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This paper describes the development of structural solver based on the corotational
approach using the three-node triangular shell element and the integration of existing
aeroelastic solver. The static nonlinear aeroelastic responses of a high aspect ratio wing
are also presented.

I. Introduction

High-Altitude Long-Endurance (HALE) aircraft has high aspect ratio wings to achieve the mission re-
quirements. HALE aircraft demands high aerodynamic and structural efficiency because of lightweight and
flexibility. The wings may undergo large deformations and appear the geometrically nonlinear behavior.
Nonlinear structural as well as aerodynamic modeling are necessary for the aeroelastic analysis and design
of HALE aircraft.

The aeroelasticity of HALE aircraft has been widely studied and several nonlinear aeroelastic solvers
have been developed. Van Schoor and von Flotow1 studied very flexible aircraft using linear finite element
analysis and 2D unsteady strip theory aerodynamics. Their results indicate that unsteady aerodynamics and
flexibility of the aircraft should be considered so as to correctly model the dynamic system. Patil,Hodges,
and Cesnik2 investigated the aeroelasticity and flight dynamics of HALE aircraft. They modeled a very
flexible wing as an exact intrinsic beam model with Peter’s finite-state aerodynamics. The results indicate
the overall flight dynamic characteristics of the aircraft change due to wing flexibility. Drela3 developed an
integrated design and analysis package which incorporated a nonlinear beam model with lifting-line aerody-
namics. Cesnik and his co-workers have developed Nonlinear Aeroelastic Simulation Toolbox (UM/NAST)4

which uses a strain-based structural formulation and Peter’s finite-state aerodynamics. Several aeroealstic
issues in HALE aircraft have been addressed: nonlinear aeroelastic modeling,4,5 integral wing actuation for
generating maneuver loads,6 flutter boundary enhancement,7 gust load alleviation,8 and overall nonlinear
vehicle optimization of unconventional configuration.6 Garcia et al.9,10 studied the the effects of transonic
aerodynamics of a slender wing by coupling a Navier-Stokes solver with a nonlinear beam model. Smith et
al.11 coupled an Euler solver with a geometrically exact beam model to investigate the effect of nonlinear
aerodynamics and structures compared to various linear solutions. They concluded that linear aerodynamics
theories result in larger steady state displacements and conservative flutter predictions. Palacios and Ces-
nik12 coupled a nonlinear, quasi-3D structural solver with ENS3DAE to investigate static aeroelasticity of
HALE wings in compressible flow. Hallissy and Cesnik13 studied static and dynamic aeroelasticity of HALE
wings using CFD code coupled quasi-3D, slender structural model.

These solvers use the nonlinear beam models for structural descretization. This paper describes the
development of structural solver based on the corotational approach using the three-node triangular shell
element and the integration of existing aeroelastic solver. The static nonlinear aeroelastic responses of a
high aspect ratio wing are also presented.
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II. Structural Solver

The three-node triangular shell element which is combined with the optimal membrane (OPT) element14

and discrete Kirchhoff (DKT) plate bending element,15 is used for the finite element discretization of model.
The nodal displacement vector and the stiffness matrix of OPT element are as follows:

{dm} =
{
u1 v1 θz1 u2 v2 θz2 u3 v3 θz3

}T
(1)

[km] =
1

V
[L][E][L]T +

∫
Ω

[Bm]T [E][Bm]dA (2)

where [E] is the elasticity matrix, [Bm] is the strain-displacement matrix, [L] is the constant matrix, and V
is the volume of element. The nodal displacement vector and the stiffness matrix of DKT element are as
follows:

{db} =
{
w1 θx1 θy1 w2 θx2 θy2 w3 θx3 θy3

}T
(3)

[kb] =

∫
Ω

[Bb]
T [De][Bb]dA = 2A

∫ 1

0

∫ 1−ζ3

0

[Bb]
T [De][Bb]dζ2dζ3 (4)

where [De] is the flexural rigidity of the plate, [Bb] is the strain-displacement vector, A is the area of the
element. The stiffness matrices of OPT element and DKT element are combined to form the shell stiffness
matrix of the element. The nodal displacement vector and the stiffness matrix of shell element are as follows:{

{dm}
{db}

}
=

{
{u1 v1 θz1 u2 v2 θz2 u3 v3 θz3}T

{w1 θx1 θy1 w2 θx2 θy2 w3 θx3 θy3}T

}
(5)

[k]{d} =

[
[km]9×9 0

0 [kb]9×9

]{
{dm}
{db}

}
(6)

In order to have the tangent stiffness, the following stress stiffness matrix is added to the shell stiffness
matrix.

[kσ] =

∫
[G]T

[N̄ ] 0 0

0 [N̄ ] 0

0 0 [N̄ ]

 [G]dxdy (7)

This integral can be evaluated exactly using seven Gauss points in the area coordinate system.
In corotational approach,16 the total motion of an element is decomposed into a rigid body motion and a

pure deformation. Then the contribution of the rigid body motion to the total deformation of the element is
removed before performing the element computations. This will enable to upgrade the structural elements
to treat problems with large rotation but small strain. Figure 1 shows the initial (undeformed) and current
configurations of a general triangular shell element, moving in the global coordinate system g.

The displacement vector of node i with position vector XG
i in the global coordinate is denoted by ugi .

E0 is the local coordinate system in the initial configuration with the origin at node 1 and axis E01 along
the side 1− 2 and E03 perpendicular to the element plane. In the current configuration, the position vector
of node i is given by xgi = Xg

i + ugi . Using xgi , local coordinate system E in the current configuration is
established.

Rotations of each node in the global coordinate system are expressed by a triad which is rigidly tied to
the node and rotates with the node from its initial state S0 to its current state S. Updating triad S for
incremental rotations after each iteration is performed by updating its transformation matrix TS . Assuming
θ̃X , θ̃Y and θ̃Z as the incremental rotations of triad S resulted from the last iteration computed in global
coordinate system, TS may be updated by the following expression:

(TS)new = T̃ · (TS)old (8)

where

T̃ = I +
Ω̃ + 0.5Ω̃2

1 + 0.25|ω|2
, |ω| =

√
θ̃2
X + θ̃2

Y + θ̃2
Z , Ω̃ =

 0 −θ̃Z θ̃Y

θ̃Z 0 −θ̃X
−θ̃Y θ̃X 0

 (9)
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Figure 1. Corotation coordinate.

Pure nodal rotations in local coordinate system E are equal to components of an antisymmetric matrix Ω
as:

Ω =

 0 −θE3 θE2

θE3 0 −θE1

−θE2 θE1 0

 (10)

where Ω is found by following expression using orthogonal matrix T = TTE TSTE0:

Ω = 2(T − I)(T + I)−1 (11)

Pure nodal displacements at node i in local coordinate system E are as follows:

ūEi =


ūE1
i

ūE2
i

ūE3
i

 = TTE (ugi +Xg
i − u

g
1 −X

g
1 )−XE0

i , i = 1, 2, 3 (12)

where XE0
i is the initial coordinates of node i in E0. Finally, the pure deformations at node i computed in

local coordinate system E can be expressed as:

{di}pure =
{
ūE1
i ūE2

i ūE3
i θE1

i θE2
i θE3

i

}T
, i = 1, 2, 3 (13)

These pure deformations may not be really pure and a projector matrix P 17 can be introduced to bring the
non-equilibrated internal force vector into equilibrium. The local element stiffness matrix and the internal
force vector are computed as follows:

{d̄} = [P ]{d}, {r̄} = [P ]T {r} = [P ]T [k]{d̄}, [k̄] = [P ]T [k][P ] (14)

Transforming [k̄] and {r̄} to the global coordinate system, the procedure is repeated for all elements to
assemble current structural stiffness [K̄] and internal force { ¯Rint}. Load imbalance {∆R} is found by
subtracting {R̄int} from the vector of applied load {Rext}. The structure equations are as follows:

[K̄]{∆D} = {∆R} (15)

For the static aeroelastic simulation, this equation can be solved using Newton-Raphson method for dis-
placement increment {∆D̄}.
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The structural dynamics governing equations of motion can be written as:

[M ]{D̈}+ [C]{Ḋ}+ {Rint} = {Rext} (16)

The numerical integration of the governing equations is performed using the Newmark or the generalized-α
methods.18 The Newmark relations to update the displacements and velocities are as follows:

{D}n+1 = {D}n + ∆t{Ḋ}n + ∆t2
[(

1

2
− β

)
{D̈}n + β{Ḋ}n+1

]
(17)

{Ḋ}n+1 = {Ḋ}n + ∆t
[
(1− γ){D̈}n + γ{D̈}n+1

]
(18)

The balanced equations for generalized-α method are given by:

[M ]{D̈}n+1−αm
+ [C]{Ḋ}n+1−αf

+ {Rint}n+1−αf
= {Rext}n+1−αf

(19)

Using the Newmark update relations, the balanced equation is rearranged as follows:

[Keff]{∆D} = {Reff} (20)

[Keff] =
1− αm
β∆t2

[M ] +
(1− αf )γ

β∆t
[C] + (1− αf )[Kt] (21)

{Reff} =[M ]
1− αm
β∆t2

∆ts{ḋ}n + [M ]
1− αm
β∆t2

∆t2
(

1

2
− β

)
{d̈}n − [M ]αm{d̈}n

− [C](1− αf ){ḋ}n − [C](1− αf )∆t(1− γ){d̈}n + [C](1− αf )
γ

β
{ḋ}n

+ [C](1− αf )
γ∆t

β

(
1

2
− β

)
{d̈}n − (1− αf ){Rint}n − αf{Rint}n

+ (1− αf ){Rext}n+1 + αf{Rext}n

(22)

III. Aerodynamic Solver

The computation of the aerodynamic forces is used existing aeroelastic solver which has been developed
at JAXA. This solver is based on cell-centered, finite volume scheme on multiblock structured grid. The
governing equations for the flow field can be written as:

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
=

1

Re

{
∂Ev
∂x

+
∂Fv
∂y

+
∂Gv
∂z

}
(23)

where

Q =


ρ

ρu

ρv

ρw

e

 , E =


ρu

ρu2 + p

ρuv

ρuw

(e+ p)u

 , F =


ρv

ρuv

ρv2 + p

ρvw

(e+ p)v

 , G =


ρw

ρuw

ρvw

ρw2 + p

(e+ p)w



Ev =


0

τxx

τxy

τxz

βx

 , Fv =


0

τyx

τyy

τyz

βy

 , Gv =


0

τzx

τzy

τzz

βz



(24)
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IV. Numerical Results

A. Validation of structural solver

A cantilever plate made of an isotropic material subject to an end moment is considered (Figure 2). The
plate size is 0.6m × 0.3m × 0.01m. The material properties are Young’s modulus E = 196.2GPa, shear
modulus G = 75.46GPa, and Poisson’s ratio ν = 0.3. Figure 3 shows the transverse tip deflection against
the applied moment, and current solution is good agreement with the exact solution.16

Figure 2. Cantilever plate subjected to end moment.

Figure 3. Tip displacement as a function of the applied
moment.

B. Static aeroelastic simulation

Using the developed solver, the static and aeroelastic simulations of the high aspect ratio wing (Figure 6)
were conducted. The chord length is 1m and the span length is 16m. The airfoil section is NACA0012. The
structural properties are Young’s modulus E = 200GPa, shear modulus G = 100GPa, and Poisson’s ratio
ν = 0.3. The structural mesh and the aerodynamic mesh are shown in Figure 4 and 5.

Figure 6 shows the static aeroelastic deformation and the pressure coefficient contour for Mach number
M = 0.30 at angle of attack α=2.0deg.

The tip displacements are compared with results of reference13 in Figure 7. Both the bending displacement
and twist angle of current results are larger than other results. The in-plane bending deformation appears in
our results becase the isotropic material is used in our model. On the other hands, the rigidity of chord-wise
is larger than that of span-wise in reference.13 As a result, it is assumed that the larger displacements of
bending and twist appears because of the small torsional rigidity.

V. Concluding Remarks

The structural solver based on the three-node triangular element with the corotational approach was
developed. This structural solver was combined the existing aeroelastic solver, and the static aeroelastic
simulations of a high aspect ratio wing were conducted. These solver is possible to use in high-fidelity
nonlinear aeroelastic analysis of complex configuration in the time domain. Further studies will focus on
dynamic aeroelastic simulations.
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Figure 4. FEM mesh. Figure 5. CFD mesh.

Figure 6. Static aeroelastic deformation and pressure coefficient contour.
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