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CHAPTER 1
INTRODUCTION

Much of daily lifc is automated by computer-based digital sysicms whose failure could be
catastrophic, Typical systems include real-time transaction-processing systems, airplanc control
systems, implanted medical instruments, and automotive control systems. For safcty's sake, these
systems, which are implemented by clectronic integrated circuits (ICs), must be thoroughly tested
before and during use. This thesis addresses the problem of test gencration for complex digital sys-
tems, cspecially for application-specific integrated circuits (ASICs), and the relationship of testing

to design.
1.1. Design and Testing

The reliability of all kCs is strongly dependent on how thoroughly they are tested. This is
because ICs most often fail as result of fabrication defects rather than wearout, and thorough test-
ing for these defects weeds out weak ICs. New fabrication technologies for 1Cs are constantly
being developed and quickly brought to production to address requirements for higher circuit den-
sity, 1Cs manufactured using a new process often have many defects and it may take years for a
process to mature to the point where the number of defects is negligible [2].

Problems of Testing. Testing is costly. It has become one of the most expensive aspects of manu-
facturing, a fact which has prompted many IC makers to scek testing methods that use cheaper
testers, simpler test fixtures, and shorter test sequences. In addition to manufacturing cost, it typi-
cally takes about one third to one half of the design time to develop a method for testing a new IC

[100]. Meanwhile, competition in the marketplace makes short development time esscntial. Com-



puter-aided design (CAD) tools for very large scale iptcgralcd (VLSI) circuits have significantly
reduced some aspects of design time, but corresponding gains have not been made in the arca of
test gencration, despite the fact that testing has been thoroughly studicd for more than thirty years
[2]. Adequate testing solutions have remained clusive mainly because requirements change as
tcchnology and design styles evolve, and because many test problems are truly intractable.

The testability of ICs depends on how casily internal nodes of the circuits can be con-

trolled and obscrved. The high density of new ICs—recent VLSI chips contain several million
transistors—makes this difficult. Moreover, soaring clock and data rates are creating new ways in
which ICs can fail. Timing crrors and paramctric faults are becoming more prevalent and often
require new test techniques.
Hicrarchical Design. A typical digital IC design scenario is shown in Figure 1.1, The first step is
architecture design. In this step, specifications are translated into architecture components that the
designers know how to build reliability. For example, decisions are made regarding such things as
on-chip memory (RAM and ROM) sizc, what type of pipelining will be used, what instruction set
will be used, whether microcoding will be used, ctc. These design decisions can be analyzed by
modeling the system at the register level and simulating it. The smallest clements in these modcls
tend to be modules such as RAMs, ROMs, adders, and multiplexcrs.

After the architecture details are determined, the functionality of many of the modules
may be specified in terms of Boolean equations and state diagrams, These in turn are translated
into networks of logic gates and fip-flops, a process called logic design. Finally, the circuit can be
designed in terms of individual transistors and other low-level circuit clements.

At cach level in this top-down design process, design and simulation steps are carried out
repeatedly until the specifications for that level arc satisfied. Normally, designers try to minimize
iteration between levels, This can be done by careful project planning and the use of predictive
CAD tools such as timing analyzers and simulators, which allow many low-level circuit effects to
be predicted at the gate level,

During architecture planning, designers may formulate a strategy for how the IC will be
tested. The test strategy specifies, in abstract fashion, what fault types will be covered, how the 1C

will be partitioned for testing, how tests will be generated for cach partition, how tests will be
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Figure 1.1, Typical organization of design and test in the development of a new IC.

applied to each partition, etc. However, incorporation of any hardware to be used for testing

(design for testability) is not usually donc until the gate-level logic design stage is rcached. In

addition, test generation is only done alter complete, detailed gate-level models have been devel-



oped since most CAD tools require these models as inputs. Current ASICs have hundreds of thou-
sands of logic gates and soon will have millions. Gate-Ievel test gcncrali'on tools are alrcady taxcd
to the limit and may soon become inadequate. In order to handle large circuits, these tools require
highly constrained gate-level design styles, and therefore cannot effcctively use the high-level
structure of the circuit. Finally, test generation accounts for a large number of gate-level design
iterations, and frequently prompis architecture changes to address problems that were not pre-
dicted during test strategy planning. This reflects the large gap between test planning and test gen-
cration, and the fact that predictive tools arc almost non-existent.
Hicrarchical Testing. Recently however, a number of high-level and hicrarchicat techniques for
test generation have been proposed [9, 12, 18, 57, 58, 59, 62, 64, 75, 84, 87, 89, 90, 93, 94]. These
techniques take advantage of the hicrarchical structurc found in most circuits and exploit circuit
behavior that is only apparent at the register level. As shown in Figure 1.1, hicrarchical testing
techniques allow test strategy development, incorporation of design for testability, and test genera-
tion to take place at higher design levels. Since fewer functional objects are manipulated at the
register level, design iterations arc made morc quickly. Test gencration performance is also
enhanced because there are fewer primitives to test, and because high-level circuit behavior, such
as the ability to load test values into multi-bit registers, can be exploited more casily, The more
important hicrarchical techniques will be reviewed in Section 1.3.

Although hierarchical test generation techniques have been proposed since the mid-1970s
[10], only rccently have they become practical to use, as design styles have cvolved to the point
where hicrarchical design is well-supported. New CAD tools are able to synthesize gate- and cir-
cuit-level simulation models from higher-level models [32, 95]. In many cases, designers compose
circuits using librarics of large predefined modules such as ALUs and RAMs which have precom-
putcd tests, thus obviating the need for test generation at lower levels of abstraction, a fact which
we cxplore here. Overall, hierarchical techniques are well-snited to currently prevailing and future
design styles. The test generation performance improvements obtained by the use of hicrarchy
offers the potential for dealing with ICs containing hundreds of millions of transistors.

The previously published hicrarchical techniques have not been very successful—flew

have been incorporated in commercial systems. In many cases, they do not cffectively represent
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the high-level structure of the circuit, and in other cases they rely on heuristics that have not
proven to be widely applicable. Nevertheless, various hierarchical techniques are becoming
important, such as the use of precomputed tests.

This thesis examines in detail the use of precomputed tests for modules in generating tests
for new ICs incorporating these modules. In this chapter, we present a gencral introduction to test-
ing theory and review the previous work in hierarchical testing with special emphasis on test gen-

cration using precomputed tests.
1.2. Basic Testing Theory

The testing process for integrated circuits is outlined in Figure 1.2. The pattern gencrator
stimulates some of the inputs of the IC under test, and some time later the response analyzer reads
the response sequence Z of the IC and checks for discrepancies between Z and an expected
response Z, produced during test generation; a fault is detected when Z# Z,,. From this descrip-
tion, one can see that faults will be detected not only when the 1C gencrates incorrect logic valucs,
but also when values arc gencrated at the wrong time. To produce and analyze the large amount of
test data needed for modem high-speed 1Cs, antomatic testers like the one depicted in Figure 1.2
have become large and cxpensive; some production testers cost mitlions of dollars.

Automatic testers are controlled by programs similar to those for gencral-purpose comput-
crs. The bulk of a typical test program is stimulus and response data, and it is the responsibility of
the test generator to compute these data. Test generation is cxaminced in detail in the next three sub-

sections.



1.2.1 Circuit Modeling

Circuit models at all design lcvels arc often classified as cither structural or behavioral.
Structural models emphasize the fact that circuits are composed of components (modules) which
are interconnected by wires, or groups of wires, called buses. Behavioral or functional models, on
the other hand, ignore circuit structure as much as possible, concentrating on only a few rclevant
structural details that allow us to describe the circuit’s input/output behavior. Most models used in
practice arc mixed, that is, they contain aspects of both structure and function.

As noted above, high-level structural models contain large modules, which are themselves
often described by behavioral models, In addition, the buses used to interconnect high-level mod-
ules are frequently treated as primitive entitics which propagate abstract mulii-bit signal valucs,
Gate-level models are composed of a relatively small number of simple primitive modules (gates)
that implement basic Boolean logic operations (AND, OR, NOT, EXCLUSIVE-OR, ctc.). In many
cases, circuit models are also hierarchical, that is, large modules defined at design level 7 can be
recursively composed by interconnecting smaller modules defined at the next lower level i— 1.
Thus, large modules may be described by multiple models, some structural and some behavioral.

A simple cxample of hierarchical structure appears in the ripple-carry adder of Figurc 1.3,
which is composcd of several full adder (FA) modules. Figure 1.3a shows a structural model of a
FA module; this is also an examplc of gate-level design. A behavioral description of a FA is given
by the following sct of Boolcan formulas defining the adder's sum (S) and output carry (C,, ) sig-
nals in terms of input data (A and B) and input carry (C)) signals

§=A@B&C,
Cip1= (AAB)V (AAC) VvV (BAC)

i
Here, all variable values are binary (0 or 1), and A, v, and © denote the Boolcan operations AND,
OR, and EXCLUSIVE-OR, respectively.

Figure 1.3b shows a group of FA modules connected to form a 4-bit adder, which is then
combined with two registers to design a simple processor. This circuit provides an example of
higher-level logic design at the register level. A[3..0], B[3..0), etc. denote buses defining higher-
level versions of the binary signals in the full adder equations above. The operation of this adder

can be succinctly represented by the high-level equation
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Figure 1.3. Adder circuits viewed at two levels of abstraction: (a) gate(low), (b) register (high).

§[3.0] = A[3..0] +B[3..0]

Behavioral statements such as these arc often combined into text descriptions of a circuit



in a systematic form called a hardware description language (HDL). Notc that there is no unique
way of constructing behavioral models of this type. Recently however, designers have begun to
standardize HDL formats. VHDL (the VHSIC Hardware Description Language [20]) has been
mandated as a standard by the United States Government. Structural descriptions are modeled in
HDLs as a list of wires and the corresponding modules they connect to; this is known as a netlist,
Allernatively, they can be entered into a design system graphically, as a schematic diagram of
symbols representing modules or functions, connected by lines representing wires and buses.

In the past, designers were often most comfortable working at the low, gate level, or with
hierarchical models whose large (non-primitive) modules are described only by structural models.
In this case, hicrarchy is only a convenience for the entry and maintenance of the design; it is not
uscd by CAD tools. The gate level is also the best supported in terms of design theory and CAD
tools. Design data can be easily centered graphically, and low-level circuit models and layout can
be reliably and efficiently generated from such gate-level modcls,

Hiph-level simulation of behavioral descriptions, on the other hand, has often been con-
sidered a superfluous step which requires the development of additional simulation models that are
not readily translated into lower-level models, However, analysis of many performance-enhancing
design trade-offs is only possible by high-level simulation. Such design trade-offs arc becoming
incrcasingly important as IC densities grow. Recently, a number of new CAD tools have been
developed which are able to automatically synthesize gate- and circuit-level descriptions from
high-level behavioral descriptions [32). These high-level synthesis tools show promisc in automat-
ing digital design in a number of specialized arcas, particularly signal-processing and digital con-
trol.

1.2.2 Fault Modeling

Faults in ICs primarily result from physical defects introduced during manufacturing, A
varicty of disturbances arise even in mature fabrication lines, and cause subtle failures that may
not be detected for a long time without thorough testing. They can later show up as performance
degradation, as errors in little-used functions, or as obvious catastrophic failures.

To generate tests, we use logical fault models that reflect changes in circuit function due to

physical defects. A digital logic circuit is then said to fail if the function it implements differs from



the function it was designed to implement. Fault models provide a consistent and technology-inde-
pendent mechanism for how the logic function might fail, as well as a standard yardstick for mea-
suring the quality of a set of tests. In developing a fault model, it is important to strike a balance
between accuracy and complexity. The model must also match the characteristics of the design
level(s) at which it is used.

The mest common fault model is the low-level single stuck line (SSL) fault model. Physi-
cal failures arc represented by maintaining a single line in the circuit at the constant value O or 1
regardless of how circuit opecation stimulates the line, To test if a line is stuck at O (1), we must
find a scquence of onc or more primary input test patterns that will make the linc 1 (0). This
exposes the fauit. The test must also arrange for an crror causcd by the fault 1o be propagated to a
primary output where the error can be observed. Tests must usually be found for all 2N SSL faults
in an N-line circuit. Typically a given test will detect or cover more than one fault. The fraction of
faults covered by a sct of tests is called the fuult coverage. Experience has shown that ICs tested to
provide high fault coverage (0.99 or better) for SSL faults generally have high reliability in the
ficld. At present, the coverage of SSL faults is the only well-accepted measure of test quality, and
all other measures must be calibrated against this model.

Few formal highcr-level fault models cxist, and those that do are ofien defined in impre-
cise terms. In Lin and Su's register-level fault model [64], for example, faults are classified accord-
ing to their effcct on some register-level components. Thesde cffects include such symptoms as
register decoding errors, and data transfer errors. Other higher-level fault models are extensions of
the SSL fault model. For example, Bhattacharya and Haycs [12] extended the SSL fault model to
include all bits of a bus, leading to the concept of bus faults,

Since the SSL model only approximates the physical faults that occur in 1Cs, a consider-
able amount of work has been devoted to verifying it and to developing new, more accurate mod-
cls. Problems with the SSL model, particularly for CMOS circuits, were identified as carly as 1978
[98], so CMOS circuits are somctimes modeled at the (very low) switch level [47], where transis-
tors are treated as idealized switches. Recently, designers have also become concernced about two
alternative types of faults. The first type is the delay fault. Some defects cause the IC to gencrate

correct logic valucs only after an excessive delay [63). The second type is the bridging fault, where
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physically separate wires in a circuit are connected by a fault, By modeling the cffect of manufac-
turing defects on layout, Ferguson and Shen were able to inductively show that the most likely
CMOS fault is a bridge between adjacent wires [29). Modeling delay and bridging faults can result
in better quality tests, but test generation procedures for them are much more complex than for
SSL faults, However, tcsts for these more accurate f:;ult models can be generated and stored for
register-level library modules, and later used as precomputed tests.

Finally, some circuits, such as RAMs and ROMs, have unique failure modes [2]. RAMs
for instance, can fail so that certain patterns writien to and read back from a particular address will
cxpose a lault, otherwise the fault is not observed. These circuits are usually tested using com-
pletely diflcrent methods from these used for logic circuits [2]. Such tests can also be stored as

precomputed tests.

1.2,3 Test Generation

In principle, it is possible to generate tests without the use of an explicit fault modcl. There
arc two approaches to such “black box™ testing: random testing, where psecudo-randomly gencer-
ated patterns arc applied to the inputs of the circuit; and exhaustive testing, where all possible pat-
terns arc applicd. Ncither of these is practical for an entire VLSI circuit. Empirical evidence
suggests that some faults arc resistant to random testing [100], and most high-volume IC manufac-
turcrs believe that fault coverage of 99 percent is necessary, To see why cxhaustive testing of
entire circuits is not practical, consider an IC with 50 inputs (small compared to most modern
VLSI circuits). Assuming that the circuit is combinational, the number of possible input vectors is
250 = 1.126x10", A tester, operating at SOMHz would take more than 260 days to test this IC
exhaustively. A sequential circuit would require an even larger number of input test vectors.

An alternative approach is to derive tests for Taults in a structural circuit model algorithmi-
cally. Most research is devoted to algorithmic test generation. In Figure 1.4, we outline a generic
procedure for generating tests for all faults in a circuit model. Step 5 of this procedure is per-
formed by an algorithmic test gcﬁcrmor. We next discuss the details of algorithmic test gencration.
Combinational Circuits. The most studied approach to algorithmic test gencration cmploys gate-
level structural modcels; nearly all commercial test generators do so. We will discuss the two most

widely used gate-level algorithms, versions of which can also be used at other abstraction levels,
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Figure 1.5. An example of D-propagation in a carry circuit.

Test generation algorithms have two basic steps: (1) expose the currently selected f{ault, and (2)
propagatc an crror signal from the site of the fault to an observable output.

We f{irst introduce some standard notation uscd for describing crrors in test generation
algorithms. If a Jine in a circuit is 0 (1) when it should be 1 (0), the error signal value on that line is
represented by the symbol D (D) for discrepancy. Consider the circuit in Figure 1.5, This circuit is
the carry part of a lull adder (Figure 1.3a). A stuck-at-O fault at the output of gate G, can be
exposed by attempting to make the cutput 1. A signal on this line will be detected as an crror if it is
0 when it should be 1, that is, a D. The fault G| stuck-at-0 can be exposed, therefore, by assigning
0 to one or both of A and B.

Suppose that the output line ol &, is observable. To observe the fault, we must propagatc
the I error signal from G, through G ,, which requires sensitizing G, to the error signal. We can
do this only by assigning | to cachof G ,'s inputs from gates other than G, . The output of G, will
be D as shown, which still carries the error information, The error propagation step just described
is called D-propagation. Now, the outputs of G, and G5 have been assigned specific logic values,

but not all of their inputs. If' C, is assigned the value 0, the circuit behavior will be completely



12

specificd. This process of determining complete and consistent specifications of circuit signal val-
ucs is called justification.

The most widely known test generation algorithm is the D-algorithm, first published in
1966 [33]. It provides a systematic implementation of the D-propagation and justification steps
described above. In the case of D-propagation, several D’s (D's) may be propagated simulta-
neously, sincc sometimes an error signal must be propagated along more than one path to reach an
observable output. In the D-algorithm, D-propagation and justification operations make only local
assignments of signal values. To justify a valuc on the output of gate G, the D-algorithm mukes
assignments to the inputs of G,. If these are not primary inputs, assignments to them become
objectives lor subsequent justification steps.

Both D-propagation and justification invalve decisions or choices. For example, to accom-
plish D-propagation in the circuit of Figure 1.5, C; could have been assigned 1 instead of 0. If D-
propagation or justification cannot be done at some point without invalidating signal valucs
alrcady assigned, the D-algorithm backtracks, that is, retumns to an carlier decision peint and
makes an alternative decision. For example, an alternative path can be followed from a point on
the D-propagation path where a signal line branches in several dircctions.

The D-algorithm has been successfully implemented for many ycars. Around 1980, it was
shown to be inefficient for an important class of circuits called crror-correction-and-translation cir-
cuits [40]; it may be inefficient for other uscful circuits as well. Poor choices for D-propagation
and justification in these circuits lead to an excessive number of backtracks and unacceptably long
computation times. A major reason is the fact that backtracking might be initiated at any gate in
the circuit.

The PODEM (Path Oriented DEcision Making) test gencration algorithm avoids this
problem by backtracking only at primary inputs [33]. In PODEM, intcrnal values arc not justified
explicitly, as in the D-algorithm, To satisfy an internal objective such as a D or D on some internal
line, a value is assigned 10 a primary input X, and the circuit is simulated. If the simulation proves
that the assignment does not satisfy the objective, the algorithm assigns another input value. If dur-
ing simulation, two values conllict on a line, the algorithm backtracks by changing the value of the

last assigned X .. When both valucs have been tried unsuccessfully, the algorithm backtracks to the
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next-to-last assigned input. In this way, the algorithm can exhaustively explore all possible circuit
states, but only implicitly. So while the effect of all circuit states is considered, not all possible
assignments arc made. In contrast to the D-algorithm, PODEM makes assignments only to pri-
mary inputs, not internal nodes of the circuit. Nevertheless, the assignment to be made should be
related to the initial objective. In PODEM, a procedure called backtrace obtains this initial assign-
ment. PODEM traces a path from the site of an internal objective to be satisfied to a primary input,
Along this path it transfers its initial objective gate by gate until an assignment is made to a pri-
mary input, .

A number of test generation techniques have been developed since PODEM (33, 52, 85],

most of which arc simply extensions to it. Their goal is to reduce the number of backtracks by
identifying choices a test generation algorithm might make that cannot lead to a solution, without
actually pursuing every decision. For example, the FAN algorithm [33] sceks to identify conflicts
at fanout branches within a circuit, thereby avoiding backtracks at the primary inputs and the cost
of simulating large parts of the circuit. Conflicting assignments at fanout branches cannot be satis-
fied by any assignment at primary inputs. Gate-level test gencration speedups reported in [33)
averaged about 3.5 over PODEM. In general, new technigues for gate-level test generation like
FAN do not result in order-of-magnitude specdups over previous techniques,
Sequential Circuits. Algorithms such as the D-algorithm and PODEM cannot gencrate tests
dircctly for scquential circuits because they assume that all assignments arc instantancously propa-
gated. However, we can extend these algorithms to generate tests for some sequential circuits.
Consider the standard (Huffman) model of a finite statc machine in Figure 1.6a. We construct a
pscudo-combinational iterative model of this circuit by:

I. Replacing cach flip-flop, which has a fixed (clock determined) delay, by a pscudo (lip-flop
whose function is cquivalent to the flip-flop’s, but whose output is produced instanta-
acously, and

2, Connecting multiple copics of the circuit to form an acyclic circuit in the iterative form
shown in Figurc 1.6b

Each copy of the jterative circuit represents a different instant in time and is called a timefranie.

Given a known initial state g (1) attime £, the most common approach to sequential test gener-
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Figure 1.6. (a) Finite state machine and (b) an equivalent pscudo-combinational model.

ation is to construct an iterative model (Figure 1.6b) with r timeframes and exccute a combina-
tional test generator, ignoring the Z outputs in the first »— I timeframes and the final state output
g (t,) . If the test gencrator cannot generate a test for the circuit in  timeframes, add a timeframe
and begin test gencration again [2],

If g (15) is unknown, then the algorithm must justify objectives backwards in time, as well
as propagating error signals forward in time. The reverse-time processing approach, exemplified
by the extended backtrace (EBT) algorithm [67], avoids this complication by processing gates
strictly backwards through the circuit and backwards in time, determining cvents which must
come last, then next to last, cte. It starts at a primary output and follows a predetermined path to
the site of a fault chosen for testing. All necessary assignments for one instance of time are deter-
mincd before moving to the next carlier instance.

Another approach to sequential test generation is to randomly generate vectors from a
given seed or set of sceds and fault-simulate them to determine their fitness for a test program

according to a given cost metric. This approach is typificd by the following algorithm [5]:
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1. Create a set of trial test vectors and simulate using a fault simulator (discussed below).
2. Evaluate the trial vectors according to some cost function.
3. Seclect “optimal” trial vectors and add them to the test sequence.

In general, test generation for gate-level sequential circuifs is not very well developed.

This is an area where hierarchical approaches could make a major impact because most VLS cir-
cuits are sequential. Gate-level techniques are mainly uscful for small circuits of a few thousand
gates, unless the circuits are modified to make them testable. We will discuss this further below.
Complexity Issues. Test gencration is well known to be a difficult practical problem and a number
of theoretical results support this conclusion. The fault detection problem, that is, the problem of
computing a test to detect a given SSL fault, is NP-complete [50] for combinational circuits. The
lower bound complexity of standard search-based test generation techniques is Q (N2) [41]. and
O (N3) in the average case [100], where & is the number of modules in the circuit. Finally, the
typical approach (described above) of cxtending gate-level combinational algorithms to handle
sequential circuits has worst-case complexity O ( (2V)2"*'), where m is the number of state vari-
ables [16]. We see from this that if all else is equal, reducing the number of modules in the circuit
by increasing the abstraction level should decrcase test gencration complexity.
Fault Simulation. Faults are simulated during test gencration to determine the coverage of the
current test (line 6 in Figure [.4) and to reduce the number of tests needed. The process of analyz-
ing coverage using a fault simulator is called fawlt grading. A fault simulator models faulty ver-
sions of a circuit as well as an unfaulted “good” version. If therc are N faults to be considered, then
the fault simulator simulates N + 1 different circuit responses to a given input in one simulation
pass. The outputs from the simulation pass duc to the N faulty circuits are compared with the one
good circuit, and faults associated with incorrect circuit outputs are detected.

Usually, a test gencrated for a particular fault in a circuit will detect a number of other
faults serendipitously. Fault simulation is not an cssential step in test gencration, and many test
generators do not include it. However, fewer tests are gencrated when a fault simulator is used,
which tends to speed up generation of a complete sct of tests and results in more compact test sets,

On the other hand, fault simulation can be computationally expensive. A few hierarchical

fault simulators have been developed [77], but these have not significantly reduced complexity in
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the general case and so are not widely employed. Fault simulation is most often included within
test generation algorithms for combinational circuits [99]. By focusing on a limited range of cir-
cuits, these favlt simulators achieve significant performance improvements over more general fault
simulators, and thus are acceptable for inclusion in the test generation algorithm. This is a recur-

ring theme in CAD: generality must be balanced with efficiency.
1.2.4 Design For Testability

A number of logic design techniques facilitate testing. For example, avoiding logical
redundancy, providing for direct initialization of memory devices, and providing a mechanism for
logically breaking global feedback loops, all make testing easicr, Many companics compile long
lists of such design for testability (DFT) rules. However, this ad hoc approach adds considerably to
the designer’s burden and may still not provide satisfactory testability.

A contrasting approach is systematic DFT. The basic idea of the most commaon systetmatic
technique, scan design [25], is the separation of memory modules from combinational modules
during testing. Memory modules, ¢.g. flip-flops, are chaincd together into a shift register or “scan
chain” when a special test mode is activated. This partitions the circuit into a set of combinational
subcircuits C,, cach of whose inputs and outputs are connected to the scan chain; see Figure 1.7,
Each combinational subcircuit can be tested by shifting its input test data into the scan chain
through the scan input X ¢, Jetting the data ripple through the logic in parallel, loading the results in
parallel into another part of the scan chain, and scanning the data out scrially through Z. The scan
chain itself can be tested by shifting a pattern of [s to fifl the chain, followed by the same number
of 0s, and then the sequence 0101... Tests can be generated for the combinational subcircuits using
any combinational test generator, since the subcircuit inputs and outputs may be treated as pri-
mary. Therefore, connecting all memory modules of a circuit into a scan chain obviates the need
for sequential test gencration.

There are many variations on the basic theme of scan design [7, 35, 92}. The most impor-
tant design issuc is whether to include att flip-flop clements in scan chains (full scan) or only some
of them (partial scan). Partial scan is used to break feedback loops and to provide access to hard-
to-test modules, but sequential test generation is still required to generate tests in this case. The use

of scan design greatly simplifies test generation; however, scan clements add to the area of the chip
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Figure 1.7, Scan testing scheme.

and cannot be used for dense memory modules such as RAMs. Very long scan chains can also be
slow to load and unload during testing,

Hicrarchical approaches to design for testability arc just beginning to appear [9, 12, 19,
26, 51, 61, 73, 82]. Some of these identify registers for partial scan by analyzing bchavioral
descriptions | 19], while others seek to modify behavioral descriptions to avoid optimizations that
create unnccessary loops [61]. Bhattacharya studied modifications to individual register-level
modules to improve their testability [12]. Finally, several hicrarchical DFT techniques seck to
cnsure direct controllability and obscrvability of every module [9, 26, 51, 73, 82]. Since abstract
high-level represcentations of circuits are developed first and pate-Ievel details are added later, hier-
archical testability techniques can be introduced early in the design process. Morcover, since one
modulc of a high-level model can potentially include many gates, a single testability feature in a

high-level model can benefit a large number of gatces.
1.3. Hierarchical Testing

We have given a brief review of classical (low-level) test generation theory and indicated
its computation deficicncics. We have also indicated some places where we think hierarchical

techniques can be used. Now we will summarize the more important hicrarchical techniques that
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have been proposed, most of which simply address test generation. These range from well-defined
cxtensions of gate-level algorithms to largely heuristic approaches influenced by research in artifi-
cial intelligence [13].

High-level Models. Several of the proposed hicrarchical techniques model the circuit in terms of
high-level functional blocks interconnected by single-bit lines. The fault models can allow for
arbitrary faults in these blocks, and the test generation algorithms used may be simple cxtensions
of the classical ones described above. Somenzi ct al. [90] described such a technique based on the
D-algorithm, Chandra and Patel [18] proposed a similar technique based on PODEM, and more
recently, SOCRATES [84] has included higher-level primitives.

The fundamental advantage of higher-level modules is that there are fewer of them in the
circuit to cvaluate. However, the use of low-level (single-bit) interconnections between high-level
modules negates this advantage as the space used to store propagation information is cxponential
in the number of bits, causing correspondingly long processing times. In addition, the algorithm
has an exponential number of choices at each module, so there is a potential for excessive back-
tracking. This behavior was cmpirically observed by Chandra and Patel [18],

Bhattacharya and Hayes defined a test generation methodology that uses high-level inter-
connections (buses) and fault models in addition to high-level modules [12]. Faults in this model
affect all bits of a bus. A bus is torally stuck-ar-0 if all bits are stuck at logic Icvel 0, and fotally
- stuck-at-1 if all lines are stuck at logic level 1. An extended version of PODEM called VPODEM
assigns vectors to buses to propagate these bus-level faults through the circuit model. The circuit
and fault models, as well as the test generation algorithm, reduce to classical ones i components
arc restricted to single gates, and bus sizes are restricted to one, thus providing a truly hierarchical
test generation method for large circuits.,

The approach taken by VPODEM is especially suited to regular circuits like iterative logic
arrays. In many such cascs, it can be shown that a test generated for a total bus fault in the high-
level model is guaranteed to detect all SSL faults on corresponding lines in a gate-level model of
the circuit. Experiments conducted with medium scale ICs [12] suggest that tests generated f{or
total bus faults in the high-level model detect more than 70 percent of the SSL faults in the corre-

sponding gatc-level model, The number of tests so gencrated is typically less by a factor of n,
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where # bits is the main bus size, than might be required to achicve the same fault coverage using
gate-level models alone. The smaller number of tests combined with the reduced component count
in the high-level model lead to a reduction in the total test generation cffort, also by a factor of
about n compared to standard techniques. Moreover, using VPODEM and a gate-level model of
the same circuit, we can stili obtain 100 percent SSL fault coverage by generating tests for SSL
faults not detected by tests for total bus faults,

The circuit model used by Bhattacharya and Hayes [12] docs not correspond directly to

the circuit model as entered into a design systcm, so some work is required to construct the higher-
level testing model. Moreover, the approach docs not take full advantage of function and data
abstractions in the original circuit, that is, its inhcrent high-level function.
Functional Approaches. Another class of test generators called "“functional” test generators check
for incorrect operation of high-level functions. For example, Thatte and Abraham proposcd a high-
level test generation scheme based on a graph model of the circuit under test [94]. Their method
was primarily designed for microprocessors and programmable circuits of similar nature, Nodes of
the graph are registers, and a directed edge / is inserted from node R, to node R ! if the circuit can
perform a register-transfer operation of the form I:RJ. < R,, that is, function { maps valucs from
register R, into values in register RJ.. Faults in this mode] typically represent erroncous data trans-
fers; other fault types can be difficult or impossible to represent.

Other approaches use functiona! descriptions of the circuit bascd on HDLs [62, 64, 75].
Levendel and Mcnon model faults as D's injected into the variables of a HDL description [62].
Because faults arc modeled at such a low level, the advantages of the higher-level circuit model
are somewhat offset, as we have seen before. Lin and Su medel a variety of faults, including incor-
rect instruction decoding, and incorrect rg:gislcr transfers. [64]. Recently, Rao et. al. [75] have pro-
poscd a similar approach for VHDL models, In their approach, as well as that of Thatte and
Abraham [94], the faults are not described by weli-accepted models, and the relationship of the
faults to standard models is hard to quantify.

Artificial Intelligence-Based Mcthods. Finally, we will discuss three methods based on heuristic
principles derived from artificial intelligence (Al). Satumn is a test gencrator with a strong focus on

design hicrarchy [89]. The circuit model that it uses has information about the structural hicrarchy
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Figure 1.8. Four-bit adder as an example of hicrarchical testing.

and also about the rules of circuit behavior at the various levels of abstraction. For example, the
adder in Figure 1.3b is described structurally as composed of four full adder modules with appro-
priate connections. It can also be described in Saturn as a module performing the high-level func-
tienal operation $(3..0] = A[3..0] + B[3..0]. Similarly, the full adder modules are also described
both behaviorally and in terms of their internal structure. Satumn will always attempt to propagate
values through modules at the highest level of abstraction for which it has a model.

The test generation algorithm used by Saturn resembles the D-algorithm. It operates in
bottom-up fashion by first gencrating tests for faults on gates in the circuit. When testing a gate,
values are propagated to the boundaries of the gate's parent in the next highest level of the design
hicrarchy, then abstracted to the behavioral level of the parent.

As a demonstration of this bottom-up test generation philosophy, consider the four-bit
adder of Figurc 1.3b, which is repeated in Figure 1.8, To gencrate a test for this circuit, Saturn first
generates a sequence of tests for all faults in one of the full adders, justifying intcrnal signals only
as far as the full adder inputs and propagating fault cffects only as far as the full adder outputs.
This test is then stored in a library for future usc in testing lull adders anywhere in the circuit,

Singh's work on Saturn was innovative and several test gencrators developed later used
similar techniques, however, Saturn’s performance on the few small examples cited was modest.
An cxtension to Saturn called PF-TG (Program Fragment Test Generator) was developed by Shir-

ley at MIT [88]. PF-TG gencrates tests by merging statements from precomputed tests, stored as
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fragments of test programs complete with loops and conditionals, into a test for the whole circuit
using automatic program-writing techniques developed in Al rescarch [8]. Its overall algorithm
and circuit model arc the same as Saturn’s, but propagation and justification through modulcs is
accomplished cxplicitly by knowledge stored in a library. The technique is completely heuristic,
and dependent on the test programmer’s skill in writing the test fragments for control and obscrva-
tion, Howcever, the resulting test has the characteristics of a test program and can therefore take
advantage of tester features unused by typical fest gencration algorithms.

Like Saturn and PF-TG, the circuit model for DB-TG [88] is described hicrarchically and
uses knowledge to constrain the scarch space. In contrast to PE-TG, however, this knowledge is
not dircctly contributed by the user, Rather it is derived from carlier simulations of the circuit,
using a symbolic simulator. During test generation, DB-TG relics on data it recorded carlier. A
symbolic test value R is determined to have been propagated when it appears in unmodified form
at a primary output. Finally, the symbolic values arc replaced with scquences of precomputed test
values which arc required to test the module. As in the case of PF-TG, the approach is based
almost cntircly on heuristics, and DB-TG was tested only on onc small circuit. Finally, as noted
abave, symbolic simulation for design verification is not part of the design cycle for most compa-
nics, nor docs there appear to be a trend toward using it.

Finally, Krishnamurthy [57] used Al techniques to describe fault propagation and line jus-
tification methods for cach module in a design hierarchy to improve the performance of the con-
ventional D-algorithm. This appreach has subsequently been used in a number of experimental
hierarchical test gencrators, notably SOCRATES [84),

Precomputed Tests. A new, but growing class of test generators use hierarchical techniques as
described above, but focus on the ability to justify precomputed tests for modules and propagate
module test responses to outputs where they can be observed. This important capability is the main
strategy in & number of experimental test generators [9, 58, 59, 68, 88, 93]. Currently cvolving
design styles, which rely heavily on CAD tools, are making this capability very desirable. Design-
crs often reuse modulces that have been stored in a library, and many of these modules do not have
accurate gate-level models for test generation purposcs. However, when they were designed, tests

were generated for the modules and stored for future use. Testing using such precomputed tests
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Estimated Number | Number of

Estimated { number of | of high- module
number gate level evaluations
Module of pates evaluations | modules | by ParhPlan
Fltrdp 254 64,516 6 57
Vertdp 138 19,044 5 21
Rowdp 220 48,400 6 33
Alu 62 3,844 9 167
Progptrl 110 12,100 12 210
Progptr 156 24,336 6 68

Table 1.1 Performance of PathiPlan relative to gate-level test gencration,

therefore augments and complements well-established lower-level test generation schemes. In
cases where precomputed tests may be casily applicd to modules, it is advantageous to use them,
especially when the modules arc large. Not only is the test generation effort reduced, fault simula-
tion for fauit grading is minimized.

We developed an algorithm for test generation using precomputed tests and implemented
it in a tool called ParhPlan. [68]. This program is onc of the carliest to specifically use this
approach. In PathPlan, precomputed tests arc represented symbolically and propagated through
modules in the circuit model. The test gencration algorithm used is looscly based on the D-algo-
rithm. We will discuss the design of PathPlan in detail in Chapter 11.

Since the circuit modeling level is much higher than the usual gate Ievel of the D-algo-
rithm, the number of components is substantially reduced. Morcover, the number of backiracking
choices available at cach module is also greatly reduced. Some performance results for ParhPlan
are shown in Tuble 1.1 [68]. The modules in these circuits are implemented by module gencrators
which produce layouts rather than netlists of gates. However, we can estimate the number of gates
in cach module and therefore in cach circuit. As noted above, the lower bound complexity of test
generation is QL NzJ. where N is the number of modules. For instance, to generate a test for the
gate-Ievel version of Flirdp (254 gates) using conventional techniques would require 64516¢,

gate evaluations for some constant ¢, that depends on the test gencrator. With the same assump-
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tions, PathP’lan has the significantly lower bound of 36¢, on module evaluations for some con-
stant c,. Since the complexity of a module evaluation in PathPlan is similar to that of a gate-level
algorithm, we will assume that ¢, and ¢, are within the same order of magnitude. The actual per-
formance of PathPian for Flirdp is 57 module evaluations (see Table 1.1). Thus we scc in this
instance a potential speedup of perhaps three orders of magnitude over conventional test gencra-
tion. Performance results for most other circuits in Table 1.1 arc similar,

An approach similar to, and partly bascd on PathPlan has subsequently been implemented
by Mitsubishi and uscd to test scveral circuits [11]. Despite this success, PathPlan is a preliminary
system with a limited ability to propagate high-level signals. The propagation technigues used by
PathPlan cannot handle general reconvergent fanout, or any irregularities in bus structure. In a cir-
cuit with a regular bus structure, all buses in the primary data path have a constant width #; no
buses are truncated to smaller sizes.

Since the initial development of PathPlan, scveral other experiments in test generation
using precomputed tests have been published. In [9], Beenker ct al. of Philips describe their work
on a test generation approach that relics heavily on special DFT techniques. The SPHINX tool box
(later renamed Panther and marketed commercially) works in concert with the design system.
Many modules implemented by the design sysicm have precomputed tests, and all latches, regis-
ters and flip-flops employ full scan. Modules are grouped hicrarchically to form “cxccution units”
(EUs). Each EU is dircctly controllable and observable via buscs and test registers and contains a
small test controller module that controls the scan chains and routes tests to modules within the
EU. The EUs themselves are grouped into “processors”. Each processor also has a test controller
that controls the propagation of tests to and from EUs and the test controllers within the EUs. Pan-
ther provides the tools to implement the scan chains and test controllers hicrarchically. When the
design is completed, every test stimulus vector cin be applied directly to every module via scan
chains and buses. Similar techniques were also proposed in [26, 51,73, 82]. Propagation of tcst
information through other modules is minimized; Panther is not designed to propagate the precom-
puted tests through modules other than scan chains,

No new general principles of hierarchical test gencration are developed in Panther. Test

gencration becomes a matter of scheduling tests to be applied. In [9], Beenker ct al. describe how



24

their approach is applied 10 an error-correction circuit with 225,000 transistors [103], thus further
demonstrating the practicality of precomputed tests for commercial circuits. The performance of
Panther in testing this chip is impressive. The test for the entire chip was generated in about 2
hours, which includes the time (80 minutes) to hicrarchically generate tests for two programmable
logic units which are then used as preccomputed tests, It is claimed [9] that the DFT logic adds only
about 8 percent to the chip arca, however, the design style enforced by the CAD system naturally
provides high controllability and obscrvability and is not practical for all applications, Panther is
tightly coupled to the design style, and the test generation tools assume that cach individual mod-
ule is directly accessible.

Su and Kime [93] have developed a tool called HPath for sensitizing multiple (multi-bit)
paths in a hicrarchical circuit. These paths deliver precomputed test data from primary inputs to
module inputs and propagatc test responses from module outputs to primary outputs. The HPath
algorithm is bascd on heuristics, and contains two subfunctions: GPath, which is a symbolic ver-
sion of PODEM designed to find sensitized paths in modules with gate-level models; and FPath,
which, like Pathplan, finds paths through high-level circuits by using rules stored in Jibraries about
propagation through modules. Hpath suffers from a similar inability to propagate error information
through circuits with an irregular bus structure. Since HPath primarily uses heuristics, very few
general principles are developed in [93] that might lcad to the development of more advanced hier-
archical test gencrators. In [93], Su and Kime report the average time required to sensitize paths to
modules in several circuits, but this information is not compatible with other benchmark data.

Finally, Lec and Patel have reported on two versions of a test gencrator called ARTEST
that they have developed for testing using precomputed tests [58, 59]. They assume that circuits
arc composed of two parts: a datapath containing large modules with precomputed tests, and a
control unit which provides control signals to the datapatﬁ and is composed of gates and {lip-flops.
Each part has a separate test generation algorithm. The datapath is tested using hierarchical tech-
niques. Lec and Patel assume that the exact description of the error signals associated with cach
module test is unknown, Therefore, when a stimulus vector v is propagated to the inputs of a mod-
ule under test (MUT), the output is marked as “type faulty” if v matches a precomputed test vector

for the MUT, or “typc good” if v docs not match any test vector. We will discuss this “typing”
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approach to error propagation further in the next chapter and in Chapter IV,

In the first version of ARTEST [58], the datapath is tested using a hicrarchical algorithm
similar to PODEM. Each fest vector is justified individually, no attcmpt is made 1o propagate tests
symbolically as in PathPlan. In the sccond version [59], a relaxation algorithm is used to justify
intcrnal signal objectives such as precomputed test stimuli. Symbolic expressions with undefined
variables are propagated from the inputs of the circuit, This creates a system of cquations which
must be solved individually for each test vector to be applicd to the MUT. Both versions of ART-
EST usc conventional gate-level technigues for testing the control unit, Faults propagated to the
interface between the control unit and the datapath are propagated as high-level crror signals
(types) by the hierarchical test generator.

Lee and Patel have evaluated ARTEST's performance on small and medium sized exam-
ples (a few thousand gates). In [58], they compare the performance of the first version of ARTEST
to a gate-level test generator HITEC [72). Usinglboth programs, they generate tests for a version of
the Am2910 microprogram scquencer [3]. ARTEST uses 61,75 CPU scconds to gencrate a test
compared with 2,297 seconds for HITEC—a speedup factor of 37.6. ARTEST performs well for
several circuits that contain global feedback loops and reconvergent fanout. However, all circuits
tested have a very repular bus structure. ARTEST cannot generate tests for circuits with an irregu-
far bus structure, even if it is possible to successfully propagate the precomputed tests. More cffec-
tive hicrarchical crror propagation techniques are essential to the development of testing methods

for gencral circuits.
1.4, Summary and Thesis Overvicw

We have reviewed classical testing theory and practice, and have the following obscrva-

tions.
» Test generation for ICs continues to be an important and difficult problem, The changing
nature of technology and design styles cnsures that the problem will never be perma-
nently solved. Present techniques are already inadequate in many cases and the problem

is getting worse.



26

»  Simulation and synthesis of digital systems increasingly take place at very high levels of
abstraction. Hicrarchical test generation tools provide an opportunity for addressing the
testing problem at a point in the design process when changes and trade-ofl's arc most
easily made.

- Conventional test generation techniques are based on the SSL fauit model. Other fault
models such as bridging faults between transistors may be more accurate, but cannot be
handled by conventional techniques. In addition, some types of circuits, such as RAMs
and ROMs cannot be effectively tested using the SSL fault model.

Hierarchical testing techniques show great promise for improving test gencration perfor-
mance and for matching test generation tools to evolving computer-aided design styles. However,
current techniques have many drawbacks, and 5o have not been widely implemented. Some of
these techniques make use of the hicrarchical modules of typical circuits, but retain a bit-level
interconnection structure and related fault models {18, 90]. Thus, they do not realize the (ull poten-
tial of high-level error propagation becausc of the low-Ievel interconnection structure. Other hier-
archical testing techniques use higher-level models and bus-level interconnection structures, but
usc high-level fault modeis that are difficult to relate to more precise and well-accepted models
(12, 64]. S1ill other techniques are based almost entirely on heuristics, so no gencrally applicable
principles of test generation have been developed for them [88, 89). Finally, few of the proposed
techniques attempt a systematic approach to design for testability, despite the fact that hicrarchical
techniques can be implemented earlicr in the design process. In general, the ficld of hicrarchical
test generation is still in its infancy,

Hicrarchical test generation techniques that can use precomputed tests [9, 58, 59, 68, 88,
93] have two particular advantages: (1) tests can be generated using multiple fauit models for the
same circuit, including the SSL fault model, as well as more accurate and technology-specific fault
models; (2) tests that exist for previcusly designed modules can be reused when it is inconvenient
or impossible to regenerate tests for these modules in the circuit that contains them. Morcover, our
initial test gencrator ParhPlan demonstrates the possibility of significant performance advantages
over conventional test generators. Nevertheless, all current hierarchical test generators that use

precomputed tests are limited by their ability to gencrate tests for circuits with an irregular bus
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structure.

In this thesis, we present the theory and tools we have developed for gencrating tests for
circuits using precomputed tests for modules. Our test generator ParhPlan, which is widely cited,
was onc of the first automated CAD tools for this type of test generation, Since error propagation
over irregular buses is a limitation of ParhPlan and subsequent published tools, we have concen-
trated on research to develop improved error propagation techniques. To accomplish this task, we
have formulated a theory of information propagation in bus-structured circuits. Some aspects of
the theory are applied to the development of a new test generation fool MATSim, which analyzes
crror propagation. MATSim is incorporated in PathPlan2, a successor to PathPlan, which is not
limited to circuits with a regular bus structure, but still gencrates tests with the same high perfor-
mance achieved by ParhPlan, Throughout the research reported here, we have sought to develop
general theory and techniques that may be used by others, as well as implemented in our own
1ools.

In Chapter I1, we discuss test gencration using precomputed tests in more detail and con-
trast it with conventional techniques. We motivate the use of precomputed tests, and illustrate the
problems of test propagation. Finally, we describe PathPlan as a demonstration of a test gencrator
that uscs precomputcd tests, and identify the key extensions that are developed in the remainder of
the thesis.

Chapter I presents a new, general theory of test data propagation, in which the informa-
tion propagation characteristics of modules and circuits are succinctly represented algebraically.
The theory formalizes intuitive notions of information propagation, and also allows us to identify
some unexpected characteristics of propagation through modules. We use it to analyze circuits
with irregular buses and prove several theorems relating the effect of module and circuit structure
to information propagation.

Chapter 1V addresses the problem test data propagation during hicrarchical test gencera-
tion. We discuss how test data can be propagated as symbolic expressions and matched to precom-
puted test stimulus scquences at the inputs to embedded modules. We show how to hicrarchically
analyze the propagation of crrors produced by embedded modules being tested, using methods

based on the propagation theory introduced in Chapter 111, Finally, since many circuits cannot be
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adcquately tested by precomputed tests, we propose a new design approach to modify them to
improve testability. This also uses theory the developed in Chapter 11, and augments traditional
DFT approaches such as scan.

In Chapter V, we describe the design of our new test generation tools MATSim and
PathPlan2 that implement the propagation technigues covered in Chapter IV, They are intended to
cxtend the capabilities of PathPlan, but are not based directly on it; they arc completely new tools.
MATSim provides the error propagation capability missing from previous work. It can be used
manually or incorporated into automatic test generation tools such as PathPlan2, It thus provides a
foundation for more advanced tools to automate test generation for future 1Cs. We present some
cxperimental results showing that while PathPlan2 is a more powerful and gencral program than
PathPlan, its performance is at least as good.

Chapter VI summarizes the research described in this thesis and discusses future research

in propagation theory and testing using precomputed tests for modules.



CHAPTER II
PRECOMPUTED TESTS

In this chapter, we introduce the method of testing using precomputed tests for modules
and compare it with conventional techniques. We illustrate the method using some cxample cir-
cuits and introduce key concepts and terminology used throughout the thesis. Finally, we describe

the design of ParhPlan, our initial test generator that uses precomputed tests.
2.1. Precomputed Versus Conventional Methods

The defining assumption of precomputed test methods is that a library of tests exists for
every module in the circuit under consideration at some level of abstraction. In most cases, these
modules are much larger than logic gates, Each module’s library test covers some sct of faults in
the module, such as the set of all SSL faults. The goal of precomputed test methods is to combine
the tests for all the individual modules into a test for a multi-module circuit. This contrasts with
conventional methods, where the goal is to cover a set of faults. We are intercsted in precomputed
test methods that use a structural circuit model, such as a netlist, and accomplish their goal by jus-
tifying a module test stimuius sequence T¢ at the inputs of cach module under test (MUT) in a
given circuit, and propagating the corresponding module test response sequence T, [rom the out-
puts of the MUT to the primary outputs of the circuit, as illustrated in Figure 2.1. T, may be prop-
agated directly to a primary output or to some other observation point, such as a scan path. In
Figure 2.1, T is justificd to a primary circuit input where it is denoted CT for circuit test stimu-
lus sequence, The response T, is propagated along two paths to primary circuit outputs. The

responses at the outputs are denoted CT, | and CT,, for circuit test response sequence. Note that
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Figure 2.1, Propagating and justifying module tests in a circuit.

T, is propagated through modules M, and M., both of which have output buses smaller than
their input buscs. This is an example of an irregular bus structure, The test gencrator must select
cach module in turn to be the MUT and justify T and propagate 7, until all modules arc tested,
or until it is proven that they cannot be.

Precomputed test methods and conventional methods differ in the nature of their objec-
tives. Recall that when testing for SSL faults, for instance line f of the MUT stuck-at-v, the initial
objective is set / to ¥. In precomputed test methods, the initial objective for the test gencrator is to
apply the set T¢ of test stimuli to all inputs of the MUT. During test generation, values propagated
to the inputs of the MUT are compared to T and if there is a match, T, is propagated from the
output of the MUT. Clearly, applying T is amore complex objective than setting / =  since sev-
eral MUT input ports are usually simultancously specified as a group or vector. Morcover,
although faults in the MUT may be covered by many different test vectors, in precomputed test
methods vectors that do not match T are ignored. This leads to the main drawback of precom-
puted test methods: various constraints imposed by the circuit containing the MUT may prevent
cither 7 or T, or both from being propagated, despite the fact that all non-redundant faults in the

MUT could be covered by different tests.
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Nevertheless, a basic assumption in the use of precomputed tests is that tests for faults
within modules must be reused and cannot be regencrated in the context of a larger circuit. Qur
goal is to ensure that precomputed test data arc correctly and cfficiently propagated if they can be.
When they cannot be successfully propagated, then fault coverage will be reduced, unless the cir-
cuit is modificd to improve testability. .

Another characteristic feature of precomputed test methods is that faults within the MUT
produce arbitrary multi-bit crrors at the outputs of the MUT. Due to fanout within the MUT, a sin-
gle lault can produce crrors at more than one module output bit, and cach vecetor in 7' can scnsi-
tize more than onc fault, causing multiple single-bit crrors. Therefore, when the MUT contains a
fault, an individual test response vector v; in T, can assume an arbitrary crror valuc vf #v,. Fora
given MUT, fault model, and test stimulus sequence T, there may be many possible crror values.
When gencrating a test, we must ensure that cvery vf produces a different value than v, at a pri-
mary output, that is, propagate the error. In contrast, to control complexity most conventional test
generators consider only & small number of the possible error values. For example, VPODEM [12]
uses only two fixed error values: the all-zero vector (duc to a bus totally-stuck-at-0) and the all-onc
vector (duc to a bus totally-stuck-at-1). These errors are produced as a result of assumed faults on
lines and buses according to the VPODEM fault model. Such simplifying fault model assumptions
are unacceptable for testing using precomputed tests.

Finally, most preccomputed test methods use hicrarchy and signal abstraction because the
circuits for which these techniques are appropriate contain several large modules, often intercon-
nected by a well-defined bus structure. In addition, the multi-bit objectives and multi-bit error sig-
nals arc more efficiently propagated over buscs. Efficiency in propagation is important because
precomputed test sequences for large modules can be quite long.

Hicrarchical representations of signal values allow precomputed test methods to take
advantage of the bus structure in a circuit to improve cfficiency. If we model module conncctions
using single-bit wires, cach carrying signals indcpendently of adjacent wires, then signal propaga-
tion must take place at this same low level. The perfermance advantage frequently obtained by
avoiding testing within modules is at least partially offset by the complexity of simultancously, but

independently propagating many individual intermodule signals. On the other hand, circuits whose
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modules are interconnected by large regular buses, which can be modeled as monolithic signal-
carrying objects, can be tested with good performance, as demonstrated by PathlPlan. Unfortu-
nately, few circuits arc composed solely of regular buses. As noted, buses are often truncated to
smaller sizes, thus losing some of their ability to propagate information. Information can also be
lost as signals are propagated through some types of modules. Such cases present nontrivial, but
often surmountable barricrs to high-level signal propagation.

We have defined the precomputed test method and contrasted it with conventional tech-
niques. Next we motivate the method by means of some cxamples, and discuss the class of circuits

that it can clfectively test.
2.2. Using Precomputed Test Methods

Although they often improve test generation, the main reason for using precomputed tests
is that circuits often contain modules that cannot be tested by classical techniques. Precomputed
test methods are most appropriate for circuits that contain modules from two groups: (1) library
modules, and (2) modules not tested using the SSL fault model.

The first group consists of modules designed and tested independently, and stored in a
library. Many modcm circuits are composed of modules that arc built by scparate design teams,
For instance, a microprocessor may be partitioned into CPU, memory management unit, cache
controller, /O circuits, etc., each designed separately. Design teams responsible for a module often
also have responsibility for generating tests for it. In many cases, the modules are so large that it is
impractical to regencrate tests for them when they are interconnected at the next level in the design
hicrarchy; the original tests are rcuscd. In other cases, the module library is sold to other designers
as part ol a design service. Customers of the design service include the modulces in their circuits
and use functional models of the modules 1o verify their design. However, the structure of a library
module is proprictary and is often not provided in sufficicnt detail for test gencration, Neverthe-
less, precomputed test data for the modules are not proprictary and can be provided with the func-
tional models.

The principal modules in the second group, modules not tested using the SSL fault model,

arc cmbedded RAMs and ROMs. These modules cannot be tested by classical techniques and are



33

usually treated as a special case when testing an IC containing them. Also in this group arc mod-
ules tested using more accurate, technology-specific fault models, e.g. bridging faults between
transistors. Such fault models arc uscful in developing better quality tests, but are so detailed that
test generation is impractical for typical VLSI circuits, These detailed fault models can be used to
generate tests for small submodules, and precomputed test techniques can be used to composc the
module tests into a test for the entire circuit,

An example of a circuit that js relatively casy to test using precomputed test methods is
shown in Figure 2.2, This circuit was gencrated by AutoCircuit, a high-level synthesis tool [32]
being developed at General Motors Research and Development Center and based on the System
Architect’s Workbench from Carnegic Mellon University [95]. The circuit Encode is part of a spe-
cial-purpose communications chip. The modules in this circuit are synthesized by module genera-
tors. They are similar to library modules and gate-level netlists suitable for test gencration are not
available for all modules. Nearly all buses in this datapath have the same width (42 bits). The bus
structure is very simple, while the total number of transistors is fairly large—67,000 for the entirc
chip, including four multi-port RAMs.

Each module in the datapath schematic of Encode is uniquely named PROCR_J,
MUXR_j, or REGR_k, where MUXR_j is a multiplexer and REGR_k is a register. Most other
functional modules arec named PROCR_. Below the module name is the width of the primary data
input bus and the module type. The CONCAT module adds lines to a bus. Now consider the prob-
lem of testing MUXR_3 in Figure 2.2. The CONCAT modules (PROCR_3--PROCR_6) shift a
constant value 0 or | into the low order bit of the inputs to MUXR_3 and MUXR_4. The value of
this bit can be controlled by inputs #; through ,. Therefore, the test vector set T for MUXR_3
can casily be justificd through path (MUXR_1, PROCR_1, REGR_I, REGR_3, PROCR_3) and
path (MUXR_1, MUXR_2, REGR_2, REGR_4, PROCR_4). The test response TR can casily be
propagated through (REGR_5, MUXR_5, MUXR_7, REGR_5). These two paths arc transparent
to the propagation of signals.

An example of a more difficult type of circuit that we would like to handle using precom-
puted test methods appears in Figure 2.3, This circuit is called Diviilt, and implements & digital fil-

ter containing about 2,900 transistors. Typically, several such circuits arc combined to form an IC,
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Figure 2.2, Example of a circuit Encode that is easy to test using precomputed tests.

bt



35

or are integrated on-chip with a microprocessor. Like Encode, Diviilt was synthesized by AutoCir-
cuit and contains primarily library modules. The FREAD modules in this circuit have the undesir-
able feature of truncating bus width. Note the large number (12) of FREAD modules out of a total
of 51 modules. There are also several cases of reconvergent fanout, ¢.g. from the output of
PROCR 25 to the inputs of PROCR_1, Finally, note that Divfilt is highly sequential; there arc ten
register modules and several feedback paths throughout the ¢ircuit. The complicated bus structure
is the result of the optimizations used by AutoCircuit to reduce the number of modules. Many
modules are reused in several different operation.

Despite the complexity of its bus structure, Diviilt docs make extensive use of multi-bit
buses. High-level propagation techniques can therefore be used for testing some modules. In addi-
tion, Divfilt’s complexity is mitigated by the fact that relatively few types of library modules are
used. AutoCircuit typically designs on-the-fly Jarge sequential modules such as counters, from
lower-level modules such as adders and registers, because the latter can be shared with other func-
tions, Large modules with behavioral models are sometimes helpful in identifying circuif behavior
usciul for testing. For instance, the fact that a collection of modules arc combined to form a stack
circuit can sometimes aid test strategy development. However, it is casicr to propagate crrors in
T, through a small sct of well-characterized primitive functions, as we will later show. The mod-
ules that AutoCircuit uscs most arc adders/subtracters, multiplexers, FREADs, CONCATS, ANDs,
ORs, NOTs, RAMs, and registers.

Now consider the problem of testing module MUXR_! in Divfilt. Its test response Ty will
have to be propagated through at lcast 12 modules to reach a primary output (SEND_2), along a
propagation path with significant loss of information (bits). This circuit is extremely difficult to
test, either by conventional or precomputed methods. Many faults in modules cannot be detected
because buses that carry the errors they cause are truncated, making it impossible to differentiate
an error from correct circuit behavior, The IC defects that cause the faults can remain latent in the
circuit and cause failures later on. Clearly, some circuit modifications will be needed to test Divfilt.

Microcontroller products offered by such companies as Motorola and Texas Instruments
provide further examples of circuits with library modules, Precomputed testing methods arc [re-

quently used to test these circuits. Microcontrollers from Motorola contain CPUs (microproces-
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sors) such as the 68332 and 68HC11, as weill as dozens of other modules such as RAMs, ROMs,
11O ports, and bus controllers. These modules are designed in several countrics, They are stored in
a library and connccied together in different ways to construct different microcontrollers, Each
module has associated precomputed tests and simulation models, and it is wsually impractical for
completely new tests to be written for the modules when they are composed into a microcontroller.

In general, since on-chip data and address buses provide good controllability and observ-
ability, microcontrollers are usually somewhat casicr to test using precomputed tests than Divlilt,
However, because a number of special purpose circuits arc also included on-chip with the CPU,
microcontrollers do have some irregular buses, Therefore, in this thesis, we will focus on the prop-
agation of test information in circuits like Diviilt. Effective techniques for testing such circuits are
also uscful for dealing with circuits with more regular buses such as Encode or typical microcon-
trollers.

Now that we have defincd the precomputed test method and illustrated the types of circuits
that must be tested using precomputed tests, we turn our attention to developing our key concepts

and terminology.
2.3. Propagating Precomputed Tests

In this section, we formalize circuit terminology we have used informally until now, and
introduce the concept of module and circuit transparency—the ability to propagate Tp. Wereferto
all components in the circuit under test as modules. Signals enter and Icave modules through input
and output ports. All n-bit module inlcrconncc!ions arc called buses, cven when n = 1. If X isa
bus, then |X| = n denotes the width of the bus. Individual subscts of bus lines are described using
standard array notation; for example, if |X| = 8, then X = X [7..0]. The most significant bit of
an n-bit bus is X[n-1}. This is commonly referred to as Big Endian notation [21]. The signal value
associated with a bus or port X is denoted V (X) and the set of all possible values that can be
assigned to X is denoted by {V (X) } . Specific valucs on multi-bit buses are represented as binary
(marked with a subscript 2) or decimal numbers. For example, the bit pattern V (X [2..0]) = 111
is denoted 111, in binary and 7 in decimal. Subscripts are omitted when discussing single-bit val-

ucs, since there is no ambiguity in interpretation. In most cases, we represent values as decimal
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Figure 2.4. Notation for module input/output signals.

numbers. Circuits are directed graphs whose nodcs arc modules and whose cdges are buscs. Buses
start at module output ports and end on module input ports. When considering a module in isola-
tion, we may unambiguously refer to its ports and the buses attached to them by the same name.
Let M (Figure 2.4) be a module with input ports X and output ports Z. T, is propagated
from a subset of the input ports X, < X to a subsct of the output ports Z,, < Z. Propagation is
often controlled by a third set of ports X . X ~ X, A test stimulus set T is justified at Z,, by
assignments to X, and X .. The buses X, , X . Zj,, and Z;, are called respectively, the input data
bus, the input control bus, the output data bus, and the omtput control bus, and (X p+Zpy) isadata-
bus pair. We assume in our analysis of propagation that X, X ., and Z,, may be freely chosen.
Library modules, such as adders and multiplexcrs, often have standard X, 's, X .’s, and Z;)'s
bascd on functional considerations. However, when the modules are used in a circuit, the data and
control buscs suitable for testing purposes may differ from these standard configurations. Somc
typical datapath modules are shown in Figure 2.5. Each module is shown with a particular assign-
ment of inputs to X . and X, and outputs to Z,,. Figurc 2.5d shows the usual assignment of buscs
for a multiplexer, while Figure 2.5¢ shows a less common but still useful assignment. Figure 2.5h
shows a decoder with only two decoded values being used. This module is a version of a classic
decoder module which has one output bit for each possible input valuc. Frequently, only a few
input values need to be decoded, and VLSI circuits often have large buses which prohibit the usc

of compiete decoders, so module generators arc used to create small versions such as the module
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in Figurc 2.5h. Here we assume that only inputs O and 4 arc decoded, so that when the decoder is
cnabled and V(X)) = 0, then V(Z,) = 1, and if V(X)) = 4, then V(Z,)) = 2. All other
valuesat X, map to 0 at Z;,.

The propagation problem (also called the observability problem) for a module M may be
stated as: given a data input value V (X p) »determine a control input value V (X c) so that the data
output V(Z,,) is distinguished from the output V (Zp)’ ductoany V(X)) =V (X,) . M is said
to be transparent with respect to V (X 5) if such a control value exists. That is, M is transparcnt if
any change in value at X, is reflected in a change in value at Z,. For example, Multiplexer 1
(Figure 2.5d) is transparent when V (X ) = 0. The concept of transparency is also defined simi-
larly by Marhdfer [66], and the path from X, to Z,, through a transparent module is called an F-
path by Frecman [30). M is partially transparent it for some V(X o) V(ZD) ’ is distinguished
from V (Zp) duc to at least one V(X)) =V (Xp) . In this case, some changes at X, can be dis-
tinguished at Z,, but not all. For example, the decoder in Figure 2.5h is only partially transparcnt
when V(X .} = 1, since not all of the inputs are decoded—most map to 0.

Some propagation paths with specific transmission properties have been defined. Two of
the more important ones are f-mode paths and T-mode paths [1], both of which are fully transpar-
ent. V{X) is propagated from X, to Z;, without modification along propagation paths with |-
modes. V(X ) is propagated from X, to Z,, cither unchanged or inverted—a simple transforma-
tion, along paths with T-modes. An example of an I-mode is demonstrated by Multiplexer 1
(Figure 2.5d) when V(X 2) = 0, and an example of a T-mode is demonstrated by the NAND gate
in Figure 2.5a when V (X .) = 1. Other useful functional path characteristics or modes may eas-
ily be envisioned.

The justification problem (also called the controllability problem) for a module M is to
determine an assignment 1o X, and X such that V(Z,) = T,. Frequently, as in the casc of
obscrvability, X . is used to control information propagation from X, 10 Z,,. In these cascs, cach
14 (ZD) corresponds to a unique V (XD) . For example, when V (Xc) = 0 in Multiplexer I
(Figure 2.5d), then any desired value v at Z,, can be obtained by applying vto X p- Both I-modes
and T-modes can be used in this way for justifying as well as propagating, a fact that is exploited

by PathPlan.
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2.4. Representing Information

In this section we discuss the representation of precomputed test data, These data are prop-
agated as signal values in the circuit model. Two types of information nced to be propagated: (1)
correct or fault-free signal values, including T, Ty, and various control signals, and (2) crror sig-
nal values that represent the effect of faults.
Vector Sequences. As discussed above, our precomputed test.methods use hierarchy and abstrac-
tion in the propagation of signals as well as in the description of circuit structure and behavior, In
order to represent signal abstraction, we consider all signal values to be vector sequences [45,12).
A basic vector sequence is an n X m matrix of logic values representing a sequence of Boolean
vectors. Each of the n rows of a vector scquence A represents the signal values for one bit of a bus
over time. Column ¢ of A represents the sct of logic values on the bits of an m-bit bus at time
instance #. These values may be frecly interpreted as any valid encoding over the bits, such as inte-
gers modulo m, Gray codes, ctc. The time units arc typically clock cycles, but may be interpreted
as gate delays, groups of clock cycles, or the like.

In general, we consider T and T, to be vector sequences. As an cxample, the following
stimulus/response vector sequence pair represents a sequence of three vectors on the input and out-

put ports of a 3-bit adder such as that of Figure 2.5¢.

{ - - 3

000

100000

110;l00 2.1
000|110

11011010

(ltoo )

Vector sequence matrices can be refined into submatrices in hicrarchical fashion. For

example, a natural partition of the input stimulus vector sequence part of (2.1) for the adder is
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000

4, =|100
110
- (2.2)
(000
4 =1110
100

which also illustrates how vector sequences can be represented by symbols. If we assign the output

part of the pair (2.1) to the symbol A 30 then the pair (2.1) can be written as

Il:4, (2.3)
Ar

We sometimes use a shorthand notation that allows vector sequences to be written on once
line. Horizontal sequences, implying a range of time instances, arc enclosed in square brackets.

Vertical vectors, implying a range of values in space, are enclosed in parentheses. For example, if

[ 1
All J"‘12 A|3
A = A2l A22 A23 (2.4)
LAE-I Az A33_
and
A21 Azz

then we write A = [ (A7, [A31,A32] ), (AB, A,q Agz) 1. I we interpret the individual vectors
of a vector sequence as integers, then using our shorthand notation, the vector sequence A, in
{2.2) can be rewriticn as Al = [3,1,0]. In these examples, the basic clements of vector
sequences arc constants, but they can also be variables, as we show below.

Certain vector sequences arc used so frequently by themselves and in the construction of
other sequences, that they have been given special names and symbols [45). These include thic n-
bit all-0 vector sequence 0, and the all-1 sequence 1, which are used later, as well as C, , the
nx2" counting sequence (the output of an n-bit counter), and D, the n x n diagonal scquence.

Errors. Let Z be a bus in a circuit under test C,and let V(Z) = v when C is working correctly.
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Let V(Z) = v* when C has a fault. The pair (v, v) is called a discrepancy, and represents an
crror signal on Z. In conventional (gate-level) test generation, error signals arc usually represented
by the symbols D = (1,0} and D =(0,1). Error signals are frequently combined with fault-free sig-
nal values in a single sct. In the D-algorithm and PODEM for instance, the signal values are cle-

ments of a five-valued algebra D, = {0,1,X.D,D}, where O represents the pair (0,0) and 1

represents (1,1). The value X implies uncertainty, which can be rc.prcscmcd by the unordered sct
{0,1}, therefore X represents (0,13}, {0,1}).

We can apply logic functions such as AND, OR, and NOT to D¢ by appropriately combin-
ing opcrations on the basic elements O and 1. We usc the general method for extending basic alge-
bras presented in [46). Let A = {a |+ dp --+» @, } be asct of constant values, for instance {0,1},
and let <& = {4)1, ¢2, ery ¢>m} be an associated set of operations, such as {AND, OR, NOT} so
that together A and @ constitute an algebra denoted (A, D) . A is referred to the basis set, There
are two gencral methods for extending A to anew set A’ that allow the opcration set @' associated
with A’ to be casily constructed from the operations in .

The first method creates A” from ordered n-tuples of the form a/ = (a,,,d4;, .., 4,)
where cach a;; is an element of A. The interpretation of ¢, in this casc is that the signal may
assumc value «, i under condition j. A sct A’ constructed in this fashion is called a ’-yet. The dis-
crepancies D = (1,0) and D = (0,1), and the fault-free values (0,0) and (1,1) in D are P-set pairs.
The other method is to construct A” from a set of subsets of A, so that cach ¢’ € A’ is itself an
unordered set of the form a’ = {a,, Aoy sy Ay}, Where cach a;; is an element of A, The inter-
pretation of a; in this case is that the signal may assumc any value in the set, A set A’ constructed
in this fashion is called a U-set and is typically associated with uncertainty about the current value.
The clements of X =({0,1}, {0,1 }) in D arc examples of U-sets. Clearly, P-sets and U-sets can be
combined as they are in D, = {0,1,X,D,D} = {(0,0), (1,1}, ({0,1 ;,{0,1}), (1,0, (0,1)}.

Next we show how to obtain the operations in & by combining operations in &, Con-

sider an opecrator ¢ (ap,ay .0 am) defined on A. ¢ can be extended for any P-sct as follows:

I r r !
¢ (“1 10y ey @, ) = (¢(a“,a21, ""“ml)'q’(“lz' e ""”mz)’

¢ (alu’ Uy vees amn) ) (2.6)

where a," = (4;, 45, .. a1, ) € A” and a; € Afor l<i<mand | £j<n. Similarly, ¢ can be



Table 2.1 The AND operator defined for D,

extended for any U-sct as follows:

’ ’ "o
¢ (af a)sena,y = {d(aypay),a,,).9(a5,a,,..4,,),

Glay s dyps o @) 04a s Ags, o5 @ ), 0 (8 5, Ay e ),

¢[a1n,’ (121:2’ rece amum) }
2.7

where @, = {a“, gy oors a‘."} e A’ and a; € Aand 1 <ismand 1 £5< n,. In other words, the
new set is constructed by combining members from cach of the sets a,’, a5’ ..., @, in all possi-
bie ways. Equations (2.6) and (2.7) define an extension rule which is satisfied by many useful mul-
tiple-valucd logics [46].

We can now use (2.6) and (2.7) to construct logic functions for D . For cxample, consider
the AND operation and Dg.

AND(D, 1) = AND((1,0), (I, 1))
= {AND (1, 1), AND(0, 1)) = (1,0) = D

whilc

AND (0, X)

AND ( ({0}, {0}), ({0, 1}, {0, 1}))

(AND ({0}, {0, 1}), AND ({0}, {0, 1}})

( {AND (0, 0), AND (0, 1)}, {AND (0,0), AND (0, 1) })
({0,0}, {0,0}) = ({0}, {0}) = 0.

i

The complete function table for an AND gate is shown in Table 2.1. Tables for the other logic

functions are similar.
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This algebra (D5, {AND, OR, NOT}) is used by test generation algorithms to compute
valucs at the inputs and outputs of gates in the circuit. In PODEM, for ¢xample, after a proposed
assignment v of logic values to the primary inputs is established, an implication operation is per-
formed to determine an cquilibrium logic state which is consistent with v, Each gatc in the circuit
is updated according to the function tables such as Table 2.1 to determine what its output will be in
response to a change on the gate’s inputs. It is possible to usc tables such as Table 2.1 to unambig-
uously analyze the results of error propagation along reconvergent paths in a circuit. If both inputs
to an AND gate arc D, then the output is D. On the other hand, if one input is D and the other D
then the output is O, that is, the error signal is blocked.

For preccomputed testing, we want to propagate crror signals on buses, not individual bits
of buses. Test response errors at the cutput of the MUT have the form (75, 7)) , where T, is the
responsc of the MUT to 7°¢ when fault /; is active. For cxample, if fault £, is a stuck-at-1 fault on
the least significant bit of the output to a 3-bit adder, then the discrepancy associated with fault f;

for the test response given in (2.1) is

000 1000
100,100 (2.8)
110|110
010] {111

We can represent individual vector sequence discrepancics like (2.8) as P-set pairs, similar to thosc
in D . However the number of elements in a set of such pairs is not fixed, it depends on the size of
the buses in a circuit and on the length of the sequences. We cannot define a fixed set such as D 50
because bus size varies between circuits, and so we cannot define corresponding functions to prop-
agate the valucs in a circuit model.

Howcver, by abstracting signals, we can create a small fixed set of symbolic error signals.,
Lee and Patel pursued this approach for the test generator ARTEST [58). They constructed a set of
symbolic error signals as a P-set similar to D using the ad hoc basis set {X,V,U,V',U’} with the
following interpretation

X = an unassigned value

V =an assigned, known value
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Error signal Symbol Interpretation
(LX) X Unassigned
X,\v) CF Constant faulty
XU VF Variablc faulty
W,X) CG Constant good
(V.V) C Constant good and faulty
(V\V") CGCFE Constant good and constant faulty effect
v.U) CGVF Constant good and variable faulty
v,\u”) CGVFE Constant good and variable faulty cffect

Table 2.2 The set of symbolic crror signals used in ARTEST [58].

U = an assigned, but unknown value

V'’ = an assigned known value different from the correct value

U’ = an assigned but unknown value, different from the correct value
The symbolic crror signal P-set constructed from this basis sct is shown in Table 2.2 together with
thc symbols and their interpretation provided by Lee and Patel [58). These interpretations are
meant to clarify the meaning of the signal but are frequently ambiguous. Some signals such as X
arc similar to values in other signal value sets such as Dg. Others, such as CGVFE. are unique to
ARTEST. The signal CGVFE is used to represent all errors of the form (T, T,,.) simultancously.
The signal C is used to represent all fault-free control signals and T. If CGVFE is propagated to a
primary output, then all test response crrors are propagated.

Since the elements of the signal value set described above are all abstract symbolic values,
they cannot be used alone to determine the state of a circuit during test generation, Therefore, they
are combined in ARTEST with an explicit fault-free signal value and the resulting signal is a pair
of the form (v, 1), where v is a vector and ¢ is an element of the symbolic signal value set given in
Table 2.2 and is referred to as the type.

The type sct used in ARTEST has two drawbacks. First, the set is constructed in ad hoc
fashion so that the method described above for extending basic operations cannot be systemati-

cally applied. Types arc propagated in ARTEST using a sct of rules for cach module. Second,
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CGVEFE can only bc propagated along fully transparent paths. Since all test response crrors are
combined in CGVFE, if any particular error (T, Tp;) cahnot be propagated along a propagation
path, then ARTEST must pessimistically assume that none can. Therefore, as previously dis-
cussed, ARTEST cannot gencrate tests for circuits with an irregular bus structure, such as Diviilt
(Figure 2.3).

In Chapter IV, we will present a hicrarchical approach to test response crror propagation.
Our highest-lcvel signals are similar to those described above for ARTEST and propagate test
responsg signals along fully transparent paths. Less abstract error signals are used to propagate test
response errors along partially transparent paths. The signal value sets and their associated func-
tions are rigorously defined using P/U-sets and thc operation extension methods described above.
'Test Packages, We refer to the information unit containing all test, propagation, and control infor-
mation for a module or circuit as a test package. Test packages arc the clements of the module
library used for testing by the precomputed test method. Like packages in the hardware description
language VHDL [20], they hide and abstract information. The si'mplcsl form is the stimulus/
response pair (7¢:Ty,) , where T and Ty, are, in general, vector sequences. A test package exhib-
its the same hicrarchical structure as the underlying vector sequences. In particular, (7:T,,) may
be partitioned into control and data parts as implicd by the partitioning of buscs depicted in
Figurc 2.4, Such a test package can be denoted by (V(Xp), VX)V(Z,), V(Z,)) . Each of
the buscs Xp- Xe» 2y Z may be further refined (in space) into the natural buses of the circuit, as
in the example modules in Figure 2.5. This implies a natural correspondence between entries in a
test package and the ports of a module.

Since Ty and T, can be represented by vector scquences, refinements of the test package
(T4:T,,) intime can be concisely represented. For example, the multiplexcr of Figure 2.5b can be
tested as follows: select the data input in0 for k clock cycles by applying a sequence of &k 0's to ctrl,
and apply a sequence of & patterns in a vector sequence A, to inQ. The process is repeated in £-
cycle sequence for the other data input inl with S(ctrl) = 1. The resulting test package for this

case is
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Figurc 2.6. Bus assignment example

A d
TPy = (TTp) = | | a 4 [i[4, 4]
0 1
The value d denotes “don’t care”, and implics that any n-bit vector sequence can be applied as part
of the test. This test package can also be written as ([ (A, d), (d,Al)], [, 104,41
Figure 2,6 shows the various components of the test package applied to the input/output ports of
the multiplexer.

We commonly scparate test packages into two main types: those containing test data for
module faults called fauit test packages (FTPs), and those containing propagation information for
modules called propagation test packages (PTPs). These may be loosely compared to the fault D-
cubes and propagation D-cubes of classical testing theory [16]. The test package for the multi-
plexer described above is an example of a FTP. PTPs define functions mapping specific inputs to
outputs for the purposes of propagating test information. In a test package of the form

($(Xp). S(Xp)iS(Zp), S(Z)), (X)) or $(Z,;) may be vector sequences associated with
several ports. If a variable o appears within §(X ;) , then @ should also appear in the correspond-
ing position within § (Z,,) . As an cxample, thc PTP for propagating sequences through the data
port X, of the multiplexer in Figure 2.6 is denoted by TP, = ((a, d), 0ict) . In TP, the variable
o appears in positions corresponding to X| and Z, and the constant value 0 corresponds to the
control input X, During test gencration, all values in the PTP must match the values on their cor-
responding buses. Therefore, 7/, implies that when V(X)) is 0, the same vector sequence must
be assigned to both X and Z, since both must maich the same variable. The corresponding pack-

age for propagation through X, is ((d,a), Lia) . We will demonstrate how PTPs arc uscd in a
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test generation algorithm in the next section,
2.5. PathPlan

PathPlan (for path planning) is our initial version of a hicrarchical tcst generator using
precomputed tests. It was developed at General Motors Rescarch Laboratories in 1987 and was
one of the carliest reported automatic test gencrators designed specifically to generate tests for cir-
cuits using precomputed tests for modulcs [68]. It has not been used to test commercial circuits,
however, a similar program partly bascd on PathP{an has been used for production testing [11].
Our work developing PathiPlan, as well as the work to develop necessary extensions to it, form the
basis for this thesis.

PathPlan propagates symbolic references to vector scquences representing Tgand T,
through circuit models using an algorithm similar to the D-algorithm. The module test stimulus 7'
is justified module by module from the MUT to primary inputs (PIs) and thc moduie test response
T is propagated module by module to primary outputs (POs). T¢ and T, are stored as FTPs for
cach module in a circuit to be tested. PTPs are used to transler information through modules. To
simplify the processing of test response errors, PathPlan restricts propagation to cases that require
only simple transformations of the symbolic signals being propagated. If A is a vector sequence
representing T, then A or its logical inverse A must be propagated along a path from the output
of the MUT to a primary output in order for crror propagation to be considered successful by
PathPlan. As noted carlier, this mode of propagation is referred to as T-modc propagation. A T-
modc path is transparent, therefore any test response error (T Tp,) at the output of the MUT
will be propagated along such a path. ParhPlan docs not explicitly represent crror signals, since all
crrors are implicitly propagated along T-mode paths,

In PathPlan, vector sequence signals arc assigned to buscs and propagated along data
paths using a procedure called instantiation. The same instantiation procedure is used for both jus-
tification and propagation. We will describe how it works by means of some simple examples,
Instantiation is fairly trivial when assigning the various stimulus and response components of a
FTP to a MUT in a given circuit. Consider an instance of the multipiexer of Figure 2.6 in a circuit,

and assume that its test is characterized by the test package TP, =({A; . d), (d, ADL [0.1]; [4,



50

A, )) derived above. The signals assigned to all the ports in this instance of the multiplexer are ini-
tially d. When the instance becomes the MUT, then the simplest form of instantiation is used to
assign values to the multiplexer's ports as follows: A, is assigned to port X, d is assigned to port
X, Ois assigned to port X, and A, is assigned to port Z.

Instantiation is also used for the more complex process of signal propagation in the fol-
lowing way. Again referring to Figure 2.6, supposc that a vector scquence Ay, representing 7, has
already been assigned to port X | of the multiplexer instance, but that all other ports are still initial-
ized to d. A, can be propagated through the multiplexer using the PTP P, = ((a,d,0):0).
First, since the variable a in position 1 of TP, corresponds to port X , instantiation assigns A, 10
o. Next it substitutes A, for variables named o cverywhere in T/, producing
TP3 = ((A p @ 0):A R) . Finally, it intersects cach value in 7 P, with the value alrcady assigned
to its corrcsponding port, where intersection of two vector sequences is defined by the intersection
of their corresponding bits in the usual way [79]:

0" =0md =dn0=20

Inl =1lnd=dnl =1
dd = d
1m0 =0Nn1 =0

Here the empty sct symbol & denotes conflict. In most cases, conilicts can be analyzed symboli-
cally, since different vector sequences are assigned different symbols in I’ath‘!(m. For cxample, if
A, and A, refer to different vector sequences, then A cannot be intersected with A, without con-
flict. Instantiation can be used in a symmetric way to transfer a vector scquence A representing
T along a path from an input to the MUT to a primary input.

A Kkey element of instantiation when used [or propagation is the assignment of vector
sequences to variables in the input (output) part of a PTP and the subsequent substitution of the
same vector sequence for varjables in the cutput (input) part of the PTP. In the propagation exam-
plc above, the value A, on port X| was propagated to port Z when the same variable o appeared
in the positions of the PTP comresponding to those ports. The process of substituting the same
value for all varjables of the same name in a test package to be instantiated is called unification.

The unification procedure is widcly applied in computer science [33), most notably in manipula-
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| PathPlan

2 {

3 while (there are nrodules left to test) {

4 select a module to test;

5 while (there are FTPs for the MUT) {

6 initialize circuit;

7 select a FTP;

8 instantiate( ports of the MUT, FTP ),

9 while (there are test responses to propagate) {
10 choose Tor

il if (there are modulies in the test frontier) {
12 current module = MUT;

13 record choice;

14 propagate;

15 }

16 if (propagation is successful) {

17 Justify;

18 if Gustification is successful) simulate implications;
19 if (no conflicts) record success;
20 }

21 }

22 }

23 }

24 }

Figure 2.7. PathPlan algorithm,

tions of expressions by compilers, in automaied theorem proving, and in logic programming,
The instantiation process may be summarized as follows:
1. For cach position in the test package TP containing a variable, assign the value on the cor-
responding bus in the circuit to that variable.
2. Unify the variables if possiblc
3. Interscct the values in the test package with the corresponding values in the circuit, and
assign the results to the buses in the circuit if there is no conflict
IT a conflict is encountered in steps 2 or 3, other test packages are tried, if available.

Figure 2.7 shows the main body of the test gencration program PathiPlan. It uses two pri-
mary subprocedures, propagate and justify defined in Figures 2.8 and 2.9, respectively. There arc
olten several FTPs to be instantiated for a given MUT, individual tests can be hierarchically
decomposed into smaller FTPs to be applicd scparately as discussed above, and alternative FTPs

can be used when the application of an initial FTP is impossible. The test frontier contains a list of



1 propagate

2 {

3 while (TRUE) {

4 if (destination module exists and more PTPs)

5 select a PTP;

6 else if (test frontier not empty)

7 select a destination module;

8 else return( FAILURE );

9 while (there are PTPs for destination module but no
10 successful instantiation) {

11 instantiate( ports of destination module, PTP );
12 if (instantiation successjul) {

13 record choice;

14 current module = destination modile;
15 if (current module is connected to PO)
16 return( SUCCESS);

i7 }else {

18 select new PTP;

19 if (no PTP) backtrack to last recorded choice;
20 }

21 }

22 }

23 }

Figure 2.8. Propagation proccdure of PathPlan,

the modules chosen for forward propagation. These are the modules whose outputs are unas-
signed, and at least onc of whose inputs has been assigned T, . Modules can be chosen for justifi-
cation if their outputs have been assigned but not all their inputs have been assigned yet.

ParhPlan has been implemented and uscd to test scveral practical circuits. It consists of
about 7,000 lines of C and accepts circuit descriptions written in an HDL similar te the commier-
cial test gencrator and simulator Hitest [76). In order to demonstrate the wse of PathPlan, we
describe its application to the Gaussian fijter chip which is an IC designed at General Motors R&D
Center for use in image processing applications [65]. It is a small but nontrivial CMOS design
with approximately 40,000 transistors. All modules are synthesized using module generators as in
Diviilt and Encode. Two on-chip RAMSs support linc buffering operations. Figure 2.10 shows a
basic block of the circuit called Flirdp, Three of these blocks are used in the Gaussian filter and
form a major portion of that circuit.

Flirdp is composed of five types of modules: ADDERX, ADDER, FO, MUX, and
LATCH. Buses 5, 12, and 13 arc 1-bit buses; all others are 8 bits in width. ADDERX is an adder
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i Justify

2

3 while (there are buses to be justified) {

4 select a bus X 1o be justified;

5 current module = module driving X;

6 select a PTP for current module;

7 while (there are more PTPs or until successful instantiation) {
8 instantiate( ports of current module, PTP );

9 if (successful) record choice;

1 clse {

11 select PTP;

12 if (no PTP) backtrack 1o last recorded choice;
13 if (there are no more justification choices)
14 propagate;

15 if (propagation fails) return{ FAILURE );
16 }

17 }

18 }

19 return( SUCCESS );

20 }

Figure 2.9. Justification procedure of PathPlan.

12
ctk
1 .
in0 7 LATCH
ADDERX J out( 14
2 i —
10 msb| © ro o in0
msb inl M
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ADDERX M sum clr Mg
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inl ? inl l3|
y S
I My MUT

Figure 2.10. Basic block Fltrdp of the Gaussian filter chip.

whose carry-out bus has been combined with the most significant 8 bits of the sum, forming the
output bus msb. The least significant bit of the sum is called 1sb. ADDER is self-explanatory,
LATCH is an cdge-triggered latch module, and MUX is a multiplexer. PathPlan models fanout
cxplicitly as a module; FO is a fanout module. The carry-in value to all adders is 0, and any out-
puts not used are not shown. In this example, ADDERX is designated as a module type diffcrent
from ADDER to mitigate PariiPlan’s limited ability to handle bus irregularitics.

We will show two passes of PathPlan used to derive a test for the multiplexer MUX in
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Fltrdp. As before, the FTP for testing MUX will be
(TS;TR) = ( [(Al;d): (d’Al) ]: [0! l];[A]sA] ])
which matches ports in0, inl, ctrl, and outO, respectively. The circuit will be initialized so that

cvery bus has value d. After instantiating ((4, ), 0;A4 ), the list of the values on all 14 buses of

Fltrdp is as follows:

The MUT is not connecied to a primary output so we include the destination module M in the test
fronticr and propagate. The test package for propagating values in parallel through the latch is
((C, a,0);a), where C is a clocking sequence (JO101...]). After instantiation, the values on the

buses become

Since bus 14 is connected to a primary output, propagation has succeeded. As all inputs to the latch
cxcept in0 are primary inputs, the next nontrivial justifications to be made are on buses 7 and 5.
The test package for propagating values backward through ADDERX is ( (o, ) ; (0, «)) . This
test package represents a strategy for backward propagation (justification) in which a value A is
added 10 itself, thus propagating A to thc most significant bits of the sum (msb). In this case,
Xo = X}, The PTP for the FO module M, is (o (0, o) ) . We now select bus 7 for justification.

After instantiation, the values on the buses are:

1 2 5

3'4

6|7|8|9‘10|ll|l2|13|14
d | a|alalofa|a|a]|a|lala]c]ol]a

Finally, the outputs on modules A, and M, arc justified. After these justifications, the values on
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buses are:

‘The first component of T has now been propagated to primary inputs.
We next try to instantiate ({d, A|), 1:4;) in the same manner. The scquence of steps is

shown in the following list of bus values.

! 2 3 4 5 6 7 8 9 10 11 [ 12|13 14
d d d d 1 d d d d | A A d d d

d d d | d d d d | A | A C 0| A

d d d 1 d d 0 | A | 4 |4 C 0 | A4,
d d d d 1 0 0 0 | A | A | A C 0 |4,
0 d d 1 1 0 0 0 |4 |4 |4 ]|C 0 | A
0 0 1 0 l 0 0 0O |A 1A |A | C 0 | A,

As discussed in Chapter I, we measure performance in terms of module cvaluations, and
in PathPlan we measure module cvaluations by counting instantiations. For the circuit in
Figure 2.10, PathPlan requires 57 module evaluations to fully test modules M and M, and par-
tially test modules M| and M, and M, . Module M is only partially testcd because the Isb output
is unuscd. Neither madule M, nor module M, can be fully tested at this Ievel of abstraction by
PathPlan using T-modes duc 10 reconvergent fanout. In the case of module M,, T, is propagated
along buses 5 and 6 and reconverges at module M. There is no T-mode for module M that prop-
agates veetor sequence symbols simultancously on both controt and data inputs. Note that if crrors
in T, appear at both the Isb and msb outputs of module M, , or only at the msb output, then they
arc always propagated through M. However, an crror that appears at 1sb alone can only be propa-
gated il bus 2 is not O, that is, when the in0 and inl input signals to module M, are different. To
exploit this fact, we can partition the FTP for M, into two different parts; thosc that produce errors
only at Isb arc propagated together, and the rest are propagated separatcly. However, we must still

use an ad hoc PTP (one not using the T-mode propagation) for module Mg to propagate T,. This
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LEstimated Number MNMumber of
Estimated | number of | of high- module

number gate level cevaluations

Module of gates cvaluations | modules | by PathPlan
Fltrdp 254 64,516 6 57
Vertdp 138 19,044 5 21
Rowdp 220 438,400 6 33
Alu 62 3,844 9 167
Progptrl 110 12,100 12 210
Progptr 156 24,336 6 68

Table 2,3 Performance of ParhiPlan relative to gate-level test generation,

approach is not systcmatic; it does not address the general problem of reconvergent fanout. Recon-
vergent fanout is also a problem when using symbolic vector sequences to test module 4, in
PathPlan. With T-mode propagation, we cannot simultancously control bus 8 to apply 7' to mod-
ule M, and bus 5 to propagate T, through module M.

Some results of applying PathPlan to other practical circuits are shown in Table 2.3,
which repeats Table 1.1. Fltrdp has been described above. The modules named Vertdp and Rowdp
are datapath circuits similar to Flirdp and used in the template-matching 1C described in (65].
Vertdp has two registers, an inverting buffer, an adder, and a multiplexcer. Rowdp has onc register,
an inverting buffer, two adders, and two multiplexers, Both can be tested completely by a test gen-
erated by Pathplan. Alu is a hi'gh-lcvcl mode! of the 74181 ALU/function gencrator described in
[12]. Most of the modules in the high-level model employed by Alu arc word gates. Finally,
Progptr] and Progptr2 are circuits used in a control unit. They consist primarily of mulﬁplcxcrs,
but the bus size of the multiplexcrs in Progptrl is 4, while the bus size of the multiplexers in
Progptr2 is 8, The fact that the modules are smaller, and that there are more of them accounts for
the lower performance of PathPPlan in testing Progpirl.

PathPlan is an carly version of a test gencrator designed specifically for testing using pre-
computed tests, therefore it has some restrictions that have been addressed by subsequent rescarch,

In particular,
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1. It can only bandle acyclic combinations of primitive modules
2. Itusecs only T-mode propagation

Restriction 1 can casily be addressed in principle by extending Pathflan 1o include the
same modifications used in conventional gate-level 1cst generators to handle sequential circuits
[68]. Restriction 2 simplifies the algorithm but shrinks the solution space by leaving out many pos-
sible solutions. For example, supposc that module M, of Fltrdp (Figure 2.10) is the MUT. As dis-
cussed above, T, cannot be propagated through module Mg due to ParhiPlan’s reliance on T-
maodes. This restriction can be addressed by extending PathPlan to process more complex sym-
bolic expressions, which we do in Chapter IV. Exclusive T-mode propagation also limits the kinds
of transparent propagation paths that can be used to propagate crrors. For example, an incrementer
is a transparcnt module, but does not have a T-mode. ARTEST addresses this issue by using types
as described carlier.

The main limitation of ParhPian is also shared by all other previously reported hicrarchi-
cal test generators using precomputed tests for modules. They cannot analyze error propagation
through circuits with truncated buses and arbitrary reconvergent fanout. It is this limitation that we
address in the remainder of the thesis.

Despite its limitations, PatliPlan does have some advantages which make it useful for
testing circuits with large complex modules and a regular bus structure. These advantages stein
from PathPlan’s simplicity. The main test generation algorithm and related procedures are imple-
mented in about 1000 lines of C. The rest of the code supports librarics used by PathPlan as well
as compilers for the hardware description language and the test package library. All the functional
behavior for cach module is contained in PTPs. PathPlan can handle both combinational and
sequential primitive modules of arbitrary size and complexity. It only requires PTPs for the mod-
ules sufficient for propagating vector sequences through them during testing using T-modes. Per-
formance measured by module evaluations depends on the number of PTPs stored for cach module
since these must be scarched to find one that can be instantiated. A few simple propagation modes
are often sufficient.

One additional aspect of test generation using precomputed tests often leads to problems;

the propagation of signals through the MUT in timeframcs other than when the FTP is instantiated.
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This issue is handled in DB-TG [88] by optimistically assuming that the MUT only affects signals
in one timeframe. Pat/iPlan assumes that propagation is blocked. This problem is rarcly men-
tioned in the literature. In some instances, the errors produced by the MUT can be propagated
through the MUT cven when it is faulty. The effect of cach fault in the MUT on the error signal
must be analyzed to determine whether the error signal is propagated. We will address this issue in
Chapter I'V.

Finally, we consider the affect of design-for-test techniques on test generation using pre-
computed tests. As discussed in Chapter I, many of the classical methods used for improving cir-
cuit testability are equally useful for precomputed test methods. In particular, full and partial scan
design can be used to provide controllability and obscrvability thus making circuits casier to test.
In addition, direct access to modules can be provided by routing internal buses through special
multiplexers. Variations on these techniques are used in [9, 26, 51, 82, 73]. An altcrnative
approach to improving circuit observability for propagation is to modily non-transparent modulcs

to increase their transparency; we will discuss this approach in Chapter IV,
2.6. Summary

In this chapter, we have introduced the precomputed test method and provided examples
of the types of circuits that it can test. This method is appropriate for circuits with modules that
cannot be tested using classical techniques. Each module must have an applicable precomputed
test set. Test stimulus vectors T arc propagated through structural models of a circuit under con-
sideration to a module under test, and the corresponding response T, of the module is propagated
to a primary output or other obscrvation point. The circuits tested using precomputed test methods
have large modules connected by multi-bit buscs. Frequently, these busces contain irrcgularitics
such as reconvergent fanout and truncations.

We also identified the key aspects of precomputed testing as well as the main components
of our method and contrasted them with similar concepts in classical methods. Since the circuits
for which precomputed test methods are appropriate contain large modules with long tests, as well
as multi-bit buses, for clficicncy, test information should be propagated at a high level of abstrac-

tion whenever possible. In our method, 7' and T, have a hicrarchical representation called a vee-
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tor sequence. At the highest level of abstraction, vector scqucriccs are propagated as symbols, In
conventional methods, single-bit signals are used for propagating fault-free and faulty (error) data.
Error signals arc propagated more abstractly in most precomputed test methods. High-level sym-
bolic crror signals cannot be casily propagated through irregular buscs. This is a main limitation of
previously published hicrarchical techniques for generating tests using precomputed tests for mod-
ules.

Finally, we described our initial test gencrator PathPlan in detail, PathPlan represents
precomputed test stimulus and response sequences as vector sequences stored as test packages for
cach module, It generates tests by propagating symbolic references to vector sequences through a
circuit model and performs only simple transformations on the signals. PathPian can be used to
test many uscful circuits, however, as with other techniques using precomputed tests, it is incffec-
tive at propagating crror information through circuits with an irregular bus structure. The represen-
tation and propagation of error information through complex Bus-slructurcd circuits is an
important rescarch issue that is a central focus of this thesis. Another restriction of PathPlan is its
inability to propagate arbitrary expressions of vector sequences. Solutions to these problems are

examined in Chapter IV, First however, we develop our general theory of propagation.



CHAPTER III
THEORY OF PROPAGATION

This chapter presents a theory of propagation, a formal method for characterizing the
information transmission propertics of logic modules and circuits. Its goal is to automate analysis
of error propagation in complex bus-structured circuits during test gencration, The resulting theory
is very genceral and has broad applicability. We have applicd it to error propagation for test genera-

tion and also to design for testability.
3.1. Propagation Algebra

In this scction, we formalize the propagation characteristics of modules and circuits and
define the basic elements of propagation theory.
3.1.1 Propagation Functions

Let M be a module with input X and output Z, and let F be the function of M mapping val-
ucs at X to values at Z. Often we arc only interested in propagating values from a subset of the
inputs to & subset of the outputs. If we sclect values only from the port Z,, © Z, then we shrink the
codomain of F. We call the resulting function a module subfunction and denotc it by F [XiZ,] .
Consider the 3-bit, 2-input multiplexer shown in Figure 3.1. Let Z,, be the two least significant
bits of Z, that is, Z,, = outQ{1..0]. The input is X = (ctrl, inG, int). Signal values on Z,, can only
range between 0 and 3. For example, F(1,2,4) = 4, while F[(ctrl,in0,in1);0ut0[ 1..0]](1,2,4) = 0, and
F(1,2,5) = 5, while Fl{ctrl,in0O,in1);0ut0[ 1..0]1(1,2,5) = 1.

Next, we consider mappings from a restricted set of input ports (X, X ) . Since the val-

ucs assigned to other input ports are unspecified, the result is a set of subfunctions, one for each
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Xc=cirl

' in0 ctrl
X

MUX out0 ===} 7,=out0[1.0] }Z
Xp=inl ———— inl

Figure 3.1. Three-bit, 2-input multiplexer with input data bus Xp = inl,
control bus input X~ = ctrl, and output data bus Zp = outO[ 1..0L

combination of values on X - X .—X,,. We denote the subfunction mappings from values at X .
and X, to values at Zyas F (XC, XD) ;ZD] (X x2) . where X is a value assigned to XC and Xy
is a value assigned to X ;. Consider again the multiplexer shown in Figure 3.1.

Fl(ctr], inl);outO{l..O]](O,xz) = {0,1,2,3} for all X,

Fl(ctrd, inl);0ut0[1..0]](0,x,,) = x,, X, € {0, 1, 2,3}

Fi{ctrl, inl):oulO[l..O]](O.xz) =X,—4, Xy € {4,5,6,7}
If it is clear that we are referring to subfunctions, and if XC, XD. and ZD, arc known, then we will
simply write F [ (X, Xp)iZ,] asF.

Finally, we consider the set of information or signal valucs to be propagated from X pto
Z,,. The full set of values that can be applied to a module at X, is {V (X;) } | however, we z;rc
often only interested in a subset of these, Q ¢ {V (X p) } . For instance, Q can be the set of possi-
ble responses or outcomes from a test. The module subfunction defines an equivalence relation R
on Q. For x,, x, € £, and some constant value ¢ assigned 10 X, let x, Rx,, if and only if

FI(XpXp)iZpl (6,x)) = FI(Xe Xp)iZp] (¢, x,)

R is an equivalence relation since set equality is reflexive, transitive, and symmetric. If x, and x,
are cquivalent, then théy cannot be dislinguishcd at Z,. Indistinguishability of signal values,
defined as equivalence, plays a central role in our analysis of information propagation,

A partition 7 on a sct § is a collection of disjoint subsets of § called blocks, whose union is
3. Two clements s, 5, € § are equivalent, denoted 5| =5, () , if and only if they are in the same
block. If R is an cquivalence relation on S, then the set of equivalence classes of R defines a parti-

tion = on § and vice versa. In particular, the cquivalence relation on Q delined by
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1

Xc
—Jino ctrl
3 . 0,1,230,1,2,3
MUX out0 é
0,1,2,3,4,5,6,7 _
——— inl Zp = out0[1..0}
Xp 3

Figure 3.2. Sct of values applied to X, of a 3-bit, 2-input multiplexcr and corresponding
outputs at Zp, for V(X)) = 1.

F[ (X XD) ;ZD] induces a partition on £2. As an ecxample, for the 3-bit, 2-input multiplexer in
Figure 3.1 withQ = {V (XD)} = {0, 1,2,3,4,5,6,7}, we have the following:

F[(ctrl,in1);0ut0[ 1..0]1(1,0) = F[{ctrl,in1 };0ut0[1..0]}(1,4) = 0

Fi{ctrl,ini);out0[1..01](1,1) = F[{ctrl,in1);out}[1..0]1{1,5) = 1

Fl{ctrlinl);out0[1..01)(1,2) = Fl{ctrl,in1);out0[1..0}](1,6) = 2

Fl{ctrl,inl y;,out0[ 1..0]](1,3) = F[(ctrl,inl );0ut0[ 1..0]](1,7) = 3
This is depicted in Figure 3.2. The subfunction F[{ctr], inl);out0{1..0]](1,x) forms a partition
{{0,43,{1.5},{2,6}.{3,7}}on &2,

In our analysis, it is frequently necessary 1o a treat a sct of related subfunctions as a single
unit, Let P = (F s Fa sy Fk) be an ordercd &-tuple of subfunctions, cach with the same input
data bus X, and domain Q c {V (X p}- F is called a subfunction vector. Wc can compose sub-
function vectors in various ways. For instance, cach subfunction F; may bc defincd as
FI(XnHXp)iZp] (¢, x) , where V(X 5) is a constant value c, and cach Z,; S Z is an output
port disjoint from the output ports in subfunctions F o j#= i.This is depicted in Figurc 3.3a. In this
case, cach subfunction vector represents the mapping of values from a single input data port X plo
values on muitiple output data ports Z,,.. Consider again the 3-bit, 2-input multiplexer in
Figure 3.1. Let X =ctrland Xp= inl as before. Let ZDl = outO[1..0] and Zm = outQ[2], so that
F = F[(ctrl,in1);out0[1..0}]) and F,, = F[(ctr],in1);0utO[2]]. Then,

(l,x),0€x<3

(FI(I,X),FZ(I,JJ)) = {
(Lx-4),4<sxs7

Alternatively, each subfunction F; can be defined as F [ (X Xp)iZp] (x,2) where
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(a)

[ 11 ] ———erie— XD ZD e ——
M | V@p)=Fxx)=F) M |V@p)=Flxpx) = Fy

G
Figure 3.3, Two compositions of a subfunction vector (F,F.....F): (a) space and (b) time.

cach x;, is a different value assigned to X .. This subfunction vector represents the mapping of val-
ucs from a single input data bus X, 1o values at a single output data bus Z,, duc to a scquence of
control values assigned to X . for each mapping. Each F; represents the mapping due to a different
value in this sequence, as depicted in Figure 3.3b. For the 3-bit, 2-input multiplexcr in Figure 3.1,

(F(0,0),F(1,0)) = ({0,1,2,3},0)

(F(O,),F(L,L1}) = ({0,1,2,3},1)
Here the control sequence applied to X . is [0,1]. These are the two common interpretations of a
subfunction vector used in our analysis,

A subfunction vector also defines a partition on €2 related to the partitions m; defined by
its constituent subfunctions. Let x| and x, be two elements of Q and let R be the relation on
such that x Rx, il and only if x| and x, are both contained in the same block in every partition
n,. This is an equivalence relation because, once again, sct inclusion is reflexive, transitive, and
symmetric. The structure of the partition defined by subfunction vectors is a key element in deter-

mining the propagation characteristics of a module or circuit with respect to the set of information
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Figure 3.4. Propagation function P[MUX;(ctrl,in1);{0,4,5,6,7}] for V(X)) = 1.

values in &,

Definition 3.1: Let M be a module with input control bus X . and input data bus X, and let F be
a subfunction vector derived from the function of M. Let a, denote the ith block of the #-block
partition m, on Q defined by F., and let B, = P {a). Then the set
PIM (X Xp)i Q1 = {{(0:B)), (0iB5)5 .0 (@,iB,)} i a prapagation function on Q.
PM;(X Xp)iQ] is said to be based on F, my is said to be embedded in P [M: (X X )):Q1

and each pair (a‘.:B'.) is referred to as a block of the propagation function.

Consider the 3-bit, 2-input multiplexer of Figure 3.1 shown again in Figure 3.4. Let
Q= {0,4,567} and F = F[(ctr], inl), outO[1..0]]({,x), then F([,0) = F(l,4) = 0,
F{1,5) = }1,F(1,6) = 2,and F(1,7) = 3. Therefore, the propagation function on Q based
onFis
PIMUX;(ctrl, in1);{0,4,5,6,7}] = {(0,4;0), (5; 1), (6;2), (7;3)} (3.1
which is depicted in Figure 3.4. The partition 7, embedded in P is { (0, 4), (5), (6), (7}}.
As another example, consider the adder module in  Figure 3.5, Here, X b is the addend,
X is the augend, and Zj, is the three most significant bits of the sum. Let Q = {0, 1,2, 3} and
F = (F(0,x),F(1,x)). Then, F(0) = (0,0), F(1) = (0,1), F(2) = (1,1), and
F(3) = (1,2). Therefore, the propagation function on Q based on F is
P[ADDER,; (inl, in2}); {0,1,2,3}} = {(0:(0,0}, (1:¢0,1)), (2;¢1,1), (3:(1,2))} (3.2)
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Xc=ini

ADDER } Zp=sum([3..1]

XD=in2

Figure 3.5, Three-bit adder module with input data bus X, as addend, input control bus X~ as
augend, and output data bus Zp = sum|[3..1].

and the embedded partition is Ty = {(0), (1), (2), (D) }.

The mapping of inputs to outputs represented by a single block of a propagation function
is similar to the mapping described by a singular cube, which is a represcntation of an incomplete
Boolean function introduced by Roth [78], and widely used in describing logic synthesis algo-
rithms, It is written «|v, where # is a sct of values u, for input variables (ports), and v is a sct of
values v, for output variables (ports). Here cach i or v, must be cither 0, 1, or ¢ {don’t care). For
instance, the block (0, 4;0) in equation (3.1) is equivalent to the cube ci0021002.

Since propagation functions usc partition theory, several definitions and opcrations
derived directly from partition thcory can be applied to them. For instance, the partition on § ¢con-
sisting of all singleton (onc-clement) blocks is the zere partition, and the partition consisting of a
single block containing all clements of S is the unif partition. By analogy, the propagation function
where the embedded partition g, is the zero partition on €2, and where ¢, = [3, for all i, is the
zero propagation function. The propagation function P = { («;f)} where the embedded parti-
tion T, is the unit partition on Q and f = Q, is called the unit propagation function. Consider
again the 3-bit, 2-input multiplexer of Figure 3. 1. IT V(X ) = 1, then

PIMUX;(ctrl,in1):{0, 1,2,3}1 = {(0;0}, (1;1), (2;2), (3:3)}
is the zero propagation function on Q. If V(X ) = 0, then
PIMUX, (ctrl,inl};{0,1,2,3}] = {(0,1,2,3;{0, 1,2,3})}
is the unit propagation function on .,

If two values x| and x, are both in the same o, then they produce the same output

V(Z,,) and so they cannot be distinguished. In this casc, some information is lost in propagating

values from X, to Zp;. Since every element of Q is contained in the single o, of the unit propaga-
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tion function, the associated module propagates no information from X, to Z,. On the other
hand, since each o, of the zero propagation function contains exactly onc value, the associated
module propagates all information.

We now define some basic operations for combining propagation functions, These are
used in the application of propagation functions to transparency analysis and error propagation,
which are discussed later. We begin with the intersection operation for propagation functions

which is derived from partition intersection (see also Appendix A).

Definition 3.2: Let | and P, be propagation functions on the sct . The intersection of P, and
P,,denoted Py m P, is the propagation function on € such that

. If g, is the partition cmbedded in P, g, is the partition embedded in P, and g, is

the partition embedded in P, n P, then Mg, = g N7g . the partition intersection of

“nl and nnz;

2. Ifxyeqa, inP andx e Q; in P,, then there is a block (ak;Bk) in P, M P, such that

X €O, and Bk = (Bp ﬁj)

A method of computing intersection is implicit in the definition. To illustrate intcrsection, consider
the adder module in Figure 3.5. Let Q = {0, 1, 2, 3}, et P be the propagation function with
Vv (X)) = 0,and et P, be the propagation function with V (X, = 1. Then

P= {(0,150), (2,3;1)}

P, = {(0:0), (1,2:1), (3;2)}

PinPy = {(0;(0,0)), (150, 1}), (2;(1, 1)), (35(1, 2)}}
P, n P, is the same as the propagation function / in equation (3.1). P and P, arc bascd on sub-
function vectors F, and F', respectively, and P is based on subfunction vector F. Note that F is
the concatenation of F| and F,, thatis, F = (F|, F,) . This situation is formalized in the follow-

ing thecorem

Theorem 3.1: Let I’ and P, be the propagation functions based on subfunction vectors r | and

P 2. respectively. Then P 0\ P, is based on (F I r 2) .

Theorem 3.1 follows dircctly from part 2 of Definition 3.2. A number of key aspects of propaga-
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tion arc bascd on propagation function intersection, as we will show later.

We can also define a union operation for propagation functions based on partition union.

Definition 3.3: Let P| and P, be propagation functions on the sct Q. The wnion of Py and P,
denoted P © P,, is the propagation function on  such that
I If Mg, is the partition cmbedded in P, Mg, is the partition embedded in P,, and T, is
artition . > - ' . . .
the partition cmbedded in 2, L P,, then Mg, = Mg,V g, the partition union of o,

and ngz;

2, If (a,.;[?.‘.) is a block of PLuP,, (aj;Bj) is a block of cither P or P, and if

o N &, then for all &, the kth clement of BJ. is contained in the kth clement of J,.

The union operation can be computed by generating the partition union using only the o 's of 7,
and P,, then forming the clementwise union of the 3's. As an cxample of this operation, let
P o= {(0,1:0), (2,3:1)} and !’2 = {(0;0), (I, 2;1), (3;2)} , as in the intersection cxam-
ple above. Then P, v P, = {(0,1,2,3:{0, 1,2})}

Many of the properties of a propagation function P on Q depend only on the embedded
partition ., . This partition determines the information propagated by the module subfunction on
which £ is based. Let | and P, be two propagation functions based on subfunction vectors F 1
and F,, respectively. If the embedded partition of P\ and P, is the same, then P, and F, propa-

gate the same information.

Definition 3.4: Let 2| and P, be module functions on aset Q. Let 7, be the partition embedded
1

in P, and o, be the partition embedded in /. Then P and P, are congruent, denoted

P =P, ifand only if‘ﬂ:g| =Ty, Let (ai:Bl.) € l’l and (aj;Bj) € P,. Then as a special case,

P, = P, ifandonlyif | =P, and o; = «; implics B, = Bj.

For example, if 2| = {(0;0), {1:1}} and P, = {(O;1}, (1:;2)} , then P =P,. The con-
gruence relation is important in the application of propagation functions. It is commonly the case
that two propagation functions arc congruent, but not equal. However, propagation functions nced
not be equal to propagate the same information—they need only be congruent.

The congruence relation is clearly reflexive, transitive, and symmetric, Therefore, the set
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of all propagation functions on a set & is partitioned into equivalence classes by congruence. Two |
propagation functions arc in the same class if and only if they are congruent. Each class is defined
by the embedded partition common to all elements within the class.

As mentioned, the zcro propagation function with one clement in cach o, transmits all
information, while thc unit propagation function, with only one block containing all elements of Q
transmits nonc. By extension, propagation functions that have more blocks with fewer elements
transmit morc information than propagation functions with fewer blocks and more elements per

block. This property is expressed algebraically in the next definition,

Definition 3.5: Let P| and P, be propagation functions on a sct €. Let 5, be the partition
embedded in P and g, be the partition embedded in P,. Then P is less than or congruent to
P,, denoted P, < P,, ifand only if m,| S, If P, and P, are not congruent, then we can say
that P | is strictly less than P,. denoted P1 <P,. If P < PyorpP,< P, thcn P, and P, are said

to be comparable, otherwisc they are incomparable.

For example, let po= {(0,1,2,3:0), (4,5,6,7;1)} and P2 = {0,1;0), (2,3;1), (4,5;2),
(6,7:3)}, and let m,, and mg, be the cmbedded partitions of P, and P, respectively. Then
Mg, S Tqq. since all of the blocks of mp,, are contained in blocks of m.,, (scc Appendix A).
Therefore P, < P, and more information is propagated by P, than P, .

Clearly, if P, £ P, and P, <P, then P =P,. The st P, of all propagation functions
on a set L, together with the ordering relation < is a partially ordered sct, since the set T1, of ail
partitions on € is a partially ordered sct. In fact, the set I, together with the partition intersec-
tion M and union v operations form a lattice denoted (HQ. M, V). Lattices are algebras character-
jzed by the fact that the two operations satisfy the idempotcnce, commutative, associative, and
absorption Jaws (scc Appendix A). The algebra formed by P, and the propagation function inter-
section and union operations (Pg, M, W) is homomorphic to (I, M, V), that is, the operations
behave the same way in cach algebra (sce Appendix A). For example, let x, and x, be clements of
I1, . then the commutativity property for partition intersection can be written x, N x, = XX,
On the other hand, if x| and x, are clements of P, then the commutativity property for propaga-

tion intersection can be writien X, M X, =2, N X, In general, if we replace equality by the con-
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gruence relation, then (PQ. M, W) can be considered a lattice—all lattice properties and theorems
apply. Therefore, we will refer to the algebra (P, , M, ) as the propagation function lattice. A lat-
tice with only two clements is a Boolean algebra, therefore, if £ = {0, 1}, any propagation
function on €2 is a Boolcan algebra and subject to laws similar to those for standard logic pates.

The classification of (P, N, U) as a Jattice makes a wealth of theorems and properties
applicable [14,42]. We will show that lattice intersection is extremely useful in analyzing propaga-
tion through circuits, Other lattice concepts are also useful.

3.1.2 Module Connections and Propagation Algebras

We have defined propagation functions to represent specific input-output mappings for
individual modules and showed that together with the intersection and union operations they form
a lattice, an algebra with several useful propertics. We now show how to combine propagation
functions for individual modules into a propagation function {or a multi-module circuit using
appropriate connection operations, These operations form a separate, derived algebra which we
use to analyze the information transmission propertics of multi-module circuits.

Most circuits composed of high-level modules can be modeled as directed graphs in which
modules arc edges and connections are vertices, since most modules are unidirectional. Even cir-
cuits with tristate buses can often be modeled as directed graphs for particular operation cycles
{12}. Since all connections in a dirccted graph can be treated as series or parallel connections (sce
Appendix A), we can model the behavior of the circuits of interest using operations based on just
these two fundamental types of conncctions.,

‘Two modules M, and M, arc connected in series if a bus joins the output data bus of
module M, to the input data bus of M,. In order to define a parallel connection, we must first
define two types of junctions: fanout conncctions and merge connections. If a bus L is connected to
the input data buses (X,,’s) of n> 1 modﬁlcs. then the junction of L and these data buscs is a
Janout junction, Information propagated on L is copicd to the inputs of the # modules. Now, let
Ly,..,L, beasctof buses that connect the output data buscs (ZD ’s) of n > | modules to primary
outputs or to the input data bus of a single module. L, ..., L arc concatcnated to form a single
bus L. The point where L, ..., L becomes L is referred to as a mierge junction. Information that is

propagated independently on cach L; is combined with the information on the other buses to form
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Figure 3.6, Series (a) and parallel (b) connections of modules.

a single informaticn unit. Twa modules are connected in parallel if their input data buses meet ata
fanout junction and their outputs meet at a merge junction. Examples of series and parallel connec-
tions arc shown in Figurcs 3.6a and 3.6b, respectively.

In classical circuit thcory, where electrical components such as resistors, inductors, and
capacitors form the edges of a graph G, and component connections form vertices of G, serics-par-
allel connections greatly simplify analysis. Let C| and C, be two circuit components with admit-
tances Y and ¥, respectively. If C, and C, arc connected in parallel, then the admittance of the
combination is givenby ¥ = ¥, + ¥, If C, and C, arc connccted in series, then their combined
admittance is given by

Y +7,

|
+ —
1 Y2 Yle

(3.3)

=

l =1
Y
"% 1y . AB -
If we define a “reduced sum” operation * as A*B = vl then we can express equation (3.3) as
Y = Y, *Y, [28]. We now have a parallel conncction operation + and a serics connection opera-
tion * for admittances. Propagation functions rcpresent information transmission properties of
modules and circuits that are analogous to admittances, which represent clectrical current trans-

mission capability. Therefore, we will define paraliel and series connection operations for propaga-

tion functions that arc analogous to + and *,
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The scries and parallel connections for modular bus-structured circuits shown in
Figure 3.6 arc also similar in concept to the connections in switching circuits studicd first by Shan-
nen [86]. However, in Shannon’s model, the outputs of switches (modules) in parallel are wired
together and information is transmitted serially after the junction. In our model, the outputs remain
separate and information is propagated along multi-bit buses in parallcl. For analysis purposes, we
merge information on the parallel buses into a single vector. Shannon’s modei leads to a definition
of scries and parallel connection operations that form a Boolean algebra. The module connections
described above Iead to a different algebra, which we describe next.

If two modules M, and M, , with propagation functions P and P, respectively, arc con-
nected in parallel, then the combination can be considercd to be one module, with one input data
bus and two output data buses. We saw above that the propagation function for the combined mod-
ule is given by the intersection of | and P,. Thus we have a partial correspondence between con-
nection operations and the propagation function lattice, We denote the parallel connection
operation as P #P,.

Now Iet M| and M, be two modules connected in series to form a module with onc input
data bus and onc output data bus. If F| and F, arc module subfunctions for M, and M, respec-
tively, then the resulting module subfunction for the serics combination is the composition
F,(F|) of F, and F,, that is, the outputs of | form the inputs of ,. The function F, (F ) is
denoted F\°F,. The composition of two subfunction vectors Fl = (FipFipenf ) and

F2 = {Fop Fop ey Fop) is the pairwise composition of the individual elements.

F\°Fy (F |\ "Fyp F12°F g oon F 10 5p)

Now let P, = {(1;0), (2,3;1), (4,2)} and Py = {(0, 150}, (2,3;1)} be propagation
functions based on F y and P 5. respectively, and let P be the propagation function based on
I3 1°F2. When P, and £, arc combined to form the series composition £, the output part 3, . of
cach block in | must be contained in the input part o, j of some block in P,, since the outputs of
Fl become the inputs of Fz. For instance, (1;0) is a block in P, and (0,1;0) is a block in . The
0 in the output part of (1,0) corrcsponds to the 0 in the input part of (0,1;0). 1f B” € oy then a
block is added to P whose input part is &, (1 in this example), and whose output part is [52 ; {Oin

this cxample). This is depicted in Figure 3.7.
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P; = {(1;0), (2,3;1), (42)}
Py = {(0,1;0), (2,3:1)}

Y &
P = {(1:0), (2,3:0), (4; 1)} = {(1.2,3:0), (4:1)}

Figure 3.7. The series composition of two propagation functions Py and P,.

In the gencral case, the B,. 's of a propagation function are not singletons, they are vectors
of sets. As discussed above, the compaosition of two vectors is the vector formed by the pairwise
composition of the clements. Let B‘. [/1 denote the jth clement of the vector B, The following def-

inition covers the genceral case of serics composition.

Definition 3,6: Let 2| and P, be propagation functions on the sets €2, and Q. respectively. The
series connection of P, and P,, denoted Pl°l’2, is the module function on Ql such that if
(a,;:B,) ePy, (azj;sz) eP,, and B, [q] N0y, # @, then there is a Dblock
(aB,) € P,°P, where o, ca, and sz[q] < B, lg]. If z is an element of some B, (4],

then z must be an element of some o, o otherwise Pl °P2 is inconsistent.

The series connection operation can be computed by a straightforward application of the dcfini-
tion. As an example, let P, = {(0,1;({0,1},{0.1})), {01 1,{1.20), Gu({1,2}.{1,2}n} and P, =
{(0:({0,1 1,{0,1 1)), (KO, 11,2}, (23:({1.21{L2}))}, then P °P, = {(0,15({0,1},{0.12})),
(Z({0, 11121, Bi({0,1,23.{1,2}))).

The secrics connection operation for propagation functions is obviously quite different
from the union operation. The latter depends only on interactions between the input parts of prop-
agation function blocks (the «'s). The union operation is not cven defined for Pl and P, above,
since these two propagation functions are defined on different sets of module inputs, Therefore, the
algebra formed by the set W of all propagation functions and the scrics and parallel connection
operations just discussed, is not the same as the propagation function lattice described in Section
3.1.1. We refer to this new algebra, (W, #, °) as the propagation algebra, and we will cxamine its

propertics below. However, first we discuss a graph representation of circuits that illustrates the
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Figure 3.8. Example ol a propagation diagram for a circuit with scries and
parallel connections.

ro,

series-parallel structure of modular, high-level logic circuits. This graph defines an expression in

the propagation algebra.

A propagation diagram is a dirccted graph whose edges represent propagation functions

and whose vertices are module intcrconnections. Examples of propagation diagrams and the pro-

cess used to construct them are shown in Figures 3.8 and 3.9. Circuit C, in Figure 3.8a is an

cxample of a datapath circuit with series and parallel connections. Data bus inputs and outputs

have been selected for each of the modules in this circuit; control buses are not shown. Data prop-

agated to the output of module M, fans out along two paralle] paths and reconverges at module

M,.
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Xp2 M, Zp; Xps: M{Zm

[>— X M, Zp |—e Xy M, Zpeb—{>

Pl ro,

(2) Datapath circoit C,

FANOUT MERGE
vertex vernex

(c) Propagation diagram for C,

Figure 3.9. Examplec of a propagation diagram for a datapath circuit C, witha
bus connected in parallel with two modules.

The first step in the development of a propagation diagram is to create a vertex for cvery
module-to-module connection. Vertices are labeled by pairs of the form (Z,, X, J.) y (P, Xy j) .
or (Z,,, P0,) . where PI, is a primary input and PO, is a primary output. The complete set of
vertices produced by this step is shown in Figure 3.8b. We do not allow input data buses or output
data buses to be included in more than one vertex, therefore, vertex v, is combined with vertex Vs,
and v, is combined with v,. Vertices with the same Z,,. are combined into a FANOUT vertex, for
example, (vy, 1’3) . Vertices with the same X pi &c combined into a MERGE vertex, for example,

(v v) . Finally, an cdge from a vertex v; to a vertex v f rcpresents a propagation function for the
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module whose input data bus is contained in v, and whose output data bus is contained in Ve The
finul propagation diagram is shown in Figure 3.8c.

Circuit C, shown in Figure 3.9a is an example ol a module with a bus connecied in paral-
Iel with two modules in series. This circuit results in the set of vertices shown in Figure 3.9b. In
this case, vertices v,. v4. and vy arc candidates for being combined into onc vertex. However, a
vertex may not be both a fanout vertex and a merge vertex—this would create a cycle. If a com-
bined vertex contains pairs with the same Z,,. and X pj+ We separaic the pairs into two vertices so
that pairs with the same ZD‘. arc in a fanout vertex, and the rest are in a merge vericx, Therefore,
we combine vertices v, and v, into a fanout vertex and v, becomes a merge vertex. The two new
vertices are connected by an edge labeled O for the zero propagation function. This edge represcnts
a bus whosc only function is to transmit infermation with no modification.

Expressions in the propagation algebra (propagation expressions) represent the transmis-
sion of information in a sct Q from a primary input port or output data bus of a module M, to a
primary oulput or output data bus of another module A,. A propagation expression can be con-
structed by traversing the propagation diagram from one vertex to another. The expression repre-
senting any path P, P,, ..., in the diagram is the series connection of the propagation
functions on the path, P,°P,°...°P, . The cxpression on the outgoing cdge of a merge vertex is
the parallel conncction of the expressions on the incoming edges. For example, the expression cor-
responding to the propagation of information from the input port of C,; to the output port is

(P\°P,°P AP °P°P,) °P 3.4
and the propagation expression for C,, is
(P\°P,°P#P °0)°P,. (3.5)
In order to reduce the number of parentheses in propagation expressions and improve rcadability,
we have assigned a higher precedence to the serics connection operation °.

To illustrate propagation diagrams and propagation cxpressions in terms of a familiar cie-
cuit, consider the Fltrdp circuit first discussed in Section 2.5. Flirdp has been redrawn in
Figure 3.10a with bus truncations explicitly represented by truncate modules. As before, all mod-
ules and buses are numbercd. The output buses of the adders, modules M j» My, and M, are 9 bits

wide. Bus 7 is 1 bit wide. The rest of the buscs are 8 bits wide. The propagation diagram shown in
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Figure 3.10. Fltrdp datapath circuit, (a) schematic and (b) propagation diagram.

Figure 3.10b represents a propagation path from input bus 1 to the output bus 13, Here the connec-
tion labels in the vertices have been omitted for readability. The corresponding propagation
expression is '
P2 (P (PS° (08 (P°P,))))°PgoP.

The propagation algebra has several uscful propertics, some of which are shown in
Table 3.1. Also shown are several cases where propertics do not hold (the numbers of these cases
are in parcnthesis). In this table, we assume that P, is a propagation function on Q, for module
M. We also assume that all series connection opcrations arc censistent with real circuit connec-
tions, For instance, /7| °P, is only defined if the output bus of M, is the same size as the input bus
of M, . Finally, we assume that if /, and 7, are combined in parallel, then Q, = €., that is, they
have the same domain, We use the stronger cquality relation in place of congruence whenever it is
applicable. Note that the commutative, idempotent, and absorptive laws do not hold for the scries

connection operation °, thus the propagation algebra is not a lattice. However, since the computa-
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Property No. Statement of property and its status
Identity la 0°P = P, and P,°0 = P, forcvery clement /.
1b 1#P, = P, and Pl#l = P, for cvery clement P .
Distributivity 2a P % (Py#Py) = Py #(P°

(2b) P #(P P3) e (P lﬂ’ )P, l#

Commutativity | 3a P#P = PP,
@) | PP PP,

Idcmpotence 4a P #P =P,
4b P°P =P ifandonlyif ;=0 or P =1.

Absorption S5a P #P Py =P
(Sby | P\°(P#P,) %P,

Associativity | 6a P #(Py#P3) = (P #Py)#P,
6b P2 (P,°P3) = (P,°P,)°P,

Miscellancous | 7 PI#P2 <P I and PI#P2 < 1’2
B OifafP1 =0
9 P spPoP,

Table 3.1 Common algebra laws that do and do not hold for propagation algebra. The numbers
of the laws that do not hold arc in parenthesis.
tion of the parallel connection operation # is the same as the interscction operation in the propaga-
tion set lattice described above, the propagation algebra is a semi-lattice [42].

Apart from the four major propertiecs of commutativity, idempotence, absorption, and
associativity, Table 3.1 lists somc other typical properties of algebras encountered in digital sys-
tems, For instance, the zero propagation function acts as an identity for the scries connection oper-
ation, since connccting a bus to the input or output of a module M docs not affect the propagation
characteristics of M. Another important property is the distributive property 2a. This property
allows us to rewrite ¢xpression (3.4), for instance, as Pl" (P2°P4#P3°P5) °P6. Distributivity
implies that the propagation characteristics of a module are transferred along all paths leading
away from its output. Rewriting propagation cxpressions can aid in analysis, as we show below.
Property 7 indicates that two modules connected in parallel propagate at least as much information
as cach does individually. Property 8 indicates that the propagation characteristics of a bus in par-

allel with any module dominate the propagation characteristics of the combination. Finally, prop-
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erty 9 indicates that combining two modules in serics can only reduce the amount of information
that is propagated.

We can simplify propagation expressions, that is, rewritec them with fewer propagation
function symbols, by using the properties in Table 3.1. The following serics of steps simplify
expression (3.5): '

(P\°P,°P3#P °0)°P, = P °(P,°P#0)°P, by property 2a

P °(P,°P#0)°P, = P, °0°P, by property 7

P°0°P, =P °P, by property la
This set of simplifications illustratcs the dominance of & teansparent path in a parallel connection,

We have presented a very gencral theory for studying the propagation of information in
bus-structured circuits. The two main concepts are:

1. Subfunctions and subfunction vectors define a partition on the set of information symbols
to be propagated through a module or circuit. Hence, many aspects of information propa-
gation can be studicd by analogy to partition thecory. We have formalized this insight in the

form of propagation functions.

2. Bus-structured circuits can often be modeled for analysis as directed graphs forming scrics
and parallel junctions at vertices. Each junction corresponds te an operation that combines
propagation functions. The set-of propagation functions and series and paratlel connection
operations form a propagation algebra, and a graph representing a circuit corresponds to a

propagation algcbra expression.

The propagation algebra satisfics several common algebraic laws and properties that reflect intu-
ition about information propagation. These laws and properties can be applied to propagation
expressions to manipulate them mechanically, thus raising the possibility of automating analysis.
To apply propagation theory in precomputed testing, we specialize propagation functions
by restricting the sct of input symbols Q. We have studied two applications of this approach:
transparcncy analysis and error propagation analysis. We discuss transparcncy analysis next and

error propagation analysis in Chapter IV,
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3.2. Transparency Analysis

A module or circuit is fransparent it any crror can be propagated through it. As discussed
in Chapter I1, transparency is a property of modules and circuits that greatly simplifies error prop-
agation. If there is a known transparent path from a bus X in a circuit to a primary output, then any
test response error (T, T} propagated to X js implicitly propagated to the primary outputs. We
define a special type of propagation function to analyze this property. In this function, the
scquences applied 1o X .. to control propagation are explicitly represented as a paramceter. Recall

that our convention is {0 use square brackets [...] for ordered sequences in time.

Definition 3.7: Let M be a module or circuit with input data bus X, input control bus X, and
output databus Z,. Let P, = P [M; (X Xp) i {V(Xp) }j| when V (X ) has the fixed value v,

and Iet § . be the veetor sequence [vy, v, ..., v, ] for any k timesteps, £ > 1, Then

TIM (X Xp)] (Sc) = PinPyn..nP,
is a transmission function for module M.

Transmission functions describe the ability of a module to propagate information
sequences (not just a specific set of values) from X, 10 Z,,, as well as how this propagation is con-
trolled by sequences applicd to X .. Consider the sct of typical datapath modules in Figure 3.11
(which repeats Figure 2.5). Transmission functions for these modules with typical values for §.
and & = 1 or 2 appear in Table 3.2. We assume that the register (Figure 3.11g) has alrcady been
reset to 0. We assume that the decoder (Figure 3.11h) decodes only inputs O and 4, that is, the least
significant bit of the output is set when the input is O (output value 1), and the most significant bit
of the output is set when the input is 4 (output value 2). If the input is not 0 or 4, then the output is
0.

As previously discussed, if | and P, arc propagation functions on a sct €} for modules
M; and M., respectively, then P <P, implics that P, propagates more of the information con-
taincd in € than P,. For a different domain Q’, it may be that P, <P . Howcever, if
Q = {V(Xp)}.asinthe case of transmission functions, then P < P, implies that M | propa-

gates more information than A, . The unit propagation function transmits no information, and any
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Figure 3.11. Typical modules and their buses
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Module Transmission functions

(a) NAND gatc (op = (O, 1;1)}
(1D = {(G; 1), (1;0)}

(b) NOR gate 7([0]) = {(0;1), (1;0)}
(1 = {O,1,0)}

(c) Adder (0D = {(0;0), (1,1}, (2:2), (3:3), (4:4), (5:3), (6:6), (7. 7)}
TALD = {(0:1), (1;2), (2;3), (3:4), (4;5), (5:6), (6;7), (7:8)}
e2n=..

(d) Multiplexer 1 | T((0]) = {(0,1,2,3,4,5,6,7:0)}
T(1)) = {(0;0), (151), (2:2), (3:3), (4:4). (3;5), (6;6), (D)}

(c) Multiplexer 2 T([0]) = {(0,1;0)}

(1D = {0;0), (1; 1D}
T2 = ...

() Multiplier T(0D) = {(0,1,2,3,4,5.6,7;0)}
T([1D = {(0;0), (1:1), (232), (3:3), (44, (5:5), (6:6), (:7)}
T2 =...

() Register T(0.11) = {(0:(0,0), (13(0, 1)}, (2;(0,2)), (35(0,3)), (4:(0,4)),
(55(0,5)), (6:(0,6)), (7:(0, 1)}

(h) Decoder (oD = {(0,1,2,3,4,5,6,7;,0)}
T = {0 1), (1,2,3,5,6,7,0), (4:2)}

Table 3.2 Transmission functions for the modules in Figure 3.11

transmission function T ($.) <1 propagates at least some infermation. This leads to the follow-

ing definition.

Dcfinition 3.8: Let M be a module with input data bus X, input control bus X ., and output data
bus Z,,, and let 7(S,) be a transmission function for M. If T(Ss) <1, then T(SC) and the
associated module M are said to be sensitized by S.. Alternatively, T(S.) and M arc said 10 be

partially transparent, since at least some information is propagated by M.

Sensitization is a property of a module, and not dependent on a particular sct of inputs
applicd to the module’s X, . It corresponds exactly to the conventional definition when applied to
common logic gates. For instance, let M be a two-input NAND gate. Let X, be onc input port and

X be the other; the output port is Z,. In this case, T([0]) = {0,1;1)} and T({1]) = {(O; 1), (1;0)}.
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Xe=in_1
X ADDER } Zp=sum[3..1]
Xp=in_2
Frror 1: 10 Error {: 00
Error 2; 152 Error 2: 0—1

Figure 3.12, Three-bit adder module with input data bus Xp, as addend, input control bus X~
as augend, and output data bus Zp = sum|[3..1].

Since T([0]) =1, the gate is not sensitized for the control input 0, as expected. Similarly,
T([1]) <1, sothe gate is sensitized for the control input valuc 1.

Less obvious is the application of this definition of sensitization to larger, bus-structurced
modules. Consider the adder in Figure 3.12. As in previous examples, X, is the addend, X . is the
augend, and Z,, compriscs the threc most significant bits of the sum. For this modulc,

T([t]) = {(0:0), (1,2;1), (3, 4:2), (5,6:3), (7:4)} . The adder is sensitized since
T([1]) < 1;in fact, it is scnsitized for all control inputs. However, some errors cannot be propa-
gated from X, 1o Z,,. For instance, if a fault causes a correct V(X)) = | to be changed 10 0
(error 1 in Figure 3.12), then the resulting error cannot be propagated through the adder. On the
other hand, if an error changes V(X)) = 1 1o 2, then the error can be propagated. The special

case when all crrors are propagated is covered by the following theorem.

Theorem 3.2: Let M be a module with input data bus Xy, , input control bus X ., and output data
bus Z p+ M is ransparent from Xy, to Zp, for a particular control sequence Ve if and only if

T(V

o) =0,

The proof of Theorem 3.2 follows from the preceding discussion. Transmission functions provide
a succinct definition of transparency that we can use in formal analysis.
3.2.1 Propagation Characteristics of Modules and Circuits

The structure of the buses connected to a module M greatly influences the transparency of

M. For cxample, if |XD| > |ZD| then M cannot be transparent from X, to Z,, when the length of

the control sequence |S CI for T{S c) is 1. In this case, M’s donain is larger than its codomain. We
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will discuss the case where |S c| > 1 in Section 3.4.

Most modules have only a few “natural” data bus pairs (X piZp) with associated trans-
parent propagation modes. For instance, in a multiplexer, each control bus value selects a different
data input to propagate to the output. Using transmission functions, we can examine the behavior
of less “natural” assignments of input ports to X .. and X ,. This is uscful since library modules arc

often connected in unexpected ways when used in a circuit,

Theorem 3.3; Let M be a modude with input data bus X p input control bus X ., and output data

bus Z,. Let Sc = [vpvyuv] be a k-step sensitizing control sequence, that is, a sequence of

k values assigned to X c-

(a) Let X' be an alternative input control bus such that X,c X" and let
Sc' = v/, vy's ..os w1 be asequence of k values assigned to X c - If the value of each bit of

v, is the same as the corresponding bitof v/’ for VSi<k, then

TIM: (X X)) 1 (8) = TIMiX S, Xp) 1(5.)
(b) Let X )" be an alternative input data bus. If X, © X/, then
TIMi(Xo Xp') 1 (S) FTIM (X X)) 1 (S,)

Proof: For part (a), let T be based on subfunction vector F = (F 1 ++» F;) . Recall that cach F is
itsclf a sct of mappings, onc mapping for each unspecified assignment to X ~ (X .- Xp,) . By
making X .. larger, we specify more of the domain. This reduces the number of mappings, but does
not change them; the embedded partition of 7' remains the same. For part (b), note that incrcasing
the size of X/, increases the number of clements in cach o, without increasing the number of
blocks. Therefore, blocks of the embedded partition of T [M; (X o Xp') ] cannot be contained in
blocks of the embedded partition of T{M; (X XD) ]. O

Theorem 3.34 implies that, for a given data bus pair (X;:2,,) , if the corresponding X cis
unknown, then we may safely choose X = X - X,. If a control bus exists within X - X, for
which a sensitizing assignment can be found, then there cxists a sensitizing assignment for the
entire set of ports X — X,. Theorem 3.3(b) implics that there exists a transparent data bus pair
(XpiZp) of maximum size. Intuitively, if making X, larger reduces the transparency of a mod-

ule, then there must be a more transparent X ;" embedded within every sensitized X ;.
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As an illustration of Theorem 3.3, consider Multiplexer 1 in Figure 3.11d. Let X =
(inO,ctrD) and ZD’ = out{1..0], the two least significant bits of the output. As long as V(ctrl) = 1, the
multiplexer is sensitized (but not necessarily transparent), regardless of V(in0). On the other hand,
if X and Z;, are as shown in Figure 3.11d, and Xp' = (in0,in1), then the transmission function
will be less transparent than for X, = inl, since we arc attempting to funnel more possible values

to the same output.

Definition 3.9: Let M be a module with input data bus X, , input control bus X ., and output data

bus ZD. I XD’ CXyandZ, ' Z,, then (XD’;ZD’) is a subpath of the data bus pair (XpiZp)

The following corollary to Theorem 3.3, which is also noted by Marhdfer [66], illustrates the

importance of subpaths,

Corollary 3.1: Let M be a module with input data bus X 5, input control bus X ., and output data
bus Zp,. Then T(S ) < 1 ifand only if there is a subpath (X p'Zp') such that the corresponding

transmission function T[M (X', X ) ] (Se) =0.

Proof: Iff T(S.) < L, then there are at least two non-cmpty blocks (a5,) and (Otj:Bj) . Let
X| €O, and Yy Edy then x| and x, differ in at Ieast one bit position. Let one of these bits be
XD’, let ZD' = ZD. and let the corresponding transmission function be 77 (Sc) . Clearly, 77 (S(:) )
can contain only two blocks, and the embedded partition must be { {0}, {1} } . Therefore,
T’ (S,) =0. Now assume that there is a transparent subpath (X pZp’) . By Theorem 3.3b we
know that increasing the size of X ;" can make the corresponding transmission function less trans-
parent, However, each unigue V(X p’) must still reside in a different block, therefore T(S.) can
never be the unit propagation function, O

Continuing the example above for Multiplexer 1 in Figure 3.11d, let Z," = out[1..0].
Then, T([1]) = {(0,4;0), (1,5;1), (2,6;2), (3,7;.:3)}. which demonstrates that the module is sensitized,
but not transparent. If X D’ = inl[1..0], then (X D’;ZD’) is a subpath of (X psZp) and the corre-
sponding transparency functionis T([1]) = {(0;0), (1;1), (2:2), (3;3)} =0.

We now turn our attcntion to the algebraic analysis of circuits for transparency. The goal

of this analysis is to detcrmine whether a propagation expression composed of transmission func-
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tions is congruent to the zero propagation function and thercfore transparent, or else cannot be
congruent to zero and therefore only cither partially transparent or non-transparent (congruent to
the unit transmission function). We {requently leave out the contro! sequence parameters in these
cxpressions and assume that a controlling sequence exists (or does not exist) with the required
transparency. Transmission functions can be treated as variables. For example, in a typical propa-
gation expression T, ° (T,#T;) , cach transmission function “variable” 7, has a number of valid
assignments, corresponding to various control scquences applied to the module associated with T,

Many key propertics of the propagation algebra appear in Table 3.1. However, most of
thosc propertics apply orly to parallel connections. Here we consider the transparency of series
connections. A partially transparent maodule in a path consisting of serics-connected modules usu-
ally reduces the transparency of the entire path. The following theorcm makes this gencral state-

ment precise.

Theorem 3.4: Let T, and T, be transmission functions for modules M| and M, respectively.

{a) T, “T2 =0 implies Tl =Q,

(b) T,°T, =T, ifand only if there is no block (0‘2;;[52;) in T, and no two blocks (aU:BU)
and (o, ;;B,,) in T such that o, contains Bu[q] (the qth element ofBlJ.j and B,,1q)
Joranyq.

Proof: Part (a) follows directly from property 9 of Table 3.1, that is, T,°T, 2 T, . For part (b), by
definition, 7,°T, = T| if and only if no blocks of 7, arc combincd by the connection operation.
This is true if and only if o, . contains at most one Bij [q]. O

Theorem 3.4 states that the first module in a serics must be transparent for the entire
series connection to be transparent. Property 4b in Table 3.1 is a special case of this thecorem. The-
orem 3.4b states that M, need not be transparent, but its corresponding transmission function must
distinguish those values that can be gencrated by M . The module A, may add spurious or redun-
dant information that is rejected by M, .

Theorem 3.4 is useful for analyzing cases of reconvergent fanout. Consider the circuit in

Figure 3.13a, which truncatcs the least significant bit of the input bus and propagates cither the
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Figure 3.13. (a) Circuit diagram and (b) propagation diagram for circuit with transparent
rcconvergent fanout.

resultant two-bit valuc v or v+1 (mod 4) 10 the output, depending on the control value applied to
the multiplexer. The propagation diagram for this circuit appears in Figure 3.13b. As shown in
Figure 3.13a, we can treat the circuit as the scrics connection of M| and M, , where M is hicrar-
chically composed of modules M| and M. Let T, be the transmission function for module M.

The following set of equations illustratc Theorcm 3.4b.
T“ = {(0, 1;0), (2, 3;1)’ (4s5;2)’ (6,7;3)}
T, = {(0:1), (1;2), (2:3), (3:0)}
T1°Tp = {(0. 1), (2,3:2), (4,5:3), (67,0)}
T, = T \#T,,°T, = {(0, 1;1), (2,3:6), (4,5:11), (6,7;12) }
7,(10]) = {(0,1,2,3;0), (4,5,6,7:1), (8,9, 10, 1152), (12, 13, 14, 15;3) }

T,°T, = {(0, 1:0), (2,3:1), (4,5:2), (6,7:3)} =T,

In this case, T, is not transparent, but 7, °7, =T
In order to apply Theorem 3.4b in the analysis of modules in scrics, we must know the

structure of all of the transmission functions in the series chain, which complicates the analysis,
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Consider the Fitrdp datapath circuit of Figure 3.10. We can treat the network from the primary
input bus 1 to the inputs of the multiplexer module 8 as a single module M. However, since the
input to M (bus 1) is 8 bits wide, and the input to module 8 (a1l inputs form X, ) in this configura-
tion is 17 bits wide, we must apply Theorem 3.4b to analyze transparency. The transmission func-
tion for module 8 has 2t o 131, 072 clements to distributc among the blocks. It is therefore
difficult to analyzc this case by inspection.

Nevertheless, we can define a condition that enables us te make a strong statement about
the transparency of the second module in a serics connection. Let M be module with cutput data
bus Z;, and let T be a transmission function for M. Let |7] be the number of blocks in T. If
]Z D! = log,|7] . then T has the maximum number of blocks for a combinational function (the con-
trol sequence has Iength 0 or 1) and is said to be bus-size limiited. The codomain of the subfunction
upon which 7 is based contains all of the possible values that can be produced on Zj,. In this case,
no spurious information can be added by M. The following corollary, which modifics Theorem

3.4b for the case in which M| is bus-size limited, summarizes the preceding discussion.

Corollary 3.2: Ler T, and T, be transmission functions for nodules M y and M, respectively,
and let Z,| be the output data bus of M. If lZm| = log2|7‘1|  then T °T,=T, if and only if

T2§0.

Consider T, ,°T,, in the example above. 7, meets the requircment that |Zm] = log2|T“|.
Since Tuzo, it is truc that T“"Tus T,.0On the other hand, let T3 = {(0,1:0), (2.3:2)} {not
congruent to zcro), Then T“"T3 = {(0,1,2,3;0), (4,5,6,7:2)} £ T“ .

A primary goal in developing a theory of propagation is to uncover methods for analyzing
propagation in circuits with irregular buses. While error propagation may be blocked by non-trans-
parcncy along any single path in a circuit, the combination of paths in paralle]l can allow all test
response errors (7, T,,) to be propagated. Some errors can be propagated along one path, and
the rest along other paths. This combination of paths in parallel creates a distributed propagation
path. We can determine whether such a path is transparent by intersecting the transmission func-
tions of its constitucnt single paths. If the result is zero, then the distributed path is transparent,

Let M, and M, be two modules connecied in parallel, and let T, and T, be transmission
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functions corresponding to M, and M, respectively. If T\ >0, T, >0, and T, #T, =0, then the
conncction is a distributed transparent path, and T, and T, are complements. Unfortunately, prop-

agation functions do not have unique complements—a key algebraic property. For ¢xample, con-

sider
T, = {(0, 150}, (2,3;1), (4,5:2), (6,7:3) } (3.6
T, = {(0,2,4,60), (1,3,571)} . 3.7
Ty = {(0,2;0), (1,3:1), (4,6:2), (5,7:3) } 3.8)

Since TI#T2§0 and TI#T

3=0, both T, and T, are complements of 7. The lack of a unique

complement sometimes limits our ability simplify propagation expressions algebraically.

Modules with different types of transmission functions may be combined in parallel to
produce a circuit with distributed transparency. In general, we must compute the intersection of the
corresponding transmission functions in order to determine transparency. However, in some cases
we can simplify propagation expressions algebraically, without explicitly computing the intersec-

tion. To show this, we make use of special pairs of complements which we now define.

Definition 3.10: Let T#T,

max =0 suchthatthereisno 7 >7T andno 7, > T,

nrax’®

whcre T#Tb ={

or T #T, .. .=0.Then T, issaid to be a naximal complement of T, and vice versa.

Among comparable transmission functions, maximal complements are unique up to congruence.
Maximal complcmcnts' have uscful propertics similar to unique complements in some cascs. T,
(3.6)and T, (3.7) given in the example above arc maximal complements, while Tl and Ty (3.8)
arc not. The following thcorem shows how maximal complements can determine a specific trans-

parency requirement for parallel propagation paths.

Theorem 3.5: Let M, M,, M,, and My be modules connected as in Figure 3.14 with transmis-
sion functions T\, T,, T3, and T, respectively, and let Z, | and Zp,4 be the output data buses of
M and My. If My and My are bus-size limited. that is, |Zp,| = log|T)| and |Z,5| = log|T;|.
and if T, and Ty are maximal complements, then

T,°T#T,°T,=0 ifand onlyif T,=0 and T, =0.
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Figure 3.14, (a) Module connections for Theorem 3.5, and (b) corresponding propagation
diagram.
Proof: Clearly, if T,=0 and T, =0, then 7 °T,#T,°T, =0, since T,°T, =T and T,°T,=T,.
Now let T, °T,#7,°T, =0 and supposc that 7, > 0. By Property 9 (Table 3.1}, 7',°7, 2T, , but
according to Corollary 3.2, T °T, ¢ T,. This means that 7,°T, > T, and T,°T #7,°T, 50 by
definition of maximum complement; we have a contradiction. Therefore 7, = 0. Clearly, T,=0
by the same reasoning. (I

According to Theorem 3.5, if M, and M, arc two bus-size limitcd modules connccted in
parallel whose transmission functions are maximal complements, then the only way that the result-
ant distributed propagation path can be transparent is il all modules connected in scrics with M,
and all modules connected in series with M, are transparent. This implics that cach of M| and M,
propagates only the information that the other does not.

Theorem 3.5 is often uscful in analyzing circuits, If the sct of modules connected to a
fanout point X arc bus-size limited with transmission functions that are maximal complements,
then non-transparency in any branch of the distributed propagation path beginning at X makes the
cntire circuit non-transparent. Conversely, Theorem 3.5 defines a transparency requirement f{or the
modules on parallel propagaticn paths that can be determined algebraically, We will present spe-

cific examples using Thecorem 3.5 in circuit analysis below. First, we consider the types of mod-
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ules whose transmission functions have the required properties.

Theorem 3.6: Let M, and M, be two truncate modules with the same input data bus X p such
that M| propagates only bits of X, not propagated by M, and vice versa. Let T, and T, be the

propagation functions of M| and M, respectively. Then T and T, are maximal coniplements.

Proof: Clearly, T #T,=0. We need to show that there is no 7, > T, and no T, >T, such that
T #T, =0 or T #T,=0.Let (o ;B,,) beablockin T,. M, propagates bits that M, does not
(and vice versa), therefore the elements in |, must all be in scparate blocks of T, since they are
all mapped to different outputs (B 's). Let the input data bus of M, and M, be N bits wide and the
output data buses of M, and M, be N| and N, bits wide, respectively; then N = N, + N, . The
2N possible inputs are distributed evenly among the ZN' blocks in T, and ZNZ blocks in T, , so
there are 2N2 clements in cach block of T, and 2Nl clements in cach block of 7. Thus each block
in T, contains exactly one clement frem cach block in T, and vice versa.

Now, suppose that there is a transmission function T, > 7, such that T,#7, =0. This
implies that there is a block («;;;B,,;) in T, and at Icast two blocks (azj;sz) and (0,:05,)
in Tz* such that ¢ . contains all the clements from Oy and o, . Now for some block {alq;[} 1:;)
inT, ®y; and a,, cach contain exactly one element of o lg- Therefore, o, contains two cle-
ments of oy, These two elements will also be in the same block of 7'\ #7, so T\#7, >0, acon-
tradiction. Therefore, there is no 7, > T, such that 7\ #7, = 0. By the same reasoning, there can
beno T,>T, suchthat T #T,=0. a

Scts of two or more truncate modules connected to the same input (fanout point), whosc
transmission functions arc maximal complements, are common in circuits, Buses are {requently
divided into two or more parts, each used in a separate calculation.

3.2.2 Examples of Transparency Analysis

We now present some additional circuit examples to illustratc our analysis technique.
Fltrdp. The Fitrdp circuit and corresponding propagation diagram arc shown again in Figure 3.15.
In this case, edges of the propagation diagram arc labeled with transmission functions, As usual,
transmission function T, is associatcd with module M. The corresponding expression for the

propagation path from bus 1 to bus 13 is given by
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Figure 3.15. Fludp datapath circuit: (a) schematic and (b) propagation diagram.

T, (T # (T5° (08 (T(°T4)))) °Tg°T,

=T (THH(T°0)) °T° T by property 8
= T3° ((T,°0)#(T74°0)) °T3°7'9 by property la (identity)
= T,°0°T°Ty by Theorem 3.5

Adders like module M 3 dre transparent forany X c+ S0 T3 = 0, Likewise, module M 9 (the latch) is
transparent when clocked. However, because of the reconvergent fanout at module M, , we cannot
determine whether the entire circuit is transparent without analyzing the individual transmission
functions that make up the propagation expression. Transparency cannot be determined in this
casc by rewriting the cxpression.

Iterative logic array. A ripple-carry adder, such as the four-bit adder shown in Figure 3.16, is an
cxample of a one-dimensional ILA. Some portion of the output of cach module M, (the carry-out
C;, in this case) is used to conncect it to another submodule M, | in the array. Each submodule

also has a carry-in input port C;. ILAs can be recursively described; an n-bit version 7 ,, is con-
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Carry-in
0 Af0] B{0] A1l B[1) Al2] B[2] A[3] B[3]
C, A B C, A B C, A B C, A B
FAq FA, FA; FA,
S Cin S Cin 5 Cin 5 Cisl
S[0] / S(1] 5[2] SI3)
Carry-out
Figure 3.16. Four-bit ripple-carry addcr as an example of a onc-dimensional iterative logic

array.
structed from an (n — 1 )-bit version, i, _, and an additional submodule, M,. By modeling the

[LA as a serics-parallel circuit, we can use Theorems 3.5 and 3.6 to prove the following theorem,

Theorem 3.7: An n-bit one-dimensional ILA M (n> 1) is transparent if and only if all of the indi-

vidual cells which compose it are transparent.

Proof: We begin with a recursive model of the ILA illustrated by the ripple-carry adder in
Figure 3.17a. The n-bit adder is composed of an (n— 1 )-bit adder A, _, connected to & full adder
module FA . Each module in this diagram has input data and control buses and output data and
control bu.écs. The output control bus Z,, = C, connccts the two modules. We also assume that
the carry-in linc to the (# — 1 )-bit adder is contained in X D1° The adder is redrawn for analysis in
Figurce 3.17b and illustrates some typical transparency medeling techniques. For instance, all indi-
vidual module data buses connected to primary inputs are assumed to be concatenated into one pri-
mary input data bus X, . Similarly, all individual module output data buses connected to a primary
output are concatenated into one primary output data bus Z .

Bus X, fans out to truncate modules, the outputs of which are the individual module data
bus inputs X ;. This modeling technique allows us to represent the distribution of data from an
single input bus outside the ILA to the individual inputs of constituent modules inside the ILA.
Similarly, the outputs of individual modules here are treated as one bus outside the ILA. In this

diagram, wc also assume that the outputs of the (s — 1)-bit adder and the full adder contain both
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Xcer=(Ai(n-2)..0], Cin) Xp1=B[(n-2)..0] X=Aln-11 Xp,=B[n-1]

Zc1=Cy FULL | Ze=Cpp
ADDER ADDER b
Arr-l FA,
ZD|=S[(n-2)..0] ZD2=(CH+-11 S[n-l])
Xc=(Aln-1], Al(1-2)..0], C;,)) Zp ={(Cp 415 Sin-1], S{(n-2)..0})
Xp = (B[n-1], Bl(n-2)..01)
@
Trunc(Zp),) Zp
M,
TmnC(XDI) XD] Aﬂ-l
Zp
XD Af‘ Al} Tmnc(ZCl) ZC]
My FA,
TnlnC(sz) XDZ 1"6 ZDZ
M,
(b}
Ta Ty
T,
T
5 T(,
T,
©
Figure 3.17. (a-b) Recursive description, and (c) propagation diagram of an n-bit, rvipple-carry
adder.

data and control. Finally, note that the output of the (n — 1 )-bit adder, which initially contains both
le and zcr fans out to two truncate modules. One of these truncate modules, Trunc(ZDl )}
selects the bits of Z D1 associated with data, and the other, Trunc(ZCl ), selects the bits associated
with control. Figure 3.17¢ shows a propagation diagram for Figure 3.17b, in which transmission

function T, is associated with the module M. The expression that represents the transparency of
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the circuit is

(T °T°T R # (T °T,°T ) HT,) °T,)

= (T\°T°TO#H((T °T,°T TH#H(T,°T)) by distributivity
=T, (T2 (TH(T°T) ) ) HT,°T by distributivity

The pair of truncate modules M, and M, meets the requirement of Theorem 3.6, as does the pair
of modules M, and M. Therefore, T| and 7, arc maximal complements and by Theorem 3.5,
Ty° (T #(T5°Tg)) must be congruent to zero. By the same reasoning, T, must also be congruent
to zero in order for Tl" (Ty° (T # (T5°T6) ) )#T2°T6 to be congruent to zero. If
T,°(T#(T5°Tg)) =0 then Ty =0 by Theorem 3.4a. O

Theorem 3.7 supports the intuitive notion that it is possible to determine the transparency
of an itcrative module by examining a small version of that module, at least in the case of full
transparency.
Divfilt. Next consider the Divfilt datapath circuit discussed in Chapter II and displayed again in
Figure 3.18. We will analyze the transparency of the boxed group of modules in the upper left
hand comner of the figure. The propagation diagram for this group of modules is shown in
Figure 3.19. The propagation cxpression representing the transparency from primary input port
RECV2 to the output of PROCR_1 is

T\°T,°T° (T4 #(T,°Ts°T,) ) °Ty (3.9

We want to find a valid assignment of transmission functions to the 7.’s in this cxpression that
make it congrucnt to zero. We assume that control buses for each module can be independently
assigned. As discussed above, each T, is a variable—it assumes a different form for cach control
sequence applicd to A, We arc only interested in propagation modes where 7', < 1 if such modes
exist. In some cases, there is only one transmission for a module (e.g., X = ). In other cascs,
M; will only have onc control assignment so that T, < 1. In the last two cases T, = 0 since there is
only on¢ transmission function of intcrest.

Multiplexer MUXR _1 has only onc sensitized mode of operation, and this mode is trans-
parcnt. Therefore, we set 7| = 0. Registers such as REGR_S are likewise transparent for only one
control sequence. The transmission functions for CONCAT modules and FREADs (fruncate mod-

ules) are constants, in the case of FREADs, T'. < 1, The OR gate PROCR_1 has no natural control
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Figure 3.18. Digital filter datapath circuit.
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Figure 3.19. Propagation diagram for the boxed subcircuit in Figure 3,18,

inputs since both its inputs are part of conncctions with vertices in the propagation diagram. The
only module with more than one relevant transmission function is the subtracter module
PROCR_14. Howevecr, a subtracter module, like an adder, is transparent for every possible control
value,

Modules PROCR_, REGR_5, and PROCR_25 arc all transparent, so T1°T2°T350
(Property 1a). PROCR_26 and PROCR_30 are complementary truncate modules, therefore,
T.,#(T4°T5° o) =0 if and only if 7.,°T, =0 (Thcorem 3.5). Since PROCR_14 is a subtracter,
T5(V) =0 for any V.. However, PROCR_I2 truncates all but the most significant bit of the
output of PROCR_14, thus 7,°T £ 0, and T, # (T,°Ts°T,} £ 0. In Scctions 3.4 and 4.3 we will

discuss techniques for making this circuit transparent.
3.3. Partial Transparency

To simplily test generation with precomputed modular tests, it is desirable to usc fully
transparent modules and circuits to propagate a test response 7 - While this is {requently not pos-
sible, it may be possible to propagate T, along partially transparent circuit paths, an issuc we
explore in this section. If we cannot propagate T through fully transparent modules, it is useful to
know which of the available partially transparent propagation paths are the most transparent,

Consider the circuit in Figure 3.20, which contains reconvergence similar to that of Flirdp.
We have identificd three paths from the output of the module M | for analysis. PATH1 consists of
the modules M, , Mo, M,, M, and My, and their associated interconnections. PATH2 consists of
the path including modules M, M., and M. PATH3 simply passcs through module M. These

paths are marked on the schematic in Figure 3,20, PATHS3 is clearly transparent, but PATH1 and
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Figure 3.20. Comparison of three propagation paths.

PATH?2 arc not, Both PATHI and PATH2 contain about the same number of gates from the output
of' medule 1 to a primary output. It is not casy to determine the more transparcnt of these two paths
by inspection. The transmission function for PATHI is

TPA il

= {(0,7,0), (1,2;1), (3, 4:2), (5,653)} (3.10)
and the transmission function for PATH?2 is

TI’A TH2

= {(2,6:0}, (3,71}, (0,42}, (1,53)} . @10
We now discuss a method for analyzing the relative transparency of these two paths,
In Section 3.1 we noted that if Ty, 0 < Ty ppss0 then Ty o0y propagates more infor-

mation than T

parya- However, in this case, Ty, \ 0, and T 0,5 are algebraically incompara-

ble. We cannot determine the relative transparency of these two transmission functions by
comparing them directly using our algebra. Instead we compute a numerical measure of their
transparency which can be compared. Let M be a module with input-data bus X, input control
bus X . and output data bus Z,. Let vy, be a value assigned to X, in a correctly working circuit
and vp' be a value at X,y in a faulty circoit. The pair (v, v,’) is a discrepancy. If
{V{Xp)}

N = , then the total number of possible discrepanciesis N(N - 1) .

Definition 3.11: The fraction of discrepancies distinguished by a transmission function T is called

the transparency index of T, and is denoted Trans (T) .
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If all discrcpanlcics are cqually likely, then Trans (T) is a measurc of the probability that a dis-
crepancy will be propagated through M from X, to Z,.

To compute Trans(T), we first compute the inverse of Trans(T), that is,
1 -~ Trans (T) , using the structurc of the transmission function. Let m be the partition cmbedded
in transmission function 7, and lct B; be the size of block i in 7. Finally, Iet Opacity (B, N) be
the apacity or non-transparency index of block i, that is, the contribution of block / to the total
fraction of discrepancies that cannot be distinguished by T. Since no two elements in a block can
be distinguished, the contribution of block i to the number of discrepancics that cannot be distin-

guished is B, (B, - 1) , the number of pairs in block i, Therefore,

Opacity (B Ny = ioi” D (3.12
pacity (B, N) NN-1) .12)
If there are » blocks in &, then
N
Trans(T) = 1- z Opaciry (B, N) (3.13)

i=1
As an ¢cxample, let Tl = {(0;1), (1;2), (2:3), (3:4), (4;5), (5:6}, (6;7), (7:8)} . Since
B, = 1 foralli, Trans(T,) = I. Now consider T, = {(1, 3;:3), (0,2:1)} . The size of both
blocks T, is 2, thercfore, Trans(T,) = 1- (176 + 1/6) = 2/3. The transparency indices of
the transmission functions for the modules in Figure 3,11 are listed in Table 3.2. Note that for typ-
ical datapath medules, the transparency index is cither O or 1. Most non-transparency results from
the way that these modules are connccted—{for example, connections to truncate modules,

We refer to the sct of block sizes (Bl,Bz, ..w B, ) for an embedded partition w, as the
partition structure of ™. A canonical list of all possible partition structures for the case where the
number of possible inputs to X is 8, is shown in column 2 of Tuble 3.4. Column 1 lists the num-
ber of blocks in cach partition structure, columas 3 and 4 list the means and variances of the block
sizes in cach partition structure, and column 5 Jists the transparency index implied by the partition
structure. In cach partition structure in Table 3.4 the block sizes are listed in order of decrcasing
size. Note that the transparency index generally increases with the number of blocks in the parti-
tion structure, but not always. For instance, the transparency indcx of transmission functions with
cmbedded partitions whose structure is (6,1,1) is 0.46, but the transparency index of transmission

functions with structure (5,3) is 0.54. The large block (6) makes (6,1,1) non-transparent. By refer-
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Module Transmission functions Trans(T)

(a) NAND gate (0D = {(0.1; 1)} 0.00
([ = {(O0;1), (1;0)} 1.00

(b)NOR gate | 7([0]) = {(0:1), (1;0)} 1.00
7([1)) = {(0,1,0)} 0.00

(c) Adder T(0)) = {(0;0), (1;1), (2;2), (3:3), (4:4), (5:5), (6;6), (7: )} | 1.00
T([ED = {(O:1), (1:2), (2;3), (3:4), (4:5), (5:6), (6:7), (7:8)} | 1.00
T(2]) =...

(d) Multiplexer 1 | 7X[0D) = {(0,1,2,3,4,5,6,7;0)} 0.00
(11} = {(G;0), (1:1), (2:2), (3;3), (&), (5:5), (6:6), (7.1} | 1.00

(e) Multiplexer 2 | T([0]) = {(0,1;0)} 0.00
T([1]) = {(0;0), (1;1)} 1.00
7z =... 1.00 ...

(f) Multiplicr T({0h = {¢0,1,2,3,4,5,6,7.0)} 0.00
T([1D) = {(0;0), (1:1), (2:2), (3;3), (4:4), (5:5), (6:6), (7,1} 1.00
zn =..

(g) Register ([0, 1] = {(0:(0,0)), (150, 1)), (2:(0,2)), (3:(0,3)), (4:(0,4)), | LOO

(5:(0,50, (6:(0,6)}, (7:(0,7)) }

(h) Decoder (oD = {(0,1,2,3,4,5,6,7;0)} 0.00

A1) = {(O; D, (1,2,3,5,6,7.0), (4,2)} 0.46

Table 3.3 Transmission functions and transparency index for modules in Figure 3. 11

ring to Table 3.4, we can now finally analyze the relative transparcncy of PATHI and PATH2 in
Figure 3.20. The transparency index of cach of these paths is the same because they both have the
same partition structure (2,2,2,2). Hence, Trans(T,) = Trans(T,) = 0.86. T, and T, both
propagate the samc amount of information, that is, the same number of discrepancics. However,
since T, and 7, arc incomparable, cach prapagates a different set of discrepancies, In fact,
T #T, = {(0:(0,2)), (15(1,3)), (2:(1,0)), (3;(2, 1)),
(4:(2,2)), (51(3,3)), (6:(3,0)), (7;(0, 1)) } =0

Together, T and T, propagate all information,
Incomparability is an important aspect of propagation along parallel paths. In general, if
M, and M, arc two modules connected in parallel, with corresponding transmission functions T

and T, then T\ #7,< T and T #T, < T, il and only if 7| and T, arc incomparable, that is, M|



100

S.l;;;g;f; :;?;tcl::::: Mean Variance Trans(T)
8(*) (1,1,L1,1,1,1,1) 1.00 0.00 1.00
7(*) 2,1,1,1,1,1,1) 1.14 0.14 0.96
6(*) 2,2,1,L,1,1) 1.33 027 0.93
5(*%) (2,2,2,1,1) 1.60 0.30 0.89
4*) (2,2,2,2) 2.00 0.00 0.86
6 G.L1LLLD 1.33 0.67 0.89
5 (3,2,1,L,1) 1.60 0.79 0.86
4 (3,2,2,1) 2.00 0.64 0.82
4 3,3,L1) 2.00 1,32 0.79
3(%) (3.3,2) 2.67 034 0.75
5 4,1,1,1.1) 1.60 1.80 0.79
4 (4,2,1.1) 2.00 1.99 0.75
3 (4,2,2) 2.67 1.32 0.71
3 (4,3,1) 2.67 234 0.68
2(*%) 4,4 4.00 0.00 0.57
4 5,1,1,1) 2.00 4.00 0.64
3 (5,2,1) 2.67 4.33 0.61
2 (5,3) 4,00 1.99 0.54
3 (6,1,1) 2.67 8.35 0.46
2 (6,2) 4.00 8.01 0.43

(7.1) 4.00 17.98 (.25
1(*) 8 8.00 — 0.00

Table 3.4 All possible structures for partitions on 8 clements, the mean and variance of the block
sizes, and the transparency index of corrcsponding transmission functions.

and M, must propagate different information. Furthermore, since the transmission function of the
circuit formed from series-connected modules is always greater than or congruent to the transmis-

sion function of the first module in the series (Property 9 in Table 3.1}, we can determine a strategy
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Figure 3.21. Maximum transparency index as a function of number of blocks domain size 8,

for propagation by comparing the transmission functions of the first modules along cach branch of
a fanout junction. Let M, and M, be two modules whose input data buscs are connccted to
branéhcs of a funout junction, and let T y and T2 be transmission functions for M , and M,
respectively. If 7' < 7, then the path starting with M| should be chosen for propagation, since 7|
propagates everything that T, does, and more. If 7| and 7, arc incomparable, then propagation
should proceed in paratlel.

Now we consider the partition structure that maximizes the transparency index. As
observed above, the transparency index of a transmission {function secems to increase with the num-
ber of blocks, but not monotonically. The distribution of clements amohg the blocks is also impor-
tant. In Table 3.4, we list the partition structures in order of decreasing transparency index, For a
given number of blocks, we also mark with an asterisk the partition structures leading to maximum
transparency index. We plot transparency index as a function of the number of blocks for these
marked partition structures in Figure 3.21. For these partition structures, transparency index does
increcase monotonically. Also note that in cach partition structurec marked with a * in Table 3.4, the
block sizes are all nearly or exactly the same size. That is, the instances of maximum transparency
index in Table 3.4 arc those cases where the set of block sizes have minimum variance (02) for a
given number of blocks. Variance is used here in the classical sense to measure dispersion from the

il

mean, that is,
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H
2 & (8-8)
a = El n—1
i

where B is the mean block size. Since the total number of elements to distribute among blocks is

fixed, variance is reduced the closer all block sizes are to N/n. N is always a power of 2, namely

SZ'XDI , but 1 can be any natural number and depends on the module function. As illustrated in
Table 3.4, for the set of partition structures with maximum transparency for a given a, not all
blocks are exactly the same size in each partition structure. However, in cach case no other parti-
tion structurc with the same number of blocks has lower variance. This fact is formalized in the

following theorem,

Theorem 3.8: For a given number of elenents and blocks, the embedded partition of a wransniis-

sion function with maximum transparency index has the minimum variance among block sizes.

Proof: We will show that monotonically increasing the variance of partition structures monotoni-
cally decrcases transparency index. We are considering transmission functions with 7 blocks,
whosc domains contain N = |{V(X D) }I clements. Assume without loss of generality that the
block sizes in the cmbedded partitions for thesc transmission functions are ordered
B, 2B,2..2B,,asthey arc in the canonical list of partition structures shown in Table 3.4, All
possible partition structures may be obtained from the minimum-variance partition structure Stin

by transformations of the form

S; = (ByseusBp By B) = (B, .. B

1? e i

il Bim 1, B,) =S,

1
which increase variance. Consider one such transformation §; — §,, and let 7, and T, be trans-
mission functions whose cmbedded partitions have structure S, and S, , respectively. By (3.12)
and (3.13)
B, (B,-1) +Bj(Bj- nN+C

N((N-1)

Tmns(Tl) = 1-

where C is the non-transparency contribution of all the blocks except i and j. Similarly,

(B,+1)B, + (BJ.— 1) (Bj—2) +C

Trans(T,) = 1- NIN-T)
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We want to show that Trans (T,) <Trans (7)) . that is,

(B,+1)B.+(B,-1)(B.-2)+C B(B.-1})+B(B.-1)+C
] e —¢ ! 4 d R Fadt
N(N-1) N(N-~1)

which implies
. (B;+1)B,+ (B;- 1) (B;~2) >B,(B,~ 1) +B,(B;- 1)

By expanding and collecting terms, we obtain

28'.—-23j>—3 (3.14)
The relation (3.14) is truc if and only if B, > Bj- 3/2, which holds since B, was defined to be

greater than or equal to B, O

We refer to transmission functions whose block sizes have minimum variance as maxi-
munt transparency transmission functions. T, sy (equation (3.10)) corresponding to PATHI in

Figure 3.20 and T

pazi> (Cquation (3.11)) corresponding to PATH2 in Figure 3.20 are maximum

transparency transmission functions. It is interesting to notc that for 18 of the 22 partition struc-
turcs in Table 3.4, the transparency index is greater than 0.5, that is, ﬁaorc than half of the discrep-
ancies are propagated. We conclude therefore that most sensitized modules are quite transparent.
As another illustration of this fact, consider Figure 3.22 where we have plotted the maximum
transparency index as a function of the input data bus size for transmission functions with 4 and 8
blocks. This figure shows that as the data bus size increases, the maximum transparency index pos-
sible for any transmission function with n blocks approaches an asymptotic lower bound that
depends on the number of blocks. In Figure 3.22, for transmission functions with 8 blocks, this
lower bound is about 0.9, and for transmission functions with 4 blocks, the lower bound is about

0.77. The follewing thcorem formalizes this fact.

Theorem 3.9: Let T be a maximum transparency transmission function with n blocks, the mini-

mum possible transparency index for T is Trans(T) = 1 ~ ’-I;

Proof: Let m be T's embedded partition and let B, be the size of block i in 7. By definition,

n
Trans(T) = 1- ¥ Opacity (B, N) (3.15)

i=1
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Figure 3.22. Maximum transparency index possible as a function of the input data bus size o1
transmission functions with 4 blocks and 8 blocks.

For maximum transparency transmission functions with z blocks, the transparency index depends
anly on the number of clements in the domain N, and is minimized when N becomes very large.
Taking the limit of both sides of (3.15)
"
Hm Trans(T) = lim [ l = Z Opacity (B, N)J
N !

N—w Py

"
= 1- z Nli_I’nwOpacity(B,.,N)

i=1
According to Theorem 3.8, all blocks in 7 must Ec as close as possible to exactly the same size,
therefore B, is [N/n’] or LN/n], since N may not be divisible by n. Suppose that N is divisible
by n, 50 B, = N/n, By equation (3.12),

(N/n)y (N/n-1)
N(N-1)

()pacfry(b"., N) =

Expanding yields
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Figure 3.23. Lower bound on maximum transparency index as a function of output data bus
size.

(1/n)2(N? - nN)
N -N

This form of Opacity (B, N) for maximum transparcncy transmission functions is the same

regardless of whether A is divisible by #. Taking the limit,

2 2 _
N“_',“m( I /;E)N E_NNJHN]

Therelore, Nlim Opacity (B, N} = l/nz.Finally,
—)

= l/nz'

1
lim Trans(T) = 1- Z(l/an =1-1/n0
No o
i1
The number of blocks in a transmission function is bounded by | {Vv (ZD) } | . Therefore,
for a given number of output bits ]ZD| , @ module has its maximum transparency index when its

12|

transmission functionhas 2° = cqual-sized blocks. Truncate modules meet this criterion. Truncatc
modules M,, Mg, and M, in Flirdp (Figure 3.15) cach truncates a 9-bit bus to an 8-bit bus. In
cach case, the transparency index of the corresponding transmission function is 0.998; no module
with |X D| 9 and |ZD] = 8 can have a larger transparency index. Interestingly, according to
Theorem 3.9, the smallest transparency index that a truncate module with an 8-bit Z;, could have

is 0.996, regardless of X ,'s size. Figure 3.23 shows the lower bound on maximum transparcncy

index as a function of |Z,| for Z,, sizes up to 8 bits. Note that truncatc modules with only a 4-bit
D D P
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Z;, can propagate at Icast 90% of the discrepancies that appear at their inputs.

In summary, cven when there is a very large difference between the size of the input and
output buses, the fraction of discrepancies that can be propagated can still be very high. This fact
can be understood in the following way. Consider a discrepancy (vp, v,,") to be propagated
through a module with a maximum transparency transmission function 7. There are at most
[N/nT-1 values for v,)’, such that (v vp') cannot be propagated, since there are at most
[N/n’] elements in cach block of 7. However, there arc at least (n~ 1) (LN/n]) other values
for vD' such that (v, vD') can be propagated, since there are at least (n—1) (LN/n]) other
values in blocks that do not contain v,,. No matter how many values conflict with v, there arc
more that do not, and the ratio of conflicting to non-conflicting values clearly depends on the num-
ber of blocks. This implics that partially transparent propagation modes are likely to be very suc-

cessful at propagating T, cven though they may fail to propagate all possible discrepancies.
3.4. Sequential Transparency

In the general definition of transmission functions, modules are controlled by sequences of
inputs at X .. Control sequences V. = {v_,v_,, ..., v_;] longer than onc timestep were studied
by Marhofer [66], but were not integrated inte a formal theory of propagation, as we have done in
Sections 3.1 and 3.2. Multi-step propagation is determined by intersecting incomparable transmis-
sion functions. The interscction of two transmission functions 7' and 7, is always at least as
transparent as cither T or T,. For parallel conncctions, this fact is summarized in Table 3.1 as
Property 7. Intersecting 7| and 7, is equivalent to applying the two functions in sequence (Theo-
rem 3.1). For a single module M, T and 7, are defined by their control sequences S, and S .,
respectively, thatis, T, = T(S¢y) and T, = T(S,), where 7 is the transmission function for
M. This implics that if T; = T, n T, then the control sequence for T4 is the juxtaposition of S

and S thatis [S

cr cr SCZ] *

Definition 3.12: Let M be a module with input data bus X, input control bus X ., and output data
bus Z,,, and let T(S) be a transmission function for M such that T(S.) =0.1f k = |SC[ , then

M is said to be k-transparent. We usually only refer to a module as k-transparent if k> 1.
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Xc=in_1

ADDER } Zp=sum[3..1]

X D=in_2

Figure 3.24. Three-bit adder module with input data bus X, as addend, input contro! bus X~
as augend, and output data bus Zj, = sum{3..1].

For cxample, consider the adder in Figure 3.24 one final time. For this module,

T(10]) = {(0, 1;0), (2,3:1), (4,5:2), (6, 7.3)}

T([1]) = {(0:0), (1,2;1}, (3,4:2), (5,6:3), (7:4) }

T([0,11) = 7([0]) nT([1]) = {(0:[0,0}), (1:[0, 1]), (2:[1, 11),

(3;01,21), (4512, 21), (5512, 3]), (6;13,3]), (7:[3,4]) } =0

Therefore, the adder is 2-transparent. Since it is not transparent for any control sequence of length |
1, it is not 1-transparent.

%l

If a module is A-transparent, it is also (k+1)-transparcnt if k<2" © — I . We are usually
interested in the minimum value of k. We can derive a lower bound on & which is tight in the sense

that useful circuits can be constructed which meet it,

Theorem 3.10: Let M be a module with input data bus X, , input control bus X ¢~ and ouput data
bus Z,,. Let T(SC) be a transmission function such that SC = ["1' Vs vans vk] is the shortest

sequence for which T(S,.) =0. Then max [ 1, | X712, |1 is a tight lower bound on &,
C D D

Proof: Let m be the embedded partition in T(So), and let =, = T(v), 1sisk. Then,
= 7, NI, N .. NG Assume that |XD| > |ZD] . In order for & to be minimum, every intersec-
tion must yield the maximum number of new blocks. In this case, |rt; N nj[ = |m]| % Injl . Further-

172

more, each 7, must have the maximum number of blocks, 2' ™. Therefore, for minimum &,

T(S;) =0 implies that

k
Z X
H2| n]=2| ol

i=1
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Kzpl %ol

Thus, 2 = 2" °' which means that kerXD|/|ZDH. since if IXD| is not divisible by |ZD|.

an extra control step will be required. If |X D| < |ZD| , then the minimum value for & is 1, therefore,
the lower bound on k is max[1, HXD|/|ZD|'|] . O

This theorem succinctly captures the requirement mentioned above that |X ol s |ZD| in
order for a module to be 1-transparent. A module M can also be O-transparcent if |X Dl < |ZD| , and
X = @. Intuitively, this means that if M is not C-transparent, then buses connected to it must

meet a fundamental requirement stated in the following carollary to Theorem 3.10.

Corollary 3.3: Let M be a module with input data bus X, input control data bus X ., and output

data bus Z,,. If M is not O-transparent, then |X Cl >log, (|'|X D|/ |Z DH) .

In other words, M's control bus must be big enough so that the minimum number of control valucs
can be applicd.

Recall from the discussion in Subsection 3.2.2 that the truncate module 6 (PROCR_12) in
Divfilt (Figure 3.18) blocks propagation through the boxed subcircuit. PROCR_IZ truncates the
12-bit output of the subtracter PROCR_14 to onc bit. According to Theorem 3.10, the shortest
control sequence that can propagatce all discrepancies through a module with |X D| = 12 and
|ZD| = | has length 12, Of course, PROCR_12 has no natural control input that can be uscd for
propagation. Additional inputs shown in Figure 3.18 reflect parameters used by the synthesis tool.
PROCR_12 can be modified to improve propagation, we discussed in the next chapter. Alterna-
tivcly, we can treat modules 5 and 6 as a single module: a subtracter with only the most significant
bit (borrow) uscd as output. Such a module is 2! -transparent. All possible values must be applicd
sequentially to X . to propagate all discrepancies from X, to Z,,. Thus, circuits can have transpar-
cnt modes of operation that are totally impractical.

Next, we consider the combination of modules in series when the minimum-length control
scquence is Ionger than one, The control sequences of the individual medules on the propagation
path must be modificd to form a control sequence for the entire path, This fact is summarized in

the following thcorem.
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0011 0101
Xcr Xe2
- XDI ZDI XDE ZDZ
Propagate 0: 0000 M, 0000 M, 0000
Propagate 1: 1111 0011 0031

Figure 3.25. Two 2-transparcat modules connccted in series.

Theorem 3.11: Let M| and M, be modules whose minimum-length control sequences have length
k, and k,, respectively. Then the minimunm length of a control sequence for the series combination

of M, and M, iskk,.

Proof: To propagate a single vector v, through A1, it must be held constant for &, timesteps.
Therefore, cach control value v, assigned to X ., must be repeated for at Jeast k, steps. Since
therc arc at least k; of these, each value v, at X, will take at least k&, steps to propagate
through the scrics combination. O

The circuit in Figure 3.25 shows two k-transparent medules are connected in serics. Both
M, and M, could be 3-bit adders with the three most significant bits of the sum forming Z,,, as in
Figure 3.24. The sensitizing propagation mode for cach module is [0,1]. Note that in Figure 3.25,
cach timestep of the sequence V.| applicd to X, is repeated &k, = 2 times, and that the entire
sequence V-, = [0, 1] applied to X, is repeated k| = 2 times. The 2-transparent transmission
function for M and M, is:

T([0,1]) = {(0:[0,00), (1;[0,1]), (2:[1, 11}, (3511, 2]),
(4:12,21), (5:12,3]), (6:13,31), (7:13,4]) }

This transmission function must be converted to two 4-transparent forms:
T, = {{0:[0,0,0,0]), (1;[0,0, 1, 1]}, (208 1,1, 10), (301, 1,2,2]),
(4:02,2,2,2]), (5:(2,2,3,3]), (6;13,3,3,31), (7;[3,3,4,4]) }
and

T, = {(0;[0,0,0,0]), (1710, 1,0, 1), (2:[1, 1, 1, 1]), (3:[1,2, 1,2]),
(4:12,2,2,2]), (5:12,3,2,3]), (6:(3,3,3,3]), (7:{3,4,3,4]) }
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for modules M| and M, , respectively. The resultant transmission function is:
T,°T, = {(0;[0,0,0,0]), (1:[0,0,0, 1), (2:{0, 1,0, 1]}, (3;[0, 1, 1, 1]),
(1L 1L L 1]), (501, L, 1,2]), (6:11, 2, 1,2)), (7511,2,2,2]) }

As in the case of scrially connected modules, the combination of k-transparent modules in
parallcl docs have an cffect on the propagation modes. In order to satis{y the requircments of the
paralle] connection operation, the number of timesteps for all modules must be the same. Thus the
length of all control sequences must be normalized. The only constraint is that all elements of the
ncw sensitizing sequence appear in the original order. For example, supposc that module M has
sensitizing  sequence V. = [0, 1, 2]. Both sequences ch = [0,0,1,2] and
Voo = 10,1,1,2,2] are cquivalent to V. in their ability to sensitize M since both prescrve the
order of the values.

The length of the shortest normalized control sequence is the least common multiple of the
lengths of the individual control modes. As an example, let T, and 7, be ambiguity scts for mod-
ules M, and M,, cach of which has a single-bit output. Let

T,((0,1]1) = {(0, 13[0,01), (2, 3;[0, 11}, (4,5:[1,01), (6, 7;{1, 1])}

T,(11,2,3]) = {(0;10,0,0]), (1,2:[0,0, I]), (3,4;[0, 1,0]),

(5,610, 1,11), (7;11,0,07) }.
Then
T, (10,0,0,1,1,11) = {(0,1:[0,0,0,0,0,0]), (2,3;[0,0,0,1, 1, 1]),
(4,511,1,1,0,0,0]), ¢(6,7;I1,1,1,1, 1,11} }
7,011, 1,2,2,3,3]) = {(0;[0,0,0,0,0,0]), (1,2;[0,0,0,0, 1, 1]),
(3,4;[0,0,1,1,0,0]), (5,6:10,0, I, 1,1, 1])
(7;11,1,0,0,0,01) }.

‘The parallel combination of T, and T, is

T#T, = {(0:[0,0,0,0,0,0]), (1:[0,0,0,0,1,1}), (2;10,0,0,2,3,3]),
(3:10,0, 1,3,2,2]), (4[2,2,3,1,0,01), (5:[2,2,3,1, 1, 1]),
(6:12,2,3,3,3,31), (7:13,3,2,2,2,2]) }.
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3.5. Summary

In this chapter, we have presented a general theory of propagation through modular bus-
structured circuits, We showed how circuits can be modeled as serics and parallel connections of
modules and analyzed using this thcory. We applicd the theory to analysis of transparency and
demonstrated the analysis on some example circuits. Finally, we identified some of the fundamen-
tal propertics and limitations of transparency in modular circuits. We will discuss some further
applications of the theory in the next chapter.

The propagation theory formalizes intuitive concepts of information propagation in bus-
structured circuits, such as propagation along parallel, partially transparent paths, so that analysis
of propagation paths in circuits can be automated. This is a necessary step in generating tcsts for
circuits with an irregular bus structure, which was our goal, We also obtained some novel results,
For example, we showed that even when there is a very large difference between the sizes of the
input and output busecs of a module M, the fraction of discrepancics that can be propagated through
M can still be very high. The thcory is general enough that other applications for it may also be

possible.



CHAPTER IV
TEST PACKAGE PROPAGATION

In this chapter, we discuss the representation and propagation of test package information.
The theory and methods described here directly address the deficiencics of PathPlan and other test
generators that use precomputed tests. We also show how to modify circuits to increase their trans-

parency and thereby improve their ability to propagatc test packages.
4.1. Symbolic Propagation

As discussed in Chapter 1, test packages arc information objects containing test, propaga-
tion and control information for modules and circuits. The basic form of a test package for a MUT
M is (T¢:Tp), where T is a precomputed test stimulus sequence for M, and T, is the fault-frce
response from M when T is applied. T is frequently decomposed into spatial vector sequence
components A, A,, ..., A, that correspond to the natural inputs of the MUT. The central problem
in test gencration using precomputed tests is to produce vector sequence signals at the primary
inputs that

« Propagate 1o the inputs of the MUT and match A, 4,, ..., A

N

»  Establish fully or partially transparent propagation paths from the output of the MUT to

primary outputs so that all errors that can be produced by the MUT arc obscrvable.

We want to propagate vector sequences symbolically whenever possible, as we did in PathPlan. A
symbolic vector scquence A can only be propagated by PathPlan from the data input X to the
data output Z, of module M if the module function implemented by M Icaves A unchanged or

inverted at Z, 1 PathPlan avoids the creation and manipulation of mere complex expressions of
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Figure 4.1, Propagating a symbolic test package (T Tk) through the Fitrdp datapath circuit

vector sequence symbols, However, as we saw when testing Fltrdp (shown again in Figure 4.1),
this approach is often overly restrictive. Recall from our discussion in Chapter 11 that ParhPlan
cannot simultancously propagate T to module M, (the MUT) of Fltrdp, and crrors through the
multiplexer module Mg using T-mode propagation. Nevertheless, if the appropriate signal assign-
ments are made, M, can be tested. Let T = (Al,Azl and T, = A, +A,, so that the fault test
package for M is T = (Al’Az"Al +A2) A is required on bus 8 and A, onbus 9. If we
assign the symbolic vector sequence expressions A, to buses 1 and 2, A, + 2 to bus 3, and A, to
bus 9, as shown in Figure 4.1, then the symbolic expression propagated to buses 8 and 9 match T,
and T'p, is propagated to the primary output, bus 12.
4.1.1 Symbolic Expressions

To improve upon ParhPlan, signals must be propagated as symbolic expressions, as dem-
onstrated in Figure 4.1. These symbolic expressions are functions composed of individual module
functions; they arc another form of the propagation expressions (PEs) discussed in Chapter III,
where function composition due to circuit structure was written to emphasize its series/parallel
nature. The vector sequence data represented by symbols in a PE constitute its domain. PEs propa-
pated from primary inputs to MUT inputs are stimulus functions and PEs propagated from the
MUT outputs to any other point in the circuit are response functions. Stimulus and rcsponse func-
tions are determined by control signals applicd to the X.s of modules. Different contro] signals
imply different functions, as shown in Chapter II1, and in most cascs, if control signals are unas-

signed or unknown, the function is undetermined.
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To successfully instantiate a test package (775, ), the codomains of the stimulus func-
tions must be components of T. Often, we can determine whether vector sequence components
Ay, .., A, of T¢ are propagated to the inputs of the MUT by matching A, ..., A, symbolically to
PEs, as shown in the Fltrdp cxample above. Otherwise, the PEs can be evaluated using vector
sequence data and matched to the components of T numerically. This amounts 1o moving down
the hicrarchy to the level of the individual vectors and bits of the vector sequences. In the Flirdp

cxample above, let A; and A, be given by

010 001 1]

1

0011 0101
0101 0011

A= 00114 JoLol
0101 0011
0011 0101
0101 0011
001 1] 0101

To match T¢ numerically, we propagate onc vector in one timestep, that is, one vector per clock
cycie. For example, at timestep 1 we attempt to propagate the vector 0 to bus 8 to match the first
vectorof A, and at timestep 2 we attempt to propagate the vector 10101010, to bus B to match the
sccond vector of A . For Fltrdp, we are able to match PEs symbolically to T, despite the fact that
there is no T-mode path from primary inputs to the inputs of the MUT.

As demonstrated by PathPlan, we can sometimes determine symbolically whether all
errors are propagated from the output of the MUT to primary outputs. For cxample, if a PE at a pri-
mary output is equivalent to T, (I-mode propagation), or is only the logical inversc of 7, (T-
modc propagation), then all errors are implicitly propagated. Howcver, in many cases we cannot
tell by analyzing symbolic expressions whether all crrors are propagated from the outputs of the
MUT to primary outputs, We will discuss response functions and error propagation further below.
First we discuss the problem of representing symbolic cxpressions so that they can be easily

matched to 7.
4,1.2 Symbolic Expression Simplification

As they propagate through a circuit model, PEs grow as a result of module function com-
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position. In the Fltrdp circuit of Figure 4.1, if PEs arc allowed to grow without modification, then

the output of module 1 would be A, + (A, +2), and the output of module M, would be

(A, + (A +2)) /2, since truncating the least significant bit of a bus is cquivalent to dividing sig-

nal values on the bus by 2. Continuing in this way, the input to module M, (thc MUT) on bus 8 is
A+ (A +2)

2
2

- %(%(Al+(Al+2))+Al) @.1)
The test package value to be matched at bus 8 is A|. We want to determine symbolically if (4.1} is
cquivalent to A, using an algorithm.

To solve this problem, we tumn to the ficld of computer algebra {4, 22, 74]), where mathe-
matical formulas are manipulated symbolically. Maple [38] and Mathematica [102] are cxamples
of programs that cmbody these techniques. To manipulate symbolic formulas algorithmically, it is
usually nccessary to convert them to a standard or canonical form, Arbitrary formulas are then
simplificd to match the standard form. The simplification algorithms of a particular computer alge-
bra program like Mathcmatica [102] arc among its most fundamental components. Unfortunately,
there is no general agreement on what the standard form should be. However, we can follow some
typical guidelines to obtain a standard form for symbolic expressions that allow us to symbolically
match PEs to components of T [22].

First we consider the requirements of a canonical symbolic expression; a represcntation of
a propagation function. Let F be a set of functions and E be a set of expressions. The clements of
E arc canonical if there is a bijective mapping from F to E, that is, two different expressions in E
always correspond to different functions in F. We need to define the set of functions to be consid-
ered and the corresponding set of canonical expressions, and design a simplification algorithm that
always converts arbitrary expressions representing functions in F to canonical form.

In order to define the set of possible functions F, we consider the types of module func-
tions used in typical circuits. We consider a restricted set of module functions first, the arithmetic
functions. Assume that circuits are formed from adders, subtracters, multipliers, and truncate mod-
ules, whose corresponding module functions are the integer operations: +, -, X, and division by 2"
(truncating n lower order bits is cquivalent to division by 2"y, respectively. The set F contains the

functions computed at various points in a circuit formed by interconnections of these modules, as
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illustrated by Fltrdp in Figure 4.1. We can define corresponding canonical representations with the
following features:
« All expressions are fully cxpanded, that is, the distributive law A (B + C) - AB + AC
cannot be applied to any subexpression 10 get a new representation
« No equivalent terms are present, that is, no terms with the same set of vector sequence
symbols

« No zero terms are present, that is, no terms with a coefficient of 0.

The canonical expressions have the same form as multi-variable polynomials with rational coeffi-
cients [22]. Each term of the expression can contain multiple vector-sequence “variables™ as well
as a rational coefficient, in this case, a fraction with denominater 2" A typical “multi-variable” PE
is (1/2)AA, + A A, where A, A,, and A, are vector sequences and multiplication is repre-
scnted by juxtaposition. Two different expressions in this form represent different functions.
Morcover, all expressions that can be crcated by function composition in the circuits described
above can be converted to this form by the following technique,
Algorithm for creating canonical forms

i, Distribute multiplication over addition A (B + C) — AB +AC

2. Collect equivalent terms by adding coefficients

3. Eliminatc any resulting zero terms

As an example, expression (4.1) can be simplified as follows:

1( 1
5(5((A]+ 1) + (‘41+1))+A1)

1 1 1 1 1
= 341 +tz+ 34 t3154, Distribute multiplication over addition
1 .
= A+ 3 Add likc terms

Individual vectors in a vector sequence are treated as integers, therefore fractions that do not
reduce to an intcger only have meaning as coefficients, and A+ % becomes A | . By applying the
steps above, we have simplificd (4.1) to a canonical expression that matches the required test pack-
age component. In Figure 4.1, the simplifications were applicd as soon as possible at the output of

each module.
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In general, PES in a modular circuit are more complex than in the example above, For
instance, AND, OR, and NOT (word) gates introducc Boolean opcrations, giving risc to Boolean
expressions. The most common canonical representation for a Boolean function is the sum-of-
minterms or disjunctive normal form [55). Boolean PEs can usually be simplificd to reduce the
number of both terms and literals. Most PEs contain a mixture of arithmetic and Boolean opera-
tions, as well as other higher-level operations. Such PEs may not have a canonical form that can be
produced by a fixed set of simplification steps. However, in many cases the basic simplification
steps for arithmetic expressions given above can still be recursively applied to arithmetic subex-
pressions, treating other functions as symbols. Similarly, as a separate step, the Boolcan simplifi-
cation operatien can be applicd to Boolean subexpressions, treating other functions as symbols.

For example, the PE (1/2) (((A+0) v (BAA)) +A) issimplified by the following steps:
%(((A+O) v{BAA))+A)

|
= (5 ({A+0) v (BAA)) + %AJ Distribute multiplication over addition

1 1
= (-2- (Av (BAAY)Y + QA) Eliminate zero terms
1 1 . . .
= §A + QA Absorption (Boolean simplification)
= A Add like terms

In this instance, we are able to reduce a mixed arithmetic/Boolean expression to its simplest form.
More rescarch is needed to formally characterize all of the possible PE functions and to develop
simplification algorithms that guarantec a canonicat form. However, by combining arithmetic and
Boolean simplification algorithms heuristically, as shown above, many PEs can be simplified and
matched symbolically to components of T',. It is important to note that in all cases, even when PEs
cannot be matched symbolically, they can always be cvaluated numerically to check for equiva-
lence as we showed above for Fltrdp.

Finally, we considcr the cost of symbolic PE manipulation relative to the cost of propagat-

ing the individual test vectors of T'g separately to check for numerical equivalence. In symbolic
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propagation, a large number of test vectors, representing many clock cycles of data, are concur-
rently processed, This feature is directly exploited by ParhiPlan. By using simple propagation
modes, it avoids manipulation of expressions and the corresponding processing costs, The various
simplification stcps mentioned above add to the computation time required for signal propagation.
The cost is low if expressions are small, as in the Fltrdp example. Since PEs grow as a result of
function composition, the longer the propagation path, the longer they can grow. PEs can be kept
small if they are only propagated through a few modules, or if they can be simplificd to a few sym-
bols at the output of cach module, never having a chance to grow large.

There is no bound on the size of expressions that can ultimately be simplificd and success-
fully matched symbolically to a component of T . For cxample, supposc that the output of a sub-
tracter module is connected to input X, of a MUT M, and suppose that A is the component of T
required at X, . Let £, is an arbitrarily long expression being propagated in the circuit containing
M. IfA, +E, and £ arc two inputs to the subtracter, then the output value (vector sequence) of
the subtracter is A + £, —E, = A, which matches the required signal for X,. On the other
hand, the cost of propagating /£, and simplifying it at the output of cach module on a propagation
path to X, may be cxcessive, and negate the advantage of symbolic propagation. Therefore, the
sizes of PEs that a test gencrator propagates symbolically should to be bounded in order to controt
cost. When expressions containing more than a fixed number of terms and symbols are created, the
test generator can revert to cvaluating stimulus functions to propagate individual test vectors
numerically. In general, symbolic propagation and matching will be cost-cffective when PEs rep-
resenting stimulus functions are short and vectors sequences long. This will be the case for circuits

composed of very large modules and regular buses, c.g., microprocessors in a microcontroller.
4.2. Hierarchical Error Propagation

Error propagation along transparent paths can sometimes be analyzed by simply checking
the form of symbolic PEs. This is easy when errors arc propagated along I-mode or T-mode paths
as in PathPlan. We can also use the symbolic techniques discussed in Chapter I11 to identify cases
where a combination of partially transparent paths may be combined to form a fully transparent

distributed path. However, for a given fault model, the errors produced by a particular MUT arc
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sometimes propagated along only partially transparent single or distributed paths. In these cases,
successful error propagation depends on the types of crrors to be propagated—it cannot be deter-
mined simply by analyzing the form of the symbolic PEs, the functions they represent must be
cvaluated.

In this scction, we present a hierarchical method of error propagation. At the lowest level
of abstraction, response functions are cvaluated in a special way for the set of crrors that can
appear at the output of the MUT. This detailed method allows us to determine when all errors are
successfully propagated through irregular circuits, but it is still morc efficicnt than propagating
individual single-bit crrors as in classical test generation. At the highest level of abstraction,
response functions with special properties are represented symbolically and propagated along
transparent paths in a circuit model using high-level module functions. This abstract method
allows us to efficiently propagate errors along all types of transparcnt paths, not just T-modc paths.
4.2.1 Response Sets

To analyze test response propagation in circuits with irregular busces, we can cvaluate
responsc functions for the set of values in their domain. Let {(7, Te)s (TpeTh)y wns
(Ty T,,) } bethe set of test response discrepancies to be propagaied, where Ty is the response
of the MUT to 7'¢ when some fault i is active. For a given fault model, the sct of all possible vee-
tors that can appear in T, or any Tp,, that is, the domain of the response function, is called the
response set. An clement of the response sct can be a correct response, a faulty response, or & cor-
rect response to some veetors in T and a faulty response to others.

Consider the two-input, 4-bit multiplexer shown in Figure 4.2b, which is constructed {rom
four single-bit multiplexers (Figure 4.24). Assuming that the SSL fault model is used, the test stim-
ulus vector ctrl = 0, in0[3..0] = 15, and inl[3..0] = 0, producces the response set

Q= {0,7,11,13,14,15} . (4.2)

The correct response is out = 13; the other responses are duc to SSL faults propagated to each indi-
vidual output bit, as well as a stuck-at-1 fault on ctrl. Since there is no fanout within this module
except for ctrl, all faults on lines other than ctrl produce independent errors at the output.

it can casily be shown that the test package
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(b) Four basic cells combined to form a two-input, 4-bit multiplexer

Figurce 4.2, Implementation of a two-input, 4-bit multiplexer: (a) basic cell, and (b) four basic
cells combined to form the multiplexer.
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detects all SSL faults in the multiplexer. The first row of T corresponds to input data bus ctrl, the
sccond row corresponds to in0, and the third row corresponds to inl. The response set for this test
package is

Qp = {0,1,2,4,7,8, 11, 13, 14, 15} (4.3)

While O is an crror response to the first vector, it is the correct response to the third vector.

The size of Q, is only 10, while the number of SSL faults is 48. Therefore, evaluating the
response function for Q, is more cfficient in this casc than propagating individual single-bit errors
due to faults. For most modules, errors produce the same response for a given test sequence 7. In
addition, the size of the response set is bounded by the size of the bus at the output of the MUT, but
often depends on the length of T rather than the size of the output bus or the number of faults in
the MUT. For example, if we construct a two-input, 8-bit multiplexcr from singlc-bit, multiplexers
a test stimulus scquence similar to the one for the 4-bit muitiplexer (four vectors) produces a
response set of size 18. The medule has 96 possible faults and 256 possible outputs.

4.2.2 Evaluating Response Functions

Next we show how to analyze error propagation by evaluating the response function,
denoted P, for the vectors in the response set. As an illustration, let the MUT be the multiplexer
shown in Figurc 4.2b, and let the module M connected to its output be a modulo 16 incrementer.,
That is, V (Z,) = V(Xp,) + 1 (mod 16) . The response set is given by (4.3); thercfore, the

response function evaluated is

Response

Assumc that the response function from the output of a MUT to some other point Z in a
circuit containing the MUT is always represented as a propagation function of the form defined in
Chapter 111, Let QR be the MUT’s response set;, then PR = { (u,.;B‘.)} , L =i<n, where o, is

the set of elements of QR that producc the same output B,. at Z, and {a!, gy --0s @} 15 @ parti-
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Figure 4.3. Response functions cvaluated at various points on the propagation path to the
output in Flirdp. P, denotes the response function on bus J.

tion of €2,. Continuing the example above, we represent the fully evaluated response function at
the output of the incrementer as
P, = {(0;1), (152), (2:3), (3:4), (45), (5:6), (7:8),
(8:9), (10;11), (11;12), (12;13), (13;14), (14;15), (15;0) } =0 (4.4)

In some cases, we can determine from the form of the response function whether all test
response errors are distinguished at Z, If two elements of the response set, v, and v,, arc con-
tained in the same block of the response function, they cannot be distinguished. On the other hand,
if only one clement of the response function is in ecach block, that is, if Pp= 0 as in (4.4), then
clearly all errors are distinguished. In this case, the circuit from the output of the MUT to Z is said
to be transparent relative to the response set,

Figure 4.3 shows response functions evaluated at various points in Flirdp for error propa-
gation analysis. Each bus in the schematic is identified by a number below it; the output of the
MUT is bus 1. The evaluated response function for cach bus i is denoted P, and is listed below
the schematic, together with the associated PE for bus i in the serics-parallel form presented in

Chapter 111 As usual, P, is the propagation function of module ;. Above cach bus in the sche-

matic is a simplified symbolic expression in the form described above (Subsection 4.1.1). The test
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package (7Ty) is successfully instantiated at the MUT and T, is the vector sequence [0 5],
denoted by the symbol Al . The response set QR = {0, 1,5,6} contains two faulty valucs, 1 and
6, as well as the two correct values, 0 and 5, which appear in different vectors (timesteps) of
T, =4[

Although several response functions are greater than 0, the response function P, ., at the
output (bus 12} is congruent to 0. We have shown here that Fltrdp is transparent relative to £2,,.
Recall that in Chapter I11, we could not show that the path from bus 1 to bus 12 was fully transpar-
ent because, due to reconvergent fanout, the proof required explicit evaluation of scrics and paral-
lel connection operations for transmission functions with :Z17 = 131,072 clements. However,
responsc functions arc usuvally much smaller than transmission functions. In general, it is much
casicr to show relative transparency than full transparency.

Figure 4.3 also demonstrates how fully evaluated response functions can be propagated in
a circuit modcl as composite signal values. Note first that the response function at the output of the
MUT is always 0. In Fitrdp, Pp = {(0;0), (I; 1), (5:5), (6;6)} = 0. The response function at the
output of any other module f; on the propagation path is computed by applying the module func-
tion for M'. to response functions at its inputs. Let PR = {{a Jr.;]3 J,.)} be a response function at the
input to module Af,. The module function for M, is used to compute a new value of B, for cach
block of P, For instance, the response function Ppyy = {0,11), (5,6;3)} at the output bus 11 of
module M, in Flirdp is computed from the response function 2,4 = {(0,1:0), (5,6:2)} on bus 8 by
adding 1 to each [3,. If the updated values [3, and BJ. for two blocks (o ;B,) and (Ctj;[}j) are the
same, then the blocks are combined to form (a‘.uaj;B,.) . For example, when Pp, = {(0:0),
(1; 1), (5:5), (6,6)} is propagated through the truncate module M, the result is {(0:0), (1,0, (5:2),
(6;2)}, which is rewritten as P rs = {(0,1;0), (5,6;2)}.

When 7, is propagated along two or morc paths to a point of reconvergence, such as
module Mg in Figure 4,3, then the responsc functions of these paths are combined by the parallel

conncction operation. Therefore, Prpgi Prgs and Py 1 in Figure 4.3 arc combined to form
PP pettPp iy = {(0:(0,0, 1)), (1:(1,0,1)), (5:(1,2,3)), (6:(0,2,3))}  (45)
The individual components of cach B, in (4.5) are then applicd to their corresponding buses to

compute the response function at the output of the multiplexer. For example, block 1 of (4.5) is
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(0;(0,0,1)), therefore, Bl = (0,0, 1). The first component O of B ) corresponds to the control
input of My (bus 7). The sccond component 0 corresponds to the in0 input of My (bus 8), and the
third component corresponds to the inl input of My (bus 11). Therefore, this block is propagated
to the output of module My, the primary output of the circuit, as (0;0).

We have achicved our goal of developing an crror propagation technique for irregular
buses. We can analyze crror propagation along a distributed propagation path, at ieast for the casc
where the distributed path is transparent relative to the response set of the MUT. Previously
reported test generators such as PathPlan and ARTEST [58] cannot analyze such distributed prop-
agation paths. These test gencrators can only propagate errors over fully transparent single (not
distributed) propagation paths, that is, paths whose transmission function is congruent to zcro.
4.2,.3 Error Propagation Analysis

Next, we show how to analyze test response error propagation when the (possibly distrib-
uted) propagation path is not transparent relative to the response set of the MUT. Let Py be a
response function on response set Qp from the output of the MUT to some point Z in a circuit. All
the test response errors for a particular MUT can ofien still be propagated, cven if P, > 0. For
instance, if two clements v and v, in Q, arc both correct or both faulty, it docs not matter
whether they are combined in the same block and therefore indistinguishable. Whereas, previously
we have been analyzing cases where all possible pairs of responses must be distinguished, here we
are concerned with distinguishing discrepancics of the form (v, Vyn'e &> Where vis acor-
rect response and v is a crror response due to faults in a particular MUT exposed by some vector
in T¢. All errors produced by the MUT can be propagated to Z if all discrepancies of the form

{v, vc) can be distinguished at Z,

If the test stimulus sequence T consists of only one vector, then there is only one correct
responsc v. All errors exposed by T'¢ are propagated to Z if v is not combined in one block of P,
with any other response v* inthe response sct. The requirement that the correct responsce v be sep-
arated from faulty responses in /%5 is called the propagation condition.

If T consists of more than one vector, then the corresponding response set for the MUT is
the union of the response sets for cach vector in 7'c. Any clement of the response sct can be a cor-

rect response, a faulty response, or a correct response to some vectors in T and a faulty response
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MUT M,

Figure 4.4, Four-bit 2-input multiplexer connected to a module detecting all-zero and all-oncs
vectors (M),

to others. As we showed above, the test package

01 01
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0 0 1515
detects all SSL faults in the 4-bit multiplexer of Figure 4.2b. Let £, be the response set of vector
iin Tg, then €, is given by equation (4.2); Q,, = {0,7,11,13,14,15}. Similarly, Q,, =
{0,1.2,48,15}, Qpq = Qp,. and Q= Qp . The correct response in cach set is underlined.
The union of these response scts, QR = {0,1,2,4,7,8,11,13,14,15}, is the rcsponse sct for T,.
The order of a cesponse sct is the number of test vectors in the corresponding test stimulus
T,. Response sets 5, 1 754, given above are first-order responsc sets and 2, has order 4.
Note that there is often considerable overlap between first-order response sets, therefore it is much
simpler to cvaluate the response function for the combined response set than for cach individual
first-order response sct. Let Py be the response function at some point Z in the circuit being tested.
All estors exposed by T arc propagated to Z if the propagation condition is met for all the first-
order response sets corresponding to the individual vectors in 7.
Suppose that the 4-bit multiplexcr of Figurc 4.2b is part of the circuit shown in Figure 4.4.
The output of module M, is 10, if its input is the all-O vector, 01, if its input is the all-Is vector,
and 00, otherwisc. Therefore, the response function for the test package given above is P, =

{(0;2), (1,2,4,7,8,11,13,14;0), (15;1)}. Clearly, module M, is not transparent, or even transparcnt
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Figure 4,5. Test response T, propagated through MUT in timeframes later than when T is
applied.

relative 1o Q. However, it does meet the propagation condition for vectors | and 4in T since 15
is not combined with any other response. It also meets the propagation condition for vectors 2 and
3in T, since O is not combined with any other response. Therefore, all errors are propagated to
the output of M, .

As discussed in Chapter 11, if the MUT is on a global feedback path, then 7', may have to
be propagated through the MUT in timeframes later than when T is applicd to the inputs of the
MUT. The faults in the MUT may affcct the propagation of errors produced when the MUT is
tested in timeframe 1, The situation is illustrated in Figure 4.5, which depicts a test package
(T Ty) successfully instantiated at the MUT at timeframe £,, and a symbolic expression
F(Tg) containing T, propagated to the input of the MUT in timeframe 1, +nt. The response
function at the output of the MUT is . To analyze error propagation in this case, the test gencra-
tor must have detailed knowledge of the faulty behavior of the MUT. Each fault /;, 1<i <k, inthe
MUT can alter its function and lead to a different response function at its output in timeframe
fo+m. Let Ppin 15 i <k, be the response function associated with fault f‘.. and let Ppy be the
fault-frce responsc function. This is depicted in Figure 4.5. As an ¢xample, supposc that for a
given T, the MUT has two first-order response sets QR = {0,1} and Qm = {5,6} lcading to an
order-2 response sct Q= {0,1,5,6}. At the output of the MUT in timeframe 1+ m, let P, =
{(0;1), (1;2), (5;6), (6;:7)} be the fault-free response function, Pg = {0,1;1), (5:4), (6:5)} be the
response function due to fault 1, and Pm = {(0;1), (1,5;2), (6;3)} be the response function due to
fault 2,

To determine whether all errors are propagated, all P,.s must be analyzed to determine if
they satisfy the propagation condition. If so, then all ervors are propagated. On the other hand, if

the propagation condition is not met in the fault-frce response function Py then some crrors are
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not propagated. If the propagation condition is satisfied by P, but not by some of the faulty ver-
sians, then further analysis is required. In the example above, the propagation condition is defi-
nitely met by Pp,, since it is transparent relative to Q. The propagation condition is also met by
P4, but not by P, since responses 0 and 1 arc contained in the same block. We must analyze
P, further as follows. If fault f; causcs the correct response O to become 1 in , then the error
(0,1) is not propagated. However, if fault f; 1 docs not cause this crror (and perhaps others), then all
cerrors arc propagated through the MUT. This analysis requires detailed {ault models for the MUT,
and is necessary if propagation through the MUT cannot be avoided. However, such detailed mod-
cls of modules to be tested are often unavailable when precomputed testing is used.

In summary, test response propagation in irregular bus-structured circuits can be analyzed
by evaluating response functions for the response set of the MUT when T is applied. This method
satisfics our goal of analyzing such circuits. For large modules, the response set is usually small
relative to the total number of single-bit errors that must be propagated using low (gate-) level
methods. The response set for a MUT with an #-bit output bus is also usually small relative to the
total number of possible errors for an n-bit bus, Therefore, fully transparent propagation paths arc
rarcly needed, although they simplify analysis when they cxist.

The response functions arc represented for analysis as pairs of the form (a:B),
1 <i<n, where {0t Qg vy a”} is a partition of the response set an_d Bt. is the output of the
response function for the subset o;. They can be computed by propagating them as complex sig-
nals in a circuit model. If a response function P, is congruent 1o zcro, then the propagation path
represented by P, is transparent relative to the response sct and all errors arc propagated. This
case is casy to analyze. On the other hand, if P, >0, then the possible errors may still be propa-
gated, however we must analyze them according to the propagation condition, that is, the require-
ment that all correct responsces are in separate blocks of 2, from faulty responses, Finally, we can
analyze whether test response errors are propagated through the MUT in timeframes other than
when T is applied by evaluating several response functions corresponding to faulty versions of
the MUT. However, this analysis requires a detailed fault model for the MUT, which may not be
available. Analysis of error propagation using response functions is implemented in our test gener-

ation tool MATSim, discussed in Chapter V. Next, we discuss propagation in regular or ncarly reg-
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ular circuits,
4.2.4 Symbolic Error Propagation

Although error propagation in complex bus-structured circuits can be analyzed by c¢valuat-

ing response functions, in many cases such detailed analysis is unnecessary. In addition, for some
modules, the data necessary to construct responsc sets may be unavailable. Since most standard
datapath modules arc fully transparent for some modes of operation (sec Table 3.2), most non-
transparency is duc to bus truncation or random logic blocks. When a circuit contains only regular
buses and no random logic blocks, such as the Encode circuit in Figurc 2.2, a more abstract
method of error propagation analysis can be used. Even in Fltrdp, where irregular buses do exist,
there are some {ransparcent paths, This fact is exploited by PathPlan and ARTEST. However, there
are many transparent propagation paths that are not T-mode paths, so they cannot be analyzed by
PathPlan, and ARTEST uses an ad hoc method of crror propagation that requires mixing abstrac-
tion levels. In this subsection, we discuss hicrarchical representations of response functions as
symbolic signal values and show how module functions can be systematically constructed to prop-
agate these symbols,
Symbolic Types. We will now assign symbols to various groups of propagation functions to clas-
sify them at a very high Ievel, For example, all transmission functions with the same transparency
index might be placed in a single group identified by a “type” symbol. For purposes of crror prop-
agation in test gencration, we are interested in symbolic representations of response functions. Let
R be the symbol associated with all response functions P, such that P, = 0. For examplc, if the
bus X, connccted to the output of the MUT is 2 bits wide, then R contains all response functions
of the form {{(0;0), (1;1}, (2;2), (3;3)}, {(0;0), (1: 1), (2:2)}, ...}. In other words, R contains all
fully transparent response functions as well as all possible response functions that are transparent
relative to some smaller set Qp < {V (X)) } . Let Z be a bus on the propagation path from the
output of the MUT. If the response function at Z has type R, then all possible crrors can be
observed at Z; the path to Z is transparent.

Similarly, let C be the symbol associated with the sct of all response functions 7, such
that 0 < P, < 1. For example, if the bus X, connccted to the output of the MUT is 2 bits wide,

then C contains all responsc functions of the form {{(0,1;0), (2:2), (3;3)}, {(0;0), (1,2;1), (3;3)}.
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Figure 4,6, Use of symbolic values to represcnt propagation functions.

... }. If a bus Z on the propagation path from the output of the MUT has a response function of type
C, then we cannot determine whether all test response errors exposed by T are propagated to Z
without analyzing the fully cvaluated form of the response function as described above,

Since stimulus functions that propagatc T do not carry errors, we classify them sepa-
rately; let S be the symbol associated with any stimulus function. Finally, both stimulus and
response functions may be undetermined in some circuit states; in these cases, no information is
propagated. Let X be the symbol associated with any propagation function P such that P = 1. The
four symbols X, S, R, and C represent our basic sct of propagation function types that are useful
for testing using precomputed tests.

Figure 4.6 illustrates the use of symbolic type to represent propagation functions for test-
ing with precomputed tests. In this figure, the test package (7:7},) is successfully instantiated at
a MUT. Symbolic expressions of vector sequences are propagated to the inputs of the MUT and
matched to T. The test response T, is produced at the output of the MUT and propagated
through a module M with function F as a symbolic expression denoted ¥ (7,) . These symbolic
cxpressions represent propagation functions. Below each bus is the symbol that represents the
type. The stimulus function that matches 7' has type S. The responsc function at the output of the

MUT has type R. However, the output data bus Z,, of M is smaller than its input data bus X,: M

D
is not transparent, Therefore, the type of the response function at the output of M is C.

Symbolic Signals. X, S, R, and C can also be defined using P-scts and U-sets as symbolic signal
valucs representing the information that can be propagated by the correspending response function
type. For example, let Z be a bus on the propagation path from the output of the MUT and let 7,

be the response function at Z. Then R is the symbolic signal value representing the set of discrep-

ancies {(0,{1,2,3}, (1,{0,2,3}), (2,{0,1,3}), (3,{0,1,2})}, where the first clement of each pair is a
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Symbol Definition Interpretation Two-bit example

X {(V,V,)} Unknown signal {({0,1,2,3},{0,1.2,3 1)}

S {(vyv),v, eV} Stimulus signal {(0,0), (1,1), (2,2), (3,3)}

R { (vpV, -v) v e V"} Response signal {(0,{1,2,31, (1,{0,2,3}),
(2,{0,1,3}), (3,{0,1.2})}

C {(v, V.),v,eV.} Corrupted signal {(0,{0,1,2,3)), (1,{0,1,2.3}),
(2,{0,1,2,3}), 3.{0,1,2.3})}

Table 4.1 Definitions and examples of the elements of R,

vector propagated to Z in a correctly working circuit and the sccond element is the sct of possible
values propagated to Z in a faulty circuit. If P, has type R, then all these discrepancics can be
propagatcd to Z; the two definitions for R arc therefore cquivalent. In general, let
vV, = {0, 1, .., 2" _ 1} be the set of all possible vectors that may be applied to an #-bit bus Z,
then R= { ('."., Vn— v). v € Vn} .

Similarly, S can be defined as the set { (v, v,),v, e V, }.In this casc, if S is propagated
to a bus Z, then Z has the same value in a faulty circuit as it docs in a correctly working circuit,
since stimulus functions do not propagate crrors. X can be defined as { (VN, v,) } which indi-
cates that the valuc of a bus could be any value in cither the correct or the faulty circuit, that is no
information is propagated. Finally, C can be defined as { (v, V,), v, eV, } . which indicates that
while the value of a bus in the good circuit is known exactly, the value in the faulty circuit is
unknown. In other words, we cannot tell whether crrors are propagated. We refer to the sct
{X.S.R,C} as R ;. Table 4.1 summarizes the intcrpretation of R, as a set of symbolic signal valucs,
and displays an example of cach value for 2-bit buses,

We can also define less abstract symbolic signal values than S and R, For instance, con-

sider the set of signals on a 2-bit bus. Let

R = {(0, {1,3}), (1, {0,2}), (2, {1,3}), (3, {0,2})}

and

R™ = {10, {2.3}), (1, {2,3}), (2, {0, 1}), (3, {0, 1})}

LO I s . . . .
R and RH arc both contained in R, and together, they contain ail possible discrepancics. They
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form a complete set of less abstract symbolic error values than R. Now, RLO is not blocked by a
truncate module M, that removes the most significant bit of a 2-bit bus and RHI is not blocked by
a truncatc module M, that removes the Icast significant bit of a two-bit bus. However, R is
blocked by both M| and M, . Therefore, there is a useful hicrarchy of symbeolic signal values with
R, at the top and fully evaluated response functions at the bottom. Less abstract values are used
when greater precision is required, and more abstract values are used when greater cfficiency is
desired. By refining R into some less abstract values, error information can be propagated through
circuits with a small number of truncated buses.
Signal Value Algebras. Symbolic signal values can be propagated through a circuit model using
high-level module functions. Together the functions and signal valuc set form a symbolic signal
value algebra. Lee and Patel introduced a symbolic signal-valuc (type) algebra in {58]. Their types
arc constructed in ad hoc fashion, and as a result, the associated module functions cannot be rigor-
ously derived from basic operations on the underlying signal sets. The module functions are imple-
mented using rule-based methods, which are often inefficient and difficult 1o prove corvect.
Morcover, some module functions cannot be closed for the given type set and consequently the
algebra is not well-defined. By treating symbolic response function types as symbolic signat val-
ues using P-sets and U-sets, and vsing the operation extension methods we presented in Chapter 11,
we can easily construct well-defined and useful algebras based on R 4

We will illustrate the construction of module functions using the addition operation,
denoted ADD. Some examples of the operation applicd to elements of R ; arc as follows:

1. ADD(X,X) = ADD({v, + Vie forall i, j}, {v, + Vie for all §, j}) = X, assuming + is closed

and onto for v+ Vi
2. ADD(S,8)={ (v, + VoVt vJ.) Jforalli, j} = { (vppvp)fi=1,0.,k} =8

3. ADDE.R) =(v;+ Vp {v;+v;} )=R, foralli, jand / such that Vi E Ve since {v;+ v, }

cannot coatain v, + v; if (v, + vp) # (v, + vq) forallp#gq.

Note that ADIXR, R) = {v‘. + vf {v,l + vk} y =C, foralli, j, k, k, such that v, #v, and vj:t V.
Thus adding two response signals results in a corrupted output—the algebra is extremely pessimis-

tic about the propagation of crrors. As previously noted, R is blocked (becomes C) whenever a
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ADD | X S R C
X 11X X X X
S X 8 R C
R X R C C
c |1X C C C

Table 4.2 The ADD operation and Ry,

AND | X S R C
X 11X
S X
R X
C X

Table 4.3 The AND operation and B,
modulc function is not transparent, despite the fact that many specific discrepancics may still be
propagated.Table 4.2 shows the ADD operation table for R, obtained by combining all pairs of
clements in R ¢, as we did above for ADD(X, X ), ADD(S, S ), and ADD( S, R ). Finally, note that
all subsets of R, containing X, but not containing the crror signal value R, are closed subalgebras
of (R 4ADD). In particular, the smallest closed algebra is bascd on the singleton set {X}. Algebras
based on {X, S}, {X, C}, and {X, S, C} are also closed.

In many cascs, we can develop a very efficient implementation for the high-level module
functions by properly encoding the symbolic values as vectors of Boolean valucs. There is no
guaranice that a good encoding will be found, however—it depends on the underlying algebra. To
determine a good encoding, one strategy is to look for similaritiecs with other algebras that already
have good cncodings. The ADD module function for R, is very similar to the AND operation for a
four-clement Boolean algebra B . Table 4.3 shows the AND function table for the four clement
Boolean algebra. Here the elements of the algebra have been assigned symbols from R 4 X is the
zero clement and S is the unit clement in Table 4.3. R and C are intermediate values. Tables 4.2

and 4.3 are identical except for the elements shaded in Table 4,3. Therefore, we define an encoding
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Figure 4.7. Response functions represented as symbolic signal values on a propagation path to
the output of Fltedp. Pg; denotes the response {function at bus i,

for R, by slightly modifying the standard encoding for the four clement Boolean algebra B, to aid
in handling the differences between (R 4 ADD) and (B 4 AND). B 4 requires only two bits. X is
encoded as 00,, S is 11,, R can be 01,, and C can be 10,. AND is then computed using logical
AND (») for individual bits independently (word-wisc AND). For R 40 We first encode the underly-
ing sets: V. — 00,, v, — 11,,and (V, —v;) — 01,. Next we concatenate the codewords of cach
clement in a pair. This implies that X = 00002. S = llllz, R = 110!2, and C = 11002. The
output of the ADD module function can be computed by taking the word-wisc AND of the inputs,

and treating the case where cither input is R separately. This can be casily programmed as follows.

| ADD(input 1, ty: symbolic signal values)
2

3 rmu’ = "l A r2

4 il'(l'(mr == R && t,vt, ==R)

5 aut = C"

6 return(s )

7}

Figure 4.7 shows responsc functions represented as symbolic signal values at points along
a propagation path from the output of the MUT to the primary output in Fltrdp. As in Figure 4.3,

cach bus in the schematic is identificd by a number below it; the output of the MUT is bus 1. Here
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the response functions for each bus i is denoted Py, and is listed below the schematic together
with the associated symbolic signal value. PEs not listed are assumed to be stimulus functions with
the corresponding symboelic signal value S. Above cach bus in the schematic is a simplified sym-
bolic expression in the canonical form described in Subsection 4.1.2 The test package (74:Tp) is
successfully instantiated at the MUT and T, is the vector scquence {0 5], denoted by the symbol
A, . Note that R is propagated through the adder (module M,) but is immediately corrupted by the
two truncate modules M, and M. Thus error propagation at this level of abstraction is mere pes-
simistic than the analysis shown in Figure 4.3,

Although, R, is sufficient to corrcctly represent the propagation of error signals through
the set of modules in Flirdp, R cannot be propagated through other typical module functions. For
instance, R cannot be propagated through any input of an AND gate, regardless of the other input.
To address this issue, we add some less abstract values to R, in order to propagate R through data-
path modules other than adders, Let O, be the #-bit all-0 vector, that is, {(0,0)}, let L, be the »#-bit
all-1 vector, that is, { (2"-1,2" - 1)}, and let § be the same as S without ()" and 1 . thatis
§ =58- {0,, 1,} . We will construct an algebra from the set {ADD, SUBTRACT, MULTIPLY,

AND, OR, NOT, XOR} of module functions, and the set R st {0,,1 §Y of signal values, We

e
call this signal set R.; it has the property that it is closed for all of the above operations and R
appears as an output in ali functions, that is, R is propagated when the function is transparent.

Consider the function tables for AND, MULTIPLY, ADDISUBTRACTIXOR, and OR,
shown in Tables 4.4-4.7. These tables were constructed using the algebra extension techniques
developed above for (R 4, ADD). Note that when inputs are elements of R 4= {X,S,R,C}, Rdocs
not appear as an output in any of these tables. By adding §, R can be propagated through the
MULTIPLY function, since MULTIPLY( §, R ) = R. Similarly, I, is nceded to propagate R
through the AND function, and 0, is needed to propagate R through the OK function.

In each function in Tables 4.4-4.7, a subfunction consisting of four symbols is enclosed in
a box. In the function table for ADDISUBTRACT/XOR (Table 4.4) and the table for MULTIPLY
{Table 4.5), the behavior of the set R4 = {X, S, R, C} is exactly the same. Therefore, we can
implement a single module subfunction for 1?4 and {ADD,SUBTRACT.XORMULTIPLY}, and

construct module functions ADD, SUBTRACT, XOR, and MULTIPLY for R, by treating the cle-
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AND | X § R C|S o 1,
X X X X X|Xx o X
S x 8 c¢c c¢|s o 8§
R X € ¢ c|c o R
C X ¢ ¢ cflc o <cC
S X 8§ Cc C s o0 S
o, {o, o, o o o0 O O
L, x § R c s o 1

Table 4.4 Function table for the AND operation.

MULTIPLY f X § R C | s o 1,
X X X X X|x o X
§ X § R c¢|s o 8§
R X R C Cc{cCc o R
C X ¢ ¢ c|c o <C
S X 8§ € C s o, S
0, o, o 0 0 0 0 O
I, X § R Cc s o 1,

Table 4.5 Function table for the MULTIPLY operation.

ments of R, - Ry as special cascs. Similarly, since the behavior of R, in the tables for AND
(Tablc 4.6) and OR (Table 4.7) is the same, we can implement a single module function for R4 and
{AND,OR}, and construct module functions AND and OR for R, by treating the clements of
R, - k4 as special cases in cach function.

To implement the algebra R.,, we begin by encoding the clements of R, aswedid for R,
namely, X = 0000,, § = 1111,, R = 1101,, and C = 1100,. For R,, we encode the cle-
ments of the subset R, similarly, but add an extra O bit, thus: X = 00000,, § = 01111,

R = 01101,,and C = 01100, . For the clements of R, — R4, we st the most significant bit to 1.
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ADD | X § R C|S o 1,
X X X X X|[|x Xx X
§ X § R C|s 8§ s
R | X R C CfR R R
cC |{X ¢ c c|c C C
S X 8§ R € S s 8
o, | X § R C s o 1
l, X 8 R ¢ s 1, 8§

Table 4.6 Function table for the ADD, SUBTRACT, and XOR operations.

OR | x § R Cc|s o 1,
X X X X X|x x 1,
§ X s Cc c}|s 8§ i
R X CcC C c|c R 1
C X € ¢ c|c c 1,
S X § ¢Cc Cc 8 s 1,
0, x § R C s o0, 1,
1, L, 1, 1, 4, 1 1 1

Table 4.7 Function table for the OR operation,

We encode 1, asall |s, thatis, 1, = 111t1,, 0 as all Os except for the most significant bit, that
is, 0,, = 10000, . Finally, S is encoded as 10001,.

Algorithms for implementing {ADD,SUBTRACT.XORMULTIPLY} for R’4 and
{AND,OR} for R4 appear in Figure 4.8. As in the module function ADD for R, £, and 1, are the
encoded versions of the symbolic signal values, Sample algorithms for implementing the module
functions arc given in Figures 4.9 and 4,10, Figure 4.9 shows the module function for ADD, Eval-
uations functions for MULT and XOR are similar. Figure 4.10 shows the module function for AND.

The module function for OR is similar.
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1 {ADD,SUBTRACTXORMULTIPLY }(input t |, 1,: symbolic signal value)
2 A
3 im” = r1 A t2
4 if(t,,, ==R&&r vt, ==R)
5 I.cmr =G
6 return(f )
7}
1 {AND,ORY(input 1, 1, :symbolic signal value )
2|
3 if(r) ==R)t =C;
4 if(r, ==R)y1, =C;
5 ram = rl Ar2’.
6 return( £ );
7}
Figure 4,8. Algorithms for subfunctions {ADD,SUBTRACT.XORMULTIPLY} and
{AND,OR}.
1 ADDC( input 1|, t,:symbolic signal vaiue )
2 |
3 /* Convert 1,0, and S fo § and compute subfunction */
4 lf(t AlOOOO)fl =8;
5 elset =t; )
6 if(rzleOODO)rz’ =5;
7 clsery’ = 1,;
3
9 tu = {ADD.SUBTRACTXORMULTIPLY}(#,, £, )
10
11 I* Special cases ™!
12 if((t,,, ==S)&&(1HAS ==Slit,AS ==8))1  =8;
13
14 if (1, ==0)t, =1
i5 if(t, ==0)1¢,,, =15
16
17 if(r) ==1, &&t,==1)1  =8§;
18
19 return( s );
20 )

Figure 4.9. ADD module function for R.

ARTEST’s Error Value Set. Now let us analyze a similar sct of symbolic signal values used for
propagating crror information: the “typing” scheme given in [58] for the test generator ARTEST
that we discussed in Chapter II. The set of signal values used by ARTEST is summarized in

Table 4.8, which repeats Table 2.2. The functions associated with this set are not discussed in [58],
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Error signal Symbol Interpretation
X.X) X Unassigned
(X, V) CF Constant faulty
(X,U) VF Variable faulty
(V.X) CG Constant good
(V.V) C Constant good and gaulty
(V\V1) CGCFE Constant good and constant faulty eifcct
V,U) CGVF Constant good and variable faulty
v\u) CGVFE Constant good and variable faulty cffect

Table 4.8 The set of symbolic error signals or “types’ used in ARTEST [58].

1 AND( input t, t, :symbolic signal value )
2 A

3 * Convert 1,0, andS to S and compute subfunction */
4 if(t) ==8)1," = S;

5 elset,’ = 1¢.;

6 if(t, ==8)1,” = §;

7 else s, = t,;

8

9 1w = {ANDORY( 1" 1" )

10

11 return( Lot N

12}

Figure 4.10. AND module function for R,
and as mentioned carlier, are ad hoc.

Although the ARTEST type sct contains several more values than R, there are few prac-
tical differences in its ability to represent abstract valucs. ARTEST was designed to support fault
propagation [rom the output of a MUT, where the faulty value is not known, but is known to be
faulty (denoted U’). This technique is used by ARTEST to generate tests for datapath circuits. It is
assumed in [58] that datapaths arc controlled by control units which are tested by a scparate algo-
rithm. The interface between datapath and control circuits is assumed to be neither directly con-
trollable nor observable (e.g., by a scan chain). The control unit is tested by a conventional (low-

level) test gencration algorithm, and faults that are propagated to the interface are injected into the
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datapath circuit and propagated by the datapath test generation algorithm. The faulty values
injected in this way arc known, and are denoted V. Thus, test response data generated at the out-
put of a MUT is assigned type CGVFE and test response data injected from the control unit inter-
face is assigned type CGCFE.

Since there is no apparent difference between “unknown™ and “unassigned,” U is equiva-
lent to X. In this case, X and VF are cquivalent to X in R, and CG and CGVF arc equivalent to C
in R,. The type C in ARTEST is equivalent to S in R 4, and type CGVFE is equivalent to R in R .
Only ARTEST types CF and CGCFE are unique to ARTEST. Type CF is an unassigned fault site,
and its use is not clear. CGCFE is not an abstract value, rather it is a name given to the class of all
possible low-level faults. That is, CGCFE = { (v, v J.) }where v, # Ve In this case, knowledge
of both correct and faulty values is required for propagation through modules. Since each clement
of CGCEFE is not individually named, both correct and faulty values must be computed, implying
that the class is superfluous.

We conclude that the ARTEST type sct is roughly equivalent to R 4 in its ability to propa-
gate crror information. As we showed above, the level of abstraction represented by R, is
cxtremely pessimistic and is insufficient to propagate signals through many module functions, The
less abstract signal values added to R, arc nceded to propagate R through MULTIPLY, AND, and
OR. Since R is blocked for MULTIPLY, AND, and OR, propagation of CGVFE will likewise be
blocked for these module functions. To propagate R through these modules, ARTEST must per-
form a more detailed, low-level analysis for crror propagation; the method for this is not discussed

in [58].
4.3. Design for Transparency

In many circuits, error information is unavoidably lost as T, is propagated from the out-
put of the MUT to primary outputs. In this case, an alternate test package with a slightly different
responsc set can sometimes be used to test the MUT. Often however, the constraints imposed by
the propagation path block the alternatives as well. This is the case when only part of the function
computed by a subcircuit M is used in the larger circuit containing M. In Fltrdp (Figure 4.1), for

instance, truncate module M, is uscd to divide the output of module M| by two. When module
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Xo=in_ | mm————]|

Zp=sum[3..1]

——)

ADDER

Xp=in_2

Figure 4.11. Three-bit adder module with input data bus X[, as addend, input control bus X¢
as augend, and output data bus Zp = sum[3..1].

M, is the MUT, some test response errors are blocked by module M, regardless of which test
package we use. As discussed in Chapter 11, the faults producing crrors that cannot be propagated
arc redundant in these circuits, but since the test has been precomputed, we may not be able to sep-
arate detectable faults from redundant faults in T, . Therefore, we want to increase transparency to
improve testability. In this scction, we present some examples of how the propagation theory of
Chapter I1I can be applied to increase transparency.

One technique for designing circuits that can easily propagate 7, is to route test points to
primary outputs, perhaps through multiplexers [83]. Another technique is to usc a hierarchical
form of scan or boundary scan to ensure adequate observability [9]. These techniques lead to high
routing overhead and highly constrained design styles. Both approaches provide additional paths
for routing T,. An alicrative approach is to modify modules on the normal data paths of the cir-
cuit to make them morc transparcnt, that is, to synthesize transparent modules, Some examples of
places where specially designed transparent modules might be useful are: points of reconvergence
as in Fltrdp (module M) and Divfilt (modulc 8 in Figure 3.18), truncate modules, and decoders
and random logic modules where |X D| > IZD| :

Let M be a module with ]X DI > IZ D| . Then M cannot be designed to be 1-transparent, Our
method is to synthesize a module M’ to replace M, where M’ has two modes of operation: normal
mode, where M’ behaves as M, and test mode where M’ is k-transparent, Before discussing some
methods for synthesizing M, we consider modules that are naturally k-transparent. As discussed in
Section 3.4., the adder module in Figure 4.11 is transparent for the sequence S(X c) = [0, 1].
The combination of adder module M| in Fltrdp (Figure 4.1) with truncate module M, produces an

8-bit version of the adder similar to the 3-bit adder in Figure 4.11 (the lcast significant bit is trun-
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RECVZ

<i1> PROCR_25

MUXR_1 REGR_5

PROCR_26

ik RESRS <125 CONCAT  <12>FREAD
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REGR_4
<{1>
PROCR 14
~l% PROCR_12 | M
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PROCR_30
<125, FREAD

)
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Figure 4.12, Smalldp, a datapath subcircuit of Divfiit.

—F-z— in0
————
Xp 2 inl Ll e e — Zp

——1 in2 2

2 MUX
—_—fd in3

2 ctrl

+ 2
Xc

Figure 4.13. Pass-through multiplexer, an example of an optimal k-transparent module,

cated from the sum), It can easily be shown that this combination is also transparent for
S(X-) = [0, 1]. Now consider the subcircuit of Diviilt (Figure 3.18) shown in Figure 4.12. As
discussed in Section 3.4, the combination of modules M, and M, is 2! -transparent, therefore,
even in cases where a module is naturally &-transparent, the required control sequence length may
be impractical and modifications to improve transparency become attractive.

The multiplexer shown in Figure 4.13 is an example of a k-transparent module where £ is

D
transparent module since its only function is to propagate information on X, to Z,, |ZD| hits at a

X
always minimum, that is, k = P DI {sce Theorem 3.10), In a scnse, this module is an optimal k-
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time. We can use this module as a k-transparent replacement for truncate modules. In normal
mode, information is transferred {rom onc input, e.g. inQ, to Z,. In test mode, all inputs are
selected in sequence. We refer to a multiplexcer uscd as a k-transparent replacement for truncation
as a pass-through multiplexer. The pass-through multiplexer can be used in place of truncate mod-
ule M, to improve the transparency of Diviilt. In this case, test response errors can be propagated
through module Mg in 12 steps. This is a considerable reduction in test time compared with the
2 1 steps required to propagate through the subtracter and truncate module together using the nat-
ural k-transparency of the combination. However, the multiplexer requires 36, two-input gates,
causing a gatc count overhead of about 20% (there are about 148 gates in the original circuit).
Thus there is a time-space trade-off associated with k-transparent design.

Pass-through multiplexers provide an effective method for dealing with non-transparency
caused by truncate modules. However, we are also interested in systematic methods for modifying
arbitrary combinational modules. Recall from the discussion in Chapter HI that &-transparency is
determined for a module M by intersecting 4 transmission functions for M, each associated with a

different control value. If the resulting transmission function is congruent to zero, then M is k-

transparent. For example, for the adder in Figure 4.11,

T({0]) = {(G,1:0), (2,3:1), (4,5:2), (6,7;3) }

T([1]) = {(0:0}, (1,21), (3,42}, (5,6:3), (7:4)}

T({0,1]) = T([0]) nT([1]} = {(0:[0,01), (1;[0, 1), (2;11, 1]),
(3:01,2]), (412, 2]), (5:[2,3]), (6:13,3]), (7:[3,4]) } =0

The general procedure for synthesizing &-transparent replacement modules consists of the

following steps

1. Identify data bus ports X ;) and Z,, from the propagation paths of the circuit containing the
original module

2. Identify % transmission functions whose interscction is congruent to zero

3. Identify acontrol bus port X, in X - X, , and add onc bit to act as a switch to change from
normal modc 1o test mode

4. Assign control values to cach transmission function
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T; = {(0,6,0). (},2,4:1), (3,7:2), (5;3)}

T, = {(0,1,4,3,5;0), (6,2,7;1)}
Figure 4.14, Construction of orthogonal transmission function T,.

5. Synthesize the module
We want to minimize £, so each intersection should producc the maximum number of new blocks,

as discussed in the proof of Theorem 3.10. This requires a special sct of transmission functions,

Definition 4.1: Let T, and T2 be transmission functions for a module M with #r and n blocks,
respectively. Then 7 and T, arc orthogonal if there is no transmission function T, for M with m
blocks such that T3 N I!‘2 < Tl s Tz' and no transmission function T4 for M with n blocks such

that Tl M T4<T1 m Tz.

Note that it T, n T, =0, then 7| and T, arc also complements, but that they can be orthogonal
without being complements.

The transmission function associated with each control value for a pass-through multi-
plexer is orthogenal to the transmission function for the other control values. In addition, for any
transmission function T, we can easily construct an orthogonal transmission function T, with n
blocks by distributing the contents of each block of 7', among the n blocks of T, . For example, lct
T, = {(0,6:0), (1,2,4;1), (3.7:2), (5;3)}. Then we can crcatc a transmission function T, =
{(0,1,4,3,5;0), (6,2,7;1)} with two blocks as shown in Figurc 4.14. In this case, '1“1 NT, =
{(0;(0,03}, (1,4:(1,00), (2:(1. 1)), (3:(2,0)), (73(2,1)), (5;(3.01) }.

We intersect orthogonal transmission functions to design k-transparent modules with min-
imum control sequence length & The next thecorem formalizes the requirement, and follows

directly from the definition of orthogonality and the proof of Theorem 3.10.

Theorem 4.1z Let Ty > 0 be a transmission function for a nodule M with input data bus X pe input

control bus X ¢ and output data bus Zpy. Let T, Tps enns T, | beasct of transmission functions
A
such that TonT ... T, _ =0, Then k is mininunt if and only if for all i 2 1, T, has 2I ol

blocks and is orthogonal to Ty~ ... N T, _,.
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The sequence length & in Theorem 4.1 depends on the initial transmission function T,. If 7 is a

|2l

maximum-transparency transmission function with 2 blocks, then & is optimal. Otherwise, &

may be greater than H;QH » but will still be minimum for the given 7.
D

We have developed two specific methods for obtaining a set of £ orthogonal transmission

functions to make a module k-transparent: the orthogonal transmission function (OTF) mcthod

and the embedded multiplexer (EM) method. Using the OTF method, we first obtain an initial

transmission function 7, for a module M by identilying a “natural” transmission function for M

based on its normal function. Alternatively, we can sclect an arbitrary maximum-transparency

¥4
transmission function with 2' o

blocks. Orthogonal transmission functions are then constructed to
intersect with T as discussed above.

Figure 4.15 demonstrates how a module with a k-transparent test mode can be specified
for synthesis using the OTF method In this figure, we show a block symbol for a random logic
module decl. 1 together with a definition for the module written in the Verilog hardware descrip-
tion language. The module decl.] has a 6-bit data bus input ha (XD). a test mode input tm X
and a 3-bit data bus output ta (ZD ). The minimum control scquence length that can make decl. 1
transparent is 6/3 =2,

Module definitions of the kind in Figure 4.15 serve as input to a number of logic synthesis
programs that automatically construct gate-level models and map the gates and interconncctions to
a physical implementation. The input and output ports are specified at the top ef the HDL descrip-
tion (lines 3-5). The always statement beginning on line 8 specifies that this is a definition of a
combinational module. When the test mode input is 0, decl.1 exccutes its normal mode function.
This function is specificd by a transmission function in the form of a case statement in the Verilog
description (lines 10-19). Each line in thc case statement specifies a set of inputs at ha that pro-
duce a specific output at ta, that is, a block of the transmission function. For instance, the first
block specifies that ha inputs 1, 4, 10, 40, 42, 58, 59, and 61 preduce the ta output 0. When the test
mode input tm is 1, the medule exccutes an orthogonal transmission function. Note that every cle-
ment of a single block in the transmission function for the normal mode is in a diffcrent block in

the orthogonal transmission function. Only two transmission functions are required for transpar-

cncy, thus the lower bound is met for decl. 1.
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1 module decl.1 {tm, ha, 1a);

2 X

3 input [6:0] ha; ¢ l

4 input tm; I/O ports

5 output [2:0] ta; Xp tm Zp
6 regl2:0]ta;

7 ~———» ha decl 1 ta —r—
8 always begin @(ha) 6 ) 3

9 if (tm==0)

10 case (ha)

11 1,4,10,40,42,58,59,61: ta = 0; ~a—block

12 5,69,25,28,32,53,55: 1a= I;

13 2,11,19,31,38,57,39,43: ta = 2; . eqi :

14 8,15,30,37,49,50,51,56: ta = 3; 33’;:‘053‘;‘,‘,2‘?;,‘;““{,“£53°;0d9
15 13,29,33,34,48,44,45,4T: ta = 4;

16 3,12,14,16,20,21,22,35: ta = 5;

17 17,18,23,24,26,41,63,52: ta = §;

18 7.27,36,46,60,62,540: ta= 7,

19 cndcase
20 clseif (tm == 1)
21 case (ha)

22 1,5,2,8,13,3,17,7: ta= 0;

23 4,6,11,15,29,12,18,27: ta = 1;

24 10,9,19,30,33,14,23,36: ta = 2; Orthogonal transmission
25 40,25,31,37,34,16,24,46; ta = 3; function for test mode
26 42,28,38,49,48,20,26,60: ta = 4;

27 58,32,57,50,44.21,41,62: ta = 5;

28 59,53,39,51,45,22,63,54. ta = 6;

29 61,55,43,56,47,35,52,0: ta=T7;

30 cndcase

31

32 end

33

34 endmodule

Figure 4.15. Orthogonal transmission function (OTF) method applied to random logic block.

The second, EM, method combincs the deflinition of the normal function for a module M
with the definition of a pass-through multiplexer. This method is illustrated in Figure 4.16, where
we show the definition in Verilog and block symbol for the module dec1.2. The normal mode for
this module has the same function as dec1.1 shown in Figurc 4.15, but the &-transparent test mode
is implemented using the EM mcthod. This method requires an extra bit in X ¢ fordecl.2. The first
bit is the test mode switch tm as in decl.l. If tm is O, then the module implements the normal

mode function. If tm is 1, then the test mode is selected. If te is O, then bits 3 through 5 of ha are
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1  modute decl.2 (tm, tc, ha, ta);

2 Xc

3 input [6:0] ha;

4 input tm; I/O ports l l

5 input tc;

6 output [2:0] ta; Xp tm tc Z

7 reg(2:0]ta;

8 ——®1 ha ta [—F
_ 6 decl.2 3

9 always begin @(ha)

10 if(im==0)

11 case (ha)

12 1,4,10,40,42,58,59,61: ta=0;

13 5,6,9,25,28,32,53,55:1a=1;

14 2,11,19,31,38,57,39,43: ta= 2: Transmission function

15 8,15,30,37,49,50,51,56: ta = 3; representing normal mode

16 13,29,33,34,48,44,45,47: ta = 4;

17 3,12,14,16,20,21,22,35: ta= 5;

18 17,18,2324,26,41,63,52: ta=0;

19 7.27.36,46,60,62,54,0: ta=7;

20 endcase

21 clseif(tm==1)

22 begin Definition of pass-through

23 if (tc ==0) mf:itiptlcxer P ¢

24 ta = ha[5:3];

25 else if (tc == 1)

26 ta = haf2:0];

27 end

28

29 end

30

31 endmodule

Figure 4.16. Embedded multiplexer (EM) method applied to random logic block.

propagated to the output ta; if tc is 1, then bits 0 through 2 of ha are propagated to the output ta.
The if statement in lines 23-26 implements the pass-through muttiplexer.

Some synthesis results for decl.l and decl.2 are summarized in Table 4.9, together with
gate counts for the versions of the 11-bit ripple-carry subtracter used in Divfilt and discussed
above. Clearly, modifying a module to include a A-transparent test mode can significantly increase
its size. The Finesse automatic logic synthesis program {rom Cascade Design Automation [27] was
uscd to obtain the results for decl. 1 and decl.2 using the standard parameters of the program; no
cifort was made to minimize the overhead—we are only intercsted in the relative performance of

the OTF and EM methods. Note that the function performed in normal mode by decl.1 and decl.2
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Design Gate count Gate count
Module straf § inbasic | in modified
8y module module
11-bit ripple- ad hoc 55 91
carry subtracter
decl. i OTF 52 98
decl.2 EM 52 68

Table 4.9 Summary of synthesis results for k-transparcnt modules.

is a maximum transparency transmission function. We take advantage of this fact for decl. 1, so we
only add the function required to implement onc orthogonal transmission function. Despite this,
dect.l is considerably larger than decl.2, which uses a complcete pass-through multiplexer for the
test mode function. Apparently, for decl.1, few gates can be reused as part of the test mode func-
tion, thercfore, the EM method is better since the pass-through multiplexer is very efficient for
implementing 4-transparency. The OTF method may be better when more gates can be reused to
implement the orthogonal function. The two methods may also be combined; this has the potential
to improve overall efficiency.

In spitc of the fact that A-transparent replacement modules are often much larger than
unmoedificd modules, the overall increase in the size of a circuit that incorporates the modules can
be very low. Recall that the Smalldp datapath in Figure 4,12 is transparcnt from the primary input
RECV?2 to the inputs of module My, the OR gate, but that reconvergence at the OR gate blocks the
transparent path. In Figurc 4.17, we show a 2-transparent replacement module for the OR gate,
This module was designed by the OTF method. Here T2 acts as the test mode switch, and T1 tog-
gles between two orthogonal transmission functions. The &-transparent replacement module
increases the gate count of the entire circuit by only 2%.

Another application for orthogonal transmission functions is to construct partially trans-
parent modules. As discussed carlier, it may not be necessary to synthesize a completely transpar-
ent module in order to improve transparcney enough to allow propagation of specific response

functions. The synthesis of partially transparent modules is an important topic for further research.
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4.4, Summary

In this chapter, we analyzed the hicrarchical propagation of test package information. A
test stimulus sequence 7' is represented as a vector sequence and we want to propagate it symbol-
ically whenever possible (high-level propagation of stimulus signals), as in ParhPlan. In many
cascs, symbolic vecior sequences must be propagated as expressions representing the composition
of module functions in order to justily T';. To match symbolic expressions propagated to the input
of the MUT to components of 7, the cxpressions must be simplified to a canonical form. If test
package data cannot be propagated symbolically, the vectors that make up the vector sequences
can be propagated individually and matched numerically to the vectors in T (lower-level propa-
gation of stimulus signals).

Expressions propagated in a circuit represent functions. The functions applicd to the
inputs of the MUT arc called stimulus functions. The functions propagated from the output of the
MUT to some other point Z in a circuit are called response functions. In some cascs, response
functions can be analyzed symbolically to determine if all test response crrors are propagated.
However, when T, is only propagated along partially transparcnt paths, we must evaluate the

response functions for the sct of values, good and faulty, that can appear at the output of the MUT
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when 7T is successfully instantiated (low-level propagation of errors). The fully evaluated form of
these response funclions is considered to be a propagation function of the kind we discussed in
Chapter 1L If a response function P, is congruent to zero, then all pairs of values that can be gen-
crated by faults in the MUT are propagated—including all errors, If P, >0, then all errors may
still be propagated if the good value for timestep ¢ in T ¢ never occupics the same block in P,asa
faulty value for timestep 1, This requirement is calied the propagation condition,

Response functions can be represented symbolically and propagated using high-level
module functions (high-level propagation of crrors). We assigned symbolic type names to groups
of responsc functions. The same names are used for the corresponding sct of symbolic signal val-
ues that represent the information type propagated by the response functions. For example, the
type R represents all transparent and partiafly transparent response functions, and the correspond-
ing symbolic signal value R represents the sct of all possible discrepancies,

Since error propagation is blocked by non-transparent modules in some cases, we are
interested in methods for increasing transparency to improve testability. We have shown cxamples
of how this can be done by modifying modules to have a k-transparent test mode. We presented
two mcthods for modifying modules: the OTF method and the EM method. In the OTF method,
we identify orthogonal transmission functions whose intersection is congruent to zero and synthe-
size a module with a test mode that implements the orthogonal transmission functions, The EM
method adds the function of a pass-through muitiplexcer to the module function. The EM method is
more cflicient unless the orthogonal transmission functions can reuse most of the normal function
of the modute.

The techniques described in this chapter directly address the required modifications to
PathPlan discussed in Chapter 11. Propagation of symbolic cxpressions removes the T-mode
restriction of PathPlan. Analysis of response functions can be used to deal with circuits containing
an irregular bus structure. The propagation methods described in this chapter are implemented in

our test generation tools described in Chapter V.,



CHAPTER V
TEST GENERATION AND SIMULATION

This chapter describes the design of two new test-processing programs MATSim and
PathPlan2, (hat use precompuicd tests for modules. These toels extend ParhPlan and address its
limitations discussed in Chapter 11, but arc not based dircctly on it. MATSim is a novel simulator
that implements the test package propagation methods discussed in Chapter IV, PathPian2 is a test
generator that uses MATSim to propagalc signals.

The rclationship between MATSint and PathPlan2 is shown in Figure 5.1, PathPlan2 gen-
erates stimulus signals to apply to the primary inputs of a circuit to be tested. MATSim simulates a
circuit for a given set of inputs, gencrates reports on the circuit state, and analyzes crror propaga-
tion. It propagates test package information at multiple levels of abstraction. Vector sequences
used by MATSim as stimulus signals at the primary inputs, and response vector scquences propa-
gated by MATSim to primary outputs form a circuit test package, which can be converted to 2 stan-

dard test program by expanding vector sequences in a straightforward way.
5.1. Multiple-Abstraction Test Package Simulation

The Multiple-Abstraction Test Package Simulator (MATSim) is an event-driven simulator
similar to a fault simulator. It has two principle characteristics. First, it analyzes primary input
sequences to determine whether a given test package TP = (T:T),) is instantiated at the current
MUT, and whether a1l test response errors (7, Tp,,) arc propagated to a primary output, an activ-
ity we call test package simulation. Second, it is a “multiple-abstraction” simulator, which means

that cvenis from several diffcrent abstraction levels can be processed together. For example, at a
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Simulation report

Stimulus

Circuit
test package

Test program
Figure 5.1, Relationship of MATSim to PathPlan

particular time instance, the simulator may be processing signals consisting of symbolic cxpres-
sions, integers, and Boolean constants, 1t uscs the hierarchical error propagation analysis method
discussed in Chapter 1V to determine if all test response errors are successfully propagated to pri-
mary outputs and tabulates tcst coverage, that is, the number of test vectors successfully applied
from cach Tg, rather than fault coverage. Conventional fault simulators propagate crror signals,
but link the errors directly to faults rather than to successfully instantiated test packages.,

MATSim supports a variety of module primitives, including adders, multiplexers, and typ-
ical gate-level primitives such as AND, OR, and NOT. Gate-level modules may be word gates or
single-bit gates. Future versions of MATSim will support user-defined functional modules; how-
ever, all functions must be decompeosed into primitive functions, since the hierarchical signal value
scts, discussed in Chapter 1V, are designed for a fixed set of module functions.

Abstraction and hicrarchy have been used in fault simulation previously [77, 81, 89, 88].
The Multiple Abstraction Rule-Based Simulator (MARS) developed by Singh [89] propagates
fault-free signals at several levels of abstraction. Module functions are implemented by rules
storcd in a database. However, only gate-level error signals arc processed by MARS. The CHIEFS
concurrent, hicrarchical fault simulator [77] also uses separate functional and structural models for
each module in the structural hicrarchy, When the inputs to a module M in CHIEFS arc updated, a
functional model is used to produce new outputs for M. As in MARS, only gate-level crror signals
are processed. CHIEFS traverses the hicrarchy of structural models within M down to the gate

level to update fault lists. Other hierarchical fault simulators such as CHAMP are concerned with
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coverage of switch-level faults [81]. These fault simulators also do not process error signals more
abstract than those due to SSL faults. Finally, Lee has implemented an architectural-level fault
simulator ARSIM to speed up simulation for hicrarchical circuits with precomputed tests for mod-
ules [88]. However, ARSIM does not propagatc signals at multiple levels of abstraction. It propa-
gates the set of symbolic crror signal values discussed earlier for ARTEST [58], and relies on
lower-level fault simulators to analyze fault coverage when these symbolic signals are blocked by

non-transparcnt modulcs.
5.1.1 Dimensions of Abstraction

As we saw in Chapter 1, a large number of test generation tools use hicrarchy in an attecmpt
to speced up test generation. Each tool exploits a different view of circuit hicrarchy to gain perfor-
mancc advantages. However, hicrarchy and abstraction in circuit design, while widely used, are
poorly quantificd. There is no standard method for using hicrarchy in design, and therefore no
optimal way to exploit it in tcst generation. Although most modem CAD tools allow circuits struc-
turc to be captured hierarchically, not all tools support the use of behavioral models for higher-
level medules. In order to describe the hicrarchy of abstractions that MATSim can exploit, we have
developed a multidimensional view of the abstraction hierarchy relevant to test gencration. It is
illustrated in Figure 5.2 by a Y-chart similar to that used by Gajski [37] to define relevant dimen-
sions of abstraction in layout synthesis.

The three axes of the Y-chart arc labeled information, time, and function, Abstraction in
the information dimension ranges from bits to words to multi-word packets (vector sequences),
The time dimension ranges from gatc delays to clock cycles to instruction cycles. Finally, the third
dimension deals with the hicrarchy of functions. Consider a ripple-carry adder module. It is com-
posed of full adders, which in turn are composed of logic gates. The adder is itself only one com-
ponent of the datapath for a computer. The structural composition hicrarchy has a corresponding
functional composition hierarchy ranging from Boolean functions through arithmetic operations to
computer instructions, The functional hicrarchy defines the meaning of the signals being pro-
cessed. For instance, the adder module is designed to perform either signed or unsigned addition
on integers modulo a1 for some #. A single-bit AND gate performs the AND operation on Boolean

signals. The scarch for cifective methods of exploiting the functional hicrarchy motivates most
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Figure 5.2, Dimensions of hicrarchy and abstraction.

Abstraction
Dimension
Layer Information | Time | Function Example
Symbolic High High High Symbolic vector scquence
cxpressions, symbolic error signal
values
Vector Medium Medium | Medium Response functions
Bit Low Low Low Signals in classical test generators
and fault simulators

Table 5.1 Combinations of abstractions forming layers,

rescarch in hierarchical test generation.

Each axis can be divided into three ranges: low, medium, and high abstraction. We call a
point in this three-dimensional “abstraction space™ a layer. The three primary layers of interest in
this thesis are called symbolic, vector, and bit. For the symbolic layer, all dimensions are high
abstraction, for the vector layer, all dimensions are medium abstraction, and for the bit layer, all
dimensions are fow abstraction. These layers are depicted in Table 5.1. Intermediate layers can
also be defined that mix the abstractions in other ways, for instance single-bit signals (low-Icvel
information abstractior) can be propagated through large modules with very abstract models

(high-level function abstraction).



154

MATSim

L I

Generate Simulale Report
sitmulation events conllicls
report
Process Process
command multi-layer signal
cvents events

Figure 5.3, Structure of MATSim

MATSim assigns every signal to a layer. Two layers are currently implemented, symbolic
and vector, which implement the test package propagation methods discussed in Chapter IV, The
hierarchical crror propagation analysis method discussed in Chapter IV is implemented using two
layers. Fault-free test package data, including 7', T, and various control values for sensitizing
modules are propagated as symbolic expressions of vector sequences; they arc the symbolic-layer

signals. Symbolic signal values from the set R, = {X, 5, R, C, 0 $ } arc assumed by sym-

n’ lu'
bolic-layer signals. These signals are propagated along transparent single paths in the circuit
model. If crror propagation js blocked at the symbolic layer by non-transparent modules, all of the
individual vectors of the MUT’s rcsponse set are evaluated at the vector layer and propagated

numerically. We examine this two-layer hicrarchical technique for error propagation further below.
5.1.2 Structure of MATSim

MATSin has three functions as shown in Figure 5.3: to simulatc cvents, to report simula-
tion results, and to detect and respond to conflicts. MATSinr simulates events representing changes
in signals at multiple levels of abstraction as discussed above. Simulator commands to priat the
state of the circuit at a particular timestep or to stop at a particular timestep are also represented as
events, Since MATSim implements signal propagation for the test generator PathPlan2, it must

detect and respond to conilict. In test generation, once a signal has been assigned to a bus Z at time
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Figure 5.4, The Fltrdp datapath circuit

t, no other signal valuc can be assigned to Z at time £ on the same layer. Any other signal propa-
gated to Z denotes a conllict which, when detected, causes the test generator to backtrack.

Verilog Parser and Circuit Data Structure, MATSin reads circuit descriptions written in netlist
form using a stylized subset of the Verilog simulation language [91]. The netlist may be hicrarchi-
cal as discussed in Chapter I. An important feature of the netlists is that they are executable by a
standard Verilog digital simulator, so the results of MATSim can be correlated with results from
other simulators.

The Fltrdp circuit is shown again in Figure 5.4, where the modules have been assigned
symbolic namcs for use in a netlist. The Verilog netlist for Fltrdp is shown in Figure 5.5. The mod-
ule types addmod, freadl, ctc., refer to module definitions. MATSin uses modificd version of a cir-
cuit data structure (Netstruct) developed at Carncgic Mellon University for representing circuits
designed by high-level synthesis, The routines that access Netstruct, and the Verilog parser that
produces it arc part of the AutoCircuit synthesis tool [32].

The Verilog language was designed to describe both circuit structure and function, as well
as the simulation environment, including the stimulus vectors. However, the semantics of Verilog
do not support assignment of symbolic cxpressions. To support such expressions, MATSim rcads a
separate file containing a list of stimulus cvents with signals represented as symbolic expressions.

There is also a separale file for test package descriptions. The test package descriptions define the



156

module main{Clock,reset,inl,in2,in3,in4,frl,£fr2,fr3,ctrl,outly};

/77 class: Structure
/*{portclass: CLOCK}*/ input [0:0) Clock:
/*{portclass: ASYNC_CTRL}*/ input [0:0] reset;
/*{portclass: DATA}*/ inpput [7:0] inl;
/*{portclass: DATA}*/ input [7:0] in2;
/*{portclass: DATA}*/ input [7:0] in3;
/*{portclass: DATA}*/ input [7:0] ing;
/*{portclass: DATA}*/ input [7:0) frl:
/*{portclass: DATA}*/ input [7:0)] fr2;
/*{portclass: DATA}*/ input [7:0] fr3;
/*{portclass: DATA}*/ input [2:0] ctrl;
/*{portclass: DATA}*/ output [7:0] outl:;
/*{portclass: DATA}*/ wire [B:0] addlout;
/*{portclass: DATA}l*/ wire [8:0] addZourt:
/*{portclass: DATA}*/ wire [8:0] add3out;
/*{portclass: DATAl*/ wire [7:0] tlout;
/*{portclass: DATAl}*/ wire (7:0] t2out;
/*{portclass: DATA}*/ wire [7:0] t3out:
/*{portclass: DATA}*/ wire [0:0] tdout;
/*{portclass: DATA}*/ wire [7:0] muxlout;

addmod addl{ inl, in2, addlout, ctrl ):

freadl ti{ addlout, fr2, tlout, ctrl }):

addmod add2{ in3, tlout, add2cut, ctrl );

freadl t2( add2out, fr2, t2out, ctrl }:

addmod add3( t2out, in4, add3out, ctrl });

freadl t3( add3out, frl, t3out, ctrl ):

fread2 t4( add2out, £r3, t4out, ctrl );

muxmod muxl{ t2out, t3out, muxlout, tdout );

regr_1 regl{ muxlout, outl, ctrl, Clock, reset };
endmodule

Figure 5.5. Verilog netlist for Fltrdp (Figure 5.4).

symbaols used in the stimulus file, as well as provide the underlying test vector data,

Discrete-Event Simulator, MATSim is a discrete-event simulator and its overall structure is
shown in Figure 5.6. An event is an action which is scheduled to occur at a specific time instance ¢.
The action may be a command to the simulator, for instance to print the current state to a file.
However, the most common action is to assign a new signal v to a bus Z in the circuit at time ¢, so
the most common event may be expressed as a triple (v.Z,1). The bus Z is a primary input or output,
or an input or output of some module. MATSim labels cvents according to their source. Initial
events are produced by reading the file of stimulus events written by the user, or created by
PathPlan2. Signal assignments made as a result of initial events cannot be changed in the same
clock cycle. All other events are generated during simulation, and corresponding assignments can
be changed an arbitrary number of times unless they are marked as “frozen.” All signal valucs are

marked frozen at the end of a simulation pass (linc 9) in Figure 5.6. This is thc mechanism used by
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1 MATSim

2 {

3 current_time = init_time;

4 while (TRUE) {

5 result = process_events_at_current_time( current_time );
6 if (resuit == assignment_conflict)

7 return( assignnent_conflict );

8 il (result == quit || num_current_events == 0) {
9 freeze values;

10 return{ quit ),

11 }

12 current_tinte = current_time + timestep;

13 }

14}

Figure 5.6. Main routine for MATSim.

PathPlan2!MATSim to detect conflicts,

Events are scheduled by entering them into a timing wheel [2]. Anevent E = (v, Z, ¢)
inherits the layer assignment of v, In MATSim, the layer associated with £ determines the update
routine that handles it. The routine process_events_at_current_time retricves all of the cvents
scheduled for the current time and initiates the appropriate action for each, depending on event
type and laycr. If the event is not a command, process_events_at_current_time calls the layer-spe-
cific update routine. An update routine implements an event by assigning v to Z, cvaluating module
functions whose inputs arc connccted to Z, and scheduling new events produced by the evaluation
of module functions; it updates the state of the circuit,

A skeleton update routine is shown in Figure 5.7, Specialized versions of this routine exist
for each layer, The update method is based on the one-pass cvaluation strategy with suppression of
multiple signal changes scheduled for the same time [2]. As noted above, the routine implemcnts
the value changes specified by an event E = (v, Z, ¢) . First, it assigns the valuc v (dcnoted
event_value in Figure 5.7) to the bus Z (denoted event_bus in Figure 5.7). If another value has pre-
viously been assigned to the port and frozen, then there is a conflict. Let P13 Py «+0s Py be the sctof
module inputs (input ports) that arc connected to Z. If M is a module with input port p, (1<i<k),
then M’s module function is evaluated at the current layer. If the value of a module function
changes as a result of new inputs, then this change becomes a new cvent. Since real circuits com-

pute module functions after a finite delay &, the new cvent is scheduled for the future time instance
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1 update( input event, tine )

2 A

3 assign event_value to event_port;

4 if (there is a conflict) return( conflict );

5 for (every port fport on funout list of event_port) {

6 assign event_value 1o fport;

7 if (there is a conflict) return( conflict );

8 Jmod = module with port fport;

9 update_list = evaluare( finod, event_layer );

10 for (every event update_event in update_list) {

11 process update event according to layer;

12 if (update_event_value != update_event_Isv) {

13 update_event_time = update_event_delay + time;
14 if (update_event_time == update_event_ist)
15 cancel_scheduled_event( update_event );
16 schedule( update_event );

17 update_event_Isv = update_event_value;

18 update_event_Ist = update_event_time;

19 }

20 }

21 }

22 return( no_conflict );

23 }

Figure 5.7. Update routine.

!+ &. Each module function evaluation can producc multiple events since the module can have
multiple outputs and the MUT can produce crror propagation signals (discussed below) on two
layers in addition 1o T, the fault-free response of M to T. Each layer-specific update routine
handlcs the events returned from the module evaluation routine differently (line 11 in Figure 5.7).
However, cach update routine compares new signals to be scheduled to previous signals on the
same layer scheduled for the same bus. The new signal is only scheduled if it differs from the old.
If two events on the same layer are scheduled for the same port at the same time, then the most
recently scheduled event is kept and the other canceled.

MATSim currently supports a small sct of module primitives including; adders, multiplex-
ers, inverters, OR gates, AND gates, subtracters, bus-truncate modules, and bus-concatenate mod-
ules. This sct can easily be expanded to include other primitive modules such as RAMs, ROMs,
decoders, encoders, multiplicrs, and XOR gates. Each primitive module has an associated cvalua-

tion routine for the symbolic and vector layers.
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5.1.3 Simulation of Fault-Free Signals

In this subsection, we describe how MATSim processes fault-free signal components. All
fault-free signals ure symbolic cxpressions of vector sequences, and so are processed at the sym-
bolic layer. Because vector sequences are capable of representing signals from bits to multi-word
packets, cxpressions based on vector sequences can represent the full information hicrarchy. As
pointed cut in Chapter 1V, it is sometimes necessary 1o propagate the individual vectors of a vector
sequence numerically, for instance when symbolic expressions cannot be simplificd to match 7.
In MATSim, T can be propagated to the MUT using cither symbolic references to vector
sequences as in PatiPlan, or as individual vectors as in ARTEST. The individual vectors of T
and 7, arc also handled at the symbolic layer in the current version of MATSim. We discussed
symbolic cxpressions and how they are simplificd in Chapter IV. Here we give some additional
implementation dctails for MATSim.

Symbolic expressions can be considered as trees, where the root and interior nodes are
operators and the leaves are vector sequences. In MATSim, vector scquences are stored once, and
the leaves of cxpression trees contain pointers to the vector scquence data. Symbolic expressions
arc frequently divided by a constant, as a result of shifting by truncation, or by propagation
through a division circuit. As discussed in Chapter IV, division by a constant is represented by
multiplication by a rational cocificicnt. For simplicity therefore, all constants in MA7'Sim arc rep-
resented by rational numbers and implemented by integer pairs numerator/denominator. For exam-
ple, the constant O is represented by O/1, and | is rcpresented by 1/1. Symbolic expressions are
manipulated by well-known computer algebra technigues [54], so that they are always maintaincd
in exact and reduced form. Subtraction is implemented in MATSim as addition of a ncgative num-
ber. The sign of a vector sequence is associated with the numerator of its rational cocfficicnt.
Therefore, A—-B isrepresented as A+ (-1/1) B,

An cxample of the propagation of expressions through Flirdp is shown in Figure 5.8,
which repeats Figure 4.1. The symbolic test program shown in Figure 5.8 successfully instantiates
test package (A}, Aqi Ay + Aj) at the adder module add3. The cutput from MATSim when simulat-
ing this example is shown in Figure 5.9. The names of the buses are printed on the left hand side of

cach line, followed by the symbolic expression assigned to each bus as a fault-free signal value,
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Figure 5.8. Propagating a test package (Ts;Tp) through the Fltrdp datapath circuit
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Figure 5.9. Example of MATSint output of circuit state information; add3 is the MUT
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Expressions arc printed by MATSim in prefix notation, except for rational constants, which are
written in infix notation as discussed above. For example, A, + | on the line for bus main.in2 is
written as (+ (Al) (1/1}).

In Chapter IV we showed how symbolic expressions arc simplificd to a canonical form to
match them to 7g. MATSim simplifics expressions after cach medule function is evaluated. Since
symbolic expressions can contain both Boolcan and arithmetic operations, there are two algo-
rithms for simplifying them. The set of arithmetic simplification steps is;

Al. Distribute multiplication over addition, ¢.g., replace A (B + C) by AB + AC
A2, Apply the associative law to remove parentheses and reduce the number of tree levels

A3. Combine rational expressions forming coefficients or constants into a single rational

number
A4, Add like terms.
AS5. Eliminate unit coefficients.,
A6. Eliminate terms with zero coefficients
As discussed in Chapter IV, the key simplification steps for arithmetic expressions arc Al, A4, and
A0; the remaining simplifications steps are intermediate steps required in MATSim. After cxpand-
ing (step A1), for instance, expressions frequently have a tree form where the child Y of a node X is
the same as X. For cxample, let A+ 1 and B + 1 be inputs to an adder. The result at the output of
the adder is (A + 1) + (B + 2) . Each parenthesis implics a node in the expression tree. We reduce
the size of the tree by applying the associative rule so that (A + 1) + (B +2) becomes A+ B + 3.
The only Boolean simplification step currently implemented in MATSim is involution.
Even-length chains of the Boolcan NOT operation are ¢liminated, that is, NOT (NOT (X)) is
replaced by X. Both the Boolean and arithmetic simplification algorithms are applied recursively.
Each searches for subexpressions of the proper type to simplify. Arithmetic simplification steps
trecat Booclean operations as symbols, and vice versa. For cxample, the cxpression
(172} {(({(A+0) AB) +C) issimplifiedto (1/2) (AAB) + (1/2)C.
After simplifying an expression using the general techniques AI-A6, MATSim performs
some ad hoc context-specific checks to see if the expression can be simptificd further, For instance,
if an even (odd) expression is identified at a 1-bit port, it is simplified to 0 (1). An example of this

is shown in Figure 5.9. The input data to module t4 (t4.in1) is odd because (+ (* (2/1) (A1) (1/1))
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denotes 2x Al + 1, an odd number. Since t4 truncates all but the Ieast significant bit, the result is
I at the output of module t4 (t4.out).

To reduce memory overhead, expressions are reused as much as possible, When updating
a module, new expressions are constructed by creating a root node (an operator) and adding point-
ers to subexpressions representing the arguments. During simplification, various parts of an
expression £ arc copied and/or rearranged, so some parts of E arc pointers to copics generated
clsewhere, and some are unique to E. It is obvious that simplification rcarranges cxpressions, but it
frequently also results in the gencration of multiple copices of the expressions at the inputs. To see
why, consider the expression %(A + B) , created when A + B is propagated through a truncate
module which deletes the Ieast significant bit of a bus carrying A + B. As a prerequisite to further
simplification, this expression must be expanded. However, il A + B is modified, ports to which it
is assigned will be incorrect. Therefore, a new expression must be generated by copying A + B and
using it as the basis for modification. Uncontrolled processing of expressions uses memory rap-
idly. Therefore, MATSim implements extensive memory management routines to control the
growth of cxpression storage.
5.1.4 Error Propagation

In this scction, we discuss how MATSim propagaics error information hicrarchically at
two levels of abstraction, symbolic and vector. Response functions can be represented as symbolic
signal valucs (symbolic-layer signals) to analyze error propagation in circuits with transparent
propagation paths. On the other hand, in order to analyze crror propagation in irregular circuits, we
must cvaluate the response function from the output of the MUT to primary outputs for all possible
responses from the MUT (the response sct). MATSim propagates vector-layer signals for this anal-
ysis.

MATSim uses the sct of symbolic signal values R, = {X, S, R, C, 0 L. S} for sym-

"
bolic-layer error signal propagation. These are implemented cxactly as discussed in Chapter IV,
An cxample of their use appears in Figure 5.9. Error propagation signals are labeled “error compo-
nent” in this listing. Every fault-free symbolic expression has a comresponding symbolic-layer
*“error compenent,” cven signals propagated from primary inputs as stimulus or control signals.

These signals, main.inl, for example, have error component S or 0. The value R appears at the out-
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put of the MUT when T is successfully instantiated at the inputs tot the MUT. In Figure 5.9, mod-
ule add3 is the MUT. The test package objectives: Al assigned to add3.in1, and A2 assigned to
add3.in2 are satisfied by the assignment to primary inputs. Thus, the signal value at the output of
add3 is R, which is subscquently propagated to a primary output,

The processing of crror propagation signals at the symbolic layer is the default in
MATSim. A glabal switch determines when vector-layer processing should be used. This switch is
set by the test generator PathPlan2 when propagation is blocked at the symbolic layer, that is,
when R cannot be propagated along any path in the circuit from the current state. It can also be sct
manually when MATSim is used as a stand-alone simulator.

Error propagation at the vector-layer is analyzed by evaluating the response function for
the sct of vectors in the MUT’s response sct at the output of every module on a propagation path
from the output of the MUT to a primary output. This is implemented in MAT'Sim by propagating
response functions as complex signals representing propagation functions P = {(w;B,)},
1 <i < m, from the output of the MUT when 7T is successfully instantiated and vector-layer pro-
cessing is cnabled. A special data structure is used to represent the response functions, Let 2, T
I <j<n, be the (first-order) response set for jth test vector in test stimulus sequence T, and let
P Rj be the corresponding (first-order) response function at some point Z on the propagation path,
Each QRj has one correct value and onc or more faulty valucs. Recall from the discussion in
Chapter 1V that to determine if all errors are propagated, we must analyze cach P, ;10 determine
whether the correct value is in a different block from any faulty value, that is whether P, ; satisfics
the propagation condition.

MATSim combincs all the first order response functions P, 0 1 €j<n, into onc order-n
response function P, Each block of the composite response function P, has one current value
B, but several response subsets o, i
containing a block whosc current value is f3,. The index j is referred to as the timestep since it indi-

1 £j< n, onc for each first-order response function on Q,, j

cates which vector of T produces Q Rj* We also separate correct responses from faulty responses
for each timestep to facilitate analysis of the propagation condition, as we will show below,
The data structure for a single block is depicted in Figure 5.10. The current value B, of the

block appears in the box at the top. To the left of cach current vatue is a list of timesteps with cor-
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Figure 5.10. Data structure for one block of a response function.

rect MUT responses whose current value is B, and to the right is a similar list of timesteps with
faulty MUT responses whose current value is 3. Thus, cach a, Y is split between the pood timestep
list and the faulty timestep list. Each timesiep in the good and faulty lists contains a sct of
responses associated with the timestep. A complete response function is represented by a linked
list of these blocks.

In order to demonstrate the use of this data structure, we will examine a responsc {unction
for a two-input, 4-bit multiplexer, which we also used as an example in Chapter IV (Figure 5.11).
The set of first-order responsc scts for this module is as follows, with the correct response in cach
first-order response sct underlined.

Qp,, ={0,7,11,13,14,15}

Qp, ={0,1,2,48,15}

Qpy = Qpy

Q, =

R4 Rl

These lead to a combined order-4 response set of QR = {0,1,2,4,7,8,11,13,14,15}. The rcsponsc
function on QR at the output of the MUT is PR = {{0:0), (151}, (2;2), (4:4), (7. 1).(8;8), (11;11),
(13;13), (14;14), (15;15)}, The corresponding data structure for P, which is to be assigned to the

output of the MUT, is shown in Figure 5.12. Each block of ), is shown in a shorthand notation
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out

inl

D

MUX

ctrl

(a) Basic cell: two-input, single-bit multiplexer

in0[Q] in0 ul
MUX out out[0]
inl[0] i
[0] inl cirl
R
inO[ 1] in0 ul
MUX out out[1]
inl[1] H
[1] inl ctrl
[ W
in0[2] in0 u2
MUX out out[2]
inl|2 ;
2] inl ctrl
in0[3) in0 u3
MUX out out[3]
inl[4 i
4 inl ctrl
ctri

(b) Four basic cells combined to form a two-input, 4-bit multiplexer

Figure 5.11. Implementation of a two-input, 4-bit multiplexer.
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Figure 5.12. Response function data structure at output of MUT.
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ctrl
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Trunc{1..0) |

outputl

Trunc(3..2);

output2

Figure 5,13, Example circuit for propagation of response functions, a muitiplexer connected
to two complementary fanout modules,

that corresponds to Figure 5.10. The current value f3, for each block i is in a box at the top of Fig-

ure 3.12. To the left of each current valuc is the list of timesteps with correct responses (marked G

for good), to the right is the list of timesteps with faulty responses (marked F for faulty), Each box

in a timestep list has the form j:a,.j, where j is the timestep and o, is the list of MUT responsces

at j,

Now consider the propagation of £, through a circuit. Let the output of the two-input,

four-bit multiplexer be connected to two truncate modules in parallel, as shown in Figure 5.13.
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0 1 2
G F G F G F
2:0 1:0 1:13 1:14
3:0 2:48 2:1 2:2 4:7,15 4:11
5:8 3:4.8 3:1 3:2
40 413 414

Figure 5,14, Response function data structure at output! (Figure 5.13).

The response function for truncate module Trunc(1..0) is P, = {(0,4,8;0), (1,13;1}, (2,14;2},
(7,11,15;3)} and the response function for truncatc module Trunc(3..2) is Ppy = {(G,1,2;0),
(4,7;1), (8,11;2), (13,14,15;3)}. Computing the output of a module for response {unctions at the
module’s inputs is a two-step process. The first step is to compute the new current values for cach
block using the module function. The sccond step is to combine blocks whose new current valucs
are the same, These two steps implement the series connection operation discussed in Section 3.1,
The resulting response functions for buses outputl and output2 of the circuit in Figure 5.13 arc
shown in Figures 5.14 and 5,15, respectively. If response functions are incident on more than one
input of a module, then they are combined using the parallel connection operation discussed in
Section 3.1, before computing the output of the module.

Since module functions need only compute new current values for blocks, the cost of
propagating a vector-layer {evaluated) response function through a module is proportional to the
number of its blocks. Blocks are combined as they are propagated through non-transparent mod-
ules. Therefore, propagation performance at the vector layer increases as propagation paths
become less transparent. Consider propagation through a truncate module that removes one bit of
the input bus. The number of blocks can be reduced by as much as a half. Propagation of vector-
layer response functions is slowest along fully transparent paths, however these paths are easily
analyzed using symbolic-layer error propagation techniques.,

We take advantage of the response function data structurc given above to evaluate the
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Figure 5.15. Response function data structurc at output2 (Figure 5.13).

propagation condition, that is, the requircment that correct responses be separated {rom faulty
responses in i response function P,. The propagation condition is satisfied by P, if for each
block, there arc entries in only onc responsc list for each timestep. For example, we can casily see
that the propagation condition is not met for the response function shown in Figure 5.14, since
there arc entries (shown shaded) in both the pood and faulty timestep lists for block 3 at
timestep 1.

Propagation functions Py, 1 <i <k, can be propagated in parallel along k partially trans-
parcnt paths to primary outputs, These response functions are combined by MATSim using the
intersection  (parallel  connection) operation te create a  single response  {unction
Py = Pp #Pp 8. . 4P, for the set of primary outputs. In order to determine whether all errors
arc propagated, MATSim applics the propagation condition to 7. Similarly, MATSim can analyze
a sct of k response functions propagated sequentially through a k-transparent module or subcircuit.
Again, the set of response functions propagated to a primary output or sct of primary outputs over
multiple time instances are combined using the interscction operation and the resultant response
function analyzed for the propagation condition.

For cfficicncy, we have combined the procedure for analyzing the propagation condition
with intersection of propagation functions. The algorithm is shown in Figure 5.16. Let R be the set

of response functions to be analyzed. Response functions in R may be a set of response functions
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| analyze_propagation_condition( input R:set of response functions )

2 {

3 collision_list = & ; new_collision_list = D ;

4 for (all response functions Py, in R) {

5 for (each block B in PR‘.) {

6 for (each correct response timestep t . in good timestep list of B} {
7 for (each faulty response timestep t in

8 Saulty timestep list of B) {

9 if(t, ==1.){

10 response_list = faulty response list for 1.}

11 if (IF is in collision_list) {

12 getold_response_list for t. from collision_list;
13 response_list = response_list N old_response_list;
14 if (response_list # &)

15 add response_list to new_collision_list;

16 }

17 }

18 }

19 }

20 }

2] if (new_collision_list == @) return( SUCCESS ),

22 else {

23 empty collision_list;

24 collision_{ist = new_collision_list;

25 empty new_collision_list;

26 }

27 }

28 }

29 return{ FAILURE );

Figure 5.16. Algorithm for analyzing the propagation condition for a set of responsc functions.

propagated serially in time over a single bus, or a sct of response functions propagated to different
outputs, or both. For each block in cach response function P, in R, the algorithm analyze_propa-
gation_condition checks to sce if correct and faulty responses occupy the same timestep . If they
do, the propagation condition is not satisficd for P,, but it still may be for
Pp=Pp #Pp #. #Pp ot Ppyo= PPy 0 Py, . When correct and faulty responses
both occupy timestep ¢ in a block of one responsc function P, the list of faulty responses is
stored as a block associated with £ in a list called responsc_list in Figure 5.16. For example, if cor-
rect response O occupics timestep 2 with faulty responses 4 and 8, then response_list will contain

the pair (4.8) associated with timestep 2, denoted (2:(4,8)).

Non-cmpty responsc_Llists created by analyzing a sct of response functions for the propa-
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gation condition arc stored according to timestep in a list called collision_list in Figure 5.16. For
¢xample, suppose response_lists (2:(4,8)) and (2:(5,7)) are created by analyzing response func-
tions P, and P, respectively. Each is added to collision_list, which then contains a list of pairs
associated with timestep 2, denoted (2:(4,8), (5,7)). When a sct of blocks associated with a partic-
ular timestep is retrieved from collision_list, it is referred to as old_responsc_list in Figure 5.16, In
step 13 of analyze_propagation_condition, when it is determined that the propagation condition
has not been met at timestep ¢, an old_response_list associated with timestep ¢ in collision_list is
retricved. It is intersected block by block with the current response_list. If there are no clements in
common, then all discrepancies associated with timestep 7 are distinguished, otherwise, the inter-
scction is added to new_collision_list to be compared with another response function. If, after
cxamining cach response function in R, new_collision_list is empty, then all crrors are propa-
gated, otherwise new_collision_list becomes collision_list,

The procedure analyze_propagation_condition follows the propagation function intersec-
tion operation, but only lists of faulty responses are actually intersected. Given an ordered list of
response functions, the procedure terminates successfully when the shortest scquence of intersec-
tions is determinced to be sufficiently transparent to satisly the propagation condition. All response
functions must be intersceied to prove that the sequence is not sufficiently transparent.

As an cxample of how analyze_propagation_condition works, let R = { Puis Prats
where P2, is the response function in Figure 5.14, and P, is the response function in Figure
5.15. After processing Py, collision_list contains {(2:(4,8)), (3:(4.8)), (1:(11)), (4:(11))} sincc
faulty values 4 and 8 conflict with correct value O in timesteps 2 and 3 of block 1, and faulty valuc
11 conflicts with comrect value 15 in timesteps 1 and 4 of block 3. Next, the procedure processes
P ., . In this case, correct response O conflicts with faulty responses 1 and 2 in timesteps 2 and 3 of
block 1. Intersecting these blocks with carresponding blocks in the collision_list results in the
empty set, so no blocks are added to a new_collision_list. Continuing in this way, we sce that all
intersections result in the null set, so new_collision_list is empty at linc 21 and analyze_propaga-
tion_condition returns SUCCESS; all errors are propagated.

Next we consider the complexity of analyze_propagation_condition. Let IR the number

of response functions in R and V be the number of test vectors (timesteps) in stimulus scguence
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T,. The maximum number of blocks that a rcsponsc function can have depends on the width
W, . Of the largest bus in the circuit; in the worst case, every response function in R will have
2w'"" blocks. Amortized over all blocks, the number of timesteps to analyze in any particular
block is 0( v/ 2W"""]. In the worst casc, the size of Q,, is O(QW'""J. so the worst-case cost of
the intersection operation is O(Zw’"‘"). This implies that as the problem size grows in terms of R,

W, ..+ and V, the worst-case complexity of analyze_propagation_condition is

o o0 (2" )Y (2]) « o "~y

As noted in Chapter 1V, for many modules, the size of Q,, is O (V) , not O(ZW”"J, therefore we
¢xpect the average-case complexity to be O[ |R| sz. Finally, in the optimal case, no intersections
arc required, and propagation is determined by the first response function in R to be analyzed.
However, all blocks and timesteps in the first response function must still be cxamined by any
algorithm analyzing the propagation condition. Therefore, the lower bound complexity of the
problem of analyzing the propagation condition for a set of response functions R is Q (V) . If any
of the response functions in R is congruent to zero, then the propagation condition is met without
cxecuting analyze_propagation_condition.
5.1.5 Summary of MATSim

Let M be a MUT and lct TPl = (TS;TR) be a test package for M. MATSin can determine
whether all errors that can be produced by M are propagated to primary outputs, MAT Sim needs no
structural model for M, and TP, can be based on any appropriate fault model, It can calculate fault
coverage if the faults that cause cach faulty vector in the response set for M are provided. Conven-
tional fault simulators on the other hand require more detailed structural models for modules and
explicit fault models, As discussed in Chapter 11, for many modules, e.g., embedded RAMs, the
us¢ of precomputed tests is not only appropriate, but necessary, The propagation of precomputed
tests for embedded RAMSs can casily be analyzed by MATSim, but not by conventional fault simu-
lators.

MATSim propagates test package information hierarchically at the symbolic and vector
layers. Symbolic-layer propagation is significantly faster than the bit-Iayer methods used by stan-
dard (gatc-level) fault simulators, since far fewer module evaluations arc neceded on any path

through the circuit. Moduics with precompuled tests are usually connected by multi-bit bus struc-
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tures that arc well-suited for the symbolic-layer signal abstraction supported by MATSim. Since
high-level functional circuit behavior is rcadily apparent to the designer, symbolic test programs
can often be casily gencrated for these circuits manually, or by the combination of manual and
automated methods used by ParhPian2 (discussed below).

MATSim implements propagation of symbolic expressions, response functions, and hicrar-
chical error signal valucs within the framework of a conventional event-driven simulator, Some or
all of the features discussed above can therefore be added to existing commercial or experimental
simulators. MATSim accepts both combinational and sequential circuits described in the conven-
tional HDL Verilog, which is also accepted by several commercial fault simulators,

However, only a small number of primitive modules are currently implemented by
MATSim. More primitives can be added, but a gencral method for modeling large modules such as
micropracessors is needed for MATSim. The models must implement the module functions that
propagatc symbolic error signals as discussed in Chapter IV. These module functions can be diffi-
cult to construct for arbitrary modules. However, functional models for arbitrary modules can be
implemented by decomposing the modules into dataflow graphs of primitives. This method is
already used in the AutoCircuit Verilog parser [32] which MATSim employs, so MATSim can be

modified to include the capability.
5.2. PathPlan2

The ParhPlan2 test generation algorithm is the successor to our original test gencrator
PathPlan. 1t implements the cxtensions to PathPlan that we identificd in Chapter IT and uscs
MATSim to propagate signals. In this section, we discuss the overall design of PathPlan2, the use
of test packages, the test genceration algorithm, and some experimental results,

5.2,1 Design Philosophy

PathPlan? is intended to propagate gencrate tests for circuits by propagating test packages
(TiTp) for modules at two levels of abstraction: symbolic and vector, The primary emphasis is
on symbolic-layer propagation of fault-free signals such as T and T, as expressions, and hierar-
chical propagation of test response crrors at the symbolic and vector layers, It uses a test genera-

tion algorithm with forward-only signal propagation similar to PODEM [40]. Like PODEM, the
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Figure 5.17. Bus assignment cxample

basic structure of ParhPlan2 is simple: gencrate new objectives, that is, internal signal values to be
justificd, relate the new objectives to the primary inputs, and perform forward implication (simula-
tion) using MATSin1. Objectives in PathPlan2 are T, and control signals for modules on the prop-
agation path. PathPlan2 relates new objectives on module ports in the circuit to primary inputs by
topological backtrace from the site of the objective to some primary input. All of these tasks arc
greatly complicated compared to gate-level test gencrators such as PODEM due to PathPlan2’s
usc of high-level functional modules and symbolic data.
5.2,2 Test Packages in PathPlan2

As in PathPlan, every module M in the circuit has two types of test packages. The fault
test package (FTP) contains prccomputed tests for M and propagation test packages (PTPs) arc
used to determine values for signal propagation and arc associated with all modules other than the
MUT. Test packages for PathPlan2 arc similar in format to those used by PathPlan. Variables are
unified with values to be propagated, and vector sequences must be matched exactly to the current
circuit state using the instantiation procedure discussed in Chapter I1. For example, an FTP for the
multiplexer shown in Figure 5.17 might be

(TgTe) = ([{A,d), (d,ADY, [0, 11:(d, d))

where the o’s arc don’t care values. ParhPlan? uses the values in this test package that are not
don’t carcs as objectives for the corresponding bus.

When propagating the test responsc 7', Pathplan2 does not use PTPs to compute or assign
module output values as in PathPlan. Instead, module output signals are computed using simula-

tion by MATSin. Module inputs determined by instantiation provide objectives for PathPlan2.
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The PTP ( (a, d), 0;d) for the multiplexer in Figure 5.17 specifics that T, is to be propagated
from input in0 (X, ), and that 0 is an objective for ctrl.

PTPs are also used by the backtrace procedure to transfer objectives from module outputs
to module inputs. Suppoese that the objective A; (component of 7} is to be transferred from the
output of the multiplexer in Figure 5.17 to input in0 on a path from the MUT to a primary input.
The PTP 7P, = ((o, d), 0;0) can be used to transfer this objective. First, A ; 1s assigned to the
variable o throughout the test package using unification as discussed in Chapter II. Then all the
inputs specified in T, become new objectives for PathPlan2 to satisfy. Note that in contrast to
Pathf’lan, during backtracing no signal values are actually assigned to buses except at primary
inputs.

5.2.3 Test Generation Algorithm

Figure 5.18 describes PathPlan2’s procedure for testing a moduie M. The goal of this pro-
cedure is to propagate precomputed test stimuli to a module M and to propagate all errors pro-
duced by M to a primary output. Stimulus and responsc scquences are stored in a test package
(TTy) . The assignment of a symbolic vector sequence componcent v, of the stimulus sequence
T to acorresponding a input bus & of M represents an objective that PathPian2 attempts to satisly
by making assignments to primary inputs and propagating them using MATSim. The assighment of
symbolic vector sequences as control signals to sensitize modules to propagatc 7, arc similarly
treated as objectives by PathPlan2. Success is achieved when these objectives arc met and when
crror propagation signals that contain all errors in M’s response set rcach primary outputs,
PathiPlan2 terminates unsuccessfully if the components of T cannot be propagated to M, or if the
error information in the error propagation signals cannot be propagated to primary outputs.

The algorithm works at two levels of abstraction, the symbolic layer and the vector layer,
corresponding to the two levels of abstraction currently supported by MATSim. As noted, MATSim
currently treats all fault-free signals, including individual vectors as symbolic-layer signals. The
FTPs used by PathPlan2 describe the format for the components of 7. If an individual compo-
nent v, is a symbolic reference to a vector sequence, then PathPlan2 will propagate expressions
using MATSim. If v, is a single vector, then PathPlan2 will propagate vectors at this same leved of

abstraction. However, MATSim uscs the same symbolic-layer update routines to propagate the sig-
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1 test_onc_module

2 A

3 error_propagation_layer = symbolic

4 perform initial implication;

5 if (successful) return( SUCCESS ),

6 while (TRUE) {

7 if (there are more objectives) {

8 get new objective (k,v,) |

9 (Jj» v;} = backtrace( (k,v}) ),

10 push( PI_stack, (j, vj) )

11 imply forward;

12 if (successful) return( SUCCESS ),

13 } else if (PI_stack empty)

14 return{ FAILURE };

15 if (symbolic-layer error propagation is blocked) {
16 error_propagation_layer = vector;

17 imply forward,;

18 if (successful) veturn{ SUCCESS ),

19 }

20 while (rest is not possibie) {

21 error_propagation_laysr = symbolic;

22 (v j) = pop( PI_stack ),

23 imply forward,

24 if (there is an untried alternative vj’) {
25 v,o= .t

26 pjush( ﬂ]_stack, A vJ.) IN

27 imply forward;

28 if (successful} return( SUCCESS );
29 } else if (PI_stack empty)

30 return{ FAILURE ;

31 if (symbolic-layer error propagation is blocked) {
32 error_propagation_layer = vector,
33 imply forward;

34 if (successful) return( SUCCESS ),
35 }

36 }

37 }

38 return( FAILURE );

9 3

Figure 5.18. The main PathPlan2 algorithm

nals; the vectors are treated as trivial cxpressions.
When T is successfully matched at the inputs to the MUT, ParhPlan2 initiates error
propagation in parallel with the propagation of fault-free signals. It automatically controls the

abstraction level for error propagation. It tries first to propagate symbolic error signal values from
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the set R (symbolic-layer signals). If propagation is blocked along all paths 1o a primary output,
then PathPlan2 automatically switches to the vector layer and attcmpts to propagaie crrors by
cvaluating response functions using the same circuit state previously used to propagate signals at
the symbolic layer.

We now cxamine the test gencration procedure of Figure 5.18 in more detail. PathPlan2
gencrates (bus, value) pairs (&, v,) as objectives and uses a backtrace procedurc to assign v, loa
primary input (PI). The initial assignment is saved on a stack PI_stack and forward implication is
performed using symbolic-layer error propagation. If forward implication is successful, the algo-
rithm tecrminates successfully. Otherwise, the algorithm switches to the vector layer for crror prop-
agation. If a test is not possible, alternatives are tried for cach PI assignment in the stack. Note that
there may be many alternatives for each PI, whereas there are just two in PODEM. The algorithm
terminates unsuccessfully when all possible alternatives have been tried for cach element in the
stack. The test for success in symbolic-layer error propagation in lines 12 and 28 is simply a check
to sce if the symbolic error signal value propagated to a primary output (PO) is R € R, . The test
for success in the case of vector-layer crror propagation (lines 18 and 34 of Figure 5.18) uscs
analyze_propagation_condition (Figure 5.16). Let the test frontier be defined as the set of lines
carrying error propagation signals incident on modules whose output is unassigned. The state of a
circuit determined by PathPlan2 during a test generation pass, but before it terminates success-
fully, js called a partial test. For any partial test, propagation is blocked (line 15) at the symbolic
layer when the test frontier is empty. Propagation may still succced at the vector layer if there has
been no conflict.

When generating new objectives (line 8 in Figure 5.18), PathPlan2 attempts first to satis{y
the requirements of the MUT. When the input stimulus sequence has been matched at the inputs to
the MUT and a test response 7', has been produced at the outputs of the MUT, PathPlan2 gener-
ates objectives for propagating T, using PTPs. PathPlan2 selects a module M on the test fronticr
and searches the PTPs for M to determine a relevant input control port X . and value V (X o) that
will make M transparent for 7, on input data port X, .

PathPlan2 initiates backtracking (discussed below) at line 20 when a test is not possible

given the current state of the circuit, that is, when



177

1. Propagation is blocked at the vector layer, implying that error propagation on both the
symbolic and vector layers have been tried unsuccessfully

2. There is a conflict, implying that two different values are scheduled to be assigned to the
same bus at the same fayer

3. 'The inputs to the MUT have all been assigned, but do not match 7

4. A ncw objective cannot be gencrated
Propagation is blocked at the vector layer when analysis of the response functions at the test fron-
tier using analyze_propagation_condition shows that all errors are not propagated. To determine
conflict, MATSint checks for frozen values. The majority of assignments to the MUT arc not tests,
in contrast to the typical gate-level case. Therefore, if all of the MUT inputs have been assigned,
but the values are not in 7'¢, then a test is not possible from the current state, and backtracking
must be initiated. Finally, ParhPlan2 backtracks when, given the current partial test, no test pack-
ages for any moduic can be applied to obtain a new objective.

To backtrack, PathPlan2 returns to a previous decision point by popping the old alterna-
tive off PI_stack and gencrating a ncw alternative. The algorithm returns to the symbelic layer to
attcmpt crror propagation. It may switch again to the vector layer again to complete propagation if
the symbolic error signal R cannot be propagated through any module at the test {rontier. Although
it is casy to generate all possible alternatives for a vector, there is no unambiguous alternative for
arbitrary symbolic expressions. Therefore, alternatives arc not tried exhaustively for symbolic
cxpressions. Instead, PathPlan2 associates strategics for generating altermatives directly with the
test package component v, of the objective (k, v) that is backtraced to the primary input. Exam-
ples of such strategics include: increment, decrement, and multiply-by-two. For instance, if the
most recently assigned Pl is inl and has signal valuc A, and the alternate gencration strategy is
increment, then on backtrack, the new assignment is A+1. Backtrack termination strategies also
include placing limits on the number of backtracks.

The algorithm fest_one_module discussed above generates tests for acyclic combinational
circuits or circuits with full scan. We now outline how PathPlan2 can be extended to handle
sequential circuits with fecdback loops. The values assigned to ports of the circuit model become
arrays of values indexed by time. These arrays are allocated in fixed-sized blocks. The extended

version of PathPlan2 searches for a test generation solution in time and space up to the limits ol
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1 seq_test_one_module

2

3 initialize max_span, 1, and max_time;

4 do {

5 allocate value arrays of size max_span;

6 if (test_one_module() == SUCCESS) return( SUCCESS );
7 increnient max_span, 1y, max_time;

8 } while (max_span <= SPAN_LIMIT);

9 return{ FAILURE );

10}

Figure 5.19. Top level algorithm for sequential test generation,

these arrays. New larger arrays are dynamically allocated to continue the search, The top-level
algorithm is given in Figure 5.19. The variable max_span controls the size of the value arrays. The
variable 7, is the timestep in which the test is instantiated, nominally in the center of the value
array. The variable max_time, is the maximum timestep for cither propagation or backtrace.

One difficulty in sequential test generation using precomputed tests for modules, is the
propagation of error signals through the MUT in timeframes other than ¢, The symbolic crror sig-
nal R cannot be propagated through the MUT since we cannot be certain that error information is
not masked. To analyze crror propagation using response functions, multiple versions of responsc
functions are nceded, onc for each fault in the MUT, as discussed in Chapter 1V, The propagation
condition must be analyzed for all of these response functions, which complicates the analysis by a
factor proportional to the number of faults in the MUT. In addition, a detailed fault model is
neceded for the MUT, which may not always be available.

The ability to gencrate tests for sequential circuits is an important requirement of commer-
cial test generators, since most practical circuits have memory elements and feedback. The two
extensions to the basic PathPlan2 algorithm discussed above can be added to convert PathPlan2
to a sequential circuit test gencrator. However, our main objective in implementing the current ver-
sion of PathPlan2 is to demonstrate new signal propagation and analysis techniques, based on our
propagation theory, that allow preccomputed test packages to be propagated in circuits with com-

plex bus structurcs.
5.2.4 Example

Next we present an example of how PathPlan2 generates a test for a module, We use the
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Figure 5.20. Module add3 in Fltrdp to be tested by Parh?lan?.

version of Flirdp shown in Figure 5.20. The MUT is add3, and the FTP we want instantiate is 7P|
= (A, A,; d). In the following, to demonstrate signal assignment we use the statement Z := v to
indicate that value v has been assigned to bus Z, As before, the statement V{Z) = v indicates that the
value v has been propagated to bus Z.

To instantiatc TP, PathPlan2 begins by backtracing objcctives to the nearest primary
input (lines 811 in Figure 5.18) and simulating using MATSim. Therefore, it makes the assign-
ment ing ;= A2 first, This satisfics the objective specified in TP] , namely, V(add3.in2) = Az. Next
ParhPlan2 wansfers the objective V(add3.inl) = 4, to the other primary inputs. Recall that PTPs
arc used in determining how objectives arc transferred from module outputs to module inputs dur-
ing backtrace. For modules t] and (2 we use the PTP TP2 = (20t; o}, where o is a variable. In
other words, to obtain a particular value v at the output of a truncatc module such as t, the input
should be 2v. For modules add and add2, we use the PTP TP, = (q, a; 2a), where again, o is a
variable. In other words, for a particular value v, to obtain a output of 2v, v must be applied to both
inputs, Using these PTPs, we find PathPlan2 makes the assignments in3 := A, in2 1= A,
inl := A, in this order.

With these assignments, 77, is successfully instantiated, and mux1.ctrl = 0 because the
least significant bit of an even number is 0. Since PathPlan2 begins by processing crror signals at
the symbolic layer, the error signal at the output of add3 is R. However, the error signal cannot be

propagated through mux1 with the circuit in this state. Switching error processing to the vector

layer (lines 15-18 in Figure 5.18) does not help since mux1.inl is disabled; the transmission func-
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Figure 5.21. MUT connected to Fltrdp tested by PathPlan2.

tion of mux1 is 1. Therefore, ParhPlan2 backtracks (lines 21-23) by choosing an alternative for
the most recent assignment inl := A, . We assume here that the backirack strategy associated with
cach value is increment, so the new assignment to inl is A + 1. The output of addl becomes
2A, + 1, but the output of the truncate module t1 is A which also fails. When Pat/Plan2 back-
tracks a second time however, we obtain inl i= A, + 2, and the output of add1 is 24, +2, which
becomes A + 1 at the output of t1. This results in 7P, being successfully instantiated and also in
V(muxl.ctrl) = 1, which propagates R to the primary output. The final symbolic test program is

inli=4,+2

in2:=4,

in3:= A4,

ind:=A,

V(outl) =Al + A,

Recall (Section 2.5.) that PathPlan cannot generate a test for add3 because it cannot propagate
arbitrary symbolic expressions.

Next, we show how PathPlan2 switches layers to complete crror signal propagation when
propagation is blocked at the symbolic layer. Consider the new version of Flirdp in Figure 5.21. In
this version, an arbitrary MUT is connected to add2, We assume that the FTP for this module is
TP =(A,, A, A4), and that the test has two test vectors with ficst-order response sets a1 = 0,
1} and ka = {3, 6} respectively. We also assume that the correct value in 'Qm is 0 and the cor-
rect value in Qp, is 5.

To generate a test, PathPlan? first tries to instantiate 77, . Since the MUT is connccted
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directly to primary inputs, PathPlan2 immediately makes the assignments in3_1 = A, and
in3_2:=A,. The FTP TP, is instantiated and the symbolic-layer crror value R is produced at the
output of the MUT. To propagate the test response through add2, PathPlan2 uses the PTP (a., O;
ot ), which results in the assignments in2 ;= 0 and inl := 0 after backtrace. At this point, the test
frontier consists of the inputs to truncate modules t2 and t4. Since R cannot be propagated through
truncatc modules, propagation is blocked.

Next, PathPlan2 switches to the vector layer, The response function at the output of the
MUT is i’R = {(0;0}, (1, 1), (5;5), (6;6)}, which is propagated to muxl.ctrl and mux L.in0O. In order
to propagate this response through muxl, PathPlan2 uses the PTP (a,, a,, o, + 1), where o,
and ., are variables. This test package specifics that redundant crror information can be propa-
gated through all inputs of the multiplexer simultancously as long as the two data inputs differ—in
this case, they are made different by adding 1 to the value at port inl. Aftcr backtrace, PathPlan2
makes the assignment ind := [, The final symbolic test program is

int:=0

in2:=0

in3_1:=4,

in3_2 = A2

ind =1

Vioutl) = MUX (A, A3/2,A5/2+ 1)

Recall that ARTEST [58] cannot propagatc error information through circuits with irrcgular buses
of the kind illustrated by Fltrdp in Figure 5.21.
5.2,5 Summary of PathPlan2

PathPlan2 automates the generation of test programs that cmploy precomputed tests and
scveral levels of abstraction. It can generate either symbolic or vector-Ievel test programs depend-
ing on the abstraction level in the test packages used. Since Parhi?lan2 uscs a test generation algo-
rithm similar to PODEM that only makes assignments 1o primary inputs, it nceds no implication
procedure other than MATSint,

In addition, PathPlan2 is unique as a test gencration algorithm making assignments only
to primary inputs, in that it supports symbolic-layer signal assignments and backtracking.

PathPlan2 uses a variety of alternative-gencrating strategics associated with each primary input as
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discussed above in order to backirack. In addition, PathPian2 uscs PTPs during backtracc to trans-
fer some functional constraints and requircments to primary inputs. For instance, in the Fltrdp
example (Figure 5.21), we showed how PathPlan2 transferred an objective of 24 at the output of
an adder to A; on both inputs to the adder using PTPs, ParhPlan2 cannot currcntly take into
account conflicting constraints from different paths, although this capability can be added.

The current version of PathPlan2 also does not implecment the sequential circuit test gen-
cration algorithm discussed above. The ability to generate tests for sequential circuits is important,
and future versions of PathPlan2 will include this feature. However, as mentioned, the objective
here is to demonstrate that ParhPlan2 can gencrate tests for circuits with distributed partially
transparcnt paths, since this is a key limitation of ParhiPlan, ARTEST, and all other previously
reported hierarchical test generation methods using precomputed tests. We demonstrated above
how PathPlan2 propagates precomputed tcst responsces on partially transparent paths in Fltrdp. We
will discuss further examples below.

5.2.6 Experimental Results

PathPlan2 and MATSim arc implemented in C and C++. Together with the Verilog parser
and rclated library functions, they contain roughly 30K lines of code. Here we report the results of
using ParhPlan2 to generate tests for some medium-sized datapath circuits. The objective of this
cxperiment is to further demonstrate the ability of PathPlan2 to gencrate tests for circuits with dis-
tributcd partially transparent paths, and to compare the performance of ParhiPlan2 to the perfor-
mance of PathPiagn for the circuits that ParhPlan can also handle. Since ParhPlan2 is a more
complicated program than ParhPlan—it is designed to generate tests for more general types of cir-
cuits—it might be expected that ParhPlan is more cfficient for the smaller domain of circuits that
it handles. However, we have found that the performance of the two programs is similar,

The experimental results are shown in Table 5.2, CPU time measurements were taken on
an Sun 4 workstation with 32 megabytes of memory. The simple datapath circuits Fltrdp, Vertdp,
and Rowdp were used as benchmark circuits in the original work on PathiPlan and are discussed in
Chapter I1. Performance results for Path’lan were not measured in terms of CPU time, since this
depends on the implementation of the algorithm, the quality of the compiler, the machine uscd to

cxccute the program, etc. Instead, module evaluations are counted. Subsequent performance mea-
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Number PathPlan2tMATSim PathPlan

Number

Circuit of of Test Test
gatcs Module cru Module CPru
modules (est.) evaluations | (sec) COVETUBE | evaluntions [ (stc) coverage
(%) (%)

Flirdp 6 254 255 1.12 100 57 - 70
Vertdp 5 138 29 0.25 100 21 - 100
Rowdp 6 220 100 0.59 100 33 - 100
Smalldp 8 250 180 1.07 100 - - -
Mdp 7 792 439 3.21 100 - - -

Table 5.2 Performance comparison of PathPlan2/MATSim and PathPlan.

suremenis on other test gencrators, particularly ARTEST, have been limited to CPU time. There-
fore, we have provided mcasurements of both types for PathPlan2. The “test coverage” column
lists the percent of tests in the test packages that were successfully applied.

We assume direct control of all control signals for the datapaths in this experiment, Typi-
cally, datapath circuits such as these are controlled by a scparate control unit. The output of the
control unit is latched in a register and is part of a scan chain, This is a modest design-for-testabil-
ity strategy implemented in nearly all machines of this type used in commercial circuits. A sequen-
tial version of PathPlan2 can also generate the control signals in many cases if there are no
contflicts. This will make test gencration times longer, but will not invalidate the results presented
here.

As shown in Table 5.2, the performance in terms of module evaluations for PathPlan2 and
PathPlan are comparable (within an order of magnitude) for Fltrdp, Verdp, and Rowdp, despite the
fact that ParhPlan2 is more complicated and general. The circuit Smatidp is a modified version of
the datapath circuit shown in the box in Figure 3.18. In its original form, the circuit is untestable;
some changes were made to make it possible for PathPlan2 to instantiate all test packages.
Despite these changes, the circuit still contains bus truncations that make it impossible for either
PathPlan or ARTEST to test it. Finally, Mdp is a small computer datapath circuit similar to one
used as a benchmark in ARTEST. Since this implementation of PathPlan2 assumes direct access

to control signals, an assumption not made by ARTEST, we cannot directly compare the perfor-
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mance of the two programs. Nevertheless, the performance of PathPlan2 in generating a test for

this circuit appears to be similar to its performance in the other cases listed.

5.3. Summary

We have presented two new test generation tools PathPlan2 and MATSim. PathPlan2 is a
hicrarchical test generation algorithm similar to PODEM in that it uses forward-only implication.
MATSim analyzes error propagation for circuits with precomputed tests for modules. It docs not
require low gate-level models for modules being tested, these are implicit in the precomputed
tests. It propagates signals at two levels of abstraction, and can analyze error propagation along
distributed partially transparent paths.

PathPlan2 generates tests at two levels of abstraction. It assigns signal values to primary
inputs and uses MATSim to propagate these signals to the inputs of the MUT and to the control
inputs of modulcs on the propagation path from the output of the MUT to primary outputs. Pre-
computcd tests stored in test packages can be represented symbolically and propagated as sym-
bolic expressions, or numerically and propagated as vectors. Error signals arc propagated
symbolically by default, but when propagation is blocked at the high level, PathPlan2 automati-
cally switches to propagation at the vector level to complete the analysis. Hence, it can analyze
propagation in circuits with complex and irregular bus interconnection structures, a capability

lacked by previcus high-Ievel test gencrators using precomputed tests



CHAPTER VI
CONTRIBUTIONS AND FUTURE WORK

This chapter reviews the major contributions of the thesis and bricfly discusses some

future directions for rescarch.

6.1. Thesis Contributions

Hicrarchical test generation using precomputed tests is an important method for comput-

ing tests for complex digital circuits, Many circuits are composed of well-defined modules from

proprietary design librarics and have precomputed tests stored for them. It is often inconvenient or

impossible to gencrate new tests for these modules when they are included in a larger circuit. This

thesis has presented the theory and tools we developed for generating tests for circuits using pre-

computed tests for modules. The major contributions are as follows:

We designed and implemented one of the first test gencration programs Pathi?lan
designed specifically to use precomputed tests and symbolic propagation techniques
We developed a new, general theory of signal propagation for modular, bus-structured
circuits

We developed an efficient, hierarchical method for analyzing error propagation when
testing modular circuits with complex, immegular buses.

We proposed a novel, logic design method for increasing the transparency of modules to
improve the testability of circuits

We designed and implemented a pair of test gencration tools MATSint and PathPlan2
with the unique capability of gencrating tests for modular circuits with complex, itrcgu-

lar buses using precomputed tests and hicrarchical signal propagation

PathPlan generates tests for circuits by propagating symbolic representations of precom-

185
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puted test data, stored in units called test packages (T4 Ty,) » through a circuit model. The test
stimulus T is propagated to a module under test (MUT) and the test response 7T, is propagated to
primary outputs. Both T and 7, arc represented using a flexible and hierarchical notation in
which signals are sequences of vectors. Only simple transformations of T and T}, during signal
propagation are allowed by PathPlan. This approach cannot handle circuits with complex, irregu-
lar bus structures including truncation and reconvergent fanout—a restriction also shared by all
published test generation techniques developed since PathPlan that use symbolic and high-level
signals. However, PathPlan is very cffective for testing embedded RAMSs and other large modules
in circuits with regular buses that cannot be tested using conventional techniques. It also demon-
strates that symbolic propagation can provide substantial performance benefits over conventional
techniques. In some cases, PathPlan can gencratc tests up to three orders of magnitude faster than
conventional techniques, This is important when the precomputed tests are long, as they may be
for embedded modules such as CPUs in microcontrollers, The overall philosophy of Parhl?lan has
been implemented by a major clectronics company, and it forms the basis for the other contribu-
tions of this thesis.

The main limitation of PathPlan and other test generators using precomputed tests is the
pessimistic methods they use for analyzing the propagation of crrors at high Ievels of abstraction.
The problem of hierarchical crror propagation has been poorly understood. To expand the range of
circuits that can be tested using precomputed tests and hierarchical propagation techniques, we
developed a theory of complex signal propagation for modular circuits. To characterize the propa-
gation of vector scquences through module functions, we introduced the concept of propagation
functions. A propagation function is a representation of a module’s input-cutput behavior in which
disjoint subsets (a partition) of the module’s input signal domain are mapped to signal valucs at the
module’s output ports. Signal propagation in multi-module circuits is characterized by expressions
in a propagation algebra whose clements are propagation functions expressed as partitions and
whose operators correspond to scrics-parallel connections. The propagation algebra is governed by
a number of common algebraic laws and properties, which we have identified, Special versions of
propagation functions called transmission functions represent the information transmission prop-

ertics of modules and circuits alone, independent of the information to be propagated,
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We defined a circuit to be transparent if its input signals can propagate through it without
loss of information. This property is explicitly represented in our propagation algebra as the zero
propagation function. We then studicd the central problem of propagating errors, that is, discrepan-
cies between faulty and fault-free signals. If there is a transparent path from the output of the mod-
ule under test (MUT) to primary outputs, then all errors can be propagated along this path; it is not
necessary to analyze the propagation of individual errors. Therefore, the knowledge that transpar-
ent paths exist can be exploited to improve test generation speed. On the other hand, if a circuit has
poor transparcncy, it may be impossible to propagate all errors to primary outputs. Our techniques
cxactly quantily the capacity of modules 1o propagate errors, When factors that contribute to poor
transparency arc detected, circuit modifications can be made to improve transparency,

Subcircuits with no single transparent path can still be transparent since partially transpar-
ent circuit paths in space (connected in parallel) or in time (sequences of propagation modes for
the same path), can be combined to provide fully transparent information transmission. Previous
hicrarchical test generation approaches based on precomputed tests do not take this composite
transparency into account. The transparency of such combinations is explicitly represented in our
propagation algebra by the intersection/paralle] connection operation,

We derived several theorems describing the effect on transparency of circuit or module
structure. For example, we determincd the cfiect of relative input and output port sizes on the
transparency of modules (Theorem 3.3 and Corollary 3.1). We derived necessary and sufficient
conditions for transparcncy in series connections (Theorem 3.4 and Corollary 3.2) and parallel
connections (Theorem 3.5). We demonstrated that when the output data port of a module is much
smaller than the input data port, the amount of error information propagated through the module is
limited only by the size of the output port. Moreover, the amount of information that can be propa-
gated in this case is surprisingly large (Theorems 3.8 and 3.9). To deal with incomplete transpar-
ency, we introduced the concept of A-transparency, that is, the propagation of data signals along
partially transparent circuit paths in & timesteps using & different control signals in sequence to
make the paths transparent. We also obtained bounds on the minimum value for &k (Theorem 3.10).

We employed the propagation theory to obtain an cfficient hicrarchical method for analyz-

ing the propagation of test response errors for specific modules. We developed a high-level method
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for representing response functions as symbolic signal values. These signals can be efficicntly
propagated through transparent circuit paths using high-level symbolic module functions. We have
developed a method for rigorously constructing these functions from the signal specifications. Our
method is more general than previous, ad hoc methods of defining and using high-level error prop-
agation signals, and supports a full hicrarchy of symbolic signals. At the lowest level in this hicrar-
chy, crror propagation is analyzed by evaluating response functions from the cutput of the MUT to
primary outputs when T is successfuily applicd to it. The response functions are represented in
the partition format developed in our propagation theory, and can be cfficiently propagatcd as

complex signals through circuits with irregular buses. Since some circuits are opaque to propaga-
tion, we have also devised design techniques to improve circuit transparency. In contrast to con-
ventional approaches that use additional buses or scan latches to bypass opague modulcs in
circuits, our methods focus on making opaque modules more transparent. We developed two meth-
ods based on our propagation theory for specifying A-transparent modules that can be synthesized
using conventional logic synthesis techniques.

We implemented our method for hicrarchical crror signal propagation in a pair of pro-
grams called MATSim and PathPlan2. MATSim is a novel simulator that propagates test package
data at two levels of abstraction, symbolic and vector. Fault-free stimulus signals in MATSim arc
represented by symbolic expressions that are simplified using techniques derived from symbolic
computer algebra. These techniques have been specialized by us for use in symbolic simulation.
MATSim also uses our hicrarchical error propagation techniques to propagate T,,. PathPlan2 is
our ncw hierarchical test generation algorithm. It extends the capabilities of PathPlan and uscs
MAT Sim to propagate T and T,. PathPlan2 can gencrate tests for circuits with irregular buses
not handled by previously published high-level test generators using precomputed tests for mod-
ules, It is a more powerful and general program than PathPPlan, nevertheless, its performance is at

least as good.
6.2. Future Work

We conclude this section with some suggestions for extending the results of this thesis.

Theory. Our general theory of propagation can be used to analyze signal transmission through cir-
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cuits composed of combinational modules and simple transparcnt sequential modules such as reg-
isters and latches. However, many circuits contain complex scquential library modules described
by behavioral models. To handle such modules, the propagation theory can be expanded to analyze
sequential modules, or alternatively, methods can be developed to automatically decomposc
behavioral descriptions of large sequential modules into high-level combinational and transparent
sequential components for use in analyzing signal propagation. Similar decomposition mcthods
afe widely employed in high-level synthesis programs such as AutoCircuit.

The simulation approach employed in MATSim can form the basis of a gencral theory of

symbolic simulation. Such a theory would be useful in several CAD arcas including testing and
design verification. The theory would fully characterize the canonical forms for cxpressions cre-
ated while propagating symbolic values in typical circuits. Exact and complete algorithms for sim-
plifying expressions are also desirable. We plan to further develop context-specific simplification
techniques for expressions used as signals in circuits with buses of fixed width. MATSim currently
simplifics known even (odd) expressions to 0 (1) when they are propagated on 1-bit buscs.
Test Generation. ParhPlan2 can generate tests for acyclic circuits with irregular buses using pre-
computed tests for modules. We plan to implement the sequential extensions discussed in Section
5.2, and employ PathPlan2 in testing microcontrollers composed of large library modules and cir-
cuits designed by AutoCircuit. When gencrating tests for sequential circuits, 7, is somctimes
propagated through a MUT M in timeframes later than when T is applied to it. In order to propa-
gate test response crrors through M, individual faults in M must be linked to faulty responscs in
M’s response set and multiple versions of response functions must be propagated through M using
detailed fault models. We plan to add this feature to MATSim and study the performance of various
implementation methods.

MATSim currently analyzes the propagation of test response crrors as discrepancies, but
does not relate these discrepancies to individual faults, The same fault f; in a MUT M may produce
several different error vectors contained in the response set. Therefore, when one error caused by
f; cannot be propagated, f; may be covered by another error that is propagated. Adding some
redundant vectors can improve fault coverage when test response errors must be propagated

through non-transparcnt circuit paths. On the other hand, typical non-transparent modules such as
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truncate modules may block certain errors no matter how many redundant vectors are added, The
effectivencss of such redundant test vectors in precomputed library tests for modules needs to be
investigated.

Desipgn for Testability, One promising area of future rescarch is design for k-transparcncy. Our
cxperiments suggest that the overhead of using k-transparent modules in a circuit is comparable
with other design-for-testability techniques such as scan design. However, our current design
methods produce -transparent versions of modules that are much larger than the originals since
thesc methods focus on minimizing the sequence length £, not the module size. Techniques for
optimizing module size and trade-offs between module size and sequence length need to be devel-
opcd. Mcthods are also needed for designing partially k-transparent modules and analyzing the
relationship between module size and the amount of transparency (fransparency index). Our theo-
retical results (Section 3.3), suggest that some modules can be made quite transparent with small
modifications.

The relationship between fransparency index and the propagation of typical faults in prac-
tical circuits requires further study. Increasing transparcncy may provide diminishing rcturns for
propagating these faults. Instead, there may be specific errors which should always be propagated.
Finally, it would be useful to compare the overhead of -transparent design techniques with other,
more common design techniques such as scan design and the routing of test points to dctermine
when cach is most appropriate. Transparency should be enhanced only when necessary and always
in the most cificicnt way. The combination of a power{ul hierarchical test generation program that
processes precomputed test sets, and design techniques that provide sufficient transparcncy only
when needed, should lcad to a comprehensive testing method based on precomputed tests that
simultancously enhances the productivity of designers and improves the quality of the circuits they

design.



APPENDICES

191



192

APPENDIX A

Mathematical Concepts

This appendix rcviews mathematical concepts that are used in the propagation theory

described in Chapter I11.
A.1. Partition Theory

A relation = on a set § is an equivalence relation if and only if it is
« reflexive, thatis, x=x forallx e §
< transitive, that is, if x; =x, and x, =x; then x; =x, forall x, x;, x5, € §
< symmetric, thatis, x; = x, ifand only if x, = x| forall x,, x, € §.
A partition 7t on a set S is a collection of disjoint subsets of S called blocks, whose union is
S. If s e 5, then B_{s) is the block that contains 5. Two clements s 1S € 3 arc cquivalent,
denoted 5 =5, (1), if and only if B_(s)) = Bn(sz) . If R is an cquivalence relation on S, then
the set of equivalence classes defines a partition 1t on §, and vice versa, The partition consisting of
all singleton blocks is the zero partition and the partition consisting of a single block containing all
clements of S is called the wnit partition.
Let t, and 7, be partitions on a set S. The intersection | M T, is the partition on S such
that for any two clements s, 7€ S, s=1(mw, Nx,) ifand only if s=¢ () and s=1(m,) [44].
This operation can be computed by intersecting {using set intersection) cach block of 7, with
every block of m,. Let §= {0,1,2,3,4}, ;= {{0,1}, {2,3}, {4}} and
n, = {{0,1}, {2}, {3,4}},thennw, "7y, = {{0,1}, {2}, {3}, {4} }.
Let t; and ®, be partitions on a set S. The union 1|« m, is the partition on § such that
two clements of 8, s and 7 arc equivalent, ic. s =1 (@, W n,) . if and only if there exists a chain in
S, 8 = 80,85 0en 8, =1 for which cither $;=85;,,(m) or s=1(n,;), 0<i<n-1 [44]. The

union operation can be computed by the procedure shown in Figure A.l1. This procedure chains
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1 Compure_Unfon(El v T, )

2 A

3 nun, =@

4 for (s e S)Bl (5) = BT‘: (s) uB“z(.';) ;

5 i=1;

6 do {

7 for (s € §)

8 B, (&) = B (s)vw {B|Bisablockofn, or n,and (BB, (5)) 2D} ;
9 if (B, (s) ==B(s))add B,(s) to w, W m, and delete all s e B, (s) from$;
10 i=i+l;

11 } while (§ 2 @),

12 return(n, wm, )

13 }

Figurc A.l. Algorithm for computing partition union.

together blocks from n; and 7, that have elements in common, Let § = {0, 1,2,3, 4},
= {{0,1}, {23}, {4}}. and m, = {{O, 1}, {2}, {3,4}}, as in the interscction
example above, then T T, = {{0, 1}, {2,3,4}}.

If =, and @, arc two partitions on a sct 8, we say that w, is greater than or equal to &,
denoted m) < m,, if'and only if every block of =, is contained in 7, . A binary relation R on a set S
is called a partial ordering of S, denoted (S, <), if and only if R has the following propertics:

1. Reflexive:aRatoralla e S,
2. Transitive: a R band b R cimplies a R ¢,
3. Antisymmetric: « R band b R g implicsa= b,
The sct of all partitions on a set §, together with the ordering relation < is a partial ordering [44].

Let (8, <) be a partially ordered set, and let 2 be a subset of §; then an clement s € S is the
least upper bound (lub) of P if and only if for every pe PP, p<s, and for cvery pe P, p<y’
implies that s < 5'. Similarly, an element s € § is the greatest lower bound (glb) of P if and only if
forevery p e P,s<p.and forevery p € P, s <p implies that §' <.

A lattice is a partially ordered set that has a fub and a gib for every pair of elements. The
set of all partitions on a set § is a lattice, where for any two partitions m, and =,
glb(mn, n,) = T, N, and lub(m, m,) = m, U, [44]. A latticc can also be characterized as

an algebra, L = (§, M, W), where S is 4 nonempty set of Iattice clements, and n and W are binary
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operations satisfying four basic postulates for any &, y,z € §.

. xmax=xandxvwx=x

2. xny=ynxandaxvuy = yux

oaxn(ynz) = (xny)nzandau (yuz) = (xuy)uz

4, xn (xvwy) =xandxu (xNny) = x.
These four postulates are knan respectively as the idempotent, commutative, associative, and
absorption laws. If L = (8, mn, W) is a finite lattice, then it has a Jeast and a greatest element
denoted 0 and 1 respectively, Thus foralls € §,5s<1,0<s,sn 1 = s,and sw 0 = 5, The zero
partition and the unit partition given above are the least and greatest clements respectively in the
lattice of partitions.

A Boolean aigebra is a lattice L that also obeys the distributive law, that is., forx, y,z € L
XN (yo) = (xny)uxnz) andxu (ynz) = {(xuy)n (xuz), and in which cach
clement has a unique complement, that is, for all x e L, there is a unique clement x* # x such that
xnx' =0 and xwx' = 1. The lattice of partitions lacks these propertics and is consequently
not as special and well-studied as the Boolean algebras. Nevertheless, a number of useful theorems
have been derived for gencral lattices [ 14, 42].

Let Ll = (Sl . o+yand L2 = (Sz' *, +) be two algebras with scts .S‘l and S2 respectively,
and binary operations * and +. L, is homomorphic to L, if and only if there exists an onto map-
ping /115, ~ 5, such that i (x*y) = A(x}*h(y) and h(x+y) = h(x) +h(y), for any two
clements x, y € 5, . In other words, both L, and L, have the same behavior with respect to the
operations * and +; the homomorphism is said to preserve the operations. The algebras L y and L,
arc said to be isomorphic if 1 is also one-to-one. In this case, L, and L, arc identical except for the
names of the elements.

We can depict the ordering relation in a lattice L by means of a graph, called a Hasse dia-
gram |55), whose vertices are clements of L, Vertex ¢ is drawn in a higher level than vertex b
whenever A <a, thatis, b <q and a # b (in the case of module functions, a = ). Vertices ¢ and &
are adjacent if there is no element ¢, such that b<c<a. I Q = {1, 2,3, 4}, then the sct of all

partitions on Q, S, is

m(ly = {{1,2,3,4}} m = {{1.2.3}, {4}} ny = {{1.2,4}, {3}}
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r, = {{1.3.,4}, {2}} my = {{2,3,4}, {1}} ms = {{L2}, {3,4}}

me = {{1,3},{2,4}} = {{1,4}, {2,3}} g = {{1,2}, {3}, {4}}

Ty = {{2.3}.{1}.{4}} My = {{1,3), {2}, {4}} my, = {{2-4}-{1}9{3}}

nlg- {{lv4}l {2}! {3}} “13' {{3v4}v{1}|{2}} TC(O) - {{l}, {2}o{3}-{4}}
(1)

m(0)

Figure A.2, Hasse diagram for the lattice of partitions T, on Q= {1,2,34}.
The partitions 7 (0) and (1) are the zero and unit partitions, respectively, The Hasse diagram
for L, =(Sq, M, ), is shown in Figure A.2. An intcrior vertex a represents an clement 7t which
is the intersection of two elements my, T, € S, where T, <, and < .. The clements 7T,
and mr_ arc themselves represented by two vertices above and adjacent to 4. For example, in Figure
A2, m, is adjacent to superior vertices i, and 1y and the intersection of the partitions ., and
T, i8S
oy = {{1,4}, {2,3}} n {{1,3,4}, {2}} = {{1,4}, {3}, {2}} == ,.

The vertext 1, is also adjacent to 7, 5 ; the intersection of any two of =, ©,, and 7, is 7, Note

that 7,, 74, and 7, are all at the same level in the Hasse diagram and are thus incomparable.
A.2. Scries-Parallel Graphs

A graph G is a sct of nodes N = {"1’"2' ceny B :} and cdges IY = {"1"’2’ e @}

" sy

Each cdge is a pair ¢; = {nJ, m.} of nodes, which implies that ¢; links ", and n,. A graph is
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Figure A.3. Example of a non-confluent graph.

directed if cvery edge is an ordered pair, e, = (nj, n,) . which implics that the edge begins on # ]
and ends on n, . Two nodes are adjacent if there is an edge between them and two cdges are adja-
cent if they share a node. A circuit is a sequence of adjacent nodes and cdges
Lnkl, Ci Py €30 03 € s nli that begins and ends on the same node. Each ¢ specifies which
edge connects adjacent nodes n K, and n Ko in the circuit (since more than one edge may connect
them). A circuit C imposes a direction on its edges: cach eij begins on n K and ends on 1 Koyt Two
cdges ¢; and e ; are confluent il there do not exist two circuits C, and C,,, each containing edges
e, and e iy such that the dircction imposcd on cxactly one of the two cdges is reversed between C
and C, [23]. A graph is confluent if all its edges arc confluent.

Consider the graph G in Figure A.3, and consider the circuits C, = (n, €,. n,. ¢,, Nao
€30 Ngo €4y N and C, = (n, €2 My €gy Ny €3, Ny €11 ) . The direction of both Cz and C2
through edge ¢, = {n,n,} is thc same, namely (n,, n,}. However, the direction of C,
through ey is {n3, n4) , while the direction of C, through e, is (ny n3) . Therefore, G is not con-
fluent. In clectrical circuit theory, where edges represent resistors or batteries, G is called a Wheat-
stone bridge. No graph with an embedded Wheatstone bridge is confluent [23], On the other hand,
dircected graphs are all confluent, because the directions of the cdges are already fixed; circuits
must conform to the fixed direction in order to be valid. If a graph has no circuit, then it is trivially
confluent.

According to Duffin [23], every edge in a confluent graph is part of a scries-paratlel con-
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nection. Most ditapath circuits can be modeled as directed graphs, since most modules are unidi-
rectional. Even circuits with tristate buses can often be modeled as directed graphs for particular
operation cycles [12]. Therefore, most datapath circuits can be analyzed as a sct of edges con-

nected in series and parallel.
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APPENDIX B

Propagation Algebra

The propagation algebra (S, °, #) describes the behavior of propagation functions in the
samc way that a Boolean algebra describes Boolean logic. The propertics which define this algebra
arc listed in Table B.1 which repeats Table 3.1, In this appendix, we show that the transparency
algebra is consistent, that is, there is at least one system that has these propertics. Any other alge-
bra that also has these propertics is propagation algebra. All propertics in Table B.1, except those
marked with a *, are independent, that is, they cannot be derived from any other propertics. We
will indicate how this is proved. Note that only three properties are marked. This is due to the fact
that there is no unique inverse for cither # or °, a key property used in deriving new algebraic the-
orems, In defining the properties in Table B.1 we make use of the following two relations.

Definition B.1: if @, and bare in S, then a< b if and only if a#b=a.

Definition B.2: ifaand bare in S,thene=b ilandonlyifa<bn b<a.
B.3. Consistency

To show that the propagation algebra is consistent, we will prove that the propertics of the
algebra arc satisficd by the set of all propagation functions and the series and parallel connection
operations introduced in Chapter I11. We begin by showing that Definition A.1 is equivalent to the
definition of partial ordering given carlicr. Definition A.2 was discussed in Chapter 1HL. Let S be
the set of alt propagation functions, and let a, b € §. In the propagation algebra, the relation a € b

implics that cvery o of a is contained in some o of b.

a#tb=a if and only if (aﬁino:bj) = o, foralliand;j
if and only if SOy for all i and j.

ifandonlyif a<b
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Name Property
Closure | a#b is in § whenever a and b are.
Identity 2a | There is an clement 1 in § such that 1#a = « for every clement a
inS,
2b
There is an element O in S such that 0 ¢ = @ and @°0 = a for
every clement g in §.
Distributivity 3 a® (biic) = (a°b)# (a°c) whenevera, b, c, (b#c), (a°b),
(a°c), a®(bilc) ,and (a®°h)#(a®c) arein S.
Commutativity | 4 a#tb = b#a whenever a, b, a#tb and bita are in §.
Idempotence 5 a#ta = a whenever ¢ and a#fa are in §.
Absorption 6 a#t (a°b) =z a whenever a, b, a®b, and a#f (a°b) arcin §.
Associativity Ta aft (bic) = (a#b) #c whenever a, b, ¢, (aith) , (b¥#c),
a# {(b#c) ,and (a#tb)#c arcin S.
b | a®(b°c) = (a®°h)°c whenever a, b, ¢, (a°b), (b°c),
a®(b°c),and (a°b)°c arcin §.
Miscellancous | 8* | a#tb<a and a#b< b
O Offa=0
0 a<sa b

Table B.1: Propertics of transparency algebra.

We will analyze cach of the properties in order.

1. Closure. a#tb is in § whenever @ and b are.

It is clear that # is closed, since it is bascd on partition interscction.

2. Identity.

a. There is an element 1 in S such that 1#a=a forevery clementa in §.,

b. There is an element 0 in S such that 0°a = a and @°0 = a for ¢very clement ¢ in S.

For part a,

1#a = {(O I ...,

(
(
(

Il!

z z,)
2! o 1;(0, 1, .., 2I I l])}#{(al:ﬁl), e (a0, B) 3

- a8, (1B, (27 -1,8,))
i (0B, (1B, (271-1,5,)),
@, (0,80, (1,B,), ... [ el . BD
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For part b,
z z
0°a = {(0:0), (151), ...,(2l Aol l]} {CapBy)y e (0B}
If &; contains j, then 0 a contains (j;B;) forall j e c.. This implics that 0°a combincs
(o;iB;) for alli.
Finally, consider
°() . R . IZD|
a0 = {(a;:B,)s.0, (@B} {(0:0),.., 27713
IfB, = j,then (i), (B} € a O foralli. This implics that a°0 = a.

Distributivity. a® (b#c) = (a®b)#(a°c) whenevera, b, ¢, (biic), (a°h), (a°c),
a® (bi#tc) ,and (a®°b)#(a®c) arein S.

bifc = {{ay, N By Bag))s [abnbm ac”c;Ll}b”b, erJJ}
a® (bic) = {0 By By [Bay & 0N 2)s e}

a®b = {(aal;Bbi|Bal €0)s .}

ac = {(aal;Bcianl €, )s ...}

(@°b)y#(a®c) = {(a, na (B, BCJ)IBM € Uy N &), e}

= {(aal;(Bbl’BCj)[Bal Ed.b‘.h acj),.,.}

Commutativity, ~#b = b#fa whenever a, b, a##b and b#a arcin S,

This is true since partition intersection is commutative.
Idempotence. a#ta = ¢ whenever g and a#fa arc in S,
This is true since partition intersection is idempotent

Absorption. a#f (a°b) = a whenever a, b, a®b, and a#f (a®h) arcin S,

a’b = { (aal:Bbi|Bnl € a’bi)‘ wer}
a#(a®b) = Lo ey 1By By By & )5 -3
= a
Associativity.

a.  a#t(bilc) = (aftb)#c whenevera, b, ¢, (a##b), (b#c) , alt (b#c) , and (a#th) Hc are
in§.
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b. a®(b°c) = (a®°b)°c whenevera, b, ¢, (a°b), (b°c), a®(b°c),and (a®b)°c arcin §.
These follow directly from the definitions of # and .

B. a#b<a and a#ib<h,

afbsa ifandonlyif a#fbfla=a#fb  delinition A.l
ifandonly if a#faffb=a#b  commutation (property 4)
ifandonly f a##b=a#b idempotence (property 35)
altb<lb ifandonlyif a#fb#b=a#b  definition At
ifandonly if a#b=a#td idempotence (property 5)

9. O#a=0.
This is clear from property 8.
10. a <a®h.
To prove this note that a < a®°b if and only if a# (a°b) = a by definition A.2, and

a#t (a®h) = a is truc by property 6.
B.4. Independence

We have shown that the propagation algebra is consistent with respect to the algebra
formed by propagation functions and the serics and parallel connection opcrations. We have also
shown that propertics 8, 9, and 10 arc not independent; they can be derived from some of the other
properties. The other nine properties are independent. To show this, we need to demonstrate for
cach property p,, that there are systems in which property p, is not true, but all other propertics are
true. We will demonstrate this for one property—closure. The proofs for the other propertics are
similar, but lengthy. Consider the algebra defined by the set {0,1} and operators #and  as given in

Figurc B.4. It is clear that the algebra is not closed. Tables B.2 through B.4 demonstrate that all

other properties are truc.
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Figure B.4. Algcbra for proving that closure is independent.

a b ¢ a® {b#c) (a°b)# (a°c) a#tb | b#ta | afta | a#f (b°c)
Q 0 0 - — - - - -
0 0 | 0 0 - - - -
0 1 0 0 0 0 0 - 0
0 i 1 | I Q 0 - 0
1 0 0 - 1 0 0 1 1
i 0 1 1 1 0 4 1 i
l 1 0 1 1 | t 1 1
1 1 1 1 1 1 1 1
Table B.2: Truth table proving that closure is independent.
a b c a#f (b#c) (afib)#c a® (6°¢) (a°h)°c 0°q
0 0 0 - - 0 0 Y
0 0 1 - - 1 1 0
0 | 0 - - k l 0
0 1 I 0 0 1 | 0
1 0 0 - - 1 1 1
i 0 1 0 0 1 1 1
1 1 0 0 0 1 1 1
1 1 ] 1 1 1 1 ]

Table B.3: Truth table proving that closure is independent.
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a b a0 | l#a
0 0 0 0 0
0 0 | 0 0
0 1 0 0 0
0 1 | 0 0
| 0 0 | |
1 0 1 1 ;
1 1 0 1 |
1 1 1 1 1

Table B.4: Truth table proving that closurc is independent.
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