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Kernels for non-local elasticity are frequently obtained from phonon dispersion relations.
The dispersion relations are generally available in the form of one-dimensional (1D) curves
in reciprocal space for different high-symmetry directions of the Brillouin zone, however,
3D kernels for three-dimensional (3D) solids are needed. To the best of knowledge of the
authors, there is no systematic procedure to obtain material specific nonlocal kernels (for
integral type nonlocality) from the dispersion data. The present paper proposes strategies
to build the 3D kernels from the dispersion data. Our particular focus is on isotropic media
that is interesting due to the inherent quasi-1D nature of the axisymmetric kernel. We
have obtained these kernels using Fourier-Bessel transforms, yielding axisymmetric kernel
profiles in both reciprocal and real spaces.

I. Introduction

Theories of classical continuum mechanics do not account for length scales that capture the underlying
material microstructure. Consequently, they are found to be inadequate for several situations, where mi-
crostructure can influence the deformation response in a manner that is not adequately captured by classical
continuum mechanics. Some examples include crack-tip stress states, dispersive propagation of waves, strain
softening etc. Nonlocal continuum theories can alleviate the aforementioned problems, if a suitable length
scale parameter can be found which is representative of the underlying material microstructure. Further-
more, meso-scale modeling, which is needed to bridge the gap between atomistic models and their upscaled
continuum models, will necessarilly have to address the issue of incompatibility between atomistic models
which are non-local and contain length scales and classical continnum models which are devoid of a length
scale. The results from several prior studies on non-local theories can be found in, Bazant and Jirásek
(2002),5 Aifantis (2003),2 Askes and Aifantis(2011).3

In the integral type nonlocal theories, the stress is related to a weighted integral of strains of over a
certain neighborhood. The weighting function is the so called kernel. The nonlocal stress, tkl, in linear
elastic body, V , can be described as

tkl(x) =

∫
Ω

αijkl(x,x
′)εkl(x

′) dΩ (1)

where α is a tensorial kernel representing an attenuating elastic modulus. Here, t and ε are the nonlocal
stress tensor and local strain respectively. Ω ⊂ V is the compact support for the kernel. x and x′ are
position vectors for two material points in Ω. If it is assumed that a unique kernel weights all entries of the
stiffness tensor, then the above equation becomes,

tkl(x) =

∫
Ω

α(x,x′)σkl(x
′) dΩ (2)
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Here, σ is the Hookean stress tensor and α is a scalar kernel function. When the kernel function, α, tends
to a delta function the nonlocal elasticity degenerates to the classical elasticity. The material dependence of
the nonlocal constitutive equations appears yet to be resolved, nevertheless the representation provided in
equation (2) is widely used and the following properties are generally attributed to the Kernel function, α:

(1) α(x,x′) satisfies the normalization condition, i.e.
∫

Ω
α(x,x′) dΩ = 1

(2) The kernel is a decaying function i.e. it has peak at ‖x − x′‖ = 0, decay with increasing distance
‖x− x′‖ and stays positive in Ω.

(3) α is bi-symmetric i.e. α(x,x′) = α(x′,x) and function of x−x′. For isotropic materials α is axisym-
metric (direction independent), i.e. α(x,x′) = α(r), where r = ‖x− x′‖.

For detailed description about the properties of the kernel function refer to, Eringen(1983),7 Bazant and
Chang(1984),4 Bazant and Jirásek(2002),5 Polizzotto(2001)11 . Perhaps the kernel function, should also be
able to represent a delta function as Ω→ 0, as suggested in Eringen(1983)7 . In this context4 suggested that
a continuum should not yield zero energy mode for non-rigid-body deformations and should have real wave
propagation velocity. They have shown that these two conditions requires Fourier transform of α to have
positive values that span the entire reciprocal space. Same restriction on α was reached in Polizzotto(2001)11

by noting that the equation 2 is a homogeneous Fredholm integral equation of first kind and then invoking
the Fredholm integral equation theory. It was noted in Bazant and Chang(1984)4 that some of the popular
kernels do not satisfy the required conditions, they have suggested to include delta function alleviate this
problem. However, we point out that inclusion of delta function in the kernel would invariably lead to the
lose of stress regularity property of nonlocal elasticity whenever the local stress is singular.

On contrary to the above mentioned restrictions on the kernel, recent research through molecular me-
chanics furnishes numerical results which indicate that at nano-scale, α may not be always positive and the
attenuation need not be monotonous.10,13 It appears that the negative values in the nano-scopic α could
be an artifact of empirical analytical inter-atomic potential used in these studies. In Picu (2002),10 using
the discrete atomistic interactions between randomly distributed atoms analytical kernels were derived for
isotropic materials. Therein the 1D kernel is obtained from molecular simulation in 3D, containing contribu-
tions form the neighbouring volume, which is different form 1D kernel obtained from 1D or quasi-1D system.
Subsequently the 3D kernel is obtained from the 1D kernel by equating the nonlocal stress at the centre of
a 3D domain, which apparently lacks physical basis. Further, their 3D kernels are not defined for distances
below the distance at which the radial distribution function goes to zero.

Dispersion curves are obtained for different modes of waves propagation along various wave vectors. The
dispersion curves obtained in this manner are inherently one dimensional in nature, whereas for analyzing
continuum (represented via integral type nonlocality) 3D kernels are needed. With best of authors’ knowl-
edge there does not exist systematic procedure to obtain material specific nonlocal kernels (for integral type
nonlocality) from dispersion data. For ideal isotropic materials the longitudinal and transverse wave disper-
sion curves should be identical upon proper scaling by phase velocities of classical elasticity, consequently
the kernels obtained for different modes would be identical. Present paper provides methods for obtaining
the 3D kernel form the frequency dispersion data.

II. Construction of 3D kernels

The problem addressed below is that given α̂1D(k), where k is the wave number, the α3D(x) has to
be found. Note that if a function f(x) defined on a n-D domain can be written as a tensor product of n
functions (along orthogonal directions) defined over real line, as f(x) = f1(x1) ⊗ f2(x2) ⊗ · · · ⊗ fn(xn) the
Fourier transform can be simplified as9

F(f(x)) = F(f1) ⊗ F(f2) ⊗ · · · ⊗ F(fn) (3)
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This kind of functions are called as separable functions. Therefore the kernel in real space, α1D(x), can be
obtained as tensor product of inverse Fourier transform of α̂1D(k)’s along different axes of the Cartesian
coordinates.

α3D(x) = αx1

1D(x1)αx2

1D(x2)αx3

1D(x3)

This kind of construction of multi-dimensional kernel may be suitable for orthotropic case. However, they
are not suitable for isotropic case in general as discussed in the following.

Focus of the present work is on isotropic materials, for which the α2D(x) and α3D(x) should have cylin-
drical and spherical symmetries respectively (i.e. rotational symmetry in 2D and 3D respectively). For
isotropic materials the tensor product scheme may not work, since functions with rotational symmetry may
not be separable. However, there are exceptions, for instance Gaussian functions are axisymmetric as well
as separable. It is know that every circularly symmetric separable function are Gaussian,12 . For separable
axisymmeric functions the multidimensional kernels can be constructed via tensor product as described for
anisotropic case. The following part of this section focuses on kernel construction for axisymmetric functions.
In case of rotational symmetry of αnD(x) its Fourier transform α̂nD(k) proves also to be rotationally sym-
metrical. Here, k is the position vector in the reciprocal space (wave vector). In nD the circular symmetry
for a function f means f(x1, x2, · · · , xn) = fr(r) where, r = (x2

1 +x2
2 + · · · , x2

n)1/2 The superscript ‘r’ refers

to radial function. Note that f and fr are different functions. Its Fourier transform f̂(k1, k2 + · · · , kn) is also
circularly symmetric in k-space. That is the n-D Fourier transform of a n-D circularly symmetric function is
circularly symmetric. It turns out that for 2- dimension the radial profile of the Fourier transformed function
is identical to the Hankel transform6 of zero order of the radial profile (in the interval 0 ≤ r < ∞) of the
2-D circularly symmetric function. The relation between these two radial functions is obtained by Hankel
transform,6 also known as Fourier-Bessel transform, (here denoted as H0, see equation 5). Similarly for
3D axisymmetric functions the relation between the two radial functions is obtained by the spherical Bessel
transform6 of zero order (here denoted as S0, see equation 6). These particular properties of the Fourier
transform for nD axisymmetric functions is the key for the current paper.

A. Kernel construction using known radial profile

In view of the rotational symmetry of the kernels in higher dimension, two different routes for the construction
of the kernel are explored in the following. While the first approach assumes the radial profiles are identical
for different dimensions in the “reciprocal space”, the second approach assumes the same but for “real
space”. It will be clear subsequently that kernels obtained on the basis of these two approaches are different
in general.

1. First approach

The first approach assumes:
α̂rnD(k) = cnD α̂1D(k), n = 2, 3 (4)

Therefore,

αr2D(r) = c2H−1
0 (α̂1D (k)) =

c2
2π

∫ ∞
0

α̂1D(k) J0(kr) k dk (5)

αr3D(r) = c3 S−1
0 (α̂1D (k)) =

c3
2π2

∫ ∞
0

α̂1D(k) sinc(kr) k2 dk (6)

Where, the constants c2 and c3 are used to satisfy the normalization condition.
In the following the constants c2 and c3 are obtain using the normalization conditions

2

∫ ∞
0

αr1D(r) dr = 1 (7)∫ 2π

0

∫ ∞
0

αr2D(r) r dr dθ = 1 (8)∫ 2π

0

∫ π

0

∫ ∞
0

αr3D(r) r2 sin(φ) dr dφ dθ = 1 (9)

These constants can be obtained using orthogonality property of Bessel and Spherical Bessel functions, see
Ghosh, Sundararaghavan and Waas (2013) 8 for details.
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2. Second approach

The second approach assumes: αrnD(r) = CnD α
r
1D(r), n = 2, 3. Therefore in this approach the intended

kernel in real space is obtained more directly. The normalization condition for the kernels as given by equa-
tion (8) and (9) yield the CnD-s as C2D = 1

2π I2
, where, I2 =

∫∞
0
α1D(r) r dr and C3D = 1

4π I3
, where, I3 =∫∞

0
α1D(r) r2 dr.

Figure 1. Radial profile for 2D and 3D Kernels. For all kernels c = 1.

III. Examples

In this section few commonly used functional form of 1D kernels were explored to obtain the axisymmetric
2D and 3D kernels.

A. Isotropic non-separable kernel: stress gradient

The 1D kernel α̂1D = 1/(1 + c2k2
1) corresponds to the to the stress gradient theory. According to the

first approach the radial functions in reciprocal space in 1D to 3D is given by α̂nD = 1/(1 + c2k2), where,
k = ‖k‖, k ∈ Rn. Following the first approach the radial function for the kernels in the real space are

α1D(x1) =
1

2c
e−|x1|/c , αr2D(r) =

1

2πc2
K0(r/c) , αr3D(r) =

1

4πc2r
e−r/c (10)

Where, x1 ∈ R; r = ‖x‖,x ∈ Rn, n = 2, 3. Note that c > 0 is a constant and K0 is the modified Bessel
Function of the Second Kind of order zero, see page-376 of Abramowitz and Stegun(1972).1 The multi
dimensional kernels shows singularity at r = 0. Note that these are the Green’s function for the operator
1 − c2∇2 in 1,2 and 3 dimensions. Therefore, kernels obtained following the first approach corresponds to
the Green’s function of the stress gradient differential operator. The 1D kernel has jump discontinuity of
unit magnitude like Heaviside function in its derivative at origin. The 2D and 3D kernels have (essential and
pole respectively) singularity at origin.

Following the second approach the radial function for the kernels in the real space are

αr2D(r) =
1

2πc2
e−r/c, αr3D(r) =

1

8πc3
e−r/c (11)

Where, r = ‖x‖,x ∈ Rn, n = 2, 3. Therefore, the two approaches yield completely different kernels in the
real space. While the first approach yields only one singularity at r = 0 the second approach does not have
any singularity.

B. Isotropic separable kernel: Gaussian

The 1D Gaussian kernel in reciprocal space e−c
2k2/4. If the coefficient c is same along different Cartesian

axes then this is a separable function. For separable axisymmetric function construction using tensor product
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Figure 2. 2D kernels (c = 1). Gaussian, stress gradient 1st and 2nd approach from left to right.
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approach and radial function approach will yield identical kernels. Following the first approach the radial
function for the kernels in the real space are

α1D(x1) =
e−

r2

c2

c
√
π
, αr2D(r) =

e−
r2

c2

c2π
, αr3D(r) =

e−
r2

c2

c3π3/2
(12)

where, x1 ∈ R, r = ‖x‖,x ∈ Rn, n = 2, 3. The 2D and 3D kernels obtained by second approach is identical
to the above.

The radial profiles for kernels obtained by both of the proposed approaches are compared in figure (1),
which shows that kernel properties depend on the choice of construction proposed above and also the kernels
depend on the dimension of the problem. Surface plots for 2D kernels as given in figure (2) emphasizes the
same.

IV. Conclusion

This paper provides a general approach to obtain isotropic multi-dimensional kernels, useful for nonlocal
elasticity, from phonon dispersion data. The key issue here is that the kernels obtained must be axisymmetric
functions in both real as well as in reciprocal space due to isotropy. In order to satisfy the axisymmetry
two different techniques (namely first and second approach respectively) are proposed. Multi-dimensional
axisymmetric kernels built in this manner have identical radial profile with the 1D kernel in either, the
(1) reciprocal space or (2) real space. For the first approach, the kernels are obtained as the generalized
Hankel transform of the radial profile of the kernels in reciprocal space. Multi-dimensional kernels obtained
via both approaches are normalized. Some example multi-dimensional analytical kernels are developed to
demonstrate the method.
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