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Low-Dose Ionizing Radiation in Cultured Cells
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Despite their importance to human genetic varia-
tion and disease, little is known about the molec-
ular mechanisms and environmental risk factors
that impact copy number variant (CNV) forma-
tion. While it is clear that replication stress can
lead to de novo CNVs, for example, following
treatment of cultured mammalian cells with aphi-
dicolin (APH) and hydroxyurea (HU), the effect
of different types of mutagens on CNV induction
is unknown. Here we report that ionizing radia-
tion (IR) in the range of 1.5–3.0 Gy effectively
induces de novo CNV mutations in cultured nor-
mal human fibroblasts. These IR-induced CNVs
are found throughout the genome, with the same
hotspot regions seen after APH- and HU-induced
replication stress. IR produces duplications at a
higher frequency relative to deletions than do
APH and HU. At most hotspots, these duplica-
tions are physically shifted from the regions typi-

cally deleted after APH or HU, suggesting
different pathways involved in their formation.
CNV breakpoint junctions from irradiated sam-
ples are characterized by microhomology, blunt
ends, and insertions like those seen in spontane-
ous and APH/HU-induced CNVs and most non-
recurrent CNVs in vivo. The similarity to APH/
HU-induced CNVs suggests that low-dose IR indu-
ces CNVs through a replication-dependent mech-
anism, as opposed to replication-independent
repair of DSBs. Consistent with this mechanism,
a lower yield of CNVs was observed when cells
were held for 48 hr before replating after irradi-
ation. These results predict that any environmen-
tal DNA damaging agent that impairs replication
is capable of creating CNVs. Environ. Mol.
Mutagen. 55:103–113, 2014. VC 2013 Wiley
Periodicals, Inc.
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INTRODUCTION

Copy number variants (CNVs), defined as deletions or

duplications of 50 bp to over a megabase, play a major

role in human genetic variation and disease [Zhang et al.,

2009]. Despite their importance, little is known about the

genetic and environmental risk factors that impact CNV

formation. Replication stress caused by aphidicolin (APH)

and hydroxyurea (HU) has been shown to induce a high

frequency of de novo CNVs in cultured human and

mouse cells that arise in a NHEJ-independent manner and

mimic a subclass of human nonrecurrent CNVs in size

and breakpoint structures [Durkin et al., 2008; Arlt et al.,

2009, 2011b, 2012]. There is also a measurable frequency

of spontaneous CNV formation in untreated cells, indicat-

ing that replication errors produce these lesions during

normal cell division. Many APH- and HU-induced CNVs

map within hotspots, regions in which multiple overlap-

ping CNVs arose independently in different cells, includ-

ing hotspots observed in known chromosomal common

fragile site regions, like FRA16D in WWOX and the

fibroblast fragile site at 3q13.31 [Arlt et al., 2011b].

Some hotspots correlate with clinically relevant CNV

regions, including AUTS2, which has similar CNVs in

patients with autism and other neurodevelopmental disor-

ders [Glessner et al., 2009; Beunders et al., 2013],

MAGI2, which is implicated in bipolar disorder [Karlsson

et al., 2012], and a 3q13.31 hotspot, which is frequently
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deleted in primary osteosarcomas and cancer cell lines

[Kresse et al., 2009; Bignell et al., 2010; Pasic et al.,

2010].

While it is clear that replication inhibitors can lead to

de novo CNVs, the effect of different types of mutagens

on CNV induction is unknown. Here, we examine ioniz-

ing radiation (IR) for its effects on CNV formation in cul-

tured normal human fibroblasts. IR is a DNA-damaging

agent generated by both natural and man-made sources

that induces several types of DNA damage in the cell,

including double strand breaks (DSBs), single-strand

breaks (SSBs), and base damage [Helleday et al., 2007].

DSBs are a particularly deleterious lesion that, if left

unrepaired or are misrepaired, can lead to genomic insta-

bility and cell death. In addition, if a replication fork

encounters a SSB, the fork can collapse into a one-sided

DSB [Kuzminov, 2001]. Because IR creates roughly 20

times more SSBs than DSBs, SSBs are a frequent form of

damage that can potentially interfere with replication

[Ward, 1988].

We report here that IR in the range of 1.5–3.0 Gy results

in a significant increase in de novo CNV formation over

unirradiated cells. The IR-induced CNVs are found

throughout the genome, with many of the same hotspot

regions seen after APH- and HU-induced replication stress,

and including a novel hotspot at the CDKN2A (p16) tumor

suppressor gene, which is deleted in many cancers [Kohno

and Yokota, 2006]. The CNV breakpoint junctions are

characterized by microhomologies, blunt ends, and inser-

tions like those seen in spontaneous and replication stress-

induced CNVs and most nonrecurrent CNVs in vivo.

Interestingly, IR produces a higher proportion of duplica-

tions than do APH and HU and, at most hotspots, these

duplications are shifted in location from the regions typi-

cally deleted after replication stress. CNV induction was

eliminated when cells were allowed to recover before

replating to generate clones. We also observed differences

in IR-induced CHK1 phosphorylation after cells were irra-

diated and either allowed to recover or immediately trypsi-

nized and plated for clonal expansion. These data suggest

that low-dose IR induces CNVs through a replication-

dependent mechanism, as opposed to via replication-

independent repair of DSBs.

MATERIALS ANDMETHODS

Cell Line and Culture Conditions

All experiments were performed with an hTERT-immortalized deriv-

ative of normal human fibroblast cell line HGMDFN090 (090), which

was obtained from the Progeria Research Foundation (Peabody, MA)

and previously described [Arlt et al., 2009]. The source individual is a

female of European descent with a normal 46, XX karyotype. Cells

were grown in DMEM media supplemented with 15% FBS. The starting

cell population was an expansion of a single cell-derived clone, to mini-

mize the effect of preexisting mosaic CNVs in the cell line.

The cells were seeded onto T25 flasks the day before irradiation and

the media was changed the following day, before irradiation. Irradiations

were carried out on cells in exponential growth phase using a Philips

RT250 (Kimtron Medical) at a dose rate of approximately 2 Gy/min in

the University of Michigan Comprehensive Cancer Center Experimental

Irradiation Core. After irradiation, clonal expansions of 090 were gener-

ated as described previously [Arlt et al., 2009]. Briefly, after treatment,

cells were plated at a density of 100–500 cells per 100-mm culture dish.

After 7–10 days, individual clones were isolated from these plates using

cloning rings and serially expanded in 6-well plates and culture flasks.

In the first and second experiments, cells were trypsinized and plated at

a low density for clones, immediately after radiation. In the third experi-

ment, irradiated cells were allowed to recover for 48 hr before being

trypsinized and plated for clones. Cells were plated at a density of 100–

2000 cells per 100-mm culture dish and individual clones isolated using

cloning rings after 10–14 days. Genomic DNA was prepared from cell

lines using the Blood & Cell Culture DNA Mini Kit (Qiagen).

SNPMicroarrays

CNVs were detected using the 1M feature Illumina HumanOmni1-

Quad BeadChip and Illumina HumanOmni2.5-8, which have both SNP

and non-SNP probes, as well as Nimblegen 12 3 270K genomic aCGH

arrays. Illumina arrays were run by the University of Michigan DNA

Sequencing Core, including determination of probe log R ratios and B

allele frequencies. Genomic aCGH on Nimblegen arrays was performed

according to manufacturer’s instructions, using the clonal starting cell

population as a reference DNA. De novo CNV detection was performed

using our software platform, VAMP, exactly as previously described

[Arlt et al., 2011a, 2011b]. For illumina arrays, de novo CNVs were

detected by comparing probe intensities and B allele frequencies for

each test sample array to an array run on the clonal starting cell popula-

tion. De novo CNVs were detected in Nimblegen arrays by a change in

probe intensity between test and reference samples on each array. This

approach routinely detects CNVs larger than 20 kb and can detect CNVs

as small as a �1 kb depending on probe placement.

Mate Pair Sequencing

Genomic DNA (20–25 mg) was used to construct mate-pair libraries

using the Illumina Mate Pair Library Prep Kit followed by paired end

sequencing by the University of Michigan DNA Sequencing Core

according to the manufacturer’s instructions. Analysis of read pair data

proceeded exactly as described in Birkeland et al. [2010]. Briefly, reads

were mapped to the hg18 reference genome and de novo structural var-

iants were identified by seeking sets of anomalously mapping fragments,

followed by visual inspection to confirm that multiple read pairs identi-

fied the same putative variant in the treated clone but not in a paired

library prepared from untreated 090 cells.

CNV Breakpoint Junctions

For deletions, PCR primer pairs were generated that flanked deletion

breakpoints, whereas for duplications, primers were designed within the

duplicated region, directed outward, as described previously [Arlt et al.,

2009]. PCR using the Expand Long Template PCR System (Roche

Applied Science) generated a product that spanned the breakpoint junc-

tion. All products were then subjected to standard Sanger sequencing

and compared to the reference genome (build hg19) to determine break-

point junctions.

Statistical Methods

CNVs in our model system are relatively rare events and, therefore,

the numbers of CNVs per clone are expected to fit a Poisson distribution
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determined by the mean frequency of CNVs in all clones. Therefore, P
values of treated versus untreated samples were determined using the

one-sided E-test of Krishnamoorthy and Thomson for comparing two

Poisson mean rates [Krishnamoorthy and Thomson, 2004]. Simulation

analyses were performed as described previously for APH and HU

CNVs [Arlt et al., 2011b]. The non-parametric Kolmogorov–Smirnov

test (http://www.physics.csbsju.edu/stats/KS-test.n.plot_form.html) was

used to analyze the potential difference in CNV size spectra between

IR-treated and APH/HU-treated clones.

Western Blotting

Cell lysates were prepared by resuspending cell pellets in SDS-lysis

buffer followed by sonication. 10% Bis-Tris gels were used to resolve

proteins. Whole-cell lysate (40 mg) was loaded per lane. Gels were trans-

ferred to PVDF membrane (Millipore) using a Trans-Blot SD Semi-Dry

Transfer system (Bio-Rad Laboratories). Antibody hybridization and

chemiluminescence detection were performed according to standard

protocols. CHK1 protein was detected with sc-8408 (Santa-Cruz

Biotechnology). CHK1 phosphorylation on Ser317 was detected with

Phosho-Chk1 (Ser317) (Cell Signaling). Tubulin was detected with Ab-2

DM1A (Thermo Scientific). HRP-conjugated anti-mouse and anti-rabbit

antibodies were obtained from GE Healthcare, Piscataway. Protein bands

were quantitated using ImageJ software [Rasband, 1997].

RESULTS

Ionizing Radiation Induces DeNovo CNVs in Human
Fibroblasts

Subconfluent normal hTERT-immortalized human fibro-

blasts were irradiated immediately prior to trypsinization

and plating for clones. Fifteen-independent, expanded

clones each from cell populations treated with 0, 0.5, 1.0,

and 1.5 Gy were subjected to CNV analysis using Illumina

1M SNP arrays. Untreated clones had a low frequency of

0.67 de novo CNVs per clone, similar to previously

observed frequencies of spontaneous CNV mutations in

these cells [Arlt et al., 2011b]. The frequency of de novo

CNVs increased with higher doses of radiation. Cells

exposed to 1.5 Gy had 1.80 de novo CNVs per clone, a

significant (P 5 0.0024) increase in de novo CNV forma-

tion compared to untreated controls (Fig. 1a). These cells

displayed a marked decrease in colony-forming ability

(Fig. 1b).

This experiment was repeated using doses of 0, 1.5,

and 3.0 Gy with similar results. Untreated clones showed

the expected low level of spontaneous CNV induction

(0.58 CNVs per clone; n 5 12) while cells exposed to

3.0 Gy IR had a significant increase to 1.86 (P 5 0.0016;

n 5 14) de novo CNVs per clone, as well as a reduction

in survival (Figs. 1c and 1d).

De novo CNVs from the combined experiments were a

mix of both deletions and duplications, with a slight

excess of copy number gains over losses. Ten of 17

(59%) spontaneous CNVs arising in untreated cells were

duplications. This gain/loss ratio did not change substan-

tially in IR-treated cells, in which 47 of 92 (51%) CNVs

were duplications. This is a higher ratio of gains to losses

than previously seen in APH- and HU-induced CNVs, in

which 64 of 216 (30%) CNVs were gains.

There was no difference in de novo CNV size distribu-

tion between untreated and irradiated cells (Fig. 2a).

Spontaneous, de novo CNVs in untreated cells were gen-

erally large, with a median size of 261 kb (22.3 kb to

15.0 Mb). IR-induced CNVs had a similar median size of

288 kb (2.7 kb to 34.2 Mb). We did note that IR-induced

CNV size distribution shifted slightly larger than observed

previously for CNVs induced by APH or HU, which

showed a median size of 137.3 kb, less than half that

seen in IR-induced CNVs (Fig. 2b) [Arlt et al., 2011b].

However, a Kolmogorov–Smirnov test showed no signifi-

cant difference in the size spectra of CNVs in these two

groups (P 5 0.124) (Supporting Information Fig. S1).

Some forms of structural variants, including some types

of complex rearrangements and events that do not change

copy number, such as inversions, cannot be detected using

array-based approaches. To determine if such events occur

frequently after IR, two irradiated clones, 1CX1.5A41 and

1CX1.5A33 were further analyzed for de novo CNV con-

tent using mate pair sequencing as previously described

[Arlt et al., 2011a]. This approach recapitulated the CNVs

detected using arrays, but did not reveal the presence of

any additional rearrangements, suggesting that large CNVs

are the primary chromosomal anomaly formed after low-

dose IR in these cells.

Genomic Distribution of IR-Induced CNVs

Spontaneous and IR-induced CNVs were distributed

throughout the genome, with most arising in distinct, nono-

verlapping regions (Fig. 3a). Superimposed on this distri-

bution pattern were hotspots containing more than three

overlapping CNVs. Hotspots accounted for 19.7% (25/127)

of all CNVs, a lower proportion than has been seen with

replication stress (�35%), although we had scored twice as

many APH/HU-induced CNVs than IR-induced CNVs

(216 vs. 105, respectively), making replication stress clus-

ters easier to detect [Arlt et al., 2011b]. Each CNV within

the IR-induced hotspots had unique boundaries, indicating

that each arose as an independent event. Notably, these

hotspots corresponded to the CNV hotspots seen when

cells are grown under conditions of replication stress

induced by APH or HU [Arlt et al., 2011b]. As with APH

and HU, de novo CNVs were most frequently observed at

3q13.31 near LSAMP and at 7q11.22 within AUTS2. One

to three de novo CNVs in IR-treated clones were found at

previously defined hotspots at 1q44 (KIF26B, SMYD3),

10q11.23-q21.1 (PRKG1), and 16q23.1 (WWOX) [Arlt

et al., 2011b]. In addition to these previously defined hot-

spots, a new hotspot was found at 9p21.3, a region con-

taining the CDKN2A (p16) tumor suppressor gene. This

locus is frequently deleted in many cancers with breakpoint

junction characteristics similar to those observed in our de
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novo CNVs [Kohno and Yokota, 2006]. This site had not

been previously defined as a replication stress-induced

CNV hotspot, although two APH/HU-induced CNVs were

seen at this locus in human fibroblasts [Arlt et al., 2011b].

We used a simulation to determine whether IR-induced

CNVs were nonrandomly associated with APH- and

HU-induced CNV regions. Our set of IR CNV regions

was randomly placed around the genome in 10,000 per-

mutations and then compared to the locations of replica-

tion stress-induced CNV regions to create an expected

random distribution of overlap between the two groups.

In addition, a single iteration was mapped in which the

IR CNVs regions were offset 10 Mb to the right. These

results were compared to the observed IR CNV locations

Fig. 1. IR induces de novo CNVs in normal human fibroblasts. Three

iterations of the experiment with different cell handling are shown. (A)

Incidence of de novo CNVs in normal, hTERT-immortalized human

fibroblasts treated with 0-1.5 Gy IR. Fifteen independent clones each of

untreated, 0.5 Gy, 1.0 Gy, and 1.5 Gy-treated cells were analyzed. Cells

were plated for cloning immediately after irradiation. Error bars indicate

SE. (B) Colony-forming ability of IR-treated cells in (A) compared to

untreated cells. Error bars indicate SD. (C) Incidence of de novo CNVs

in normal, hTERT-immortalized human fibroblasts treated with 0–3.0 Gy

IR. Twelve independent clones of untreated cells, 15 clones of 1.5 Gy,

and 14 clones of 3.0 Gy-treated cells were analyzed. Cells were plated

for cloning immediately after irradiation. Error bars indicate SE. (D)

Colony-forming ability of IR-treated cells in (C). (E) Incidence of de

novo CNVs in normal, hTERT-immortalized human fibroblasts treated

with 0–3.0 Gy IR. Ten independent clones of untreated cells and 11

clones each of 1.5- and 3.0-Gy-treated cells were analyzed. Unlike (A)

and (C), cells in (E) were plated for cloning 48 hr after irradiation. Error

bars indicate SE. (F) Colony-forming ability of IR-treated cells in (E)

compared to untreated cells. Error bars indicate SD. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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(Fig. 4). The spatially shifted CNV regions did not over-

lap APH/HU-induced CNVs more than expected by

chance. In contrast, there was a significant enrichment

after IR for previously mapped CNVs for both regions

where two or more CNVs mapped (P 5 3.3 3 1026) and

singleton CNVs (P 5 0.0024).

We noted that IR appears to induce duplications versus

deletions at a higher relative frequency than APH or HU.

We further noted that, while CNV hotspot locations were

correlated after IR and APH/HU, the type of CNVs in

these hotspots often differed. Specifically, the hotspot in

AUTS2 at 7q11.22 was found to contain CNVs primarily

of the deletion type (10/11, 91%) after APH and HU

[Arlt et al., 2011b], whereas after IR this hotspot had

almost exclusively duplication CNVs (9/10, 90%) (Fig.

3B). A similar pattern was seen at WWOX at 16q23.1,

where 6/6 replication stress-induced CNVs were dele-

tions, and 3/3 IR-induced CNVs were duplications (Fig.

3b). Importantly, at both of these hotspots it was further

observed that most of the duplication CNVs observed

with IR were shifted in location relative to the region of

deletion CNVs observed with replication stress. Not all

hotspots followed this altered pattern. For example, the

3q13.31 hotspot contained almost exclusively deletions

that occurred within the same genome span after both IR

(9/9, 100%) and APH/HU (29/31, 94%) [Arlt et al.,

2011b].

We observed three very large CNVs (2 deletions, 1

duplication) that were 15-22 Mb in size that involved

gain or loss of material extending distally to the chromo-

some end. It is likely that such large, terminal CNVs arise

via a DSB-repair mechanism different than that giving

rise to the majority of the smaller observed CNVs. In

addition to CNVs, three clones exhibited long, 27–35 Mb

stretches of loss of heterozygosity (LOH) extending to the

terminus of chromosome 9p (Supporting Information Fig.

S2). These regions displayed a change in the B-allele fre-

quency of SNPs across the region, but no corresponding

change in the Log R ratio, indicating no change in copy

number. In addition, these events were mosaic within the

clonal population, indicating they occurred after cells had

been replated for single cell cloning. As they did not affect

copy number, these rearrangements are not included in the

CNV totals.

Characterization of IR-Induced CNV Breakpoint Junctions

Previous work has demonstrated that nonrecurrent

CNVs in vivo and replication stress-induced CNVs in cul-

tured cells have breakpoint junctions that are primarily

characterized by short stretches of microhomology, blunt

ends, or small insertions, as opposed to long stretches of

homology that would indicate homologous repair in their

formation [Arlt et al., 2009, 2011b, 2012; Zhang et al.,

2009]. To explore the mechanism of IR-induced CNV

formation, we examined 18 CNV breakpoint junctions

from 17 de novo CNVs in IR-treated cells (Table I; Fig.

5a). Two breakpoints (11.1%) were characterized by blunt

ends and 14/18 (77.8%) had short (1–8 bp) stretches of

microhomology. The remaining two breakpoints (11.1%)

each lacked microhomology and contained a single base

insertion resulting from polymerase slippage, similar to

insertions seen in APH/HU-induced CNVs and in vivo

[Arlt et al., 2011b, 2012; Carvalho et al., 2013]. These

breakpoint characteristics are the same as those seen in

spontaneous and APH/HU-induced CNVs observed previ-

ously [Arlt et al., 2009, 2011b, 2012]. Two of these CNV

junctions were from a single, complex CNV (Fig. 5b).

This CNV consisted of 97.7 kb deletion with an ectopic

insertion of 530 bp of sequence whose origin was 4.8 kb

upstream of the deletion. This rearrangement is very simi-

lar in organization to complex CNVs induced by APH

and HU in both human and mouse cells [Arlt et al.,

2011b, 2012].

We were successful in sequencing the breakpoint junc-

tions from 65.4% (17 of 26) of attempted CNVs. None of

the de novo CNVs in our experiments were characterized

by segmental duplications or other long stretches of

Fig. 2. Size distribution of CNVs. (A) Fraction of CNVs by size.

Untreated (blue circles), IR-treated (red squares). (B) Fraction of CNVs

by size for CNVs induced by APH and HU (blue circles) [Arlt et al.,

2011b] and IR (red squares). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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homology at or near the breakpoint regions in the refer-

ence genome sequence that would indicate the involve-

ment of homologous recombination in their formation.

The CNVs for which breakpoint cloning failed likely rep-

resent junctions with complex structures that are difficult

to amplify, even using multiple primer sets flanking the

breakpoints. Therefore, we expect that our single complex

CNV is an underrepresentation of the actual incidence of

complex events in our samples.

Postirradiation Recovery Eliminates IR-Induced CNV
Formation

It is known that trypsinizing irradiated fibroblasts

causes them to immediately resume DNA replication and

reenter the cell cycle [Gadbois et al., 1997]. Given that

IR-induced CNVs matched APH/HU-induced CNVs with

respect to size, location, and breakpoint junction charac-

teristics, we hypothesized that trypsinizing and plating

cells for clones immediately postirradiation led to IR

damage-induced replication stress, which contributed to

formation of de novo CNVs. To test this, cells were irra-

diated as before with 0, 1.5, and 3 Gy, except that the

cells were given a 48-hr postirradiation recovery period

before being trypsinized and plated for clone isolation.

We analyzed 10 untreated clones and 11 clones each

from the 1.5 and 3 Gy treatment conditions for de novo

CNVs (Fig. 1e). The untreated clones had a frequency of

0.30 de novo CNVs per clone. In contrast to irradiated

cells that were immediately plated for clonal expansion,

the irradiated clones given a recovery period did not have

a significant change in CNV frequency compared to the

Fig. 3. Spatial distribution of CNVs. (A) Locations of IR-induced

CNVs. Red circles indicate IR-induced CNVs, blue squares indicate spon-

taneously arising CNVs in untreated cells. Bars are used to indicate large

CNVs spanning more than a chromosomal band. Markers above and

below chromosomes represent duplications and deletions, respectively.

Asterisks (*) mark three large regions of uniparental disomy on chromo-

some 9p. Ideograms were adapted from the University of California,

Santa Cruz genome browser (http://genome.ucsc.edu) [Kent et al., 2002].

Precise coordinates for all de novo CNVs are listed in Dataset S1. (B)

Examples of physically shifted hotspot CNVs after IR (red bars) and

APH/HU (blue bars). In addition, CNVs induced by IR in these regions

are predominantly duplications whereas those induced by APH/HU are

mostly deletions.
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control, with 0.45 and 0.55 CNVs per clone detected in

the 1.5 and 3.0 Gy groups, respectively (P 5 0.285 and

0.205, respectively). Thus, allowing cells to remain on

the plate for a 48-hr recovery period prior to replating for

clone isolation suppressed CNV induction by IR. Cells

given a recovery period still demonstrated a reduction in

survival (Fig. 1f).

To evaluate the effect of post-IR recovery further, we

tested cell cycle checkpoint induction following IR, with

and without a recovery period. Cells were exposed to

3 Gy, after which they were either immediately trypsi-

nized and replated, or left on the plate to recover. Cell

lysates from both groups were harvested at 1, 6, 24, and

48 hr after irradiation. CHK1 phosphorylation on serine

317 was measured by western blot as a measure of check-

point activation (Fig. 6). Cells that were trypsinized

immediately after irradiation showed considerably lower

levels of CHK1 activation than cells that were not trypsi-

nized, especially at the earliest time point, consistent with

the idea that trypsinization and stimulation of cell divi-

sion partially suppressed the checkpoint response to IR.

In both cases, CHK1 phosphorylation was reduced to

background levels within 24 hr after IR. These results are

Fig. 4. Non-random association of IR-induced CNVs and APH/HU-

induced CNVs. IR CNV regions were randomly distributed around the

genome in 10,000 permutations and then compared to the locations of

CNV regions induced by APH and HU (AH) to create an expected ran-

dom distribution of overlap between the two groups. The actual observed

number of IR CNV regions that overlapped AH CNV regions is indicated

by the vertical green line. The black line represents a single iteration in

which the IR CNV regions were offset 10 Mb to the right. Blue lines and

associated red Gaussian curve-fit show the distribution of values observed

for the 10,000 random permutations. Analyses were performed for (A)

singleton IR CNVs, (B) regions with more than one IR CNV, and (C) all

IR CNV regions combined. Numbers in red above each plot indicate the

P-value for the actual value calculated from the fit curve (P), as well as

the cumulative frequency of iterations that had as many or more IR CNV

regions crossing AH regions as the actual value (f). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE I. Breakpoint Junctions of IR-Induced CNVs

Clone [IR] (Gy) CNV type Chr

Left

breakpoint

(hg19)

Right

breakpoint

(hg19)

# bp homology

at junction Homologous bases Inserted bases

1CX1B23 1.0 Deletion 4 81,026,798 101,318,742 2 GT —

1CX1.5A41 1.5 Deletion 1 85,957,519 85,984,003 0 — C

1CX1.5A41 1.5 Deletion 2 28,941,965 28,943,397 2 AC —

15B1 1.5 Deletion 3 114,338,052 114,601,491 8 AA(C/A)ATTTC —

1CX1.5A41 1.5 Deletion 3 115,588,199 116,192,341 0 — —

15B1 1.5 Deletion 3 116,729,604 116,627,448 0 — CC

1CX1.5A41 1.5 Deletion 3 171,827,497 171,974,363 2 TT —

1CX1.5A33 1.5 Duplication 7 70,574,902 70,205,688 3 TAT —

1CX1.5A32 1.5 Deletion 10 53,571,361 53,778,026 2 AT —

1CX1.5B12 1.5 Deletion 14 89,918,224 90,090,047 2 AT —

1CX1.5A41 1.5 Deletion 17 48,643,949 48,730,887 7 AG(G/A)TCAC —

3T1 3.0 Deletion 4 161,882,750 178,397,061 1 A —

3S3 3.0 Duplication 7 70,018,241 69,893,758 2 TG —

3T2 3.0 Deletion 7 70,154,118 70,224,314 1 G —

3F1 3.0 Deletion 11 18,376,572 36,717,065 2 GT —

3D5 3.0 Complex 17 59,126,424 59,228,874 0 — —

3D5 3.0 Complex 17 59,131,175 59,125,894 3 CCA —

3C2 3.0 Deletion 19 57,743,180 58,050,665 1 G —
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consistent with protocol-dependent induction of replica-

tion stress by low-dose IR.

DISCUSSION

The spectrum of genotoxins and DNA damaging agents

that lead to increased rates of CNV formation, and the

mechanisms by which these agents might act, are very

poorly understood. We have previously demonstrated that

at least two chemical agents that cause replication stress

via impairment of replication fork progression, APH and

HU, induce one type of CNV in a manner consistent with

replication-associated models of CNV formation by tem-

plate switching and microhomology-mediated break-

induced repair (MMBIR) [Arlt et al., 2009, 2011b]. Experi-

ments reported here now demonstrate that low-dose IR, a

direct DNA damaging agent, induces similar de novo

CNVs in cultured normal human fibroblasts. The sizes and

breakpoint junction sequences of these IR-induced CNVs

are consistent with the nonrecurrent class of de novo path-

ogenic CNVs, a large class of normal human CNVs. IR-

induced CNVs are also very similar to those induced by

APH and HU, including the critical observation that they

are frequently located within the same hotspot regions.

IR, and by extension possibly other direct DNA damag-

ing agents, might induce CNVs in at least two distinct

ways. First, the DSBs that are principally responsible for

the cytotoxicity of IR might be the direct substrates of

CNV formation via an end joining process. Several fac-

tors suggest that this is not the most likely explanation

for IR-induced CNVs. It is difficult to reconcile the

expected burden of 12–36 DSBs per cell at the IR doses

used with the frequency of observed CNVs, which in this

model would presumably require two closely separated

DSBs. Moreover, if random DSBs were the key interme-

diate, it is unclear why they would lead to the same non-

random genomic distribution of CNVs as replication

stress. In particular, it is highly unlikely that IR induces

DSBs with a high enough frequency at hotspot loci to

explain the CNVs we observed there. In addition, the

prevalence of copy number gains is difficult to explain

with an end joining repair mechanism. We also note that

Fig. 6. Immediate trypsinization and replating of cells following IR

reduces CHK1 activation. (A) Western blots showing the induction by IR

of CHK1 phosphorylation on residue S317. (B) Quantitation of CHK1

S317 phosphorylation in (A), normalized to tubulin, respectively. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Fig. 5. CNV breakpoint junctions. (A) De novo CNV breakpoint junc-

tion sequence homology in IR-treated cells (red) compared to the

expected distribution if microhomology usage was random (gray). (B) A

complex CNV with two junctions at 17q23.2 in 3.0-Gy-treated clone

3D5. Based on aCGH data, this CNV was called as a deletion, but

sequencing of the breakpoint junctions revealed that this CNV was com-

plex, containing a 97.7 kb deletion (red), as well as a duplication-

insertion of 530 bp (blue) at the deletion boundary. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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classical NHEJ, expected to act in the repair of IR DSBs,

has been ruled out as a major factor in CNV formation

after replication stress in mouse ES cells [Arlt et al.,

2012], although alternate end-joining remains a possible

mechanism of formation for at least the deletion CNVs.

In contrast, IR might lead to CNV formation via sec-

ondary effects that result from the more abundant non-

DSB lesions, including SSBs and base lesions, or from

alterations in the cell state leading to altered replication

or repair function. Indeed, the clear similarity between

IR- and APH/HU-induced CNVs strongly suggests that

low-dose IR-induced CNVs result from IR-dependent rep-

lication stress and replication errors, as opposed to direct

joining of IR-induced DSB ends. A replication-dependent

model for CNV induction by IR is further supported by

the observation that allowing IR-exposed cells to recover

for 48 hr before plating for clonal expansion suppresses

IR-induced CNVs. It is well established that after IR

exposure at doses as low as 1 Gy, cultured human fibro-

blasts undergo a seemingly irreversible G1 arrest [Di Leo-

nardo et al., 1994; Gadbois et al., 1996]. This arrest was

long thought to be permanent, until it was discovered that

if cells are trypsinized and replated, they immediately

resume DNA replication and reenter the cell cycle, likely

due to the disruption of cell–substrate interactions [Gad-

bois et al., 1997; Dimitrijevic-Bussod et al., 1999]. In

addition, fibroblasts that undergo trypsinization in late G1

have hyperphosphorylated retinoblastoma protein, making

them resistant to further cell cycle checkpoint activation

as they proceed through S phase [Guadagno and Assoian,

1991].

Consistent with previous results with replication inhibi-

tors, we did not see extensive evidence for an IR-induced

increase in copy number neutral LOH. Only three clones,

both treated and untreated, showed such events, and all

arose on the short arm of chromosome 9, suggesting that

there may be something unusual about this chromosomal

region. Overall, these observations support the notion that

CNVs arise mainly by template-switches and/or DSB mis-

pairings between closely associated regions of replicating

chromatids, and not between unassociated and potentially

distant homologous chromosomes. The fact that this pat-

tern was not altered by IR also reinforces the idea that

CNVs arise mainly by replication-dependent lesions and

not by IR-induced DSBs in nonreplicating regions.

The lack of an increase in de novo CNV frequency

when IR-treated cells are allowed to recover for 48 hr

prior to trypsinization suggests that these cells are faith-

fully repairing damage prior to reactivated DNA replica-

tion. The 48-hr recovery is ample time for the cells to

repair IR-induced DNA damage [Ljungman, 1999] sup-

ported here by the observation that CHK1 phosphorylation

is eliminated by 24 hr after IR (Fig. 6). CHK1 phospho-

rylation after IR requires both ATR and ATM, with a

peak of activation at 30-min postirradiation in hTERT-

immortalized fibroblasts [Zhao and Piwnica-Worms 2001;

Gatei et al., 2003]. Our observation that IR-induced

CHK1 phosphorylation is decreased when cells are trypsi-

nized is consistent with the model that trypsinizing and

replating cells causes them to re-enter the cell cycle and

resume DNA replication, which increases the likelihood of

replication forks encountering an IR-induced lesion. Alter-

natively, it is known that trypsinization of cultured cells

results in proteome changes [Huang et al., 2010]. It is pos-

sible that trypsinization immediately after irradiation dis-

rupts the cell’s ability to repair IR-induced damage,

resulting in aberrant repair of lesions leading to CNVs.

However, such lesions would be expected to be randomly

distributed across the genome, as discussed above.

What is the nature of the IR-induced damage that leads

to replication stress, and in turn CNVs? One possibility is

that the combination of replication reentry and the resist-

ance to further cell cycle delay makes IR-treated cells

prone to replication-based DNA rearrangements, such as

would occur when forks encounter SSBs or base damage,

which occur frequently after IR [Ward, 1988]. It is known

that IR induces SSBs at a frequency of about 1000 SSBs

per cell per Gy and that these lesions can induce replica-

tion fork collapse [Kuzminov, 2001; Saleh-Gohari et al.,

2005; Helleday et al., 2007; Harper et al., 2010]. These

collapsed forks must undergo repair and then restart for

replication to proceed to completion, and an inaccurate

restart via a template switch mechanism such as MMBIR

would be predicted to give rise to CNVs [Hastings et al.,

2009].

It is interesting to note that, while most CNV hotspots

are conserved after IR and replication stress, some APH/

HU-induced deletion hotspots are duplication hotspots

after IR. In particular, we note that these duplicated

regions are physically shifted from the deletion regions

within the same hotspot (Fig. 3B). This observation sug-

gests that the mechanisms underlying deletions and dupli-

cations in these regions are different. A possible model to

explain these differences involves single- versus double-

fork failure and is illustrated in Figure 7. In the presence

of global replication stress, each active fork is affected,

increasing the likelihood of a double-fork failure. If two

forks collapse while approaching one another, both forks

will need to be repaired and restarted. A single MMBIR

event could occur across both forks to restart replication,

resulting in the deletion of intervening sequence. Such

double-fork failures would be expected to occur more

often when cells experience exogenous replication stress,

as all forks would be impacted. In contrast, random dam-

age caused by IR would more likely result in single-fork

failure, if the lesion burden were low. If a collapsed fork

does not have another nearby fork to use as an MMBIR

target, it would instead need to find another region to

serve as the template switch site. If MMBIR results in a

jump to a region that has already been replicated, it
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would result in a duplication. Such a “backwards” jump

might even preferentially occur if the downstream, active

fork is creating supercoiled DNA ahead of it, which could

make it a difficult region to invade.

It is also possible that the replication stress resulting

after IR is not lesion driven but a result of altered check-

point signaling, gene expression, or other factors in a

global response. Such factors might include altered utili-

zation of origins, especially dormant origins fired in

response to stalled replication forks, or a general altera-

tion in the progression rates of forks. Such a global alter-

ation of replication dynamics could readily explain why

IR CNVs occurred at the same hotspots as APH and HU

CNVs, since these regions are clearly highly sensitive to

inhibition of replication [Arlt et al., 2011b], even if the

underlying reason in not yet known. The potential signal

mediating a global IR effect is unknown, but could

include the checkpoint activity evident in Figure 6.

In summary, we have shown that IR induces de novo

CNVs via a mechanism similar to that in CNVs induced

by APH and HU. A number of these CNVs occur in

genes that have similar CNVs in genetic disease and can-

cer, such as AUTS2 and CDKN2A. Such rearrangements

could be due to collapse of forks encountering damage,

altered replication origin usage or progression dynamics,

or a combination of these factors. The susceptibility to

IR-induced CNVs of cells undergoing DNA replication

indicates that dividing tissues are at increased risk for this

type of structural rearrangement. The observation that

multiple exogenous agents lead to CNVs via a replication

stress mechanism defines a class of CNV mutation, and

predicts that any DNA damaging agent that interferes

with replication is capable of creating such CNVs via this

mechanism.
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