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This paper presents an analytical approach for the stability and bifurcation analyses
of nonlinear dynamic systems that have polynomial and trigonometric nonlinearities. The
method ensures that all equilibrium points in a bounded region of the state space are found
and yields arbitrarily tight bounds to the parameter points where the system exhibits local
bifurcations. The solution method requires calculating and sequentially refining polynomial
bounds of the trigonometric nonlinearities using Taylor expansions and Bernstein polyno-
mials. The bounds supporting the resulting analyses, which are exempt from approxi-
mation and numerical error, can be made arbitrarily tight with additional computational
effort. Due to the exponential complexity of the Bernstein expansion, the methodology is
applicable to systems with a moderate number of states and bifurcating parameters.

I. Introduction

Nonlinearities involving polynomic and trigonometric functions are commonly found in models of complex
systems and are one of the primary sources of difficulty in conducting stability analyses for nonlinear dynamic
systems. A nonlinear dynamical system can be represented by,

ẋ = F (x,p) (1)

where x ∈ Rn is the state and p ∈ Rk is a parameter vector. The vector function F , is given by

F (x,p) =

⎛
⎜⎜⎜⎜⎜
⎝

f1(x,p)
f2(x,p)
⋮

fn(x,p)

⎞
⎟⎟⎟⎟⎟
⎠

and in general, is comprised of nonlinear functions of the state and parameters. The solutions to F (x,p) = 0
will be called the fixed points or equilibrium points of the dynamic system (1). If the value of p is fixed at
p∗, these points will be denoted as (x∗,p∗) such that F (x∗,p∗) = 0.

The system dynamics near an equilibrium point is well approximated by

dẋ = J(x∗,p∗)dx (2)

where dx = x −x∗ and J is the Jacobian matrix of F (x,p) evaluated at (x∗,p∗) and is given by:

J(x∗,p∗) =

⎡⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

(x∗,p∗) . . . ∂f1
∂xn

(x∗,p∗)

⋮ ⋱ ⋮
∂fn
∂x1

(x∗,p∗) . . . ∂fn
∂xn

(x∗,p∗)

⎤⎥⎥⎥⎥⎥⎥⎦

(3)
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The local stability analysis of system (1) entails carrying out the following steps1:

1. Find the fixed points x∗j = (x∗1, x∗2, . . . , x∗n) with j = 1, . . . , k that satisfy: F (xj∗,p∗) = 0.

2. Compute J(xj∗,p∗).

3. The local stability of x∗j is determined by the eigenvalues of J(xj∗,p∗). Fixed points are stable when
the real part of all eigenvalues are negative. Otherwise they are unstable.

In the analysis above, the parameter point p∗ has been kept fixed. The dependency of a stability analysis
on the value of p∗ constitutes the bifurcation analysis. Bifurcation is a change in the equilibrium points or
periodic orbits, or in their stability properties, as a parameter is varied. The parameter is called a bifurcation
parameter, and the values at which changes occur are called bifurcation points, which can be represented by
bifurcation diagrams2.

Typically, finding the fixed points of a nonlinear dynamical system and determining how many such
points there are, is challenging and no general closed-form solution exists. The method proposed herein
enables performing stability and bifurcation analyses in a rigorous and systematic manner. The approach
proposed is applicable to systems with differentiable nonlinearities and makes use of Taylor bounds and
Bernstein expansions.

As compared to the continuation methods3, the analytical structure of the proposed method ensures
that both the resulting stability and bifurcation analyses are exempt from approximation error, e.g., all
equilibrium points in a bounded region of the state space are found and there is no need to provide a good
initial guess to a numerical search.

The proposed method requires calculating and sequentially refining polynomial bounds of non-polynomial
nonlinearities using Taylor expansions. By expanding each bounding polynomial using Bernstein expansions,
we first bound a region of the state space where all the equilibrium points reside. Tighter bounds for the fixed
points are obtained by sequentially partitioning the bounding set. An eigenvalue analysis of the Jacobian
at the resulting bounding regions enables assessing local stability at all equilibria. The deployment of the
same strategies over partitions of the state and parameter space enables identifying ranges that contain the
bifurcating points of the system. A comparison between the methods in the literature and the one proposed
herein is presented next.

Several methods have been proposed in the literature to find the zeros of systems of nonlinear equations4,
e.g. F (x,p) = 0. These methods include the bracketing methods, and the open domain methods. The
bracketing methods, such as (1) bisectional and (2) false position, are iterative procedures which require an
interval containing a zero. An iterative procedure yields tight bounds of the interval containing the zero
of the function. These methods are guaranteed to find a zero (not all) in the specified interval. The open
domain approaches such as (1) Newton’s, (2) secant, and (3) Muller’s methods, start with an initial point and
attempt to iteratively converge to the zeros using the derivative or an estimated derivative of the nonlinear
function. While they also require initialization, similar to the previous methods, they are not guaranteed to
find all the zeros.

In regard to bifurcation analysis, continuation methods are an effective tool for finding equilibrium
branches of systems of nonlinear equations and establishing bifurcation diagrams3. In the most basic ap-
proach, for a fixed parameter value p∗, first, an initial guess for the zero of the system is made, then by a zero
finding algorithm, such as Newton Raphson, the zero of the nonlinear function is numerically calculated. In
the next step, the value of the parameter is increased (or decreased) slightly. For this new parameter, a new
value of the zero of the system is predicted. There are several approaches for making such a prediction. The
simplest approach is to choose the solution from the preceding step under the assumption that the equilib-
rium branches are continuous. The prediction is corrected again using methods such as Newton Raphson.
Unlike our approach, the outcome of a numerical search for zeros depends on the initial condition. This, along
with not knowing the number of zeros that may exist, may render bifurcation diagrams that miss branches
of the equilibrium manifold. These branches appear to be disconnected when the analysis is restricted to a
bounded region of the state space. Continuation methods commonly handle up to two parameters. On the
other hand, it is expected that the method developed here will be efficient when dim(x) + dim(p) < 8.

The rest of the paper is organized as follows: Section II presents the concept of partitioning and a
brief introduction to Bernstein polynomials. Section III provides a high level description of the main tasks
developed in this work. In Section IV, methods for finding global polynomial bounds of non-polynomial
functions (i.e., bounds that apply throughout the entire space of the independent variables of the function),
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as well as local polynomial bounds are presented. In Section V, the approach for finding the zeros of nonlinear
systems of equations is introduced. SectionVI leverages on the previous sections to carry out stability and
bifurcation analyses, and finally, concluding remarks are discussed in Section VII.

II. Basic Concepts and Notations

A. Partitioning

In this section, the basic concepts that will be used in the rest of the paper are introduced. Let us define
the space of interest by W ⊂ Rm. For instance, for stability analysis W ⊆ Rn, i.e., state space x, and for
bifurcation analysis W ⊆ Rn×Rk, i.e., the Cartesian product of the state and parameter spaces x and p. The
domain of interest, denoted as D ⊆ W , is a bounded hyper-rectangle. The hyper-rectangle R ∈ Rm, whose
lower left and upper right corners are at wU and wL, is given by

R(wL,wU) = [wL1 ,wU1 ) × [wL2 ,wU2 ) × . . . × [wLm,wUm ) (4)

For instance, in the univariate case, R represents an interval. Let us denote c = wL
+wU

2
, the cen-

troid of the hyper-rectangle. Any hyper-rectangle can be partitioned into a collection of smaller disjoint
hyper-rectangles using an operation denoted by ρ. One possible partition, given by:

ρ(R(wL,wU)) = {R(wL,wL +Ψ),R(wU −Ψ,wU)} (5)

where Ψ = [wU1 −wL1 , . . . , (wUi −wLi )/2, . . . ,wUm −wLm], partitions the original rectangle into two rectangles by
bisecting it in the ith direction. In stability and bifurcation analysis, we initially choose R to be equal to D,
and upon partitioning, D is bisected into smaller hyper-rectangles, such that ⋃{ρ(R(wL,wU))} = D. The
highlights of the Bernstein expansion of polynomials are presented next.

B. Bernstein Expansion

The image of a hyper-rectangle when mapped by a multivariate polynomial is a bounded interval. By
expanding that polynomial using a Bernstein basis over the rectangle, rigorous bounds to such an interval
can be calculated by mere algebraic manipulations. These manipulations yield piecewise constant bounding
functions of any given polynomial over the domain of interest. In particular, bounds of the multivariable
polynomial function g(z) for z ∈ D are given by

b(z) ≤ g(z) ≤ b(z) (6)

where b and b are piecewise constant functions of z that assume a constant value over each rectangle
comprising ρ(D). Additional details on Bernstein expansions are available in5–7 .

III. Highlights of the Algorithms

In this section, we briefly review the major components of the proposed approach and put into context the
contribution and objective of this research. While the final objective is to carry out stability and bifurcation
analysis for general nonlinear systems, the proposed methodology relies on calculating polynomial upper and
lower bounds of the non-polynomial nonlinearities. A high level description of the algorithms used to (1)
identify the bounding set of equilibrium points (2) perform stability analysis, and (3) generate bifurcation
diagrams are presented next.

A. Bounding the Zeros/Fixed Points

A procedure for bounding the zeros of a nonlinear system of equations in the domain D for a fixed value
of p∗ is presented next. To start off, we assume that the partition ρ(D) is available, and the value of p is
fixed at p∗.

1 - Calculate upper and lower bounds of the non-polynomial functions in F via Taylor expansions (See details
in Section IV). Bounds for each rectangle comprising the partition will be calculated. While the order of
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the expansion will be set a priori, the point of expansion can be any interior point of the rectangle. For
the ith hyper-rectangle of the partition, this leads to f

k
(x,p∗,ci) ≤ fk(x,p∗) ≤ fk(x,p∗,ci) where ci is

an interior point of the rectanglea, and f
k
(x,p∗,ci) and fk(x,p∗,ci) are polynomial functions. Note

that, in the case of global bounds, the family of functions f
k
(x,p∗,ci) for all i are all lower bounding

functions of fk for x ∈ Rn, while fk(x,p∗,ci) for all i are all upper bounding functions of fk for x ∈ Rn.

2 - Use the Bernstein expansion of polynomials to calculate piecewise constant bounds of the polynomial
bounding functions. This leads to:

bk(x,p∗) ≤ fk(x,p
∗,ci) ≤ fk(x,p∗) ≤ fk(x,p∗,ci) ≤ bk(x,p∗)

3 - Generate an outer bounding set of the nullclines of fk by finding the hyper-rectangles where bk(x,p∗) ≤
0 ≤ bk(x,p∗). Denote by Zk such a set, i.e., states where fk(x,p∗) = 0.

4 - Generate the outer bounding set of the fixed points of (1), Q, by calculating the intersection of the
elements in Zk for k = 1, ...n.

5 - If the volume of Q is sufficiently small, stop. Otherwise, subdivide the elements of Q in the partition of
D and go to Step 1.

B. Stability Analysis

For the bounding sets of the fixed points found in Section III-A, proceed as follows :

1 - Calculate an analytical expression for J as a function of x∗. Note that ignorance on the value of x∗

prevents calculating J numerically.

2 - Calculate the characteristic polynomial corresponding to J . This polynomial appears in symbolic form
since it applies to all possible states in the set Q. If the original function contains non-polynomial
nonlinearities, their partial derivatives appear as the coefficients of the characteristic polynomial.

3 - Calculate piecewise constant bounds of the nonlinear coefficients of the characteristic polynomial for each
hyper-rectangle comprising Q using Bernstein expansions.

4 - Use the bounds of the coefficients found in the previous step along with the Kharitonov’s Theorem8 (See
section VI) to determine if the equilibrium points that may exist within each rectangle comprising Q are
stable or not.

5 - If the volume of Q is too large or if the bounds of the polynomial coefficients are too loose, refine the
elements of the partition comprising Q and go to Step 1.

C. Bifurcation Analysis

The above analyses can be extended to carry out bifurcation analyses of (1). In contrast to the procedures
in III-A and III-B, now the value of p∗ is not fixed, but it is free to vary in a bounded range. This variation
may change the location and stability of the fixed points. The procedure for the bifurcation analysis is as
follows:

1 - Apply the procedure for bounding the fixed point(s) in III-A as if p was an additional variable. As a
consequence of this, the polynomial and Bernstein bounds are a function of both the state x and the
parameter point p. The resulting set of boxes Q is a bounding set of the equilibrium manifold inside D.

2 - Apply steps in Section III-B to assess the stability of the fixed points in the resulting Q by calculating
J(x∗,p). Keep in mind that the Jacobian should only be calculated with respect to the state, not the
parameter p.

aIf the polynomial bounds are global, we have the freedom to choose any expansion point, but the tightest local bounds are
obtained when the center of expansion is at centroid of each hyper-rectangle.
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3 - Study the changes in the local stability or number of fixed points as the parameter p varies to determine
ranges of p where the system bifurcates. See Section VI-B for more details.

Figure 1 illustrates different steps of above approaches and the sections where additional details are
provided.

Figure 1. Paper’s outline.

IV. Polynomial Bounds of Nonlinear Functions

Bernstein polynomials have been used for obtaining upper and lower bounds of polynomials over bounded
domains5. The components of F (x,p) cannot be directly expanded in a Bernstein basis when non-polynomial
terms are present. An approach to deal with such terms is to bound the components of F with polynomial
functions. Polynomial functions that bound fk for all values of x ∈ Rn are global, and those that only apply
to some x, say x ∈ D, are local. The developments that follow, which are based on Taylor expansions,
render global and local bounding functions. Note however, that the bounds required in both the stability
and bifurcation analyses that follow will only have to be local within each hyper-rectangle comprising the
partition of D.

A Taylor series of a function can be expected to converge to the original function as the order of expansion
increases. However, as the order of expansion grows the effort required to generate and evaluate the expansion
also increases. A truncated Taylor expansion may not bound the function being approximated. Fortunately,
it is easy to construct suitable low order upper and lower polynomial bounds of a nonlinear function that are
tight locally using the remainder estimation theorem9. For illustration, let us consider the univariate case:

Corollary: if f(x) has derivatives of all orders in an open interval containing the point c, then for each
positive integer τ and for each x in the interval, the Taylor expansion of f(x) is given by:

f(x) = f(c) + f
′
(c)(x − c) + f

′′
(c)(x − c)2/2! +⋯ + f (τ)(c)(x − c)τ /τ ! +Rτ(x, c) (7)

where Rτ(x, c) is called the remainder of order τ .

Theorem 1 (The Remainder Estimation Theorem). if there are positive constants M and r such that
∣f (τ)(t)∣ ≤Mrτ+1 for all t between c and x, inclusive, then the remainder term Rτ(x, c) satisfies the inequality

∣Rτ(x, c)∣ ≤M
rτ+1∣x − c∣τ+1

(τ + 1)! (8)

Note that the remainder assumes a piecewise polynomial form having derivative discontinuities at x = c.
As τ increases, the Taylor approximation of the original function improves locally, and the order of the
remainder term increases. This leads to an increasingly smaller remainder term near x = c, which also grows
more rapidly as x moves away from c.

Example 1. The Taylor expansion for sin(x) centered at c is as follows:

sin(x) = sin(c) + cos(c)(x − c) − sin(c)(x − c)2
2

±⋯
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The expansion converges to the original function as order of expansion is increased. Since ∣f (τ)(x)∣ ≤ 1, we

can apply the Remainder Estimation Theorem with M = 1 and r = 1 to obtain ∣Rτ(x, c)∣ ≤ ∣x−c∣
τ+1

(τ+1)!
. As a

result, a polynomial upper bound for f(x), denoted by f(x, c) is given by:

f(x, c) = sin(c) + cos(c)(x − a) + (x − c)2
2

f(x, c) can be obtained by changing the sign of the term (x − c)2/2. Figure 2 shows the upper and lower
polynomial function of sin(x) for c = π/2 and τ = 0,1,3 and 7 (4 cases) where τ = 0 refers to the special case of
no expansion at all. The bounds are global and are tightest near the center of expansion and become looser
when moving away from c. Additionally, the polynomial bounds become tighter as the order of expansion is
increased, as expected.

Figure 2. The upper and lower polynomial bounds for sin(x) using Taylor expansion of increasing order.
The center of expansion is at c = π/2. As the order of expansion grows, tighter global bounds are
achieved specially near the center of expansion.

Note that the remainder corresponding to expansions where τ is odd can be bounded by a single poly-
nomial of order τ + 1. This is not the case when τ is even. For instance, consider f = cos(x) and c = 0. In
this case, when the order of expansion is even:

∣R2τ(x, c)∣ ≤
∣x∣2τ+1

(2τ + 1)! (9)

The presence of absolute value in the upper and lower polynomial bounds results in a piecewise polyno-
mial function which cannot be expanded by Bernstein expansions. However, this remainder can be further

bounded by a single polynomial using ∣R2τ(x, c)∣ ≤ ∣x∣2τ+1

(2τ+1)!
≤ 1+x2τ+2
(2τ+1)!

. Although this is a valid bounding

polynomial, this polynomial fails to converge to the function being approximated and as such introduces
irreducible conservatism into the problem. Ideally, we should generate polynomial bounding functions that
approach the function being approximated as the size of the rectangles comprising the partition approaches
zero. This feature guarantees that the algorithmic implementation of the analyses that will follow converges
to the true answer. Later in this section, local polynomial bounds that satisfy this property are introduced.
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Taylor-based global bounding functions for multivariable functions are a straightforward extension of the
univariate case.

Corollary: Let us define ∣α∣ = α1 + ⋯ + αn, α! = α1!α2!⋯αn!, xα = x1
α1x2

α2⋯xnαn , and ∂αf =
∂1
α1⋯∂nαnf = ∂ ∣α∣f

∂x
α1
1 ⋯∂xαnn

. The Taylor’s theorem in several variables can be defined as follows:

f(x) = ∑
∣α∣≤τ

∂αf(c)
α!

(x − c)α +Rτ(x,c) (10)

Theorem 2 (The Multivariate Remainder Estimation Theorem). If ∣∂αf(x)∣ ≤M , for x ∈ D and ∣α∣ = τ +1,
then

∣Rτ(x,c)∣ ≤
M

(τ + 1)! ∣∣x − c ∣∣τ+1 (11)

where ∣∣x − c ∣∣ = ∣x1 − c1∣ + ⋯ + ∣xn − cn∣.

Following the same procedure from the univariate case, global bounding polynomials can be still rendered;
however, the absolute value is needed even when the order of expansion, τ , is odd. The absolute values can
be eliminated when x > c. This property is used to establish local polynomial bounds as follows.

The bounds required in both the stability and bifurcation analyses will only have to be local within each
hyper-rectangle. One approach for obtaining local upper and lower polynomial bounds that removes the
need for an absolute value in the remainder upper-bound (i.e., M

(τ+1)!
∣∣x − c ∣∣τ+1) is to assure that in each

hyper-rectangle x ≥ c. This condition is satisfied if Taylor expansion is centered about the vertex of the
hyper-rectangle, at which x assumes its minimum value. In Fig. 3(a), piecewise upper and lower polynomial
bounds for cos(x) when D = [0, π], is divided into two equal-length sub-intervals, are depicted. The Taylor
expansion is centered about the extreme left corner of each sub-interval, where it touches the function. This
method can be easily applied to multi-variable problems, but results in looser upper and lower piecewise
polynomial bounds as shown in the figure. This is because the maxima and minima of the polynomial bounds
are larger than when the center of expansion is about the centroid of a hyper-rectangle. The polynomial
bounding functions approach the function being approximated as the size of the rectangles comprising the
partition approaches zero.

It is also possible to obtain piecewise local upper and lower polynomial bounds for each hyper-rectangle
by replacing the remainder upper-bound (i.e., M

(τ+1)!
∣∣x − c ∣∣τ+1) with its maximum scalar value for all x in

each hyper-rectangle. In Fig. 3(b), local piecewise upper and lower polynomials bounds for cos(x) based on
this method is shown when D = [0, π], is divided into two equal-length sub-intervals. The Taylor expansion
is centered about the midpoint of each sub-interval. Since the bounding of ∣Rτ(x,c)∣ is exact, and because
the polynomial that is expanded by Bernstein is of lesser order compared with cases in which the remainder
theorem is directly used, this method not only eliminates the need for an absolute value, but it is also
computationally advantageous. Similar to the previous case, the polynomial bounding functions approach
the function being approximated as the size of the rectangles comprising the partition approaches zero.
However, while the bounds in the alternative approach touch the function at the point of expansion, in this
approach the bounds may never touch the function.

V. Fixed Point Identification via Bernstein Polynomials

In the previous section, we discussed a method for constructing piecewise polynomial upper and lower
bounds for fk(x,p∗), i.e., fk(x,p∗,ci) and f

k
(x,p∗,ci) based on the Taylor expansions. Note that polyno-

mial bounds calculated based on other techniques, such as Chebyshev polynomials, will be as good. In the
next step, fk(x,p∗,ci) and f

k
(x,p∗,ci) will be expanded via Bernstein polynomials.

In this section we use Bernstein polynomials to bound the range of the bounding polynomial functions.
While rectangles bracketing zero will contain at least one fixed point, those where such a range exclude
the value zero will not contain any fixed points. The Bernstein expansion of the bounding polynomials
yields piecewise constant functions as discussed in Section II-B. Consequently, for each fk, k = 1, . . . , n, the
inequalities

bk(x,p∗) ≤ fk(x,p
∗,ci) ≤ fk(x,p∗) ≤ fk(x,p∗,ci) ≤ bk(x,p∗) (12)

hold for all x ∈ D.
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(a) (b)

Figure 3. (a) Piecewise local upper and lower polynomial bounds for cos(x), when D = [0, π] is divided
into two equal-length sub-intervals, based on the Taylor expansion and its remainder at the start point
of each sub-interval. The order of Taylor expansion is two, and the vertical line at x = π/2 shows where
the second sub-interval starts. (b) Local piecewise upper and lower polynomials bounds for cos(x) when
D = [0, π], is divided into two equal-length sub-intervals. In this figure, we used the maximum of the
Taylor expansion remainder in each sub-interval. The order of Taylor expansion is 2, and it is centered
about the midpoint of each sub-interval.

Denote by Zk the set of rectangles in the partition of D that may contain a zero of fk(x,p) = 0. Note
that Zk is an outerbound of the nullclines of fk. The intersection of the rectangles comprising all the Zk’s
is an outer bound of the fixed points of the system. The rectangles comprising such an intersection will be
subdivided in subsequent iterations until their volume is sufficiently small.

Example 2. In this example, we aim at bounding the fixed points of the dynamic system

{ ẋ1 = −2 cos(x1) − cos(x2)
ẋ2 = −2 cos(x2) − cos(x1)

in the domain D = [−π,π] × [−π,π]. The domain is partitioned into smaller rectangles and the 2nd order
Taylor expansion of the cos(xi) is used to establish upper and lower polynomial bounds. Figures 4(a)-(b)
show outer bounds to the nullclines of f1 and f2. The hyper-rectangles containing the fixed points of the
system of equations, i.e, Q, are shown in Fig. 4(c).

VI. Stability and Bifurcation Diagrams

The results from the previous sections were not specific to nonlinear dynamical systems and can be used to
find the solutions of any system of nonlinear equations as long as polynomial bounds for the nonlinear terms
can be obtained. The method also scales well and Bernstein polynomials have been applied to multinomials
of up to eight variables. In this section, we develop approaches to carry out stability and bifurcation analyses
of nonlinear systems. The methods proposed make use of the bounding sets of the zeros found in the previous
section.

A. Stability Analysis

Recall that the approach of Section V yields a bounding set of all the zeros of a system of nonlinear
equations. When this technique is applied to F (x∗,p∗) = 0 for a fixed p∗, we obtain bounding sets of all
the fixed points of the system within the subset of the state-space D. This set, which is comprised by a
collection of hyper-rectangles, can be made as tight as desired with additional computational effort. Note
however that the exact location of the fixed points will remain unknown. Since only bounds of x∗ and p∗
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(a) (b) (c)

Figure 4. The graphs are produced by initially subdividing the problem domain into 144 equal-sized
rectangles. Partitioning of the rectangles was carried out 4 times with a total elapsed time of 120
seconds using an Intel CORE i5 processor. (a) Rectangles that contain the zeros of the first equation
in the system of nonlinear equations. (b) Rectangles containing zeros of the second equation. (c)
The bounding set of fixed points of the system of nonlinear equations is obtained by intersecting the
rectangles from both equations.

are known, the stability of the corresponding fixed point, which entails carrying out an eigenvalue analysis
of J at the exact (x∗,p∗) location, cannot be calculated by traditional means. Instead, we will consider the
stability analysis of all the points within Q as if they were fixed points. This analysis is done analytically.
In particular, we consider the characteristic polynomial10

∣sIn − J(x∗j ,p∗)∣ = 0 (13)

for all x ∈ Q, where In is the n × n identity matrix, and s is the independent variable of the characteristic
polynomial. This polynomial, whose coefficients are polynomial functions of both x and p∗ may be stable
for some values of x and unstable for others.

Consider the hyper-rectangle R comprising Q. Denote the characteristic polynomial corresponding to all
x in R as

n

∑
i=0

hi(x,p∗)sn = 0 (14)

where hi are polynomial functions available analytically. If there exist any fixed points within R, they will
be stable if and only if the polynomial in Eq. (14) is stable for all x ∈ R. This determination can be made
by using Bernstein polynomials to bound the range of hi(x,p∗) for all i’s and applying the Kharitonov’s
Theorem.

Theorem 3 (Kharitonov’s stability theorem). Consider the interval polynomial ∑ni=0 ansn = 0 where li ≤
ai ≤ ui. This interval polynomial is stable if and only if the four so-called Kharitonov’s polynomials below
are stable

k1(s) = l0 + l1s1 + u2s2 + u3s3 + l4s4 + l5s5 +⋯ (15a)

k2(s) = u0 + u1s1 + l2s2 + l3s3 + u4s4 + u5s5 +⋯ (15b)

k3(s) = l0 + u1s1 + u2s2 + l3s3 + l4s4 + u5s5 +⋯ (15c)

k4(s) = u0 + l1s1 + l2s2 + u3s3 + u4s4 + l5s5 +⋯ (15d)

The stability of each individual Kharitonov’s polynomial can be assessed by Routh-Hurwitz method.
Rectangles for which stability cannot be established may either contain unstable fixed points or may simply
be excessively large to yield an accurate result, e.g., they may contain both an stable equilibrium point as
well as values of x for which the characteristic polynomial is unstable. Rectangles comprising Q for which
stability cannot be declared will be partitioned further and reanalyzed until a convergence criterion is met.

We want to discriminate among the cases where stability could not be declared because of the existence
of an unstable fixed point. This will eliminate the need for partitioning further elements of Q. To accomplish
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this, time reversing of the system of differential equations will be used to identify unstable nodes and unstable
spirals, i.e., fixed points whose eigenvalues have a positive real part.

Time reversal is carried out by change of variables t = −t in (1). The time-reverse system of ẋ = F (x,p),
denoted as ẋ = G(x,p), is given by G = −F . Note that if x is a trajectory governed by (1) such that
x(t0) = x0 and x(tf) = xf , the trajectory corresponding to the time-reverse system satisfies x(t0) = xf and
x(tf) = x0 for all x0, xf , t0 and tf .

By time reversal, we obtain JG = −JF . Consequently, if the characteristic polynomial of the original
system is

n

∑
i=0

ais
i = 0 (16a)

the one of the time-reverse system is
n

∑
i=0

(−1)n+iaisi = 0 (16b)

Table 1 summarizes the stability of fixed points based on the eigenvalues of J . Saddle points (and circles)
are the fixed points whose stability remains unchanged upon time reversing. A change in the stability of a
fixed point when the original system is time reversed indicates the presence of a stable/unstable spiral or a
stable/unstable node depending on whether the eigenvalues are complex or real.

Table 1. Classification of fixed points based on their stability, and change of stability by time reversing.
The time-reverse system helps identify the unstable nodes and spirals since their stabilities change upon
time reversing.

Eigenvalues Real part of eigenvalues Original system Time-reverse system

Real All negative Stable node Unstable node

Real All positive Unstable node Stable node

Real Some positive some negative Saddle node Saddle node

Real At least one zero Undetermined Undetermined

Complex Positive Unstable spiral Stable spiral

Complex Negative Stable spiral Unstable spiral

Example 3. Let us go back to Example 2 in which the bounding set of fixed points of a system of nonlinear
equations was identified. After obtaining the bounds for the characteristic polynomials coefficients and
applying the Kharitonov’s theorem, the stability of the elements of Q were determined.

Figure 5(a), which corresponds to the original system F , indicates a Q comprised of four rectangles.
While the one colored in gray is found to contain at least one stable equilibrium point, those in white may
contain unstable equilibrium points. Figure 5(b) depicts the same results for the time-reverse system. The
squares that have not changed color are saddles. Since the unstable equilibrium manifold becomes stable
and the stable one becomes unstable, the stability of the equilibrium point remains unchanged. A change
in the color of rectangles on the upper right and lower left corners indicate the presence of a stable and an
unstable node or spiral, respectively, in the original system.

B. Bifurcation Analysis

Thus far, we have assumed that the value of the parameter p is fixed at p = p∗. This assumption is
relaxed in this section. It should be noted that, the uncertain elements of p are deterministic, but their
precise values are not known. The objective of this section is to study the effect of p on the location and
local stability of the fixed points of the system using the methodologies that were introduced in the previous
sections. In particular, we are interested in bounding the values of p where the system bifurcates. These
points will be called bifurcation points.

We will denote by p the parameters in F whose variation is to be studied. p is free to take any value in
the hyper-rectangle Dp. The domain of interest, which combines both the state space x and the parameter
space p, is given by

D = {[xL1 , xU1 ] × [xL2 , xU2 ] × . . . × [xLn , xUn ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Dx

×[pL1 , pU1 ] × . . . × [pLq , pUq ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Dp

} (17)
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(a) (b)

Figure 5. (a) The bounding sets of the stable and unstable fixed points for the system in Example 2 are
shown with dark and white rectangles, respectively. One stable and one unstable node, and two saddle
points are depicted. (b) The bounding set of fixed points for the time-reverse system. The colors of
two of the rectangles remain unchanged indicating the potential for saddle points. The colors of the
other two rectangles change indicating an stable/unstable node or spiral in the original system.

where Dx and Dp represent the state space domain, and the parameter space domain of the problem.
Partitioning and identifying the outer bounding set of fixed points of the system is exactly the same as
discussed in section V. Each hyper-rectangle in Q can be represented by:

Ri = {[xLi,1, xUi,1 ] × [xLi,2, xUi,2 ] × . . . × [xLi,n, xUi,n ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ri(x)

× [pLi,1, pUi,1 ] × . . . × [pLi,q, pUi,q ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ri(p)

} (18)

where xLi,j and xUi,j represent the left and right corners of the hyper-rectangle Ri in direction j, and similarly

pLi,j and pUi,j represent the lower and upper range of the parameter pj in hyper-rectangle Ri.
The bounding set Q resulting from applying the methods of Section V contains the equilibrium manifold

of the system. Each rectangle comprising Q may contain infinitely many fixed points whose local stability
may differ.

The stability of all the fixed points within each hyper-rectangle will be assessed using the methods of
Section VI-A. Note that while the rectangles are defined in the Cartesian product of the state and parameter
spaces, and as such they are treated the same, the stability analysis requires calculating the Jacobian with
respect to x only. The application of the methods in Section VI-A enables qualifying all the boxes comprising
Q. Some boxes will only contain stable equilibrium points, others will only contain unstable nodes or spirals,
and some others will contain either saddles or a combination of stable and unstable points. Those belonging
to the latter category will be partitioned further in subsequent iterations.

To identify the bifurcation points, members ofQ having the same projection onto the parameter space will
be clustered using algorithms such as K-means11. Each cluster in a parameter space, represents a connected
branch of the equilibrium manifold. A change in the number of clusters along the parameter space indicates
a bifurcation. The parameter range where the number of clusters change contains the value of a bifurcating
point. As with all other calculations, the tightness of this range can be made arbitrarily tight with additional
computational effort.

Example 4. In this example, we study the effect of p on the dynamics of the system

{ ẋ1 = px1 + x2 + sin(x1)
ẋ2 = x1 − x2

where D = [−π,π] × [−π,π] × [−4,1]. We can simplify the pictorial representation of the results since the
fixed points of the system satisfy x1

∗ = x2∗. Thus, a −45 degrees rotation of the coordinates in the x1x2
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plane yields Figs. 6(a)-(c), which depict the bifurcation diagrams in the rotated state space p vs x1 + x2
by the proposed methodology and the numerical optimization, respectively. In Fig. 6(a), the rectangles
containing the fixed points of the system and their stability are depicted. The stable rectangles are shown
in dark colors, and the unstable rectangles are shown in white colors. The system goes through a pitchfork
bifurcation in D, and the corresponding range where the pitchfork bifurcation occurs is shown in the Fig.
6(a). Note from the figure that the refinement of the entire equilibrium manifold is not required when we only
aim at bounding the bifurcation points. The Figure also shows that the origin is bounded by the rectangles
for all p ∈ Dp. Also, there are two other symmetric stable branches of rectangles that originate from the
pitchfork bifurcation range. The bifurcation diagram of the time-reverse system was obtained and showed
that the rectangles containing the fixed points across the entire diagram become unstable. In other words,
the unstable rectangles along the origin for p > −2, remained unstable by time reversal. This indicates that
these rectangles either contain saddle points or are too large. It is possible to obtain arbitrary tighter bounds
for the fixed points with additional partitioning. Figure 6(b) shows the bifurcation diagram from further
partitioning, which results in smaller bifurcation range. The stability of the rectangles of the original system
and the time-reverse system remains unchanged indicating that the unstable rectangles likely contain saddle
nodes (which is in fact the case).

Figure 6(c) depicts the fixed points of the system obtained from numerical methods via Matlab. The
figure looks very similar to the other two diagrams showing that a pitchfork bifurcation take place at p = −2.
The stable branches are shown with solid lines and the unstable branch is shown with a dotted line.

(a) (b) (c)

Figure 6. (a) The bounding set of the equilibrium manifold in the x1 +x2 vs p plane using the Bernstein
expansions with a total elapsed time of 4:30 minutes using an Intel CORE i7 processor. The unstable
rectangles are shown in dark colors, and the stable ones are shown in white colors. A pitchfork bifur-
cation occurs in the bifurcation range shown. (b) The bifurcation diagram using Bernstein expansions
with more iterations and a total elapsed time of 35 minutes. (c) Equilibrium manifold calculated via
optimization.

VII. Conclusions

In this paper, we proposed approaches for: (1) bounding the zeros of systems of nonlinear equations
using polynomial bounds and Bernstein expansions (2) generating stability analyses of nonlinear dynamic
systems, and (3) generating bifurcating analyses of such systems. There is no general analytical solution
to most of these problems and their numerical solution may miss parts of the full solution, e.g., zeros of
the system of equations or branches of the equilibrium manifold may be missed. By design, the proposed
approach guarantees that all the equilibrium points in a bounded region of the space are found, and that
the corresponding local stability and local bifurcation analyses are correct. More importantly, arbitrarily
tight bounds of the zeros, fixed points, equilibrium manifold, and bifurcation points can be generated with
additional computational effort, i.e., the solution is not only rigorous but also exempt from irreducible
conservatism/indeterminism. Finally, as a complementary tool, the developments proposed here can be used
to verify the correctness and completeness of stability and bifurcation analysis carried out numerically.
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