , (o ^ P ,,)} { (0 ;0) , - l) }

If Pf. = j , then (a (.y), (a .;p () e o 0 for all i. This implies that «°0 = a .

3. Distributivity. a° (bttc) = {a ° b) t t (a ° c) whenever a, b, c, (bt t c) , (a°b) , (< i°c),

n° (bttc) , and (a°b) t t (a°c) arc in S.

{ n ote l ; (P frl, Pcl)) , a cn ; ^ p ^ , Pr;iJ J >

= { (“ fli : P w | P « i e a M) ‘ - >
“ <laal$ci\Kl E « C1> — >
= { <a rt 1 n a „ r (Pw. VCJ) | Pa , e ab. n acJ) , . . . }

= < <a « r (Pw» PCj> |P«t e abin a cj'>' *•*>

4. Commutativity, = btta whenever a, b, attb and btta arc in 5.

This is true since partition intersection is commutative.

5. Idempotence. atta = a whenever a and atta arc in S.

This is true since partition intersection is idcmpotent

6. Absorption, att (a°b) = a whenever a, b, a °b , and at t (a°b) arc in 5.

a°b = { s ablh ■■■}
att(a°b) - < 0»„i < " > CP„,, Pw) |Pffll e « w), —>

= a

7. Associativity.

a. att (bttc) = (attb)t tc whenever a, b, c, (a t t b) , (bt tc) , att (bttc) ,and (attb)ttc arc

in 5.

bttc

a 0 (bttc)

a°b

a°c

(aQb) t t (a°c)

201

b. a° (b° c) - (a°b) °c whenever a, b, c, (a°b) , {b°c) , a° {b°c) , and (a°b) °c arc in S.

These follow directly from the definitions of tt and .

8. attb < a and attb < b .

o#b < a if and only if attbtta = attb

if and only if attattb = attb

if and only if attb = attb

attb <b if and only if attbttb = attb

if and only if attb = attb

definition A.l

commutation (property 4)

idempotcnce (property 5)

definition A.l

idempotcnce (property 5)

9. 0#n s 0 ,

This is clear from property 8.

10. a < a°b.

To prove this note that a < a°b if and only if att (a°b) = a by definition A.2, and

att (a ° b) = a is true by property 6.

B.4. Independence

Wc have shown that the propagation algebra is consistent with respect to the algebra

formed by propagation functions and the series and parallel connection operations. We have also

shown that properties 8,9 , and 10 arc not independent; they can be derived from some o f the other

properties. The other nine properties arc independent. To show this, wc need to demonstrate for

each property />., that there arc systems in which property p. is not true, but all other properties arc

true. Wc will demonstrate this for one propcrty-closure. The proofs for the other properties arc

similar, but lengthy, Consider the algebra defined by the set {0,1 > and operators # and as given in

Figure B.4. It is clear that the algebra is not closed. Tables B.2 through B.4 demonstrate that all

other properties are true.

202

tt 0 0 o 0 1

0 X 0 0 0 I

1 0 I I 1 1

Figure 11.4. Algebra for proving that closure is independent.

a b c a° {bttc) {a°b) t t {a°c) attb btta atta at t (b°c)

0 0 0 - — _ — - -

0 0 1 0 0 - - -

0 1 0 0 0 0 0 - 0

0 1 1 1 1 0 0 - 0

1 0 0 - 1 0 0 1 1

1 0 1 1 1 0 0 1 1

1 1 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Table B.2: Truth table proving that closure is independent.

a b c att {bttc) (attb) tie a ° (b°c) {a°b)°c 0 °o

0 0 0 - - 0 0 0

0 0 1 - - 1 1 0

0 1 0 - - 1 1 0

0 1 I 0 0 1 1 0

1 0 0 - - 1 1 1

1 0 1 0 0 1 1 1

1 1 0 0 0 1 1 1

1 1 1 1 1 I 1 1

Table B.3: Truth table proving that closure is independent.

203

a b c (7°0 1 #a

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 1 1

1 0 I 1 1

1 1 0 1 1

1 1 1 1 1

Table B.4: Truth table proving that closure is independent.

BIBLIOGRAPHY

204

205

BIBLIOGRAPHY

1. M. S. Abadir and M. A. Breuer. “Test Schedules for VLSI Circuits Having Built-in Test
Hardware," IEEE Trans. Comput., Vol. 35, pp. 361-367, April 1985.

2. M. Abramovici, M. Breuer, and A. Friedman. Digital Systems Testing and Testable Design,
Computer Science Press, New York, NY, 1990.

3. Advanced Micro Devices. “The Am2910, A Complete 12-bit Microprogram Sequence Con­
troller,” in AMD Data Book, Sunnyvale, CA, AMD Inc., 1978.

4. A. Akritas. Elements o f Computer Algebra with Applications, John Wiley and Sons, New
York, NY, 1989.

5. V. D. Agrawal, K. T. Cheng, and P. Agrawal. “CONTEST A Concurrent Test Generator for
Sequential Circuits,” Proc. 25th Design Automation Conf, pp. 84-89, June 1988.

6. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques, and Tools, Addi-
son-Wcslcy, Reading, MA, 1986.

7. H. Ando. 'Testing VLSI With Random Access Scan,” in Comcon 80, 1980.

8. D. R. Barstow. Knowledge Based Program Construction. Elsevier North Holland, Inc., New
York, NY, 1979.

9. F. Beenker et al. “A Testability Strategy for Silicon Compilers," in Proc. Int. Test Conf., pp.
660-668, 1989,

10. R. G. Bennetts et al. “A Modular Approach to Test Sequence Generation for Large Digital
Networks,” Digital Processes, pp. 3-23, 1975.

11. M. Bershteyn. “Sequential Test Generation Tool for Embedded Cells," in Proc. Workshop on
Hierarchical Test Generation, Blacksburg, VA, August 8-11, 1993.

12. D. Bhattacharya and J. P. Hayes. Hierarchical Modeling fo r VLSI Circuit Testing, Kluwcr
Academic Publishers, Boston, MA, 1990.

13. D. Bhattacharya, B. T. Murray, and J. P. Hayes. “High-Level Test Generation for VLSI,"
IEEE Computer, Vol. 22, pp. 16-24, April 1989.

14. G. Birkhoff. Lattice Theory, American Mathematical Society, Providence, Rhode Island,
1960.

15. D. Brahmc and J. A. Abraham. “Functional Testing of Microprocessors," IEEE Trans. Corn-
put., Vol. 33, pp. 475-485, 1984.

16. M. A. Breuer and A. D. Friedman. Diagnosis and Reliable Design o f Digital Systems. Com­
puter Science Press, Rickville, Maryland, 1976.

17. R. E. Bryant. “Graph-Based Algorithms for Boolean Function Manipulation," IEEE Trans.
Comput., Vol. 35, pp. 677-691, August 1986.

18. S. J. Chandra and J. H. Patel. “A Hierarchical Approach to Test Vector Generation" in Proc.
24th Design Automation Conf , pp. 495-501, 1987.

206

19. C-H Chen, T. Kamik, and D. G. Saab. “Structural and Behavioral Synthesis for Testability
Techniques,” IEEE Trans, Computer-Aided Design, Vol. 13, pp. 777-785, June 1994.

20. D. R. Coclho. The VHDL Handbook, Kluwer Academic Publishers, Boston, MA, 1989.

21. D. Cohen. "On Holy Wars and a Plea for Peace," IEEE Computer, Vol. 14, pp. 48-54, Octo­
ber 1981.

22. J. H. Davenport, Y. Sirct, and E. Toumicr. Computer Algebra: Systems and Algorithms fo r
Algebraic Computation, Academic Press, San Diego, CA, 1988.

23. R. J. Duffin. "Topology of Series-Parallel Networks,” Journal o f Mathematical Analysis and
Applications, Vol. 10, pp. 303-318, 1965.

24. J. R. Durbin. Modern Algebra, John Wiley & Sons, New York, NY, 1979.

25. E. B. Eichelbcrgcr and T. W. Williams. “A Logic Design Structure for LSI Testability,” in
Proc. 14th Design Automation Conf, pp. 462-468, 1977.

26. M. Emori et al. "ASIC CAD System Based on Hierarchical Design-for-Tcstability,” in Proc.
IEEE Int. Test Conf, pp. 404-409, 1990.

27. Epoch Finesse User and Reference Manual, Cascade Design Automation, Bellevue, WA,
1993.

28. K. E. Erickson, "A New Operation for Analyzing Scries-Parallcd Networks," IRE Trans. Cir­
cuit Theory, pp. 124-126, March 1959.

29. F. J. Ferguson and J. P. Shcn. "A CMOS Fault Extractor for Inductive Fault Analysis," IEEE
Trans, Computer-Aided Design, Vol. 7, pp. 1181-1194, November, 1988.

30. S. Freeman. 'Test Generation for Data-Path Logic: The F-Path Method.” IEEE Journal o f
Solid-State Circuits, Vol. 23, pp. 421-427, April 1988.

31. A. D. Friedman. "Easily Testable Iterative Systems,” IEEE Trans. Comput., Vol. 22, No. 12,
pp. 1061-1064, December, 1973.

32. T. E. Fuhrman. “Industrial Extensions to University High Level Synthesis Tools: Making It
Work in the Real World," in Proc. 28th Design Automation Conf, pp. 520-525, 1991.

33. H. Fujiwara. Logic Testing and Design fo r Testability. The MIT Press, Cambridge, MA.,
1985.

34. H. Fujiwara and T. Shimono. “On the Acceleration of Test Generation Algorithms," in Proc.
13th Fault-Tolerant Computing Symp., pp. 98-105, June 1983.

35. S. Funatsu, N. Wakatsuki, and T, Arima. “Test Generation Systems in Japan,” in Proc. 12th
Design Automation C onf, pp. 77-84, 1980.

36. S. Gai, F. Somcnzi, and E. Ulrich. "Advances in Concurrent Multilevel Simulation," IEEE
Trans. Computer-Aided Design, Vol. 6, pp. 1006-1012, November 1987.

37. D. D. Gajski. "Silicon compilation,” VLSI Systems Design, pp. 48-64, November 1985.

38. K. O. Geddcs. “On the Design and Performance of the Maple System,” in Proc. 1984 MAC-
SYMA Users’ Conference, pg. 199, 1984.

39. A. Ghosh, S. Devadas, and A. R. Newton. "Sequential Test Generation at the Rcgister-Trans-
fcr and Logic Levels," in Proc 27th Design Automation C onf, pp. 580-586, 1990.

207

40. P. Goel. “An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic Cir­
cuits.” IEEE Trans. Compute Vol. 30, pp. 215-222, March. 1981.

41. P. Goel. “Test Generation Costs Analysis and Projections,” in Proc. 17th Design Automation
Con/., pp. 77-84, 1980.

42. G. Grfltzer. General Lattice Theory, Academic Press, New York, NY., 1978.

43. F. Harary, Graph Theory, Addison-Wcslcy, Reading, MA, 1969.

44. J. Hartmanis and R. E. Steams. Algebraic Structure Theory o f Sequential Machines. Prcn-
tice-Hall, Englewood Cliffs, N. J., 1966.

45. J. P. Hayes. “A Calculus for Testing Complex Digital Systems,” in Proc. 10th Fault-Toler­
ant Computing Symp., pp. 115-120, Kyoto, Japan, 1980.

46. J. P. Hayes. “Digital Simulation with Multiple Logic Values,” IEEE Trans. Computer-Aided
Design, Vol. 5, pp. 274-283, April 1986,

47. J. P. Hayes. “Fault Modeling.” IEEE Design and Test, pp. 88-95, April 1985.

48. J. P. Hayes. Introduction to Digital Logic Design, Addison-Wcslcy, Reading, MA, 1993,

49. E. V. Huntington. “Sets of Independent Postulates for the Algebra of Logic,” Trans. Ameri­
can Mathematical Society, Vol. 5, pp. 288-309,1904.

50. O. H. Ibarra and S. K. Sahni. “Polynomially Complete Fault Detection Problems." IEEE
Trans. Comput., Vol. 24, pp. 242-249, March 1975.

51. V. Immancni and S. Raman. “Direct Access Test Scheme—Design of Block and Core Cells
for Embedded ASICs,” in Proc. IEEE Int. Test Conf,, pp. 488-492, 1990.

52. T. Kirkland and M. R. Mercer. “A Topological Search Algorithm for ATPG,” in Proc. 24th
Design Automation Conf, pp. 502-508, 1987.

53. K. Knight. “Unification: A Multidisciplinary Survey.” ACM Computing Surveys, Vol. 21,
pp. 23-124, March 1989.

54. D. E. Knuth. The Art o f Computer Programming: Seminumerical Algorithms, Vol. 2, Second
Edition, Addison Wesley, Reading, MA, 1981.

55. Z. Kohavi. Switching and Finite Automata Theory, 2nd Edition. McGraw-Hill, New York,
NY, 1978.

56. J-H. Kong and S. A. Szygcnda. “MixMOS: a mixed-level simulator for digital MOS circuits
using a new algebraic approach,” Computer-Aided Design, Vol. 22, pp. 618-632, December
1990.

57. B. Krishnamurthy. “Hierarchical Test Generation: Can AI Help?,” in Proc. Int. Test Conf, pp.
694-700, 1987.

58. J. Lee and J. H. Patel. “An Architectural Level Test Generator for a Hierarchical Design
Environment,” in Proc, 21st Fault-Tolerant Computing Symp., pp. 44-51, June 1991.

59. J. Lee and J. H. Patel. “An Architectural Level Test Generator Based on Nonlinear Equation
Solving," Journal o f Electronic Testing, Vol. 4, pp. 137-150, April 1993,

60. J. Lee. Architectural Level Test Generation and Fault Simulation. Ph.D. Thesis, University
oflllinois, November 1992.

208

6 t. T-C Lee, N. K. Jha, and W. H. Wolf. “Behavioral Synthesis of Highly Testable Data Paths
Under the Non-Scan and Partial Scan Environments,” in Proc. 30th Design Automation
Conf., pp. 292-297, 1993.

62. Y. H. Lcvendcl and P. R. Mcnon. “Test Generation Algorithms for Computer Hardware
Description Languages,” IEEE Trans, Comput., Vol. 31, pp. 577-588, July 1982.

63. C. J. Lin and S. M. Reddy. “On Delay Fault Testing in Logic Circuits." IEEE Trans. Com­
puter-Aided Design, Vol. 6, pp. 694-703, September 1987.

64. T. Lin and S. Y. H Su. “Functional Test Generation of Digital LSI/VLSI Systems Using
Machine Symbolic Execution Technique," in Proc. IEEE Int. Test C onf, pp. 660-668, 1984.

65. M. Majewski and S. Pichumani. “The Use of Silicon Compilation in the Design of a Gauss­
ian Filter and a Template Matching Processor." VLSI Systems Design, pp. 20-25, October
1987.

66. M. Marhfifcr. “An Approach to Modular Test Generation Based on the Transparency of Mod­
ules,” in Proc. IEEE CompEuro 87, pp. 403-406, May 1987.

67. R. Marlctt. "EBT A Comprehensive Test Generation Technique for Highly Sequential Cir­
cuits," in 15th Design Automation Conf., pp. 335-339, June 1978.

68. B. T. Murray and J, P. Hayes. “Hierarchical Test Generation Using Precomputed Tests for
Modules," in Proc. IEEE Int. Test Conf , pp. 221-229, 1988.

69. B. T. Murray and J. P. Hayes. “Hierarchical Test Generation Using Precomputed Tests for
Modules,” IEEE Trans. Computer-Aided Design, Vol. 9, pp. 594-603, 1990.

70. B. T. Murray and J. P. Hayes. “Test Propagation Through Modules and Circuits,” in Proc.
IEEE Int. Test C onf, pp. 748-757, 1991

71. M. Mukaidono. "A Set o f Independent and Complete Axioms for a Fuzzy Algebra (Klcenc
Algebra)," in Proc, Eleventh International Symposium on Multiple-Valued Logic, pp. 27-34,
1981.

72. T. Nicrmann and J. H. Patel. “HITEC: A Test Generation Package for Sequential Circuits," in
Proc. European Design Automation Conf, pp. 214-218, Feb. 1991.

73. T. Ogihara ct ai. “Testable Design and Support Tool for Cell Based Test,” in Proc. IEEE Int.
Test Conf, pp. 1056-1071, 1990.

74. R. Pavel, M. Rothstcin, and J. Fitch. “Computer Algebra," Scientific American, pp. 136-152,
December 1981.

75. S. Rao, B. Pan, and J. R. Armstrong. “Hierarchical Test Generation for VHDL Behavioral
Models," in Proc. European Design Automation Conf, Feb. 1993.

76. G. D. Robinson. “Hitcst—Intelligent Test Generation," In Proc. IEEE Int. Test Conf, pp.
311-323, 1983.

77. W. A. Rogers, J. F. Guzolck, and J. Abraham. “Concurcnt and Hierarchical Fault Simula­
tion," IEEE Trans. Computer-Aided Design, Vol. 6, pp. 848-862, September, 1987.

78. J. P. Roth. Computer Logic, Testing, and Verification, Computer Science Press, Potomac,
Maryland, 1980.

79. J. P. Roth. “Diagnosis of Automata Failures: A Calculus and a Method,” IBM Journal o f
Research and Development, Vol. 10, pp. 278-291, July 1966.

209

80. K. Roy and J. A. Abraham. “High Level Test Generation Using Data Flow Descriptions,’’ in
Proc, IEEE European Design Automation Conf., pp. 480-484, 1990.

81. D. G. Saab ct al. “CHAMP: Concurrent Hierarchical And Multilevel Program for Simula­
tion," in Proc. Int. Conf. Computer-Aided Design, pp. 246-249, 1988.

82. K. Sakashita ct al. “Cell-Based Design Method," in Proc. IEEE Int. Test Conf, pp. 909-916,
1989.

83. A. Samad and M. Bell. “Automating ASIC Dcsign-for-Tcstability— the VLSI Test Assistant,”
in Proc. IEEE Int. Test Conf , pp. 819-828, 1989.

84. T. M. Sarfcrt ct al., “Hierarchical Test Pattern Generation Based on High-Level Primitives,”
in Proc. IEEE Int. Test Conf, pp. 1016-1026, Sept. 1989.

85. M. H. Schultz, E. Trischler, and T. M. Sarfcrt. “SOCRATES: A Highly Efficient Automatic
Test Pattern Generation System." IEEE Trans, Computer-Aided Design, Vol. 7, pp. 126-137,
January 1988.

86. C. E. Shannon, Collected Works, IEEE Press, New York, NY, 1993.

87. M. Shirley ct al. “A Synergistic combination of Test Generation and Design for Testability,"
in Proc, IEEE Int. Test Conf, pp. 701-711, 1987.

88. M. H, Shirley. Generating Circuit Tests by Exploiting Designed Behavior. Ph.D. Thesis, MIT
Artificial Intelligence laboratory, December 1988.

89. N. Singh. An Artificial Intelligence Approach to Test Generation. Kluwcr Academic Publish­
ers, Boston, 1987.

90. F. Somcnzi ct al. “Testing Strategy and Technique for Macro-Based Circuits.” IEEE Trans.
Comput., Vol. 34, No. 1, pp. 85-90, January 1985.

91. E. Stcmheim, R. Singh, and Y. Trivedi. Design with Verilog HDL, Automata Publishing Co.,
Cupertino, CA, 1990.

92. J. H. Stewart. “Future Testing of Large LSI Circuit Cards” in Proc. Semiconductor Test
Symp., pp. 6-17, 1977.

93. C-C Su and C. R. Kime. “Multiple Path Sensitization for Hierarchical Circuit Testing,” in
Proc. IEEE Int. Test Conf, pp. 152-161, 1990.

94. S. M. Thatte and J. A. Abraham. “Test Generation for Microprocessors.” IEEE Trans. Corn-
put,, Vol. 29, pp. 429-441, June 1980.

95. D. E. Thomas ct al. Algorithmic and Register-Transfer Level Synthesis: The System Archi­
tect’s Workbench. Kluwcr Academic Publishers, 1990.

96. E. G. Ulrich and T. G. Baker. “Concurrent Simulation of Nearly Identical Digital Networks,”
IEEE Computer, Vol. 7, pp. 39-44, April 1974.

97. E. G. Ulrich ct al. “The Comparative and Concurrent Simulation o f Discrctc-Event Experi­
ments,” Journal o f Electronic Testing, Vol. 3, pp. 107-118.

98. R. L. Wadsack. “Fault Modeling and Logic Simulation of CMOS and MOS Integrated Cir­
cuits.” The Bell System Technical Journal, Vol. 57, pp. 1449-1474, May-Junc 1978.

99. J. A. Waicukauski ct al. “Fault Simulation for Structured VLSI,” VLSI Systems Design, pp.
20-32, December, 1985.

210

100. T. W. Williams. “Sufficient Testing in a Self-Testing Environment," in Proc. IEEE Int. Test
Conf., pp. 167-172, 1984.

101. T. W. Williams and K. P. Parker. “Testing Logic Networks and Design for Testability." IEEE
Computer, Vol. 12, pp. 9-21, No. 9, October 1979.

102. S. Wolfram. Mathemotica: A System fo r Doing Mathematics by Computer, Addison-Wcslcy,
Reading, MA, 1988.

103. R. Woudsma and A. Dclaruelle. “The Design o f DSP Components for the CD Digital Audio
System Using Silicon Compilation Techniques," In Proc. IEEE Custom Integrated Circuit
Conf, San Diego, 1989.

